
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A Search for a Simplified Model of Supersymmetry With Light Sbottoms and Higgsinos Using 
Higgs to Diphoton Decays

Permalink
https://escholarship.org/uc/item/5n16r3dn

Author
Burt, Kira

Publication Date
2017

License
CC BY-SA 4.0
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5n16r3dn
https://creativecommons.org/licenses/by-sa/4.0
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

A Search for A Simplified Model of Supersymmetry With Light Sbottoms and
Higgsinos Using Higgs to Diphoton Decays

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Physics

by

Kira Burt

June 2017

Dissertation Committee:

Professor Gail Hanson, Chairperson
Professor John Ellison
Professor Jose Wudka



Copyright by
Kira Burt

2017



The Dissertation of Kira Burt is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would like to thank my advisor, Gail Hanson, for opportunities provided through the years.

I am also indebted to Anthony Barker and Yuri Gershtein for laying the groundwork for

this research in their previous analysis. Finally, a massive thank you to everyone I worked

with on the FPIX system. It was truly the experience of a lifetime and I am fortunate to

have met and worked with so many talented scientists and fine people.

iv



For family, especially Mom. I couldn’t have done this without you.

v



ABSTRACT OF THE DISSERTATION

A Search for A Simplified Model of Supersymmetry With Light Sbottoms and Higgsinos
Using Higgs to Diphoton Decays

by

Kira Burt

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2017

Professor Gail Hanson, Chairperson

We present a search for a simplified supersymmetric model with pair-produced light su-

persymmetric bottom quarks decaying to neutralinos. Higgs-type neutralinos (Higgsinos)

decay to the Higgs boson and LSP, with at least one Higgs boson decaying to a diphoton

system. Events with at least two b-jets and a photon pair in the Higgs-tagged invariant

mass window are considered. In 36.2 fb−1 of proton-proton collision data collected at the

CMS experiment at
√
s = 13 TeV, we find no evidence of signal and set lower limits on the

production of the bottom squark at a 95% confidence level at masses of below 350 GeV,

with a Higgsino mass of 150 GeV or less.
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Chapter 1

The Standard Model

The Standard Model of particle physics represents our current understanding of

elementary particles and the forces that govern their interactions. This description of the

most basic constituents of nature is robust and well-tested but as yet incomplete.

The history of the Standard Model began with the discovery of the electron by

Thomson in 1897, and continued through the 20th and 21st centuries as scientists probed

deeper into the structure of the atom, the nucleus, and finally the nucleons themselves.

Atomic substructure was first discovered by Rutherford in 1913, when the “plum-pudding”

model of the atom was replaced by the nucleus-and-electrons theory. Subsequent discoveries

included the proton, also due to Rutherford; the neutron, proposed by Rutherford and

discovered in 1931 by Chadwick; and the positron, antiparticle to the electron and the first

evidence of the existence of antimatter, in 1932 by Anderson. The 20th century eventually

saw the discovery of all three generations of the quark families, the massive leptons and

neutrinos, and the vector bosons, as pictured in Figure 1.1.

1



Figure 1.1: The Standard Model of particle physics [22].

1.1 Elementary Particles

Matter, at its most fundamental level, is composed of quarks and leptons. Though

their interactions are governed by different forces, quarks and leptons share some similarities.

Both particle types carry spin in half-integer units (making them fermions, which are defined

as having half-integer spin, versus bosons which have integer spin) and are sorted into three

generations based on mass. The lightest of these generations is comprised of the up and

down quarks and the electron and its neutrino. The next generation contains the charm

and strange quarks and the muon and its neutrino, and the final and heaviest generation is

made up by the top and bottom quarks in addition to the tau lepton and its neutrino.

The division of each generation into two quark types is based on the distribution of
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isospin and fractional charge among the quarks. Both isospin and hypercharge have strong

and weak versions, with isospin I a property of quarks only, and weak isospin T a property

of quarks and leptons. In both cases, isospin and hypercharge combine to yield electric

charge, which is a conserved quantity in both strong and weak interactions. Hypercharge

refers to the flavor quantum numbers of quarks and is detailed in Eq. 1.1. In the case of

both I and T, only one component of the isospin vector (I3 or T3) specifies the flavor state

of a multiplet.

Y = B + S + C + T +B′ (1.1)

Term-by-term, the hypercharge equation breaks down to: B = baryon number,

S = strangeness, C = charmness, B′ = bottomness and T = topness. An individual quark

has baryon number 1/3 regardless of its other quantum numbers.

Hypercharge and isospin (up and down quarks form an isospin doublet with I3 =

±1
2 , with other quarks having I3 = 0) combine to yield the total electric charge of the

particle:

Q = I3 +
Y

2
(1.2)

Up- and down-type quarks form weak isospin doublets according to their genera-

tions, with up-type (u, c, t) quarks having T3 = +1
2 and down-type quarks (d, s, b) having

T3 = −1
2 . Leptons form a similar set of three doublets, with the neutrinos possessing

T3 = +1
2 while the electron, muon and tau possess T3 = −1

2 . Weak isospin and another

quantum number, weak hypercharge (YW ), add to form the familiar electric charge Q as

3



Quark Mass (GeV) Electric Charge (Q/e) Flavor

u 2.3× 10−3 +2
3 no flavor, I3 = +1

2
d 4.8× 10−3 −1

3 no flavor, I3 = −1
2

s 9.5× 10−2 −1
3 S = −1

c 1.275 +2
3 C = 1

b 4.18 −1
3 B′ = −1

t 173.5 +2
3 T = 1

Lepton Mass (GeV) Electric Charge (Q/e) Flavor

e 0.511× 10−3 −1 Le = 1
ν̄e 0 0 Le = −1
µ 186× 10−3 −1 Lµ = 1
ν̄µ 0 0 Lµ = −1
τ 1.77 −1 Lτ = 1
ν̄τ 0 0 Lτ = −1

Table 1.1: Quark and lepton properties.

follows:

Q = T3 +
YW
2

(1.3)

Other important properties of the quarks and leptons, including their mass, electric

charge, and flavor quantum numbers, are detailed in Table 1.1.

Quarks may combine to form composite particles. The most common constituents

of everyday matter, excluding the electron, are the proton and neutron, which are baryons

- fermions composed of quarks. Quarks may also combine to form mesons, which have

integer spin and are shorter-lived than the proton and neutron - indeed the proton decay

time is currently computed to be longer than the lifetime of the universe at 1033 years. In

general a particle will decay to another set of lighter particles unless it is forbidden by some

conservation law. Examples of these laws include energy and angular momentum, which

hold at macro scales as well.
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On the scale of elementary particles, interactions among quarks conserve baryon

number, which is ±1 for baryons and 0 for mesons. Total lepton number L = nl − nl̄ is

also conserved in interactions, with each family also possessing its own (electronic, muonic,

tauonic) lepton number. Leptons have nl = 1 and antileptons nl = −1. Prior to the

discovery of neutrino flavor oscillation, the lepton family number was considered to be a

conserved quantity. The solar neutrino deficit, observed in the late 1960s, was eventually

explained to be oscillations in neutrino flavor, demonstrating that neutrinos in fact have a

very small nonzero mass. Neutrino mass and flavor eigenstates mix, and the oscillation of

flavor shows a breaking of lepton family symmetry.

1.2 Interactions

Interactions between particles are governed by gauge fields. The quanta of these

fields, also called “force carriers”, are the vector bosons. All have spin 1 (distinct from the

scalar Higgs, which has spin 0). Properties of the force-carrying particles are detailed in

Table 1.2.

The quarks and leptons differ in the forces to which they can couple. Both particle

types interact via the electromagnetic and the weak force: decays from one generation to

other, less massive generations within a quark or lepton family are mediated by the weak

force via its vector bosons the W±. An example of a charged-current interaction - the beta

decay of a neutron - is shown in Figure 1.2. The weak force also allows for non-flavor-

changing or neutral current decays via the chargeless Z0, which mediates elastic scattering

interactions. The weak force couples only to fermions of negative chirality - left-handed

5



Figure 1.2: A neutron decays into a proton, electron, and electron anti-neutrino.

fermions and right-handed antifermions.

Both the weak vector bosons are massive and therefore relatively short-lived.

Quarks and leptons also interact via the electromagnetic force, which acts on charged par-

ticles and is mediated by the massless, electrically neutral photon (γ).

Quarks are unique in that they interact with each other via Quantum Chromody-

namics (QCD), colloquially known as the “strong” or “nuclear” force. The strong sector is

an SU(3) gauge group, and its carrier is the massless gluon, which is electrically neutral

but has intrinsic “color” charge.

There are three color charges - red, green, and blue - and each has a corresponding

anticolor. Naturally, these quantities do not represent real-world colors in terms of light

wavelength, but are a convenient way to represent allowed mixing states of quarks and

gluons.

Stable, longer-lived particles such as protons and neutrons exist as color singlets,

or are “colorless”, with their color state represented as in Eq. 1.4.

(rr̄ + bb̄+ gḡ)/
√

3 (1.4)
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Boson Mass (GeV) Electric Charge (Q/e) Spin

γ 0 0 1
gluon 0 0 1
W± 80.4 ±1 1
Z0 90.2 0 1
H0 125.0 0 0

Table 1.2: Gauge bosons.

Mesons, generally made up of quark-antiquark pairs (qiq̄j), are color-neutral and

combine as rr̄, bb̄, or gḡ. The photon carries no electric charge and so cannot self-interact,

but the gluon carries its own color charge, allowing for self-interaction and effectively short-

ening the range of the strong force to sub-nuclear levels. This restriction on the range of

interaction is known as “color confinement”.

1.3 Electroweak Symmetry Breaking

At higher energies the electromagnetic and weak forces are unified into the elec-

troweak sector, an SU(2)× U(1) group, with three gauge bosons of weak isospin (the W±

and W 0 bosons) and one of weak hypercharge (the B boson). When the Higgs field ac-

quires a vacuum expectation value, three degrees of freedom of the field combine with the

gauge bosons, which acquire mass and become the weak gauge bosons (W±, Z0), with the

Z0 acquiring components of the neutral weak isospin boson W 0 and the weak hypercharge

boson B as follows:

Z0 = W 0 − B

2
(1.5)

The fourth degree of freedom is then the Standard Model Higgs boson, a scalar
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(zero-spin) boson. The photon remains as the massless carrier of the electromagnetic field -

an unbroken (since it does not interact with the Higgs) U(1) group represented as a linear

combination of the neutral W 0 and B bosons:

γ = W 0 +
B

2
(1.6)

1.4 Beyond the Standard Model

While the Standard Model offers a robust description of natural processes at the

fundamental level, it is not complete. Thus far no fundamental particles have been dis-

covered at higher than the electroweak scale, with the heaviest known particle being the

top quark at 172.04 GeV. At what is known as the Planck scale, MP = 2.48 × 1018 GeV,

quantum gravitational effects are expected to contribute, but between the electroweak and

Planck scales there exists a “particle desert” some 1016 GeV across.

Additionally, the low mass of the scalar Higgs particle is difficult to reconcile with

the possible existence of particles in this “desert”. The Standard Model as it is today

only allows for the observed low H0 mass if a large number of loop corrections are carried

out to its mass calculation, and then subsequently individually cancelled. This is contrary

to assumptions of naturalness in physical theory, wherein the fine-tuning of parameters

is limited as much as possible. In addition to the problematic H0 mass, the difficulty of

identifying the particle constituents of dark matter has puzzled physicists for decades. A

possible solution to all these dilemmas is posited in the introduction of a new symmetry to

the physical laws, known as supersymmetry, which is broken at higher energy scales than
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are currently accessible by experiment.
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Chapter 2

Supersymmetry

2.1 The Minimal Supersymmetric Standard Model - MSSM

Problematic loop corrections to the Higgs boson mass term m2
H arise due to the

fact that every particle that couples to the Higgs field contributes such a correction. Should

we make the reasonable assumption that some particles exist in the unexplored energies

between the electroweak and Planck scales, the corrections due to these high-mass particles

would additionally contribute directly to the final measured value of m2
H . Why, then, is this

measured mass so low? Either these particles do not exist, or there is some cancellation for

every loop term that adds to m2
H . Such one-to-one cancellations would imply the existence

of a new physical symmetry. Supersymmetry applies such cancellations by relating bosons

and fermions on a fundamental level, due to the difference in sign on fermion versus boson

contributions to the m2
H term seen in Eqs. 2.1 [21] and 2.2 [21]. The ΛUV in both equations

is an ultraviolet momentum cutoff term that regulates the loop integral, and represents the

energy scale at which new physics is likely to manifest. Eq. 2.1 refers to the loop mass
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correction of fermions with mass mf , and Eq. 2.2 shows the correction term for a heavy

scalar particle.

∆m2
H = −

∣∣λ2
F

∣∣
8π2

Λ2
UV + ... (2.1)

∆m2
H =

λS
16π2

[
Λ2
UV − 2m2

Sln(
ΛUV
mS

) + ...

]
(2.2)

The assumption of a symmetry between fermions and bosons neatly cancels all

such loop corrections, and gives a sensible output for m2
H compatible with the measured

value. An example particle list for a supersymmetric model is shown in Figure 2.1.

Figure 2.1: The Standard Model particles with their supersymmetric partners [39].

2.1.1 Supermultiplets

The supersymmetry operator must therefore change a fermionic state to a bosonic

state, and vice versa. Since these states differ in their spin angular momentum, supersym-

metry must be a symmetry of spacetime. Each set of fermionic and bosonic superpartners is
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known as a supermultiplet. Members of a supermultiplet have the same weak isospin values,

electric charge, and color charge due to the commutation of the supersymmetry operators

with the gauge generators. Therefore each chiral supermultiplet of the MSSM will have

a complete gauge group SU(3)C × SU(2)L × U(1)Y . Squarks and sleptons, being spin-0

particles, do not themselves possess helicity, but are sorted by the chiral group to which

their Standard Model partner belongs, and may participate in the electroweak interaction

according to their handedness.

Higgsinos present a unique challenge in that they are fermions and must possess

weak hypercharge Y = ±1/2. If only a single chiral supermultiplet for the Higgsino existed,

the electroweak symmetry would undergo a gauge anomaly with behavior not currently

exhibited by the Standard Model. Therefore a pair of chiral supermultiplets must exist -

one for each sign of weak hypercharge. This pair corresponds to the up-type and down-

type higgsino multiplets, denoted H̃u and H̃d [21]. The electrically neutral spin-zero scalar

observed from the Standard Model is a linear combination of Hu and Hd. The left-handed

squark and slepton and the higgsino chiral supermultiplets are shown in Table 2.1. Each

entry for quarks and leptons in Table 2.1 presupposes the three known families - therefore

each quark possesses a squark, e.g. a top has a “stop” superpartner and a tau has its “stau”.

Gauge supermultiplets are shown in Table 2.2.

Particle Type Spin 1/2 Spin 0

quarks and squarks uL, dL ũL, d̃L
leptons and sleptons ν, eL ν̃, ẽL

higgsinos and Higgs H̃+
u , H̃0

u H+
u , H

0
u

H̃−d , H̃
0
d H−d , H

0
d

Table 2.1: Left-handed MSSM chiral supermultiplets
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Particle Type Spin 1 Spin 1/2

gluons and gluinos g g̃

W bosons and winos W±,W 0 W̃±, W̃ 0

B boson and bino B0 B̃0

Table 2.2: MSSM gauge supermultiplets

The chiral and gauge supermultiplets may mix - higgsinos may mix with gauginos,

for example - when electroweak symmetry breaking effects are taken into account.

It is evident that supersymmetry is a broken symmetry, due to the fact that

superpartners have not been observed at current energy scales - for example, no smuons or

selectrons have been observed at electroweak energies.

2.1.2 R-parity

One important facet of the MSSM is a quantity known as R-parity. The conser-

vation of this quantity determines the number of supersymmetric particles in an event as

well as its final decay products. R-parity is defined in terms of baryon and lepton number,

as well as particle spin:

PR = (−1)3(B−L)+2s (2.3)

R-parity (alternatively dubbed “matter parity”) allows for conservation of baryon

and lepton number in ordinary interactions. For example, proton decay would violate both

B and L and has as yet not been observed. Sparticles possess PR = −1, while Standard

Model particles have PR = +1. R-parity imposes several important phenomenological

constraints. It demands that any supersymmetric particle that is not the LSP (Lightest
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Supersymmetric Particle) must decay into an odd number of LSPs; non-LSP sparticles must

be produced in even numbers; and the LSP itself must be stable. The particle content of

dark matter has yet to be determined. A massive, chargeless LSP would be absolutely

stable and interact only via gravitational forces, making it an excellent candidate for dark

matter.

2.2 Naturalness, Light Squarks, and Light Neutralinos

Many SUSY models rely on assumptions of “naturalness” [23] to choose their

parameters. Simply put, a natural theory does not have an overabundance of fine-tuning.

A constraint on fine-tuning is exemplified in the MSSM as follows:

−m
2
z

2
= |µ|2 +m2

HU
(2.4)

The higgsino mass is directly controlled by the µ term, while the stop and gluino

correct the m2
HU

term at one and two-loop levels respectively. Therefore the masses of the

higgsino, stop and gluino must not be too heavy in order to avoid counter-tuning in these

terms in order to keep with the known electroweak mass scale given by
mz2

2 . Left-handed

sbottoms must also be light when naturalness is assumed, due to the weak isospin coupling

between the top and bottom quarks.

2.3 Simplified Model Scan and Event Signature

Many searches for supersymmetry at the LHC use what is known as a “Simplified

Model” [7] wherein a set of hypothetical particles (in our case the sbottom, chargino, and
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neutralino) are specified along with their masses and decays. These signal events are pro-

duced, and their detector acceptance and selection efficiency are used to generate a signal

cross section and branching ratio for the simplified process, which is then employed to set a

confidence limit on production of the process in question. This limit can then be interpreted

in terms of different theories that share the same basic phenomenology, or used to verify

theoretical predictions against data.

2.3.1 Event Signature

Our search focuses on light sbottoms and higgsinos. The simplified model for this

scan is known as T2bH - two sbottoms directly produced from the proton-proton collision

decay into a bottom quark and neutral higgsino (or a top quark and neutral higgsino if

the mass splitting allows, with the top decaying further into a down-type quark and W+

boson) with the neutral higgsino decaying into a Higgs boson and a final, massive LSP as

shown in Fig. 2.2. The varying parameters in the simplified model are the masses of the

sbottom and of the LSP, with mχ0
2
−mχ0

1
= 130 GeV, near the SM Higgs mass. All other

SUSY particles are decoupled from the interaction, with masses above 1 TeV.

Our model assumes a branching fraction of 100% higgsino to higgs, stemming from

the phenomological assignment of a low value of tanβ as seen in Figure 2.3, with

tanβ = vu/vd (2.5)

the ratio of the vacuum expectation values of the Higgs doublets.

The final state in our search exploits the narrow mass resonance of the H → γγ
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Figure 2.2: The T2bH simplified model. Our search requires one of the Higgs bosons to
decay specifically to a pair of photons, while the second Higgs decays purely according to
branching ratio.

Figure 2.3: Branching ratio of a higgsino NLSP to a Higgs and a gravitino LSP as a function
of higgsino mass and tanβ [15].
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decay by requiring one of the Higgs to decay to a pair of photons. The H→ γγ decay has a

low branching ratio at only 0.23% of total Higgs decays, but the low diphoton background

compensates adequately.

The second Higgs may decay freely. Up to four b-quarks are expected per event -

two from the sbottom, and potentially two from a H→ bb̄ decay.

2.3.2 Previous and Complementary Searches

Much of the strategy in this analysis is adapted from a Run 1 search based around

light stops rather than sbottoms - however, the identical final event signature and diphoton

mass channel allows for the sideband background estimation method to be used [9]. This

search was performed using the full Run 1 dataset at
√
s = 8TeV.

A complementary search using the T2bH SMS and H → γγ decay has been per-

formed using a divergent search strategy - no reliance on b-jet multiplicity and instead an

emphasis on the resolution of the diphoton invariant mass [10]. This search was performed

on the Run 2 “Moriond” dataset.

2.4 Event Simulation

Signal events are simulated at the collision level by MADGRAPH5 [1]. MAD-

GRAPH5 accepts parameters such as particle masses and mixing information, calculates

cross sections and event content at leading or next-to-leading order, and finally outputs

the hard products of the proton-proton collision. These partons are fragmented and their

showering is modeled by PYTHIAv8.2 [31]. Once simulation is complete, the output is

reconstructed via the usual CMS detector reconstruction algorithms.
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Simulated Monte Carlo samples are produced both for signal events and for SM

Higgs boson backgrounds. SM Higgs samples from tt̄H, bb̄H, VBF (vector boson fusion),

VH (associated production with a W or Z boson), and gluon-gluon fusion are produced

using the MADGRAPH5 amc@NLOv2.2 generator at next-to-leading order, and showered

by PYTHIAv8.2. Cross sections for SM Higgs production are obtained from the Yellow

Report 4 of the LHC Higgs Cross Section Group [19]. The signal production cross sections

are calculated to next-to-leading order plus next-to-leading-logarithm accuracy. Limits on

the possible masses of the sbottom and LSP are derived using these cross sections and their

uncertainties in Chapter 10.
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Chapter 3

LHC

The Large Hadron Collider, or LHC, accelerates, circulates and collides protons

at speeds close to light in a double beam ring nearly 27 km in circumference. It was built,

with ground broken in 2001, in the tunnel originally constructed for CERN’s LEP (Large

Electron-Positron) Collider. This tunnel is ∼ 100 meters underground, and passes beneath

the border between France and Switzerland multiple times. Prior to the construction of the

Channel Tunnel, the LEP tunnel was the largest civil engineering project in Europe.

In the main ring of the LHC, protons, circulating in opposing beams, are fed into

four main interaction points (IPs) at an energy of 6.5 TeV per beam, with a final center-of-

mass collision energy of 13 TeV. The LHC is currently operating at its design luminosity of

1 × 1034 cm−2s−1 after substantial upgrade work performed in the Long Shutdown period

of 2013-2014. Beam parameters at time of collision may be seen in Table 3.1.
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Proton energy GeV 6500

RMS bunch length cm 7.5

Stored energy per beam MJ 362

Number of particles per bunch 1.5× 1011

Number of bunches 2808

Beam size at P1 and P5 µm 16.7

Table 3.1: Beam parameters at collision, adapted from [5]

3.1 Proton Production and Initial Boosting

The instantaneous luminosity delivered by the collider is related the number of

events produced by the LHC per second as in Eq. 3.1, where σevent represents the production

cross-section of the event type under study.

N = Lσevent (3.1)

Protons are circulated around the LHC in bunches, with a nominal proton density

per bunch of Nbunch = 1.15×1011. To achieve maximum beam intensity, each beam contains

2808 proton bunches with a bunch spacing (time between collisions) of 25 ns. In order

to achieve the final energy of 6.5 TeV per beam, substantial acceleration of the protons is

required before they reach the LHC ring, in what as known as the “injection chain”. Details

on the accelerator complex and injection chain, including the proposed LINAC4 upgrade,

can be seen in Figure 3.1.

3.1.1 Proton Production

To produce the protons used in the collisions, hydrogen gas is injected into the

Duoplasmatron Proton Ion Source, where electrons are stripped from the atoms in an
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Figure 3.1: LHC injector complex [12].

applied electric field. The positively charged protons are lightly accelerated through a 90

kV potential and then fed into the LINAC2 with a speed of approximately .0014c, where c

is the speed of light.

3.1.2 Injection Chain

LINAC2 is a linear accelerator using radiofrequency (RF) cavities to accelerate the

protons to 50 MeV. From the LINAC2, the protons enter the Proton Synchrotron Booster.

The PSB accelerates the protons from 50 MeV to 1.4 GeV using four synchrotron rings, at

which point they are injected into the Proton Synchrotron. The Proton Synchrotron, which

entered service at CERN in 1959 as its first synchrotron, takes the protons to 25 GeV and

then feeds them further to the Super Proton Synchrotron, the last step before injection into

the LHC itself [6].

The Super Proton Synchrotron, at 7 km in circumference, is the second-largest

member of the accelerator complex. The protons are accelerated through room-temperature
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electromagnets to an energy of 450 GeV.

The protons are finally fed into the main ring by the SPS where they are accelerated

to their target energy by the LHC ring itself.

3.2 LHC Acceleration and Beam Storage

High beam energy and intensity are required to provide the luminosities needed

to identify rare physics processes. Beam energy is dependent on the field strength of the

storage ring - a powerful 8.3 T in the main dipoles.

Superconducting magnets and radiofrequency cavities are employed to accelerate

and focus the beams, and to prevent heat loss in the beam itself. Presently 1232 dipole

magnets provide the bending field, while 858 quadrupole magnets focus the beam [5]. The

dipole magnets act as synchrotron accelerators, and alternating quadrupole fields focus the

beam in either the horizontal or vertical direction. A system of three quadrupole magnets

called an “inner triplet” is used to squeeze the beam from 0.2 mm to 16 µm at each

interaction point [5].

Radiofrequency (RF) cavities use an oscillating electric field both to accelerate the

protons in the beam and to coordinate their timing. Tightly packed proton bunches increase

the likelihood of a successful collision, and the 16 RF cavities - 8 along each beam line -

oscillate a 2 MV potential at 400 MHz. A perfectly timed or “synchronous” proton will not

feel any acceleration at all and will remain in its bunch, while protons with incorrect timing

will be accelerated.
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3.3 Experiments

Several detectors are employed at the interaction points along the collider’s cir-

cumference. There are four major experiments currently in use on the LHC. The full

luminosity of the collider can be delivered to its two major general-purpose experiments,

CMS (Compact Muon Solenoid) and ATLAS (A Large Toroidal LHC ApparatuS). LHCB, a

smaller experiment focusing on b-quark physics, receives a luminosity of L = 1032cm−2s−1.

The LHC also collides lead ions, with Pb-Pb collisions delivering a luminosity of L = 1027

cm−2s−1 to the ALICE (A Large Ion Collider Experiment) detector.
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Chapter 4

CMS

CMS - the Compact Muon Solenoid - is an experiment located at one of the four

major interaction points inside the LHC. It is an all-purpose detector designed to capture

as much physical information as possible about collsions of interest that take place within

it, in order to refine our current knowledge of the Standard Model as well as expand our

understanding for processes beyond the Standard Model.

To meet its physics goals, the CMS detector was designed and built with the

following in mind:

• Good muon identification and momentum resolution; good dimuon mass resolution;

the ability to unambiguously determine the charge of muons with p < 1 TeV/c.

• Good charged particle momentum resolution and reconstruction efficiency in the in-

ner tracker. Efficient triggering and offline tagging of τs and b-jets, requiring pixel

detectors close to the interaction region.

• Good electromagnetic energy resolution, good diphoton and dielectron mass resolu-
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Figure 4.1: The CMS detector, exploded view. All figures in this chapter are from [32]
unless otherwise noted.

tion, wide geometric coverage, measurement of the direction of photons and/or correct

localization of the primary interaction vertex, π0 rejection and efficient photon and

lepton isolation at high luminosities.

• Good EmissT and dijet mass resolution, require hadron calorimeters with large hermetic

geometric coverage and fine lateral segmentation (∆η ×∆φ < 0.1× 0.1) [32].

As shown in Fig. 4.1, CMS contains 4 main sub-detector systems: a silicon tracker,

lead tungstate electromagnetic calorimeter, brass and plastic hadronic calorimeter, and fi-

nally copper and plastic muon chambers. These sub-detectors are all cylindrically sym-

metric and are divided by a large solenoidal magnet as well as an iron return yoke. The

3.8 T solenoidal magnetic field bends charged particles, giving precise information on their

momentum.

The coordinate system conventions used by CMS have an origin located at the
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nominal collision point in the very center of the detector. The z-axis points along the beam

direction, while the y-axis points vertically up and the x-axis points inward toward the

center of the LHC ring. Generally, event coordinates are given in terms of φ, the azimuthal

angle in the x-y plane measured from the x-axis, and η, the pseudorapidity. Pseudorapidity

is a function of the polar angle θ, measured from the z-axis, as follows:

η = − ln[tan

(
θ

2

)
] (4.1)

Pseudorapidity is preferred to polar angle because differences in rapidity are Lorentz

invariant under longitudinal boosts. Thus, particles moving under differing levels of boost

in the longitudinal direction will be able to share a coordinate system.

The detector is divided into barrel and endcap sections, with the endcaps sealing

the ends of the cylindrical volume while providing additional detector coverage.

4.1 Magnet and Return Yoke

The superconducting solenoid provides the large bending field used to obtain high

momentum resolution for charged particles, particularly muons, in the detector. By passing

20 kA of current through 2168 turns of a superconducting NB3Sn cable, a 3.8 T field is

produced which provides ∆p/p ≈ 10% at p = 1 TeV. The steel return yoke is divided into

five wheel-shaped sections in the barrel, and three disks in the endcap. The yoke conducts

magnetic flux back through the detector, and contains more iron at 12500 tons than the

Eiffel Tower.
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4.2 Muon Chambers

Muon chambers enclose the detector, since the relatively long lifetime and high

mass of the muon allow it to travel through much of the inner detector volume without

decaying.

Muon chambers around the barrel are composed of 250 drift tubes organized in

four layers, with one or two resistive plate chambers for each tube. Drift tubes are a gas-

wire system, where electrons resulting from the ionization of the gas caused by the muon’s

passing will drift to a nearby wire. Resistive plate chambers are also a gas system composed

of a pair of oppositely charged, high-resistivity plastic plates. The extremely fast response

time of the RPC system is employed in the online triggering system.

The endcaps are covered with a combination of cathode strip chambers and RPCs,

with 468 CSCs . The CSCs are very large (∼ 1 m) chambers where ionized electrons

encounter anode wires, which in turn send positive ions to copper cathode strips. This

allows for 2-dimensional position resolution of ∼ 200 µm for muons passing through the

chamber. RPCs supplement the CSCs on the endcap.

4.3 Hadronic Calorimeter

The hadronic calorimeter is designed to absorb almost all the hadronic energy of an

interaction (excluding that carried away by muons and by non-interacting particles), mean-

ing that interactions with the calorimeter material must be maximized before the outgoing

particles reach the magnet-yoke system [32]. Brass is chosen for its short interaction length,

while the active medium (in the case of the HCAL a plastic scintillator, with embedded

27



Figure 4.2: The CMS hadronic calorimeter.

wavelength-shifting optical fibers) must take up as little space as possible. The geometry

of the HCAL is designed with this in mind, with 15 5 cm brass plates layered with 3.7 mm

scintillator tiles. The barrel coverage extends from −1.4 < η < 1.4, with a segmentation of

∆η ×∆φ = 0.087× 0.087, with up to 11 interaction lengths of thickness.

Endcap coverage is divided into the HE (endcap) and HF (forward) sections. HE

covers the region 1.4 < |η| < 3.0, and is composed of brass and plastic layers with a

segmentation in φ of 5◦. In the HF, covering the 3.0 < |η| < 5.0 region, different materials

are used. A steel absorber and quartz fiber structure is segmented by 10◦ in φ.

The HCAL is shown in detail in Figure 4.2.

4.4 Electromagnetic Calorimeter

The high granularity and energy resolution of the ECAL, with its 61,200 scin-

tillating crystals, provides for accurate reconstruction of electron and photon showers in

an event. The ECAL covers a pseudorapidity range of |η| < 3.0, with an array of lead

tungstate (PbWO4) crystals with attached silicon avalanche photodiodes as light collectors

and amplifiers. Lead tungstate was chosen for its short radiation length and fast showering-
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Figure 4.3: The CMS electromagnetic calorimeter. Diagonal dashed lines represent η values.

80% of the light contained in a shower will be emitted within 25 ns [32]. The full coverage

of the ECAL encompasses some 25 X0 (radiation lengths).

In the barrel (|η| < 1.4442), the ECAL has an inner radius of 129 cm, with 36

“supermodules” composed of 1700 crystals each. This gives a granularity of ∆η × ∆φ =

0.0174× 0.0174.

The region from 1.508 < |η| < 3.0 is covered by the ECAL preshower and the end-

cap crystals. The preshower system consists of a lead plate to trigger immediate showering,

followed by an array of silicon strips that detect the converted e+e− pairs. This system

allows the entire EM energy of the event to be recorded, and allows for higher position

resolution in the forward region.

The endcap consists of a series of 5× 5 crystal structures about 314 cm from the

interaction point. Figure 4.3 shows the ECAL in detail.
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4.5 Silicon Tracker

High-precision tracking of charged particles is necessary for accurate event recon-

struction, especially for the identification of primary and secondary interaction vertices in

the event. To this end, a dual silicon tracker system is placed at the center of the detector,

as close as possible to the interaction region. The outer layer of the tracker is composed of

silicon microstrips, with a multi-layer architecture enabling the detection of multiple tracks

in an event with high precision. The inner layer consists of 3 layers of pixel detectors, de-

signed to accurately measure the impact parameter of charged particles as well as to locate

secondary or displaced vertices in an event. The 65 million separate channels in the pixel

detector provide an outstanding degree of momentum and position resolution.

4.5.1 Strip Tracker

The silicon strip tracker consists of four major sections: The tracker inner barrel

(TIB), tracker outer barrel (TOB), tracker inner disk (TID) and tracker endcap (TEC). Each

section is composed of the same basic module architecture, with each module consisting of

a frame, Kapton tape delivering bias voltage to the sensors, a front-end electronics system,

and one or two silicon sensors. The sensor geometry - primarily the pitch of the strip -

is dependent on its placement in the detector. A sensor itself is a semiconducting silicon

microstrip, with a p-type strip embedded in an n-type bulk.

In the TIB, modules are arranged in four cylindrical layers, while the TOB system

has six layers mounted on a carbon fiber support frame, with three modules (either double

or single-sided) on either side of the frame. The TID has three disks on each end of the
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Figure 4.4: The CMS silicon strip tracker, one-quarter cross section. Blue lines represent
double-sided modules and red lines represent single-sided modules.

cylinder, with modules sorted into three rings per disk. Finally, the TEC system is composed

of nine disks mounted on carbon fiber support in a unique “petal” geometry, with each disk

carrying eight front and eight back petals and each petal (a carbon fiber wedge) carrying

up to 28 modules. A cross-section of the strip tracker geometry is shown in Figure 4.4.

The tracker system requires a reliable, fast, radiation-hard readout system[17].

The strip tracker utilizes a complex of either four or six readout chips mounted on the

front-end hybrid system of each module. Each chip has 128 channels with a sampling

frequency of 40 MHz (in line with the optimal 25 ns proton bunch crossing window).

4.5.2 Pixel Tracker

The pixel tracker, closest to the collision point, is divided into barrel and endcap

sections much like the strip tracker. The barrel section (BPIX) consists of three layers 53.3

cm in length, with inner radii of 4.4 cm, 7.3 cm, and 10.2 cm respectively. Each layer is

organized into a ladder (carbon fiber support system) with eight sensor modules per ladder.
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Figure 4.5: Layout of the CMS Forward Pixel Detector disk system as well as a single blade
with plaquettes [20].

An individual module contains 16 readout chips (ROCs), with each ROC containing 4160

pixels arranged into 52 columns and 80 rows. Each full module contains 66,560 individual

n-on-n silicon pixels. The full barrel region contains 672 full modules and 96 half modules,

for a total pixel count of 47,923,200.

The pixel endcap section (FPIX) is composed of a pair of disks located at the ends

of the BPIX, at z = ±35.5 cm and z = ±48.5 cm. Each half-disk contains 12 blades in a

tilted geometry similar to a turbine in order to ensure maximum hit coverage for passing

charged particles. A blade is composed of a pair of panels set back-to-back, with each

panel covered in an arrangement of ROCs called “plaquettes”. Plaquettes may contain 2-10

ROCs, with 672 plaquettes and a total of 17,971,200 pixels in the FPIX. Plaquette layout

differs on each side of the blade in order to minimize gaps. Each panel also carries a Token

Bit Manager (TBM) that coordinates the readout signals from the ROCs while delivering
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trigger decisions and clock information. The disk and blade layout are shown in Figure 4.5.

When hit by a charged particle, a pixel will record its address in the detector,

the time of the hit and the analog signal and then store this information in the ROC. The

TBM, on reception of a trigger, passes a token ordering the ROCs to read out their signal.

These electrical signals are converted to optical pulses in the Analog Opto-Hybrid (AOH)

and sent to the Front-End Driver (FED) for cleanup and digitization.

Electronics readout must be fast, accurate, radiation-hard, and free of interference.

High luminosity and therefore high radiation exposure closest to the collision point means

that the pixel detector in particular must be able to adapt its response to the effects of

irradiation. This is done by periodically recalibrating the sensor bias voltages to compensate

for charge collection losses due to irradiation. The pixel online software is also designed to

deal with occasional bit flips or single event upsets (SEUs) due to high-energy particles by

quickly resetting the ROC [8].

4.6 Trigger

At peak luminosity, the LHC is capable of delivering over 106 collisions per sec-

ond. Detector readout and archiving systems are capable of recording approximately 102

collisions per second of data. Therefore a very fast, robust method for identifying events

of physics interest while discarding the rest has been developed in the form of the Level 1

Trigger (L1) system. Further filtering is handled by the High Level Trigger (HLT).
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4.6.1 L1 Trigger

The L1 trigger accepts inputs known as “trigger primitives” from subsystems with

very fast readout and dedicated trigger electronics, primarily the ECAL and muon system.

A decision based on these inputs is computed in the L1 FPGAs and returned to every

detector subsystem. The tracker in particular is reliant on the trigger in order to empty

its data buffers quickly and reliably, due to its high multiplicity of channels and large data

rate.

4.6.2 High Level Trigger

The HLT represents the second step in the event filtering process. Here, events

passing L1 criteria are sent to the HLT server farm above the CMS experiment where they

are sorted further depending on their particle content. Several HLT paths exist depending on

the interest of analysts - as an example, the Higgs to diphoton path sorts events depending

on ECAL energy deposits, shower shape, and invariant mass. Once events are filtered

through the HLT system they are passed to full digitization and reconstruction as described

in Chapter 6.
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Chapter 5

Datasets

This analysis makes use of the full Run 2 dataset as delivered by the LHC, recorded

by the CMS detector systems, and verified by the CMS Luminosity group. Verified events

are listed in the Golden JSON file provided by the CMS DQM (Data Quality Monitoring)

group. A list of datasets and their corresponding integrated luminosity is shown in Table

5.1.

Standard Model H→ γγ samples were used to verify background contributions by

Primary Dataset Dataset Name Luminosity (pb−1)

DoubleEG

/DoubleEG/Run2016B-03Feb2017 ver2-v2/MINIAOD 5930
/DoubleEG/Run2016C-03Feb2017-v1/MINIAOD 2573
/DoubleEG/Run2016D-03Feb2017-v1/MINIAOD 4248
/DoubleEG/Run2016E-03Feb2017-v1/MINIAOD 4005
/DoubleEG/Run2016F-03Feb2017-v1/MINIAOD 3101
/DoubleEG/Run2016G-03Feb2017-v1/MINIAOD 7721

/DoubleEG/Run2016H-03Feb2017 ver2-v1/MINIAOD 8391
/DoubleEG/Run2016H-03Feb2017 ver3-v1/MINIAOD 215

Total 36184

Table 5.1: Datasets used in the analysis. Luminosity values are accurate as of the February
2017 Re-MiniAOD campaign.
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Process Dataset Name

GluGlu /GluGluHToGG-M125 13TeV amcatnloFXFX pythia8/RunIISpring16MiniAODv2-PUSpring16RAWAODSIM-reHLT 80X mcRun2 asymptotic v14-v1

VBF /VBFHToGG M125 13TeV amcatnlo pythia8/RunIISpring16MiniAODv2-PUSpringRAWAODSIM-reHLT 80X mcRun2 asymptotic v14-v1

VH /VHToGG M125 13TeV amcatnloFXFX madspin pythia8/RunIISpring16MiniAODv2-PUSpring16RAWAODSIM-reHLT 80X mcRun2 asymptotic v14-v1

ttH /ttHJetToGG M125 13TeV amcatnloFXFX madspin pythia8/RunIISpring16MiniAODv2-PUSpring16RAWAODSIM-reHLT 80X mcRun2 asymptotic v14-v1

Table 5.2: SM Higgs datasets

the SM Higgs. Samples used appear in Table 5.2.
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Chapter 6

Object Reconstruction

Proper identification of physics objects, including particles and energy deposits, is

vital to any analysis effort. Reconstruction of these objects is managed via a multi-tiered

offline analytical framework.

Data coming through the detector must first pass the L1 Trigger system, which

discards the majority of events in order to speed processing and minimize storage require-

ments. Events passing the L1 Trigger are then passed through the High Level Trigger (HLT)

filtering system, which flags data according to predetermined filters, allowing for later offline

sorting of event types. Data is then digitized from the raw electronic sub-detector readouts,

and reconstruction occurs post-digitization. The data tier system is shown in Figure 6.1.

Physics objects are reconstructed using the CMS Particle Flow [33] algorithm and identi-

fied offline using recommendations from the EGamma and Jet/MET POGs. Objects are

then sorted into collections via the MiniAOD data structuring system. We are concerned

primarily with the reconstruction of photons, hadron jets, and missing transverse energy.
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Figure 6.1: CMS detector data tiers[24]

6.1 Photons

Electrons and photons are reconstructed from superclusters in the ECAL. The

electron and photon collections have substantial overlap - in fact as of 2015 all ECAL

superclusters with electron seeds in the tracker are duplicated in the photon collection -

due to the presence of non-prompt objects (decays not from the primary vertex) in the

ECAL. In the case of non-prompt objects, photons are primarily from π0 → γ + γ decays

and electrons occur as a result of photon conversions (γ → e+ + e−). A large fraction - up

to 60% - of prompt photons convert in the tracker material [37].

6.1.1 ECAL Clustering

Two algorithms are currently employed to create ECAL superclusters. One, the

Island algorithm, creates a cluster from a “seed crystal” - a crystal with energy deposit above

a defined threshold - by scanning crystals adjacent to it first in φ and then in η. The Island

algorithm is used in both the barrel and the endcap of the detector. The second, or Hybrid,

algorithm, is used in the barrel exclusively. Hybrid functions by first creating superclusters

of crystals over threshold energy and then decomposing them into basic clusters. It searches
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Figure 6.2: Energy cluster in ECAL crystals [27].

using a fixed η parameter of 3 or 5 crystals and then expanding in the φ direction. Almost

all the energy of a photon or electron shower will be contained in a 3 × 3 crystal cluster,

with 97% contained in a 5× 5 cluster as shown in Fig. 6.2.

The measurement of energy deposits in the ECAL is not a perfect reproduction

of the actual energy of the particle causing the showers. Several physical limitations of

the ECAL must be taken into account when reconstructing the energy of a photon or elec-

tron. Electrons, for example, lose a fraction of their total energy in the tracker due to

bremsstrahlung radiation. Other factors requiring energy correction include the effects of

multiple interaction vertices (pileup) as well as loss of longitudinal shower depth due to in-

termodule voids. These parameters and others are used to train a regression, which corrects

the raw crystal energy in the cluster to a value closer to the true energy of the particle.

This method of correction is verified using the well-known Z → e+ + e− invariant mass and

shows an excellent absolute energy resolution precision in the ECAL of approximately 0.4%
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in the barrel and 0.8% in the endcap [34].

6.1.2 Photon Identification

Once ECAL cluster reconstruction and energy correction are completed, prompt

photons must be distinguished from “fake” photons originating from neutral hadron decays

or from conversions in the tracker material. Several properties of a cluster are employed in

order to identify prompt photons, including but not limited to the energy ratio of a seed

cluster to its supercluster, the shape of the shower, and its isolation from other objects in

the ECAL.

R9 measures the energy of a 3×3 cluster centered on a seed crystal vs the energy of

the supercluster created around the seed [37]. This variable is useful in rejecting converted

photons, since their energy is more widely spread across a supercluster, leading to a lower R9

value. Additionally, R9 may be used to reject showers from π0 decays, since the outbound

decay photons will be separated.

In order to separate prompt photons from neutral hadron showers, the fraction of

energy deposited in the ECAL vs the HCAL is measured - a photon will deposit almost all

its energy in the ECAL crystals, while a hadron will generally travel through the ECAL

material before decaying in the HCAL.

The shape of a shower is also considered in rejecting fake photons. The extent

of a supercluster’s energy distribution in the η direction is generally more useful, since a

wide lateral distribution in φ can be due to either a photon shower or the separation of

a converted e+e− pair due to the magnetic field. This variable, called σiηiη, measures the

energy across the 5× 5 basic cluster centered around the seed crystal versus the energy of
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the supercluster.

Perhaps most important to the differentiation of prompt from fake photons is the

isolation of the shower. Isolation is measured in a cone of ∆R = 0.3 (∆R =
√

∆η2 + ∆φ2)

around the photon’s direction and is separated into charged hadron, neutral hadron, and

photon components. Each component makes a distinct pT contribution inside the cone,

reconstructed from the particle-flow algorithm [33]. To prevent the addition of the photon’s

own energy, a slice of η = 0.015 is removed from the particle flow sum for photon isolation.

For charged hadron isolation, a ∆R = 0.02 region is excluded.

Isolation sums are affected by the contribution of particles from pileup vertices.

Charged hadrons may be reliably associated with a primary vertex due to their presence

in the tracker, but photon and neutral hadrons from particle flow must be corrected for

pileup contributions. This is accomplished by estimating the ET density per unit area in

the detector, which is an event-wide value, and multiplying by the effective area of the

measured isolation. This contribution is subtracted from the total isolation sum, leaving

only the contributions from the primary interaction of the event.

A powerful method for rejecting electrons is to associate any reconstructed ECAL

cluster with a “pixel seed” - a pattern of at least 2 hits in the pixel tracker. Any possible

photon object with a pixel seed is rejected. This approach ensures a high purity of the

photon sample, particularly in the barrel region. Another method, the conversion-safe

electron veto, allows for a higher signal efficiency for photons but allows slightly more

electrons into the sample. The two methods are employed dependent on the sensitivity of a

selection to electron background and is at the discretion of the analyst. Their performance
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Barrel Endcap
γ e γ e

Conversion-safe electron veto 99.1± 0.1% 5.3% 97.8± 0.2% 19.6%

Pixel track seed veto 94.4± 0.2% 1.4% 81.0± 0.6% 4.3%

Table 6.1: Fractions of photons and electrons, in the ECAL barrel and endcap, passing the
two different electron vetos. Statistical uncertainties in the values given for electrons are
negligible [37].

is detailed in Table 6.1.

6.2 Jets

Hadron jets are reconstructed using a combination of track information and energy

deposits in the HCAL. At high collision energies, the number of interaction vertices in an

event can be very high and thus the clustering algorithms employed in the HCAL, as well

as the high momentum resolution of the tracker which associates charged particles with a

vertex, are used to identify jets as originating from the primary collision vertex or from a

pileup vertex.

The approximately 10% energy resolution for hadrons in the combined ECAL-

HCAL system allows for the identification of neutral hadrons, which appear as an energy

excess in the HCAL once charged hadrons associated with tracks have been reconstructed.

Jet ET resolution is shown as a function of ET , for barrel jets, in Figure 6.3.

6.2.1 Jet Reconstruction

The outstanding momentum resolution of the silicon tracker system allows for

excellent reconstruction of charged particles in the PF algorithm. It also allows for the

precise determination of a particle’s direction as it exits the primary interaction vertex,
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Figure 6.3: Jet transverse energy resolution as a function of generated jet transverse energy
for barrel jets |η| < 1.4 [32].

since it registers hits before the particles are substantially deviated by the 3.8 T magnetic

field. An iterative track seeding algorithm allows for a greater than 90% efficiency in charged

hadron detection, with pT as small as 150 MeV/c and a very small fake rate (∼ 1%) [33].

These tracks are subsequently associated with energy deposits in the HCAL. Since

hadron jets are composed of several individual stable or semi-stable particles, their recon-

struction utilizes a sophisticated sequential clustering algorithm, in our case the AK4 (AK

standing for anti-kT and 4 referring to the ∆R = 0.4 cone used to extract PF particles for

further clustering). Anti-kT refers to a value assigned to a parameter (kT ) in the clustering

algorithm. Anti-kT clustering is preferential to high-pT objects. It is widely used due to its

high resolving power for single jets, but, since it performs poorly with lower-pT particles,

does not resolve jet substructure well.

The effects of pileup are mitigated via the pileup jet ID, a multivariate technique

that uses the direction of charged hadrons (if present in the events) as well as jet shape
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variables (since pileup jets tend to be lower-pT and more diffuse). The multivariate anal-

ysis gives a final discriminator value which separates jets according to their likelihood of

origination in the primary interaction vertex.

Jet energy resolution performs less well in data than it does in simulation, neces-

sitating a correction in the form of jet energy smearing of 10% in simulated jets. Jet energy

corrections are applied to data and to simulation to account for the energy deposited in

the calorimeters due to pileup jets (L1FastJet) and to counter the effects of differing detec-

tor response in pT and η (L2L3Residuals). Some response corrections are applied only to

simulated jets (L2L3) and also correct for response in η and pT .

6.2.2 b-Tagging

b-jets are identified using the Combined Secondary Vertex (CSV) algorithm [35].

Hadrons arising from b-quarks have a lifetime on the order of 10−12 seconds, allowing them

to travel some measurable distance from the primary vertex before decaying. This displaced

vertex can be reconstructed using the high momentum resolution of the tracker system by

examining the shifted impact parameter of its tracks. A CSV jet is shown in Figure 6.4.

A secondary vertex must pass the following criteria before its parameters are given

to the CSV MVA:

• secondary vertices must share less than 65% of their associated tracks with the primary

vertex and the significance of the radial distance between the two vertices has to exceed

3σ;

• secondary vertex candidates with a radial distance of more than 2.5 cm with respect to
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Figure 6.4: A b-jet with shifted impact parameter
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the primary vertex, with masses compatible with the mass of K0 or exceeding 6.5 GeV

are rejected, reducing the ocntamination by vertices corresponding to the interactions

of particles with the detector material and by decays of long-lived mesons;

• the flight direction of each candidate has to be within a cone of ∆R < 0.5 around the

jet direction. [35]

The secondary vertex algorithm uses several variables to train a multivariate ana-

lyzer and provide a final discriminant value, which is used to determine the likelihood that

a given jet originates from a b-quark. Secondary vertices are constructed from particle flow

jets passing basic quality cuts, and the vertex and track information (including time-of-

flight, impact parameter, secondary vertex mass, and other relevant variables) are fed to

the MVA for training. A final discriminant value is produced which gives the likelihood of

a given jet originating from a b-quark.

The efficiency of the b-tag method varies between data and simulation, necessitat-

ing the application of a scale factor. The method of this application, and its effect on event

weight, is detailed in Appendix A.

6.3 Missing Transverse Energy

Not all the energy in a given interaction will be recorded by the detector. Weakly

interacting, chargeless and colorless particles (for example, the stable neutrino or the su-

persymmetric LSP) will carry energy out of the detector and will not register on any of

the subsystems. The inbound protons will collide with a zero transverse momentum sum,

since very nearly all their momentum is carried in the longitudinal direction due to their
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near light-speed opposing velocities. This zero value should be conserved in the outgoing

collision system, and if transverse momentum sums to a non-zero value we may infer that

some of the momentum has been lost due to undetectable particles resultant in the collision.

This value, missing transverse energy or EmissT , is defined as the negative of the

vectorial sum of the transverse momentum of an event:

~EmissT = −
∑

~ET

EmissT =
∣∣∣ ~EmissT

∣∣∣ (6.1)

Full reconstruction of every particle and energy deposit in the event is required

to make an accurate estimation of this value. The tracker is vital in the reconstruction of

missing transverse energy, since any missed charged particle would likely still be detected

in the calorimeters, causing problems in the final determination of direction of missing ET

as well as worsened energy resolution.

The EmissT response of the particle flow algorithm is within approximately ±5% of

the true EmissT value above values of 20 GeV [36].
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Chapter 7

Event Selection

As detailed in Section 2.3.1, the expected signal event will contain the following:

• Two photons with invariant mass in the Higgs boson resonance window

• Two or more b-jets, with b-jet multiplicity and invariant mass further dividing the

signal categories

The proper selection of photon and jet candidates to best optimize the efficiency of

the signal selection, while maximizing rejection of background, is outlined in detail below.

7.1 Photons

Photons, as discussed in Section 6.1.2, are reconstructed in the electromagnetic

calorimeter. Careful selections are required in order to distinguish “prompt” - photons

from the primary interaction - from “fake” - photons from neutral pion decay or electron

conversion. To this end, various quality cuts are applied to candidate photons in the signal

sample:
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• Higgs to diphoton trigger pass for the event

• Photon pT of (40, 25) GeV for the (leading, trailing) photon

• Both photons in the barrel of the ECAL

• Both photons have zero seeds in the pixel detector

• Both photons passing the EGamma POG cut-based photon ID at the loose working

point

• Photon pair invariant mass in the (120, 131) GeV range

7.1.1 High-Level Trigger

The high-level trigger path used in this analysis is the general Higgs to diphoton

trigger, HLT Diphoton30 18 R9Id OR IsoCaloId AND HE R9Id Mass90, developed by the

H → γγ working group. Its selection depends on several variables, including photon pT ,

hadronic energy fraction H/E, cluster isolation, and track isolation. A full description of

trigger requirements is shown in Table 7.1. Note the similarity between variables used in

trigger pre-selection and in the photon ID critera detailed in Section 7.1.5. Every HLT

diphoton path is seeded by at least one hardware L1 electromagnetic candidate [14]

H/E σiηiη(5× 5) R9(5× 5) ECAL PF Cluster Iso Track Iso

EB; R9 ≥ 0.85 < 0.12 – < 0.5 – –

EB; R9 ≤ 0.85 < 0.12 < 0.015 < 0.5 < (6.0 + 0.012ET ) < (6.0 + 0.002ET )

EE; R9 ≥ 0.90 < 0.1 – < 0.8 – –

EE; R9 ≤ 0.90 < 0.1 < 0.035 < 0.8 < (6.0 + 0.012ET ) < (6.0 + 0.002ET )

General Requirements

mγγ ≥ 90 GeV HLT Seeded ET ≥ 30 GeV HLT UnseededET ≥ 18 GeV

Table 7.1: High-level trigger path selections, from [14]
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Trigger requirements are applied in a very specific order. First, The L1-seeded leg

of the trigger path is required to have ET > 30 GeV, with the cluster located in the region

|η| < 2.5 and R9 < 0.5 in the ECAL barrel (EB), or R9 < 0.8 if in the ECAL endcap. A

hadronic fraction cut of H/E < 0.12(0.1) in the EB(EE) region is applied as well. Once these

selections are passed, each cluster must pass a further R9 check at > 0.85(0.9)for EB(EE). If

all these criteria are met, the trigger path proceeds to the unseeded leg. If the R9 selection

is not met, the σiηiη < 0.015(0.035) and ECAL isolation < (6.0 + 0.012(0.02)ET ) GeV are

checked before moving to the unseeded leg. In addition, both legs of the trigger must pass

the track isolation requirement < (6.0 + .002ET ).

7.1.2 PT

The pT threshold is designed to minimize efficiency losses due to trigger turn-on

effects. Efficiency plots are shown for leading and sub-leading photons in Figure 7.1.

(a) Trigger efficiency for leading photon (b) Trigger efficiency for sub-leading photon

Figure 7.1: Trigger efficiency for leading and trailing photon in the event for signal point
mb̃ = 500 GeV, mχ̃0

2
= 200 GeV.
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7.1.3 η

Photons are required to be inside the ECAL barrel volume, |η| < 1.4442. Electron

rejection is improved by this requirement, primarily due to the additional conversion elec-

trons present in the endcap due to the preshower system. Both electron vetoes available

(see Table 6.1) perform poorly in the endcap, with the conversion-safe veto providing a poor

purity sample by allowing too many electrons through, and the pixel seed veto suffering a

13% efficiency loss while maintaining relatively high purity.

7.1.4 Pixel Seeds

Though this analysis is not a priori sensitive to electron background, the pixel

seed cut ensures a higher purity signal sample at the expense of only a 4% efficiency loss

in the barrel as seen in Table 6.1. A sensitivity comparison between the pixel seed and

conversion-safe veto may be seen in Figure 7.2.

7.1.5 Cut-Based ID

The criteria for the EGamma POG cut-based (VID) ID for Run 2 is shown in

Table 7.2. The working points of the ID (loose, medium, and tight) are predicated on signal

efficiency (91%, 81%, and 71%) and misidentification rate (10%, 5%, and 1%). We choose

the loose working point, as its high efficiency combined with the rejection power of the pixel

seed veto provide an optimized selection [28].
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Cut-Based ID WP Loose Medium Tight

H/E 0.0597 0.0396 0.0269

σiηiη 0.01031 0.01022 0.00994

charged hadron iso 1.295 0.441 0.202

neutral hadron iso 10.910 + 0.0148 ∗ pT +
0.000017 ∗ p2

T

2.725 + 0.0148 ∗ pT +
0.000017 ∗ p2

T

0.264 + 0.0148 ∗ pT +
0.000017 ∗ p2

T

photon iso 3.630 + 0.0047 ∗ pT 2.571 + 0.0047 ∗ pT 2.362 + 0.0047 ∗ pT

Table 7.2: Values for the EGamma cut-based photon ID. Isolation values are ρ-corrected
particle flow pT sums in a cone of ∆R = 0.3. [28]

7.1.6 Invariant Mass

The invariant mass “tag” window is based around the known H → γγ resonance.

This is a narrow, clean channel with good mass resolution. The window width (120, 131)

GeV is chosen to enclose a majority of the resonance, as seen in Figure 7.3.

7.2 B-Jets

An event must have at least two jets that pass a set of quality cuts similar but

not identical to photons, and are then assessed for their b-tag status. Each event must have

two jets with the following:

• Both jets with pT > 30 GeV

• Both jets with |η| < 2.4

• Both jets pass the PF loose ID [29]

• Both jets pass the pileup ID

• Both jets pass the CSV loose ID, with at least one passing the medium ID

52



Jet quality cuts are taken from the JetMET POG recommendations. Jets do not

suffer from purity losses in the endcap as photons do, so acceptance extends to |η| < 2.4.

The particle flow jet ID and pileup ID are both covered in detail in Chapter 6. The pileup

ID discriminant is set to 0.8 - the loose working point - at the recommendation of the

JetMET POG [30].

7.2.1 b-Tag ID

After jet candidates pass the previous set of criteria, their b-tag status is tested.

Candidates must both pass the CSV Loose working point of 0.5426, with at least one of the

jets passing the Medium working point at 0.8484 [26]. The choice of Medium/Loose is based

on an evaluation of Q score, a measure of significance developed in [3]. Q scores for the

signal point mb̃ = 250 GeV, mχ̃0
2

= 50 GeV are shown in Table 7.3. In this case there is no

gain in significance associated with a tighter working point combination that would offset

the loss of statistics. Q scores are tested separately in the distinct signal regions developed

in the next section.

Q = (
√

(S +B)−
√
B)

2 b-jets on H mass 2 b-jets off H mass 3+ b-jets

CSV Medium, Loose 1.781 1.55461 4.80496

CSV Medium, Medium 1.69216 1.46833 4.83165

CSV Tight, Medium 1.73133 1.52369 4.74599

CSV Tight, Tight 1.04701 1.05779 2.40181

Table 7.3: Significance in Q score for various combinations of b-jet working points in the
CSV algorithm.

Event weights are scaled according to the method developed in Appendix A. The

CSV discriminant represents the likelihood that a given jet is a b-jet, and a scale factor is
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applied to account for possible mistagging as well as the data/simulation mismatch in the

tag rate [25].

7.3 Search Categories

Once a candidate event has been determined to pass all signal criteria, it is sorted

into one of three mutually exclusive search categories. These are:

• 2 b-jets on the H → bb̄ mass window

• 2 b-jets off the H → bb̄ mass window

• 3 or more b-jets

The first category takes advantage of a possible H → bb̄ resonance. The invariant

mass window here extends from (95, 155) GeV given the broader width of this resonance

compared to the H → γγ decay. The second category accounts for possible detection of

b-jets from the sbottom decays, and the 3+ b-jet category searches for events with a H→ bb̄

decay as well as b-jets from sbottoms - possibly up to four per event. This categorization

improves the sensitivity of the analysis, particularly in the 3+ b-jet category, as shown in

Figure 7.4.
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(a) Sensitivity with conversion-safe electron veto
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(b) Sensitivity with pixel seed veto

Figure 7.2: Photon purity veto in combined signal regions. Note the substantial reduction
in background (red shaded area).
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Figure 7.3: The Higgs → γγ invariant mass. The high resolution allows for the creation of
a Higgs “tag” based around the diphoton mass [14].
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(a) 2 b-jets on Higgs mass
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(b) 2 b-jets off Higgs mass
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(c) 3+ b-jets
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(d) Combined signal regions

Figure 7.4: Sensitivity by signal region. Solid colored lines represent one of three chosen
signal points, while the red shaded area represents the background prediction as estimated
in Chapter 8.
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Chapter 8

Background Estimation

Determination of the background is entirely data-driven and is accomplished by

a sideband method. Events are chosen via the criteria established in Chapter 7, but at

the invariant mass check they are sorted into mass sidebands, one on either side of the

signal or “tag” region of (120, 131) GeV. This method allows for a simple prediction of

non-SM Higgs background, as the H → γγ resonance sits as a narrow peak on top of the

steadily decreasing SM diphoton invariant mass distribution (Figure 8.1). Event kinematics

of background-type events inside this window are very similar to those outside it, allowing for

an examination of sensitive variables whether or not they are correlated with the diphoton

mass. The sideband method allows for a determination of Standard Model background

that is completely agnostic to its composition. This method was originated in the Run 1

stop-higgsino analysis mentioned in Chapter 2.

A fit is performed separately in each sideband, with the results of the fit and

the contents of the sidebands used to predict the number of events in the signal region.

58



Figure 8.1: Higgs discovery 2012 - diphoton invariant mass [16].

Process Cross Section (pb)

gluon-gluon fusion 44.01

vector boson fusion 3.782

VH 2.257

ttH 0.5071

bbH 0.4880

Table 8.1: Standard Model Higgs production cross sections at mH = 125 GeV [19].

This method accounts for all possible sources of background except for the Standard Model

Higgs boson. Production channels and cross sections for contributing SM Higgs processes

are shown in Table 8.1. Since the SM Higgs is singly produced, this contribution is found

to be negligible - about 4.7 events in the combined signal regions, mostly in the low EmissT

region where the search is less sensitive. Figure 8.2 shows the number of events from all

major SM Higgs processes in the combined signal regions.
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Figure 8.2: Standard Model Higgs background contributions, in combined signal regions.

8.1 Sidebands

The width of the signal region is chosen to contain the width of the H → γγ

(see Figure 8.1 as well as Figure 7.3) and to allow for some spread in the energy resolution

of the photon measurement in the ECAL. Sideband widths are (103, 118) GeV for the

lower sideband and (133, 163) GeV for the upper sideband. A 2 GeV buffer region lies

between each sideband and the signal region to reduce contamination of the background

measurement by any tails in the signal distribution (see Figure 7.3).

The lower sideband region is chosen such that the Z → e+e− resonance does not

contribute to the photon background. The border on the upper sideband is less constrained

and therefore the sideband itself is wider - the upper sideband is twice the width of the

lower. Depending on the signal category chosen (2 b-jets on the H mass, 2 b-jets off the H

mass, 3+ b-jets) the uncertainty of the background estimate is primarily driven by statistical

concerns and is elaborated further in Section 8.4.
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8.2 Fitting

Once sidebands are filled, a fit is performed in each sideband and search category

separately (for a total of 6 independent fits). Fits exclude the signal region and the buffers

to avoid signal contamination. Four functions - an exponential, a power law, a second-

degree polynomial and a third-degree polynomial - were tested to find the best modelling

of the background distribution. Plots are shown in Figures 8.3, 8.4, and 8.5 for the 2 b-jet

on Higgs mass, 2 b-jet off Higgs mass, and 3+ b-jet search categories respectively.

Both the power law and exponential functions match the distribution well - the low

statistics cause unphysical shapes in the 2nd-degree polynomial and 3rd-degree polynomial

fit. This is in line with physics expectations, given that QCD γγ+ bb̄ and bb̄+ γ+ j (where

the jet is misidentified as a photon) production dominates the background distribution.

The power law and exponential functions show similar χ2 values, and, as shown in Table

8.3 make virtually the same predictions for the signal region within error. The exponential

fit shows slightly lower parameter error and so is chosen as the fit function. χ2 values are

given for each fit function in Table 8.2.

χ2/NDF

Fit Function 2 b-jets on h mass 2 b-jets off h mass 3+ b-jets all categories

Exponential 0.652435 1.55266 0.36156 0.936729

Power Law 0.653274 1.5609 0.361221 0.930079

Table 8.2: χ2 per degree of freedom, by fit and signal region.

The final form of the fit functions are given here for the 2 b-jet on Higgs mass (Eq.

8.1), 2 b-jet off Higgs mass (Eq. 8.2), and 3+ b-jet categories (Eq. 8.3).
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(b) Exponential
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Figure 8.3: Fits to diphoton invariant mass - 2 b-jet on Higgs mass signal region.
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(a) Power Law
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(b) Exponential
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(d) 3rd-degree Polynomial

Figure 8.4: Fits to diphoton invariant mass - 2 b-jet off Higgs mass signal region.
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(a) Power Law
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(b) Exponential
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Figure 8.5: Fits to diphoton invariant mass - 3+ b-jet on Higgs mass signal region.
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Nevents = (31.78± 25.35) ∗ e(−.02289±0.00622)∗Mγγ (8.1)

Nevents = (37.83± 20.62) ∗ e(−.0183±.0042)∗Mγγ (8.2)

Nevents = (2.078± 2.816) ∗ e(−.0096±0.0101)∗Mγγ (8.3)

8.3 Estimation in Tag Region

Once the exponential fit has been completed in each sideband for each search

category (excluding the signal region), it may be used within the signal region. Without

actually inspecting the event content of the tag region, the fit is integrated across it (again

excluding the buffers). The integral of the fit inside the Mγγ window is employed, along

with the contents of a sideband, to make an estimate from each sideband. These estimates

are then averaged to give the final prediction. The sideband contribution estimation is

computed bin-by-bin for a given kinematic variable as follows for the upper sideband (USB):

BGUSB = binUSB ∗
∫

FitTag∑
EventsUSB

(8.4)

Here, BGUSB represents the background estimate from the upper sideband, binUSB

is the contents of a single kinematic bin whose diphoton invariant mass lands in the upper

sideband,
∫

FitTag is the integral of the fit in the signal region, and
∑

EventsUSB is the

sum of all events in the upper sideband.
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The identical calculation is performed for the lower sideband in a bin-by-bin fash-

ion. Finally, BGUSB and BGLSB are averaged to give a final prediction of the number of

events per bin in the signal region for the kinematic variable in question.

Summed predictions for each signal region are given in Table 8.3. The background

prediction given by the power law fit is compared to the exponential method and found to

be in agreement within errors.

Background Prediction (Events)

Fit Function 2 b-jets on h mass 2 b-jets off h mass 3± b-jets all categories

Exponential 19.8 ± 2.4 42.0 ± 3.5 6.9 ± 1.4 68.8 ± 4.4

Power Law 19.2 ± 2.3 40.9 ± 3.4 6.8 ± 1.5 67.0 ± 4.3

Table 8.3: Background prediction by fit and signal region.

8.4 Error

The uncertainty involved in the background estimation method is primarily sta-

tistical, but must also account for any possible correlation between the diphoton invariant

mass and the sensitive variable in question. This correlation uncertainty is given by tak-

ing half the difference of the upper and lower sideband predictions, on a bin-by-bin basis,

and adding it in quadrature to the statistical uncertainty. The development of statistical

uncertainty is taken from [2] and given below.

σBGavg = BGavg

√
σ2
U + σ2

L

(U + L)2
+

(
σint∫
FitTag

)2

=
1

2

√(
σ2
U + σ2

L

)2
σint + (U + L)2

∫
FitTag

(8.5)

with
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U =
binUSB∑
EventsUSB

L =
binLSB∑
EventsLSB

(8.6)

and

σU = U

√
1

binUSB
− 1∑

EventsUSB

σL = L

√
1

binLSB
− 1∑

EventsLSB

(8.7)

Finally, adding half the bin-by-bin difference between lower and upper sidebands,

the total uncertainty on the background estimation is

σBGtotal =

√
σ2

BGavg
+

(
BGUSB − BGLSB

2

)2

(8.8)
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Chapter 9

Systematic Uncertainties

Measurements of both simulated events and data are subject to uncertainty. Sta-

tistical uncertainty in the background estimation is treated in Chapter 8. However, system-

atic uncertainties due to mismeasurement, resolution effects, or misidentification probability

must be treated as well. Several of these affect our confidence in the raw signal acceptance

of the simulated samples and are elaborated on in the following sections. All systematics

listed here affect the observed and expected limits to be set forth in Chapter 10 and are

included in limit-setting as a template fit to data [13]. The systematic uncertainties studied

here are according to the recommendations of the CMS SUSY Physics Analysis Group.

9.1 Luminosity

A flat 2.5% uncertainty is applied to the luminosity per the recommendation of

the CMS luminosity group [38].
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9.2 HLT

The uncertainty in trigger efficiency has been measured by the Razor H → γγ

group and found to be 3% [10]. This uncertainty applies across all signal samples.

9.3 Cross Section

Cross section uncertainties are specific to the mass of the generated sbottom quark

and fluctuate between 13-14% for the generated masses in the splitting. A higher mass will

typically have a slightly lower uncertainty in its cross section [4].

9.4 Photon Identification and Pixel Seed Scale Factor

The cut-based photon ID is found to be slightly less efficient in data than in

simulation. A scale factor, dependent on pT and η, is applied to each event to normalize

simulation to data counts. For the Loose ID, scale factors are very close to unity. The

uncertainty of the scale factor in the barrel, using the pixel seed veto and an R9 value of

> 0.94, is ∼ 1.7%. This uncertainty is calculated based on pileup corrections, choice of

generator in simulated samples, and the combined uncertainty of the ID variables [18].

9.5 B-Tag Scale Factor

The b-tag event reweighting method is done on a jet-by-jet basis using efficiencies

and mis-tag probabilities, and is explained in detail in Appendix A. The effect of the scale

factor uncertainty on signal efficiency is measured by shifting the scale factor up and down
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by 1σ and generating a new event weight for each shift. The up-shifted and down-shifted

uncertainties are averaged to give a final systematic for the b-tag scale factor. The effect of

this shift is shown in Figure 9.1.

(a) 2 b-jet on Higgs mass

(b) 2 b-jet off Higgs mass (c) 3+ b-jets

Figure 9.1: The effects of the b-tag scale factor uncertainty on signal acceptance for the
signal point mb̃ = 500GeV,mχ̃0

2
= 200 GeV. Red lines indicate a 1σ shift up in scale factor,

blue lines indicate a 1σ shift down in scale factor, and the grey filled area is the result of
the selection based on the central b-tag scale factor. The y-axis is in arbitrary units.
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9.6 Jet Energy Correction

Jet energy correction uncertainty is found in much the same way as the b-tag

systematic. Uncertainty shifts of ±1σ are provided by the JetMET POG. The previously

corrected jet pT is then shifted either upward or downward and its effect on signal efficiency

is measured. Plots showing the effect of JEC uncertainty shifting are shown in Figure 9.2.

(a) 2 b-jet on Higgs mass

(b) 2 b-jet off Higgs mass (c) 3+ b-jets

Figure 9.2: The effects of JEC uncertainty on signal acceptance. Red lines indicate a 1σ
shift up in pT , blue lines indicate a 1σ shift down in pT , and the grey filled area is the result
of the selection based on the nominal energy-corrected pT value. The y-axis is in arbitrary
units.
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Photon ID, b-tag, and JEC scale factor uncertainties are all mass point specific

and are applied separately to each as a log-normal uncertainty.
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Chapter 10

Results and Limit

10.1 Limit

To avoid biasing the choice of event selection criteria, events in the signal region

were “blinded” - not counted and observed limits not computed - until selection optimization

was fixed. Event selection criteria were not changed after the unblinding of the signal region.

Signal criteria were chosen as in Chapter 7 based on their effect on expected sensitivity of

the analysis to signal.

Final event counts in the tag region are compared to the background estimation

and the signal prediction, for 3 separate signal points. These counts are shown independently

for each search category (2 b-jets on Higgs mass, 2 b-jets off Higgs mass, and 3+ b-jets) in

Table 10.1. The final yield from data across the EmissT spectrum is shown in Figure 10.1.

No excess beyond the Standard Model predicted background is observed, and

therefore we set a lower limit on the production cross section of sbottom pair production with
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mb̃,mχ̃0
2

on Higgs off Higgs 3+

250 GeV, 50 GeV 18.21 21.60 45.96

350 GeV, 150 GeV 3.03 4.03 8.12

500 GeV, 200 GeV 0.19 0.57 1.22

Predicted Background 19.80± 2.36 41.95± 3.45 6.88± 1.42

Observed 20 33 10

Table 10.1: Predicted signal yield, estimated background, and observed event counts in the
120 < Mγγ < 131GeV region.
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Figure 10.1: Final event yields for each search category. Background prediction is the
shaded red area, signal prediction for 3 mass points are solid colored lines, and the final
data yield in the tag region is represented by black dots.
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Figure 10.2: The observed 95% confidence level (CL) upper limits on production cross sec-
tion for sbottom pair production. The solid and dotted red contours represent the expected
exclusion region and its ±1σ bands, while the black contours represent the observed exclu-
sion region and ±1σ bands. Sbottom production under 350 GeV is excluded for neutralino
masses below 150 GeV.

a sbottom decaying to a bottom quark, Higgs boson, and LSP. Limit setting is performed

using the RooStats asymptotic CLs method [11]. This method uses the LHC test-statistic

qµ, where µ represents a signal strength parameter, in this case the production cross section

for the process in question. Observed and expected limits are shown in Figure 10.2.

Systematic uncertainties are treated as log-normal nuisance parameters. They are

correlated across signal bins, but uncorrelated with each other. All systematics in this

analysis are treated in the log-normal method using their multiplicative or scaling effect on

signal acceptance and normalization.
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(400, 250) GeV Acceptance (%) Efficiency (%)

stop-higgsino 80.5 17.0

sbottom-higgsino 77.8 6.6

Table 10.2: Acceptance and efficiency comparison for different signal models with our search
strategy. Acceptance is % of simulated photons with |η| < 2.4 and pT > 25 GeV. Efficiency
is of the overall selection, which is the same for both models.

The results are interpreted in terms of the T2bH simplified model outlined in

Chapter 2. We exclude bottom squarks with masses below 350 GeV, for neutralinos with

masses below 150 GeV. These limits perform somewhat below the limits set in the Run 1

analysis [9] due to the change in signal model. The fine-tuned mass parameter (mχ̃0
2
−mχ̃0

1
=

130 GeV was chosen by the Razor H → γγ specifically to pursue a slight excess seen in

their Run 1 analysis involving a low-pT Higgs. This low-pT Higgs in turn negatively impacts

acceptance of the Higgs decay products in the form of photons and jets, since they in their

turn are softer. Additionally, the original stop-higgsino signal model assumed a massless

LSP, whereas the LSP mass in our current model ranges from 1 to 250 GeV.

An unofficial signal sample generated in 2016 using the same methods as the Run 1

stop-higgsino analysis is compared to a sample at the same mass points (mt̃/mb̃ = 450 GeV,

mχ̃2
0

= 250 GeV). Results for simulated photon acceptance and overall selection efficiency

are shown in Table 10.2.

Photon reconstruction and selection efficiency suffers due to the low-pT Higgs and

massive LSP, thus lowering selection efficiency and limiting sensitivity. For high-mass LSPs

in particular, jet selection efficiency is severely hampered with up to a 60% loss of events in

the 2 b-jets off Higgs mass and 3 b-jet categories for a mass difference of 150 GeV between

the sbottom and the higgsino.

76



10.2 Conclusions

A search for a simplified model of supersymmetry with direct production of sbot-

tom quarks with decays to higgsinos and Higgs bosons has been performed using 36.2fb−1 of

data collected at the CMS experiment at
√
s = 13 TeV. We exploited the narrow invariant

mass resonance of the H→ γγ decay, using a sideband method to predict Standard Model

background. We find no excess over Standard Model predictions, and set lower limits for

the production cross-section of sbottom quarks at a mass of 350 GeV, with higgsino mass

150 GeV or lower.
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Appendix A

b-tag Scale Factor Application

Event reweighting according to the b-tag scale factor is accomplished via a jet-
by-jet comparison of efficiencies and misidentification rates, with each jet in the event
contributing a scale factor to the final product or event weight. Various methods for the
computation of this weight are used depending on the preference of the analyst. Our anal-
ysis aims to predict the correct event yield in data by only changing the weight of the
selected simulation events - meaning events that do not pass selection are not considered
in the weighting procedure [25]. The following method was developed by the CMS BTag
POG and is designed to keep events with a specific b-tag multiplicity from migrating be-
tween categories (number of b-tags). Since the signal categorization is dependent on b-tag
multiplicity this specific method is required to provide accurate weighting without affecting
the final signal yield.

Events passing selection will have at least two b-tagged jets, with all jets passing
the CSV-Loose tag and at least one passing the CSV-Medium tag. The event weight, w, is
defined in Eq. A.1:

w =
P (DATA)

P (MC)
(A.1)

The probabilities are defined so as to account for multiple working points. It is
possible that a jet might be tagged with the CSV-Loose working point but not the CSV-
Medium point, which affects the probability according to the efficiency of the tagger at the
given working point. For simulation (MC), the probability is given in Eq. A.2 and for data,
the probability is given in Eq. A.3.

P (MC) =
∏

i=tagged M

εMi
∏

j=j = tagged L, not M

(
εLj − εMj

) ∏
k=not tagged

(
1− εLk

)
(A.2)

P (DATA) =
∏

i=tagged M

SFMi ε
M
i

∏
j=j = tagged L, not M

(
SFLj ε

L
j − SFMj ε

M
j

) ∏
k=not tagged

(
1− SFLk ε

L
k

)
(A.3)

Scale factors (SFi,j,k) are dependent on the pT , η, and flavor of the jet, largely due
to varying detector response based on these values.
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