
Preparing for the new C++11 standard

Axel Naumann

CERN PH-SFT, CH-1211 Genève 23, Switzerland

E-mail: Axel.Naumann@cern.ch

Abstract. C++11 is a revolution to C++, adding many essential features (such as
std :: unordered map) and new syntactic constructs (e.g. rvalue references, lambdas).
Interfaces, e.g. header files, have to be understood also by C++ novices. Limiting the exposed
features is already common for C++ 2003[2], and will likely be necessary for C++11, even
for the bravest programmers. This contribution explains why a compiler is the ideal tool for
enforcing such rules, and what the options are for implementing it. It proposes clang, the
LLVM-based C++ compiler front-end as an example implementation.

1. Introduction
C++11 [1] has a few main themes of improvements[3]:

• Simplicity: many new features reduce the amount of code that needs to be written. A
typical example is initializer lists that can even initialize the data of a vector without the
need of executing code at runtime.

• Conciseness: design concepts can now be spelled out in a more concise and clearer form
than before, e.g. it is now possible to add a custom constructor to a default one without
having to implement the default constructor.

• Performance: as an example, rvalue references enable move semantics that can drastically
reduce the amount of memory copied by constructors.

• Standardization: several new areas are now covered by C++11, among the most relevant
are certainly threading and regular expressions.

This new standard represents a major change with respect to the previous version of C++: the
number of pages (1338) almost doubled compared to the 2003 edition of the standard (757).
Nevertheless, writing simple, concise C++ can be easier with C++11. However, as with most
powerful tools, C++11 can also be misused to write unreadable code. In the following is a
discussion of possibly desired and undesired features and ways to detect and manage them.

2. Discussion of New and Noteworthy C++11 Features
This section contains a short summary of several features that I consider most relevant for the
experiments’ code base. This list is not meant to be exhaustive; it can be seen as an appetizer
that hopefully triggers the wish to exploit C++11 for the reader’s code.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052056 doi:10.1088/1742-6596/396/5/052056

Published under licence by IOP Publishing Ltd 1

2.1. Rvalue References (Move Semantics)
One of the most discussed features of C++11 is “that funny &&”: rvalues. Rvalues can be
paraphrased as temporaries: values that have a lifetime restricted to a C++ statement. In the
past, returning large objects could cause a large chunk of memory to be copied, because there
was no way to tell the compiler what to do with temporary input. This already hints at the
major use case: rvalues are extremely handy as function arguments. They enable a function to
accept a temporary object[4] and, for example, take over its data1:

void MyJet : : MyJet (MyJet&& other) :
m tracks (move (other . m tracks))

{}

This does not copy the track collection, but moves it from other to the new object – assuming
that m tracks itself offers a move constructor, which for example the standard template library
(STL) containers from C++11 do. While rvalue references really are relevant, their appearance
in user code will actually be minimal; common framework containers should however employ
them to protect users from writing inefficient code.

2.2. Threading Support
Threading support is now part of the C++ language itself, with new keywords such as
thread local. Before C++11 one had to use either platform-dependent threads (e.g. Linux kernel
threads, WIN32 threads) or libraries (e.g. pthreads, OpenMP) that were likely to still be platform
dependent. One of the few platform independent alternatives was TThread from ROOT[5].
C++11 brings not only the usual threading primitives (thread, mutex, atomic operations), but
suggests the use of a specific concurrency model: asynchronous tasks and futures. Asynchronous
tasks are light-weight threads that encapsulate a compute job as if it was a parallel function
call. The function call will return its result through a future as demonstrated here:

int input1 () ;
int input2 () ;
int combine (int i) {

future<int> i 1 = async (input1) , i 2 = async (input2) ;
return 12 ∗ i 1 . get () + 13 ∗ i 2 . get () ;

}

In this simple example, input1() and input2() will be run in parallel; async ::get() will return
when and what the function it calls has returned.

2.3. Hashed Containers
Almost all modern languages offer containers with hashed lookup: instead of comparing objects
themselves, an integral hash is constructed from the object, which is then used to compare and
identify objects (see .g. ROOT’s TExMap). This speeds up lookup dramatically when comparing
large blocks of data, e.g. for string-based lookup. Finally C++ is offering unordered map and
unordered set for this purpose. These classes have been available in the Technical Report 1 (TR1
[6]) section of several STL implementations for a while already; they have now been moved to
STL proper (i.e. into the namespace std).

Their use is trivial, simply replacing map by unordered map in most cases. If needed, hash()

can be specialized for the element type, or a hash functor can be supplied as third template
argument to the unordered map.

1 The prefix of the namespace std is omitted throughout this paper.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052056 doi:10.1088/1742-6596/396/5/052056

2

2.4. Initializer Lists
Initialization was inconsistent in previous versions of C++: some entities could be initialized
through, i.e. entity (value), some through scalar assignment, i.e. entity = value, some needed the
values to be enclosed in curly braces, i.e. entity = { value }. C++11 introduces an initialization
style that is uniform throughout all use cases. Even better, it enables the direct initialization of
STL containers that before could not be initialized as freely, requiring several calls to insertion
methods:

vector<int> v = {0 , 4 , 9 , 16 , 25} ;
l i s t <map<int , double>> = {{0 , 0 .} ,{1 , 1 .}} ;

2.5. Lambda Expressions
C++11 lifts function bodies to separate entities: lambda expressions. Most notable about
lambdas are the parameter connections between the surrounding code and the lambda, as well
as the specification of the lambda’s return type. Both make lambdas rather complex to read.
Lambdas can be used where calls or function objects are expected:

int f oo (int i , funct ion<int (int)> f
= [] (int x) −> int { return x / 2 ; }

) ;

defines a function that takes a functor, for which a default value has been specified.

2.6. User-Defined Literals
To aid with unit conversion and to clarify the meaning of literals, C++11 introduces the notion
of user-defined literals. They are regular literals (e.g. 12.3) suffixed by a marker, yielding e.g.
12.3 ft . A literal is introduced by a new operator kind, as in this example:

LengthInFeet operator”” f t (double v) { return LengthInFeet (v) ; }

takes the literal value as a double (i.e. in the above example the value 12.3) and converts it
into an object of type LengthInFeet. The return type can then implement the usual conversion
operators to other types (think LengthInMeters).

This feature can improve readability and clarity of values (value-safety alongside type-safety),
especially if very few literal types are agreed on. It can, however, also render code unreadable
and cause problems with missing conversions if used in an uncontrolled, excessive way.

2.7. Tuples
The influence of templates continues to grow in C++. The fundamental issues with them remain
unsolved:

• documentation is impossible, because allowed template arguments cannot be specified.

• templated code easily becomes verbose.

• compilers need to compile the same (templated, inlined) code again and again and again,
relying on linkers to map weak symbols.

• the syntax of templates is verbose and non-intuitive:

template <typename A, int I>
template <>
Klass<A, I > : : foo<double>() {}

Can you tell whether this code is correct?

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052056 doi:10.1088/1742-6596/396/5/052056

3

Despite these issues, a templated version of struct has been introduced as tuple. Its members
are addressed by order number, their types are specified as template arguments:

std : : tuple<int , MyClass , double> t (12 , MyClass () , 3 . 1 4 1) ;
double almostPi = std : get<2>(t) ;

This renders all data members anonymous and removes the expressiveness of member names.

3. Sanitizing Headers
3.1. The Importance of C++ Header Files
With an estimated 50 million lines of C++ code at CERN alone, C++ is part of the daily work
for all physicists, many of whom may be novice programmers. They need to use the same set of
central routines provided as a whole to the experiment (the “framework”), as well as additional
third-party libraries such as ROOT. One of the challenges of designing frameworks and libraries
is to make their usage as simple as possible. Usage in our environment really means interfacing
through programs – and this is where C++ headers come in.

The header files define how easy it is to use a software framework of library. Several
experiments have set up coding rules[2] that are especially sensitive to header files’ content,
given that they are exposed to the collaborations. In the past the problem always was that
while naming conventions are easy to check, language features are difficult to control. New tools
and the ability of compilers to cooperate with tooling plug-ins have opened new possibilities.

3.2. Requirements For and Implementation Of Header Checking
Several features of C++11 might be counted into the “advanced programmers” section. When
moving to C++11 it should be agreed within each experiment which features can be exposed in
interfaces and which can not, probably based on the C++ standard document.

Checking the header files for compliance with these rules is a nontrivial task: simple text
based parsers, for example using regular expressions, will have problems searching for lambda
expressions. Given that compilers “understand” the sources anyway, they are an obvious choice
for such a parser. Many compilers [7],[8] nowadays allow for the use of plugins, giving tools access
to their internal representation of code. As an example, clang, the LLVM-based C++ frontend
[9], can be used in a way similar to a library to parse source code, using the same invocation as
for compiling the sources. Once parsed, clang will give access to its abstract syntax tree (AST)
through a C or C++ interface. This AST can be trivially analyzed for embargoed constructs
such as lambda expressions in header files. Listing 1 shows a simple example of such a clang-
based plugin that scans code for the appearance of lambda expressions in function parameter
default values.

4. Conclusion
C++11 is bringing a lot of relevant improvements to C++. Examples are threading support
within the language, more concise source code in many cases, and additional compiler
optimizations allowed through new language constructs. While preparing for C++11 in large
frameworks, coding rules might have to be extended to ensure continued readability of sources.
Here, special care has to be taken for headers: they define the interfaces exposed to all users.

Compilers are a natural tool for enforcing rules on language feature selection. Implementation
of such a tool has transitions from expert-only to close to trivial. This is mainly due to new
compiler interfaces allowing tools to bind to compilers. An example of such a tool checking for
lambda expressions as default parameter values has been shown.

With the right tool set at hand, C++11 should be turned on for test builds, firstly without
the use of new language features. Builds cannot mix C++11 and C++2003 code; all externals

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052056 doi:10.1088/1742-6596/396/5/052056

4

have to use the same standard to be linked. Luckily, most C++ libraries can already be built
in C++11 mode (the language incompatibilities are minimal), ROOT being one of them.

A next phase of migration to C++11 might involve the use of C++11 features in
implementations only. As soon as C++11 features are exposed, tools become an issue. For
example, ROOT dictionaries cannot be built for C++11 types, neither with genreflex nor
rootcint. Luckily, ROOT 6 and its new interpreter cling will solve this. On the other hand,
no C++ documentation tool exists that can document C++11 code.

While C++11 is thus not yet ready for use in production, preparation can and should start
now, in order to be ready when the remaining tools are, and to actively define the used subset
of C++11 to safeguard the code base.

Source Code

1 #include ” c lang /Frontend/ FrontendPluginRegistry . h”
2 #include ” c lang /AST/ASTConsumer . h”
3 #include ” c lang /AST/ Recurs iveASTVis itor . h”
4 using namespace c lang ;
5

6 namespace {
7 class RecursiveNoLambdaAsserter :
8 public RecursiveASTVisitor<RecursiveNoLambdaAsserter> {
9 public :

10 bool Vis i tFunct ionDec l (const FunctionDecl ∗ FD) {
11 for (FunctionDecl : : pa ram cons t i t e r a t o r I = FD−>param begin () ,
12 E = FD−>param end () ; I != E ; ++I) {
13 i f ((∗ I)−>hasDefaultArg ()
14 && i sa<LambdaExpr>((∗ I)−>getDefaultArg ())) {
15 l lvm : : e r r s () << ”Lambda found in ”
16 << FD−>getNameAsString () << ”\n” ;
17 e x i t (1) ;
18 }
19 }
20 return true ;
21 }
22 } ;
23

24 class CXX11CheckerConsumer : public ASTConsumer {
25 public :
26 virtual bool HandleTopLevelDecl (DeclGroupRef DG) {
27 RecursiveNoLambdaAsserter RNLA;
28 for (DeclGroupRef : : i t e r a t o r I = DG. begin () , E = DG. end () ;
29 I != E ; ++I) {
30 RNLA. Vi s i tDec l (∗ I) ;
31 }
32 return true ;
33 }
34 } ;
35

36 class CXX11CheckerAction : public PluginASTAction {
37 protected :
38 ASTConsumer ∗CreateASTConsumer (Compi ler Instance &CI ,
39 l lvm : : Str ingRe f) {
40 return new CXX11CheckerConsumer () ;
41 }

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052056 doi:10.1088/1742-6596/396/5/052056

5

42 bool ParseArgs (const Compi ler Instance &,
43 const std : : vector<std : : s t r i ng >&)
44 { return true ; }
45 } ;
46 }
47

48 stat ic FrontendPluginRegistry : : Add<CXX11CheckerAction>
49 X(”cxx11−check ” , ” check c++11 coding r u l e s ”) ;

Listing 1. A trivial clang plugin exiting with error if a lambda is found as a function parameter’s
default value.

References
[1] ISO International Standard: Information technology — Programming languages — C++ 2011, ISO/IEC

14882:2011
[2] Paoli S C++ Coding Standard - Specification, CERN Writeup CERN-UCO/1999/207
[3] Stroustrup B 2012, C++11 FAQ http://www2.research.att.com/ bs/C++0xFAQ.html

[4] Hinnant H, Stroustrup B and Kozicki B, 2006, A brief introduction to rvalue references ISO SC22 WG21
document N2027=06-0097

[5] Brun R and Rademakers F, ROOT - An Object Oriented Data Analysis Framework, in Proceedings
AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.
See also http://root.cern.ch

[6] C++ Library Extensions 2005, ISO/IEC TR 19768
[7] GCC Plugins, 2010, http://gcc.gnu.org/wiki/plugins, http://gcc.gnu.org/onlinedocs/gccint/Plugins.html
[8] Clang Plugins, 2012, http://clang.llvm.org/docs/ClangPlugins.html
[9] Lattner Ch and Adve V, LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation,

in Proceedings of the 2004 International Symposium on Code Generation and Optimization (CGO’04)

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052056 doi:10.1088/1742-6596/396/5/052056

6

