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This paper explores new neutron star models based on spherically symmetric
space–time. We take into account the gravitational effects of f(T,T ) gravity,
in which T is the torsion and T is the trace of the energy–momentum
tensor. Field equations are evaluated by incorporating the off-diagonal
tetrad. In this paper, we discuss the detailed properties of compact star
candidates 4U1538–52,J0437–4,715,J0030+0451,and 4U1820–30, like energy
density, pressure profiles, gradients, anisotropy, energy conditions, equation
of state, speeds of sound, TOV equation, and compactification parameters.
We discuss all these characteristics using the quadratic cosmological model
of f(T,T ) gravity. We use the well-famed junction equations to evaluate
the unknown parameters. Our detailed and comprehensive graphical analysis
ensures that the model containing the anisotropic nature of stellar structures
is physically acceptable, regular, and stable.
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1 Introduction

The expansion of the Universe first came into discussion in 1998 (Riess et al., 1998).
This knowledge was genuinely adverse to the expectations of observers. Observers
became curious about the causes of this expansion at an accelerating rate. Eventually,
the cosmological constant “Λ” is held responsible for the aforementioned expansion. “Λ”
represents the existence of dark energy. This constant “Λ” is a negative pressure fluid
that provides the accelerating forces and opposes the NECs (null energy condition). Some
amendments in GR (general relativity) were suggested to elaborate the late-time cosmic-
accelerated behavior of the Universe by reducing the effects of DE (dark energy). GR is
based on the symmetric and torsion-free Levi-Civita connection (Aldrovandi and Pereira,
2012) (Γβνμ = Γ

β
μν and Tλ

μν = 0) and is well-known to deal with the local-level gravity. However,
GR malfunctions in the discussion of gravity at a broader aspect, the global level. This
malfunctioning ofGR’s global discussion of gravity generates the need for themodification of
GR. Most of these modifications were based on the geometric extension of GR. f(R) theories
were pioneers among these modifications (Sotiriou and Faraoni, 2010; Bamba et al., 2012a).
Here, R is the Ricci scalar used to express the Lagrangian function.
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TEGR (teleparallel equivalent to general relativity) is a
curvature-free torsion-based theory. A generalized version of TEGR
is f(T) gravity, which has close correspondence with the f(R) theory.
In the f(T) theory, torsion T defines its gravitational field action
rather than the Lagrangian function. This theory depends upon
the Weitzenbock connection, so it is a curvature-less theory and
has non-zero torsion (Aldrovandi and Pereira, 2012). Einstein
defined torsion-based gravity depending on space–time (Einstein
and Preuss, 1925). In setting up TEGR field equations, a tetrad plays
a key role instead of the metric function. Different tetrads give rise
to different field equations. Good tetrad and bad tetrad are two types
of tetrads known as off-diagonal and diagonal tetrads, respectively.
The application of a diagonal tetrad generates some solar system
limitations in f(T) gravity (Iorio and Saridakis, 2012a; Xie and
Deng, 2013a). Hence, the choice of a correct (good) tetrad frees
the function “f” from the imposition of the aforesaid constraints.
The use of a diagonal (bad) tetrad produces a theory that is only
well settled with the Birkhoff theorem, but the Schwarzschild
metric is not the solution to that particular theory. However,
an off-diagonal (good) tetrad does not impose any constraint
on the value of “f” or “T.” In this work, we use an off-diagonal
tetrad.

Being TEGR and GR equivalent theories, every solution of
TEGR is also the solution of GR. So, the problems which remain
unaddressed in GR also carry with TEGR. One of the problems
faced by researchers is of cosmological constant Λ, which serves as
the negative pressure fluid pΛ = −ρΛ. When exploring the present
behavior of accelerating the Universe, GR can only deal with it
by adding a scalar field as an extra term. The observed value
of Λ drastically varies from the expected value, and researchers
term that issue as a “fine-tuning problem.” According to the
collective view of researchers, this problem can only be dealt with
by modifying GR, including an extra scalar field, or by altering
the standard model of physics. Some theories suggest that GR
modification can describe the late-time cosmic expansion behavior
without the involvement of Λ. Regarding the early Universe, the
rapid expansion in observations is called the inflationary era. This
rapid expansion cannot be handled by the cosmological constant.
This situation can be elaborated in the best way by including
a scalar field. GR also does not provide any knowledge about
the beginning and nature of inflation. Modified gravity (Nojiri
and Odintsov, 2007; Sotiriou and Faraoni, 2010; Capozziello and
De Laurentis, 2011) collectively explains the inflationary era called
early-time expansion and the present DE era. The problem of
coincidence suggests that matter’s energy density and end DE of
the present day are the same. Some theorists also think that it
is not an issue but merely a coincidence. However, some GR
modifications may address this issue (Nojiri and Odintsov, 2007).
Famaey and McGaugh (2012) and Clifton et al. (2012) have pointed
out many more issues which cannot be addressed in detail by
GR. However, when one generalizes TEGR to the f(T) gravity
theory, this similarity is scattered as we consider Lagrangian as a
function of the torsion scalar (Ferraro and Fiorini, 2008; Fiorini and
Ferraro, 2009). Due to this reason, f(T) gravity is chosen as a strong
applicant to elaborate the acceleration aspect of Universe expansion
by eliminating the existence of DE (Li et al., 2011; Cardone et al.,
2012).

When we consider modeling stellar structures, we have to deal
with field equations. Like GR, f(T) gravity field equations have
second-order derivatives, while f(R) gravity equations contain
fourth-order derivatives (Nojiri and Odintsov, 2007), where
Palatini’s version of f(R) gravity consists of second-order equations.
So, EFEs in f(T) gravity, being of the second order, are easier to
solve than the equations of f(R) gravity. Contrary to GR, f(T)
gravity equations of motion are non-variant under the Lorentz
transformation (Li et al., 2011), so they display an extra degree of
freedom.Therefore, the f(T) theory tremendously explains thewhole
scenario of cosmic acceleration on a wider scale of observations,
like the clustering of galaxies (Camera et al., 2014). However,
the solar system and pulsar observations show good agreement
with the GR theory (Will, 2006). Iorio and Saridakis (2012a) and
Xie and Deng (2013a) attract attention toward constraints in the
solar system dealing with f(T) gravity. However, in this paper,
as mentioned previously, we choose an off-diagonal tetrad to
eliminate constraints to construct structures of compact objects
of anisotropic nature in f(T,T ) gravity formulation by taking
into account f(T,T ) = αTn(r) + βT (r) +ϕ, where T is a trace of
EMT. In Dent et al. (2011), BTZ black hole solutions are built in
the f(T) theory to elaborate the three-dimensional f(T) model’s
effects. Afterward, a range of solutions for charged, isotropic, and
anisotropic fluid showing the presence of compact objects has been
formulated in f(T) gravity (Boehmer et al., 2011; Zubair and Abbas,
2016). f(T,T ) gravity is very similar to f(R,T) gravity, the only
difference being that the f(T,T ) theory utilizes T in place of
R in f(R,T) gravity. Some considerable literature reports explain
the context of f(T,T ) gravity (Salako et al., 2020; Zubair et al.,
2021).

Compact stars are formed during the evolutionary stage of
ordinary stars. At this stage, radiating pressure due to nuclear
fission taking place inside the star does not resist the gravitational
forces, and stars collapse under their own weight. This collapsing
of the ordinary star is famously called stellar death, which
results in the formation of a new star called a compact star.
At this stage, all the reservoirs of helium are burnt up, which
stops the fusion process, so the temperature inside the star
decreases with the increase in internal pressure. Due to this
increase in inner pressure, all matter of the star combine to
a very high density. Compact stars have a very high density
and smaller radii as compared to ordinary stars. High-density
compact objects like a pulsar and many other spinning stars
having strong magnetic fields are among the main discoveries
of astrophysics. One belief about compact objects is that their
matter composition is of subatomic particles like baryons, leptons,
mesons, and strange quark matter. However, exact observational
data about the composition of these high-density objects are not
available. Therefore, the native problem in the construction of
their configurations faced by astrophysicists is the determination
of geometry used and interior surface matter distribution. Some
valuable works are present in the literature on the study of compact
stars (Mustafa et al., 2020; Mustafa et al., 2021; Maurya et al.,
2022). In the background of other modified theories of gravity,
interesting aspects related to astrophysical compact objects have
been extensively explored (Mustafa et al., 2022a; Mustafa et al.,
2022b; Mustafa et al., 2023).
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Initial studies write that matter distribution on spherical
symmetry is based on isotropic (perfect) fluid. Due to this isotropic
condition, (pr = pt) on EFEs is applied as tangential and radial
components of pressure coincide with each other. However, Jeans
(1922) predicted the unusual conditions, which are dominant
inside the interior of stellar objects, due to which involvement
of the anisotropic factor was suggested for a good understanding
of the distribution of matter inside heavenly objects. Anisotropy
(Δ = pt − pr) is simply a measurement of deviation from isotropy.
In Herrera and Santos (1997) and Mak and Harko (2002), a huge
amount of detailed material is available to study the effects of
anisotropy in stellar structures under spherical symmetry. In a
relativistic stellar system, anisotropy is due to the existence of a
variety of fluids, like a superfluid, magnetic or external field, phase
transition, rotational motion, and other fluids. This work is under
a static and spherically symmetric system of stellar objects, so
anisotropy may arise due to the existence of superfluid or the elastic
nature of superfluid or anisotropic fluid (Sawyer, 1972; Sokolov,
1980; Herrera and Santos, 1997). Ruderman’s (1972) prediction
in his pioneer study of anisotropy in astrophysics is that it is
an inherent property in high-density nuclear matter distribution.
Bowers and Liang (1974) predicted that anisotropy is the result
of strong interactions superconductivity and superfluidity inside
heavily dense matter. It is of note that in a diverse situation when
the radial component pr is not equal to the tangential component
pt of pressure (pt ≠ pr), anisotropy rises. This form of pressure is
called anisotropic pressure. When the spatial gradient of the scalar
field is non-zero, then the physical system generates anisotropic
pressure. Herrera and Santos (1997) first discussed the detailed
effects of local-level anisotropy on the self-gravitating system. After
that, the effects of local anisotropy were discussed by Ivanov
(2002) and Maurya et al. (2016) on static bodies having spherical
symmetry.

The schematic study of this paper is as follows: in the IInd section
of this paper, we discuss the basics of f(T,T ) gravity. The IIIrd

section consists of the generalized solutions of f(T,T ) gravity FEs. In
the IVth section, we evaluate the unknown parameters by matching
conditions. The Vth section discusses the physical analysis of the
evaluated results. In the VIth section, we conclude of the discussion
of the study on compact objects.

2 Basic concepts of f(T,T ) gravity and
derivation of field equations

Since TEGR is a very close modification of GR gravity,
factually, f(T) gravity is far different from TEGR as it is based on
the function of torsion T. So, the description of f(T) gravity is
considerably different from the curvature-dependent f(R) gravity.
In particular, the action elaborates on the Lagrangian function of
gravity.The action (Harko et al., 2014) describing f(T,T ) is given as
follows:

s = ∫dx4e{ 1
2k2

f (T,T ) +L(M)}, (1)

where L(M) expresses the Lagrangian density and f is the function
based on torsion T and trace T . Here, e = det(eAμ ) = √−g and
k2 = 8πG = 1. The generalized version of EFE is derived from

Eq. 1 expressing the Lagrangian, which is presented as follows
(Harko et al., 2014):

ei
γSγ

μη fTT∂μT+ ei
γSγ

μη fTT ∂μT + e−1∂μ (eeiγSγμη) fT − eη
iTγ

μiSγ
ημ fT

− 1
4
ei
η f + fTω

γ
ημSγ

ημ −
fT
2
(eηiTi

η + pteη
i) = −4πeηiTi

η. (2)

Here, Tν
i is the energy–momentum tensor, and derivatives of

function f are fT =
∂f
∂T
, fTT =

∂2 f
∂T2 , fT =

∂f
∂T , and fTT =

∂2 f
∂T∂T . Other

basic concepts used in Eq. 2 like torsion contorsion and super-
potential are defined as follows (Harko et al., 2014):

Tλ
μη = eϑ

λ (∂μe
ϑ
η
− ∂ηe

ϑ
μ
) +ωγ

ημ, (3)

Kμη
λ = −

1
2
(Tμη

λ −Tημ
ρ −Tλ

μη) , (4)

Sλ
μη = 1

2
(Kμη

λ + δ
μ
λT

γμ
γ − δ

η
λT

γμ
γ) . (5)

Like TEGR, the Lagrangian density, depending upon the torsion T,
is written, in general, as follows (Harko et al., 2014):

T = Tλ
κηSλ

κη. (6)

Since spherical symmetry is a convenient way to start with the study
of compact objects, which is written as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (7)

where ν(r) and λ(r) the gauge ingredients describing the gravity are
the radial r functions.

Importantly, in TEGR, the prescription of the tetrad field
harmonizes both the gravitational field and the reference frame. In
the calculation of field equations, the tetrad field plays a defining
role. Tamanini and Boehmer (2012) nominated two types of tetrads:
off-diagonal and diagonal. They suggested that the use of a diagonal
tetrad imposes few solar system limitations, as expressed in Iorio and
Saridakis (2012a) and Xie and Deng (2013a). Here, in the current
study, we incorporate an off-diagonal tetrad to reduce the impact of
limitations that were discussed in Iorio and Saridakis (2012a) and
Xie and Deng (2013a). The off-diagonal tetrad is given as follows:

eηγ =
((

(

e
ν(r)
2 0 0 0

0 e
λ(r)
2 sinθcosϕ rcosθcosϕ −r sinθ sinϕ

0 e
λ(r)
2 sinθ sinϕ rcosθ sinϕ r sinθcosϕ

0 e
λ(r)
2 cosθ −r sinθ 0

))

)

,

(8)

where the notation e is used for eηγ, which is equal to eν(r)+λ(r)r2 sinθ.
In this current study, we utilize the off-diagonal tetrad by taking
ωγ

ημ = 0. Fluid distribution of an anisotropic nature is defined as

T(m)νμ = (ρ+ pt)uνuμ − ptgνμ + (pr − pt)vνvμ, (9)

where uν = e
μ
2 δ0ν and vν = e

ν
2 δ1ν, and ρ, pr, and pt represent the

function forms of the energy density and radial and tangential
pressures, respectively. Here, T(m)νμ = [ρ,−pr,−pt,−pt]. The trace term
of the energy–momentum tensor is expressed as

T = δνμT
μ
ν . (10)
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The expression of torsion T(r) calculated from equation (6) and its
derivative T′(r) relative to “r” are written as

T (r) =
2e−λ(r)(e

λ(r)
2 − 1)(e

λ(r)
2 − rν′ (r) − 1)

r2
, (11)

T′ = −
4e−λ(r) (e

λ(r)
2 − 1)(e

λ(r)
2 − rν′ (r) − 1)

r3
+
e−

λ(r)
2 λ′ (r)(e

λ(r)
2 − rν′ (r) − 1)

r2

−
2e−λ(r) (e

λ(r)
2 − 1)λ′ (r)(e

λ(r)
2 − rν′ (r) − 1)

r2

+ 1
r2
2e−λ(r) (e

λ(r)
2 − 1)[ 1

2
e

λ(r)
2 λ′ (r) − rν″ (r) − ν′ (r)] . (12)

The generalized field expressions of ρ, pr, and pt in f(T,T )
gravity are obtained by using Eqs 2, 7, 8.

ρ = −
e−

λ(r)
2 (e−

λ(r)
2 − 1)( fTTT

′ + fTT T ′)

r

− 1
2
fT(−

e−λ(r) (1− rλ′ (r))

r2
− 1
r2
+
T (r)
2
)+

f
4
+ 1
2
fT × (pt + ρ) , (13)

pr = (
e−λ(r) (rν′ (r) + 1)

r2
− 1
r2
+
T (r)
2
)

fT
2
−

f
4
− 1
2
fT (pt − pr) ,

(14)

pt =
1
2
e−λ(r)(− e

λ(r)
2

r
+
ν′ (r)
2
+ 1
r
)( fTTT

′ + fTT T ′)

+ [e−λ(r)((
ν′ (r)
4
+ 1
2r
)(ν′ (r) − λ′ (r)) +

ν″ (r)
2
)+

T (r)
2
]
fT
2
−

f
4
,

(15)

where T represents the torsion and T represents the trace of the
energy–momentum tensor.

3 Generalized solutions

Solutions of the field equations mainly depend upon
the functions of gravitation-responsible components of the
metric space. We take the function λ(r) given by Solanki and
Jackson Levi Said (2022)

λ (r) = ( cr
2

R2 + 1)
2
. (16)

Here, c,R are constants with c,R > 0, and R is the radius at
the boundary of the star. The potential metric (16) is a valid
physical concept since it remains non-singular when c > 0 within
the interior of a star, where 0 ≤ r ≤ R. This metric potential (16) is
highly beneficial for describing various astrophysical phenomena.
It has been used in simplified forms, such as in (16), to describe
compact stars under general relativity (Sarma and Ratanpal, 2013).
Conversely, its inverse has been utilized to depict wormholes in f (T)
gravity (Jamil et al., 2013). Hence, the parameter c plays a crucial
role in characterizing neutron stars that exhibit realistic masses.
As discussed in the section, it is evident that the model parameter
c holds significant physical importance, given its considerable

influence onmodeling stellar systems.Now,we select anothermetric
potential eν(r) such that ν′(r) has the following form (Solanki and
Jackson Levi Said, 2022):

ν′ (r) =
r5 z
R6 +

r3y
R4 +

rx
R2

cr2

R2 + 1
, (17)

where x, y, z, and R are constant parameters, where R represents
the radius of a star and r is the radial coordinate. It is important
to note that the constants x, y, and z have no relation to the
space coordinates. Rather, they represent the model parameters
and should not be confused with spatial coordinates. Integration of
Eq. 17 results in the following form:

eν(r) = ke
( r

2(cy−z)
2c2R2
+ r4z

4cR4
)
( cr

2

R2 + 1)
c2x−cy+z

2c3
. (18)

The function f defines themodified form of f(T,T ). In this study, we
take the most generic modification of f(T,T ) gravity, which is very
similar to the model suggested by Harko et al. (2014):

f (T,T ) = αTn (r) + βT (r) +ϕ, (19)

where α β are arbitrary constants and ϕ is a cosmological constant.
If we set n = 2 and ϕ = 0, this model reduces to the model
used by Harko et al. (2014). This model 19 can be reduced to
some generic torsion-based theories like f(T) gravity and TEGER
depending upon the choice of parameters α,β and n. Taking β = 0
for different choices of n, we retrieve the f(T) gravity, and by
choosing α = 1,n = 1,ϕ = 0,andβ = 0, we retrieve the basic TEGER.
In this study, we use the value n = 2 by taking the non-linear
model of f(T,T ) gravity. Results are also good and acceptable
for n = 1 (Zubair et al., 2021), but for other integral values of
n, results do not lie within the admissible range. Moreover, by
incorporating the trace term T = ρ− pr − 2pt, it is possible to
investigate the minimal coupling between torsion and matter
contributions. Prior studies have focused on compact star models
within the context of f(R,T) = R+ λT, which exhibits minimal
coupling between curvature and torsion components (Zubair et al.,
2016; Maurya et al., 2019; Rahaman et al., 2020; Waheed et al.,
2020). Such investigations are critical for exploring compact star
models within a minimally coupled torsion-based framework and
for generating new interpretations of possible outcomes. In this
study, ϕ denotes the cosmological constant (Behar and Carmeli,
2000), which defines the various phases of Universe expansion. A
universe with a positive ϕ accelerates, whereas a negative ϕ results
in deceleration, stopping, and reversing of the expansion (Carmeli
and Kuzmenko, 2001). According to calculations, the value of the
cosmological constant must be ϕ = 2.036× 10−35s−2 (Carmeli and
Kuzmenko, 2001). Furthermore, in their work on the linear model
f(T,T) = αT(r) + βT(r) +ϕ, Pace and Said (2017) employed the same
positive value of ϕ to investigate quark stars within f(T,T) gravity. In
this study, we also use the positive calculated value of ϕ to examine
the accelerated phase of Universe expansion. By using Eqs 11–15, 19
and putting the metric components from Eqs 16, 18, we obtain the
simplified expressions of ρ,pr,andpt as follows:

Frontiers in Astronomy and Space Sciences 04 frontiersin.org

https://doi.org/10.3389/fspas.2023.1203777
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Caliskan et al. 10.3389/fspas.2023.1203777

ρ =−
4(1− 3β

4
)

8(−β2 + 3β− 2) r4

×[[−
αl5 (r)2

n+2 (n− 1)nr4R4

(l1 (r) − 1) (−cr
2R4 (l1 (r) − 1) −R

6 (l1 (r) − 1) + r
6z+ r4R2y+ r2R4x)2

× [c4r8 + 4c3r6R2 − c2r4R4 (4l1 (r) − 9) + cr
2 [−r4R2y (l1 (r) − 2) − r

2R4x (2l1 (r) − 3)

−2R6 (3l1 (r) − 4) + r6z] −R2 (l1 (r) − 1) (−2r6z− r4R2y+ 2R6)] +
αl3 (r)2

nnr2

l22 (r)R
4 (cr2 +R2)

[2l2 (r)R
4 (cr2 +R2) − 4cr2R4 + r (l1 (r) − 1) (r

5z+ r3R2y+ rR4x)] + αl4 (r)2
nr4 + r4ϕ]

+ βr2[
αl3 (r)2nn

l22 (r)
(
r2 (l1 (r) − 2) (r

4z+ r2R2y+R4x)
cr2R4 +R6 + 2 (l2 (r) − 1))

+αl4 (r)2
nr2 + r2ϕ]], (20)

pr =
(l2 (r) − 1)

8(β2 − 3β+ 2) (l2 (r) − 1)(
r6z+r4R2y+r2R4x

cr2R4+R6 − l2 (r) + 1)
2

×[[2[
αβl5 (r)2n (n− 1)nr2

R4(cr2 +R2)2
(c(3r6z+ r4R2y− r2R4x) + 5r4R2z

+3r2R4y+R6x) + αl4 (r)2n [(β− 2) l22 (r) + 2l2 (r) (n− 1) (β+ βn− 2)

−(2n− 1) (β+ βn− 2)] + (β− 2)ϕ(l2 (r) − 1)
2] −

αβcl5 (r)2
n+2n (2n− 3) r2

cr2 +R2 ]

×
r(r5z+ r3R2y+ rR4x)

R6 ( cr
2

R2 + 1)
[[

[

−
αβcl4 (r)2

n+2nr2 (l2 (r) (n− 1) − 2n+ 3)

R2 ( cr
2

R2 + 1)
+ αl4 (r)2

n [−4β+ 2 (β− 2)

× l22 (r) (n− 2) + l2 (r) (8 (β− 2) − 2βn
2 + (20− 9β)n) + 2βn2 + (9β− 16)n+ 8] − 4 (β− 2)ϕ(l2 (r) − 1)

2]

+
(r6z+ r4R2y+ r2R4x)2 (2 (β− 2)ϕ (l2 (r) − 1) − αl4 (r)2

n (2β+ 2 (β− 2) l2 (r) (n− 1) − 5βn+ 8n− 4))
l22 (r)R

12 ],

(21)

pt =
1

8(l2 (r) − 1)
2(−l2 (r) +

zr6+R2yr4+R4xr2

R6+cr2R4 + 1)
2
(β− 2) (β− 1)

×[[

[

2nl5 (r)nr
6 (l1 (r) − 1)

R12(cr2 +R2)3
(zr4 +R2yr2 +R4x)3α (β− 1) −

(l2 (r) − 1) (zr5 +R2yr3 +R4xr)

( cr
2

R2 + 1)R
6

×[−2n+3l4 (r)αl22 (r) + 2
n+3l4 (r)nl22 (r)α− 3 2n+1nl4 (r)αβl22 (r) + 2

n+2l4 (r)αβl22 (r)

−8ϕl22 (r) + 4βϕl
2
2 (r) − 2

n+3n2l4 (r)α− 2
n+3l4 (r)α− 13 2n+1nl2 (r) l4 (r)α

9 2n+1l4 (r)nα+−2
n+3l2 (r) l4 (r)n

2α+ 2n+4l2 (r) l4 (r)α+ 3 2n+1l4 (r)n
2αβ

+2n+2l4 (r)αβ− 11 2nnl4 (r)αβ2n+3l2 (r) l4 (r)αβ− 3 2n+1n2l2 (r) l4 (r)αβ

+15 2nl2 (r) l4 (r)nαβ+ 16l2 (r)ϕ− 8l2 (r)βϕ+ 4βϕ− 8ϕ

−
2n+2cnr2l4 (r)α (−4βn+ 6n+ l2 (r) (n (β− 2) + 1) − 3)

( cr
2

R2 + 1)R
2

−
2n+1n2r2l5 (r)

R4(cr2 +R2)2

× [xR6 + 3r2yR4 + 5r4zR2 +c(3zr6 +R2yr4 − r2R4x)]α (β− 1)] r+

×
(zr6 +R2yr4 +R4xr2)2

l22 (r)R
12 [(l2 (r) − 1) [2 (l2 (r) − 1) (β− 2)ϕ − 2

nl4 (r)α(2 (β− 1)n
2 ++(9− 6β)n

+ 2 (β− 2) + l2 (r) (−2β+ n (3β− 5) + 4))} −
2n+2cnr2 (n (l1 (r) − 2) + 1) l5 (r)α (β− 1)

cr2 +R2 ]

+ (l2 (r) − 1)2[
2n+2cl5 (r)nr2α (2n (β− 2) + β+ 2)

cr2 +R2

+ 2[−
2nnl5 (r) (xR6 + 3r2yR4 + 5r4zR2 + c(3zr6 +R2yr4 − r2R4x))α (n (β− 2) + 1) r2

R4(cr2 +R2)2

− 2nl4 (r)α(r (2n (β− 1) − β+ 2) l22 (r) − (2n
2 − 3n+ 1) (β− 2) + 2l2 (r) (n− 1)2 (β− 2))

+(l2 (r) − 1)2 (β− 2)ϕ]]] . (22)

4 Matching of the interior metric with
the exterior metric to evaluate
unknowns

At the boundary surface, r = R and the matching of the interior
and exterior metrics is essential to make the unknowns known. In
this study, wematch the interior space–time (Eq. 7) with the exterior
Schwarzschild space–time (Eq. 23) to evaluate k.We evaluate α from
pr(r = R) = 0. The exterior Schwarzschild metric is given as

ds2 = (1− 2M
R
)dt2 −(1− 2M

R
)
−1
dr2 − r2 (dθ2 + sin2 θdϕ2) . (23)

Matching Eqs 7, 23 we obtain the following system of equations.

( cr
2

R2 + 1)
2
= (1− 2M

R
)
−1
, (24)

ke
( r

2(cy−z)
2c2R2
+ r4 z

4cR4
)
( cr

2

R2 + 1)
c2x−cy+z

2c3
= 1− 2M

R
, (25)

pr (r = R) = 0. (26)

The solution of the aforementioned Eqs. 25, 26 gives the value of
k$,$ and Eq. 26 gives the value of α having the following expression
forms:

k = e−
2cy+cz−2z

4c2 (c+ 1)−
4c3+c2x−cy+z

2c3 , (27)

α =
(β− 2) (L− 1)21−nϕ(c (−L) + c− L+ x+ y+ z+ 1)2( (L−1)(c(L−1)+L−x−y−z−1)

(c+1)3R2
)
−n

N
,
(28)

where

L =√(1+ c)2,

N =2c4 ((β− 2) (L− 3) + 2βn2 − 4n) + 2c3 [2 (β− 2) (2L− x− y− z− 6)

+ 8βn2 + n ((β− 2)x+ (β− 2)y+ βz− 2z− 16 ] − 2c2 [2β (4L− 9)n2

− n (−5β+ 5βL+ 8L+ 3 (β− 2)x+ 3 (β− 2)y+ 3βz− 6z− 28 − (β− 2)]

+ (9L− 6x− 6y− 6z− 19)] − c[4βn2 ((2L− 3)x+ (L− 2)y+ 6L− z− 8)

+ n (8β− 8βL+ x (β (3L− 1) − 20L+ 28) + y (−5β+ 7βL− 20L+ 28)

+ 11βLz− 20Lz− 32L− 9βz+ 28z+ 48) − 4 (β− 2) (2 (L− 2)x+ 2 (L− 2)y

+2Lz+ 5L− 4z− 7)] + 4β (L− 1)n2 × (y+ 2z− 2) − n[−2β+ 2βL+ x2

× (β (2L− 5) − 4L+ 8) + x (−13β+ 11βL+ 2y (β (2L− 5) − 4L+ 8) )

+ 2z (−5β+ 2βL− 4L+ 8) − 20L+ 20) + y2 (β (2L− 5) − 4L+ 8) + y

× (β (15L− 17) + 2z [β (2L− 5)− 4L+ 8] − 20L+ 20) + 2βLz2 − 4Lz2

+ 19βLz− 20Lz− 16L− 5βz2 + 8z2 − 21βz+ 20z+ 16+ 2 (β− 2)

× (L− 1) (x+ y+ z+ 2)2.

For other constants, i.e., c,x,y,z,ϕ,β, we choose suitable values, as
given in Table 1.

5 Physical analysis and discussion of
the calculated results

In this section, we analyze the results of our study by
discussing the physical behavior of some properties of neutron stars
(4U1538–52, J0437–4715, J0030 + 0451, and 4U1820–30) under the
parameters of f(T,T ) gravity by coupling the trace term with the
torsion and using the off-diagonal tetrad.

5.1 Metric potentials and energy density

As the responsibility of gravitational effects is mainly dependent
upon the metric function, for the study of compact objects, these
metric functions must be positive and smooth. As can be easily
verified from their graphical results (graphed in the left panel of
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TABLE 1 Values of constants of strange stars for n = 2, y = −0.04, z = −0.0009, ϕ = 2.036 × 10−35, and β = −30 by choosing different values of c and β in the case of
the off-diagonal tetrad.

Name of the star Observed mass Predicted radius c x k α

4U1538–52 0.827 10.060 0.32 0.9 0.391689 −1.22734 × 10−30

J0437–4715 1.440 13.972 0.28 0.8 0.432662 −4.01855 × 10−30

J0030 + 0451 1.5 12.350 0.29 0.95 0.399381 −1.55632 × 10−30

4U1820–30 1.460 10.602 0.42 1.35 0.284537 −1.34009 × 10−30

FIGURE 1
Metric potential (left) and density (right) versus radial coordinate r.

Figure 1), eλ(r) = 1 (at the center) and eν(r) > 0 (at the center) show
positive and regular monotonic responses throughout the interior
of the stellar system.

The importance of verifying the physical validity of stellar
configurations in compact star research cannot be overstated. Any
study lacking physical acceptability would render any effort invested
in it meaningless. Density serves as a crucial parameter for ensuring
the validity of such studies.The validity of the distribution of matter
can be determined from the behavior of the energy density ρ, as
shown graphically. For the physical presence of a compact star, the
energymust be positive,maximal at the center, andhave a decreasing
trend with a minimal value at the boundary. The right graph in
Figure 1 depicts the visualization of the behavior of energy density
for our neutron star candidates, which falls completely within the
required criteria.

5.2 Pressure profiles

It is important to consider pressure components as another
crucial parameter when assessing the validity of a stellar model.
By following a similar trend as the density profile, the realistic
distribution of stellar pressure profiles should also contain the
positive and maximum values at the center and then decreasing
propagation throughout the stellar system with a minimum value
at the boundary; in addition, pr|r=R = 0; otherwise, pt& pr remain
positive and pt > pr. Figure 2 shows the graphical representation of
the pressure profiles. It should be noted that the behavior of pressure

profiles is a genuine indicator of the physical existence of a stellar
system in our case.

5.3 Gradients and anisotropy profiles

The graph of gradients is plotted in the right of Figure 3. It is
required that for the compact formation of stellar configuration,
the gradients should attain the negatively increasing trend starting
from zero at the center to the boundary of the stellar configuration.
In our study, it can easily be seen that dρ

dr
|(0<r≤R) ≤ 0,

dpr
dr
|(0<r≤R) ≤

0, dpt
dr
|(0<r≤R) ≤ 0. Our analysis led us to the conclusion that all the

derivatives ofmatter density, radial pressure, and tangential pressure
are negative and display a decreasing trend. The negative values
of these gradients indicate that the solutions we have obtained
are physically feasible and satisfy a fundamental requirement for
celestial modeling.

Anisotropy is another important property of the stellar system
that justifies the stability system.The existence of positive anisotropy
(Δ > 0) is basically a repulsive force against the inward gravitational
force and keeps the system stable. Basically, the distribution of
matter all over the stellar may not be uniform, which may cause
the existence of anisotropy. The pressure profiles at the center of
the star are identical, due to which Δ ∣ r=0 = pt − pr = 0, but it attains
the peak value at the boundary r = R. The graphical conduct of the
anisotropic profile is given in the right graph of Figure 3. It can easily
be verified that it starts its propagation from zero at the center and
attains the maximum value, and afterward, it again starts to decline
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FIGURE 2
Radial and tangential pressures versus the radial coordinate r.

FIGURE 3
Gradients (left) and anisotropy (right) versus the radial coordinate r.

and approaches zero for some candidates of neutron stars and
subsequently shows an uplift in the value at the boundary. However,
the overall trend is positive (Δ > 0)within the stellar system to justify
the stability.

5.4 Energy conditions

The real essence of the matter in the stellar system is studied
by energy constraints. The positive behavior of energy constraints
in the complete spread of the stellar body justifies and ensures the
real and physically acceptable distribution of matter of anisotropic
form. Energy limits named SEC,WEC,NEC, andDEC should justify
the given following conditions (29–32) during propagation in the
compact formation of stellar bodies.

SEC: ρ+ pγ ≥ 0, ρ+ pr + 2pt ≥ 0, (29)

WEC: ρ ≥ 0, ρ+ pγ ≥ 0, (30)

NEC: ρ+ pγ ≥ 0, (31)

DEC: ρ > |pγ| , (32)

where γ = r, t. The graphical representation of energy conditions
in Figure 4 indicates the real formation of compact matter in our
neutron star candidates in the gravitational effects of f(T,T ) gravity.

5.5 Sound speeds

Sound speeds v2r & v2t are two other important aspects to study
the stability of the compact stellar system. The cracking concept
introduced by Herrera for the anisotropic nature of matter is an
addition to the stability discussion of the stellar system.This cracking
concept (Herrera, 1992) defines the stability by two constraints 0 <
v2r & v2t < 1, where c = 1 is the speed of light, which means both the
sound speeds must be less than c, the speed of light. Expressions for
sound speeds are as follows:

v2r =
dpr
dρ

& v2t =
dpt
dρ
. (33)

According to the stability region defined in Abreu et al. (2007), the
region is stable, in which v2r > v2t , and there is no change of sign in
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FIGURE 4
Energy conditions versus the radial coordinate.

v2r − v2t . After that, Andreasson (2008) generalized this criterion limit
as 0 < |v2t − v

2
r | < 1 by introducing the concept of no cracking where

the region is stable. Figure 5 and the right of Figure 6 justify that all
the stability limits are justified in our study of neutron stars.

5.6 TOV forces

Stability and equilibrium of the stellar system are also discussed
and recommended with the help of well-famed criteria suggested in
the Tolman–Oppenheimer–Volkoff (TOV) equation (Oppenheimer
and Volkoff, 1939; Tolman, 1939). The TOV equation in its most
common version of GR is defined as

dpr
dr
+
Mg (r) (ρ+ pr)

r
e

ν−λ
2 −

2(pt − pr)
r
= 0, (34)

where Mg(r) is the gravitational mass present inside the radius of
stellar radius r and can be evaluated by using the Tolman–Whittaker
formula and FEs, which is given by

Mg (r) = 4π∫
r

0
(Tt

t −T
r
r −T

θ
θ −T

ϕ
ϕ) r

2e
ν+λ
2 dr. (35)

Eq. 35 can mold its form given by the following expression:

Mg (r) =
2
2
re

λ−ν
2 ν′. (36)

By substituting the value ofMg(r) from Eq. 36 into Eq. 34, we obtain

dpr
dr
+
ν′ (ρ+ pr)

r
−
2(pt − pr)

r
= 0. (37)

Equation 37 is the generic GR version of the TOV equation, but in
the case of f(T,T ) gravity, an extra term is available, so Eq. 37, in the
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FIGURE 5
Sound speeds v2sr (left) and v2st (right) versus the radial coordinate r.

FIGURE 6
Forces (left) Fh(solid–positive), Fg(solid–negative), Fa(dotted), Fe(dot-dashed) and casuality conditions (right) versus the radial coordinate.

case of f(T,T ) gravity, takes the following form:

dpr
dr
+
ν′ (ρ+ pr)

2
−
2(pt − pr)

r
−
− 1

4
β dpr

dr
− β dpt

dr
+ 1

4
β dρ
dr

β
2
+ 4π

= 0, (38)

Fg + Fh + Fa + Fe = 0, (39)

where

Fg = −
ν′ (ρ+ pr)

2
, Fh = −

dpr
dr
, & Fa =

2(pt − pr)
r
,

& Fe = −
− 14β

dpr
dr − β

dpt
dr +

1
4β

dρ
dr

β
2 + 4π

. (40)

TOV forces define the stability of the systemby escaping it to collapse
to a singular point during the gravitational forces as these forces
cancel each other’s effect by giving the net impact equal to zero. The
balancing behavior of TOV forces in our study is shown in the right
graph of Figure 6.

5.7 Equation of state profiles wr & wt

The matter composition of the stellar body may be real
or dark matter. It is very important to discuss the essence
of matter composition. Limits on the components of EoS
0 ≤ wr < 1,& 0 < wt < 1 guarantee the real nature of matter
composition. If the compact star is composed of realistic anisotropic
matter, the obtained results will satisfy this stability criterion.
Violation of the limits defined for EOS could potentially indicate
the presence of exotic matter or dark matter. The expression for EoS
is given as

wr =
pr
ρ

& wt =
pt
ρ
. (41)

One can easily be satisfied by the behavior of EoS parameter
graphs, which are shown on the graph on the left of Figure 7, that
our stellar system under study shows the realistic composition of
matter.
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FIGURE 7
EoS wr,wt (left) and mass function (right) versus the radial coordinate r.

FIGURE 8
Compactness (left) and redshift (right) versus the radial coordinate r.

5.8 Mass function redshift and
compactness profiles

The ratio m(r)
R

defines the compactness level of the stellar system,
where m(r) is the mass function representing the total mass of the
star, which can be evaluated by the following formula:

m (R) = 4π∫ r2ρdr. (42)

Using (42), one can evaluate the compactness u(r), which is given
in Eq. 43, which is further used in the evaluation of the redshift
function zs in Eq. 44. u(r)& zs are in the following equations:

u (r) =
m (R)
R
, (43)

zs = (1− 2u)
− 1

2 − 1. (44)

Bowers and Liang (1974) defined the peak limit for the
compactness parameter as u(r) = m(r)

R
< 4

9
. Andreasson (2008)

generalized this limit for the anisotropic composition of matter.
The maximum limit for the redshift parameter was set by Buchdahl
(1959) as zs ≤ 4.77. The regular behaviors of mass function,
compactification, and redshift are plotted in the right graph of
Figure 7 and Figure 8.

6 Conclusion

It is important to mention that the potential component of
interior geometry is crucial in the study of stellar objects. In
this study, we used the function λ(r) = ( cr

2

R2 + 1)
2
as a defining

function, which has been used in previous studies (Jamil et al.,
2013; Sarma and Ratanpal, 2013; Solanki and Jackson Levi Said,
2022). However, in this study, it is the first time it is being
coupled with trace and torsion. The role of c is critical in modeling
the stellar structure. Additionally, the function f(T,T ) = αTn(r) +
βT (r) +ϕ is of primary importance and generalizes the study for a
broader spectrum. We can retrieve the basic formalism of various
modifications of gravities. For instance, α = n = 1 andβ = ϕ = 0
lead us to the original teleparallel gravity, where α ≠ 0,1andβ = 0
lead us to the f(T) gravity. On the other hand, α ≠ 0 andβ ≠ 0
maintain the current form of coupling between trace and torsion.
The degree of f(T) modification is defined by integral values
of n. By varying the values of n, one can check the stable
degree of torsion modifications. According to our observations in
the current analysis, f(T,T ) gravity is stable only for n = 1& 2
(Zubair et al., 2021). So, the model f(T,T ) = αTn(r) + βT (r) +ϕ
bears some stability limitations for n ≥ 3 (Zubair et al., 2021). Thus,
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as a whole, this study represents the most general form of gravity
modifications.

This study comprises the study of the anisotropic nature of
neutron star candidates 4U1538–52, J0437–4,715, J0030 + 0451,
and 4U1820–30. In this study, we elaborate the properties of
compact objects under the formalism of f(T,T ) gravity, which
is composed of the matter term T coupling with torsion T by
taking into account the off-diagonal tetrad. FEs are calculated
by using the spherically symmetric space–time. The metric
functions we chose for this were also studied by Solanki and
Jackson Levi Said (2022) by using f(T) gravity. However, they did not
study the complete properties of compact objects, which we have
discussed in this article, like the TOV equation, EoS components,
the behavior of metric potentials, mass function, redshift, and
compactification using the f(T,T ) gravity framework. Traditional
junction conditions are used by matching the interior spherical and
symmetric space–time with the exterior Schwarzschild space–time
to evaluate the constant parameters whose simplified values are
tabulated in Table 1. We conclude the discussion of our results as
follows:

• Metric components eμ(r)& eλ(r) show regular positive behavior,
as shown in the left graph of Figure 1.
• Energy density ρ, plotted in right of Figure 1, has the physically
acceptable positive conduct by showing amaximumvalue at the
center and a minimum value at the boundary.
• Behavior of pressure profiles, as shown in Figure 2, is also
up to the mark according to the study of compact objects of
anisotropic nature with a maximum value at the center and a
minimum value at the boundary.
• Gradients profiles justify the condition dρ

dr
|(0<r≤R) ≤ 0,

dpr
dr
|(0<r≤R) ≤ 0,

dpt
dr
|(0<r≤R) ≤ 0 starting from zero to a negatively

increasing value toward the boundary, as shown in the right
graph of Figure 3, which show the compact formation of the
stellar system.

The positive anisotropic repulsive force Δ ≥ 0 ensures the
stability of the system by acting against the inward gravitational
force. The left graph of Figure 3 shows the positive behavior of
anisotropy Δ.

• Matter distribution of the stellar system is real, which is ensured
by the positive energy limits, which are graphed in Figure 4. It
can easily be verified that all the energy limits are positive all
over the stellar structure, which means that the matter is real in
nature without any existence of dark matter.
• Speeds of sound also ensure the stability of the system by
obeying the cracking limits 0 < v2r & v2t < 1, i.e., there is no
cracking in the system, as shown in Figure 5. Moreover,
generalized stability criteria 0 < |v2t − v

2
r | < 1 are also fulfilled, as

shown in the graph in the right of Figure 6.
• The system is stable without any point singularity, which is
ensured by the balance of TOV forces which are graphed in the
left graph of Figure 6. All the four forces, Fa,Fg,Fhand Fe, are in
balance.
• EoS components wrand wt are plotted in the right graph
of Figure 7. A graphical representation of these components

denies the existence of dark matter by fulfilling the real matter
distribution criteria 0 < wrand wt < 1.
• Regular and acceptable behaviors of themass function, redshift,
and compactification are plotted in the left of Figures 7, 8.
It can be confirmed from the graphs that these parameters
fulfill all the stability limits discussed in Subsection 8 of
section V.

DittaAshraf et al. (2021), Zubair et al. (2021), Gudekli et al.
(2022), and Zubair et al. (2022) studied the stellar models in f(T,T )
gravity. It is noticeable that the results in our case are less dense
than those in the previous studies. Moreover, Nashed and Bamba
(2022) also studied stellar properties, and their results are also denser
than our results. Ifα = n = 1 andβ = ϕ = 0, we recover the teleparallel
gravity, which is equivalent to GR. Thus, our results are also in
agreement with GR.

Based on the detailed discussion regarding the results, the
overall conclusion can be strengthened that our discussed models
of neutron stars are stable and show the overall reliability of
compact object studies. In this article, we present the results of
a study on the quadratic model of f(T,T ) gravity with n = 2.
This model can be conveniently adapted to other modifications of
f(T) gravity. In future studies, we suggest comparing three forms
of f(T) gravity: α = n = 1and β = ϕ = 0 for TEGR, α ≠ 0 andβ = 0
for f(T) gravity, and α ≠ 0,β ≠ 0 for f(T,T ) gravity. By comparing
the results, we can identify the main effects of these gravity
modifications. This comparison can also be extended to higher-
order models, such as n ≥ 3. Overall, the results of this study
are interesting and could be beneficial for future research in this
field.
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Appendix A
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