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Abstract. We examine long-wavelength correlation functions of massive scalar fields in de
Sitter spacetime. For the theory with a quartic self-interaction, the two-point function is
calculated up to two loops. Comparing our results with the Hartree-Fock approximation and
with the stochastic approach shows that the former resums only the cactus type diagrams,
whereas the latter contains the sunset diagram as well and produces the correct result. We
compare our results with the preceding results obtained for the massless scalar field.

1. Introduction

The de Sitter universe is a spacetime with positive constant 4-curvature that is homogeneous
and isotropic in both space and time. It is completely characterized by only one constant H and
has as many symmetries as the flat (Minkowski) spacetime. De Sitter universe plays a central
role in understanding the properties of cosmological inflation. Inflation is a stage of accelerated
expansion of the early Universe. The expansion is quasi-exponential, and at lowest order it
can be approximated by de Sitter space. The inflationary stage allows the growth of quantum
fluctuations, which are necessary to explain observed large-scale structure of the Universe. So
it is important to study quantum field theory in de Sitter background. Scalar fields in de Sitter
space are of particular importance for understanding the period of inflation and the growth
of quantum fluctuations. In the massive case if m? < H?, the leading contribution to the
renormalized correlator (¢?);en

3H* 0
(H*(Z,1))ren = S22 +0 ((mZ/H2) ) 7 (1)
derives entirely from the long-wavelength modes [1, 2, 3, 4]. When there is a self-interaction,
each successive term in the weak coupling perturbative expansion contains higher and higher
powers of H?/m?. The perturbation theory breaks down when the value of H?/m? overwhelms
the smallness of the coupling constant.

A non-perturbative method for calculating the expectation values of the coarse-grained
theory, containing only the long-wavelength fluctuations of a scalar field, was proposed by
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Starobinsky [5, 6]. In the framework of this method the expectation values can be determined by
using a probability distribution function that is a solution to a simple Fokker-Planck equation.
In the recent work [7] we considered a massive scalar field with a quartic self-interaction. We
calculated a long-wavelength part of the two-point function up to two-loop order using the “in-
in” formalism [8, 9]. We compare our results with the Hartree-Fock approximation and with the
stochastic approach. We argue that the perturbative expression for the two-point function can
be reorganized into a sum of exponential functions that depend on the two given points in a de

Sitter invariant way.

2. De Sitter space in flat coordinates
We consider the de Sitter spacetime represented as an expanding spatially flat homogeneous and
isotropic universe with the following metric

ds? = dt? — a®(t)(da? + dy? + d=2) (2)

where the scale factor a(t) is
a(t) = et | —co < t < o0, (3)

and H is the Hubble constant that characterizes the rate of expansion.
If we introduce a conformal time coordinate, given by n(t) = [ dta~'(t), then

ds® = a*(n)(dn* — da® — dy* — dz?), (4)
1
a(n) = “Hy —o0 <1 <0. (5)
Physical distances are defined as: {ppys = a(n){ = —¢/(Hn), while physical energy or

momentum are given by : kpnys = k/a(n) = —kHn.

3. Massive scalar field in de Sitter space
We will study a massive scalar field with a quartic self-interaction

1 1 A
5= [dey=g <29/~Waﬂ¢ay¢ — Smie? - 4¢4> . (6)
When A = 0, the equation of motion for the rescaled field x = a(n)¢ is
1 m?
2 _
X,/—VX—772<2—H2>X—0- (7)

We expand the field ¢(#,t) in terms of creation and annihilation operators
. &Pk e
0(2.0) = [ Goya {ortme™ag + o al} 8)
where the mode functions x; = a(n)dy obey the differential equation

1 2
1— —— (2 — m)
k212 H?

where k = |E| The general solution of this equation can be expressed as a linear combination
of Hankel functions:

Xllf/+k2 Xt =0, (9)

Xk (1) = v/=kn [ A MO (k) + By HE (<) | (10)
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9 m?
V=]l — — . 11

The choice of the coefficients Ay, and By defines a vacuum state |0) annihilated by ag.
ap|0) =0 for any k. (12)

If one wants to have a vacuum that in the remote past n — —oo (or, equivalently, for modes with
very short physical wavelength, —kHn > H) behaves like the vacuum in Minkowski spacetime,

e—zkn

xk(n) — ok (13)

one should choose JF
T
xk(n) = —5 VT HDY (—kn) (14)

Such a choice is called the Bunch-Davies vacuum [10]. As long as m # 0, this state is de Sitter
invariant. If m? < H?, then

2

3
l/z§—u,withu53m?<<1. (15)

4. Perturbative calculation of the two-point correlation function

We present a perturbative calculation of the long-wavelength part of the two-point function.
There are two reasons why it is meaningful to consider exclusively the long-wavelength modes
The first reason is physical. The fluctuations relevant for the formation of the observed large-
scale structure of the universe are those whose wavelength, by the end of inflation, has been
stretched to a size much larger than the Hubble horizon. The second reason is mathematical.
Calculations are much simpler if instead of the exact modes, one uses their long-wavelength limit.
At the same time, in many cases the results can reflect the behavior of the untruncated theory.
In the small mass limit, the long-wavelength two-point function matches with the untruncated
one for large separations and for coinciding spacetime points. The free two-point function in a
vacuum state |0) is

—~
<
—
=l
-
=
N—
<
—~
<
4~
N
S~—
~
>
o
If

(0]p(Z, t1)p(, t2)|0)

&K ~ 1= k
= [ G = o [k R )0k )

(16)
Its long-wavelength part consists of modes with physical momenta much less than H:
k k
=—km <e, =—kny <e, 17
anH ~ S G~ "
where € < 1. In this limit
iH 3/2 _ iH
~ L3y = —kn)". 18
Pr(n) \/i( )" (—=kn) \/ﬁ( n) (18)
The long-wavelength part of the two-point function is
o H2 ()" [~/ dk K2 sin(kr)
t t = 2 =z T
G@ 00 t)or = g [ E T
(19)
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where 7y, is the earliest time that accompanies the momentum k: Nm = min(ny,72). In the case
of coinciding spacetime points

H2(_m2u —e/m  dk H?2 2u
2/~ _ _
(¢°(Z,t)) 0,1, = 47772/0 AR Rk
(20)
If
exp (—u_l) ek 1, (21)
then €2* may be replaced by 1 and
. H? 3H!
(@*(Z, 1)L (22)

- 8n2u 872m?2

Given two points in de Sitter space, there is a de Sitter invariant function associated with them
11, 4]

Z(X,Y) = —H*n, X'Y", (23)
where X and Y represent coordinates in five-dimensional Minkowski embedding space with the
metric 7, = diag(1,—1,—1, -1, —1). In spatially flat coordinates
_ A — |7 g

2mm2

Z(Z1,m;3 9, n2) (24)

If points are timelike separated, then Z > 1; if points are lightlike separated, then Z = 1, and if
points are spacelike separated, then Z < 1. If (Z,¢1) and (¥, t2) are related in such a way that

1
Z>1- 22 (25)
then
—7r/Nm < 1/€
and we have
H? Hit,—t
(D(Z,t1)p(y,t2))no, = %e_u tr=ta] (26)

There are two important subcases for which the two-point function is given by the above
expression. One is when points (Z,t1) and (¢, t2) are timelike or lightlike separated; the other
is when these points have coinciding time coordinates and the physical spatial distance between
them satisfies a(t)r < (eH)~!. In the latter case, we obtain the same result as that for the
coinciding spacetime points. This means that as far as the long-wavelength correlation function
is concerned, there is no difference between coinciding spacetime points and points on a constant
time hypersurface that are separated by a proper distance less than (eH ).
Let us consider the case when

(=r/nm) > 1/€, (27)

1
Z<1l—— —1.
262<<
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It corresponds to the regime of large spacelike separation between points and

000G s = o (M)
_ 81:22U€UH(t1+t2)(7,H)2u _
(28)
In this regime the equal-time two-point function,
(O 065 D)0, = o (RE) S 29

depends only on the physical spatial distance R = ref’t.

The exact (untruncated) two-point correlator function is known, it is expressed through a
hypergeometrical functions and its leading in the parameter u terms give the results coinciding
with the long-wavelength correlators, presented above for the cases of coinciding spacetime points
Z =1 and the points separated by large timelike or spacelike intervals |Z| > 1.

Just as in flat spacetime, the expectation value of the commutator of two fields vanishes
for spacelike separated points and is nonzero for timelike separated points. However, for the
long-wavelength fields

([p(Z,t1), &(¥, t2)])xo,, = 0 (30)

both for timelike and spacelike related points. The vanishing of this commutator indicates that
the long-wavelength part of the field in a sense behaves like a classical quantity.

5. Schwinger—Keldysh technique

Schwinger-Keldysh or “in-in” or “closed time path” formalism [8, 9] serves for the calculations
of expectation values of operators when only the initial state of the system is given. In
contrast to the “in-out” formalism there are four types of the propagators and two types
of vertices, characterizing the quantum fields on the way forward in time and “back in
time”. After some calculations one remains with the integrals including Wightman functions
and theta-functions. Diagrams that correspond to these integrals look similar to Feynman
diagrams. The one-loop correction to the two-point function is given by the following diagram:

H , »
(@,t1) t (4, t2)
Fig.1 One-loop “seagull” diagram.

In the case of the timelike, lightlike or small spacelike separation between the points we have

(&(Z, t1)d(F. 12)) L
)\H2 —uH|t1—t
:_W(1+UH‘t1—t2’>e |1 2‘.
(31)
In the case of coinciding spacetime points one finds
» 27T\H®
<¢2($7t)>)\,L = T 6drime (32)
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The long-wavelength correlation function at large spacelike separations is

(O(Z, 1) (Y t2)) a1 (33)
— AH? 2172 JH(t1+t2) —uH (t1+t2) —2u
—W{lJruln(rHe ! 2)}6 TR (rH) T (34)

The effective parameter of the perturbative expansion is not A but A/u?, so the perturbation
theory is valid as long as A < m*/H?*. To calculate the two-loop contribution to the two-point
correlator, we should consider three diagrams. First of them is the diagram with two indepen-
dent loops.

Q.

(Z,t1) v t (4, t2)
Fig.2 The “double seagull” diagram with two independent loops.

When Z > 1 — (2¢2)7!, we obtain

(6, 1)o7, 12))55 1 (35)
)\2H2 1 27172 2 —uH|t1—t
= 5127000 (1 +uH[ty =t + JuTH |ty — ta >6 It =tal (36)

which for coinciding spacetime points becomes

(1) _ 243\2H'?

(6*(F 5L = 156,10 - (37)
In Z < 1— (262)7! regime, we have
(67, 1) 07, t2)) 2, (38)
— 5?;5; {1+ un (r2H2M02) (39)
+%u2 In2 (7,2H26H(t1+t2)) } ef’uH(tl#*tg)(T,H)qu ' (40)



Avenues of Quantum Field Theory in Curved Spacetime (AQFTCS 2022) IOP Publishing
Journal of Physics: Conference Series 2531(2023) 012007  doi:10.1088/1742-6596/2531/1/012007
The second diagram can be called “snowman”.
K 4 y .4
(Z,t1) t (¥ t2)
Fig. 3 The “snowman” diagram.
In the case Z > 1 — (2€2)7! it gives
2772
= - @ _ AH —uH|t1—t2]
<(Zs(x,t1)¢(y,t2)>)\2’[/ = 5127’[‘6u5<1+UH|t1 —t2‘)e u 1—t2 , <41)
which for coinciding spacetime points reduces to
27712
2% (2 243\ \“H
<¢ (%t»,\zl, = W . (42)
When Z < 1 — (2¢2)71, we obtain
S NG,
<¢(.Z‘,t1)¢(y,t2)>)\2,L (43)
)‘2H2 2172 H
— (t1+t2) —’U,H(tl -l—tz) —2u
197605 {1 +uln (r H*e )} e (rH)™=". (44)
The last two-loop diagram is “sunset”.
[ 4 L J
(Z,t1) t v (¥, t2)
Fig. 4 The “sunset” diagram.
For Z > 1 — (2€%)7}, it gives
2772
= - 3 _ A"H —uH|t]—to|
<¢($,t1)¢(y,t2)>)\2’[/ = 102471_6u5(1+2uH‘t1 —tg’)e u 1—t2 (45)
)‘2H2 SuH
—3uH[t1—t2| 46
+30727r6u5 (46)
For coinciding spacetime points, it reduces to
27712
2 (3 _ SIAH
(@°(%,1) )2, = 5660 (47)
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In the opposite regime, Z < 1 — (2¢2)~!, we obtain

(3T, 11)(7. 12))\ 1 (48)
)‘2H2 27172 H(ti+t —uH (t1+t —2u

= 10247505 T - e i (07
AZHZ —3u —6u

+357965° Sul (titt2) (. fy=6u (49)

6. Comparison with the Hartree-Fock approximation and with the stochastic
approach
Starting with the Klein-Gordon equation and using the Hartree-Fock (Gaussian) approximation

(¢*) = 3(¢%)?, (50)

we arrive to the following equation for the two-point correlator:

9, .9 H3  2m? 2\, 9.9
i - _ - -z ) 51
As t — oo, all the solutions to this equation approach an equilibrium value that satisfies
H3  2m? 2
- =0 (52)
For A = 0, we have
3H*
2\
(@) = SmZm2 (53)

When A # 0, we have

2( /. oxH4
<¢2>L:Tg)\( 1+27r2m4_1); (54)

we chose the root that coincides with the preceding expression in the limit A — 0. Assuming
that AH*/m* < 1, and expanding the preceding expression yields

_ 3H'  21\H® +243)\2H12
~ 8m2m?  64wtmS  25676m10

(@)1 +O(N%) . (55)
Comparing this expansion with the results obtained by the field-theoretical methods, we see
that they match at zeroth- and first-order in A, but there is a mismatch at second order: the
A2-term omits the contribution of the sunset diagram and is equal to the sum of other two
diagrams. Hence, it can be concluded that the Hartree-Fock approximation resums all cactus
type diagrams of the perturbation theory

The stochastic approach [5, 6] argues that the behavior of the long-wavelength part of the
quantum field ¢(Z,t) in de Sitter space can be modelled by an auxiliary classical stochastic
variable ¢ with a probability distribution p(p,t) that satisfies the Fokker-Planck equation

op H3 0?%p 1 0 [0V
—=——+——| =pt . 56
ot  8m20p2  3H dy <8<p 4 ’90)) (56)
In our case the potential has the form
1 A
V(p) = gm*” + 7o' (57)
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At late times any solution of the Fokker-Planck equation approaches the static equilibrium
solution

—1 87'1'2
Peq(p) = N7 exp _@V(SO) ) (58)
where N is the normalization constant fixed by the condition
| pale)do=1. (59)
—0Q0

In our case we can calculate this normalization explicitly

o0 87’[’2 )\§04 m2g02
M= /_ooeXp[_3H4< TR
T exp(2)K1 (2) (60)
= X 1 ,
van P

where K 1 (z) is a modified Bessel function of the second kind, and z =

dp

Using this equilibrium distribution, we obtain

m? IC% (2)  m2

= - 61
R VA (61)
4
Expanding this in the limit AH*/m* < 1 (which corresponds to z > 1) gives
3H*  27AH® 81\?H!?
2 3

= - . 2
0 = Se2m2 ~ Gamtmd T gamomio T O (62)

This result is in agreement with the result of the quantum field theory calculations, and unlike
the Hartree-Fock approximation, it includes the contribution of the sunset diagram. The long-
wavelength two-point function of ¢(Z,t) too can be calculated by using the classical stochastic
variable ¢: if the points (Z,¢1) and (¥, t2) are timelike or lightlike related, this correlation
function is given by

(0(Z,t1)0(F. 12)) L = (p(t1)p(t2)) - (63)
If the correlation function (p(t1)p(t2)) depends only on the absolute value of the time difference
T = |t; — to|, it can be expressed as

(p(t1)p(t2)) = /_O:O¢E(<P,T)d<p, (64)

where the function Z(p, T') satisfies the Fokker-Planck equation,

02  H*9’®2 1 0 (9V
o= === 65
oT  8m2 Hyp? + 3H dp <8<p (¢ )> ’ (65)
with the initial condition
E($,0) = @peq(p) - (66)
Derivatives of (¢(t1)p(t2)) at T'= 0 can be computed by using the equations above:
0 H3
67<¢(t1)¢(t2)> o Br2’ (67)
82 2
—{p(t1)p(t = ——(3X(p*) +m?) , 68
g (Pe(t))| =5 (3M) +m) (68)

and so on. It is easy to confirm that the T-derivatives of the two-point correlation function

presented earlier (for Z > 1 — ﬁ case) satisfy these equalities as well.
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7. Exponentiation of the perturbative series
The expression for the two-point correlation function can be presented in the following way:
(the case Z > 1 — ﬁ)

, . H? A 52 u
(O, 1)o7, t2))L = ¢ 5 (1 R CRc I 1287r4u4> e T (69)
_AHPT ( _ 3 ) _WHT
647402 sm2u? ) ©
)‘2H4T2 —uHT /\2H2 —3uHT 3
+10247r6u3e 307277%56 +O(X) (70)
H? A 52 .
= — o® 71
82w, ( 8m2u2  1287dud +0O( )> (1)

ANHT MNHT 1 (MNHT\?
1— _ )\3 —uHT
X l 8mu + 32mdu3 + 2 <8W2u) +0O( )] €

\2H?
673uHT + ..

1 3072n0 0 o (72)

To second order in A, the expression in squared brackets matches with the first three terms
in the Taylor series of the exponential function

NHT A
_ 1—
P [ 8miu ( 4772u2>} ’ (73)

so it is plausible that an infinite series of diagrams may be resummed into this exponent. With
this assumption, we arrive at

H? A 5A2
Et)(F, t2))r = ——5— | 1 — \?
(6B 1)) = ooy ( o + T + O )) (74)
A A2 3
X exp [—uHT (1 + S22 3oyl +O(A ))]
N H?
+35756.5 P [—3uHT| + ... . (75)
Analogously for Z < 1 — ﬁ:
H? A 5A2
7, t1) (7, to)) = —5— | 1 — A3
<¢(l‘7 1)¢(y7 2)>L 8721 < ]721,2 + 128744 + O( )) (76)
2
v (T2H26H(t1+t2)) 7u<1+87r§\u2 - 32?4144 +O()‘3)>
>\2H2 27172 H(t1+t2) —3u
+30727T6U5 <T Hre ) T (77)

In this regime the equal-time correlation function depends only on the physical spatial distance
R = reflt,

We see that the perturbative corrections don’t change the long-wavelength part of the
commutator: just as in the free theory case, it is equal to zero both for timelike and spacelike
related points.

10
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As T — oo, the two-point function decays with the characteristic correlation time

l ~N — = —— _ .
© wH  om? > H (78)

Similarly, as R — oo, the equal-time correlation function decays with the characteristic

correlation length
1 3H?

This behavior differs from a much faster exponential decay of the equal-time correlation function
in flat spacetime: (H(Z,t)d(Y,t))gar ~ V/m/r3e™™" as r — oo.

8. Relations with other works

The results of our paper coincide with those, obtained by other methods in papers [12, 13], where
the p-representation for the correlators of the scalar fields on the flat de Sitter background [14]
was used.

In our preceding paper [15] we considered a massless scalar field with quartic self-interaction
in de Sitter spacetime and developed a semi-heuristic method for taking the late-time limit
of a series of secularly growing terms obtained from quantum perturbative calculations. We
compared our results with those coming from the stochastic approach and have found an
astonishing agreement.

Our proposal was inspired by the renormalization group: to construct a simple autonomous
first-order differential equation i

e = Flf®)

that produces the first terms of the expression for correlators, obtained by perturbative methods.
Then, we can solve approximately this autonomous equation, obtaining the expressions without
secular growth, while the initial terms of the perturbative expansion were proportional to the
powers of the cosmic time parameter t.

9. Conclusions
We have calculated—up to two loops—the long-wavelength two-point function for a scalar theory
with a small mass and a quartic interaction.

It has been shown that it is de Sitter invariant for coinciding points as well as at large
spacelike and large timelike separations. We have demonstrated that the commutator of the
long-wavelength part of the field is equal to zero both at the free theory level and with the
perturbative corrections.

Our results are in agreement with Starobinsky’s stochastic approach in which the coarse-
grained quantum field is equivalent to a classical stochastic quantity. It would be interesting
but more difficult to consider similar problems on more general backgrounds.
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