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Abstract

The dynamics of Quantum Chromodynamics (QCD) at high temperatures are subject of current theoretical and

experimental research. In large collider experiments a state of matter is produced, whose properties differ greatly

from ordinary hadronic matter in vacuum. In this thesis, lattice methods are applied to study the symmetry prop-

erties of strongly interacting matter at high temperatures. Most notably, the theoretically expected restoration of

chiral symmetry is observed. In the meson spectrum correlation functions of chiral partners become degenerate

after some critical temperature Tc, and for ground state nucleons parity doubling is observed. In a specific domain

around 2Tc an additional SU(4) symmetry naturally emerges in the spectrum of mesons, which was previously

observed in numerical experiments, where chiral symmetry was artificially restored. The implications of this SU(4)

symmetry on the gluonic degrees of freedom in the high temperature phase are discussed.

Furthermore, the previously established method to artificially restore chiral symmetry by removing the low-

mode spectrum of valence quark propagators is applied to a quenched simulation of chiral fermions for multiple

quark masses. The effects of the truncation on J = 1 mesons are studied in dependence of different pion masses.

Kurzfassung

Die Effekte der Quantenchromodynamik (QCD) bei hohen Temperaturen sind aktuell Gegenstand von theoretis-

chem und experimentellem Interesse. Mithilfe großer Teilchenbeschleuniger wird ein neuartiger Materiezustand

erzeugt, der sich bedeutend von herkömmlicher hadronischer Materie im Vakuum unterscheidet. In dieser Arbeit

werden Gitterfeldmethoden verwendet, um die Symmetrieeigenschaften von stark–wechselwirkender Materie bei

hohen Temperaturen zu studieren. Dabei wird insbesondere die Restaurierung von Chiraler Symmetrie unter-

sucht. Im Spektrum von Mesonen wird dies durch Entartung der Korrelationsfunktionen von Chiralen Part-

nern über einer kritischen Temperatur Tc beobachtet, und für Nukleonen im Grundzustand durch Entartung

von Paritäts–Partnern. In einem speziellen Fenster um 2Tc manifestiert sich eine zusätzliche SU(4) Symmetrie,

die zuvor in numerischen Experimenten mit künstlicher Wiederherstellung Chiraler Symmetrie beobachtet wurde.

Implikationen der SU(4) Symmetrie auf die Freiheitsgrade von Gluonen bei hoher Temperatur werden diskutiert.

Weiters wird die zuvor erwähnte Methode zur künstlichen Wiederherstellung Chiraler Symmetrie auf eine

‘quenched’ Simulation mit chiralen Fermionen und mehreren Quarkmassen angewandt. Dies geschieht, indem

niedrige Eigenmoden der Valenz–Quarkpropagatoren entfernt werden. Die Auswirkungen dieser Methode auf

das Massenspektrum von J = 1 Mesonen werden für verschiedene Pionmassen studiert.
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Chapter 1

Introduction

Hadrons act as if they where made up of quarks,
but the quarks don’t have to be real.

— Murray Gell-Mann, Lectures on Quarks

The Large Hadron Collider at CERN underneath the border of France and Switzerland is generally con-

sidered to be the biggest machine build by man. When it started its operation in September 2008, its

mission was clear: collide hadrons, probe the Standard Model, and discover new physics. A first mile-

stone was achieved in 2012 with the discovery of the Higgs particle. Thereby the last missing piece of the

Standard Model has been found, and its correctness and consistent description of nature been verified.

While many efforts are nowadays directed towards finding new physics, unifying forces and explaining

open cosmological questions commonly referred to as dark matter and dark energy, there is still a multi-

tude of unresolved details within the Standard Model, which require for a better understanding.

Some particular notorious puzzles revolve around the strongly interacting, i.e. hadronic, part of na-

ture, which is described by the theory of Quantum Chromodynamics (QCD) in the Standard Model.

QCD is formulated as non-abelian gauge theory, whose SU(3) gauge group offers a rich mathematical

structure, while at the same time renders it analytically inaccessible. The most prominent peculiarities of

QCD are chiral symmetry breaking, the mass gap, asymptotic freedom, and confinement
1
.

A bulk of evidence and understanding of chiral symmetry breaking effects in the low energy regime of

the theory have been gathered so far for various approaches to QCD. Its manifestation and dynamics in

the lattice approach to QCD will be covered in this thesis. The mass gap problem of Yang-Mills theories

on the other hand is one of the seven Millenium Prize problems issued by the Clay Mathematics Institue

and still an open question, the solution of which is rewarded with one million dollars. As such, it is

naturally within the domain of mathematical physics, and the relative absence of experimental findings

of gluonic states relieves the problem from the urgency to shed light on the mass gap problem.

The main part of this thesis however deals with phenomena generally associated with asymptotic

freedom and confinement. Both effects are related by the specific way of how the coupling strength of

QCD behaves at different energies, and which effects this has on the effective degrees of freedom. Extra

care has to be taken when discussing these topics, as there are different definitions of confinement used in

existing literature. Its interpretation is often impaired by imprecise terminology along with uncertainty

on how to measure alleged deconfinement in experiment, which results in an overall ambiguous situa-

tion. In addition, the properties of confined hadrons change rapidly in a temperature range at which the

transition of a chirally broken to a chirally symmetric regime takes place. Again, extra care is necessary to

1

In analogy to the phenomenon of asymptotic freedom, confinement is sometimes refered to as infrared slavery. The

relation of both terms and exact meaning of confinement are discussed later in this thesis.

7



8 Chapter 1. Introduction

distinguish the effects of both phenomena. To illustrate the conceptual difficulties, let us assume a basic

definition of confinement as the property that all observable hadrons are color-neutral states. This in

turn defines deconfinement as the possibility to observe color-charged states, i.e. free quarks. Now the

quote in the epigram at the beginning of this chapter is taken from a lecture, which Murray Gell-Mann,

a founding father of QCD, gave during the 11th Winter School in Schladming, Austria, in 1972. There

he introduces quarks as building blocks of hadrons, with an additional property to distinguish quarks in

the same state: color. Gell-Mann stressed out that quarks are a mathematical concept, a simple, childish

model to describe the observed spectrum, and that quarks do not necessarily have to be real. The idea is

mentioned that there may be no fundamental things at all. Here the naive definition of deconfinement

given above runs into troubles.

In the infrared region of QCD, where momentum transfers are small and the coupling strong, the

effective degrees of freedom are hadrons, as we measure them in nature. Under certain conditions of high

temperature or high matter density this could change: conditions as they are expected at the beginning

of the universe or as they are produced during heavy-ion collisions in experiments at the Large Hadron

Collider (LHC) or the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory

in Upton, New York
2
. This heavy-ion collisions leave around 400 participating nucleons in a state of

extremely high temperature for a fraction of a second, during which the traditional hadrons are expected

to dissolve into lighter degrees of freedom. This experiments allow to probe confining properties of

hadronic matter and thereby guide and verify the theoretical understanding.

Theoretical approaches to this questions of QCD are characterized by the fact that the infrared physics

cannot be treated perturbatively due to the strong coupling in this domain. Therefore genuine non-

perturbative methods have to be used. In this thesis the lattice approach to QCD will be applied. Lattice

QCD is a well established method for extracting hadron properties in the vacuum, as well as scattering

data and bulk properties of high temperature QCD. It is a priori not clear which role non-perturbative

effects have in the high temperature region of QCD and at which temperature methods of perturbation

theory become an eligible tool to accurately describe the physics, i.e. at which temperature an asymptot-

ically free scenario is reached – if at all.

Non-perturbative effects of QCD are strongly connected to the low-lying eigenmodes of the Dirac

operator and have been shown to include interesting physics: e.g. the relation of Banks–Casher links

the chiral condensate to the near-zero modes, and the index theorem of Atiyah–Singer directly connects

topology and zero modes. Topological excitations can be interpreted as instantons, which, inter alia,

effectively describe the physics related to the U(1)A anomaly.

Now the use of lattice methods has a big virtue when addressing questions like this: working with a

discretized version of space-time it becomes feasible to explicitly calculate eigenvalues of operators and

explore the low-mode Dirac sector numerically. This has been done in a set of experiments, where low-

lying fermion modes have been used to examine topological and chiral properties, as well as to construct

hadron-like propagators [1–3]. In a similar set of numerical experiments [4–16] the ‘inverse’ has been

done: modified hadron propagators have been constructed by excluding the low-lying modes of the Dirac

operator. Thus chiral symmetry has been found to be unbroken, while most hadronic properties are kept

intact. Moreover, an additional, dynamically emergent symmetry of the truncated spectrum has been

observed and identified as SU(4) symmetry in this specific simulation. More details on this artifical

trunaction scheme and its effects on the hadron spectrum will be discussed in section 4.1.

In the work at hand central elements and building blocks of observables are quark propagators, whose

distribution of eigenmodes is strongly dependent on the temperature of the system: it has been shown

that the low modes are strongly suppressed close to the chiral transition [17–20] . The question whether

or not there is a gap opening in the eigenmode spectrum, is still subject of current research. Along with

the theoretical and numerical considerations above, this situation gives additional motivation to study

2

Whereas the operation of RHIC is specifically dedicated towards heavy-ion collisions, the LHC operates with heavy-ions

just for a few weeks during a year, usually at the end of each proton-proton run.
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QCD at high temperature and induces expectations of changing physics in the hadronic spectrum.

The main body of this thesis will cover correlation functions of mesons and baryons in the high

temperature phase of two flavor QCD. By carefully studying appropriate operators, it is thus possible

to study the long–range effects of chiral symmetry restoration in the spectrum of QCD, in contrast to

directly measuring susceptibilities. A close look at the effects of the U(1)A anomaly on the spectrum is

possible, and its effective restoration in dependence of the quark mass and temperature will be tracked.

Finally, properties of the previously mentioned SU(4) symmetry will be investigated. While in previous

studies this symmetry was found by artificially removing parts of QCD, here it emerges naturally in a

specific domain of the high temperature spectrum. This observation, its implications and consequences

on the effective degrees of freedom will be discussed.

To summarize the introduction, a few more open questions of general nature can be stated, which

are related to the non-perturbative physics of QCD:

• What is the mechanism of mass generation in hadrons?

• Is chiral symmetry related to confinement?

• Is there deconfinement?

• Are there hadrons in a chirally symmetric regime?

• What are the effective degrees of freedom there?

• What about quarkyonic matter?

Using modern lattice methods we are in a situation where we can give an answer to some of this questions,

from a stochastic point of view, and hope that our findings may help in the general understanding of

nature.

At last a short word on the structure of this thesis: the aim is to present published and unpublished

results of scientific research in a broader context. Generally a greater physical picture is discussed, and to

increase the accessibility for non-experts, important technical details, their advantages and shortcomings

are mentioned. Therefore the thesis is structured as follows:

Chapter 2 introduces some basic concepts of QCD. As established theory to describe the strong in-

teraction, it is the subject on which we want to increase our knowledge by theoretical and experimental

means. Some relevant aspects on QCD in the vacuum and at high temperature are mentioned, and an

overview of the experimentally and theoretically estabilshed facts is given. Lastly, a brief introduction to

the lattice regularization of QCD is given. Everything presented here is well established and can be found

in any standard textbook on field theory. We will follow the presentations in [21–24] and [25, 26] for

the parts on lattice theory.

Chapter 3 reviews chiral symmetry. Starting from a general field theoretical point of view, the exact

realization in the spectrum of QCD is explained, the different ways it can be broken, as well as the the-

oretical expectations for a high temperature phase and its relation to the low-lying eigenmodes of the

Dirac operator. Finally, a classification of hadronic operators according to multiplets of the chiral-parity

group will be given.

In Chapter 4 first original results are presented. A quenched simulation using Overlap fermions is

presented, on which a low-mode truncation of the Dirac operator is performed. This procedure has pre-

vioulsy been applied in literature, the results of which we are able to reproduce. In addition to previous

results, we present the quark mass dependence of the applied truncation scheme. Next, we discuss lattice

QCD in the vacuum by a dynamical simulation using Domain-Wall fermions. This will introduce and

discuss the simulation setup for the high temperature study.

Chapter 5 presents a high temperature study, which contains the main results of this thesis. A dy-

namical simulation applyingnf = 2 Domain-Wall fermions is used to probe the hadronic spectrum in a

high temperature phase of QCD above the chiral transition. The presented data will cover a temperature

range of 2.2Tc − 5.5Tc.

Chapter 6 analyzes the symmetry properties and emergent phenomena of the previously attained re-

sults. We will discuss the effective restoration of U(1)A symmetry, as well as chiral symmetry restoration.
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Furthermore, an emergent symmetry is identified as chiralspin symmetry, which has previously been

conjectured to appear in the high temperature phase of QCD. Including chiral symmetry, a SU(2nf )
symmetry of the hadronic spectrum can be formulated.

Chapter 7 concludes the findings. The implications of a SU(4) symmetry and possible applications

are discussed, as well as experimental consequences.

The Appendices contain conventions and bits of work, which did not fit into the main body of this

thesis, but stem from related projects. This includes work concerning the angular momentum content of

low-lying mesons, some ideas on exotic mesons and further unpublished results of the low-mode removal

procedure.

Parts of this thesis have already been presented to the scientific community during following inter-

national meetings, the proceedings are referred to at the corresponding sections:

• 54th Schladming Winter School of Theoretical Physics

New Trends in Particle Physics, Quantum Gravity & Cosmolo�
Schladming (Austria), February 21–26, 2016

• Mini-Workshop Bled 2016

Quarks, Hadrons, Matter
Bled (Slovenia), July 3–10, 2016

• 34th International Symposium on Lattice Field Theory

University of Southampton (UK), July 24–30, 2016

• 35th International Symposium on Lattice Field Theory

Granada (Spain), June 18–24, 2017

• 27th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions

Venezia (Italy), May 13–19, 2018

• 36th International Symposium on Lattice Field Theory

East Lansing, MI (USA), July 22–28, 2018

• 679th WE-Heraeus-Seminar

Quantum Chromodynamics and Its Symmetries
Oberwölz (Austria), September 9–15, 2018



Chapter 2

Quarks, Quantum Chromodynamics and

the phase diagram

It is of course important to try to maintain consistency,
but when this e�ort forces you into a stupendously ugly theory,

you know something is wrong.

— Douglas R. Hofstadter, Gödel, Escher, Bach

The role of aesthetics in science might be debatable, but certainly some concepts in fundamental physics

carry intrinsic beauty
1

due to their commitment to minimalism. The concept of gauge theories is an

example, where minimal assumptions on top of an existing theory lead to great insights. Quantum Elec-

trodynamics (QED) is a working prototype, which reduces the many manifestations of electrodynamics

and magnetism in nature to the simplistic set of requirements of a U(1) gauge theory. The fact that QED

is not only a possible model of, but an extremely accurate quantitative description of electromagnetism,

reserved gauge theories a prominent place in the toolbox of theoretical physics.

In the 1970’s it became clear that also the strong nuclear force can be described as gauge theory, under-

lying the SU(3) gauge group and building on the quark model. The resulting theory is QCD [27]. The

common origin of QED and QCD also means common terminology, in parts for different phenomena.

Later on it will be important to have a precise description of things; therefore, and to illustrate the

concept of a gauge theory, first a brief sketch of the construction of QED is given. Afterwards the basics

of QCD are introduced and the concepts of running coupling and asymptotic freedom are discussed.

Then an overview of the quark model is given, and how it can be used to structure the multitude of

experimentally observed particles. The chapter continues with a short discussion of the phase diagram

of QCD and the experimental situation. Finally a short portrait of our method of choice, lattice QCD,

will be given.

2.1 Blueprint of a gauge theory

The discussion of gauge theories usually starts with the Lorentz-invariant lagrangian density for non-

interacting fermions

L = Ψ̄iγµ∂µΨ−mΨ̄Ψ, (1)

where Ψ(x) is the matter field for one kind of fermions at space time point x and Ψ̄(x) ≡ Ψ(x)†γ0

its conjugate. This generalizes trivially to k different kinds of fermions Ψk with masses mk. Using the

1

For completeness the Latin maxim De gustibus et coloribus non est disputandum is mentioned.

11
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classical equations of motion for the conjugate field Ψ̄

∂µ
∂L

∂(∂µΨ̄)
− ∂L
∂Ψ̄

= 0 (2)

the Dirac equation
2

(iγµ∂µ −m)Ψ(x) = 0 (3)

is obtained. It describes the relativistic propagation of fermions without any interaction. Now enforc-

ing U(1) gauge invariance means that the theory should not change under local U(1) transformations

of the fermion field

Ψ′(x) = exp[−iΘ(x)]Ψ(x) (4)

with some local rotation parameter Θ(x). This means one should be allowed to change the complex

phase of the fermion field at any space time point without changing the theory. Applying transforma-

tion (4) to the fields in (1) it becomes clear that this is not the case, as the derivative depends on different

space time points. Changing them separately would render the derivative meaningless, introduce extra

terms and violate the requirement for gauge invariance. By introducing a vector fieldAµ(x) with trans-

formation properties

A′µ(x) = Aµ(x) +
1

e
∂µΘ(x) (5)

an operator

Dµ = ∂µ + ieAµ(x) (6)

can be defined, which is usually called covariant derivative. Using the covariant derivative in (1) results in

L = Ψ̄iγµDµΨ−mΨ̄Ψ, (7)

which is invariant under transformations (4) and thus the requirement of U(1) gauge invariance is ful-

filled. The equation of motion for (7) is

(iγµDµ −m)Ψ(x) = 0. (8)

The introduction ofAµ(x) means additional degrees of freedom, for the U(1) gauge theory of QED the

field quanta are identified as photons. One can include a kinetic term for photons by looking for a gauge

and Lorentz invariant quadratic term including Aµ(x). The antisymmetric product of two covariant

derivatives [Dµ, Dν ]Ψ yields an object called field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x), (9)

which upon multiplication with itself gives the desired objectF 2
µν . Adding this term to (7) gives the full

lagrangian density of a U(1) gauge theory

L = Ψ̄iγµDµΨ−mΨ̄Ψ− 1

4
F 2
µν . (10)

Now since the lagrangian density is invariant under a localU(1) transformation, also Noether’s the-

orem should apply. To illustrate its workings, a brief sketch of its derivation is given. Lets assume the

2

Unless stated otherwise, the conventions given in appendix A are used.
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variation of some general lagrangian density:

δL =
∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
δ(∂µΦ)

=
∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
∂µδΦ

=
∂L
∂Φ

δΦ + ∂µ

[
∂L

∂(∂µΦ)
δΦ

]
− ∂µ

∂L
∂(∂µΦ)

δΦ

(11)

In the last line of (11) the first and third term vanish due to the equations of motion (2), what leaves

∂µ

[
∂L

∂(∂µΦ)
δΦ

]
= δL. (12)

Assuming that the variation of the lagrangian density, i.e. the effects of the U(1) gauge transformations,

vanishes δL = 0 and identifying the term in the square brackets of (12) as a current

jµ(x) =
∂L

∂(∂µΦ)
δΦ, (13)

the conservation law

∂µj
µ(x) = 0 (14)

is derived. A corresponding charge

Q =

∫
d3xj0(x) (15)

is also conserved. In the case of a U(1) gauge theory of electromagnetism, Q is of course the electric

charge and the gauge theory naturally explains its conservation.

2.2 QCD as gauge theory

Given the success of QED, it is natural to apply the concept of a gauge theory to other forces of nature.

For the strong interaction, which is responsible for binding nuclei together, this led to the developement

of QCD. The choice of SU(3) as gauge group has a few well justified motives, but most prominently

probably is the historical ‘Delta’ argument: The quark model, which is discussed in section 2.3, works

quite well in explaining the hadron spectrum in terms of its constituents, quarks. But for the ∆++

particle there is a problem: It is composed of 3 up quarks with their spins aligned. The flavor wave

function is symmetric, the spin wave function is symmetric, but the particle itself is a fermion, should

obey Fermi statistics and thus feature an anti symmetric wave function. A remedy for this situation is to

introduce an additional quantum number, color, which anti symmetrizes the wave function of the ∆++

and saves the quark model. The smallest group offering all requirements for such a color symmetry group

is SU(3). Hence a possible candidate for a gauge symmetry group describing strong interactions has been

found. As it has been verified throughout the last 4 decades, this is a good choice.

In analogy to (4) a starting point to derive a few aspects of QCD is to demand invariance of free

fermions under continuous transformations of the gauge group, SU(3),

Ψ′(x) = exp[−iΘa(x)T a]Ψ(x). (16)

Here the first and most striking difference between QED and QCD can be seen: transformations of SU(3)
as non-abelian group are constructed by non-trivial generatorsT a, where a runs from 1 to the number of

generators of the group, which is 8 in the case of SU(3). As generators conventionally the 8 Gell-Mann
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matrices T a = λa/2 are used.

Following the blueprint of a gauge theory, a covariant derivative is constructed by

Dµ = ∂µ +Aµ(x), Aµ = −igAaµ(x)T a. (17)

For QCD also 8 vector fieldsAaµ as gauge particles, called gluons, are required. They transform according

to

Aa′µ (x) = Aaµ(x)− 1

g
∂µΘa(x) + fabcΘb(x)Acµ(x), (18)

with fabc the structure constant of SU(3). This can be written in the fundamental representation as

A′µ(x) = Aµ(x)− ∂µΘ(x) + [Θ(x), Aµ(x)]. (19)

In analogy to (9) a field strength tensorGµν can be constructed

Gµν(x) = ∂µAν(x)− ∂νAµ(x) + [Aµ(x), Aν(x)], (20)

which in terms of group generators gives

Gµν(x) = −igGaµνT a, (21)

Gaµν(x) = ∂µAν(x)− ∂νAµ(x) + [Aµ(x), Aν(x)]. (22)

Now the full lagrangian density for QCD can be assembled:

L = Ψ̄iγµDµΨ−mΨ̄Ψ +
1

2g2
Tr [GµνG

µν ] . (23)

The commutator in the expression for the field strengh (22) is required for gauge invariance and a direct

consequence of the non-abelian nature of SU(3). In the quadratic term of the lagrangian density the

commutator [Aµ(x), Aν(x)] gives rise to gluonic self interaction. This in turn is responsible for some

remarkable differences between QCD and QED, and the mathematical complexity of non-abelian gauge

theories in general.

One characteristic of describing nature through gauge theories is the highly non-trivial prediction

that the vacuum state is not just the state of lowest energy, but becomes a medium itself with a complex

structure. Making use of uncertainty and the equivalence of energy and matter, a picture of permanently

emerging and annihilating particles in an otherwise empty space can be thought of, so-called vacuum
fluctuations. Placing an actual particle with some charge into a vacuum state, these virtual particles are

allowed to interact with the charge, i.e. the vacuum can be polarized. By that, in the vacuum medium

the effective charge of the particle and ability to interact is altered, depending on the scale at which the

charge is probed. Both theories, QED and QCD, share this effect, known as running coupling. The exact

way of how this running coupling behaves depends on the gauge group and number of fermions, and is

encoded in the β function of a theory.

The β function of QED reads

β(e) =
e3

12π2
+O(e5), (24)

where e is the electric charge. Due to the positivity of the leading contribution in (24) one speaks of a

positive β function and the electric charge being screened. The running coupling constant α = e2/4π
now depends on the momentum scaleQ and its leading contribution is given by

α(Q2) =
α

1− (α/3π) log(Q2/M2)
. (25)
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In the infrared region of QED, at low momenta and large distances, α is the well-known fine-structure

constant 1/137. For larger energies alsoα increases until, theoretically, an ultraviolet divergence is reached,

the Landau pole. Practically, perturbation theory used for calculating the running coupling is no longer

applicable in this regime and the exact behaviour of the β function is unknown.

The β function for a general SU(N) gauge theory is given by

β(g) = − g3

(4π)2

(
11

3
N − 2

3
nf

)
+O(g5), (26)

which results in

g2(Q2) =
g2

1 + g2

(4π)2

(
11
3 N −

2
3nf

)
log(Q2/M2)

(27)

for the coupling parameter. For QCD with SU(3) as gauge group the leading term of the β function is

β(g) = − b0g
3

(4π)2
, b0 = 11− 2

3
nf . (28)

Introducing αs as coupling for the strong force αs = g2/4π the running coupling for QCD can be

written as

αs(Q
2) =

αs
1 + (b0αs/4π) log(Q2/M2)

. (29)

A negative β function (28) for QCD leads to color anti-screening. This in turn is responsible for asymp-

totic freedom, i.e. vanishing coupling αs for large momenta Q → ∞. These considerations are true

as long as coefficient b0 stays positive, i.e. for a maximum number of nf = 16 quark flavors
3
. After

introducing a cutoff scale

1 = g2(b0/8π
2) log(M2/Λ2) (30)

and thus trading a dimensionless coupling constant g in the lagrangian density with a dimensionful pa-

rameter Λ, a simplified expression for the running coupling is obtained:

αs(Q) =
2π

b0 log(Q2/Λ2)
. (31)

Experiments suggest a typical mass scale of Λ ≈ 200 MeV for QCD, and perturbation theory becomes

a valid description of physical processes for Q > 1 GeV. This is the case e.g. for deep inelastic scattering

experiments, whereQ typically is of the order of 30 GeV.

2.3 The quark model

The quark model is a way to classify the observed spectrum of baryons and mesons in terms of more

fundamental constituents – quarks of different flavors. It was proposed by Murray Gell-Mann [28] and,

independently, by George Zweig [29, 30]. It was originally formulated for the lightest 3 quarks and

arranges the hadrons into multiplest of an approximate SU(3) flavor symmetry. 3 more quarks have

been found since then, each being heavier than the previous. All quarks, which are known today, and

their flavor quantum numbers are given in table 2.1. It can be seen that their masses cover 5 orders of

magnitude: the up quarks are just a few times the electron weight, whereas the top quarks are almost as

heavy as gold atoms.

The quark model describes hadrons as bound states of quarks. Baryons
4

are according to the quark

3

Given the 6 known quark flavors, their mass hierarchy and the absence of experimental evidences for more, the assumption

that nf < 17 is quite reasonable.

4

‘Baryon’ derives from the greek word for ‘heavy’. Baryons are heavy particles in contrast to leptons, ‘light’ particles.
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quark charge flavor mass

up u +2
3 Iz = +1

2 2.2 MeV

down d −1
3 Iz = −1

2 4.7 MeV

strange s −1
3 S = −1 95 MeV

charm c +2
3 C = +1 1.275 GeV

bottom b −1
3 B = −1 4.18 GeV

top t +2
3 T = +1 173.0 GeV

Table 2.1: Quantum numbers of quarks. Estimates of masses are taken from [31], for

methodology of determination and uncertainties see therein. The flavor quan-

tum numbers are isospin, strangeness, charm, bottomness and topness, respec-

tively.

` s JPC

0 0 0−+

0 1 1−−

1 0 1+−

1 1 0++

1 1 1++

1 1 2++

Table 2.2: Possible combinations of orbital angular momentum and spin.

model composite particles, which contain 3 quarks. Each quark is assigned a baryon number of
1
3 by the

quark model. The composite baryon thus has a baryon number 1. In constrast, mesons
5

are composed

of a quark and an anti quark. Due to the baryon number of−1
3 for an anti quark, their baryon numbers

add up to 0.

In the light of classical, non-relativistic bound states, mesons of the quark model can be assigned

quantum numbers based on angular momenta of its constituents:

• the total spin s of a meson can either be 0 or 1, depending on the parallel or anti parallel alignment

of its quark spins,

• there can be orbital angular momenta ` between the quarks,

• the meson spin J then takes values |` − s| ≤ J ≤ |` + s| according to standard addition of

angular momenta,

• and parity P and charge parityC can be deduced by P = (−1)`+1
andC = (−1)`+s.

A few combinations of possible mesonic JPC states are given in table 2.2. Based on this considerations,

there are a few JPC states, which are naturally forbidden by the quark model – so-called exotic states:

0+−, 1−+, 2+−, etc (32)

The observed meson spectrum can be structured according to the partial wave classification of n2s+1`J
states, where n is the principal quantum number for radial excitation. While this description is useful

for mesons including heavier quarks, where a non-relativistic description can somewhat be justified, its

validity for light mesons is limited and disputed. An example for this ambiguous description would be

the ρ(1450), which is discussed in appendix B.

5

The name ‘meson’ derives form the greek word for ‘middle’, as this particles are ‘middle’ heavy.
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K+K0

π−
π0

η8
π+

K− K̄0

K∗+K∗0

ρ−
ρ0

ω8
ρ+

K∗− K̄∗0

Figure 2.1: Octets of spin J = 0 mesons (le� side) and spin J = 1 mesons (right side)
according to the eightfold way. The horizontal and vertical alignment is accord-

ing to the flavor quantum numbers isospin Iz and strangeness S respectively.

The electric charge is conserved along diagonal lines and denoted as superscript.

Now theEightfoldWay assumes the lightest 3 quark flavorsu, d andy to be mass degenerate and SU(3)
to be an approximate flavor symmetry of the hadronic spectrum. This way mesons can be grouped into

following multiplets
6
:

3⊗ 3̄ = 8⊕ 1, (33)

an octet and a singlet. For J = 0 mesons, the octet is depicted on the left side of figure 2.1, the corre-

sponding singlet is the η1 meson. More on the η mesons and their role in the spectrum will be discussed

in section 3.2. The right side of Figure 2.1 shows the meson octet for J = 1 mesons, the corresponding

singlet is the ω1. The mesons with zero flavor quantum numbers appearing in the physical spectrum

are superpositions of the corresponding octet and singlet states of the SU(3) multiplets. For baryons a

similar decomposition can be done,

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A. (34)

The resulting multiplets now have different symmetry properties under exchange of single quarks: sym-

metric, mixed and antisymmetric, as indicated by the subscript. To disentangle these states it is useful to

consider the structure of a hypothetical baryonic wave function:

|qqq〉A = |color〉A × |space, spin, flavor〉S (35)

For ground state baryons without orbital angular momenta between its constituents, a symmetric space

wave function is assumed. Focusing on spin and flavor of baryons, a flavor–spin SU(6) group can be

constructed by taking all 6 combinations of spin and flavor as basis states. A decomposition of compos-

ite SU(6) states into multiplets gives

6⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A, (36)

where e.g. the symmetric 56-plet is made up of the flavor multiplets

10⊕ 10⊕ 10⊕ 10⊕ 8⊕ 8. (37)

The four decuplets are nothing else than one J = 3/2 decuplet, and the two octets are one J = 1/2
octet. The particle identification for octet and decuplet are given in figures 2.2 and 2.3. The familiar

nucleons proton P and neutron N , which will be of interest later on, are members of the J = 1/2

6

Boldface numbers represent the multiplicity of a multiplet.
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−1 − 1
2 0

1
2 1

PN

Σ−
Σ0

Λ0 Σ+

Ξ− Ξ0

Iz

S = 0

S = −1

S = −2

Figure 2.2: Octet of spin J = 1
2 baryons according to the eightfold way. In the first line at

zero strangeness the familiar nucleons are found as bound states ofup anddown
quarks.

− 3
2 −1 − 1

2 0
1
2 1

3
2

∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−

S = 0

S = −1

S = −2

S = −3

Iz

Figure 2.3: Decuplet of spin J = 3
2 baryons according to the eightfold way. The ∆0

and ∆+
have the same flavor content as the neutronN and protonP and can

be seen as their spin excitation. The Ω− particle in the last line was predicted

by the Eightfold Way and experimentally confirmed the first time in a bubble

chamber experiment at BNL in 1964 [32].
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Figure 2.4: Conjectured phase diagram of QCD depending on temperature T and the

baryon chemical potential µ. In the lower left corner is the vacuum state and

regular hadrons. In this domain the chiral condensate breaks chiral symme-

try spontaneously. Tc marks the critical temperature, after which the chiral

condensate vanishes. The dashed line marks a possible phase transition with a

critical endpoint. Regions of high density are expected inside of neutron stars,

with a possible phenomenon of color superconducters.

multiplet with zero strangeness. Their spin excitations, the ∆+
and ∆0

respectively, are members of

the J = 3/2 multiplet.

The development of QCD a few years later did not replace the quark model, but builds upon it

and extends it by gluons as mediators of the strong force. In principle QCD also allows for exotic states

containing 4 and 5 quarks – tetra and penta quarks, respectively – as well as pure gluonic states – called

glueballs – and hybrid mesons. These states are allowed to have exotic quantum numbers (32), which

cannot be constructed by the naive quark model. More on such states, and why they could be of interest,

can be found in appendix C.

2.4 The phase diagram of QCD

2.4.1 Theoretical considerations

In the vacuum, at zero temperature and density, the strong interaction is well described by QCD. Pertur-

bation theory is used to describe hadron collisions, where momenta are high and the coupling is weak,

and describes the decay of heavy resonances into lighter particles which cannot decay any more under the

strong interaction. On the other hand, properties of QCD bound states have to be calculated by non-

perturbative means as the coupling is too strong for low momenta transfers, the infrared region of the

theory. Detailed predictions have been made so far by e.g. lattice QCD. Concerning vacuum properties

of QCD, current resereach focuses on precision measurements and description of scattering processes.

A different aspect of QCD, where general understanding is a lot less advanced, are the properties of

strongly interacting matter at high temperatures and non-vanishing densities, i.e. QCD thermodynam-

ics. Naive expectations, mostly based on the concept of asymptotic freedom presented in section 2.2,

conjecture a new phase of matter for quarks interacting through QCD after some temperature, a quark-
gluon plasma (QGP). While it is certain that properties of quarks change significantly with increasing

temperature, the exact nature of this ‘new phase’ is still an open question. A sketch of the QCD phase

diagram with some theoretical ideas is shown in figure 2.4.

A few limited properties of the phase diagram have been established so far. Most notably is the nature
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Figure 2.5: The pressure for QCD matter calculated by two lattice collaborations

(Wuppertal-Budapest [35] on the le�, HotQCD [36] on the right side). The

solid lines on the upper right corners represent the Stefan-Boltzmann limit of

an ideal gas.

of the chiral transition of QCD: by studying the finite size scaling of the chiral susceptibility it has been

found that there is a crossover at some temperature Tc [33]. Further this temperature was calculated

in [34] to be

Tc = 154± 9MeV. (38)

Since on the lattice it is possible to calculate the partition function exactly – within the systematic errors

of the lattice approximation – other thermodynamical observables can be extracted. Two recent results

for the pressure p are presented in figure 2.5. It can be seen that shortly after Tc the pressure p (and

energy density ε, not shown here) rise sharply, which is consistent with a picture where ‘liberation of

degrees of freedom’ is happening. This means that hadrons, which are the effective degrees of freedom

in the vacuum and low temperature phase, i.e. belowTc, do not accurately describe the physical processes

anymore. Accordingly, results for the hadron resonance gas model (HRG), which gives a pure kinematic

description of thermodynamics in terms of hadrons, start to deviate from lattice results. Thus there is

sound theoretical evidence that hadronic bound states start to melt after Tc and should be replaced by

new, lighter effective degrees of freedom.

It is tempting to identify this new effective degrees of freedom directly with deconfined quarks and

gluons. But this picture itself runs into problems: It is a priori not clear at which temperatures the ef-

fects of asymptotic freedom become manifest and QCD becomes neglectable. In figure 2.5 the Stefan-

Boltzmann limit for the pressure of an ideal gas is given, and the QCD data is still far off at temperatures

of T ≈ 1200 MeV.

2.4.2 Experiments

Of course the experimental verification is an integral part of science and guiding principle of theoretical

efforts. Measuring the phase diagram of QCD is moreover an important impulse in the development of

current and future experimental facilities. Currently heavy ion collision with significant impact on the

understanding of strongly interacting matter at high temperatures have been performed and measured

at RHIC and LHC, some characteristic parameters are listed in table 2.3. Future facilities focusing on

probing the phase diagram of QCD are the Facility for Antiproton and Ion Research (FAIR) of GSI in

Darmstadt, Germany, and the Nuclotron-based Ion Collider fAcility (NICA) of the Joint Institute for

Nuclear Research in Dubna, Russia.

Generally the stages of an ‘event’, i.e. the collision of two heavy ions, and the evolution of their

product, a ‘fireball’ can be sketched as follows:
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RHIC LHC

atoms Au Pb

# of nuclei 197 208√
sNN ∼ 200 GeV ∼ 5 TeV

fireball volume 2500fm3 5000fm3

fireball lifetime 7fm/c 10fm/c

Table 2.3: A few experimental parameters of the two largest colliders probing the phase

diagram of QCD.

√
sNN refers to the center of mass energy per nucleon pair,

and ‘fireball’ is the hot QCD matter after collision.

1. A local equilibrium of strongly interacting matter is reached 0.5−1 fm/c after the collision of the

initial ions.

2. The system is now thermalized, has pressure and acts against the surrounding vacuum. The fireball

expands.

3. The hot and stronly interacting matter starts to form hadrons. Due to frequent collision and

interaction hadrons and their composition still can change.

4. Next, during chemical freeze-out, the final composition of hadrons is determined. This means the

flavor content and abundances of hadrons is fixed.

5. During the kinematic freeze-out the thermodynamical description breaks down and the momen-

tum distribution of the final hadrons is determined approximately 10 fm/c after the initial colli-

sion.

The timescale of∼ 10−23
seconds is enough time for the strong interaction to thermalize, but too short

for electroweak processes to take place
7
. Thus electroweak processes can safely be neglected in heavy ion

collisions.

Given the short time, small space and abiguity of the state of matter one tries to measure, finding

appropriate observables to identify properties of the fireball, some ‘new kind of matter’, is hard. Possible

signatures of a QGP state have been discussed in literatur, most promising are J/Ψ suppression [37],

strangeness production [38] and jet quenching [39]. Results of the first runs at RHIC and LHC suggest

the elliptic flow of this new kind of matter to be a significant observable [40–42], and the accuracy of

a hydrodynamical description of hot, strongly interacting matter seems established. Observables which

could hint a proper phase transition and a possible critical endpoint are fluctuations of conserved quan-

tities, i.e. electric charge or flavor quantum numbers [43]. None of this flucuations have been observed

so far, however there are plans to improve on the quality of these observations at RHIC [44].

Current results of heavy ion collisions at RHIC and LHC and the questions, which they leave open,

can be summarized:
8

• Hydrodynamical description works very well

• What are the underlying dynamics?

• What are the relevant degrees of freedom?

• They are not free quarks and gluons.

• Thermodynamical quantities are below the Stefan-Boltzmann limit.

• The interaction is strong (as required by the hydrodynamical description).

• Effective degrees of freedom are not massless: ε 6= 3p.

7

This is in contrast to e.g. the core of neutron stars, where equilibrium for extremely long times is expected.

8

Plenary talk by Grosse-Oetringhaus, Quark Matter conference 2018.
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2.5 The lattice approach

In this section a few basic considerations of lattice field theory are presented. First the general discretiza-

tion scheme is discussed, and in subsection 2.5.2 some ideas on color confinement on the lattice are re-

peated. More details on spectroscopy, scale setting, thermodynamics, etc. are discussed along the way in

the subsequent chapters.

2.5.1 Discretization

The lattice approach to QCD builds upon the Euclidean path integral formulation of QCD. In the path

integral formalism, the expectation value of an observableO is calculated using

〈O〉 =
1

Z

∫
D[C]e−SE [C]O[C], (39)

with the partition function Z =
∫
D[C]e−SE [C]

. The integral

∫
D[C] is a sum over all possible field

configurations C , the term SE [C] is the Euclidean action for a given configuration, and the whole ex-

pression (39) a weighted sum with the factor

exp(−SE [C]) (40)

as weight function. The path integral is defined in contiuous space time, thus there is an infinite amount

of fundamental degrees of freedom, and the evaluation of the path integral (39) becomes hard.

Now the lattice approach
9

discretizes space time to make calculations actually feasible. This has a few

implications on the theory and practical evaluation of (39). Firstly, the now discrete, but infinite sum

over the configuration space Ω can be calculated by Monte Carlo integration. This is done by replacing

the sum over Ω with a finite sum over a representative subset Ω′:

1

Z

∑
Ω

e−SE [C]O[C] −→ 1

N

∑
Ω′

O[C] (41)

The configurations in Ω′ should get selected according to the weight factor (40). Secondly, the degrees

of freedom get mapped onto a finite hypercube. This way, the theory gets regularized in the infrared

by a finite number of lattice points, and in the ultraviolet by a finite, non-vanishing distance a (‘lattice

spacing’) between the lattice points. To ensure gauge invariance for any finite lattice spacing, the steps

presented in sections 2.1 and 2.2 can be repeated with some slight modifications.

The following considerations assume a SU(3) gauge group in 4 dimensions, QCD. A discretized

fermion field
10

is now represented by ψ(x) with 3 color and 4 Dirac components each. Transformation

properties of ψ(x) under gauge transformations g(x) ∈ SU(3) are

ψ(x)→ g(x)ψ(x)

ψ̄(x)→ ψ̄(x)g(x)†,
(42)

and thus local, as transformations itself depend on the position x in space time. In order to keep gauge

invariance of products of fermions at different space time points, gauge linksUµ(x) with transformation

properties

Uµ(x)→ g(x)Uµ(x)g†(x+ µ̂) (43)

are introduced. This way, e.g. quark bilinears ψ̄(x)Uµ(x)ψ(x+ µ̂) are gauge invariant and gauge invari-

ant, i.e. covariant, derivatives can be constructed. Conventionally, gauge links in backward direction are

9

Which was introduced by Kennth G. Wilson [45] to investigate the confinement of quarks.

10

We keep addressing the now discrete, integer-valued space time points by x, while some literature chooses n.
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Figure 2.6: Graphical representation of a plaquette (46).

defined via

U−µ(x) = U †µ(x− µ̂), (44)

and connect to the continuum gauge fields through

Uµ(x) = exp(iaAµ(x)). (45)

The expression (45) is nothing else than a linear approximation of a corresponding continuum gauge

transporter. Of central importance in lattice theory is the shortest, closed and non-trivial gauge invariant

loop of link variables, called Plaqette,

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x), (46)

a graphical representation of which is given in figure 2.6.

2.5.2 Confinement, the Polyakov loop and center symmetry

Of crucial importance in lattice field theory is the relation between the path integral and energy eigen-

states of the system under consideration, given by

1

Z

∫
D[C]e−SE [C]O1O2 =

∑
n

〈0|Ô1|n〉 〈n|Ô2|0〉 e−tEn . (47)

On the right hand side, the sum runs over all eigenstates n of the corresponding Hamiltonian, and con-

tains the overlaps of operators Ô1 and Ô2 with n, as well as the energy En. This relation is used to

extract most quantities in a lattice simulation. Often the leading contributions are of interest, which

become dominant at larger times t. Therefore one usually studies the asymptotic behaviour of (47).

Now a Wilson loop is defined as

WL[U ] = Tr
∏
L
Uµ(x), (48)

where the product contains all gauge links belonging to a closed loop L. The loop L consists of two

spatial lines between spatial points x and y, and are itself connected through two temporal lines. Its

expectation value can be calculated using (47) and written as

〈WL〉 ∝ e−tE1
(
1 +O(e−t∆E

)
. (49)

This is the leading order contribution in (47). The Wilson loop can be identified with the energy of

two color charges at positions x and y, which propagate for a time t. At asymptotic times, where the
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corrections in (49) are suppressed, the energy level can therefore be identified with the static poten-

tialE1 = V (r = |x− y|) between the color charges. A possible parametrization of V (r) is

V (r) = V0 +
1

r
c+ σr, (50)

which has proven to accurately describe numerical data for SU(3) gauge theory. The coulombic part

resembles electrodynamics and encodes single gluon exchange, as the gluon self interaction vanishes for

small coupling and the field strength of QED is approximated. The linear term in (50) is characterized

by the string tension σ. It implies growing potential energy between two color charges as the distance

between them is increased, which is a strong indication for color confinement.

A Polyakov loop is defined as

P (x) = Tr

Nt−1∏
t=0

U4(x, t), (51)

which is gauge invariant assuming periodic boundary conditions. The expectation value for two Polyakov

loops is

〈P (x)P †(y)〉 ∝ e−aNtV (r)
(
1 +O(e−aNt∆E

)
. (52)

As it is discussed e.g. in section 12.1.1 of [26], for large distances r expression (52) can be related to the

free energy Fq of an isolated, single color charge at temperature T

〈P 〉 ∼ e−Fq/T . (53)

Now a center transformation multiplies all temporal links in a single timeslice with an element of the

center groupZ3 of SU(3). By definition, any z ∈ Z3 commutes with all elements in SU(3). Thus,

U4 → zU4 = U4z (54)

and the expectation value of an Polyakov loop gets modified 〈P 〉 → z 〈P 〉. On the other hand, trans-

formation (54) leaves all closed gauge loops invariant, and so the basic elements of the gauge action. The

path integral measure stays invariant, and the expectation value of a Polyakov loop can be written as

〈P 〉 =
1

3

〈
P + zP + z2P

〉
= 0. (55)

The last step follows due to the property of center elements

1 + ei2π/3 + e−i2π/3 = 0. (56)

An interpretation of (53) and (55) is that the free energy Fq of a single color charge is infinite, and that

no such objects can be observed, i.e. color charges are confined.

It has been verified numerically that after some critical temperature Tc the expectation value of the

Polyakov loop gets a non-vanishing value 〈P 〉 6= 0 and Z3 center symmetry is spontaneously broken.

Therefore, with increasing temperature there is some possibility of single, deconfined color charges with

finite energy Fq . The expectation value of the Polyakov loop as criterion for Z3 symmetry can thus be

used as order parameter for color-confinement in SU(3) gauge theory.
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Chiral Symmetry and the Hadron spectrum

In this chapter the global symmetries of QCD are discussed. If not states otherwise, two quark flavors

with exact isospin symmetry are assumed, as for the lattice studies later on this will be of relevance. The

considerations in principle also hold for higher numbers of mass degenerate flavors, phenomenologically

a flavor SU(3) is somewhat justified. Especially the classification of the hadronic spectrum into multiplets

of the chiral-parity group in subsection 3.3 will be important for the interpretation of the lattice data.

The presentation follows [46, 47].

3.1 Global symmetries of QCD

The free Dirac equation for spinors Ψ of nf flavors has the global symmetry structure

SU(nf )L × SU(nf )R ×U(1)V ×U(1)A. (57)

Including QCD interaction – or any vector–like interaction in general – does a priori not change this

structure. Hence the fermionic part of the massless lagrangian density of QCD

L = Ψ̄iγµDµΨ (58)

also shows this symmetries (57). To discuss the different parts in more detail, first the transformations of

Dirac spinors will be introduced.

The basic U(1) flavor singlet, vector–like transformations are given by

U(1)V

{
Ψ → e−iθΨ

Ψ̄ → Ψ̄e+iθ.
(59)

Additionally, flavor singlet axial transformations can be defined

U(1)A

{
Ψ → e−iγ5θΨ

Ψ̄ → Ψ̄e−iγ5θ.
(60)

For the flavor non-singlet case the vector–like transformations read

SU(nf )V

 Ψ → e−i(1⊗~τ/2)~θΨ

Ψ̄ → Ψ̄e+i(1⊗~τ/2)~θ,
(61)

25
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and the corresponding axial transformations

SU(nf )A

 Ψ → e−i(γ5⊗~τ/2)~θΨ

Ψ̄ → Ψ̄e−i(γ5⊗~τ/2)~θ.
(62)

The transformations (61) and (62) contain group generators of the flavor symmetry group in the ex-

ponent. For SU(2) isospin symmetry they are given by the Pauli matrices ~τ . Each of the transforma-

tions (59)–(61) form closed groups, as indicated by their labeling. Operations (62) do not
1
. In a math-

ematical strict sense SU(nf )V × SU(nf )A is a group containing transformations (62). However, to

avoid unnecessary confusion we will use the language of group theory for (62) alone.

Now it is useful to define projection operators

PR/L =
1

2
(1± γ5) , (63)

which obey

PL + PR = 1 (completeness),

P 2
R/L = PR/L (idempotence),

PLPR = 0 (orthogonality).

(64)

Their action on Dirac spinors is defined as

PR/LΨ = ΨR/L, (65)

Ψ̄PR/L = Ψ̄L/R. (66)

Using this projection operators, the massless QCD lagrangian (58) and thus the theory can be split into

two separate parts

Ψ̄iγµDµΨ = Ψ̄LiγµDµΨL + Ψ̄RiγµDµΨR. (67)

A mass term in the lagrangian density – or generally any term which does not commute with γ5 – would

mix the two separate parts. Now both terms in (67) are separately invariant under SU(nf )V rotations,

as well as both flavor singlet transformations (59) and (60), and the symmetry structure (57) is shown.

3.2 Chiral symmetry breaking

The considerations in section 3.1 follow mostly classical arguments. In a quantum field theory there

are 3 sources of breaking for classical chiral symmetry, which will be discussed in the following.

As already mentioned, the splitting of a theory (67) and thus the symmetry structure (57) hold for

vanishing quark masses. In nature, the fundamental fermions of the standard model have masses and the

assumptions of section 3.1 are violated explicitly. However, the masses of up and down quarks are of the

order of 5 MeV, whereas the mass scale of QCD is a few hundred MeV. Hence the assumption of massless

quarks is for the nf = 2 isospin case reasonable. The mass of strange quarks is of the order of 100 MeV,

and some arguments may also apply for flavor SU(3) chiral symmetry.

3.2.1 U(1)A anomaly

As it was mentioned, the lagrangian density of QCD is invariant under axial flavor singlet transforma-

tions (60). The integration measure of the path integral, however, is not. This is known as Adler-

1

This can be seen e.g. by the Baker–Campbell–Hausdor� formula eXeY = eX+Y +1/2[X,Y ]+...
for linear operators X

and Y . The commutator for two (62) transformations does neither vanish, nor is it a ‘group element’.
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Bell-Jackiw anomaly (ABJ) and a genuine effect of quantum field theories [48]. It was shown by Fu-

jikawa [49, 50] that the integration variables transform non-trivially under axial flavor singlet transfor-

mations, and therefore give rise to an anomalous contribution

A(x) =
1

32π2
εµνρσTrGµν(x)Gρσ(x) (68)

to the axial flavor singlet current.

The axial anomaly is also strongly linked to the topology of a gauge field by the following consider-

ations. The Atiyah–Singer theorem [51, 52] links the number of left- and righthanded zero modes n−
and n+ of the Dirac operator with the topological charge Qtop of a certain gaugefield configuration in

the following way:

Qtop = n− − n+. (69)

The topological charge on the other hand can be calculated by integrating the topological density of the

gaugefield

Qtop =

∫
d4xq(x), q(x) =

1

32π2
εµνρσTrGµν(x)Gρσ(x). (70)

Due to (69) it is clear that Qtop is integer-valued and an invariant property of this realization of the

gaugefield. One interpretation of the topological charge are instantonquasiparticles, which can be shown

to effectively break U(1)A symmetry [53].

To summarize this second mechanism of symmetry breaking one can note that in a quantum field

theory the U(1)A symmetry of fermions in (57) is anomalously broken through the non-trivial topology

of the gauge field.

3.2.2 Spontaneous breaking

The third mechanism of symmetry breaking is due to the fluctuations of the quark fields in the vacuum.

Thereby the chiral condensate 〈Ψ̄Ψ〉 is allowed to take on a non-vanishing value. Now any transforma-

tionU of a ‘would-be’ symmetryG of the theory can act on this state, e.g. transformations (59)–(62). If

the vacuum state stays invariant under this operationU ∈ G,

U |0〉 = |0〉 , (71)

the symmetry is considered to be realized in the Wigner-Weyl mode. The symmetry is exact and the

spectrum forms degenerate multiplets of this symmetry. The second possibility for the response of the

vacuum to the group transformationU is a non-trivial transformation

U |0〉 6= |0〉 . (72)

In this case the symmetry is said to be realized in the Nambu–Goldstone mode and spontaneously bro-

ken. Furthermore, the Goldstone theorem [54] states that for every broken symmetry generator in the

Nambu–Goldstone mode there has to be a massless ‘Goldstone’ boson in the spectrum. This is the case

for the axial transformations (60) and (62). As an illustration we study the latter nf = 2 axial transfor-

mation for the chiral condensate of the vacuum. A term Ψ̄Ψ transforms

Ψ̄Ψ
SU(2)A−−−−→ cos θ

(
Ψ̄Ψ
)

+ i sin θ
~θ

θ

(
Ψ̄ (γ5 ⊗ ~τ) Ψ

)
. (73)

The vacuum expectation value of the chiral condensate 〈Ψ̄Ψ〉 thus would modify the parity of the vac-

uum. This is not realized in nature, and the symmetry is in a Nambu-Goldstone mode. The extra term

in (73) has negative parity and isospin I = 1, hence the corresponding Goldstone boson can be identi-
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fied with the pion. For QCD the chiral condensate 〈Ψ̄Ψ〉 is the source of the spontaneous breaking of

chiral symmetry and thus usually identified as order parameter.

The vector transformations (59) and (61) not only leave the vacuum invariant in QCD, but the Vafa-
Witten theorem [55] states that these symmetries cannot be broken spontaneously in local vector-like

gauge theories. For a non-vanishing value of 〈Ψ̄Ψ〉 the flavor non-singlet symmetries of massless QCD

are therefore broken down to the vector subgroup

SU(nf )L × SU(nf )R
〈Ψ̄Ψ 6=0〉−−−−−→ SU(nf )V . (74)

3.2.3 Phenomenology

The Goldstone theorem has remarkable consequences for the meson spectrum of QCD. In principle

theJ = 0 pseudoscalar mesons of the quark model can be identified with the Goldstone bosons of chiral

symmetry and should therefore be massless. In nature they are found massive, which is a consequence

of the explicit breaking due to non-vanishing quark masses. This is supported by the mass difference of

‘isospin’ pions and ‘SU(3)’ kaons, as the strange mass of SU(3) is an order of magnitude larger than the

up and down masses and the explicit breaking a lot more severe.

There is a peculiarity concerning the flavorless mesonsπ0
, η and η′, which are according to the quark

model described by

π0 =
1√
2

(
ūu− d̄d

)
, (75)

η8 =
1√
6

(
ūu+ d̄d− 2s̄s

)
, (76)

η1 =
1√
3

(
ūu+ d̄d+ s̄s

)
, (77)

where theπ0
belongs to the I = 1 triplet, and the η’s to the SU(3) octet and singlet

2
. They can be identi-

fied as Goldstones of the corresponding chiral transformations, with the aforementioned considerations

of explicit symmetry breaking. The η1 ∼ η′ however features an even higher mass than an explicitly

broken Goldstone mode would suggest. This is due to the corresponding U(1)A symmetry, which is

not only broken explicitly and spontaneously, but in addition by the axial anomaly. Hence the η′ almost

does not ‘feel’ any consequences from its nature as Goldstone boson and its mass falls into the range of

ordinary hadrons.

On top of these findings chiral perturbation theory was developed as an effective theory to describe

the low-energy dynamics of QCD. An important relation therein is the Gell-Mann–Oakes–Renner re-

lation [56] , which encodes and summarizes the topics of this section by quantitatively relating the pion

mass to the quark masses and chiral condensate. For two flavors its leading order contribution reads

m2
π = − 1

F 2
π

mu +md

2

(
〈ūu〉+ 〈d̄d〉

)
. (80)

2

The physical η and η′(958) are mixtures of the octet and singlet states

η = η8 cos θP − η1 sin θP (78)

η′ = η8 sin θP + η1 cos θP (79)

characterized by the pseudoscalar mixing angle θP , which has empirically been found to be −20° < θP < −10°

.
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3.3 Hadron multiplets

In the following we study the chiral-parity group, and how its representations structure the hadronic

states composed of quarks and antiquarks. We will use the method of Young tableaux, a short introduc-

tion to this method can be found e.g. in chapter 46 of [31]. A more detailed discussion on the multipelts

itself is given in e.g. [47, 57]. This can be done for SU(3) or generally any number of flavors, but here

we focus on two flavors and identify the representations of the SU(2) isospin group.

3.3.1 Meson multiplets

Using the language of Young tableaux, a single quark as combination of left and right handed compo-

nents is represented by

= ( L ⊕ R). (81)

The combination of two such quarks gives(
L ⊕ R

)
⊗
(

L ⊕ R

)
= L ⊕ L ⊕ L R ⊕ R L ⊕ R ⊕ R. (82)

Applying a notation (IL, IR) with IL/R the left and right handed isospin of a state this translates to(
(
1

2
, 0)⊕ (0,

1

2
)
)
⊗
(

(
1

2
, 0)⊕ (0,

1

2
)
)

= (1, 0)⊕ (0̃, 0)⊕ (
1

2
,
1

2
)⊕ (

1

2
,
1

2
)⊕ (0, 1)⊕ (0, 0̃),

(83)

where 0̃ denotes two quarks which couple to 0 isospin, in contrast to a plain 0 which means total absence

of isospin carrying quarks. In terms of multiplicities of the group representations this corresponds to

3⊕ 1⊕ 4⊕ 4⊕ 3⊕ 1. (84)

Considering parity as good quantum number and combining this representations of the chiral group to

irreducible representations of the chiral-parity group, we can write[
(1, 0)⊕ (0, 1)

]
⊕ (

1

2
,
1

2
)⊕ (

1

2
,
1

2
)⊕

[
(0̃, 0)⊕ (0, 0̃)

]
(85)

with multiplicities

6⊕ 4⊕ 4⊕ 2. (86)

This way also parity transformations, which exchange left and right isospin, are valid group operations.

3.3.2 Baryon multiplets

Extending this considerations to baryonic bound states of three quarks(
L ⊕ R

)
⊗
(

L ⊕ R

)
⊗
(

L ⊕ R

)
, (87)

the following multiplet structure is calculated:(
L ⊕ L ⊕ L R ⊕ R L ⊕ R ⊕ R

)
×
(

L ⊕ R

)
=(

L ⊕ L

)
⊕
(

L

)
⊕
(

L R ⊕ L R

)
⊕(

R L ⊕ R L

)
⊕
(

R L

)
⊕
(

R L

)
⊕
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(
L R

)
⊕
(

L R

)
⊕
(

L R ⊕ L R

)
⊕(

R L ⊕ R L

)
⊕
(

R ⊕ R

)
⊕
(

R

)
, (88)

which in terms of isospin corresponds to

(
3

2
, 0)⊕ (

1̃

2
, 0)⊕ (

1̃

2
, 0)⊕ (1,

1

2
)⊕ (0̃,

1

2
)⊕ (1,

1

2
)⊕ (0̃,

1

2
)⊕

(
1

2
, 1)⊕ (

1

2
, 0̃)⊕ (1,

1

2
)⊕ (0̃,

1

2
)⊕ (

1

2
, 1)⊕ (

1

2
, 0̃)⊕

(
1

2
, 1)⊕ (

1

2
, 0̃)⊕ (0,

3

2
)⊕ (0,

1̃

2
)⊕ (0,

1̃

2
), (89)

with
1̃
2 standing for three quarks coupled to an isospin

1
2 state. Again, combining this multiplets to

irreducible representations of the chiral-parity group we arrive at[
(
3

2
, 0)⊕ (0,

3

2
)
]

+ 3 ·
[
(1,

1

2
)⊕ (

1

2
, 1)
]

+ 3 ·
[
(0̃,

1

2
)⊕ (

1

2
, 0̃)
]

+ 2 ·
[
(0,

1̃

2
)⊕ (

1̃

2
, 0)
]
. (90)

In more detail this irreducible representations of the chiral-parity group consist of:

• (0, 1/2)⊕(1/2, 0): A single (0, 1/2) representation has multiplicity of 2 due to the interchange-

ability of u and d quarks. Combining (0, 1/2) and (1/2, 0) for definite parity adds to a total

multiplicity of 4. There are five such irreducible representations, which are independent from

each other. The maximal isospin in this kind of representation is I = 1/2, which allows only for

nucleons.

• (1, 1/2)⊕ (1/2, 1): Applying the same reasoning as above we add two 6-fold representations to

a representation of total multiplicity of 12. There are three such representations. Possible isospin

values are I = 1/2 and 3/2, which corresponds to nucleons and deltas.

• (0, 3/2)⊕ (3/2, 0): These irreducible representations are constructed by combining two 4-fold

representations to one 8-fold irreducible representation. The isospin value is I = 3/2 and thus

only deltas fall into this representation.

3.4 Chiral symmetry on the lattice

The constraints necessary for the fermionic part of QCD (58) to be invariant under symmetries (57) can

be summarized very concisely by

{D, γ5} = 0, (91)

with the Dirac operator D = iγµDµ. Now on the lattice, a naive discretization of the Dirac opera-

torD(x|y) connecting lattice points x and y reads

D(x|y) =

4∑
µ=1

γµ
Uµ(x)δx+µ̂,y − U−µ(x)δx−µ̂,y

2a
. (92)

By a lattice Fourier transformation the discretized Dirac operator in momentum space is obtained

D̃(p) =
i

a

4∑
µ=1

γµ sin(pµa). (93)
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Inverting the Dirac operator gives the naive quark propagator on the lattice

D̃−1(p) = −ia

∑
µ γµ sin(pµa)∑
µ sin2(pµa)

, (94)

where

p = (p1, p2, p3, p4) (95)

is the discretized quark momentum. Here a problem becomes apparent: whereas in the continuum the

quark propagator has a single pole at p = 0, the lattice version (94) has a pole every time the components

of (95) occur in a combination of 0 and π/a, i.e. 24 = 16 times. 15 of these poles are unwanted lattice

artifacts and known as doublers, which spoil the theory.

One way out is to define a slightly modified lattice Dirac operator

D̃(p) =
i

a

4∑
µ=1

γµ sin(pµa) +
1

a

4∑
µ=1

(1− cos(pµa)) . (96)

The extra term in (96) acts as mass for the unwanted doublers, effectively decoupling them from the

spectrum as the lattice spacing decreases a → 0. This lattice discretization of fermions is called Wil-
son fermions. Wilson fermions might seem to solve the ‘doubling’ problem, but as byproduct trade it for

chiral symmetry: with the extra term in (96) acting as mass, the starting point for the discussion of chiral

symmetry (91) is not fulfilled anymore.

It is shown quite generally by the Nielsen–Ninomiya theorem [58–60] that it is not possible to re-

move doublers of a fermion discretization for a local definition of chiral symmetry as given in (91).

Instead, an alternative way to treat chiral symmetry on the lattice is by replacing (91) with theGinsparg–
Wilson equation [61]

{D, γ5} = aDγ5D (97)

as starting point. As it can be seen from a on the right side of (97), this term vanishes in the continuum

limit a→ 0 and the original condition (91) is restored. Rewriting (97) as

Dγ5 + γ5D = aDγ5D (98)

Dγ5 + γ5D − aDγ5D = 0 (99)

Dγ5

(
1− a

2
D
)

+ (1− a

2
D)γ5D = 0 (100)

suggests the definition of

γ̂5 = γ5 (1− aD) . (101)

Modified projection operators can be defined in analogy to the continuum operators (63)

P̂R/L =
1

2
(1± γ̂5) , (102)

which again obey

P̂L + P̂R = 1 (completeness),

P̂ 2
R/L = P̂R/L (idempotence),

P̂LP̂R = 0 (orthogonality).

(103)

Thus a modified theory of chiral symmetry can be constructed on the lattice, which offers the possibility

for chirally symmetric Dirac operators free of doublers. The obvious tradeoff for this kind of chiral sym-

metry is the non-locality: chiral properties at each space time point depend on the Dirac operator and
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thereby on neighboring lattice sites, as it can be seen in (101).

Two such fermion discretizations obeying (97), the Overlap as well as domain wall fermions, will be

discussed in section 4.2.



Chapter 4

Vacuum QCD on the lattice: operators,

eigenmodes and a truncation study

In this chapter numerical results for vacuum QCD will be presented. First a previous truncation study

from literature will be discussed, which serves as motivation to study symmetry properties of high tem-

perature QCD later on. Afterwards follows a short presentation of the Dirac operators in use and their

chiral properties. Section 4.3 is a technical account on how to extract the relevant correlation functions

necessary for spectroscopy from quark propagators on the lattice.

In section 4.4 a quenchednf = 2 simulation using the Overlap operator is presented. The low-mode

truncation procedure is applied to this system at various quark masses, which allows to study its effects

for different pion masses. Section 4.5 introduces a nf = 2 domain wall fermion simulation and shows

first results for correlation functions of mesons and nucleons as reference for the high temperature study.

4.1 A truncation study

In a set of numerical experiments [4–16] — henceforth referred to as truncation study — the spectrum

of light hadrons was investigated under certain modifications of the Dirac spectrum. Prior to that, a

study [1–3] was done in which the lowest modes of the Overlap Dirac operator have been calculated

explicitly on the lattice, and its chiral properties been investigated. The truncation studies aim was to

look at the hadron spectrum by excluding a certain number of low modes of the Dirac operator. Due to

the relation of Banks–Casher [62], which links the chiral condensate

〈Ψ̄Ψ〉 ∝ ρ(0) (104)

to the density of Dirac eigenmodes ρ(0) close to the origin, also the mechanism of spontaneous chiral

symmetry breaking is expected to be located in this region of the eigenmode spectrum. The question was

if chiral symmetry gets restored upon exclusion of this part of the theory. The results of this study are

shown in figure 4.1. While the ground state pion does not survive this procedure, the remaining spectrum

indeed becomes symmetric under chiral symmetry transformations. Even more, an emergent SU(4)
symmetry is observed for J = 1, 2 mesons and J = 1/2 baryons. Its implications on the fundamental

degrees of freedom, quark confinement and high temperature QCD are discussed e.g. in [63–65].

However, due to the limited statistics, the numerical data in these studies does not exclude an even

larger degeneracy of the J = 1 meson 15-plet and f1 singlet of SU(4). In [66] it is shown that there ex-

ists no such standard symmetry, i.e. generated by spatial integrals of local operators, which could account

for the observed degeneracy pattern. Therefore it is concluded, that either the apparent coincidence of

masses in the 15-plet and singlet channels is accidental, or requires for a larger non-standard symmetry. A

bilocal SU(4)×SU(4) symmetry is proposed for mesons in [67], which naturally explains degeneracies

33
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Figure 4.1: Light meson spectrum vs. number of removed low modes of the Dirac op-

erator. For the unmodified theory (k = 0) the mass hierachy found in na-

ture is reproduced, at higher levels of truncation a SU(4) symmetry emerges

in the nf = 2 case. The plot is taken from [12].

of different irreducible representations of a global SU(4) symmetry. In [68] it is shown how chiral sym-

metry restoration in a confining theory could generate dynamical quark flavors in color-singlet particle

spectrum.

4.2 Dirac operators

When studying the symmetry properties of hadronic matter, a proper fermion discretization is required

as well as good control over the parameters of the simulation. The truncatin study 4.1 made use of a

chirally improved (CI) Dirac operator, which approximates the Ginsparg–Wilson equation (97), as well

as Overlap fermions. Here we use the exact Overlap formalism for the quenched study in 4.4, and the

domain wall approximation to Overlap fermions for the main high temperature study.

4.2.1 Overlap operator

The Overlap operator of Neuberger [69, 70] is given by

Dov =
1

2
[1 + γ5sgn(HK(M))] , (105)

with some hermitian Wilson-like kernel operator

HK = γ5(DK −M). (106)

The operator fulfills the Ginsparg–Wilson equation (97) by construction and is chirally symmetric. M is

a mass-like parameter which can be used to tune convergence and locality properties. An few interesting

properties follow now from the γ5-hermiticity of the Overlap operator

γ5Dovγ5 = D†ov (107)

and its chirality. Multiplying (97) with γ5 gives

D†ov +Dov = aD†ovDov, (108)
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Figure 4.2: Lowest eigenvalues of the Overlap operator (105). The left panel shows 50

partly degenerate eigenvalues for a trivial gauge configuration, the right panel

shows 200 eigenvalues for an interacting 163 × 32 gauge configuration. It

can be seen that γ5-hermiticity requires the eigenvalues to appear in complex

conjugate pairs, as well as the ‘circle’ implied by the Ginsparg-Wilson equation.

which in terms of eigenvalues reads

λ∗ + λ = aλ∗λ. (109)

Writing the complex eigenvalues as λ = x+ iy this can be parametrized as

1

a2
=

(
x− 1

a

)2

+ y2. (110)

The eigenvalues of the Overlap operator therefore describe a circle with radius 1/a in the complex plane,

with the center at 1/a on the real axis. A few eigenvalues of an actual numerical calculation are plotted

in 4.2. In the continuum limit a → 0 the radius 1/a gets infinite and the circular shape approximates

the imaginary axis around the origin, i.e. the eigenvalues lie on the imagniary axis.

4.2.2 Domain wall approximation

In practice, the evaluation of the sign function in (105) is numerically expensive, which makes large scale

simulations with dynamical fermions costly. Depending on the problem one is interested in, exact chiral

symmetry might not be necessary, and certain approximations can be used.

One elegant way of approximating exact Overlap fermions is thedomain wall formalism [71,72]. The

general idea is to introduce an auxiliary 5th dimension for fermions with special boundary condition,

such that the 4-dimensional boundary contains chiral fermion modes. This way a 5D operator can be

constructed, which corresponds to an effective 4D operator

DDW (m) =
1 +m

2
+

1−m
2

γ5sgn(HK). (111)

Generally different implementations of domain wall fermions are characterized by their approximation

of the sign function, as well as the kernel operator HK . In this work the sign function is approximated
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by

sgn(HK) =
1− (T (HK))Ls

1 + (T (HK))Ls
, (112)

with

T (HK) =
1−HK

1 +HK
. (113)

The approximation (112) is called polar approximation [19], is equivalent to

tanh
(
Ls tanh−1(HK)

)
, (114)

and becomes more accurate for higher Ls. The kernel operator in this work corresponds to Möbius
domain wall fermions and is given by

HK(M5) = γ5
(b+ c)DW (M5)

2 + (b− c)DW (M5)
, (115)

whereDW is the regular Wilson operator andM5 the mass of the 5-dimensional quarks. The choice of b
and c gives different kernel operators, e.g. (b− c) = 1 and b+ c = α defines the scaled Shamir kernel.

4.3 Operators and Contractions

In the following we will be interested in expectation values of diagonal correlation functions

〈O(x)Ō(y)〉 , (116)

whereO(x) and Ō(y) are creation and annihilation operators for hadronic states of fixed quantum num-

bers. On the lattice, the calculation of this expectation value is split,

〈〈O(x)Ō(y)〉F 〉G , (117)

where the subscripts stand for fermionic and gluonic expectation value, respectively. The latter is done

by Monte Carlo averaging over gauge configurations. Given a set of configurations, this is trivial and

will not be discussed further. The fermionic expectation value on the other hand is done by applying

Wick’s theorem, which we will show for the operators of interest.

4.3.1 Isovector mesons

A local operator for an isovector meson is given by

OM (x) = d̄(x)Γu(x), (118)
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where the gamma structure Γ determines the quantum numbers of the state, e.g. Γ = γ5 gives the pion
1
.

Its conjugate operator is

ŌM (x) = ū(x)Γd(x), (119)

and the fermionic expecation value of a meson created at space time point x and annihilated at y can be

calculated by

〈OM (x)ŌM (y)〉F = 〈d̄(x)Γu(x)ū(y)Γd(y)〉F (120)

= Γα1β1Γα2β2

〈
d̄(x)α1

c1
u(x)β1

c1
ū(y)α2

c2
d(y)β2

c2

〉
F

(121)

= −Γα1β1Γα2β2

〈
u(x)β1

c1
ū(y)α2

c2

〉
u

〈
d(y)β2

c2
d̄(x)α1

c1

〉
d

(122)

Now the quarks have been factorized according to their flavor, as onlyupquarks can annihilateupquarks,

etc. Now Wick’s theorem 〈
u(x)β1

c1
ū(y)α2

c2

〉
d

= D−1
u (x|y)β1α2

c1c2
(123)

can be applied to (122), which gives

−Γα1β1Γα2β2D
−1(x|y)β1α2

c1c2
D−1(y|x)β2α1

c2c1
. (124)

As we assume isospin symmetry and neglect electromagnetic interactions, the propagators for up and

down quarks are them same, therefore the flavor indices of propagators are neglected from now on. In

vector/matrix notation this reads

Tr
[
D−1(x|y)ΓD−1(y|x)Γ

]
. (125)

Equation (125) would require quark propagators from all lattice points to all lattice points, which could

amount for large objects in practical implementations. Here the γ5-hermiticity of quark propagators can

be utilized, which is given by

D−1(x|y)∗βα
dc

= (γ5)αα′D
−1(y|x)α′β′

c d

(γ5)β′β. (126)

Using (126) in (124) to get the backward running quark propagator from the forward propagator, the

expression

−D−1(x|y)β1α2
c1c2

Γα2β2(γ5)β2β′2D
−1(x|y)∗α′1β′2

c1c2

(γ5)α′1α1
Γα1β1 (127)

is obtained. After absorbing the gamma structures into Γ′, this reads

D−1(x|y)β1α2
c1c2

Γ′α2β2D
−1(x|y)∗α1β2

c1c2

Γ′α1β1 (128)

and is ready for numeric evaluation.

4.3.2 Light baryons

An interpolator for the nucleon particle is given by

O±N (x) = εabcP±u(x)a
[
u(x)Tb Cγ5d(x)c

]
, (129a)

1

A more detailed account on how to construct operators is given e.g. in chapter 6 of [26].
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where P± is a parity projector. The term in square brackets is called diquark, C is the charge conjuga-

tion matrix and the diquark’s quantum numbers determined by the gamma structure Cγ5. Using its

conjugate

Ō±N (x) = εabc
[
ū(x)aCγ5d̄(x)Tb

]
ū(x)cP± (129b)

we can write the fermionic expectation value for the creation and annihilation of a nucleon as

〈Ō±N (y)O±N (x)〉F =〈
εabcεa′b′c′

[
ū(y)α

a
(Cγ5)αβ d̄(y)β

b

]
ū(y)γ

c
(P±)γγ′u(x)γ′

c′

[
u(x)α′

a′
(Cγ5)α′β′d(x)β′

b′

]〉
F

=

εabcεa′b′c′(Cγ5)αβ(P±)γγ′(Cγ5)α′β′
〈[
ū(y)α

a
d̄(y)β

b

]
ū(y)γ

c
u(x)γ′

c′

[
u(x)α′

a′
d(x)β′

b′

]〉
F
. (130)

The term in angle brackets can be reordered and factorized according to quark flavors〈
u(x)α′

a′
ū(y)α

a
u(x)γ′

c′
ū(y)γ

c

〉
u

〈
d(x)β′

b′
d̄(y)β

b

〉
d
. (131)

For the down quarks there is only one possible contraction. After applying Wick’s theorem this gives the

propagator 〈
d(x)β′

b′
d̄(y)β

b

〉
d

= D−1
d (x|y)β′β

b′b

. (132)

For the up quarks the situation is a little more interesting: a quark can contract with each one of the

anti quarks, the second quark with the remaining anti quark. In this situation there are two possible

outcomes. For k quark–anti quark pairs of the same flavor there are generally k! possible contractions.

The up quarks contract accordingly〈
u(x)α′

a′
ū(y)α

a
u(x)γ′

c′
ū(y)γ

c

〉
u

=

D−1
u (x|y)α′α

a′a
D−1
u (x|y)γ′γ

c′c

−D−1
u (x|y)α′γ

a′c

D−1
u (x|y)γ′α

c′a

, (133)

where the minus sign appears due to the necessary reordering of the Grassmann valued quark fields for

the second possible contraction. Collecting all steps we end up with

〈Ō±N (y)O±N (x)〉F = εabcεa′b′c′(Cγ5)αβ(P±)γγ′(Cγ5)α′β′×

D−1
d (x|y)β′β

b′b

(
D−1
u (x|y)α′α

a′a
D−1
u (x|y)γ′γ

c′c

−D−1
u (x|y)α′γ

a′c

D−1
u (x|y)γ′α

c′a

)
. (134)

It can be seen that the first term in the second line of (134) gives two separate traces, whereas the second

term results in just one trace connecting all three propagators. The derivation holds for any gamma

structure in the diquark andCγ5 can easily be replaced in (134).

The corresponding formula for the creation and annihilation of a delta particle can be derived in a

similar fashion. Starting from the general isospin I = 3/2 valued interpolators

O±∆(x) = εabcP±Γi1u(x)a
[
u(x)Tb Γi2u(x)c

]
, (135a)

Ō±∆(x) = εabc
[
ū(x)aΓ

i
2ū(x)Tb

]
ū(x)cΓ

i
1P± (135b)
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mud[a] mπ[MeV]

0.319 (961± 2) MeV

0.155 (667± 4) MeV

0.076 (473± 3) MeV

0.038 (339± 3) MeV

0.030 (305± 3) MeV

0.023 (268± 4) MeV

Table 4.1: Input quark mass parameters and resulting effective masses of the pion for the

quenched Overlap study.

the fermionic expectation value for creation and annihilation is

〈Ō±∆(y)O±∆(x)〉F = εabcεa′b′c′(Γ
i
2)αβ(Γi1)γδ(P±)δδ′(Γ

i
1)δ′γ′(Γ

i
2)α′β′×〈[

ū(y)α
a
ū(y)β

b

]
ū(y)γ

c
u(x)γ′

c′

[
u(x)α′

a′
u(x)β′

b′

]〉
F
. (136)

Now there are three quark-anti quark pairs of the same flavor and six possible ways to contract them.

This gives

〈Ō±∆(y)O±∆(x)〉F = εabcεa′b′c′(Γ
i
2)αβ(Γi1)γδ(P±)δδ′(Γ

i
1)δ′γ′(Γ

i
2)α′β′×(

D−1
u (x|y)α′α

a′a
D−1
u (x|y)β′β

b′b

D−1
u (x|y)γ′γ

c′c

−D−1
u (x|y)α′α

a′a
D−1
u (x|y)β′γ

b′c

D−1
u (x|y)γ′β

c′b

+D−1
u (x|y)α′β

a′b

D−1
u (x|y)β′γ

b′c

D−1
u (x|y)γ′α

c′a

−D−1
u (x|y)α′β

a′b

D−1
u (x|y)β′α

b′a

D−1
u (x|y)γ′γ

c′c

+D−1
u (x|y)α′γ

a′c

D−1
u (x|y)β′α

b′a

D−1
u (x|y)γ′β

c′b

−D−1
u (x|y)α′γ

a′c

D−1
u (x|y)β′β

b′b

D−1
u (x|y)γ′α

c′a

)
.

(137)

Out of these six terms, two result in two separate traces. The remaining four terms contribute as a single

trace connecting all propagators.

4.4 Quenched simulation

In this section a nf = 2 flavor simulation of QCD on a 123 × 24 lattice is presented. The valence

quarks are Overlap fermions with an polynomial approximation for the sign function. The Dirac sea is

quenched, i.e. the fermion determinant is set to 1

det[Du] = det[Dd] = 1. (138)

As gauge action the Lüscher–Weisz action [73, 74] is applied. The simulation is done for a single value

of β = 7.7, and setting the scale according to [75] results in a lattice spacing a = (0.175 ± 0.01)
fm. This gives a total box length of 2.1 fm and a lattice cutoff 1/a = (1120 ± 80) MeV. The gauge

configurations are stout smeared once
2
. A total number of 1100 configurations have been accumulated,

and thermalization was reached after 110 configurations.

This set of parameters may seem quite modest compared to todays standards. The aim however

is not to extract high precision data, but to qualitatively study the truncation method introduced in

section 4.1, its effects and dependence on the pion mass. Therefore the quark propagators are calculated

for six different masses, the resulting pion masses are given in table 4.1.

2

The procedure of stout smearing is discussed in appendix C.2
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meson JPC interpolator

π 0−+ q̄nγ5qn
q̄wγ5qw

a0 0++ q̄n1qn
q̄w1qw

ρ 1−−

q̄nγkqn
q̄wγkqw
q̄nγkγ4qn
q̄wγkγ4qw

a1 1++ q̄nγkγ5qn
q̄wγkγ5qw

b1 1+− q̄nγkγ4γ5qn
q̄wγkγ4γ5qw

Table 4.2: Interpolator basis of isovector mesons for variational analysis. Subscripts of

quark fields give the smearing level.

Spectroscopy is done using the variational analysis method, described e.g. in [76]. To extend the

operator basis, the quark sources are smeared before inverting the Dirac operator and thus improve the

overlap of interpolating fields with physical states. Thereby the coupling to lower lying states should be

improved and the ground state in a given channel extracted more reliably.

Specifically, we use Jacobi smearing as described in [77]. An initial point source is given by s
(α,a)
0 .

Applying the smearing operator

M =
N∑
n=0

(κH)n (139)

gives the smeared source s(α,a) = Ms
(α,a)
0 , whereH is given by

H(~x, ~y) =

3∑
j=1

[
Uj(~x, 0)δ(~x+ ĵ, ~y) + Uj(~x− ĵ, 0)†δ(~x− ĵ, ~y)

]
. (140)

In (139) there are two free parameters to choose: the number of smearing steps N , as well as the coef-

ficient κ. Both can be tuned to maximize the physical overlap of the initial field excitation to the state

one intents to probe. The data presented in this section uses two levels of smearing, denoted by the

tuple (κ,N):

narrow (0.335/4) (141a)

wide (0.191/41) (141b)

The level of smearing will be denoted by a subscript n or w of the quark fields, for narrow and wide
respectively

3
. Next we assemble a matrix for a given JPC channel by calculating the cross correlations

C(t)kl =
〈
Ok(t)O

†
l (0)

〉
, (142)

where the operators are listed in 4.2. Now calculating the eigenvalues of (144) with the generalized eigen-

value problem (GEVP)

λ(k)(t) ∝ e−tMk
[
1 +O(e−t∆Mk)

]
, (143)

3

We use the same labels as in [77], but the parameters have been adjusted to our lattice setup.



4.4. Quenched simulation 41

0 100 200 300 400
m

ud
 [MeV]

0

0,2

0,4

0,6

0,8

1

1,2

m
π

2
[G

e
V

2
]

quenched simulation

physical pion

Figure 4.4: Gell-Mann–Oaks–Renner relation: The linear dependence of m2
π on the

quark masses is realized with high precision. This is a manifestation of the exact

chiral symmetry of the Overlap operator in use.

a diagonal matrix with entries λ(1), λ(2), .. is obtained. The entries of the diagonalized matrix can be

interpreted as diagonal correlators of ‘optimal’ operators Õ to probe the ground state of the channel,

first excited state, etc. Imposing the vacuum interpretation of QCD as described in 2.5 and using (47),

the diagonal entries of this matrix read

C(t)kk =
∑
n

〈0|Õk|n〉〈n|Õ†k|0〉e
−tMn

(144)

with 〈0|Õk|n〉being the overlap of operator Õk with physical state |n〉. effective masses of corresponding

states can be extracted by fitting the logarithmic derivative

mk(t+
1

2
) = ln

[
λ(k)(t)

λ(k)(t+ 1)

]
. (145)

In order for the energy level to be a real physical bound state according to (143), the effective mass (145)

should show a consistent plateau in the asymptotic regime, before statistical noise starts to dominate the

signal.

The truncation procedure, which is described in detail e.g. in [4], consists of calculating the lowest

eigenmodes λi of the operatorD5 = γ5D, and constructing the reduced quark propagator

D−1
red = D−1 −

∑
i≤k

1

λi
|λi〉 〈λi| γ5. (146)

Now for the fermionic contractionsD−1
red is used, and the extraction of effective masses is done for various

stages of truncation, denoted by the number of removed eigenmodes k.

The reliability of the simulation is first checked by evaluating the Gell-Mann–Oakes–Renner rela-

tion in figure 4.4 and trying to find the notoriously hard a0 state in figure 4.5. The signal for the pion

looses its exponential decay upon truncating a few low modes and thus vanishes from the spectrum. This

is in accordance with its nature as Goldstone boson, as the truncation supposedly removes the sponta-

neous breaking of chiral symmetry. Figure 4.6 finally shows the isovector vector mesons for different

levels of truncation and pion masses. Parity doubling is observed, as well as an additional symmetry con-

sistent with SU(2)CS and SU(4). Overall this data shows agreement with previous studies presented in

section 4.1.
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Figure 4.5: Effective masses in the a0 channel. The scalar meson suffers from a particu-

lar heavy quenching artifact, see e.g. [78–80]. A negative ghost term becomes

dominant at lower quark masses and spoils the signal of q̄q states in this chan-

nel.

4.5 Vacuum DWF

In this section the simulation setup using dynamical domain wall fermions is introduced, which will be

used later in the high temperature study.

The fermion discretization for sea and valence quarks is the Möbius domain wall fermion with a

scaled α = 2 Shamir kernel, as described in section 4.2.2. For the gauge sector, tree-level improved

Symanzik action is used, and the gauge fields are smeared three times using stout smearing.

The setup of our implementation has been tested extensively in literature. The motivation to use

domain wall fermions instead of exact Overlap fermions is a significant reduction in computational cost.

The domain wall approximation is controlled by varying Ls, and implies a non-vanishing violation of

the Ginsparg–Wilson equation (97), which can be quantified by a residual massmres. This violation for

the given setup has been tested in [81] and [82]. The pion mass for different parameters is determined

in [83], most notably it has been verified that the pion mass essentially is the same for different topological

sectors. The autocorrelation properties of the setup are discussed e.g. in [84].

The scale in this simulation is set [19] through

a = c0f(g2)
(
1 + c2f(g2)2

)
(147)

with

f(g2) = (b0g
2)−b1/2b

2
0 exp

(
− 1

2b0g2

)
. (148)

The parameters are

b0 =
1

(4π)2

(
11− 2

3
Nf

)
, b1 =

1

(4π)2

(
102− 38

3
Nf

)
, (149)

where g2 = 6/β, the number of flavors Nf = 2 and c0 and c2 are fitted as 6.9(2) and 6.1(6) × 103

respectively. A graphical representation of the lattice spacing in dependence of β is shown in figure 4.7.

A list of β values and corresponding lattice spacings a and cutoffs 1/a is given in table 4.3. Most mea-

surements in the following are done using the ‘IroIro’ software [85].
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Figure 4.6: IsovectorJ = 1 mesons for various levels of truncation, k denotes the number

of removed eigenmodes. For the ρ channel, the first two energy levels are ex-
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Figure 4.7: Lattice spacing in dependence of β. The plot is taken from [19].
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β a [fm] 1/a [MeV]

4.00 0.143± 0.014 1378± 141
4.10 0.113± 0.011 1739± 177
4.18 0.0957± 0.009 2062± 210
4.30 0.0747± 0.007 2642± 270
4.37 0.0649± 0.006 3042± 310
4.50 0.0511± 0.005 3863± 394

Table 4.3: Lattice spacing and cutoff for given values of β.

N3
s ×Nt β mud Ls # of trajectories

83 × 16 4.00 0.01 4 6380
83 × 16 4.00 0.01 8 5000
83 × 16 4.00 0.01 16 2570
83 × 16 4.00 0.025 4 5000
83 × 16 4.00 0.05 4 6620
103 × 24 4.00 0.01 4 1030
103 × 24 4.00 0.01 12 1480
103 × 24 4.00 0.025 4 900
103 × 24 4.00 0.05 4 1870
163 × 32 4.00 0.01 4 800

Table 4.4: Ensembles for vacuum QCD spectroscopy. The last row gives the total number

of trajectories. Actual measurements start at trajectory #200, with a spacing of

20 trajectories in between measurements.

4.5.1 Configuration generation

Table 4.4 lists the various ensembles for vacuum QCD, which have been generated to verify our simu-

lation setup. The length of the 5th dimension Ls for the domain wall fermions is short, which implies

a rather large violation of chirality. In this section the main focus is to setup the simulation and verify a

few known properties, the violation of chirality can therefore be neglected. Figure 4.8 shows the Monte

Carlo history for the plaquette expectation value

〈U〉 =
1

6|Λ|
∑
x∈Λ

∑
ν<µ

Uµν(x), (150)

where |Λ| is the number of lattice points in lattice Λ, as well as the iteration count of the conjugate

gradient algorithm. From these quantities a sufficient thermalization after∼ 150 trajectories is deduced.

Figure 4.9 shows the topological charge of the gauge field

Q =
1

32π2

∑
x

εµνρσTrGµν(x)Gρσ(x). (151)

Q is measured after removing UV fluctuations by smoothing the gauge field through Wilson flow [86]

for a time ta2 = 5. The Wilson flow is generated by infinitesimal steps of stout smearing and keeps local

observables gauge invariant. Stout smearing itself can be used as an alternative to smooth the gauge field,

as it is described in C.2.

Figures 4.10 and 4.11 show the eigenvalue distribution for different 83 × 16 lattices.
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Figure 4.8: Monte Carlo history of the plaquette expectation value 〈U〉 and conjugate gra-

dient iteration (CG) count. The ensembles seem to thermalize after 100−150
trajectories. The CG count of the 122 × 24 ensemble with higher accuracy of

chiral symmetryLs = 12 suggests a slower thermalization.



46 Chapter 4. Vacuum QCD on the lattice: operators, eigenmodes and a truncation study

0 1000 2000 3000 4000 5000 6000
τ

MD

-4

-2

0

2

4

Q

8x16, β=4.00, m
ud

=0.01

0 500 1000 1500 2000
τ

MD

-10

-8

-6

-4

-2

0

2

4

6

8

10

L
s
=4

L
s
=12

12x24, β=4.00, m
ud

=0.01

0 1000 2000 3000 4000 5000 6000
τ

MD

-4

-2

0

2

4

Q

8x16, β=4.00, m
ud

=0.025

0 500 1000 1500 2000
τ

MD

-10

-8

-6

-4

-2

0

2

4

6

8

10

12x24, β=4.00, m
ud

=0.025

0 1000 2000 3000 4000 5000 6000
τ

MD

-4

-2

0

2

4

Q

8x16, β=4.00, m
ud

=0.05

0 500 1000 1500 2000
τ

MD

-10

-8

-6

-4

-2

0

2

4

6

8

10

12x24, β=4.00, m
ud

=0.05

0 500 1000 1500 2000
τ

MD

-4

-2

0

2

4

Q

8x16, β=4.00, m
ud

=0.005

0 500 1000 1500 2000
τ

MD

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

16x32, β=4.00, m
ud

=0.01

Figure 4.9: Monte Carlo history of the topological charge Q. Frequent topological tun-

neling is observed for all ensembles.
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Figure 4.10: 40 lowest eigenmodes forO(100) configurations of 8× 16 ensembles, com-

paring different quark masses.
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Figure 4.11: 40 lowest eigenmodes forO(100) configurations of 8× 16 ensembles, com-

paring different levels of the domain wall approximationLs.
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Figure 4.12: Gell-Mann–Oaks–Renner relation for the ensembles listed in table 4.4. By

comparing the black triangles and red crosses, effects of the finite lattice size

are visible. The pion mass for the 163 × 32 ensemble on the other hand is

close to the corresponding 122 × 24 value, which indicates decreasing finite

size errors, i.e. the box ‘is big enough’. At the same point, increasing Ls and

thus improving the approximation of the Ginsparg-Wilson equation, lowers

the pion mass substantially.

4.5.2 Meson spectroscopy

For a starting point of hadron spectroscopy, it is instructive to investigate pion masses for the different en-

sembles, which is done in figure 4.12. The main observables of interest however are correlation functions

of local hadronic operators. For isovector mesons they are given by (118), where Γ can be any element of

the Clifford algebra. To extract energy levels which correspond to physical states of definite momentum,

a momentum projection

Õ(p, t) =
1√
|Λ3|

∑
x∈Λ3

O(x, t)e−iaxp
(152)

to momentumphas to be done. Due to orthogonality it is sufficient to project one operator of a diagonal

correlation function, the second operator can be placed anywhere on the lattice, e.g. at the origin (0, 0).

After the momentum projection, a correlation function (116) for a meson of momentum p at time t is

given by

〈Õ(p, t)Ō(0, 0)〉 =
1√
|Λ3|

∑
x∈Λ3

e−iaxp 〈O(x, t)Ō(0, 0〉 (153)
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and can be evaluated numerically by applying (128).

For the correlation functions of mesons, local currents are essential building blocks. Due to the global

symmetries of QCD, a few relations hold for them. They are known as Ward identities, a derivation on

the lattice can be found e.g. in section 11.1.2 of [26]. For a general theory ofnf flavors with τa generators

in flavor space, they are

∂µ
(
ψ̄γµψ

)
= 0, (154a)

∂µ
(
ψ̄γµτ

aψ
)

= ψ̄[M, τa]ψ, (154b)

∂µ
(
ψ̄γµγ5ψ

)
= 2ψ̄Mγ5ψ, (154c)

∂µ
(
ψ̄γµγ5τ

aψ
)

= ψ̄{M, τa}γ5ψ. (154d)

HereM is the mass matrix in flavor space, and for mass degenerate quarks [M, τa] = 0 holds. (154d) is

the non-singlet axial Ward identity (AWI), and the axial current (154c) picks up an anomalous term A
due to the axial anomaly:

∂µ
(
ψ̄γµγ5ψ

)
= 2ψ̄Mγ5ψ +A, A =

1

32π2
εµνρσTrGµνGρσ. (155)

Now abbreviating the current in parenthesis of (154a) with Vµ, the following steps can be made

∂tVt = −∂iVi∫
Ω

d3x∂tVt = −
∫

Ω
d3x∂iVi

∂t

∫
Ω

d3xVt = −
∫
∂Ω

d2xVi,

(156)

where in the last step Gauss’s theorem was used to rewrite the volume integral on the right side as surface

integral. If we perform this integration over the whole lattice, the flux through the surface is zero and the

whole expression vanishes. Therefore,

∂t

∫
Ω

d3xVt = 0. (157)

This holds in principle for any (154a)–(154d) as long as the divergence vanishes. Result (157) has impli-

cations on the propagating components of corresponding vector mesons, as the integral is usually done

during projection to zero momentum. As a consequence, the component orthogonal to the integrated 3-

volume, i.e. the measurement direction, is constant. Equations (154a)–(154d) hold as expectation values

after Monte Carlo averaging, so do these deduced considerations.

Collecting all the methods presented, the zero momentum projected correlation functions at time

step t are given by

C(t) = 〈ÕΓ(0, t)ŌΓ(0, 0)〉 , (158)

where the operators are given by

OΓ = d̄(x)Γu(x) (159)

with gamma structures from table 4.5. The numerical results are given in figure 4.13.

4.5.3 Light baryon spectroscopy

Baryons composed of the light quark flavors up and down are nucleons and deltas, cf. section 2.3. As

members of the isospin doublet and quadruplet, respectively, their flavor content differs slightly, which

requires for a different treatment on the lattice as it is explained in section 4.3. In the following we focus
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abbreviation Γ

PS γ5 pseudo scalar

S 1 scalar

V γi vector

A γiγ5 axial vector

T γiγ4 tensor vector

X γiγ5γ4 axial tensor

At γ5γ4

Vt γ5

Table 4.5: Gamma structures for local isovector meson operators O(x) = d̄(x)Γu(x).

The six components of σµν = 1/2[γµ, γν ] are grouped to T andX such that

they transform according to representations of the chiral-parity group.
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Figure 4.13: Zero momentum projected meson correlation functions (158) for the 16×32
ensemble. The operators are (159) with gamma structures from table 4.5. The

lightest levels are the pseudoscalar (PS), i.e. pion, and the ‘time component’

of the axial vector meson At. In the Nambo-Goldstone mode of chiral sym-

metryAt couples to the pseudoscalar channel. The ‘time component’ of the

vector meson Vt does not propagate, according to considerations (157). The

vectorsV ,A,T andX show similar slopes, and it would require better statis-

tics and handling of systematic errors to disentangle the energy levels. The

scalar channelS shows no exponential decay at all and no information can be

extracted with this level of statistics.
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abbreviation Γ1

D1 Cγ5

D2 C
D3 Cγ5γ4

D4 Cγ4

D5 Cγ5γ3

D6 Cγ3

Table 4.6: Diquark gamma structures of nucleon operators. C = iγ2γ4 is the standard

charge conjugation matrix with propertiesC = C−1 = C† = −CT .

on nucleons only. The basic operators are

Nk(x) = εabcua(x)
[
uTb (x)Dkdc(x)

]
, (160)

where the expression in square brackets is the diquark with a gamma structure Dk. The different Dk’s

used in this study are listed in table 4.6. The single quark outside the brackets is sometimes referred to

as passenger quark. The operators (160) are not invariant under parity transformations and mix positive

and negative parity. It is therefore necessary to project them to definite parity with operators

P± = Pt± =
1

2
(1± γ4) . (161)

Here the superscript t explicitly denotes the parity projection in time direction. It is also possible to define

a similar projection operator

Pz± =
1

2
(1± γ3) , (162)

which will be useful for studying spatial correlations in z-direction. In principle it is also possible to

include an additional gamma structure for the passenger quark. For diagonal correlators however this is

of minor importance: a short modification of (130) shows that as long as this additional gamma structure

anti commutes with the parity projector, the parity states exchange, i.e. N+ ↔ N−. We take this effect

into account to construct operators, which are natural parity partners and can be rotated into each other

by U(1)A transformations:

N±1
U(1)A←−−→ N±2 (163a)

N±3
U(1)A←−−→ N±4 (163b)

N±5
U(1)A←−−→ N±6 (163c)

OperatorsN1,N2 andN3 have been used previously in literature to extract the nucleon ground states

with various success. For a discussion on the quantum numbers and physical overlaps of this operators,

the reader is referred to [87] and the discussion therein. For the operatorsN4,N5 andN6 the behaviour

is a priori not clear. Due to the J = 1 diquark, the operators N5 and N6 e.g. couple to J = 1/2
and J = 3/2 channels and would require spin projection to extract physical states. However, as the

main interest here are symmetry properties of correlation functions, the asymptotic behaviour to extract

masses is of minor interest.

The results for parity projected N1–N6 operators are shown in figure 4.14. A comparison of parity

and z-projected states of the N1 operator is shown in figure 4.15. As for the high temperature study

spatial correlations in z-direction will be of interest, the corresponding data of theN1 operator is shown

for the vacuum in figure 4.16, again for parity projected as well as z-projected states.
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Figure 4.14: Normalized nucleon correlations for the 16 × 32 ensemble. Parity splitting

is well pronounced for the N1, N3 and N6 operators: For the N+
1 channel

e.g. the positive parity nucleon can be seen propagating forward while the

negative parity nucleon is propagating backwards, and vice versa for theN−1
channel.
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Figure 4.15: Normalized N1 nucleon with different projections for correlations in time

direction. Parity splitting can be seen forPt± projected operators.
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Figure 4.16: Normalized N1 nucleon with different projections for spatial correlations.

Clear splitting can be seen forPz± projected operators.



Chapter 5

Lattice QCD at high temperatures

In section 2.5 the path integral (39) was introduced, where field configurations are summed up with a

statistical weight (40). The weight itself contains the Euclidean action, which is a 4-dimensional integral

of the lagrangian density. A possible reinterpretation of this integral is

S[Φ] =

β∫
0

dt

∫
d3x L(Φ(t,x), ∂µΦ(t,x)), (164)

with β being the inverse temperature β = 1/T . By this interpretation
1

the temperature T of the system

is linked to the lattice extend in time direction

1

T
= aNt. (165)

As the statistical sampling is not changed, the whole formalism of Monte Carlo lattice QCD stays the

same, and just the interpretation changes by identifying the time extend of the lattice with the inverse

temperature. For the limit T → 0 the time extend aNt becomes infinite and the vacuum interpretation

is recovered, where both ends of the lattice in time direction are identified as−∞ < t <∞.

As the lattice of the simulation is finite, this difference is a source of systematic errors. Being interested

in asymptotic behaviour of observables, one usually tries to keep the time extend large. Applying the

finite temperature interpretation, the systematic error linked with finite time extend requires rethinking.

Increasing the gauge coupling β gives a shorter lattice constant a and smaller spatial volumes. There-

fore, the continuum limit is generally done by driving a → 0 while keeping the volume fixed. Now

for a fixed value of a the scale of the theory is given by the temperature T , i.e. 1/aNt. Also keeping the

temperature T fixed, the 3-volume at each time step is now given byN3
s . For fixed temperature 1/aNt,

a larger spatial extend aNs will obviously lead to less finite volume effects. Thus the aspect ratioNs/Nt

becomes significant: higher values of Ns/Nt have less systematic errors. One can counteract this effect

by introducing anisotropic lattices.

In section 5.1 the high temperature lattice setup is introduced. Section 5.2 treats correlations for non-

interacting fermions as reference for the lattice data. In sections 5.3 and 5.4 the lattice data for correlations

functions of mesons and baryons is presented. Due to the setup of the high temperature study and the

considerations above, we will focus on spatial correlations of the hadronic spectrum. This provides a lot

more lattice points to study and due to the high aspect ratioNs/Nt ≥ 4 less systematic errors, as tradeoff

the physical interpretation of the correlation function’s slopes as effective masses is lost.

1

This is the conventional notation. However, β as temperature is not the same as β describing the inverse coupling β =
6/g2. To avoid confusion, we will use β for the single purpose of the latter case and refer to the temperature simply as T .

53
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Nt β = 4.10 β = 4.18 β = 4.30 β = 4.37 β = 4.50

16 108± 1 129± 1 165± 2 189± 2 241± 5
14 124± 1 147± 1 189± 2 216± 3 275± 5
12 144± 1 172± 1 220± 2 253± 4 321± 6
10 173± 1 206± 2 264± 3 303± 4 385± 7
8 217± 2 258± 2 330± 3 379± 5 482± 9
6 289± 2 344± 2 440± 4 505± 6 642± 11
4 433± 3 516± 3 660± 6 758± 10 963± 17

Table 5.1: Temperatures in MeV for combinations of β andNt according to (165).

5.1 Setup

For the high temperature study the same basic setup is used as described in section 4.5. Using the lattice

spacings and cutoffs listed in table 4.3, the corresponding temperatures can be calculated using (165). The

temperatures for various combinations ofNt andβ are given in table 5.1. In [19] the critical temperature

for this setup was determined by the Polyakov loop
2

as

Tc = 175± 5MeV. (166)

The ensembles for the high temperature study are listed in table 5.2. The approximation of Overlap

fermions through domain wall fermions is controlled by varying Ls, as explained in section 4.2.2. Here Ls

is chosen such that the violation of the Ginsparg-Wilson equation (97) is characterized by a residual quark

mass mres ' 0.5 MeV, which is neglectable compared to the explicit breaking by non-vanishing quark

masses. From figure 5.1 it can be seen that short-range observables represented by the plaquette expecta-

tion value 〈U〉 thermalize for all ensembles after 150 trajectories.

Figure 5.2 shows the topological charge for the high temperature ensembles, calculated accoring

to (151). All ensembles in this plot correspond to temperatures above 2Tc. For this temperatures the

trivial topological sector Q = 0 is dominating. Long-range observables as correlation functions with

no obvious connection to the topological charge should not be affected by this fact. In [83] the pion

mass has been calculated for different topological sectors and the deviation to the global average has been

found to be negligible. Thus we conclude the dominance ofQ = 0 not to be a problem.

Lastly a short glance at the eigenvalue distribution is given in figure 5.3. The eigenvalue distribu-

tion for ensembles with lower temperatures closer to the critical temperature can be found in [19, 20].

While the limited amount of collected statistics does not allow for solid conclusions, it can clearly be seen

that the bulk of eigenmodes starts at increasingly higher energies and a gap seems to open up. This data

represents eigenmodes from theQ = 0 sector and according to (69) do not contain zero modes.

5.2 Spatial correlations for non-interacting fermions

We are interested in the general correlation of two non-interacting quarks with momenta

p = (px, py, pz, pt), (167a)

q = (qx, qy, qz, qt). (167b)

2

The term critical temperature hereby refers to the role of the Polyakov loop as order parameter forZ3 center symmetry in

pure gauge theory, cf. section 2.5.2 for a short discussion.
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N3
s ×Nt β mud Ls T [MeV] # of trajectories

323 × 8 4.37 0.001 12 380 770
323 × 8 4.37 0.005 12 380 1540
323 × 8 4.37 0.01 12 380 470
323 × 8 4.50 0.001 12 480 1520
323 × 8 4.50 0.005 12 480 1480
323 × 8 4.50 0.01 12 480 1170
323 × 6 4.30 0.001 12 440 2730
323 × 6 4.30 0.005 12 440 2740
323 × 6 4.30 0.01 12 440 2920
323 × 4 4.30 0.001 10 660 2080
323 × 4 4.30 0.005 10 660 1820
323 × 4 4.30 0.01 10 660 2120
323 × 4 4.50 0.001 10 960 2090
323 × 4 4.50 0.005 10 960 2000
323 × 4 4.50 0.01 10 960 2000

323 × 12 4.30 0.001 24 220 226
323 × 12 4.30 0.01 12 220 142
323 × 8 4.10 0.001 24 220 800
323 × 8 4.10 0.005 24 220 80
323 × 8 4.10 0.01 12 220 80
323 × 8 4.18 0.001 12 260 320
323 × 8 4.18 0.005 12 260 120
323 × 8 4.18 0.01 12 260 234
323 × 8 4.30 0.001 12 330 260
323 × 8 4.30 0.005 12 330 317
323 × 8 4.30 0.01 12 330 330
323 × 8 4.37 0.005 12 380 120

Table 5.2: Dynamical nf = 2 domain wall fermion ensembles for high temperature use.

Ls gives the length of the 5th dimension. Ensembles below the horizontal sepa-

rator have been generated for a different study, but are included in the measure-

ments for mesons correlation functions.
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Figure 5.1: Monte Carlo history of the plaquette expectation value 〈U〉 according to (150)

on the left side, and conjugate gradient iteration count on the right side.
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Figure 5.2: Monte Carlo history of the topological chargeQ calculated according to (151).

For the Nt = 8 and Nt = 4 ensembles all configurations lie in the triv-

ial Q = 0 topological sector, for the Nt = 6 ensembles there are single

configurations in the Q = ±1 sector. The effect of topological freezing is a

well-known phenomenon at high temperatures.
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Figure 5.3: Eigenvalue distribution for ensembles of table 5.2. The histogram includes the

lowest 40 eigenvalues forO(10) configurations. The beginning of the bulk of

eigenmodes shifts towards higher energies. Due to the very limited statistics

this plots might not be representative.
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A composed state of this quarks is described by

Tr

[
Γ

1

/p+m
Γ

1

/q +m

]
, (168)

where m is the quark mass and Γ is an element of the Clifford algebra determining the quantum num-

bers of the state. Now spatial correlations in z-direction are measured by Fourier transforming the z-

components

C(px, py, pt, qx, qy, qt, z) =

∫
dpz
2π

eipzz

∫
dqz
2π

eiqzz Tr

[
Γ

1

/p+m
Γ

1

/q +m

]
, (169)

while the remain momenta are still open. We can extend the denominators in the trace and the integrand

reads

Tr

[
Γ
−γ1px − γ2py − γ3pz − γ4qt +m

p2
x + p2

y + p2
z + q2

t +m2
Γ
−γ1qx − γ2qy − γ3qz − γ4qt +m

q2
x + q2

y + q2
z + q2

t +m2

]
. (170)

Assigning the second quark momenta in opposite direction q → −q gives

Tr

[
Γ
−γ1px − γ2py − γ3pz − γ4qt +m

p2
x + p2

y + p2
z + q2

t +m2
Γ
γ1qx + γ2qy + γ3qz + γ4qt +m

q2
x + q2

y + q2
z + q2

t +m2

]
. (171)

The evaluation of the trace depends on the gamma structure Γ. As an example we proceed using the

pseudo scalar Γ = γ5 structure. Anti commuting γ5 through the nominator changes signs of some

terms

Tr

[
+γ1px + γ2py + γ3pz + γ4qt +m

(p2
z +M2)

γ1qx + γ2qy + γ3qz + γ4qt +m

(q2
z +M ′2)

]
, (172)

where the shorthand notation M2 = p2
x + p2

y + p2
t + m2

and M ′2 = q2
x + q2

y + q2
t + m2

has been

introduced. Evaluating the trace yields

4

∫
dpz
2π

eipzz

∫
dqz
2π

eiqzz pxqx + pyqy + pzqz + ptqt +m2

(p2
z +M2)(q2

z +M ′2)
(173)

as expression for the correlation (169). Evaluating the first integral at pz = iM this becomes

4
1

2M
e−Mz

∫
dqz
2π

e−iqzz
pxqx + pyqy + iMqz + ptqt +m2

(q2
z +M ′2)

, (174)

and evaluating qz = −iM we arrive at

4
1

4MM ′
e−(M+M ′)z(pxqx + pyqy +MM ′ + ptqt +m2). (175)

Using the equality of momenta q = p impliesM = M ′ and the correlation becomes

C(px, py, pt, z) =
1

M2
(p2
x + p2

y +M2 + p2
t +m2)e−2Mz

(176)

for the pseudo scalar state Γ = γ5. The change of signs in (172) obviously depends on the choice of Γ
and affects result (176). A list of gamma structures, a corresponding shorthand notation and the resuling

nominator for (172) are listed in table 5.3. Following the steps above for the gamma structures Γ of
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Γ abbreviation nominator

γ5 PS +pxqx + pyqy + pzqz + ptqt +m2

1 S −pxqx − pyqy − pzqz − ptqt +m2

γ1 Vx −pxqx + pyqy + pzqz + ptqt +m2

γ2 Vy +pxqx − pyqy + pzqz + ptqt +m2

γ3 Vz +pxqx + pyqy − pzqz + ptqt +m2

γ4 Vt +pxqx + pyqy + pzqz − ptqt +m2

γ1γ3 Tx +pxqx − pyqy + pzqz − ptqt +m2

γ2γ3 Ty −pxqx + pyqy + pzqz − ptqt +m2

γ4γ3 Tt −pxqx − pyqy + pzqz + ptqt +m2

Table 5.3: Nominator for the trace expression in (172) The given shorthand notation is

specificly used for measurements in z−direction.

table 5.3, the z-correlations in dependence of z and the momentum p̃ = (px, py, pt) can be calculated:

CPS(p̃, z) = 2
p2
x + p2

y + p2
t +m2

M2
e−2Mz

(177a)

CS(p̃, z) = 2
p2
x + p2

y + p2
t

M2
e−2Mz

(177b)

CV x(p̃, z) = 2
p2
x + p2

t +m2

M2
e−2Mz

(177c)

CV y(p̃, z) = 2
p2
y + p2

t +m2

M2
e−2Mz

(177d)

CV z(p̃, z) = 0 (177e)

CV t(p̃, z) = 2
p2
x + p2

y +m2

M2
e−2Mz

(177f )

CTx(p̃, z) = 2
p2
x +m2

M2
e−2Mz

(177g)

CTy(p̃, z) = 2
p2
y +m2

M2
e−2Mz

(177h)

CTt(p̃, z) = 2
p2
t +m2

M2
e−2Mz

(177i)

There are a few interesting observations from this results. The overall expressions depend on the mo-

menta px, py , and pt. The exponential decay is always determined by the momenta implicitly inM , and

for a given set of momenta the same in all channels. The amplitude on the other hand is unique for each

cannel, and depends on the different momenta. A few exemplary scenarios of possible combinations of

momenta are given in table 5.4. The complete correlation function however is a sum over all possible

momenta, and thus a sum of different exponentials.

Correlations in temporal direction can be derived in a similar fashion by defining

C(px, py, pz, qx, qy, qz, t) =

∫
dpt
2π

eiptt
∫
dqt
2π

eiqtt Tr

[
Γ

1

/p+m
Γ

1

/q +m

]
. (178)

Adapting the considerations on spatial correlation functions from above and using the modified short-

hand notation given in table 5.5, the following expressions for measurements in t-direction, now depend-
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px = py = 0 px 6= py = 0 px 6= py 6= 0

PS p2
t +m2 p2

x + p2
t +m2 p2

x + p2
y + p2

t +m2

S p2
t p2

x + p2
t p2

x + p2
y + p2

t

Vx p2
t +m2 p2

x + p2
t +m2 p2

x + p2
t +m2

Vt m2 p2
x +m2 p2

x + p2
t +m2

Tx m2 p2
x +m2 p2

x +m2

Tt p2
t +m2 p2

t +m2 p2
t +m2

Table 5.4: Amplitude of the exponential decay for different scenarios without the com-

mon factor 2/M2
.

Γ abbreviation nominator

γ5 PS +pxqx + pyqy + pzqz + ptqt +m2

1 S −pxqx − pyqy − pzqz − ptqt +m2

γ1 Vx −pxqx + pyqy + pzqz + ptqt +m2

γ2 Vy +pxqx − pyqy + pzqz + ptqt +m2

γ3 Vz +pxqx + pyqy − pzqz + ptqt +m2

γ4 Vt +pxqx + pyqy + pzqz − ptqt +m2

γ1γ4 Tx +pxqx − pyqy − pzqz + ptqt +m2

γ2γ4 Ty −pxqx + pyqy − pzqz + ptqt +m2

γ3γ4 Tz −pxqx − pyqy + pzqz + ptqt +m2

Table 5.5: Nominator for the trace expression in (172) when evaluating t-correlations. The

given shorthand notation is specificly used for measurements in t−direction.

ing on the momentum p = (px, py, pz), can be derived:

CPS(p, t) = 2
p2
x + p2

y + p2
z +m2

M2
e−2Mt

(179a)

CS(p, t) = 2
p2
x + p2

y + p2
z

M2
e−2Mt

(179b)

CVx(p, t) = 2
p2
y + p2

z +m2

M2
e−2Mt

(179c)

CVy(p, t) = 2
p2
x + p2

z +m2

M2
e−2Mt

(179d)

CVz(p, t) = 2
p2
x + p2

y +m2

M2
e−2Mt

(179e)

CVt(p, t) = 0 (179f )

CTx(p, t) = 2
p2
x +m2

M2
e−2Mt

(179g)

CTy(p, t) = 2
p2
y +m2

M2
e−2Mt

(179h)

CTz(p, t) = 2
p2
z +m2

M2
e−2Mt

(179i)

As it can be seen for spatial (177a–177b) as well temporal (179a–179b) correlations, a non-vanishing

mass term m is the only source of difference between pseudo scalar and scalar correlations, which is in

agreement with expectations from U(1)A symmetry transformations of massless non-interacting quarks.

Furthermore, the correlations for channels (177e) and (179f) vanish according to considerations (157). For
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a rotational invariant system, where px and py occur in equal amounts, the channelsVx andVy coincide,

as well as Tx and Ty .

The asymptotic properties of full momentum integrated correlation functions for non-interacting

massless quarks have been extracted in [88]. For correlations in z-direction they fall into five different

classes, where the behaviour of parity partners coincide. Using the lowest Matsubara frequency of the

quarksw0 = π/β, they can be written as

CPS(z) =
(2π)4

β2

e−z2ω0

z2ω0

[
1 +

1

z2ω0

]
+O(

e−z4ω0

z
), (180a)

CVx(z) =
(2π)4

β2

e−z2ω0

z2ω0

[
1 +

1

(z2ω0)2
+ ...

]
+O(

e−z4ω0

z
), (180b)

CVt(z) = 2
(2π)4

β2

e−z2ω0

(z2ω0)2

[
1− 1

z2ω0
+ ...

]
+O(

e−z4ω0

z
), (180c)

CTx(z) =
(2π)4

β2

e−z2ω0

(z2ω0)2

[
1− 1

z2ω0
+ ...

]
+O(

e−z4ω0

z
), (180d)

CTt(z) =
(2π)4

β2

e−z2ω0

z2ω0

[
1− 1

z2ω0
+ ...

]
+O(

e−z4ω0

z
). (180e)

5.3 Mesons

The following data has been published in [89–91]. Here we summarize the findings. As stated in the

introduction, spatial correlations are of interest in this study. This requires a slight modification in the

setup. Namely, the calculation of correlations in z-direction is done by

C(z) = 〈ÕΓ(0̃, z)ŌΓ(0, 0)〉 , (181)

where the momentum projection (152) now projects the meson state to zero momentum

p̃ = (px, py, pt) = (0, 0, 0). (182)

The operators itself (159) are not modified. As the rotational invariance of the lattice is broken in the

finite temperature setup, the choice of gamma structures Γ for operators and components requires special

care. The pseudo scalar and scalar operators stay the same

PS = γ5, (183a)

S = 1. (183b)

Due to the non-propagation of Vz = γ3 according to (157), the components of the vector meson and

axial vector meson state are

V =

 γ1 = Vx
γ2 = Vy
γ4 = Vt

 , A =

 γ1γ5 = Ax
γ2γ5 = Ay
γ4γ5 = At

 . (184)

The six components of σµν are grouped to tensor and axial tensor objects

T =

 γ1γ3 = Tx
γ2γ3 = Ty
γ4γ3 = Tt

 , X =

 γ1γ3γ5 = Xx

γ2γ3γ5 = Xy

γ4γ3γ5 = Xt

 . (185)
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Figure 5.4: Normalized correlation functions forNt = 8 ensembles of table 5.2.

This choice of grouping ensures that the resulting objects keep their transformation properties under the

chiral-parity group and U(1)A transformations as expected from the vacuum. This means that

PS
U(1)A←−−−→ S, (186a)

V
U(1)A←−−−→ A, (186b)

T
SU(2)A←−−−→ X. (186c)

First results for the spatial correlation functions
3

are given in figure 5.4. With increasing temperature

there are three distinctive groups of correlations evolving. According to transformations (186a)–(186c)

we would expect at most seven groups of correlations upon restoration of the chiral symmetries: one

for scalars, three for the pairwise degenerate vector–axial vector, and three more for pairwise degenerate

tensor elements. Taking into account the rotational symmetry of the finite temperature lattice, an addi-

tional degeneracy of x and y vector and tensor components reduces the number of expected groups to

five. These five groups are the same as they are found for non-interacting quarks (180a)–(180e), where

chiral symmetries including SU(2)A and U(1)A transformations are manifest.

The approximate multiplet structure of figure 5.4 however consists of three multiplets, in the follow-

ing denoted asE1,E2, andE3:

E1 : PS ↔ S (188a)

E2 : Vx ↔ Tt ↔ Xt ↔ Ax (188b)

E3 : Vt ↔ Tx ↔ Xx ↔ At. (188c)

3

Plotting lattice data from different ensembles in dependence of lattice points could be misleading, as e.g. differentβ causes

a different physical extend. Therefore a rescaling

zT = z
1

Nta
= nza

1

Nta
=
nz

Nt
(187)

is performed to compare dimensionless data.
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Figure 5.5: Correlation functions for theE2 multiplet. Dashed lines give the correspond-

ing correlations for non-interacting quarks. While for the non-interacting, free
quarks the symmetry structure expected from the chiral symmetries is shown,

the interacting, dressed data clearly shows a higher symmetry. This higher sym-

metry is consistent with SU(2)CS and SU(4) symmetries, which have previ-

ously been found in literature — cf. section 4.1.

Multiplet E1 agrees with observation of effective U(1)A symmetry restoration. Multiplets E2 and E3

imply SU(2)L×SU(2)R restoration, but the situation of approximately degenerate states is a little more

intricate in these cases. Therefore figures 5.5 and 5.6 show the E2 and E3 multiplets in more detail at a

temperature of 380 MeV, along with data for non-interacting fermions.

The exponential decay of correlation functions gives a first impression of how mesonic modes are

realized at high temperature. In chapter 6 the symmetry properties of meson correlations will be investi-

gated in terms of ratios, which allows for a more detailed study.

5.4 Baryons

For baryon spectroscopy at high temperature similar considerations apply as for mesons. The operators

are given by (160) with the diquark structures of table 4.6. Correlations are calculated by

CN±k
(z) = 〈Nk(0̃, z)P±Nk(0, 0)〉 . (189)

The zero momentum projection for measurement in z-direction now projects to momentum (182). Fur-

thermore, two kinds of projection operators are used:

• P±t of (161) for parity, and

• P±z of (162) for z-projection.

The results for parity projected operators are given in figure 5.8, for z-projected operators the plots are

in figure 5.8.

Again, as the data points of the exponential decrease are close to each other and less predicative, the

symmetry properties will be discussed later in chapter 6 in terms of ratios of correlation functions.
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Figure 5.8: Absolute value of normalized nucleon correlators using parity projection.

Note that for the 32× 8 and 32× 6 ensembles zero crossing occurs for oper-

ators N3 and N4 at a distance zT h 0.75. The dynamics responsible are not

yet understood.
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Figure 5.9: Normalized nucleon correlators z-projected.
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Chapter 6

Symmetries at high temperature

A wise lesson to be drawn from one’s life experiences is, that long arguments are
o�en much more dubious than short ones.

— Gerard ’t Hooft, Cellular Automaton Interpretation of Quantum Mechanics

Usual hadron spectroscopy extracts effective masses of states from the asymptotic behaviour of Euclidean

correlation functions in temporal direction. Due to the finite temperature interpretation the asymptotic

behaviour is inaccessible in our simulation, as discussed in the introduction to chapter 5, hence the ex-

traction of effective masses is not possible. Measurements of local or bulk thermodynamical properties

are not directly affected, neither are long-ranged hadronic correlations in spatial directions.

The chiral properties of the hadron spectrum are inherited from the corresponding correlation func-

tions. If the correlation functions are symmetric under a certain symmetry group, this directly becomes

manifest in the spectrum. Thus it is sufficient to study symmetry properties of correlation functions.

In sections 6.1 and 6.2 chiral– and U(1)A symmetry properties of the lattice data are shown. Sec-

tion 6.3 introduces SU(2)CS and SU(4) symmetries and identifies its multiplets in the present sim-

ulation setup. Section 6.4 presents the corresponding lattice data. Section 6.5 ends this chapter with

observations and implications of SU(4) symmetry.

6.1 Chiral symmetry

Chiral symmetry – in the sense of flavor non-singlet SU(2)L × SU(2)r transformations – is sponta-

neously broken in the QCD vacuum, i.e. realized in the Nambu–Goldstone mode. Hence the chiral

partners of hadrons, which lie within the same irreducible representation of the chiral-parity group, are

not mass degenerate. For simple lattice calculations of vacuum QCD this has been verified in chapter 4.

Chiral symmetry restoration is expected in the high temperature phase of QCD after some critical

temperature. Therefore chiral partners are required to become mass degenerate, as their correlation func-

tions transform within the same representation of the chiral-parity group.

For mesons e.g. the V and A operators both transform according to the (1, 0)⊕(0, 1) representation

V,A ∈ (1, 0)⊕ (0, 1). (190)

The representation has a multiplicity of 6, cf. section 3.3, which is saturated by three isovector compo-

nents of V and A each. Given a scenario of perfect symmetry restoration and massless quarks, their

correlation functions should be identical and result in a ratio of 1. Figure 6.1 shows the ratio of normal-

ized x-components of V and A. For any ensemble, i.e. temperature above T > 220 MeV, the ratio
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Figure 6.1: SU(2)A symmetry violation for different temperatures and masses. The x-

components of V and A operators transform according to the (1, 0)⊕ (0, 1)
representation of the chiral-parity group. Chiral symmetry restoration there-

fore requires the correlation functions of the operators to be identical, i.e. give a

ratio of 1. However, for any finite mass there is still explicit symmetry breaking.

Depicted is the ratio of normalized correlation functions.
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Figure 6.2: Parity doubling in the nucleon channel forN1 operators.
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Figure 6.3: ‘Parity doubling’ in the nucleon channel forN1 operators of z-projection. The

change of sign at the symmetry point has the following origin: By measuring

the N+
1 operator of z-projection in z-direction, its partner particle is propa-

gating backwards, i.e. theN−1 . While measuring the ratioN+
1 /N

−
1 in forward

direction, it is the ratioN−1 /N
+
1 in backward direction.

for the lowest quark massmud = 0.001 is below 1.01 and the breaking therefore at a sub-percent level.

With increasing temperature the ratio approaches 1. At the same time the estimate for the statistical error

diminishes, which means that fluctuations due to the gauge field get smaller and the deviation from an

exact ratio of 1 are dominated by the explicit symmetry breaking due to the finite quark mass. In total

there is compelling evidence of chiral symmetry restoration in the mesonic spectrum.

For nucleons the restoration of chiral symmetry requires the coincidence of parity partners of op-

erators, e.g. N+
1 and N−1 . This can be seen again by studying the irreducible representations of the

chiral-parity group:

N+
1 , N

−
1 ∈ (0,

1

2
)⊕ (

1

2
, 0). (191)

Both N1 operators come in two isospin flavors – which are the same for exact isospin symmetry and

connected by the SU(2)V isospin subgroup – hence one (0, 1/2) ⊕ (1/2, 0) representation of (90)

with multiplicity 4 is saturated. Our lattice results are given in figures 6.2 and 6.3. As for the mesons,

the deviation from exact chiral symmetry restoration is less than one percent. The statistical error seems

to dominate at highest temperatures, which indicates the dominance of explicit breaking of chiral sym-

metry. The restoration of chiral symmetry through parity doubling in baryons has been studied e.g.
in [92, 93] using nf = 2 + 1 Wilson fermions on anisotropic lattices, or in [94] using a quenched sim-

ulation of clover–improved Wilson fermions. Both cases find similar results. The exact details of how

partiy doubling for baryons is realized could be of theoretical interest for understanding modifications

of thermodynamical properties [95].
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Figure 6.4: U(1)A symmetry violation for different temperatures and masses. Pseudo

scalar PS and scalar S operators belong to different representations of the

chiral-parity group, but transform into each other under U(1)A transforma-

tions. Effective restoration of U(1)A symmetry therefore requires the corre-

lation functions of the operators to be identical, i.e. give a ratio of 1. How-

ever, for any finite mass there is still explicit symmetry breaking, as well as the

anomalous breaking due to the axial anomaly. Depicted is the ratio of normal-

ized correlation functions.

6.2 U(1)A symmetry

The situation concerning U(1)A symmetry is different from non-singlet chiral symmetry. The symmetry

is broken due to explicit, spontaneous and anomalous effects, cf. section 3.2. In literature however a

possible weakening of the axial anomaly is discussed, e.g. [96, 97], such that there are no anomalous

breaking effects left at high temperatures.

We study U(1)A symmetry breaking through ratios of isovector pseudo scalarPS and scalarSmesons.

They belong to different representations of the chiral-parity group:

PS ∈(
1

2
,
1

2
)a, (192a)

S ∈(
1

2
,
1

2
)b, (192b)

where the subscript denotes two different representations of opposite parity. U(1)A transformations mix

both representations, and studying the ratio ofPS andS enables to quantify U(1)A symmetry breaking

effects. Our lattice data is represented in figure 6.4. Quantitatively very similiar results are found as for
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Figure 6.5: U(1)A symmetry violation in nucleons.
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Figure 6.6: U(1)A symmetry violation in nucleons of z-projection. For a description of

the sign-changing effect see the description of figure 6.3.

the chiral symmetry breaking in figure 6.1. Indeed no strong effects of anomalous symmetry breaking are

observed.

For studying U(1)A symmetry in baryons, two nucleon operators with different chiral properties are

required:

N+
1 ∈(0,

1

2
)⊕ (

1

2
, 0)a (193a)

N+
2 ∈(0,

1

2
)⊕ (

1

2
, 0)b. (193b)

Again, the subscript denotes two distinctive irreducible representations of the chiral-parity group. U(1)A
symmetry mixes both representations, and the ratioN+

1 /N
+
2 quantifies its breaking. The lattice data is

presented in figures 6.5 and 6.6. The conclusions are consistent with the mesonic case: U(1)A symmetry

is realized to a high degree, and its violation is dominated by explicit breaking at high temperatures.

6.3 SU(2)CS , SU(4) and multiplets

In addition to flavor singlet and non-singlet chiral symmetries, a newly proposed SU(2)CS chiral spin
symmetry is of interest at high temperatures, cf. sections 4.1 and 4.4. This symmetry acts in Dirac space

and is diagonal in flavor space. Its generators are given by

~Σ = {γk,−iγ5γk, γ5}, (194)

which satisfy a su(2) algebra

[Σα,Σβ] = 2iεαβγΣγ (195)
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for any k = 1, 2, 3, 4. The γ5 in its generators means that U(1)A is a subgroup of any realization of

the SU(2)CS group. The anomalous breaking properties
1

are therefore inherited. Incorporating rota-

tions in flavor space with generators τa a minimal group SU(2nf ) containing flavor non-singlet chiral

symmetry and chiral spin symmetry can be derived with generators

{(τa ⊗ 1D), (1F ⊗ Σi), (τa ⊗ Σi)}, (196)

where a = 1 . . (n2
f − 1) is the flavor index and i = 1, 2, 3 the chiral spin index.

The chiral spin transformations mix left-handed and right-handed parts of Dirac spinors by construc-

tion. Thus also different irreducible representations of the chiral-parity group are affected and mixed. To

study this behaviour in detail, the following representations of SU(2)CS , obeying (195), are defined:

R1 : {γ1,−iγ5γ1, γ5} = {σ23 iγ5γ4, σ
23 γ4, γ5}, (197a)

R2 : {γ2,−iγ5γ2, γ5} = {σ31 iγ5γ4, σ
31 γ4, γ5}. (197b)

Those differ from the representation {γ4,−iγ5γ4, γ5} relevant for t-direction correlators [98] by the

rotations σ23 = i
2 [γ2, γ3] and σ31 = i

2 [γ3, γ1]. Keeping in mind notation (183a)-(185) for mesons

propagating in z-direction, transformationsR1 andR2 connect the following operators:

R1 : (Vy, Tt, Xt) (198a)

R1 : (Vt, Ty, Xy) (198b)

R2 : (Vx, Tt, Xt) (198c)

R2 : (Vt, Tx, Xx) (198d)

In more detail this can be seen by
2

R1 :

Vy
m
γ2

←→ −iTt
m

γ2(−iγ5γ1)
= −iγ4γ3

←→ −Xt

m
γ2γ1

= −γ4γ3γ5

R2 :

Vx
m
γ1

←→ iTt
m

γ1(−iγ5γ2)
= iγ4γ3

←→ Xt

m
γ1γ2

= γ4γ3γ5

As the finite temperature lattice is symmetric in x and y directions, the physics should not change under

exchange of x and y. Now an interchange operator P̂xy can be defined

P̂xy : γ1 ↔ γ2 (199a)

P̂xy : P̂xyγ5 = −γ5. (199b)

Then applying P̂xyR1 modifies the representation to {γ2, iγ5γ2,−γ5}, which is isomporphic to the

R2 generator set. The finite temperature lattice includes both P̂xy and 1 transformations, which form a

1

Note that the anomalous breaking as shown by Fujikawa [49, 50] occurs for the generator γ5, and γ5 only.

2

This is a sloppy notation. The symmetry acts in Dirac space only, thus the relevant Dirac structure of an operator is given.
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Figure 6.7: The left panel shows a ratio of normalized correlators connected by U(1)A
transformations for various temperatures. The right panel shows a ratio of

normalized correlators connected by SU(2)CS transformations from the E2

multiplet (188b).

group S2. This means that S2 × SU(2)CS contains the multiplets

(Vx, Vy, Tt, Xt) (200a)

(Vt, Tx, Ty, Xx, Xy), (200b)

which is the approximate multiplet structure identified in (188b)–(188c).

6.4 SU(2)CS lattice data

In figure 5.4 the evolution of different vector channel operators has been shown for increasing tempera-

tures. At 380 MeV three approximate mutlipletsE1,E2 andE3 have been identified.

In figure 6.7 a more detailed plot for the symmetries of the E2 group can be seen. The U(1)A
symmetry therein has already been discussed in section 6.2. On the right side a ratio for quantifying

the SU(2)CS symmetry introduced in section 6.3 is shown. The same ratio for all available lattice en-

sembles and temperatures is shown in 6.8, along with the ratio for non-interacting quarks. The ratio

depends strongly on the temperature and can be used to identify three coarse regions:

• Vx/Tt > 1 SU(2)CS is broken at low temperatures

• Vx/Tt ' 1 SU(2)CS is approximately manifest at 2Tc

• Vx/Tt < 1 SU(2)CS is broken at high temperatures

Figure 6.9 shows a SU(2)CS ratio for operators from theE3 multiplet, again with non-interacting data

for comparison. The ratio does not depend on the temperature at all and gives a constant SU(2)CS
violation.

6.5 Consequences of SU(2)CS

The approximate observation of SU(2)CS symmetry in the spectrum of mesons has a few interesting

implications. For the following discussion of SU(2)CS we choose a k = 4 representation of genera-

tors (194).
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Figure 6.8: Detailed ratio for correlation functions of operators connected by SU(2)CS
from theE2 multiplet. The subplots group lattices of same geometry. Dashed

lines give the ratio for non-interacting quarks. As it can be seen for all ensem-

bles, the non-interacing quarks do not show SU(2)CS symmetry. For inter-

acting quarks the SU(2)CS symmetry properties depend strongly on the tem-

perature. Most notably, there is an intermediate temperature region of 350−
400 MeV, where the operators from theE2 multiplet show SU(2)CS symme-

try. At very high temperatures T > 1000 MeV the interacting data seemingly

converges to non-interacting data, which is consistent with an asymptotic free

scenario.
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Figure 6.9: Detailed ratio for correlation functions of operators connected by SU(2)CS
for the E3 multiplet. The subplots group lattices of same geometry. Dashed

lines give the ratio for non-interacting quarks. As it can be seen for all ensem-

bles, the non-interacing quarks do not show SU(2)CS symmetry. Close to

the symmetry point, the non-interacting quarks show divergent behaviour, cf.
figure 5.6. The interacting data shows similar behaviour to free quarks and a

consistent SU(2)CS violation of 20− 40%, which is independent from tem-

perature.
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First it is instructive to study the symmetry of the massless Dirac lagrangian densitiy (1)

L = Ψ̄i /∂Ψ. (201)

While it shows full invariance under chiral– and U(1)A transformations, SU(2)CS symmetry is absent.

This is in agreement with the numerical findings of section 6.4, where data for non-interacting quarks

is represented by dashed lines. Now as it was introduced in section 2.2, the interaction of gluons and

fermions is by construction encoded in the covariant derivative (17):

Dµ = ∂µ +Aµ, (202)

whereAµ is composed of gluonic fields. The massless QCD lagrangian density (23) is therefore given by

L = Ψ̄i /DΨ = Ψ̄iγ4D4Ψ + Ψ̄iγiDiΨ, (203)

where in the last step the covariant derivative is split into a Ψ̄iγ4D4Ψ part containing the color-electric

field A4, and a Ψ̄iγiDiΨ part containing the color-magnetic field Ai. SU(2)CS transformations have

the following effect on these parts: (
Ψ̄iγ4D4Ψ

)′ → (
Ψ̄iγ4D4Ψ

)
, (204a)(

Ψ̄iγiDiΨ
)′ 9 (

Ψ̄iγiDiΨ
)
, (204b)

i.e. the color-electric interaction containing part is invariant under SU(2)CS transformations, the color-

magnetic interaction containing part is not. With this observation, the SU(2)CS ratio RCS = Vx/Tt
in figure 6.8 can be interpreted in the following way:

• The kinetic term (201) of non-interacting quarks breaks this symmetry, which can be seen by a

ratioRCS < 1 in accordance with analytic considerations.

• Any contribution from the color-electric field A4 will give a ratio RCS = 1, as this part of the

theory is invariant under SU(2)CS transformations (204a).

• A ratio ofRCS > 1 is thus possible only through contributions from the color-magnetic fieldAi.
The breaking of SU(2)CS through color-magnetic interaction is clear from (204b).

These considerations offer the possibility to estimate the strength of color-magnetic and color-electric

interactions at high temperature. By applying these symmetry arguments to the spectrum of a theory,

derived statements are implicitly gauge-invariant.

For the present case of figure 6.8 this means e.g. that at lower temperatures T ' 220 MeV the color-

magnetic interaction is dominating, asRCS is well above 1. For increasing temperature its contribution is

diminishing and the ratioRCS gets approximately 1 atT ' 2Tc. For even higher temperatures the ratio

drops below 1 and approaches the kinetic data for non-interacting fermions. In this limit asymptotic

freedom is reached.
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Conclusion

In anything at all, perfection is finally attained not when there is no longer
anything to add, but when there is no longer anything to take away, when a body

has been stripped down to its nakedness.

— Antoine de Saint-Exupéry, Wind, Sand and Stars

While the vacuum phenomenology of QCD is well understood by means of non-perturbative lattice

methods, strongly interacting matter at high temperatures is still an elusive subject, theoretically as well as

experimentally. The general consens of experimental results on heavy ion collisions states the formation

of a new kind of matter, whose properties differ vastly from ordinary hadronic matter. Many problems

remain unanwered, most notably is the still open question for the effective degrees of freedom, which

describe the dynamics at high temperatures.

The theoretical study of gauge theories offers incentives to find models and explanations, and from

early on these were directed towards free and deconfined quarks and gluons. In analogy to QED a plasma-

like phase is conjectured, and most models account for a liberation of degrees of freedom.

As theoretical understanding of QCD progresses, many hints are revealed, which help to understand

the thermodynamics at finite temperature. Especially the various effects associated with chiral symmetry

and the chiral transition are well understood. However, alleged phenomenon of deconfinement is not.

Arguments from QCD as pure gauge theory, e.g. theZ3 center symmetry, place the color-deconfinement

transition at a similar temperature range as the chiral transition. But it is a priori not clear how fermions

change this picture. The notion of a direct link between chiral symmetry retoration and deconfinement

is further supported by Cashers argument [99], which qualitatively argues that chiral symmetry is nec-

essarily broken in confining theories. In general this is not always true, and certain scenarios have been

stated [100] in which the argument breaks down. In the large Nc limit e.g. chiral symmetry restoration

and deconfinement might be separate phenomena, with the possibility of chirally symmetric but con-

fined matter [101]. By studying the hadronic screening spectrum in quenched lattice QCD, evidence of

the presence of hadronic modes in the high temperature phase of QCD has been found [102,103], which

is a strong argument against the common deconfinement folklore [102, 103].

In this work the symmetry properties of strongly interacting matter at high temperatures are inves-

tigated by means of a fully dynamical, nf = 2 flavor lattice simulation using chiral fermions. The spec-

trum of spatial correlation functions is examined to verify chiral symmetry restoration. In section 6.1 the

findings are reported. The correlation functions of chiral partners coincide to a high degree, with some

explicit breaking due to non-vanishing quark masses remaining. Thus chiral symmetry is realized in the

Wigner-Weyl mode, which is supported by a strong increase in the slope of the pseudo scalar operator —

i.e. the Goldstone mode vanishes and heavier q̄q modes contribute in this channel. For nucleons parity

doubling could be verified to a high degree, again with some residual breaking left which is attributed to

79
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explicit symmetry breaking.

For flavor singlet axial transformations, i.e. U(1)A symmetry, the stack of symmetry breaking effects

includes the axial anomaly. In literature [96,97] it is argued that under certain technical assumptions the

anomalous breaking effects should not be visible and the symmetry be effectively restored. In section 6.2

effective restoration is observed by verifying degeneracy of different representations of the chiral-parity

group, which are connected by U(1)A transformations.

Lastly the properties of a recently proposed SU(2)CS symmetry are evaluated for the mesonic spec-

trum in section 6.4. A reduced rotational invariance of the finite temperature setup causes the vector

components of mesonic operators to naturally split into two energy levels, which are denoted as E2

andE3. Operators of theE2 multiplet show approximate SU(2)CS symmetry at a temperature of 2Tc.

Due to considerations presented in section 6.5, this symmetry could be a useful tool to distinguish effects

of color-electric and color-magnetic fields. For theE3 multiplet the situation is a lot less clear, as the data

shows a constant breaking of SU(2)CS regardless of temperature. Also the dynamics for non-interacting

quarks are not obvious for these operator modes.

As open questions a few interesting points can be mentioned. The exact relevance and physical mean-

ing of the E3 meson multiplet is not clear. Its dynamics for non-interacting quarks as well as the con-

stant SU(2)CS symmetry breaking pose questions which need to be answered. The SU(2)CS symmetry

structure for baryons in a finite temperature setup, i.e. measurements in z-direction, represents an inter-

esting questions.

Finally, the effective degrees of freedom for this strongly interacting matter at intermediate to high

temperatures stay a riddle. They are certainly no hadrons, gluons or single quarks, but chiral and color-

singlet objects. For identifying their interaction, SU(2)CS may be of importance.

And then, as in any lattice study, the statistics could be improved.
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Appendix A

Conventions

Throughout this work natural units are used, this means

~ = c = kB = 1, (205)

and implies

[energy] = [momentum] = [mass] = [temperature] = 1/[length] = 1/[time] = MeV.

An often used conversion factor is

~c = 197.3269631 MeV fm. (206)

Latin indices usually run from 1 . . 3, greek indices in Minkowski space from 0 . . 3, and greek indices

in Euclidean space from 1 . . 4.

The Pauli matrices are given by

σ1 =

[
1
0

0
1
]
, σ2 =

[
i
0

0
−i
]
, σ3 =

[
0
1
−1
0
]
, (207)

where in the context of isospin they will be referred to as τ matrices.

The Euclidean gamma matrices in 4 dimensions are given by

{γµ, γν} = 2δµν14, (208)

and the γ5 by the standard definition

γ5 = γ1γ2γ3γ4, (209)

The gamma matrices used for the lattice calculations in this work are given in Dirac representation:

γ1 =


i
0
0
0

0
i
0
0

0
0
−i
0

0
0
0
−i
, γ2 =


−1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
−1
, γ3 =


0
i
0
0

−i
0
0
0

0
0
0
−i

0
0
i
0
,

γ4 =


0
0
0
1

0
0
1
0

0
−1
0
0

−1
0
0
0
, γ5 =


0
1
0
0

1
0
0
0

0
0
0
1

0
0
1
0
.

(210)
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Appendix B

Angular and chiral content of the ρ and ρ′

mesons

In section 2.3 the low lying hadrons are classified by the flavor content of their quarks. Negative parity

mesons of isospin I = 1 and spin J = 1 are classically called ρ mesons. In a non-relativistic approach

mesons can be described as boundstates of its constituent quarks, and thus be assigned quantum num-

bers, e.g. by the n2s+1`J notation. Table 15.2 of [31] lists three experimental ρ states and following

classification,

ρ(770)→ 13S1, (211a)

ρ(1450)→ 23S1, (211b)

ρ(1700)→ 13D1, (211c)

where the possibility is mentioned, that the latter two actually might be mixtures of S and D partial

waves.

B.1 Previous lattice work

In the context of a larger scale hadron spectroscopy work [104] the overlap of ρ-like operators with ex-

tracted states has been used to assign partial waves S andD to physical mesons as seen in (211a)–(211c).

Their work however relies on a non-relativistic interpretations of the constituent quarks. It is argued that

the D wave overlap of the operators origins from the ‘lower’ spinor components and gives sub-leading

contributions. This is amplified by explicitly projecting to the ‘upper’ Dirac components. Given the

relatively high pion masses 400− 700 MeV this seems reasonable.

In a different study [105, 106], relying on an ultra-relativistic interpretation of the operator basis, the

assignment (211a) could be verified. However, a follow-up study [107,108] found a significant admixture

ofD wave for the first excited ρ state, i.e. the ρ(1450).

B.2 Chiral fermions and the chiral-parity group

In a previous work of the author [109, 110] the same question was addressed, applying the same ultra-

relativistic interpretation as in [105–108]. It is highlighted briefly in the following.

A key observation is the fact that the ρmeson couples to two different interpolating fields

JVρ (x) = Ψ̄(x)(τa ⊗ γi)Ψ(x), ∈ (0, 1)⊕ (1, 0) (212a)

JTρ (x) = Ψ̄(x)(τa ⊗ γ0γi)Ψ(x), ∈ (1/2, 1/2)b. (212b)
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Figure B.1: Unitary transformation (213a)–(213b) to connect the chiral- and angular mo-

mentum basis.
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Figure B.2: Lattice measurement of operator contributions to the energy levels of ρ, ρ′

and ρ′′ as measured in [109, 110].

which belong to two different representations of the chiral-parity group, cf. section 3.3.1. There exists

a unitary transformation to connect the chiral-parity group representations to the angular momentum

basis [111]

|ρ(0,1)⊕(1,0)〉 =

√
2

3
|1;3 S1〉+

√
1

3
|1;3D1〉 , (213a)

|ρ(1/2,1/2)b〉 =

√
1

3
|1;3 S1〉 −

√
2

3
|1;3D1〉 . (213b)

Now by measuring the relative contributions of (212a) and (212b) to an energy level on the lattice, the

partial wave content (213a)–(213b) can be extracted.

This was done in [109, 110] on a 16 × 32 lattice with lattice spacing a = 0.1184(21) fm, nf =
2 dynamical Overlap fermions andmπ = (289.0± 1.8) MeV. The following decomposition could be

extracted:

|ρ(770)〉 = + (0.998± 0.002) |3S1〉 − (0.05 ± 0.025) |3D1〉 , (214a)

|ρ(1450)〉 =− (0.106± 0.09 ) |3S1〉 − (0.994± 0.005) |3D1〉 , (214b)

|ρ(1700)〉 = + (0.99± 0.01) |3S1〉 − (0.01± 0.12) |3D1〉 . (214c)

The results for ρ(770) and ρ(1450) are in obvious disagreement with [104] and the quark model sug-

gestion. The discrepancy however is easily explained by comparing the non-relativistic reduction in

both cases: while [104] relies on heavy quarks, the method using the chiral-parity group assumes ultra-

relativistc quarks to render the chiral-parity group applicable in the first place.



Appendix C

Exotic Mesons

The quark model, as briefly introduced in section 2.3, describes the quantum numbers of a hadronic

bound states in terms of its constituent quarks. In doing so, not all combinations of quantum numbers

can be constructed. Such states of quantum numbers (32) are called exotic states.

Generally QCD does not forbid such states, and operators of exotic quantum numbers can be con-

structed. For a mesonic bound state e.g. additional quantum numbers can be carried by gluons, which

do not contribute flavor content but possibly momentum and angular momentum
1
.

On the lattice meson operators with quark content, as well as color-electric and color-magnetic con-

tributions can be constructed, so-called hybrid mesons. Also pure glueballs without valence quarks are

possible. Their overlap with physical states and signal strength will depend on the actual presence of glu-

onic modes in the considered channel. In [112] a few ‘ordinary’ mesonic states with additional admixture

of gluonic degrees of freedom, as well as pure exotic operators are constructed.

The measurement of hybrid mesons might be of interest not only for comparison with experiment
2

,

but to shed light onto the role of explicit gluonic excitations, especially in the high temperature phase

of QCD. As described in the main text of this thesis, the relative importance of color-electric and color-

magnetic fields may shift significantly with increasing temperature. This could be verified with spec-

troscopy of hybrid operators.

C.1 Interpolator construction

In this section the construction of hybrid operators and its calculation on the lattice is briefly sketched.

The operators of hybrid mesons are build ontop of ordinary meson operators by explicitly including

gluonic degrees of freedom through the fieldstrength Gabµν(x). The quantum numbers of the resulting

operator are given by the combined symmetry properties.

A color-singlet hybrid operatorOH(x) for isovector mesons is given by

OH(x) = Ψ̄u(x)ΓG(x)Ψd(x) (215)

The adjoint operator is given by

OH(x)† =
(
Ψ̄u(x)ΓG(x)Ψd(x)

)†
= −Ψ̄d(x)γ4G

†(x)Γ†γ4Ψu(x)

= (±)Ψ̄d(x)ΓG†(x)Ψu(x),

(216)

where the overall sign depends on γ4Γ†γ4 = (±)Γ.

1

A second possibilty would be states of four or more quarks, i.e. tetra- and pentaquarks.

2

A larger experiment dedicated to the measurement of exotic states would be GlueX at Jefferson Laboratory [113].
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Now the diagonal correlation

〈OH(x)OH(0)†〉 (217)

is evaluated for a given gaugefield configuration, i.e. the fermionic expectation value

〈Ψ̄u(x)ΓG(x)Ψd(x)Ψ̄d(0)ΓG†(0)Ψu(0)〉F (218)

is done. Using explicit Dirac- and color-indices the Wick contraction can be done:〈
Ψ̄u(x)α1

c1
Γα1β1G(x)c1d1Ψd(x)β1

d1

Ψ̄d(0)α2
c2

Γα2β2G
†(0)c2d2Ψu(0)β2

d2

〉
F

=

Γα1β1Γα2β2G(x)c1d1G
†(0)c2d2

〈
Ψ̄u(x)α1

c1
Ψd(x)β1

d1

Ψ̄d(0)α2
c2

Ψu(0)β2
d2

〉
F

=

Γα1β1Γα2β2G(x)c1d1G
†(0)c2d2D

−1
d (x|0)β1α2

d1c2

D−1
u (0|x)β2α1

d2c1

=

Γα1β1Γα2β2G(x)c1d1G
†(0)c2d2D

−1
d (x|0)β1α2

d1c2

(γ5)α1α′1
D−1
u (x|0)∗α′1β′2

c1d2

(γ5)β′2β2 =

(γ5Γ)α1β1(Γγ5)α2β2G(x)c1d1G
†(0)c2d2D

−1
d (x|0)β1α2

d1c2

D−1
u (x|0)∗α′1β′2

c1d2

,

(219)

where the γ5 hermiticity

D(x|y)αβ
cd

= (γ5)ββ′D
−1(y|x)∗β′α′

dc

(γ5)α′α (220)

has been used. Here the Gamma structure Γ as well as the fieldstrength G(x) carry external indices,

which determine the quantum numbers of the state. They have been suppressed here and can easily be

restored at the source and sink and give

〈OkH(x)OlH(0)†〉 = (γ5Γk)α1β1(Γlγ5)α2β2×
Gk(x)c1d1G

l†(0)c2d2D
−1
d (x|0)β1α2

d1c2

D−1
u (x|0)∗α′1β′2

c1d2

(221)

as final formula.

Following [112], hybrid and exotic states are now obtained by

ρ⊗B : εijkΨ̄
c1γiΨ

c2Gc1c2jk , (222a)

ρ⊗B : Ψ̄c1γjΨ
c2Gc1c2ji , (222b)

a1 ⊗ E : Ψ̄c1γ5γiΨ
c2Gc1c2i0 . (222c)

In (222a) a combination of the classical vector meson with the color-magnetic field gives the quantum

numbers of the pion, hence this is a hybrid operator. (222b) couples the vector meson with the color-

magnetic field to give a 1−+
state, which is a true exotic. (222c) corresponds to an exotic 0−− combina-

tion of the axial vector meson with the color-electric field.

C.2 Smearing & topological sector

Stout smearing [114] is a method to smooth gauge fields and remove ultraviolet fluctuations, thus speed-

ing up convergence properties of iterative procedures and improve the signal strengh of gluonic observ-

ables. Stout smearing does not change the topology of a gauge field, therefore it can be used to ‘flatten
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Figure C.1: Measurement of topological sector using stout smearing. Different lines corre-

spond to different gauge configurations. The smearing parameters are ρjk =
0.01 for spatial links and ρ4µ = 0.0 for temporal links. The gauge configura-

tions are from the ensemble described in B. For the configurations on the left

side, the topological sector has been measured as Q = 0 by the zero modes

of the overlap operator. For the configurations on the right side, a topological

chargeQ = −2 was measured through zero modes..

out’ a gauge field before measuring the topological charge by integrating the local topological density, as

described by (151).

A smearing step on a gauge fieldUµ(x) is given by

U (n+1)
µ (x) = exp

(
iQ(x)

µ (x)
)
U (x)
µ (x), (223)

where the matrixQ is

Qµ(x) =
i

2

(
Ω†µ(x)− Ωµ(x)

)
− i

2N
Tr
[
Ω†µ(x)− Ωµ(x)

]
(224)

Ωµ(x) = Cµ(x)U †µ(x) (225)

with

Cµ(x) =
∑
ν 6=µ

ρµν
(
Uν(x)Uµ(x+ ν̂)U †ν (x+ µ̂)

+U †ν (x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂)
)
.

(226)

The matrix Qµ(x) is hermitian and traceless, so exp(iQµ(x)) is an element of SU(3) and the whole

operation gauge invariant. Spatial smearing uses

ρjk = ρ, ρ4µ = 0, (227)

and generally ρ as well as the number of total smearing stepsN are free parameters.

An example of using stout smearing to measure the topological charge of gauge fields can be seen in

figure C.1.
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Appendix D

Spin J = 0 Mesons and low mode removal

In the following section unpublished data of the low mode trunaction procedure, as described in sec-

tions 4.1 and 4.4, on J = 0 mesons is presented. The trunaction procedure involves the construction of

a reduced quark propagator

D−1
red = D−1 −

∑
i≤k

1

λi
|λi〉 〈λi| γ5, (228)

by manually subtracting k lowest modes |λi〉 of the Dirac operator from the full propagtator.

In tables D.1 and D.2 the isovector and isoscalar quark bilinears of J = 0 are listed. The (1/2, 1/2)
representations of the chiral-parity group include operators from both tables, which transform into each

other via SU(2)A transformations, i.e. π ↔ σ and η ↔ a0. Here only the isovectors are calculated.

The smearing setup of the quark sources is the same as described in 4.4, and in the data presented here

the ‘wide’ parameter set will be used. The gauge ensemble is the same as described in B.2, i.e. a fully

dynamical nf = 2 simulation using Overlap fermions on a 163 × 32 lattice.

In figure D.1 the temporal correlation function of operator q̄(γ4⊗ ~τ
2 )q is shown for various levels of

removed low modes k. This operator does usually not propagate due to the conservation of the vector

current (157). Furthermore, q̄q-states in the (0, 1) + (1, 0) representation of the chiral-parity group are

forbidden for spin J = 0. However, after removing k = 10 modes, a very clean exponential decay

becomes visible for this operator.

In figure D.2 correlation functions of all four operators from table D.1 are given. While it can be

seen that SU(2)A and U(1)A connected operators become degenerate upon truncation, the two pairs

itself differ. For the pion and parity partner the correlation functions do not show clean exponential

behaviour, which means that no light states show up in the spectrum, i.e. the pion as Goldstone mode is

gone.

JPC operator chiral rep.

π 0−+ q̄(γ5 ⊗ ~τ
2 )q (1/2, 1/2)a ]

U(1)A
a0 0++ q̄(1⊗ ~τ

2 )q (1/2, 1/2)b
0−+ q̄(γ5γ0 ⊗ ~τ

2 )q (0, 1) + (1, 0) ]
SU(2)A

0+− q̄(γ0 ⊗ ~τ
2 )q (0, 1) + (1, 0)

Table D.1: J = 0 isovector operators and transformations.
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JPC operator chiral rep.

η 0−+ q̄(γ5 ⊗ 1F )q (1/2, 1/2)b ]
U(1)Aσ 0++ q̄(1⊗ 1F )q (1/2, 1/2)a

0−+ q̄(γ5γ0 ⊗ 1F )q (0, 0)
0+− q̄(γ0 ⊗ 1F )q (0, 0)

Table D.2: J = 0 isoscalar operators and transformations.
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Figure D.1: Temporal correlation functions for q̄(γ4⊗ ~τ
2 )q operator. k denotes the num-

ber of removed eigenmodes. k = 0 is the untrunced case, i.e. the full quark

propagator is used.
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isovector J = 0 mesons operators. The gamma structure in the legend de-

notes the corresponding operators from table D.1.
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