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Abstract

This thesis examines the unique window neutrinos provide to physics beyond the
Standard Model. Unlike the other fermions of the Standard Model, the question
remains as to why the neutrinos are so light and whether they are Dirac or Majorana
fermions. If there is some mechanism generating the small neutrino masses that is
related to New Physics (NP) at a high energy scale (or weakly-coupled physics at
a low energy scale), measuring the properties of the neutrinos such as their inter-
actions is crucial to constrain such models. It is then important to survey the range
of experiments probing neutrinos and to gauge their ability to constrain NP. This
thesis takes both an agnostic approach to the identity of NP by considering effective
neutrino interactions as well as a model-specific approach.

Several topics are considered, firstly the ability of neutrino oscillation ex-
periments to constrain effective lepton number violating (JAL| = 2) neutrino non-
standard interactions (NSIs) if the far detector is sensitive to the charge of the out-
going lepton. This novel probe is contrasted to neutrinoless double beta decay and
other |AL| = 2 processes. Close attention is also given to the theoretical descrip-
tion of neutrino oscillations in the quantum field theory picture and how this can be
extended to include neutrino NSIs. A similar study examines the novel ability of
atomic spectroscopy experiments to probe long-range forces mediated by neutrinos
interacting via effective interactions. An explicit model explored in detail is the
so-called inverse seesaw mechanism. A characteristic prediction of this model is
the presence of two heavy sterile neutrinos with a small mass splitting, the conse-
quences of which are examined for a range of experiments. We compare these to

constraints derived from neutrinoless and two neutrino double beta decay.



Impact Statement

This work is a study of the nature of neutrinos, which are fundamental building
blocks of the universe. Understanding their properties (e.g. masses and interactions)
is vital to piece together the evolution of the cosmos to the present day and the events
leading up to our existence. Without neutrinos, the nuclear fusion of hydrogen in
stars into heavy elements such as carbon, a necessary component of Earth-based
life, would be impossible. As they are still poorly understood, neutrinos provide
a tantalising window to physics beyond the Standard Model, which could help us
understand the earliest moments after the Big Bang.

These fundamental questions and the drive to better understand neutrinos has
motivated the building of experiments paving the way in technological innovation.
From experimental particle physics as a whole, numerous technologies have made
a large impact in medicine, communication, power generation and energy storage.
The manipulation of matter on the smallest scales has also fueled progress in other
academic disciplines such as the biological, computer and climate sciences. It is
difficult to overstate the benefits these fields have brought to society.

This thesis in particular develops the theory of neutrinos and examines how
exotic neutrino interactions can be probed in a variety of experiments, for example,
neutrino oscillation, atomic spectroscopy and neutrinoless double beta decay search
experiments. It is hoped that both experimentalists and theorists in the field find the

results useful, motivating further research into the topics covered.
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Chapter 1

Introduction and Overview

“I don’t say that the neutrino is going to be a practical thing, but it has
been a time-honored pattern that science leads, and then technology
comes along, and then, put together, these things make an enormous

difference in how we live.”
- Frederick Reines

Wolfgang Pauli, having introduced a light, neutral, and weakly-interacting
fermion, or neutrino, to explain the observed continuous energy spectrum of beta
decay, declared a few years later: “I have done a terrible thing, I have postulated
a particle that cannot be detected” [1]. The information available at the time jus-
tified his pessimism. The weak interaction, as described by Fermi’s theory of beta
decay, predicted an antineutrino scattering cross section with the proton of order
10~% cm? [2]. A back-of-the-envelope calculation by Bethe and Peierls showed
neutrinos possess a penetrating power of around 10'® km in solid matter [3]. They
therefore concluded that it is “impossible to observe processes of this kind”.

Theoretical interest in neutrinos nevertheless remained strong in the follow-
ing years. In 1935 Goeppert-Mayer proposed the second-order weak process of
two-neutrino double beta (2v ) decay [4]. Though suppressed, this process is a
priori possible for an isotope with an even atomic number A and an energetically
forbidden beta decay channel. In order to account for beta decays in which the
spin of the nucleus changes by one unit, Gamow and Teller extended the Fermi

theory in 1936 to include axial vector currents [5]. In 1937 Majorana suggested
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that neutrinos can be their own antiparticles [6]. This led Furry to postulate the
neutrinoless double beta (Ov ) decay process in 1939, which is only allowed if
neutrinos are so-called Majorana fermions [7]. Fermi’s theory of weak interactions
also successfully described the observed decay rate of the muon, discovered in 1937
as secondary cosmic rays [8,9]. Hints of new particles beyond the electron, photon,
proton and neutron shed little light on the neutrino however.

It was the remarkable insight of Reines and Cowan in 1952 to take advantage
of the 102 — 10'3 s~! ¢cm~2 flux of antineutrinos being produced by the first fission
nuclear reactors [10]. Their initial plan had been to use a greater flux of antineutri-
nos emitted in a controlled nuclear explosion. Their detector, ‘El Monstro’, would
use the liquid scintillation technique to detect antineutrinos via the inverse beta de-
cay process V + p — e* +n. It proved more reliable however to use a smaller but
constant flux of reactor antineutrinos, first at the Hanford site, then at the Savannah
River site. Their Cd-doped detector aimed to detect both the outgoing positron (via
et +e~ — v, followed by Comption scattering and electron cascades) and neutron
by absorption. On June 14 1956, Reines and Cowan sent a telegram to Pauli: “We
are happy to inform you that we have definitely detected neutrinos... Observed cross
section agrees well with expected six times ten to minus forty-four square centime-
ters” [11].

The observation of parity (P) violation in kaon decays and Wu’s measurement
of the beta decay of polarised ®°Co [12], a test suggested by Lee and Yang [13],
suggested that Fermi’s theory needed to be extended in some way. By 1958 a range
of authors had settled on the vector minus axial vector, or (V — A), theory of weak
interactions [14—16]. Neutrinos were assumed to be very light, possibly massless,
and therefore only a two-component left-handed neutrino field v; was needed in the
theory [17—-20]. The absence of processes such as v +37 Cl — e~ +37 Ar (searched
for by Davis) also led to the suggestion of a conserved universal lepton number [21].
Furthermore, the absence of the radiative decay mode u — e?y implied a conserved
lepton number for each lepton family. Pontecorvo proposed the existence of a muon

neutrino, v, distinct from the previously detected electron neutrino, V., and pro-
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duced alongside muons in weak interactions [22]. This was confirmed by Leder-
man, Schwartz and Steinberger at Brookhaven National Laboratory (BNL) in 1962
via vy +n — U~ + p scattering [23].

While the (V —A) correction had significantly improved the Fermi theory, it
was clear in the language of quantum field theory (QFT) that the model was an
effective field theory (EFT). The model was expected to break down at energies
E ~ 1/4/Gg ~ 100 GeV, where G is the effective Fermi coupling constant. In
1967, Weinberg and Salam constructed a theory combining the SU(2), x U(1)y
electroweak gauge group of Glashow and the spontaneous symmetry breaking
mechanism of Brout, Englert and Higgs to explain both the origin of the fermion
masses and short-range nature of the weak interaction [24-28]. The theory was
proven to be renormalisable and thus highly predictive by ‘t Hooft and Veltman
in 1971 [29]. Confirmation of the theory came in 1973 with the discovery of the
predicted weak neutral current at the CERN Gargamelle experiment [30]. The W=
and Z bosons were produced directly a decade later at the CERN Super Proton
Synchrotron [31,32].

The veritable particle zoo that emerged after the discovery of the kaon in 1947
led to a chaotic period in the field. In order to make sense of the long lifetimes of the
kaon and A° particle, Gell-Mann, Nakano and Nishijima introduced the strangeness
quantum number § [33,34]. In a further bid to categorise and recognise emerg-
ing patterns between the different mesons and baryons (particles known to interact
strongly, or hadrons), Gell-Mann and Ne’eman arranged the known particles into
singlets, octets and decuplets in 1961 [35,36]. This eightfold way established group
theory as a useful tool for characterising flavour symmetries in particle physics.
The long-lived nature of the strange hadrons was also examined by Cabibbo, who
introduced a mixing angle O¢ to parametrise the difference between the observed
AS =0 and AS = 1 weak currents [37]. In 1964 Gell-Mann and Zweig announced a
simplification to the picture; the known hadrons are composite particles made up of
elementary quarks [38—40]. Three were needed to explain the known zoo (up, down

and strange), but a fourth (charm) was first postulated by Glashow and Bjorken to
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match the known number of leptons [41]. Glashow, Iliopoulos and Maiani also in-
voked a fourth quark to account for the non-observation of flavour-changing neutral
currents (FCNCs) [42]. The charm quark was discovered at BNL and the Stan-
ford Linear Accelerator Center (SLAC) during a period known as the ‘November
revolution’ of 1974 [43,44].

A year earlier Kobayashi and Maskawa had already put forward the existence
of a third generation of quarks [45]. In 1964 charge and parity (CP) violation had
been observed in the decays of neutral kaons by Christenson, Cronin, Fitch and
Turlay [46]. A complex phase was needed in the mixing matrix between the flavour
and mass eigenstate down-type quark fields; this was not possible for two genera-
tions. In addition, the third generation of leptons was established with the discovery
of the 7 lepton by Perl et al. at SLAC in 1975 [47]. While the bottom quark was
discovered soon after by the E288 experiment at Fermilab in 1977 [48], the cor-
responding top quark remained elusive in the following years. The collisions of
protons and antiprotons detected by the CDF and D@ experiments at the Fermi-
lab Tevatron collider could only set lower limits on the top quark mass [49, 50].
It was realised, however, that the top quark, if present, contributes to loop cor-
rections of electroweak observables. In particular oblique corrections to W+ and
Z propagators, parametrised by the S, 7 and U parameters, could be sensitive to
both the top quark and Higgs boson masses [51]. Hints of the top quark finally
became evidence in 1995, when the CDF and D@ collaborations announced a mass
of my = 176 £ 18 GeV, in agreement with the range of masses implied by the T
parameter [52,53].

The theory of strong interactions also progressed considerably in this time. The
AT and Q™ baryons, composed of three up and strange quarks with parallel spins
respectively, were seen as evidence of an additional quantum number possessed
by quarks [54]. This observation was quickly developed in a theory with an SU(3),
gauge symmetry with a quark color charge, quantum chromodynamics (QCD) [55].
The octet of gauge mediators for this symmetry group, also possessing color charge,

were named gluons. The impact of gluon self-interactions was soon discovered by
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Gross, Wilczek and Politzer in 1973; the asymptotic freedom of the strong coupling
constant o [56,57]. This explained both the confinement of quarks in hadrons at
low energies and Bjorken and Feynman’s perturbative treatment of partons used to
quantify deep inelastic scattering at high energies [58—60].

The Standard Model (SM) of quarks and leptons interacting via the strong and
electroweak forces was convincingly confirmed by the ALEPH, OPAL, DELPHI
and L3 detectors at the Large Electron Positron (LEP) collider at CERN [61-64].
Through measurements of the invisible Z boson decay width, LEP experiments con-
firmed there to be no more than three generations of neutrinos lighter than my [65].
The tau neutrino, vy, was ultimately discovered by the DONUT collaboration at
Fermilab in 2000 [66]. The culmination of the story came in 2012 with the discov-
ery of the Higgs boson by the ATLAS and CMS experiments at the CERN Large
Hadron Collider (LHC) [67, 68].

The SM contains only three two-component left-handed neutrino fields. Hence
the neutrinos cannot gain masses via the Higgs mechanism. While massless neu-
trinos remained (and still remain) compatible with beta decay and neutrino scat-
tering measurements, hints nevertheless began to emerge suggesting non-zero neu-
trinos masses. A spurious detection of reactor antineutrinos by Davis via the pro-
cess V+>'Cl— e~ +30Ar supported Pontecorvo’s proposal of v 5 v oscillations in
1957 [69], analogous to the K® < K° phenomenon predicted by Gell-Mann and
Pais [70]. However, the subsequent development of the (V — A) theory made it
apparent that a ‘helicity flip’ is necessary for the process; for ultra-relativistic neu-
trinos this induces a strong suppression.

Moving on to the Homestake experiment, Davis famously saw a deficit of so-
lar v, compared to the expected flux from contemporary solar models [71,72]. The
persistence of the solar anomaly led to the suggestion of neutrino flavour oscil-
lations. Building on the work of Maki, Nakagawa and Sakata, in 1969 Gribov
and Pontecorvo raised the possibility of v, = v, oscillations if neutrinos are mas-
sive and there is a mismatch between the (interacting) flavour and (propagating)

mass eigenstates, similar to down-type quarks [73—76]. This mixing framework
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was soon extended to include a third neutrino flavour and mass eigenstate, i.e.
Ve S Vp and v S v; oscillations, raising the possibility of CP violation in the
lepton sector [77]. Tantalising hints at the Kamiokande and IMB experiments soon
became a conclusive confirmation of the neutrino oscillation hypothesis in 1997,
when the Super-Kamiokande experiment observed a disappearance of atmospheric
muon neutrinos [78—80]. Not long after the Sudbury Neutrino Observatory (SNO)
verified the disappearance of 8B solar neutrinos [81].

The parameters controlling neutrino oscillations in the three-neutrino picture
are two mass-squared splittings, three mixing angles and a CP phase. These have
since been probed by a variety of experiments. For example, long-baseline (LBL)
accelerator oscillation experiments MINOS, K2K, NOvVA and T2K and searches
for atmospheric neutrinos at Super-Kamiokande and IceCube (DeepCore) have
pinned down the so-called atmospheric mass-squared splitting AmZ,,, and mixing
angle 6,3 [82-86]. Combined measurements of solar neutrino disappearance by
GALLEX, SAGE, Super-Kamiokande and Borexino, and also the LBL reactor an-
tineutrino experiment KamLAND, have determined the solar mass-squared split-
ting Amgol and angle 0y, [87-91]. The so-called Large Mixing Angle (LMA) so-
lution verified the resonant enhancement effect of neutrinos propagating through a
medium, pioneered by Mikheyev, Smirnov and Wolfenstein [92, 93]. Finally, the
LBL accelerator experiments MINOS and T2K and short baseline (SBL) reactor
experiments such as Double CHOOZ, RENO and Daya Bay have been able to mea-
sure the small angle 63 [94-99]. By comparing v, = V. and V;; = V, oscillations,

the next-generation LBL oscillation experiments DUNE and Hyper-Kamiokande

2

2um (and hence

aim to determine the octant of the mixing angle 0;,, the sign of Am
the ordering of neutrino mass eigenstates) and the CP phase dcp [100, 101].
Unfortunately, neutrino oscillations are only sensitive to neutrino mass-squared
splittings, not to their absolute mass scale. It is nevertheless possible to infer that
the two heaviest neutrinos have masses greater than Amgol ~ 9 x 1072 eV and

/AmZ,,, ~ 0.05 eV, respectively. Precision kinematical measurements at the end-

point of the >H beta decay spectrum have instead been able to constrain the ef-
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fective mass of the electron neutrino, mg. The Mainz and Troitsk experiments
combined to enforce a limit mg < 2.2 eV, while a recent analysis by the KATRIN
experiment set mg < 1.1 eV at 90% CL [102-104]. The forcasted future sensitivi-
ties of the KATRIN and Project 8 experiments are, respectively, mg < 0.1 eV and
mg < 0.04 eV [105,106].

Neutrinos are also known to have played a crucial role in the evolution of
the universe [107, 108]. It is thought that neutrinos remained in thermal equi-
librium with the primordial SM bath via scattering processes such as e™ +e¢~ —
v 4+ V. However, they decoupled when the temperature of the universe dropped
below T~ MeV, i.e. when the number density of neutrinos n, multiplied by
the thermally-averaged cross section (ov) fell below the Hubble expansion rate,
ny (ov) < H(T) [109, 110]. When the electrons subsequently decoupled, they in-
jected entropy into the photon bath, increasing its temperature with respect to the
neutrinos. Probes of the expansion of the universe during the radiation dominated
era, such as the Cosmic Microwave Background (CMB) and matter density fluctua-
tions, are sensitive to Negr (the effective number of relativistic fermionic degrees of
freedom) and ) m, (the sum of neutrino masses). The SM prediction for the former,
taking into account that the neutrinos underwent oscillations and were not fully de-
coupled when the electrons and positron annihilated, is Nege = 3.046 [111-113]. The
current best fit value from the Planck collaboration is Nggs = 2.994+0.17 [114]. The
abundaces of light elements in the universe, particularly “He, also offer a compli-
mentary probe of Negr. The abundances are set during the Big Bang Nucleosynthesis
(BBN), when free protons and neutrons are bound into nuclei up to "Li [115]. The
“He mass fraction Y, » 1s controlled by the proton to neutron ratio, which is in turn
determined by the neutrino decoupling temperature and Neg [116, 117]. Non-zero
neutrino masses, Y my # 0, result in small distortions to the power spectra of the
CMB and matter distribution of the universe [118]. The current upper bound from
the Planck collaboration combining all available data is ) . m, < 0.12 eV [114].

We have seen how neutrinos have been critical in improving our understanding

of the fundamental interactions and indeed the history of the universe. We now
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know that the neutrinos are massive and mixed, but this is not accounted for in
the SM. The SM must be extended in some way to incorporate the light neutrino
masses, i.e. a VSM. A plethora of models since the 1980s have attempted to answer
this question. Suffice to say, these models can be placed in two main categories;
those that predict Dirac neutrinos (i.e. similar in nature to the other fermions of the
SM) or Majorana neutrinos (the neutrino is its own antiparticle).

The phenomenology of the two scenarios is different. In the former case, lep-
ton number remains a valid global symmetry of the VSM; processes that are lepton

number violating (JAL| = 2) are forbidden. In the latter case,

AL| = 2 processes
such as Ov3 3 decay are possible but usually suppressed due to a correlation with
the light neutrino masses. An important point to make is related to the so-called
black box theorem. Any positive signal of an |AL| = 2 process implies that at least
one neutrino is of Majorana nature' [120—122]. The process may have been induced
by new physics (NP) unrelated to neutrinos, but this NP is guaranteed to contribute
to a Majorana neutrino mass at the loop level. Another way of thinking about this is
to use the EFT approach. Just as the Fermi weak interaction had been constructed
from SM fields to describe the exchange of the W+ boson, effective operators can
be used to describe the low energy effects of any physics beyond the SM. The low-
est dimensional operator in the Standard Model Effective Field Theory (SMEFT),
1.e. operators constructed from SM fields respecting the SM gauge symmetries (but
not necessarily the SM accidental global symmetries) is the Weinberg operator at
dimension-5 [123]. This operator is |AL| = 2 and generates a Majorana mass for the
neutrinos.

As the nature of neutrinos and mechanism generating their masses is still un-
known, it is important to utilise both the model-dependent and model-independent
approaches for considering NP related to the neutrino sector. Measurements of the
SM are now entering a precision era. With the high-luminosity LHC now tak-
ing a data-intensive approach, ATLAS and CMS are probing the parameters of

the Yukawa and Higgs sector and excluding large areas of NP model parameter

"More specifically |AL| = 2 processes, where L is lepton number. The neutrinoless ‘quadruple’
beta decay process, which is |AL| = 4, is compatible with Dirac neutrinos [119].
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space [124—127], while precision measurements of flavour observables at LHCb
are seeing anomalies in B meson decays [128]. The discrepancy between the ex-
pected and observed muon anomalous magnetic moment, Aay,, first seen at BNL,
has recently persisted at the Fermilab Muon g-2 experiment [129, 130].

Measurements of the VSM still need to pin down a few essential parameters,
but it is already known that the neutrino sector must be a window to NP, related in
some way to the origin of the neutrino masses. A number of unexplained oscilla-
tion anomalies have seen at SBL accelerator experiments LSND and MiniBooNE,
reactor experiments DANSS and NEOS, and gallium experiments GALLEX and
SAGE [131-137]. All point to an oscillation between an active and sterile (gauge
singlet) neutrino with a mass-squared splitting Am? ~ 1 eV. Despite this, the light
sterile neutrino hypothesis remains in strong tension with MINOS+ and IceCube ob-
servations [138, 139]. The same region of parameter space will be tested in future
by the Short Baseline Neutrino (SBN) oscillation programme at Fermilab [140].

This thesis is a review of a number of topics worked on by the author in relation
to the vSM. Chapter 2 presents an overview of the SM field content, gauge sym-
metries and accidental global symmetries. Possible VSM extensions are examined.
The EFT approach for parametrising new physics is summarised. In Chapters 3
and 4, a model-independent effective approach is taken to examine the sensitivity
of neutrino oscillations and precision atomic spectroscopy measurements to general
neutrino Non-Standard Interactions (NSIs), based on work of Refs. [141, 142]. In
Chapter 5 a model-dependent approach is used; based on work of Refs. [143, 144],
it studies a phenomenological inverse seesaw (ISS) mechanism parametrising the
mixing between an active and sterile neutrino. Constraints derived from Ov§f3
and 2vB B decay are compared to astrophysical, cosmological, beta decay, beam
dump and collider measurements. Chapter 6 summarises the work of this thesis and
presents an outlook for the future of the field.

Throughout this thesis the natural units system of particle physics will be used,
i.e. c=h=kp =1, where c is the speed of light in vacuum, % is the reduced Planck

constant, and kg is the Boltzmann constant. We use the Heaviside-Lorentz units for
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) 2 ) ) )
electromagnetism, o = j—n =S %7 Finally, the metric tensor is taken to be mostly

minus, i.e. guv = diag(1,—1,—1,—1), such that p-x = guvp*x¥ = POXO—P’X~ A

particle with mass m therefore has p? = p, p* = (p°)? — |p|*> = m?.



Chapter 2

Neutrinos in the Standard Model and

Beyond

In order to describe the electron (V,), muon (V) and tau (v;) flavour neutrinos
(or equivalently their three massive counterparts vy, v, and Vv3), this thesis will
first cover their representation as fermions in the Standard Model (SM) of particle
physics. At the time of writing the neutrinos (along with the Higgs boson, the
only known fundamental scalar particle) are the least well quantified fundamental
particles. As explained in this chapter, the origin and nature of their small and still-
undetermined masses remain unknown. The SM therefore also acts as a foundation
on which to build extensions describing exotic interactions of the neutrinos (which,
as we will see, are most commonly related to the dynamic mechanism generating

their light masses).

2.1 The Standard Model of Particle Physics

As discussed in the previous chapter, the SM has gradually emerged as one of the
most successful theories in the history of modern science. The SM provides a uni-
fied description of the electromagnetic, weak and strong interactions among the
three generations of quarks and leptons; thought to constitute roughly 5% of the
observed matter in the universe'. Using its general framework one can make stun-

ningly precise predictions for the binding energies of electrons in atoms, the scatter-

!'The remaining ~95% is composed of non-baryonic dark matter and dark energy in the standard
ACDM model of cosmology.
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ing of protons in high-energy collisions and the abundances of light elements across
the observable universe.

The description of gravity as the bending of space-time in general relativity is
the second pillar of modern physics; it is nonetheless predicted to break down at
energies larger than 1.22 x 10'® GeV, when matter is crushed into a singularity at
the centre of a black hole. The continuing validity of the SM at higher energies
remains unclear. There are outstanding issues such as the hierarchy and strong CP
problems which boil down to a tolerance for fine-tuning. Other, more fundamental
problems are the abundance of matter over antimatter in the universe, the identity

0736 seconds after

of dark matter and dark energy, the driver of cosmic inflation 1
the Big Bang and the aforementioned origin of neutrino masses. For a long time it
has been thought that each issue can be explained if the particles and forces of the
SM unify as a more symmetric theory at higher energies, combining finally with
gravity just below the Planck scale. There has been intense work in the theoretical
community to elucidate this theory since supersymmetry (SUSY), Grand Unified
Theories (GUTs) and higher-dimensional string theories were first developed in the

1970s. At present there is no high-energy theory that uniquely reproduces the SM

at low energies and also predicts the fine-structure constant ¢ and electron mass 1,.

2.1.1 Field Content and Symmetries

The Standard Model of particle physics is a relativistic quantum field theory (QFT)
based on the product of gauge groups SU(3). x SU(2), x U(1)y. The non-abelian
group SU(3), describes the strong interaction between colored quarks via the ex-
change of gluons, also known as quantum chromodynamics (QCD). The non-
abelian and abelian groups SU(2); x U(1)y collectively describe the electroweak
(EW) interaction distinguishing left- and right-handed fermion fields. The EW
symmetry is spontaneously broken via the Higgs mechanism? to U(1)g, which de-
scribes the electromagnetic interactions between electrically charged particles via
the exchange of photons, i.e. quantum electrodynamics (QED).

The dynamics of the SM can be understood by writing a Lagrangian invariant

~More correctly the Brout-Englert—Higgs—Guralnik—-Hagen—Kibble mechanism [27, 145, 146].
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SM Field SU(3). SU(2)r U(l)y Lorentz Group
1
Lp= <Z> 1 2 ) (5,0)
(r 1 1 -1 0, %)
u 1 1
oL = (i) 3 2 5 (3,0)
UR 3 1 z 0,1)
dr 3 1 —1 (0, 3)
_ (HY 1
H=(1) 1 2 1 (0,0)
GZ 8 1 0 (3: %)
W, 1 3 0 (%, %)
By 1 1 0 (35 3)

Table 2.1: Matter and gauge fields of the SM. Given in the columns are the transformation
properties of the fields under the SM gauge group SU(3). x SU(2), x U(1)y, i.e.
either as a triplet or singlet under SU(3)., a doublet or singlet under SU(2);, and
their hypercharge Y. Also given are the transformation properties of the fields
under the restricted Lorentz group SO™(1,3). Fields are given in the flavour
basis,i.e. Vv € {V., vy, v}, £ €{e,n, 7}, u € {u,c,t} andd € {d,s,b}.

under the symmetries discussed above. One must first introduce the matter fields in
Table 2.1; the left- and right-handed charged lepton, up-type and down-type quark
fields €1 (g, u(r), dr(r) respectively, the left-handed neutrino field vz and two com-
plex scalar fields H* and H°. The two-component Weyl spinor fermion fields can

be written as components of the four-component Dirac field y

yL=Py, VYr=Ry, II/:<X:1,>, (2.1)

n"a

where the spinor indices &, o € {1,2} and

Po==(1-7%), PR==(1+7%), (2.2)

| =
| =

are left- and right-handed projection operators, respectively, with ¥> = iy°y'y*y>.
The y* are the standard four-dimensional Dirac matrices with the anticommu-
tation relation {y*,y"} = 2¢"V, where g,y = diag(l, —1, -1, —1) is the flat

Minkowski metric, so that they generate a matrix representation of the Clifford
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algebra C¢; 3(R) [147]. The fields y;, and yg defined in this way are technically
four-component spinors, but there is a one-to-one correspondence between these
and the two Weyl spinors ¥ and n* in v if one assumes y* to be in the Weyl or
chiral basis [148].

The fermion fields in Table 2.1 are repeated over ny = 3 generations; Vq, ¢, g
and dy, with o € {1,2,3}>, though we will often omit this flavour index in the text
for simplicity. The quark fields transform as triplets under SU(3), transformations,
while the charged lepton and neutrino fields transform as singlets. The left-handed
charged lepton and neutrino, up- and down-quark and two scalar fields are arranged
in doublets L, Qr and H, respectively, under SU(2); transformations. Each field
has a hypercharge quantum number Y under U(1)y transformations.

It should also be noted that, per Wigner’s classification, each field is an unitary
irreducible representation of the Poincaré group (the combination of the Lorentz
group O(1,3) and space-time translations) [149]. Each representation is infinite-
dimensional and labelled by eigenvalues of the Casimir invariants P> = Py P* and
W2 =W, WH. Here P, = (E,P) is the four-momentum and Wy, = 1&uypcJ"PP? is
the Pauli-Lubanski pseudovector, where €;yp¢ is the four-dimensional Levi-Civita
symbol and JY? is the relativistic angular-momentum tensor. The first invariant
defines the mass m of the particle and the latter its spin J, where m is a non-negative

1 3
7571757'

real number and J is a non-negative half-integer (J = 0 ..). For each three-
momentum eigenvalue of P there are respectively 2 and 2J + 1 independent states
for m = 0 and m > 0*. A convenient quantity is the projection of the spin S along
the direction of motion of the particle, called the helicity. This can be constructed
from

~ W% S.P

h= —="". 2.3

STPl ~ 5/P] >

The degrees of freedom of spin-0, spin—% and spin-1 fields can be embedded in the

fields ¢ (x), w(x) and V, (x) respectively.

3We note that the flavour index ¢ is different from the spinor index in Eq. (2.1).
4A priori, massless states with continuous spin and so-called tachyonic states with m < 0 can
also exist, but are not observed in nature [150-152].
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The full Lorentz group (including boosts, rotations, parity flips and time rever-
sals) is a Lie group, and its Lie algebra can be written as the sum of two commuting
sub-algebras, so0(1,3) = su(2) @ su(2). It follows that any irreducible represen-
tation of the Lorentz group is characterised by two irreducible representations of
su(2) (the algebra of the Pauli matrices generating the SO(3) rotation group), or two
non-negative half-integers (a, b). These are given in the final column of Table 2.1
for the left- and right-handed Weyl spinor fermion fields and scalar doublet. It is
often conventional to consider the charge conjugate y; = C lZ/,}r of the right-handed
fields, where C = iy?}? is the charge conjugation matrix, so that all the fermion
fields transform like left-handed fields. The ug field for example also transforms

with opposite hypercharge to ug and as an antitriplet 3 under SU(3)..

2.1.2 Gauge and Kinetic Terms

We now require a Lagrangian that is Lorentz-invariant and unitary (probabilities
for processes are well-defined and add to unity). Such a Lagrangian is also CPT

symmetric [153]. For massive fermions y this can naively be achieved with
Ly = iPrd vy +iWrd yr — mPLyr —mPgyr, = ¥(id —m)y, (2.4)

where d = y* dy and ¥ = v Y. Applying the Euler-Lagrange equations of motion,

5 9Ly oLy
H0u) v

=0, 2.5)

recovers the relativistic free-field Dirac equation (id —m)y = 0.
Unfortunately there are problems with Eq. (2.4) arising from the requirement
of gauge invariance. Under the SM gauge transformations the fields transform under

representations of the groups as

14 % v = eiea(x)tallf> (2.6)
W% v = eiei(x)T"% 2.7)

y DI,y 0Ty 2.8)



2.1. The Standard Model of Particle Physics 36

where 14 = % (a=1,....8)and T' = %i (i=1,2,3) are the generators of the SU(3),

and SU(2),, groups, respectively. These satisfy the Lie group algebras
) = ifupet®,  [TH,T7) = igijT", (2.9)

where &; . (the three-dimensional Levi-Civita symbol) and f, are the group struc-
ture constants. Since the SM gauge groups are unitary (and special for SU(3), and
SU(2), such that their determinant is unity), all of their representations U (x) are
unitary. Thus the fermion bilinear Yy — ¥'yw' = YU'Uwy = Yy is in principle
gauge invariant. However, the mass terms of Eq. (2.4) combine y; and yr which
transform under different representations of SU(2)z, x U(1)y. These cross-terms are
therefore prohibited if SM gauge invariance is to be conserved.

Furthermore, the kinetic term transforms as

VoY — Wy = U (Uy) = Wy +wUT (9, U) vy, (2.10)

i.e., in an inhomogeneous way. We require a derivative that transforms covariantly
under the gauge transformation, i.e. Dyy — D;L v =UDyy. This derivative can

be obtained by defining
Dy = 0y +igGit® +igW,T' +ig'BY (2.11)

i.e., adding an extra term for each gauge group. We have introduced a number of so-
called gauge fields equal to the number of generators for each group. The arbitrary
real constants gg, g and g’ will come to be associated with the coupling strengths
of the matter fields to the gauge fields. For the derivative to be covariant it must

equivalently satisfy DL =UD,U —1. We then observe (for just the U(1)y gauge
group)

U(l)y D

Dy =0y +ig'BY =U(dy+ig'BuY)U™!

= +U(QU ) +UigB, YU . (2.12)



2.1. The Standard Model of Particle Physics 37

For the left- and right-hand sides of the Eq. (2.12) to be equal, the U(1)y gauge field

B, must transform as

1 ] 1
By 2 gy —u (BuY - i,au) Ul = (Bu - —,8u9(x)>Y, (2.13)

8 8
where in the second equality we have expanded the infinitesimal transformation
around unity, i.e. U(x) ~ 14i60(x)Y. The same procedure is slightly more involved
for the non-Abelian gauge groups due to the multiple gauge fields and group gen-
erators satisfying the commutator relations of Eq. (2.9). Nevertheless one can find

that the fields transform as

SUQ). 1
Gl = Gl = Gl 340" () + /GO (v, 214
s
. SUQ2 ; Lo ey
W S La e et s

Equipped with the covariant derivative D, we can now write the kinetic part of the

SM Lagrangian for the fermions,
Ly =iyhy, (2.16)

where v € {L;, ¢g, QOr, ug, dg}. This not only describes the kinetic evolution of the
(currently massless) matter fields, but also their couplings to the SM gauge fields.
We now proceed to determine the kinetic part of the Lagrangian for the gauge
fields, which, represented by the fields G, W;i and B, we know to be spin-1 vector
bosons. We wish the Lagrangian to be positive definite, i.e. give energy densities
that are bounded from below. To ensure this one can write for a massive spin-1 field

Ay, the so-called Proca Lagrangian

1 1
La=—7FuF" + EmzA“A“ : (2.17)

where F,y = 8uAv — BVAN is the usual field strength tensor. The equation of motion

for this Lagrangian is (9, 0" +m?*)A, = 0; identical to the relativistic Klein-Gordon
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equation for a scalar field. It also implies the constraint d,A* = 0 which eliminates
one of the four degrees of freedom of the vector field. The three remaining de-
grees of freedom correspond the two transverse polarisations and one longitudinal
polarisation of the spin-1 field.

The flaw in Eq. (2.17) is that the mass term cannot be invariant under gauge
transformations A, — A;l. The gauge fields Gﬁ, Wﬁ and By, are thus massless, and
indeed the gauge symmetry cancels an additional degree of freedom corresponding
to the longitudinal polarisation states of these fields. The kinetic term in Eq. (2.17)
is also only gauge invariant for U(1)y; generalisations of the field strength tensor
must be used for SU(3). and SU(2),. To find these, notice that the second-order

tensors [Dj, Dy and [D}, DV] transform as

SU(3)e

DG, DY) —= [DG, DY) =U[DG, DYIU, (2.18)
D, o) 2 (pW pWy —yp¥ YU, (2.19)

where the superscripts denote the gauge fields included in the derivative, i.e. Dg =
Oy +igsG4 1 and D)} = 9y +igW, T'. The traces Tr([Dg,DY]*) and Tr([D}/, DY ]*)

are therefore gauge invariant. We can then define the field strength tensors as

Go 1 = —gi[Dﬁ,Dﬂ — (G — G, — g5 fure GLGo ), (2.20)
N
Wi T' = —é—,[DLV,DVVV] = (uWy, — W W, — gexWaWy)T', 221)

and the kinetic part of the SM Lagrangian for the gauge fields becomes

1 | I 1
,CA = —ZszGaﬂv - ZWI'LVW mv ZB’UVB‘uV y (222)
where we have chosen the conventional normalisations of the generators Tr(¢%?) =
%S“b and Tr(T'T/) = %5’7 . Again this does not only describe the kinetic evolution
of the (massless) gauge fields; due to the more complicated field stength tensors

for the non-Abelian gauge symmetries, it also describes trilinear and quadrilinear

self-interactions between the G}, and Wﬁit fields. This self-coupling property is of
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fundamental importance to QCD, leading to the color confinement of the quarks in

2
hadrons and the asymptotic freedom of the strong coupling o, = f—;r.

2.1.3 Higgs Mechanism

While we now have an interacting theory of fermions and gauge bosons, it is still
not sufficient to explain the observed masses of the fermions and the W* and Z
bosons. It is clear that SM gauge symmetry must be broken in some way. The
Higgs mechanism introduces the SU(2);, doublet H so additional dimension-four,
gauge-invariant terms can be written in the SM Lagrangian. The kinetic term and

quadratic and quartic terms involving just the Higgs doublet are

Ly = (DyH) (D*H) —V(H), (2.23)

V(H)=—-u’*H'H+A(H'H)?, (2.24)

where (for gauge invariance) the kinetic term uses the covariant derivative and we
define the Higgs potential V (H). The signs of the parameters p? and A are crucial
to understanding the properties of the Higgs doublet and whether the theory is phys-
ical. If A < 0, the potential function V (H) is not bounded from below and is thus
unphysical. For u? < 0 and A > 0 the potential has a minimum at |H| = vVHTH =0,
while for u? >0 and A > 0 the potential has a minimum away from |[H| = 0.

The vacuum expectation value (VEV) of a field or operator is the lowest energy
field configuration satisfying the classical equations of motion. Barring exotic vacua
predicted by some string theories, VEVs must be Lorentz-invariant and symmetric
under the observed quantum numbers of the vacuum (net-zero electric and color
charge). There is no requirement, however, for a VEV to respect the EW symmetry

SU(2)r x U(1)y. Defining

v=1/2= (2.25)



2.1. The Standard Model of Particle Physics 40

it is possible to rewrite the Higgs potential (up to constant terms) as

V(H)=A (HTH — g) : : (2.26)
It is then clear that in the u> > 0 and A > 0 case the minimum of the potential is
at |H| = % We now choose the VEV of the Higgs doublet to be (H) = %(O )T
which is apparently no longer invariant under the EW symmetry because 7" (H) # 0
and Y (H) # 0. When a symmetry of the Lagrangian is no longer respected by the
vacuum it is spontaneously broken.

The spontaneous breaking of a symmetry by the vacuum implies the existence

of massless modes called Goldstone bosons. These modes are nothing other than

fluctations of the field around the VEV; for the Higgs doublet this can be written as

L[ R 1S ()
H=— . 2.27)

V2 v+R(W) +iS(K°)

The R(hT), (k) and I (h") modes are massless because the Higgs potential V (H)
is flat in the directions of these excitations; R(4°) on the other hand gets a mass
term, i.e.

V(H) D %m,% R(h°)?, (2.28)
where my, = v2Av2. If the broken symmetry is local, as is the case for EW sym-
metry breaking (EWSB), these extra degrees of freedom can be rotated away. For
example, a gauge transformation can rotate the massless Goldstone bosons into the
longitudinal polarisation states of the SU(2);, x U(1)y gauge bosons, giving them
mass. Importantly, it can be shown via the Goldstone boson equivalence theorem
that physical observables are not affected by the choice of gauge; the scattering of
massless Goldstone bosons is identical to the scattering of longitudinal vector boson
polarisation states at high energies.

One can consider a generic gauge by adding the gauge-fixing terms to the SM
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Lagrangian (a la "t Hooft),

1
28

1
28w
1
28p

Loy = —=(9"G%)° [a“W[; +igly (<H>*T"H—H"'T"<H>)} ’

[8“3“ +igEp ((H)WH —HW(H))] P 229

which gives the Lagrangian in the so-called Rz gauge. Inserting the Higgs doublet
in Eq. (2.27) into Eq. (2.29), the R(hT), 3(h") and 3 (k") modes obtain mass terms
proportional to the gauge-fixing parameters &y and Eg. With &y = &g = 1, known
as the ’t Hooft—Feynman gauge, the masses are the same as the W* and Z bosons.
For &w,Ep — o0, or the unitary gauge, the masses tend to infinity and the modes
decouple from the theory. In this second gauge we write H = i((), v+ h)T, where

V2
h = R(h°), and inserting into the Higgs kinetic term gives

(DuH)'(D"H)

2 2 /2)

= %(%h)f(a“h) + S nPwiw (g+e7) ;g (v+h)2Z, 2", (2.30)

where we have defined the fields

1 1
+ _ 1 _ w2 - _ L, w2
WI-L —ﬁ(WM—ZWM), W[J —%(WH—HW[J), (231)
1 .
Zy = ———(gW; — §'By) = cos By W, — sin 6y By , (2.32)
g +8
where sin Oy = \/ﬁ and cos Oy = \/ﬁ are the sine and cosine of the weak

mixing angle Oy [25]. It can be seen from Eq. (2.30) that the masses of the W= and
Z bosons are given (at tree-level) by
gv g+g%v  my

2’ 2 cos By’

(2.33)

respectively. The three linear combinations of the fields WL’; (i=1,2,3) and By
above become massive, while the orthonormal combination A, = sWWﬁ’ +cwBy

(where sy = sin By and cy = cos By ) remains massless.
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It should be noted that due to the gauge-fixing terms in Eq. (2.29) the theory
violates unitarity via the presence of unphysical gauge boson polarisation states. In
order to account for this one must introduce the Faddeev—Popov ghost and antighost

fields ¢* and ¢“ respectively for each gauge field,

Lgn = (9uTE) (8% — 85/ ™G )cG;

+ (9ucly ) (879 — g€ W)k, + (Iucp) (duca). (2.34)

These ghost fields are unphysical because they violate the spin-statistics theorem
(the requirement that states with identical particles spin of integer and non-integer
spin are symmetric and antisymmetric under the exchange of particles respec-
tively) [154]. More specifally, they are Lorentz scalar fields that anticommute (i.e.
Grassmann-valued fields). However, there is nothing stopping them appearing in
loop diagrams of physical scattering matrix elements. The ghost Lagrangian in
Eq. (2.34) is written in such a way that the unphysical ghost fields exactly cancel
the unphysical gauge boson polarisation states. Remarkably, when the ghost fields
¢® and ¢“ are included the SM Lagrangian exhibits an additional global invariance,

called the Becchi—-Rouet—Stara—Tyutin (BRST) symmetry, e.g.

&€ . .
Gy 2T, BRST Gl = GZ—g—Buc‘é+£f“b°Gﬁc‘6, (2.35)
v BRST v =yt iectity, (2.36)
o BRST R fabcclé ¢ (2.37)
€
& BRST gl =4 1 <§GauGa) (2.38)

where € is a Grassmann number [155,156]. It can be seen that the above transforma-
tions are similar to a gauge transformation with 8¢ = £c“. Under this transformation
the gauge-fixing terms in Eq. (2.29) are also now invariant.

Associated with BRST invariance are the so-called Slavnov-Taylor identities;
generalisations of the Ward-Takahashi identity for non-Abelian theories. The Ward-

Takahashi identity puts a certain requirement on the off-shell matrix elements in any



2.1. The Standard Model of Particle Physics 43

Abelian theory [157, 158]. It can then be used to show that the infinities encoun-
tered in loop diagrams can always be cancelled by appropriate counterterms that
also respect the gauge invariance. The Slavnov-Taylor identities also permit this
for non-Abelian theories; for example, it can be shown that the non-Abelian QCD
gauge coupling g, can always be rescaled by the same factor in order to remove the
infinities.

After EWSB it is possible to rewrite the covariant derivative in the form
Dy = oy +igsGt* +ieA,Q+igWy, (2.39)

where e = gsw = g’cw and Q = T3 +Y (the Gell-Mann—Nishijima relation) [33,34].
It is straightforward to show that the vacuum remains invariant under the Abelian
gauge group U(1)p, because Q (H) = 0. The values of Q for the SM matter fields
are shown in Table 2.2; it can be seen that (by construction) these correspond to the
electric charges of the SM particles. Through EWSB the SM therefore undergoes
a phase transition SU(3), x SU(2)., x U(1)y EWSB, SU@3). x U(1)g, where U(1)p
is the gauge symmetry of QED and the A, field corresponds to the photon. In

Eq. (2.39), the charged- and neutral-current weak interactions are contained in

1 ++ — = I 5 2
WMZE<WNT W, T >+J(T —5%0) Zy, (2.40)
where T+ = T! £ iT? are the SU(2), raising and lowering operators. Inserting

Eq. (2.40) into Eq. (2.39) and subsequently into Eq. (2.16), gives

LyD Lys+Ls= —%l]f (WW+ +W‘T*> w— iy‘;(# —20)2v. (241)

The charged-current weak interactions connect the two fields in each SU(2),, dou-
blet (separated in electic charge by one unit) with the appropriate absorption or
emission of a W* boson. The NC weak interaction connects identical fields, with
a strength depending on the value of (T3 — s%,Q) for the field, listed in the fifth
column of Table 2.2.
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SM Fermion Field U(1)p U(1), U(l)g T3 —s30Q

0 1
L= <;L> -1 0 1 ’ 2
! -1 —2 T Sw
17 —1 —1 0 53
2 120
uL 3 1 27 3%W
0= (d) 1 0 3 il
3 23
2 1 2.2
Ug 3 0 3 —35w
1 1 1.2
dr —3 0 3 35w

Table 2.2: Transformation properties of the SM fermion fields under the Abelian gauge
group U(1)p, i.e. the value of the QED charge generator Q = T +Y, and the
global U(1), lepton number and U(1)z baryon number. Also shown are the
values of (73 — sa,Q) which deterimine the neutral-current interaction of the
fields.

2.1.4 Fermion Masses

At dimension-four it is possible to construct additional SM gauge-invariant terms

with the fermion fields and Higgs doublet,
Ly = —ERYgHTLL - I/_tRYMﬁTQL — aTRYdHT Or+h.c., (2.42)

where H = ic2H* transforms in the fundamental represention of SU(2),, and has
a hypercharge of Y = —%. We have introduced the Yukawa couplings Y/, Y, and
Y, which are 3 x 3 matrices for three generations. Note that due to the absence
of a right-handed neutrino field Vg it is not possible to write a similar term with a

Yukawa coupling for the neutrino. Eq. (2.42) reduces after EWSB to

1 _ -
Ly = _ﬁ(v +h) {CrY elr + aRY yur +drYdy } +h.c., (2.43)

where it is possible to identify the 3 x 3 fermion mass matrices as M, = %Yz,

M, = %YH and M, = \%Yd. It is not guaranteed that the mass matrices are diagonal
in the basis of fields interacting according to the Lagrangian in Eq. (2.16) and the
covariant derivative in Eq. (2.39), i.e. the weak eigenstate basis.

In general it is possible to diagonalise an arbitrary N x N matrix M through a

biunitary transformation, VZ M Vg = M’, where V; and V are unitary N x N matrices
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and M’ is a diagonal matrix with real and positive elements [76]. Following this

procedure for the fermion mass matrices above gives
VM VE=M,, VM VE=M,, VITMuVE =M, (2.44)

where M}, = diag(m,, my, m¢), M;, = diag(m,,, m¢, m;) and M}, = diag(mgy, ms, my,).

Redefining the charged lepton and quark fields as

4 d
EL(R) = VL(R)K/L(R)’ ML(R) = VLM(R)“/L(R)7 dL(R) = VL(R)d/L(R) y (245)
therefore brings Eq. (2.43) into the mass eigenstate basis. This redefinition of fields

also affects the charged-current weak interaction part of the Lagrangian,

8 - Al 8 1ty uty dy g
L+ =——=V Vil — —=i VA'VAd; +h.c.. 2.46
w* \/§LW LtL \/ELW (L L)L ( )

It is now conventional to define the charged lepton and up-type quark weak eigen-
state fields to be equivalent to the mass eigenstate fields, requiring the redefinitions
of the neutrino and down-type quark fields v, = V/v] and dj, = (V}' "'vd)d}. The
redefinition of the neutrino fields is trivial because the neutrinos are massless in
this scheme. The matrix V = VZ‘TVLd is the famous Cabibbo—Kobayashi—-Maskawa
(CKM) matrix characterising the observed phenomenon of quark mixing [37,45].
To determine the number of free parameters in V, we note that any N x N uni-
tary matrix can be parametrised with N(N — 1)/2 mixing angles and N(N + 1)/2
phases; three mixing angles (%12, ¥13 and ¥»3) and six phases (112, 113, M3, @1,
@, and @3) in the case of the CKM matrix [159]. However, there is a residual
global U(1)® symmetry in the arbitrary rephasing of the mass eigenstate quark
fields, ug — €®*uq and d! — €'%d!, which can eliminate five of the six phases in V.
It is conventional to eliminate 112, 123, @1, @, and @3 leaving the phase 13 = —0
associated with rotations in the (1,3) sector. This last phase is of fundamental im-
portance to the presence of CP violation in the quark sector. If & # 0, direct and

indirect CP violation will be seen in the mixing and decays of K, D and B mesons,
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proportional to the rephasing-invariant quantity

detC = (m; —mg)(my —my) (mg — mip) (my —m3) (my —m3) (mg —m3)J . (2.47)

where C = — %S M,M? M, MZI] and the Jarlskog invariant J is defined by [160-163]

J §eaﬁys,- =3 [vg;,-vﬁ,-vajvg j] . (2.48)
The remaining universal rephasing freedom of the quark fields corresponds to the
accidental global symmetry of baryon number U(1)p. The baryon numbers of the
SM matter fields are given in Table 2.2; the quark (antiquark) fields are customar-
ily given values B = +% (—%) in order to give the baryons (antibaryons) B = +1
(—1). Another method of determining the number of free parameters in the theory
is to notice that the Yukawa Lagrangian breaks a global U(3)g, x U(3),, X U(3)4,
flavour symmetry down to U(1)p. Thus the 36 free parameters in the complex mass
matrices M, and My can be reduced by 26 broken group generators down to ten free
parameters; the six quark masses, three mixing angles and one phase.

Given the freedom to rotate the charged lepton and neutrino weak eigenstate
fields to remove the rotation matrix Vf , Eq. (2.46) (by definition) connects leptonic
fields of the same flavour. There is thus a global U(1), x U(1)r, x U(1)., symme-
try corresponding to each of the lepton flavour numbers. While each of the lepton
flavour numbers L., L, and L; is conserved, so is the fotal lepton number L =
Lo+ Ly + Ly, corresponding to the diagonal subgroup U(1),. We see that the global
U(3)r, x U(3)¢, flavour symmetry is broken down to U(1)r, x U(1)r, x U(1)L,;
the 18 free parameters in the complex mass matrix My are reduced to three (the
charged lepton masses) by the 15 broken group generators.

While U(1)g, U(1)r,, U(1)r, and U(1)., (and thus U(1).) are symmetries
of the classical action, they are broken by non-perturbative quantum effects in the
path integral measure (with physical effects such as instantons and sphalerons). It
is then not possible for any theory preserving unitarity to have gauged versions of

these symmetries. The combination ngB + n.L, + nyLy + n¢L; however is non-
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anomalous if either ng = 0 and n, +ny +n; =0 or ng =1 and n, +ny +n; =
—3 [164-168]. This has led, for example, to the consideration of gauged U(1)p_,
and U(1)r, . symmetries in the literature [169-172].

To conclude this section, the SM Lagrangian can be written as
Lsm = La+Ly+ Ly +Ly+ Lex+ Lo+ Let, (2.49)

where the first six contributions are given in Egs. (2.22), (2.16), (2.23), (2.43), (2.29)
and (2.29), respectively. The 18 free parameters in Eq. (2.49) are: the masses of the
leptons and quarks, m,, my, ms, my, me, my, my, mg and my,; the CKM mixing
matrix angles and phase ¥, U3, U3 and J; the Higgs self-coupling A and VEV
v; the weak mixing angle Oy ; and the QED and strong coupling constants e =
VArna and g = /4mo,. The strong CP phase 0 is also sometimes included as an
additional parameter, though is often dropped because its experimental upper limit
is tiny (6 < 107?) and a dynamical mechanism is usually invoked to set 6 = 0.
For example, a broken global Peccei—Quinn symmetry U(1)pq with an axion as a
Goldstone boson [173, 174].

The parameters and fields in the SM Lagrangian above are assumed to be bare,
tree-level quantities; not taking into account the infinities introduced by higher-
order loop Feynman diagrams. At each order in perturbation theory the infinities
can be absorbed into redefenitions of the couplings, masses and fields. This is
equivalent to adding counterterms L to the SM Lagrangian which can be defined to
subtract the divergent integrals from the loop diagrams. With the notable exception
of the —u?H"H term in the Higgs potential, all terms in the SM Lagrangian are by
construction dimension-four. For dimension-four operators it is always possible to

cancel the divergences with dimension-four counterterms.

2.2 Neutrino Masses

The observation of oscillations (Vo <= Vg) between the three known flavours of
neutrino has confirmed that neutrinos are massive and mixed. This can be taken as

conclusive evidence of physics beyond the SM. In the SM, there are only three two-
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component left-handed neutrino fields vy with a € {e,u,t}. It is therefore not
possible to construct a Yukawa-type term similar to those for the charged leptons
and quarks in Eq. (2.43), and the neutrinos remain massless after EWSB.

In this section we will explore a selection of neutrino mass models put forward
in the literature. Any model must make a few key predictions. Firstly, it must
reproduce the observed neutrino mixing and oscillation phenomena. Secondly, it
should explain why the neutrinos are so much lighter than the other SM fermions.
This issue is often taken as a hint that New Physics (NP) related to the neutrino
masses, or VSM, is at a very high scale, Anp 2 106 GeV. Finally, it must predict
either Dirac or Majorana neutrinos. This distinction is closely related to the global
U(1), lepton number symmetry discussed in the previous section. It can be shown
that neutrino masses imply the breaking of the residual global U(1)z, x U(1), x
U(1)., symmetry of the SM Lagrangian. Its diagonal subgroup U(1), may or may
not remain a symmetry at high energies. If broken, lepton number violating (LNV)
phenomena become possible at low energies, but are usually suppressed due to a
correlation with the small neutrino masses. If an LNV process is observed, it would

imply that at least one of the light neutrinos is Majorana via the black box theorem.

2.2.1 Dirac Neutrinos

The minimal vSM extension is the addition of three right-handed neutrino fields

var With @ € {e, i, 7}. It is then possible to write the Yukawa term
Lysm = Lsm — \_/RYVI:VITLL +h.c., (2.50)

where we have introduced a 3 x 3 Yukawa matrix Y. In order to preserve the SM
gauge symmetry, the vg fields must be singlets under SU(3), x SU(2). x U(1)y.
The generation of neutrino masses then proceeds identically to the charged leptons

and quarks; after EWSB Eq. (2.50) reduces to

1
Lysm = Lsm — %(V—Fh)\_/RYVVL—Fh.C., (2.51)
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where it is possible to identify the 3 x 3 neutrino mass matrix as M, = %Y\,.

It is again necessary to diagonalise this mass matrix through a biunitary trans-

formation,
V) "My VY =M, (2.52)

where V)Y and V) are 3 x 3 unitary matrices and M}, = diag(m,, mp, m3) con-
tains the masses of the neutrino mass eigenstates. Making the field redefinitions

Vi) =V,

LR vi(R) in addition to those in Eq. (2.45) now gives for the charged-

current interactions

Lys = —%%W* v vhe, - %am’ﬁ Vv, +hec., (2.53)
where the combination U = (V,’ TVf )=V JFVL" is the so-called Pontecorvo—Maki—
Nakagawa—Sakata (PMNS) mixing matrix, directly analogous to the CKM matrix.
It is conventional to define the neutrino flavour eigenstates as VLeTvL; the flavour
eigenstate charged leptons are then equivalent to their mass eigenstates. The PMNS
mixing matrix then simply rotates from the flavour to mass eigenstate neutrinos,
vy = Uv}. If this field redefinition is now made for the neutral-current neutrino

interaction,

L;o> -2 9 2v =2 92UV, (2.54)
2ew 2cw N~——

1

we see that it remains diagonal in the mass basis due to the unitarity of U.
It is relatively straightforward to observe that the term in Eq. (2.51) implies the

non-conservation of the individual lepton numbers L., Ly, and L;. One can write
Lysm D —VRMLV, — oMyl) +hec. = —VpM, U v, — IgMyly +hc.,  (2.55)

where in the second equality we have made use of the defined equivalence between

the flavour and mass eigenstate charged lepton fields and used v; = U Tv;. Because
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M, is a diagonal matrix it is possible to rotate the left- and right-handed charged

lepton fields by
lp — D, (g — Dlg, D=diag(e'%, e, e'¥7), (2.56)

(i.e. a different phase for each flavour) and Eq. (2.55) remains invariant. In addition,

the kinetic part of the Lagrangian
Lysm D ilpdlp +ilgdlg +ivid v+ ivgd g, (2.57)

remains invariant. However, if the left-handed neutrino v;, also transform as v;, —
Dvy, the product UM, v}, must transform as UM}/ v, — DUM}; v}, for Eq. (2.55) to
be invariant. The kinetic term for Vg is in general not invariant under this rotation,
apart from two special cases; the mixing matrix U is unity or m; = my = m3 in
M/\,. As the individual lepton numbers are not seen to be conserved by neutrino
oscillations, V4 & vg, it is must be true that U # 1 (the neutrinos are mixed) and
my # my #* m3 (at least two of the neutrinos are massive).

The rotation with ¢, = ¢, = ¢ (i.e. global lepton number L) does correspond
to a symmetry of the neutrino mass and kinetic terms in Egs. (2.55) and (2.57). By
Noether’s theorem, the invariance of Lagrangian corresponds to a conserved current
and charge. The conserved charge in this case is nothing but the lepton number, with
neutrinos (and negatively charged leptons) assigned L = +1 and antineutrinos (and
positively charged leptons) assigned L = —1. The neutrinos in this picture are called
Dirac neutrinos because the left- and right-handed two-component neutrino fields
can be combined into a four-component Dirac spinor like the other SM fermions.
The Dirac spinor contains four degrees of freedom; a neutrino and antineutrino with
positive or negative helicity.

The mixing matrix U can be parametrised in the same way as the CKM matrix
in the previous section. As a 3 X 3 unitary matrix, it must contain three mixing
angles and six phases. Similar to the quark sector, a residual U(1)® symmetry allows

a rephasing of the mass eigenstate charged lepton and neutrino fields as £g; gy —
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.. Best Fit = 1o [175]
Mixing Parameter

NO 10
sin® 61/10~! 3.045005  3.04701¢
sin” 6y3/1072 221170065 2.24070,063
sin2623/10~! 5707918 575+007
Scp/ T 1.087928 1597013

Am3 /(1075 eV?)  7.420020 7.427030
2 ) 0.028 0.028
|Am31 ‘ / (10 eV ) 2.5 14f0.027 2-497J—ro.028

Table 2.3: Current global best fit values for the three-neutrino flavour oscillation mixing
angles 0y, 013 and 6,3, mass-squared splittings Am%1 and Am%1 and CP phase
Ocp. Values are given for Normal Ordering (NO) and Inverted Ordering (IO) of
the light neutrino mass eigenstates.

% gr(ry and V}L(R) — el V}L(R) so that we are left with a single phase 113 = — cp.

The standard parametrisation of U is

1 0 0 Cc13 0 S13€7i5CP crp si2 O
U= R23WI3R12 =10 o3 s3|°" 0 1 0 | —spp c12 O], (258)
0 —s23 23 —s3eicr 0 c13 0 0 1

where ¢;; = cos 6;; and s;; = sin6;;. As shown in Chapter 3, oscillations between
the three neutrino flavours are sensitive to these mixing angles, the mass-squared
splittings Am3, = m3 —m? and Am3, = m3 —m} (corresponding to the solar and
atmospheric splittings Ams01 and Am%tm respectively) and finally the phase Ocp.
The phase dcp induces CP violation in neutrino oscillations and is being probed
by current oscillation experiments NOVA and T2K and in future by DUNE and
T2HK. The size of CP violation is proportional to an equivalent Jarlskog invariant to
Eq. (2.48), replacing V with U. The sign of Am%1 , still to be determined, controls the
ordering of the neutrino mass eigenstates; Normal Ordering (NO) for m; < my < m3
and Inverted Ordering (IO) for m3 < m; < my. In Table 2.3 we show the current
global best fit values for the PMNS mixing matrix angles and phase and mass-
squared splittings from Ref. [175]. Other global fits can be found in Refs. [176,177].

Before moving on to the next subsection, we comment on the prediction for

the neutrino mass matrix, M, = \%YV. In order to produce neutrino masses below
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Figure 2.1: (Left) Dirac neutrino mass generated after EWSB by a Yukawa-type interac-
tion. (Right) Majorana neutrino mass generated by a Type-1 (or extended, e.g.
ISS) seesaw mechanism.

the upper limit my, < 1 eV from the KATRIN experiment, this result implies that
the Yukawa matrix must have entries Y, ~ 107!2. This suggests a degree of fine-
tuning with respect to the other SM fermion Yukawa couplings. As we will see in
the next subsection, dynamic mechanisms can instead be invoked to generate the

small neutrino masses, avoiding an arbitrary fine-tuning.

2.2.2 Majorana Neutrinos and Seesaw Mechanisms

So far we have assumed that the global U(1);, lepton number symmetry still applies
for the vSM Lagrangian. The global U(1); symmetry of the SM Lagrangian is often
called an accidental symmetry; lepton number is preserved by all renormalisable
dimension-four (or below) terms that respect the SM gauge symmetry. There is
no fundamental reason for this in the theory; furthermore, lepton number is broken
by non-perturbative effects (and is expected to be broken by quantum gravitational
effects above the Planck scale) [178-181].

If the condition of lepton number conservation is relaxed for the particu-
lar vSM considered in the previous subsection (three additional SM-singlet right-

handed neutrinos Vg), it becomes possible to write
~ 1
Lysm = Lsm— \_/RYVHTLL - E‘_/IC?MRVR +h.c., (2.59)

where v = CV. Along with the Yukawa term we have an additional Majorana
(and LNV) mass term for vg, where Mg is a complex symmetric 3 X 3 matrix.
An equivalent Majorana mass term for vy is not possible as this would violate the
conservation of hypercharge.

Thus far we have only introduced three SM-singlet (or sterile) neutrinos Vg;
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one for each SM generation. The number of generations in the SM is not technically
fixed at three however. The SM gauge symmetry must be anomaly free for the
theory to be consistent; the U(1)3, SU(3)2U(1)y and SU(2)?U(1)y anomalies (and
also grav?U(1)y anomaly if a graviton is included) are all cancelled by different
combinations of the hypercharges in each generation. An additional generation
with the same hypercharge assignments will also satisfy the anomaly cancellation
conditions. On a practical level, however, a fourth generation is heavily constrained
by electroweak precision observables and the lack of production at colliders [182—
184]. The invisible Z boson decay width constrains the number of neutrinos lighter
than mz/2 to be Ny, = 2.924+0.05. This rules out additional light active neutrinos,
but light sterile neutrinos Vg which mix with the active neutrinos (via the Yukawa
term in Eq. (2.59)) are still allowed. Furthermore, because the sterile neutrinos have
zero hypercharge, a priori any number can be added without disrupting the anomaly
cancellation among the other SM fields. It is customary to replace the symbol vg
with Ng to indicate that the sterile states may be unrelated to the left-handed SM
neutrino fields v;.

It is nevertheless convenient to combine the v and Ny fields so that Eq. (2.59)

can be written in the following form after EWSB

1 T 0 MB vL
Lysm = Lsm — EnLCMan +h.c., M, = , np= ,  (2.60)

Mp Mg N§

where we have used Ny as it transforms like a left-handed field and the so-called
Dirac mass matrix is Mp = \%Yv. If ng sterile states are present, Mp will be an
ng X 3 complex matrix and Mg will be an ng x ng complex symmetric matrix. The
combined matrix M, is a complex symmetric N X N matrix (where N = 3 + ng).
It can be shown that such a matrix can be diagonalised with a single unitary N x
N matrix as VLT MV, = M’, where M’ is a diagonal matrix with real and positive

elements. Thus the transformation

VYTM VY =M, (2.61)
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can be used to diagonalise the combined Majorana mass matrix in Eq. (2.60). The

field redefinition n;, = V}'n; now gives
1
ﬁvSM = £SM — Eﬁ/(M/vPL + M/JPR)HI, n/ = (V] Vo V3 N] s )T R (2.62)

where n’ contains N mass eigenstate neutrino fields. We label the first three massive
states v anticipating that they will be mostly an admixture of the active neutrinos,
or mostly-active. Likewise, we anticipate the ng states being mostly-sterile.

The neutrinos in this picture are Majorana fermions. In the Dirac scenario,
neutrinos are described by independent left- and right-handed fields vy and vg
which make up a four-component Dirac spinor, Vv = vy, + Vg. In this scenario, the
neutrinos are instead described by a single left-handed field v;, with the equivalent
of the right-handed field being vi =C \_/IT . A four-component spinor vV = v; + V; can
then be constructed, from which it is clear that the Majorana condition v = v¢ holds.
This condition reduces the number of degrees of freedom for a single Majorana neu-
trino to two; one for each helicity state. Majorana neutrinos and antineutrinos are
equivalent, but it is conventional to refer to a Majorana neutrino with negative or
positive helicity as a neutrino or antineutrino respectively. In a model where three
right-handed fields vg with a Majorana mass term are present, the theory produces
six Majorana mass eigenstates as opposed to three mass eigenstates in the Dirac
case. The number of degrees of freedom is the same in each case.

We can again examine the charged-current interactions after transforming the

neutrino fields to the mass basis

Lye = Vi, — (Vvd; +hec. (2.63)

\/— LWJr VT’NX3 \/— LW?L

where, because only three active left-handed fields v, appear in the interaction, we
take the 3 x N submatrix of VY. To simplify the following discussion, we again
redefine the active neutrino flavour eigenstates to be VfT VL, so that the weak and
mass eigenstate charged leptons are equivalent. A 3 x N matrix € is then defined

to connect the active neutrinos to the mass eigenstate neutrinos, vy, = Qn’L. We also
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g Vne Uy

where Uy, Vyy, Vyy and Uy are 3 x 3, 3 X ng, ng X 3 and ng X ng sub-blocks of

write V" as

V) respectively. It can be seen that the charged-current interaction in Eq. (2.63)
connects the charged leptons to all neutrino mass eigenstates, which are admixtures

of the flavour fields v, and N§, i.e.
Vi =USve+ Vi NG, N =Vvi +ULNg, (2.65)

where v/ = (v{ vo v3)T and N’ = (N| N, ---)T. Similarly, the neutral-current inter-

action can be written as

L7029 2v, =27 2QQ)n,, (2.66)
2CW 2CW N —
£1

which is now non-diagonal in the mass basis.

The neutral-current interaction of the Z boson with more than three massive
neutrinos appears to be in contradiction with measurements of the invisible Z decay
width, i.e. Z — vv. However, we are interested in the limit where the mixings
between the active and sterile states are small, i.e. Vyy,Vy, < 1 in Eq. (2.64). This
is naturally obtained in the famous Type-I seesaw limit, ||Mp|| < ||Mg]|| (where
IM|| = +/Tr(MTM) is the norm of the matrix M) [185-189]. If the above condition

holds, it is possible to diagonalise M, up to corrections of order M]T:)ME1 as

T my
T (0 MD) vy = ( ’ ) (2.67)
MD MR 0 my

where m,, ~ —MBMEIMD, my ~ Mg and we have assumed without loss of gen-

erality that the matrix Mg, is diagonal (this can be ensured by an arbitrary rotation
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among the sterile states). The sub-blocks of V,” are given by

1
Uy ~ (1— 5l\/lj)l\/lRZl\/|D>U, Viy ~ MEME T

1
Vive = —Mz'MpU UNzl—EM,jMDMgM,gl, (2.68)

where U is the standard 3 x 3 PMNS mixing matrix.

The main advantage of the seesaw limit is that it produces small masses for the
mostly-active mass eigenstates V. Because they have no connection to the scale of
EWSB, the masses in Mg are a priori arbitrary. For example, if we take Yukawa
couplings Y, ~ 1 and therefore Dirac matrices Mp ~ 100 GeV, sterile masses
Mg ~ 10'¢ GeV produce light neutrino masses of order m, ~ 1073 eV, below the
current upper limits from beta decay and cosmology. The scale A ~ 10'¢ GeV of-
ten appears as the scale of gauge coupling unification in GUTs, and right-handed
neutrinos are naturally incorporated in such theories [190-194]. Heavy neutri-
nos at this scale cannot be produced at colliders, but they are key components
for the thermal leptogenesis mechanism [195]. In this scenario, heavy neutrinos
undergo out-of-equilibrium decays in the early universe, generating a primordial
lepton asymmetry which is converted into a baryon asymmetry by EW sphaleron
processes [196-200]. All of the so-called Sakharov conditions for producing the
observed matter-antimatter asymmetry of the universe are met [201].

A potential issue with GUT-scale sterile neutrinos is that they naively con-
tribute to radiative corrections to the Higgs mass and can thus destabilise the EW
scale [202]. A possible solution, known as the neutrino option, suggests that the
Higgs mass parameter = 0O at tree-level due to classical scale invariance at high
energies. A non-zero value is then induced entirely by heavy sterile neutrino thresh-
old corrections [203-205].

Because the sterile neutrino masses in Mg are arbitrary, they can be made much
smaller as long as there is a corresponding change to the Yukawa matrix Yy to
produce the absolute neutrino mass scale m, < 1 eV and the observed mass-squared

splittings. the relation RS Rl st1 olds then the seesaw diagonalisation
plittings. If the relation ||Mp|| < ||Mg|| still holds then th diagonalisati
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of Eq. (2.64) remains valid. Then, depending on what is an acceptable degree of
fine-tuning for the Yukawa coupling Y, the sterile neutrino masses in Mg can range
anywhere from an eV to the Planck scale. One of the most studied of these low-scale
seesaw scenarios is the neutrino Minimal Standard Model (vVMSM) [206]. This
introduces three sterile states; a ke V-scale neutrino which contributes to dark matter
and a heavier neutrino pair with masses in the range 1 — 100 GeV [207,208]. It was
first shown in Ref. [209] (the Akhmedov-Rubakov-Smirnov or ARS mechanism)
that CP-violating oscillations between the sterile neutrino pair can generate a baryon
asymmetry. Alternatively, the sterile pair can be at the TeV-scale but possess a
mass-splitting comparable to their decay widths; thermal leptogenesis can produce
a lepton asymmetry via a resonant enhancement [210]. The seesaw limit has even
been shown to reproduce the light neutrino masses down to Mg ~ 1 eV, known as
the mini-seesaw [211,212].

Low-scale Type-I seesaws (e.g. those with sterile neutrinos in the TeV range)

unfortunately predict very small active-sterile mixings,

100 GeV
Vin = 4 | ¥ <1076 | ot (2.69)
my my

Even though the sterile neutrinos are kinematically accessible at colliders, their
mixings are too suppressed to be produced in sufficient quantities.

The limit ||Mp|| > ||Mg]| is also possible for the Lagrangian of Eq. (2.60).
Setting all elements in Mg to zero is of course equivalent to the Dirac scenario
considered in the previous subsection if ng = 3. The six massive Majorana fields
are arranged into three degenerate-mass pairs with opposite CP parities, i.e. three
Dirac neutrinos. Non-zero elements in Mg will now perturb the mass spectrum; at
least one of the pairs will develop a small mass splitting. The nearly-degenerate
neutrino pairs are called quasi-Dirac neutrinos. If the splittings are very small, os-
cillations between the Majorana neutrinos in each pair are too fast to resolve and
they are indistinguishable from a single Dirac neutrino [213]. Solar neutrino data
have excluded values in Mg above ~ 102 eV in the quasi-Dirac scenario [214].

Finally, it is worth noting that small sterile neutrino masses do not suggest an un-
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natural fine-tuning as can be the case for the Yukawa coupling Y,. Global lepton
number symmetry is restored as Mg — 0 and therefore the radiative corrections to
the Majorana neutrino masses (which will be examined in the next subsection) are
also proportional to the Majorana masses. It is then technically natural for Mg to be
small [215]. A baryon asymmetry can be generated for quasi-Dirac (or pure Dirac)
neutrinos via the neutrinogenesis mechanism [216].

Returning again to the Type-1 seesaw mechanism, it has been known for some
time that there exists a class of models which produce the light neutrino masses
and a sizeable active-sterile mixing Vyy. These extended models assign specific
textures to the Dirac and Majorana mass matrices in Eq. (2.60), with the stability
of these textures enforced by extra symmetries in the lepton sector [217-222]. In

these scenarios the Majorana mass matrix can be written in the generic form

0 (Mp)1  (Mp)2
0 MJ
My = ( > = | (Mp)1 (Mg)u1 (Mp)i2 | » (2.70)
Mp Mg
(Mp)2  (Mg)21 (Mgr)22

where, as before, the (1,1) sub-block corresponding to the v; Majorana mass matrix
is zero in order to preserve the SM gauge symmetry. Two sets of sterile neutrino
fields Ng 1 and Ng> have also been introduced; the mass matrix in Eq. (2.70) then

specifies the Dirac and Majorana-like mass matrices of these fields.
We will now examine the different extended seesaw scenarios contained in
Eq. (2.70). The minimal Inverse Seesaw (ISS) [223-225] sets the sub-blocks to

(Mg)22 = pis and (Mp)2 = (Mg)11 = 0, giving in the basis n, = (v Ny | me)T

0 MJ o
My = | Mp 0 M |- (2.71)
0 My ps

For |[Mpl], ||us|] < ||Ms]|, this extended mass matrix can be diagonalised by a

unitary matrix as in Eq. (2.67) to give a light neutrino mass matrix

my = ML(M{) ! usMg 'Mp. (2.72)
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This approximate result is also true for the generalised 1SS which additionally sets
(Mg)11 = ug [226,227]. The matrix pg does not contribute at tree-level, but does
generate a one-loop correction which we will discuss in Subsection 2.2.3 [226,228].

Finally, the so-called minimal Linear Seesaw [229-232] sets (Mg)11 = (Mg)22 =0

and (MD)2 = Ur, giving

0 My uf
My= ™M o my]. (2.73)

we M7 0

With ||ur|], [[Mp|| < ||Ms]|, the light neutrino mass matrix is given by
my &~ MAMg ! pr 4+ Mg 'Mp . (2.74)

Note that if there is no symmetry forbidding a rotation between the sterile states, the
mass matrix of Eq. (2.73) can always be transformed to the generalised ISS mass
matrix with appropriately defined ug and ug [233].

In the above scenarios we have not specified the source of LNV, which is
necessary for the light neutrinos to be Majorana fermions. Whether the the sub-
blocks in Eq. (2.71) and (2.73) violate lepton number depends on the L assign-
ment of the two sterile neutrinos Ng 1, Ngp. For example, making the choice
L(vy) = L(Ng1) = L(Ng2) = +1 (i.e. treating the sterile neutrinos as right-
handed counterparts to the left-handed active neutrinos) will mean that both terms
in Mp conserve L while all terms in Mg violate L by two units. On the other
hand, if L(vy) = L(Ng,1) = +1, L(Ng2) = —1, the |AL| = 2 terms are (Mp), and
(Mg)12 = (Mg)21. While the origin of LNV is important to describe the underlying
model, from a phenomenological point of view the assignment of lepton number
does not need to be fixed. Also, any observable |AL| = 2 effect will depend on the
relative CP phase between Ng 1 and Ng .

Regardless, the smallness the matrices g s is again technically natural in
the ’t Hooft sense [234], i.e. in the limit of g 5 r — 0, lepton number symmetry

is restored and the light neutrinos v are exactly massless to all orders in perturba-
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tion theory. An advantage of these extended seesaw mechanisms over the standard
Type-I seesaw is that the light neutrino masses are now the result of a small (but
technically natural) parameter instead of a large scale M. The active-sterile mix-
ings Vyy can now be sizeable while still satisfying the light neutrino oscillation data.
However, for small u, the theory predicts that the massive Majorana sterile states
form pseudo-Dirac pairs if they have opposite CP phases. This will be the focus of
Chapter 5.

It is also worth mentioning that light active neutrino masses can be induced in
models without sterile neutrino states. The most studied are the so-called Type-II
and Type-III seesaw mechanisms. The former introduces a heavy Higgs field A that
is a triplet under SU(2),, [189,235-239]. The latter introduces three heavy SU(2).
triplet fermions X [240]. We will see in the next section that these heavy states can
be integrated out to give an effective light neutrino mass at low energies. One can
instead remain agnostic about the source of the light neutrino masses and start from
an effective approach. This can be included in the previous discussion by assuming

that the Majorana mass matrix takes the form

]
M, = <ML MD), (2.75)
Mp Mg

after EWSB, i.e. some new physics unrelated to the sterile neutrinos Nr generates
a Majorana mass My, for the active neutrinos at low energies.

To conclude this subsection we briefly examine the parametrisation of the
PMNS mixing matrix U in the Majorana case. We saw in Eq. (2.63) that, after
introducing ng sterile neutrino fields, the charged-current interaction contains the
3 x N mixing matrix €. This rectangular matrix is not unitary, but nevertheless we
have the condition Q'Q # QQT = 1. As such, we can parametrise it in the following
way: a general complex N; X N rectangular matrix contains 2NN, free parameters.
The condition QQ" = 1 enforces le constraints to give Nj (2N, — N;) free param-
eters. In this particular case N; = 3 and N, = 3 4 ng, and it can be shown that the

3(3+2nyg) free parameters can be split up into 3 4 3ng angles and 6+ 3ng phases. Fi-
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nally, an arbitrary rephasing of the charged lepton fields £g7 gy — 98¢ pr(r) makes
it possible to eliminate three phases to give 3 4+ 3ng phases in total. The effective
Majorana mass term for the mass eigenstate neutrinos forbids an equivalent rephas-
ing n'].L(R) — ei")fn;.L(R).

This general prescription is simplified further in the seesaw limit of Egs. (2.67)
and (2.68). Here we now see that the 3 x 3 and 3 X ng sub-blocks of Q are correlated;
the Vi sub-block contains 6ng arbitrary parameters. We can now separate out three
mixing angles and three phases in the unitary matrix U, which is now defined to
diagonalise the light Majorana mass matrix m, ~ —MBI\/IRI\/ID. One of these is
the Dirac phase dcp and the other two are the so-called Majorana phases o and
o3 situated along the diagonal of the matrix, i.e. U = Ry3Wj3R2D where D =
diag(1, e’%, e’%). Processes that conserve the total lepton number (e.g. neutrino
oscillations) are not sensitive to these two phases. This is because the total rate
always depends on the PMNS mixing matrix elements multiplied by their complex
conjugates. This is not the case for LNV phenomena such as Ovf3 3 decay, which
we will see in Chapter 3 is sensitive to & and 3.

The Type-I seesaw limit predicts that the mixing between the charged leptons
and light neutrinos appearing in the charged-current interaction, Uy ~ (1 — 1)U, is

not unitary. The deviation from unitarity is encoded by the small parameter

|
n= 5|\/|D|\/|R2|\/|D, (2.76)

though 1 may also be generated by unrelated new physics. Non-unitarity has been
extensively examined in the context of neutrino oscillations [241-248].

Finally, it can also be shown that in the ng = 3 Dirac limit,
o=—1| v , w |, (2.77)

where now the absence of the Majorana mass term permits a rephasing of v to

remove the Majorana phases from U. The number of free parameters has been
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dramatically reduced from 24 to three angles and one phase [213].

2.2.3 Radiative Neutrino Masses

We have so far considered mechanisms that generate the light neutrino masses at
tree-level. Neutrino masses can also be generated at higher orders in perturbation
theory, i.e. diagrams containing one or more loops [249,250]. An useful property of
these contributions is that they are suppressed by a factor of 1/167? for each loop;
the scale of new physics Anp generating the light neutrino masses can therefore be
much lower. Furthermore, loop or radiative diagrams can induce either Dirac or
Majorana neutrino masses depending on the field content of the theory. The loop
diagrams may be the dominant contribution to the light neutrino masses if tree-level
Feynman diagrams are forbidden by some symmetry.

A variety of radiative mechanisms have been investigated in the literature.
Well-known examples that generate Majorana neutrino masses at one-loop are the
Zee and scotogenic models [251,252]. The latter introduces three fermions N and
an SU(2), doublet Higgs (nT, n?), both of which are negatively charged under
a discrete Z symmetry (the SM fields are positively charged, thereby forbidding
a seesaw diagram at tree-level). Because the Z; symmetry forbids it decaying to
SM particles, the lightest of the new particles is a suitable DM candidate. At two-
loops an example is the so-called Zee-Babu model, which introduces singly- and
doubly-charged scalar fields At and k™ [253,254]. At three-loops the number
of possible diagram topologies increases greatly, and the loop integrals themselves
are difficult to evaluate. Nevertheless, classes of models studied in the literature
include Krauss-Nasri-Trodden (KNT), Aoki-Kanemura-Seto (AKS) and cocktail
models [255-257]. Minimal radiative models that do not introduce additional global
or gauge symmetries to the SM have been considered in Ref. [258]. A radiative
mechanism that instead generates Dirac neutrino masses at one-loop (and provides
a possible DM candidate) has been considered in Ref. [259].

More recently, Dirac neutrino masses generated at two-loops have been studied
the context of the left-right symmetric model [260]. Here, the SM gauge group is
assumed to be the low energy limit of an SU(3), x SU(2),, x SU(2)g x U(1)x gauge
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Figure 2.2: (Left) Two-loop diagram generating Dirac neutrino masses in a left-right sym-
metric model with a global U(1)g_; symmetry. (Centre and right) Radiative
corrections to the Type-I and ISS mechanisms.

symmetry at high energies. This gauge group, and in particular the quantum number
X, is usually assumed to be broken by the VEV of a SU(2) triplet Higgs. It is then
possible to identify X as the non-anomalous combination B — L. As a result of
B — L being broken, Majorana neutrino masses are generated. On the other hand,
the precise pattern of symmetry breaking can be changed if the field content of the
model is altered. Crucially, if a new quantum number ¢ is introduced, the U(1)x
symmetry can correspond to X = (B— L)+ . For { # 0, the combination B — L
remains a global symmetry at low energies and neutrinos must be Dirac fermions.

The field content of the left-right symmetry model can be considered with or
without the presence of a bi-doublet (under SU(2);, and SU(2)g) Higgs field, which
conventionally gives Dirac masses to the SM fermions after EWSB. If it is not
present, one can add new vector-like states for the charged leptons, up-type and
down-type quarks; E, U and D respectively. The left- and righ-handed components
of these fields transform identically under the left-right gauge group. If these vector-
like states are then much heavier than the EW scale, the SM fermion mass matrices
M., M, and M, are generated via a Dirac seesaw mechanism [261-266]. Most
importantly, small Dirac neutrino masses are produced by the two-loop diagram to
the left of Fig. 2.2. In order to produce the observed light neutrino mass-squared
splittings, Ref. [260] found that the scale of left-right symmetry breaking must be
Anp ~ 100 TeV and that a hierarchy is required between the generations of vector-
like charged leptons Ej (for a single generation of vector-like quarks, B and 7).

We finally return to the generalised ISS mechanism, i.e. the Majorana mass
matrix in Eq. (2.70) with the (2,2) sub-block set to ugr. It can be shown that the

light neutrino Majorana matrix in Eq. (2.72) acquires a one-loop radiative correction
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from the diagrams in the centre and right of Fig. 2.2 [228,267,268]. This is the
standard tree-level ISS diagram with either a Z loop or a closed Higgs loop (and a

quartic Higgs interaction). In terms of the 3 X ng matrix Mp and the ng x ng matrix

Mp defined as,

Me= [ ™, (2.78)
M§  us

the finite loop contribution can be written as

i awMpMg [ 3m2 M3 2 M
Bmtloop: w D2 R 5 m22 In _§ _{_%ln —2R MB, (2.79)
l6mtmy, | Mg —m3;1 my Mz —mpl My

with ay = g? /47, where the first and second terms correspond to the Z and Higgs
loop diagrams, respectively [226]. In the limit ||z s|| < ||Ms||, and assuming Mg =
mgl, the expression can be simplified to

] M 2 2 2 2
Smlio . O D/JR{ 3mz <ﬁ)+m_Hln (m_zsﬂmg (2.80)
m

2 2 2 2 2 2
167Tmy, mg —my ms mg — my 7

which we now see depends on the matrix g, not ug [226]. Therefore, in the case
s = 0 but tg # 0, neutrinos are massless at tree-level but acquire a Majorana mass
matrix directly proportional to tg. Because it does not require any additional field
content beyond that already present in the ISS, this scenario is called the minimal

radiative ISS. We will also examine this contribution in Chapter 5.

2.3 Effective Field Theories

In this section we will summarise the effective approach for parametrising physics
beyond the SM. In the previous section we examined specific models (introducing
new field content and symmetries) that generate the light neutrino masses, whether
they be Dirac or Majorana. Since the 1970s, a plethora of extensions to the SM have
been suggested as solutions to other outstanding problems. For example, SUSY was
first developed as a means of explaining the seemingly ‘fine-tuned’ Higgs mass. The

theory predicts a spectrum of heavy SUSY partners, the lightest of which may be
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a Weakly Interacting Massive Particle (WIMP) DM candidate. However, in order
to stabilise the Higgs mass the theory needs SUSY partners in the TeV regime;
no evidence of such particles has been seen at colliders. Furthermore, the non-
observation of proton decay and FCNCs has heavily constrained couplings in the
theory.

It is therefore important to complement the study of specific models with a
model-independent approach. Ideally, this second approach will not be biased by
criteria used in the past to develop new theories; namely, notions of naturalness and
increased symmetry (or unification) at high energies. While we have observed the
unification of the electromagnetic and weak forces at the EW scale, this may not
be true for the EW and strong forces. It is nevertheless important to explore all
possibilities for new physics, especially those that make experimental predictions
(and are thus falsifiable).

The most useful tools for the model-independent approach are Effective Field
Theories (EFTs). So-called effective theories of nature have been highly useful as
our knowledge of the fundamental interactions has improved. They are based on
the concept that physics at some high energy A in the ultraviolet (UV) does not
significantly affect phenomena at low energies E in the infrared (IR); the small
impact in the IR can be described by an expansion in E/A. For example, the non-
relativistic approximation can be regarded as an expansion in v/c, where v < c.

The EFT framework is a systematic procedure for quantifying the effect of
UV physics in QFTs. At a given order in the expansion parameter E /A, one can
construct all operators (from the available degrees of freedom) that satisfy the sym-
metries of the theory. For powers (E/A)" where n > 0, the operators are of mass
dimension greater than four and are therefore non-renormalisable. Renormalisable
theories such as QED can, in principle, compute an infinite number of observables
with a finite number of parameters; these can absorb all the UV divergences from
loop diagrams. Conversely, a non-renomalisable theory requires an infinite number
of counterterms to cancel all UV divergences. On the other hand, these divergences

can be absorbed by a finite number of parameters order by order by the expansion
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parameter. In this way, EFTs are still predictive to a given accuracy.

An EFT can be considered from a top-down or bottom-up perspective. The
former constructs an EFT from a known UV-complete theory where an effective
approach may simplify difficult calculations. This is acheived by integrating out
the degrees of freedom heavier than A. For example, Chiral Perturbation Theory
(xPT) and Heavy Quark Effective Field Theory (HQEFT) are low energy EFTs of
QCD. The former describes the low energy interactions of light hadronic degrees of
freedom (such as protons, neutrons and pions) below the chiral symmetry breaking
scale of QCD, Ay ~ 1 GeV. The latter describes the low energy dynamics of hadrons
containing a charm or bottom quark.

Fermi’s effective theory of weak interactions can also be derived from the full
description of weak interactions by integrating out the W* and Z bosons. This can

be achieved by approximating the propagators of the bosons as, e.g.

3 (2.81)
pm—my mW mW mw

s PuPv
) 8uv( 7, )

which, when contracted with (V —A) fermion currents at each vertex gives the

dimension-six operator (for the leading-order term in Eq. (2.81))

AGF
ﬁcc~—7 (WY T ) (Wl y), (2.82)

where v, w’ € {Lr,lr,Qr,ug,dr} and the Fermi coupling constant is defined as

3—5 = Domg the same for the neutral-current gives
L ~ _4& — 3 - 2 — / 3 - 2 / 2
Ne® =S (VAT sy Qy) (W —swQ)v), 283

where we have used the relation ¢y = my /myz (valid at tree-level). Evaluating
(T3 — s%,0) for the fields makes it possible to write the effective neutral-current in

the conventional form

4G _ _ /
Lnc~ — ﬂgxgﬂ Uy Pew) (W Pry'), (2.84)
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where W, ¥’ € {v,{,u,d} and X,Y € {L,R}. The g¥ factors correspond to the values
of (T3 —s%,Q) in Table 2.2. We additionally set g} = 0.

Of course, the UV-complete theory of weak interactions was not known when
the effective Lagrangian of Eq. (2.82) was first written. This is the bottom-up ap-
proach; at a given dimension, one constructs all operators from the known degrees
of freedom that respect the symmetries of the low-energy theory. New physics at
some high scale Axp may contribute to any one of these operators, but we would
expect the lowest orders (the least suppressed by powers of Anp) to contribute the
most. For physics beyond the SM, the useful EFT is therefore the Standard Model
Effective Field Theory (SMEFT), which we will now present.

For the vSM, we are interested in the operators that contain the left-handed
neutrino fields v;, and therefore contribute to observables such as the neutrino
masses, neutrino oscillations, beta decay and Ov3 3 decay. Because these processes
take place at low energies (below the EW scale), the relevant SMEFT operators can
be matched onto a more useful Low Energy Effective Field Theory (LEFT). We will

also outline the operators that will be used in the subsequent chapters of this thesis.

2.3.1 Standard Model Effective Field Theory

In general, physics beyond the SM (at some high energy scale Axp) will induce
higher-dimensional local operators containing all possible permutations of SM
fields respecting the SU(3). x SU(2), x U(1)y gauge symmetry of the SM. This

can be written as the expansion

A(d)
¢!
Lsverr = Lsm+ Y, Y, —— @Ed) , (2.85)
d>5 1 Anp

where Lgy is the SM Lagrangian, Ol.(d) are dimension-d (dim-d) combinations of
SM fields and CA'Z.(d) are associated dimensionless Wilson coefficients. The scale of
NP can be absorbed into the dimensionful coefficients Cl.(d) = CA’Z.(d) / A§1§4. The index
i sums over all Lorentz and gauge-invariant combinations of fields.

The SMEFT does not necessarily impose the conservation of lepton or baryon

number, which are accidental symmetries of Lgy. It can be shown that an oper-
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ator will have even (or odd) dimension if the combination (AB — AL)/2 is even
(or odd) [269]. For example, baryon and lepton number violating operators with
(AB,AL) = (£1, £1) arise at dim-6. The dimensionful coefficients Céf) of these
operators are heavily constrained by the non-observation of proton decay. For
O(1) Wilson coefficients CA‘g’), the scale of NP must be high, Axp > 10'® GeV.
If NP is instead at the TeV scale, the Wilson coeffients will be highly suppressed,
CA‘;@ < 10726, The (non-)conservation of lepton number is closely linked to the
Dirac or Majorana nature of neutrinos. The presence of any |AL| = 2 operator im-
plies that the light neutrinos are Majorana fermions; a Majorana mass term for the
left-handed neutrino fields v;, can be constructed from one of these operators at
tree-level or radiatively. All operators with |AB| = 0 and |AL| = 2 must be of odd
dimension; therefore, operators that induce Majorana neutrino masses and LNV

phenomena are of dim-5, dim-7 and dim-9 [270]. It can be shown that the only

dim-5 operator in the SMEFT is the well-known Weinberg operator
£ =P Tca ) H ) +hee., (2.86)

where CSS) = CA’E,S) /Anp, H = iorH* and o, the second Pauli matrix [123].

A complete basis of SMEFT operators has been classified in the literature up to
dim-9. At dim-6 there are 63 non-redundant, linearly-independant operators, first
derived in Refs. [271,272]. It was shown that 59 of these operators are baryon
number conserving, while the remaining four violate baryon and lepton number
as (AB,AL) = (%1, +1). When ny = 3 generations of fermions are included, this
amounts to 2499 instances of the former operator and 273 of the latter. To determine
the behaviour of these operators beyond the tree-level, their renormalisation group
(RG) evolution must be characterised. This is the running and mixing of the Wilson
coefficients from the high scale Anp to the low scale u, which can be quantified by

the anomalous dimension matrix 7,

p=i =yl (2.87)
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The 59 x 59 anomalous dimension matrix for the dim-6 baryon number conserv-
ing operators has been computed at one-loop in Refs. [273-275]. The equivalent
4 x 4 matrix for the (AB, AL) = (£1, 1) operators has likewise been summarised
in Ref. [276]. Mixing is not permitted between operators with different quantum
numbers.

At dim-7 there are known to be 18 linearly-independent SMEFT operators; 12
violating lepton number by two units, (AB, AL) = (0, £2), and six violating baryon
and lepton number by one unit, (AB,AL) = (£1, F1) [277,278]. The anoma-
lous dimension matrices for these two classes of operators have been comptuted in
Refs. [278,279]. The SMEFT operators at dim-8 and dim-9 are listed in Refs. [280]
and [281] respectively. For operators with dim-d > 6, it is increasingly difficult to
count the number of operators for ny generations, as some operators vanish when
flavour structure is included. However, there has been recent progress with Hilbert
series techniques [282,283]. Furthermore, thorough studies of the RG runnings and

mixings of dim-d > 7 operators have yet to be conducted.

2.3.2 Low Energy Effective Field Theory

For phenomena taking place at energies below the EW scale, it is more practical
to use the previously-mentioned LEFT. This is an expansion similar to Eq. (2.85),
except Lgp is now in the broken phase. Additionally, one must add all possible
permutations of fields (lighter than the EW scale) respecting the SU(3). x U(1)¢
gauge symmetry of the spontaneously-broken SM. We will introduce the notation
dim-d for the mass dimension of LEFT operators.

It is possible to match the SMEFT operators onto the LEFT at the EW scale.
To do this, one must expand the Higgs doublet around its VEV (for example, in the
unitary gauge, H = \%(O v+ h)T) and then integrate out the degrees of freedom
heavier than the EW scale (W* and Z bosons, top quark ¢ and Higgs boson h).
Matching can take place at tree-level at multiple loops. At tree-level, dim-d LEFT
operators can be matched to dim-d SMEFT operators with (d —d) Higgs insertions.
As d increases, the number of SMEFT operators that can be matched to a given

LEFT operator increases dramatically; the matching is usually restricted to a given
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mass dimension d and number of loops.

A complete basis of LEFT operators has been specified up to dim-7 [284,285].
In Ref. [284], LEFT operators up to dim-6 were matched at tree-level to SMEFT
operators up to dim-6. This was extended to a matching to dim-6 SMEFT operators
at one-loop in Ref. [286] and dim-7 SMEFT operators at tree-level in Ref. [285]. In
Ref. [287], the anomalous dimension matrix was computed for the complete basis
of dim-6 LEFT operators. This provides a method for determining the effect of NP
above the EW scale at a low energy y. The RG running and mixing of SMEFT
Wilson coefficients in Eq. (2.87) is used to evolve the coefficients from Axp down
to the EW scale. There, the coefficients are matched onto the equivalent LEFT
coefficients, and these coefficients are finally evolved down to the scale u.

The only operator at dim-3 in the LEFT, shown in Fig. 2.3 (left), is

£8) = —%VLTCMLVL +he., (2.88)

i.e. a Majorana mass term for v;. This is induced by the dim-5 Weinberg operator
in Eq. (2.86) after EWSB and therefore the matching M; = vzé\(,s) /Anp is possible.
After rotating to the mass basis, this mass matrix can be compared to the prediction
from the Type-I seesaw, my ~ —MDMEIMD = —%YVMEIYV. It is then clear that
Anp corresponds to the right-handed neutrino masses in Mg. However, models such
as the Type-II and Type-III seesaw mechanisms also induce this operator. From a
model-independent point of view, the small active neutrino masses put a stringent
bound on the dimensionful coefficient C\(,S). For C’&S) ~ 1, the scale of NP must be
high, Anp 2 10 GeV. Conversely, for Axp ~ 1 TeV the Wilson coefficient must
be suppressed, CA‘\(,S) < 10712,

At dim-5 is the neutrino dipole operator (shown in Fig. 2.3, right)
5 1
£ 5 —vaT CuLouyViF*Y +hec., (2.89)

which describes magnetic and electric dipole moments of the light active Majorana

neutrinos. The lowest dimension SMEFT operators this operator can be matched



2.3. Eftective Field Theories 71

C

Figure 2.3: (Left) Effective Majorana mass for the left-handed neutrino fields v; from a
dim-3 LEFT operator. (Right) Majorana neutrino dipole moment interaction
from a dim-5 LEFT operator.

to are at dim-7. Eq. (2.89) is antisymmetric in the exchange of neutrino fields and
therefore vanishes when the flavour of the two neutrino fields are the same (a = f8),
but not when they are different (o # ). For ny = 3 generations, g is a 3 x 3
antisymmetric matrix and Eq. (2.89) can only describe transition dipole moments.
It i1s always possible that the same NP contributes to the neutrino mass and
dipole operators. For example, the effective neutrino dipole interaction shown in
Fig. (2.3) may be a loop process containing a charged particle. One can immediately
generate the Majorana mass operator by removing the photon. In this case the

Majorana mass and dipole moment are given approximately by
G 2
€ N Uy  Zmemy

my ~ GAnp, ‘LLVNA_NP E_ A2
NP

(2.90)

where G contains coupling constants and loop factors. Above we have rearranged
to find a naive relation between the dipole moment (in units of the Bohr magneton
Up = ﬁ) and the neutrino masses; the small neutrino masses imply very small
neutrino magnetic and electric dipole moments. The situation is complicated by the
fact that my is symmetric and p, antisymmetric in flavour space. The correlation
between the two is examined in detail by Ref. [288], which sets model-independent
bounds on the Majorana transition dipole moments as a function of Anp.

The primary focus of Chapters 3 and 4 of this thesis will be to assess novel
probes of Non-Standard Interactions (NSIs) of neutrinos with matter. Generically,
these kinds of interaction arise at dim-6 in the LEFT; those that involve a single left-
handed neutrino field v, in a charged-current type interaction (shown in Table 2.4)

or two vz, fields in a neutral-current type interaction (Table 2.5). As shown to the left
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Charged-Current LEFT Operators

|AL| =0 + h.c. |AL| =2 + h.c.
(VLY L) (dLyuur) (VI Cy*LR)(dLyuur)
(\_’L?’“ﬁL)(d YulR) (v C}MR)(dRYu”R)
(Vlr)(drug) (v ClL)(dLur)
(Vlr) (dRur) (v Clr)(drur)
(\_/LG“VER)(CZLG”VMR) ( CG'UVEL)(dRGHvuL)

Table 2.4: |AL| = O (left) and |AL| = 2 (right) dim-6 charged-current LEFT operators, of
vector, scalar and tensor type.

and right of each table, each type of interaction can either be |AL| = 0 or |AL| = 2.
For charged-current type interactions it can be seen that vector-, scalar- and tensor-
type currents are possible for both |AL| = 0 or |AL| = 2 operators. The difference
is purely the replacements v <> C \_/LT and ¢; <> ¢g. For the neutral-current type
interactions only |AL| = 0 vector-type and |AL| = 2 scalar- and tensor-type currents
are possible. If the replacement v <> C \7{ i1s made for any one of the neutrino
fields in these operators it will vanish. The (Vpy*£.)(dryuur), (Vey*ve)(Weyuwi)
and (Vry*vi)(WrYu Wr) operators all receive contributions from the SM charged-
and neutral-current interactions (as seen at the start of this section).

The |AL| = 0 charged-current type operators can be matched onto operators in
the SMEFT at dim-6, while |AL| = 2 operators can only be matched onto dim-7 and
above operators. For example, the lower four |AL| = 2 operators in Table 2.4 can
be matched to dim-7 SMEFT operators with an additional Higgs doublet in order
to conserve hypercharge. The operator (v, Cy*¢g)(dLy,ur) can only be matched
to the SMEFT at dim-9, with three Higgs doublets needed to keep hypercharge
invariant. Likewise, the |AL| = 0 neutral-current operators are matched to dim-6
SMEFT operators while |AL| = 2 operators are matched to dim-7 or dim-9 .

The standard parametrisation for the dim-6 neutrino NSIs (normalised to the
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Neutral-Current LEFT Operators

|AL| =0 |AL| =2 + h.c.
(Vey*ve)(Wryuwe) (Vi Cv) (WL yR)
(VLY*ve) (WRYu W) (Vi Cvp) (Wryr)

(VLTCG“VVL)(WRGW‘I’L)

Table 2.5: |AL| = 0 (left) and |AL| = 2 (right) dim-6 neutral-current LEFT operators, of
vector type for the former and scalar and tensor type for the latter. The fermion
fields can be v € {{,u,d}.

Fermi coupling constant Gf) is

.cgg = —%e (VI¢) (dT'u) +h.c., (2.91)
_ G ]
51(\% = —\/—ge’ (vIv) (9T'y) | (2.92)

where the possible combinations of Dirac matrices is shown in Table 2.6 [289]. The
€ and €’ are non-standard coefficients with four flavour indices.

Because the LEFT and SMEFT operators are constructed from SM degrees
of freedom, they only contain the left-handed neutrino fields v;; no assumption is
made about the Dirac or Majorana nature. We have seen that the SMEFT contains
|AL| = 2 operators at dim-d > 5 which generate a Majorana mass term for the light
active neutrinos. However, it is still possible that the active neutrinos are Dirac
fermions if U(1), is an exact global symmetry of the Lagrangian and the Wilson
coefficients of |AL| = 2 operators vanish, i.e. é&s) = 0. As the right-handed (Dirac)
neutrino fields vg are sterile under the gauge symmetry of the SM (and its broken
phase), they are usually omitted from the SMEFT (and LEFT).

However, it may be the case that the Vg fields are involved in V + A interactions
(arising for example in a left-right symmetric model) at high energies. Both the
Dirac and Majorana cases are possible in Egs. (2.91) and (2.92). When the Dirac
matrix I" picks out the right-handed part of the four-component neutrino field v (and
the associated non-standard coefficient is £), we obtain Vg in the Dirac case and vy
in the Majorana case. In the Dirac case, all interactions in Egs. (2.91) and (2.92) are

|AL| = 0. In the Majorana case, the charged-current coefficients € and & indicate
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€ r I’

er Y(IFB)  wl-%)
er Y(AFB) A+
es  (1£%) 1

ep  (1£p) —%
er otV(1L£y) ouv(l1Ey%)

Table 2.6: Combinations of Dirac matrices appearing in the standard parametrisation of
charged- and neutral-current type neutrino NSIs.

|AL| = 0 and |AL| = 2 interactions respectively. The vector-type neutral-current
interactions are |AL| = 0 while scalar and tensor-type interactions are |AL| = 2. It
is also possible that the right-handed fields Nk are completely unrelated to the light
active neutrino fields, but have their own Majorana masses below the EW scale. For
full consistency both possibilities should be included, which we outline in the next
subsection.

For the ten charged-current € coefficients it can be shown (in both the Dirac
and Majorana cases) that there are 2 x 3% x 10 = 1620 free parameters. The form of
Eq. (2.92) allows to elimate half of these parameters (810) for the neutral-current &’
coefficients. Finally, in the Majorana case there are additional constraints in the &’
coefficients, for example a relationship between € and & (depending on the flavour
indices). These are summarised in Appendix A. This can reduce the number of free
paramaters in the €’ coefficients down to 432 [289].

The phenomenology of the non-standard charged-current and neutral-current
neutrino interactions in Egs. (2.91) and (2.92) have been studied extensively in the
literature [290-303]. To summarise this line of research very briefly, neutrino NSIs
involve all of the same fields as the charged- and neutral-current SM interactions.
Their impact will be to induce corrections to observables such as neutrino oscilla-
tions and beta decay. As outlined in Ref. [301] for example, the scalar and tensor
charged-current interactions alter the electron angular distribution in beta decay.

Finally, we note that the fields in the operators above have been written in

the flavour basis. When computing their effect on physical observables it will be
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convenient to work in the mass basis. Assuming the charged lepton and up-type
quark mass matrices are diagonal in the flavour basis, one can make the rotations
dp =Vd},dgr=Vdj and v, = UV}, where V and U are the usual CKM and PMNS
mixing matrices and we have defined a new matrix V. However, it is always possible
to redefine the € and €’ coefficients so that V is the identity matrix, V = 1. The

treatment of right-handed fields Ng will be examined in the next subsection.

2.3.3 Adding Right-Handed Neutrinos

In the previous subsections we reviewed the SMEFT and LEFT, in which only the
left-handed neutrino fields v, is present. The question of whether neutrinos are
Dirac or Majorana is therefore not addressed. One may take a slightly less model-
independent approach by introducing ng SM gauge-singlet fields Ng to the theory.
It is then possible to construct more operators at each dimension of the EFT. These
have been studied in the literature up to operators at dim-9 in the SMEFT and dim-9
in the LEFT [304-306]. For example, at dim-3 in the so-called LEFT + N it is now

possible to write
£(§) N 1T
D) _NRMDVL_ENR CMRNR+h.C., (2.93)

i.e. a Dirac-like mass term and a Majorana mass term for Ng. The first term can
be matched to a Yukawa-like term at dim-4 in the SMEFT + Ng. This is identical
to the Type-I seesaw Lagrangian in Eq. (2.60). There are therefore two important
scenarios. The first is if U(1)y is a global symmetry, forbidding the Majorana mass
term in Eq. (2.93). For ng = 3, the N (or vg) fields are then the right-handed
counterparts to vr. The second is if lepton number is not conserved; depending
on the parameters of the theory, this will then generate three light active Majorana
neutrinos and ng additional states. Subtleties such as the CP phases of the sterile
states can add additional complexity to the spectrum of states; for example, some
sterile states can form pseudo-Dirac pairs.

Rotating from the flavour to mass basis is therefore more involved with the

inclusion of Ng. In the Dirac case, one can make the rotation vg = VRv Vlle =0 Vlle-
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Charged-Current LEFT + Nr Operators

|AL| =0 + h.c. |AL| =2 + h.c.
(NRY*CR)(dLYyur) (NgCy* L) (dryuur)
(NRY*(R) (dRYuur) (Ng Cy* L) (drYuur)

(NglL)(dpug) (Ng Clr)(drur)
(NglL)(dRur) (Ng Clr)(dgur)
(NRG“VEL)(dRG”vuL) (NI-{CG“VKR)(CILG“VMR)

Table 2.7: |AL| = 0 (left) and |AL| = 2 (right) dim-6 charged-current LEFT + Ny opera-
tors, of vector, scalar and tensor type. Assumes the lepton number assignment

Instead of absorbing U into the definition of the € and €’ coefficients, we will keep
it explicit in the following discussion. In the Majorana case, the transformation of
the three left-handed fields v, and ng right-handed fields Ng becomes v, = QP n’
and Ng = E*Pgn’ where n’ = (v; v, v3 Ny ---)T. However, we saw in the seesaw
limit that the mixings between the active and sterile neutrinos become negligible.
Therefore, v; ~ UyPLV' ~ UP.V' and Nr ~ UyPrxN' = PxN' where Uy = 1 and
Vi=(vivawz3))T,N = (N Ny ---)T.

Keeping the different interpretations of Ng in mind, it is possible to write at

dim-5 in the LEFT + Ng,
< _ 1
L) 5 —Npupoyy viF*Y — EN,'{ CurouyNrF*Y +h.c., (2.94)

i.e. a Dirac dipole operator between v, and Nk and a Majorana dipole operator for
Npg. The former can be matched to a dim-6 in the SMEFT + Ny and the latter a
dim-5 operator. In the Dirac case the second term is forbidden while the first term
describes magnetic and dipole moments of light active Dirac neutrinos. The fields

can then be rotated to the mass basis to write,
LO) > —vpubouy v F*Y 4 hee., (2.95)

where ufy = UTupU. In the Majorana case, the combination of the terms in
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Neutral-Current LEFT + Ng Operators

|IAL| =0 |AL| =2 + h.c.
(NRY*Nr) (WY L) (NRCY*vi) (P yuyr)
(NRY*NR)(WRYu WR) (Ng CY* Vi) (VR Yy WR)
(NrvL)(WLYR) +h.c. (Ng CNg) (VL)
(Nrve)(WrYL) +h.c. (Ng CNg)(WRYL)

(NrG"¥vL) (WROuyWL) +hc.  (NJCOHYNR)(WROuy WL)

Table 2.8: |AL| = 0 (left) and |AL| = 2 (right) diim-6 neutral-current LEFT + Ny operators,
of vector, scalar and tensor type and for fermion fields v € {{,u,d}. Assumes
the lepton number assignment L(Ng) = +1.

Egs. (2.89) and (2.94) may be written as

_ 1 9 T
E(S) > _E(HZCHMGM‘/”L)FMV —|—h.C., UM = <li uD) . (296)
Hp MR

Rotating the neutrino fields to the mass basis and making the assumption that the

active-sterile mixings to be small gives

o
2
w|
&

1_ . UTwU Ul
D =5 oM (P — i PR)n Fuy s by = ( . ) . Q97
Hp HR

The antisymmetric N x N matrix (i, describes transition magnetic and electric
dipole moments between the N = 3 4+ ng Majorana states. In both the Dirac and
Majorana cases the magnetic and electric dipole moments correspond to the real
and imaginary parts of pf; and L, respectively, ,LLII)(M) = ﬂl’)(M) - i?:l’)(M).

The inclusion of ng fields Nr will also enable additional charged-current and
neutral-current type interactions at dim-6 in the LEFT. The new charged- and
neutral-current type interactions are shown in Tables 2.7 and Table 2.8 respectively.
If the Ng (or vg) are simply the right-handed components of a Dirac neutrino, then
the |AL| = 2 operators in Tables 2.7 and 2.8 must vanish and the |AL| = 0 operators
are implicitly included in Egs. (2.91) and (2.92). If they instead have a Majorana
mass term and mix with the active neutrinos fields v; making N = 3 4+ ng Majorana

states, Egs. (2.91) and (2.92) do not encapsulate all possible interactions. One must
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also write

£l > —%eN (NTC) (dT'u) +h.c., (2.98)
GF / GF /

cffg ) _EEN (NIN) (9T'y) — (TZevN (NTV) (9T y) +h.c.> . (2.99)
where I" and I are the same combinations of Dirac matrices in Table 2.6. Similar
to Egs. (2.91) and (2.92), the Dirac matrices pick out either the fields Nr or their
complex conjugates Ni. The flavour basis fields can again be rotated to the mass
basis using v, = QP;n’ and Ng = Z* Prr’.

In the preceeding discussion we have demonstrated two possibilities for the
production of sterile neutrinos (with arbitrary masses). The first is the so-called
neutrino portal; the Yukawa-like term NgY,H Ty induces a mixing between v
and Ny and therefore mostly-sterile states can be produced in SM charged-current,
neutral-current and Higgs boson interactions. A small active-sterile mixing implies
that their production via this portal is suppressed. The second is the so-called dipole
portal; the Lagrangian in Eq. (2.97) describes the transition magnetic moments
between light mostly-active neutrinos and mostly-sterile neutrinos. Mostly-sterile
neutrinos can then be produced via an upscattering process. We emphasise that,
generically, the sterile states are Majorana fermions. However, particular choices
for their CP phases ensure that in certain limits (such as the ISS mechanism seen in

AL| =2

Subsection 2.2.2) the sterile states form pseudo-Dirac pairs. In this limit,
processes are suppressed and a pseudo-Dirac pair, for small enough splitting, ap-

pears to be a single Dirac fermion.



Chapter 3

Lepton Number and Neutrino

Oscillations

In this chapter we will examine how neutrino oscillation (Vo < Vg) experiments
are sensitive to lepton number. More specifically, we will assess how oscillation
experiments which are able to measure the charge of the outgoing lepton at the far
detector are sensitive to Lepton Number Violating (LNV) neutrino non-standard
interactions (NSIs). We will compare these sensitivities to those of conventional
|AL| = 2 probes such as Ov 3 decay and rare meson decays.

Neutrino NSIs were summarised in the previous chapter; if the light active neu-
trinos are Majorana fermions, one can write down the effective charged-current in-
teractions in Eq. (2.91). The SM charged-current interactions correspond the choice
of Dirac matrices I' = y*(1 — 95) and I = ¥, (1 — 75). However, Eq. (2.91) also in-
cludes scalar and tensor charged-currents. In addition, if the Dirac matrix for the
leptonic current is right-handed, this selects the charge-conjugate of the neutrino
field v§ = Cv] and the interaction is |AL| = 2.

As mentioned in Chapter 1, neutrino-antineutrino oscillations (v < V) were
first suggested (for Majorana neutrinos) by Pontecorvo in direct analogy to K¥ < K9
oscillations [69, 70]. With the development of the (V — A) theory of weak interac-
tions however, it was realised that a charged-current at the production and detection
of oscillating neutrinos induces a helicity suppression of approximately (my /Ey)>.

For neutrinos with masses m, < 1 eV and typical reactor or accelerator energies
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E, ~1MeV — 1 GeV (ultrarelativistic neutrinos) this factor is highly suppressed.

This can be explained as follows; Majorana neutrinos and antineutrinos are by
definition equivalent (v = v¢). As a result, what we label as a ‘neutrino’ and an
‘antineutrino’ in the Majorana case is a neutrino with negative or positive helicity
respectively. The (V — A) charged-current interaction at the production process
yields an admixture of negative and positive helicity neutrinos; the positive helicity
component with a suppressed amplitude (my /Ey ). Helicity is a conserved quantum
number and therefore the same admixture of helicities is present at the detection
process. The (V — A) charged-current at detection now proceeds with a suppressed
amplitude (my /Ey) for the negative helicity neutrinos but not for positive helicity
neutrinos. The overall amplitide squared, needed to compute the v < Vv oscillation
probability, is thus proportional to the square of this suppression factor. The term
‘helicity-flip” has often been used in the literature to describe this scenario. We
stress however that the helicities of oscillating neutrinos remain constant and the
suppression is induced entirely by the interactions at production and detection.

In this chapter we explore the consequences of replacing either the production
or detection interaction with a charged-current neutrino NSI; namely, one that has a
right-handed combination of Dirac matrices in the leptonic current. We assume that
the light active neutrinos are Majorana fermions, and hence the overall production,
oscillation and detection process is now |AL| = 2. For example, if the neutrino is
produced by the decay of a pion as & — 7 v, it can undergo oscillations and induce
the process V + p — £ + n (if a right-handed neutrino NSI is present at detection).
Measuring the charge of the outgoing lepton at detection, this appears to be the
oscillation process v < V. Now, instead of being suppressed by the helicity-flip
factor squared (my /Ey)?, the process is suppressed by the non-standard coefficient
squared, |€|>. We will see that oscillations provide a unique way of probing the &
coefficients, and in particular, their flavour structure.

Much of the literature has so far only considered the effect of |AL| = 0 charged-
current neutrino NSIs on neutrino oscillations. This is usually justified; oscillation

experiments are often only concerned with the neutrino flavour at production and
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detection, inferring the process Vo = Vg (or Vo = Vg) from the accompanying
charged lepton £, (¢;) at production and KB (%r) at detection. There is often no
detector at the neutrino source to identify the initial composition of flavours; this and
the associated energy spectrum must be inferred from separate measurements and
Monte Carlo simulations [307-309]. Also, it is usually not possible to determine
the charge of the outgoing lepton €§ at the far detector (and therefore to discern an
incoming neutrino or antineutrino). A sensitivity to charge (and therefore lepton
number) is not a priority for oscillation experiments because, as we have discussed,
Va = Vg is heavily suppressed in the SM. However, this suppression can be an
advantange; if an experiment sees an excess of wrong-signed charged leptons at
the far detector, this would strongly imply NP. The long-baseline (LBL) accelerator
experiment MINOS and the LBL reactor/solar oscillation experiment KamLAND
were able to distinguish outgoing leptonic charge, so they will be the focus of this
chapter.

We begin this chapter by reviewing the derivation of neutrino oscillations in
Quantum Mechanics (QM) and Quantum Field Theory (QFT). Using the latter
(more rigourous) formalism, we will study the |AL| =2 vq < Vg oscillation process
for Majorana neutrinos in the SM, obtaining the anticipated (my /Ey)? suppression
of the total rate. Furthermore, we show that the total rate cannot be factorised
into a production rate, oscillation probability and detection cross section as is com-
monly done for Vo = Vg oscillations. In Section 3.2 we will consider the impact
of |AL| = 2 charged-current neutrino NSIs (rather than the well-studied |[AL| =0
NSI) on neutrino oscillations. We will show that the total rate is no longer helicity-
suppressed and can be factorised. We then write down a general expression for the
non-standard oscillation probability and a simplified expression in the two-neutrino
(2v) mixing approximation, specifically for the (v, V¢) sector. In Section 3.3, this
allows us to use a limit from the MINOS experiment on the v, — V;, appearance
process to place bounds on the simplified 2v parameter space. We then generalise
to the complete three-neutrino (3v) mixing scheme, re-evaluating the constraints

from MINOS and also using those from the KamLAND experiment. We compare
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these constraints to those from microscopic |AL| = 2 processes such as Ov 3 3 decay,

* conversion in nuclei and radiative neutrino masses in Section 3.4, putting

n —e
particular emphasis on the different flavour structures being probed. Finally, we
review the results and briefly outline the potential for future oscillation experiments

to improve on these bounds. This chapter is based on the work of Ref. [141].

3.1 Theory of Neutrino Oscillations

3.1.1 Quantum Mechanics

A quantum description of neutrino oscillations vy = vg was first developed using
the plane wave approximation of QM [310-312]. We will now briefly summarise
the derivation of the oscillation probability Pva_wﬁ in this framework.

The origin of neutrino oscillation lies in the mismatch between the kinetic and

charged-current interaction terms in the SM Lagrangian,

1
Lsm D (5) Vi (id —mj) v, — % (\_’aLWZEaL —l—h.c.) : (3.1)

The kinetic term is diagonal in the mass basis of fields (labelled by the index i)
while the interaction term is diagonal in the flavour basis, i.e. in which the neutrino
and associated charged lepton have the same flavour (labelled by the index o).

The Lagrangian in Eq. (3.1) is valid for both Dirac and Majorana neutrinos (up
to a factor of % in front of the Majorana kinetic and mass term). For Dirac neutri-
nos, the SM charged-current interaction term shown explicitly in Eq. (3.1) creates
negative helicity neutrinos |v(g,—)) and annihilates positive helicity antineutrinos
|V(q,4)). The creation and annihilation of the other two degrees of freedom, i.e.
|V(q,+)) and |V(gq,—)), are suppressed by ~ (m, /Ey) at the amplitude level [313].

For the hermitian conjugate of the charged-current term shown, the suppression is

reversed. For Majorana neutrinos, |V(g,+)) is equivalent to |v(g,+)). Therefore,
the creation of the wrong-helicity degrees of freedom by the explicit charged-current
term in Eq. (3.1) is suppressed by ~ (my /Ey) in the Majorana case.

The kinetic and mass terms in Eq. (3.1) describes the propagation of neutrino
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states with definite masses and therefore well-defined energy-momentum dispersion
relations. On the other hand, the neutrino states produced by charged-currents inter-
actions have definite flavours. From the diagonalisation of the neutrino mass matrix
in the previous chapter, we know that the flavour basis fields are related those in the
mass basis by a unitary rotation (in the basis where the charged lepton flavours have

definite masses). This is a rotation by the PMNS mixing matrix U, i.e.
Va(x) =Y Uqi Vi (x). (3.2)
i

Thus, charged-current interactions produce a coherent superposition of neutrino
mass eigenstates, which then go on to propagate as physical states. The time and
space evolution of the massive states is naively governed by the time-dependent

Schrodinger equation, resulting in the flavour composition from time #q to ¢

Va(1)) =Y Ugi e 0 V(1)) = Y. ) Ugi e 0" U, [vp (1)), (3.3)
i B

i

where Eq = 1/|q]2+ ml2 ~ |q| + % is the energy of each ultrarelativistic massive
neutrino with mass m; and three-momentum ¢, which is assumed to be equal for
the different mass eigenstates. States with definite momentum are not localised in
space and are therefore characterised by plane-wave wavefunctions.

An oscillation probability can now be derived by evaluating the square of the
overlap between the time-evolved initial flavour state |V (7)) and an arbitrary final

flavour state [vg),

2
2 _
PVa—>VB (L,Eq) = ‘ <Vﬁ‘va(T)> ’ = ZUéiUﬁi e ek
i
‘Amlzj
= Y Ui PlUs > +2R Y UgUpUg Uj e (3.4)
i P>
where Aml-zj = ml2 — m? and we have approximated 7" ~ L (with L the oscillation

baseline). Expanding the absolute square gives a sum over two mass eigenstate

indices i and j; the second line splits this into two sums, one with i = j and the
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other i > j (which must be made real and be multiplied by a factor of two to include
i < j terms). The oscillation probability in Eq. (3.4) can be brought into a more

convenient form if we take advantage of the unitarity of U, 1.e.

U'u=1 = Y U;Upi =84
i

= Z|Ua,~|2|Uﬁ,~|2 = Sup —2Z9{[U;;iUﬁanjUgj] : (3.5)

i>j

Plugging this result for }. ]Uai|2|Uﬁ ;|? into Eq. (3.4) and expanding out the real and

imaginary parts of the second term (and retaining only the real parts) gives

Py vy (L,Eq) = 8qp —4 Z.SR[UaiUﬁanjUﬁj] S EL
1>]

; 1 (A
+2§_S[Ua,.UBan jUp ;] sin Z—EqL . (3.6)
J
which shows the deviation of the oscillation probability Vo = Vg from unity (for
o = fB) or zero (for a # ). The real part of the product of PMNS mixing matrix
elements %[U:ciUﬁan jUEj] will depend on the mixing angles 60,, 63 and 653,
but not a possible CP violating Dirac phase dcp (Which is present for both Dirac
and Majorana neutrinos). Conversely, the imaginary part is sensitive to dcp, and

in a similar manner to the CKM mixing matrix is proportional (up to a sign) to a

Jarlskog invariant,

T Y Eapyeize =S |UaiUpiUaU, ) 3.7)
Y.k
where for the standard U parametrisation, J = s12s13s23c12c%3c23 sin 0cp. The sign
in front of the imaginary part in Eq. (3.6) is opposite for antineutrino oscillations,
and therefore the difference between neutrino and antineutrino oscillations has been
the key observable for determining the size of CP violation in the lepton sector.
This canonical derivation was the first attempt in the literature to understand

neutrino oscillations as a purely quantum phenomenon. The approach however



3.1. Theory of Neutrino Oscillations 85

is reliant on a number of unphysical assumptions, namely the use of plane-wave
states. The assumption that the propagating |v/(¢)) eigenstates are plane waves of
equal momenta q forces the external particles at production (e.g. a decaying pion
and an outgoing charged lepton) to have definite energies and momenta. Energy-
momentum conservation at production is then in tension with the creation of three
V!(to)) states with different energies Eq = 1/|q|? +m? [314]. It is possible to de-
rive Eq. (3.4) without the equal momentum assumption, but an overall uncertainty
in the energy and momentum of the neutrino mass eigenstates is still a necessary
component for oscillations [315,316].

A rigorous treatment of neutrino oscillations in QM must therefore describe
the |V/(1)) states with wave packets [317-319]. While this introduces an uncer-
tainty in the neutrino momenta, their position in space becomes more localised. As
in Eq. (3.4), the oscillation probability is proportional to the overlap of the wave
packets. The loss of coherence seen at long distance in oscillation experiments is
now qualitatively ascribed to the dispersion of the wave packets, which propagate at
different group velocities v = aa—'i“ ‘q:Q (where Q the mean momentum) [320-323].

There are still fundamental issues with the QM derivation after the conceptual
improvements of the wave packet treatment. Firstly, the neutrino wave packets are
an ad-hoc addition to the framework, and their specific shape is arbitrary. Secondly,
an uncertainty in both the energy and momentum of the propagating neutrino mass
eigenstates requires the localisation in space and time of the production/detection
processes [322]. Finally, the QM approach does not consider possible entanglement

between the outgoing v and ¢ at the production process [324].

3.1.2 Quantum Field Theory

A more consistent framework for characterising neutrino oscillations is the external
wave packet model [325]. In this formalism the entire production, propagation and
detection process can be described by a macroscopic Feynman diagram, as shown
in Fig. 3.1 (left). The external interacting particles (for example, pions, charged
leptons and nucleons in the detector) are wave packets centred on the production

and detection points xp and xp respectively, while the intermediate neutrinos are
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P[ DI

Figure 3.1: Feynman diagrams depicting the vq = Vg (left) and v = Vg (right) oscillation
processes. The latter requires a helicity-flip if SM charged-currents are at the
interaction vertices.

described by an internal propagator. The neutrino wave packets used to describe the
propagating neutrinos in the QM approach can be derived from the external parti-
cle wave packets in QFT. In the QFT approach, however, the coherence conditions
at each stage in the process are explicit [323,326,327]. For example, the energy
and momentum uncertainties required for the process to produce a coherent super-
position of massive neutrinos are well specified. The shapes of the external wave
packets are still technically ad-hoc, but their form is not important for the following
discussion.

To calculate the oscillation probability onﬁvﬁ in QFT it is first necessary to
determine the overall rate. To do this, one constructs the time-ordered S-matrix

element (at first order in the Fermi coupling Gp),

iAyy vy (T,L) = <PF,DF|T{ / d*x, / d*xs Op(x1) OD(xz)}|P[,D1>, (3.8)

where P;, D;, Pr and DF represent the initial and final state particles at production
and detection, respectively, and x; and x, are space-time points in the vicinity of xp
and xp. This tree-level process is depicted in Fig. 3.1 (left). The external asymptotic
states ¥ € {P;, Dy, Pr,Df} are described by the wave packets

d’p

() VIE 3-9)

v) = [lap) 157 ®) w(p)): lap) =

where fI(,::I/) (p) is the momentum distribution function of the external particle y
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with mean momentum Py,. In order to create and annihilate an internal neutrino,

the production and detection terms must take the general form

Op(x) = Y Ug; V/(x) Op(x) Z(’)D U, Vi (%), (3.10)
i

where Op (x) and Op (x) are the reduced production and detection interaction terms
with the neutrino fields and PMNS matrix elements removed. Note that in order to
produce and annihilate a (Dirac or Majorana) neutrino, the SM charged-current and
its hermitian conjugate are needed at production and detection respectively. Thus,

opposite sign charged leptons are produced at production and detection.
The total rate for the combined production, oscillation and detection process
can now be computed by taking the spin average of the S-matrix element squared
(i.e. averaging over the incoming particle spins and summing over the outgoing

particle spins), I'y v & ([Avgvy (T,L) |?). This can be expanded as

(|Avaav¢;|2> =Tr ‘ZU;iUﬁi -Ai’2

—Z\Um] Ugil” Tl AP +2R Y UsiUp Us U, Tr[A:AT], (3.11)

i>j

where Tr denotes the Dirac trace. The A; factors are defined as

| = R (g+m) 5 —iq-(xp—xp)
Ai= / (2m) Pp(q) P—ritie Dp(q) e , (3.12)

where ®p and @), are integrals quantifying the overlap of external wave packets at

production and detection respectively, explicitly written as

0= [a* e [laplaw) 57 0) K ) I Mp, G

Bp(q) = / dy e / [dp'][dK) £ (p') fO7F (&) e P My, (3.14)

where x| = x| —xp, X, =x —xp and Mp, Mp are reduced matrix elements de-

fined as Mp = (Pr, k| Op(x;) |P;,p) and Mp = (D, K| Op(x2) |Dy,p’). The trace
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appearing in the interference term of Eq. (3.11) is then

J drd e—ila—4q')-(xp—xp)
AT — q q
Tr[AiAj] / (2@4/ (@m)* (7 — m? + ie) (¢ — m? + ie)

x Tr [éD&)D (g —+ m,’)&)p&)p (gl + m])} , (3.15)
where EP,D = &J; Dyo . To proceed, we now evaluate the d>q integrals of the above

expression in the limit L — oo [328]. If y/(q) is a twice differentiable function, for

large L = |L| and A; > 0, we have

/(cﬁq v et Ly (a k) edtio((van ). ae

21)3 Ai—q?+ie  4nL L

For A; < 0 the integral falls off as L2 and can be neglected. Applying Eq. (3.16) to
Eq. (3.15) with A; = EZ —m7 gives

1 .
f_ Kl )L
Tr[A,-Aj] = 647r4L2/qu/dE‘/1 oiail=1a;l)

X Tr[&)jpa)ip(qi +mi)&)iP$jP(gj —l—mj)] , (3.17)

which has effectively set the virtual neutrinos to be on their mass shell. As has
been elaborated before in the literature [329, 330], if the production and detection
processes are of the same chirality (e.g. both are left-handed SM charged-current
interactions), the trace in Eq. (3.17) can be factorised in the ultrarelativistic limit
(m; =~ 0) into Tr [&)lp (¢i+ mi)gjp} Tr [gjp(q/j + mj)CTD,-p] . For each of these factors
(one corresponding to production, the other detection), (¢ + m;) can be written as
the spinor sum hZi ui(q,h)i;(q,h). Then, taking the chirality projectors out of the

overlap integrals on each side of the spinor sum gives

—~

q,—) +uir(q, +)diL(q, +)

g) +(q"~al) ( ) : (3.18)

Expanding |q| = 4/ E& — ml2 for the small neutrino masses m; gives for the different

Pr(q+mi)Pr = uiL(q, — )L

= (¢°+lal) (

S o oo
Sooo
SO oo

0
0
0
0

SO oo
SO OO

1
0
0
0
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combinations of energy and momentum in Eq. (3.18),

N2 N
(q°+|ql)%2Eq{1—(2";’q) } (q°—|q\)w2Eq(2";’q). (3.19)

We therefore see that for vq = vg, the propagation of positive helicity neutrinos

(the second term in Eq. (3.18)) is doubly suppressed by (m;/2Eq)* compared to the
propagation of negative helicity neutrinos (the first term in Eq. (3.18)).

Neglecting the positive helicity neutrino contribution to the spinor sum in
Eq. (3.18), i.e. PL(g +m;)Pr =~ uir(q,—)itir(q,—), we now absorb the negative he-

licity spinors into the overlap integrals on each side of Tr[®;p (g} +m /) ®@ip] as

5 U ) P :’/_‘jL(CIa_)(’IV)

h=pp D) =T Py, 3.20
P .]P P \/E iP ( )

'L(Q7 -
\ / 2Eq
where we have normalised the spinors by the factor /2Eq so that the resulting ratio
is dimensionless. In Eq. (3.20) the mass indices have also been neglected, which is a
suitable approximation in the ultrarelativistic limit [323]. After these simplifications

the trace appearing in the interference term Eq. (3.17), can now be expressed as
1 il =l
Tr[ATA)] = T /qu/dE(’l AE Eq (| @p|?) eI (j@p2) | (3.21)

where (|®p|?) = Tr[®@;®p] and (|@p|?) = Tr[@pP})]. From Eq. (3.21) it can be
seen that the contributions from the production, propagation and detection processes
have factorised at the squared amplitude level. It is now a straightforward step
to show that the total rate for the Vo = vg process is related to the differential

production flux, oscillation probability and detection cross section as

1 AT (E
Doy (L Ea) = 5 / dEq % Provy (L, Eq) -0y (Bq),  (3.22)
q

where we have neglected experimental parameters such as the detection efficiency
and fiducial volume [331].

The final aim of this QFT approach is to derive an expression for the oscil-
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lation probability onﬁvﬁ; this can now be isolated by rearranging Eq. (3.22). As
demonstrated in Ref. [323], when the flux of incoming neutrinos is continuous the
differential production flux and detection cross section take the forms

dl—‘?/rod

“Z|Uai|2 (|®Pp|*) Eq lail, GS?“ZWBAZ (|Ppl*) Eq lq;|". (3.23)
i J

Making use of the fact that (|®p|?) and (|®p|?) are independent of the mass m;,

while also taking |q;| = |q;| in the ultrarelativistic limit, any dependence that Pyy—svg

has on the specific form of the wave packets is cancelled [323]. In this limit Pva_wﬁ

is given exactly by Eq. (3.4), confirming the result of the naive QM approach. We

note that the same result holds in the quasi-degenerate mass limit ||q;| — |q;|| <

, a property of the K® — K° system for example.

i, |q;

We will now show that for Majorana neutrinos the |AL| = 2 process Vy =
Vg is possible but suppressed by the factor (m;/ 2E4)? with respect to |[AL| =0
oscillations. This process is described by an amplitude like Eq. (3.8) where now the

production and detection interactions are the same, i.e.

Op(x) = Op(x) = Y Uz ¥ (x) O(x), (3.24)

1

which is non-zero for Majorana neutrinos because the field ¥;(x) both creates and
annihilates neutrinos. The Feynman diagram for this process is depicted in Fig. 3.1
(right).

As before, this amplitude can be written as a sum of amplitudes .4; and squared
as in Eq. (3.11). Using the Feynman rules for a Majorana fermion in Ref. [332],
the amplitudes .4; are identical to Eq. (3.12) but with the overlap integral for the
detection process ®p replaced with <I>%I. For ®p the reduced matrix element is
Mp o iig(pp)T, while for @} it is Mp o iig (pﬁ)CFTC_l, where I is the vertex
factor for the detection process. This transformation has the effect of flipping the
chirality of the detection process; for left-handed SM charged-current interactions

we have P, — Pg. Now in the trace Tr [&)%(q, + mi>&)ip$jp(q/j +m;) Y| we have

J

the same chiralities on either side of the (¢ +m;) factors. Thus, the mass terms are
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retained and the ¢ terms vanish. To see this explicitly, we again write the (¢ +m;)
as the spinor sum Y u;(g,h)i;(g,h). Then extracting the chirality projectors from
h=+

the overlap integrals and placing them on either side,

Pr(q,+mi)Pr = uir(q, —)iir(q, —) +uir(q, +) i (q, +)
00
- m; 00 (3.25)

where we have normalised with respect to 2Eq to compare to Eq. (3.19). The prop-

agation of negative and positive helicity neutrinos in |AL| = 2 oscillations are there-
fore singly suppressed by (m;/ 2Eq)2 with respect to the propagation of negative
helicity neutrinos in |AL| = 0 oscillations [333-335].

Because the trace is proportional to the neutrino masses, it must vanish in the
ultrarelativistic limit instead of factorising into components corresponding to the
production, oscillation, and detection processes. Technically, it is therefore not
impossible to define an oscillation probability if a ‘helicity-flip’ is the dominant

mechanism contributing to vy < Vg, only a rate for the entire process [329].

3.2 Neutrino Oscillations with LNV Neutrino NSIs

We will now consider the presence of interactions at production and detection which
are different from the usual SM charged-current interaction. Charged- and neutral-
current type neutrino NSIs (reviewed in Chapter 2) which conserve lepton num-
ber, but introduce a new source of lepton flavour violation (LFV), have been long
been studied in the literature [295, 296, 299]. Results from LBL accelerator ex-
periments such as MINOS, NOVA and T2K and short-baseline (SBL) reactor ex-
periments such as Daya Bay, RENO and Double Chooz have have been used to
probe the flavour structure of the € coefficients controlling the magnitude of the
NSIs [297,336-341]. The sensitivities of next-generation experiments such as
DUNE, Hyper-Kamiokande and JUNO have also been explored [342—-353]. Only
the flavours of the outgoing charged leptons at production and detection are required
for these constraints to be made; their charge is irrelevant for these analyses.

However, if an experiment is sensitive to the signs of the outgoing charged
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leptons ¢ and E?; at production and detection, it could in principle be sensitive to

lepton number. This has in fact been possible in the past; a magnetised far detector
was used by the MINOS experiment to determine charges from the curvature of
tracks in the steel scintillator near and far detectors. In addition, the KamLAND
experiment used the prompt energy deposit from an outgoing KE (and a coincident
neutron capture on hydrogen) as a distinct signal from the EE case [354]. The non-
observation of an excess of wrong-signed charged leptons by these experiments is
in line with the highly-suppressed Majorana neutrino oscillation vy = Vg. In this
section, we will explore how the presence of a |AL| = 2 neutrino NSI at production
or detection will induce an altered oscillation probability, and use the null results of
MINOS and KamLAND to place constraints on the associated € coefficients.

In this chapter we will adopt the following notation for the charged-current

type neutrino NSIs (introduced in Eq. (2.91))

6 4GV
Loc=— {

7 i+ Y Y ey j§J§*} +h.c., (3.26)

o XY
i.e., separating the left-handed SM charged-current term with the leptonic and
hadronic currents j, = (o y*P Ve and J, = d'y,Pru, respectively. We have ro-
tated the down quark field to the mass basis, picking up the CKM mixing matrix
element V,;. The sum includes all possible Lorentz contractions of the leptonic
current j§ = ZﬁFOvaa and hadronic current Jp = d'T°Pyu, where X, Y € {L, R},
oe{S,V,T}and I'” € {1, y*, c*V}. These terms then run over the possible com-
binations of scalar, vector and tensor currents proportional to the left- and right-
handed chirality projectors, i.e. (S£P), (V +A) and (T +=T), where T corresponds
to oMVys = %8“‘/’) %0ps. The eyy coefficients control the strength of the charged-
current neutrino NSIs with respect to Gg. For the tensor currents we must have
X =Y. We note that the form of Eq. (3.26) is different from the parametrisation of
Eq. (2.91) where the scalar and pseudoscalar quark currents are treated separately.
We relate the two parametrisations in Appendix A.

We will now assume that the light active neutrinos are Majorana fermions. The

terms with right-handed (X = R) leptonic currents are therefore |AL| = 2 and those
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with left-handed (X = L) leptonic currents are |AL| = 0. We can now consider the
scenario where, for example, Majorana neutrinos are produced by the left-handed
SM charged-current, propagate over a macroscopic distance L, and interact at the
detector via a |AL| = 2 neutrino NSI. In the QFT framework, the total rate can again
be written as the absolute square of a sum of amplitudes .4;, but again we use the
Feynman rules for Majorana fermions, replacing the detection overlap integral ®p
with ®M (which contains the vertex factor CTTC~!). Now that the chirality of the
detection NSI is right-handed, the chiralities extracted from the overlap integrals
on each side of the factor (g + m;) are opposite. Analogous to the expression in
Eq. (3.18), the chirality projectors retain the ¢ term and the m; term vanishes. In
the same way, we can neglect the oscillation of positive helicity neutrinos and fac-
torise the rate (in the ultrarelativistic limit) into production, oscillation and detection
terms. Well-studied models in which right-handed currents arise are left-right sym-
metric theories, which has an additional broken SU(2)z gauge symmetry [355].
We see that instead of being suppressed by the factor (m;/2Eq)?, the process
s now accompanied by a factor ~ |£[2. Before moving on, we note that while we
have rotated the quark fields to the mass basis in Eq. (3.26), the lepton fields are
still in flavour basis. The € coefficients are therefore defined in the flavour basis.
If we rotate the neutrino fields to the mass basis using v, = UV}, we can absorb

the PMNS mixing matrix into €y, and define a non-standard coefficient in the mass

basis Yyy,

(&xy)pa = ZUai('J’;Y)ﬁi- (3.27)
i
where @ and i are the neutrino flavour and mass indices and f3 is the charged lepton
flavour index. This redefinition will be convenient in the following discussion.

We now consider a neutrino oscillation experiment which is sensitive to the
charge of the outgoing charged lepton Eﬁ at the far detector (but does not observe
the outgoing charged lepton ¢ in the beam pipe). If the far detector observes
a positively charged lepton EE, this would imply either the standard antineutrino

oscillation process Vo — Vg or the non-standard process Vo — Vg (via a |AL| =2
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neutrino NSI). Likewise, a negatively charged lepton KE would suggest either the
standard v — Vg or the non-standard Vo — Vg process. Despite not measuring
the outgoing charged lepton at production, the initial flux of neutrinos is usually
well-known. Accelerator experiments, for example, pass charged pions 7" through
a magnetic field to select the intended charge, which then decay via 7+ — (\_/)a%.
A beam selected for neutrinos may still contain a small background of antineutrinos
however. Comparing the number of positive to negative charged leptons in the far
detector (N EE and N EE) an experiment can ultimately infer the ratio

Rg = = .
g Neg & Lvg—vg + vy,

Y e e (3.28)

If we assume that a |AL| = 2 neutrino NSI contributes to the total rates F\—,Oﬁvﬁ and

Fvoﬁpﬁ, these rates are factorisable and Rﬁ can be decomposed as

dly, oY dly, oY
JdEq (dEa Pyy—vy Ov + g, 'Pva—>vﬁ'695>

(3.29)

Rp=2.)

dr’ Y dl’y Y
ooy deq( o PY O+ R PR, cvﬁ>

The non-standard probabilities PS¥ and PSY

Vo7 Va—rvg A€ given the superscript oY to

indicate that they are induced by the NSI with coefficient £g,. We have assumed that
the processes Vo — Vg and Vo — Vg are induced by SM interactions. However, the
non-standard process Vo — Vg reduces the number of neutrinos that undergo vy —
vg. From the unitarity of the PMNS mixing matrix we have Zﬁ Pvaﬁvﬁ =1, but
this no longer applies. To ensure instead that the probabilities of the two processes
Vo — Vg and Vg — Vg adds to unity, we must normalise both probabilities by an

appropriate factor. The corrected probabilities are

o —is=L
Pot vy = wrr | LUalUgie 0| (3.30)
> :
o) * o —ling-
ij%\'/ﬁ - N&Y Z-Uai ('}/RY)ﬁi e a7l (3.31)
l
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Figure 3.2: (Left) Feynman diagram depicting the neutrino oscillation process with an
LNV neutrino NSI at the interaction vertex. (Right) A possible UV comple-
tion in a left-right symmetric scenario.

where the normalisation factor AZY is found from the unitarity condition

Zﬁ( Va—Vp +P\?§Hvﬁ) =1,

N°Y—1+Z Z v (Vy)pie | (332)

If we expand the normalisation factor in the denominators of Egs. (3.30) and (3.31),
it can be seen that Y3 P‘?Y_Wﬁ ~1—0O(egy) and Y PSYHV ~ O(eg2) — O(9).
Setting €y = 0 therefore recovers the SM prediction. If we assume that &5y < 1,
to good approximation N3 = 1. However, the normalisation factor ¥ cancels
in the ratio R g regardless. We will also assume in the following that the neutrino
NSI coefficients are real.

Assuming that Ng¥ = 1, the absolute square in the non-standard probability

PSY_ - in Eq. (3.31) can be expanded to give

Va —>VB

’712 L 2
Uz ( ~li2Eg
vaevﬁ Z ai (Yey) pie 1

—ZF(M ERy m+ Y. Goar (ry)pa(€ry)pa s (3.33)
A>A

where we have rotated (Ygy)g; back to the flavour basis using Eq. (3.27) and the
indices A, A’ sum over flavour. The number of flavour and mass indices has been
kept general and could also include sterile states. The effective Lagrangian we have

considered in this chapter is equivalent to the LEFT Lagrangian in Eq. (2.91). Itis
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also possible to include ng sterile states and write the LEFT + Ng charged-current
in Eq. (2.98); these states can be light and contribute to oscillations. A full analysis
of this scenario is beyond the scope of this chapter.

In Eq. (3.33), the factors F,; and G 3/ are functions of the baseline, neutrino

energy and relevant mixing parameters. These functions take the form

2

Am?.
R —il L
Fop = Z’Uaiyz‘UMP+29{2UaiU)Lanleje R (3.34)
i i>]
Gorn = 29tz, ‘Uaile;iU/w
l .Amizj
+2R Y. (UsiUs UajUpj+ UgiUpUajUs j)e” a™, (3.35)

i>]
where U is the PMNS mixing matrix. For three generations (i.e. the 3v mixing
scheme) these are complicated functions of the three mixing angles and Dirac CP
phase (02, 013, 63 and J), three mass-squared splittings (Am%l, Am%1 and Am%z)
and two Majorana phases (o and a3). This dependence on the Majorana phases is
in contrast to the standard neutrino oscillation probability.

For the purposes of atmospheric and accelerator oscillations (v, = V), the
two generation or 2V mixing approximation is justified due to the dominance of the
atmospheric mass-squared splitting with respect to the solar mass-squared splitting,
Am2,, > Amgol. The 2 x 2 mixing matrix in this case is

U(zv) — ( cos ¥ sin ¥ ei”) , (3,36)

—sin® e cos®

where ¥ is the single mixing angle (corresponding approximately to 6,3) and 1 is
the Majorana phase. The mass-squared splitting is dm?, corresponding to Am%z.

The functions F,;; and Gy ;- take the simplified forms,

Fﬁlv) =1- sin2(219) sin’ 0,
Fﬁv) = sin?(209)sin’ @,
(2v)

Guutr = 2sin(29) sin® ¢ (sinm cotp — cosn cos(29)), (3.37)
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where ¢ =1 — Sm’L  For n =0, Fﬁtv) and Flg

2v)
4Eq T

are equal to the 2v oscillation

probabilities Py, v, and Py, v, respectively, therefore

o \2 o \2
Pvu%\'/,l = Pv“%v” (SRY)M/J +PV;L%VT (gRY)ur
Sm?L

— sin(41) sin? ( :;

q

) (€ry ) (€ry Jur-  (3.38)

3.3 Constraints on LNV Neutrino NSIs

We will now use the parametrisation of |AL| = 2 neutrino NSIs in Eq. (3.26) and
the predictions for the non-standard v — Vg process in Egs. (3.29), (3.30) and
(3.31) to put constraints on the € coefficient parameter space. We will first derive
constraints from the MINOS experiment in the 2v mixing approximation, moving
on to examine both MINOS and KamLAND in the 3v mixing scheme. We will
then compare these constraints to the more common limits from AL = 2 processes
such as Ovf 3 decay, ~ —e™ conversion in nuclei, rare meson decays and radiative

neutrino masses. We summarise all derived limits in Table 3.2.

3.3.1 MINOS Constraints

The MINOS experiment first took data from 2005 to 2012, detecting neutrinos from
the low-energy NuMI beam with a near detector at Fermilab and a far detector (at a
baseline of L = 735 km) at the Soudan mine [356]. The experiment resumed from
2013 to 2016 as MINOS+, using the medium-energy NuMI beam [357]. Over this
time the experiment observed the disappearance of v, produced from the decay of
pions 7t (in the focusing beam configuration) and v, from 7~ decays (defocus-
ing), allowing the atmospheric mixing parameters dominating the v, — v, disap-
pearance channel to be probed. The experiment also confirmed v, and V, appear-
ance, constraining the reactor mixing angle 6;3. Most importantly for this analysis,
charged lepton sign identification was possible in the near and far detectors through
the use of 1.3 T toroidal magnetic fields. As a result, vy, V;, V, and V, events
could be distinguished from the curvature of outgoing =, 4™, e~ and e™ tracks,

respectively.
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Before the first MINOS run, the expected fluxes of v, and V, in the focus-
ing and defocusing configurations of the NuMI beam were determined from hadron
production data and in sifu measurements. An improved flux model was provided
by Ref. [309]. In the focusing configuration the background of V, (produced by
n~ avoiding deflection by the magnetic field) were non-negligible and an important
systematic error to correct [358]. There were also V, produced downstream from
secondary interactions in the beam pipe wall [359]. We neglect this v, and V, back-
ground and assume all the incoming neutrinos are either v, or V;;. By measuring
outgoing muons or antimuons, the MINOS experiment therefore constrained the
ratio R in Eq. (3.28).

We now split the ratio R in Eq. (3.28) into a signal part S, arising from the
non-standard v, — V, process and a background part 3, arising from the stan-
dard oscillation of background antineutrinos Vv, — V;,. The MINOS analysis of
Ref. [359] removes the predicted energy-dependent value of the background B,

from the total measured ratio /R, and derives the constraint S;; < 0.026, i.e.

drv
JdEq g Py) 5, - Oy
Su~) i ———— <0.026. (3.39)

Ve poY
O7Y deq qu Pv”*)vu lel

We can use this limit to put corresponding constraints on (&gy ) ;2. We repeat that the
factorised form of Eq. (3.39) assumes the chirality of the production and detection
processes to be opposite. For a left-handed SM charged-current at production there
must a right-handed leptonic current at detection (X = R). However, the quark
current can be left- or right-handed (Y = L, R). In left-right symmetric models the
latter corresponds to the exchange of a Wg boson and the former to Wy, — Wg mixing
(if the masses of the gauge bosons are different), as depicted in Fig. 3.2 [313].

To simplify this work we will only consider two cases; a SM charged-current
at production and a vector-type neutrino NSI with a right-handed leptonic current
(therefore |AL| = 2) and either a left- or right-handed quark current at detection.
In other words, we will retain the terms in Eq. (3.26) with the coefficients 8XY and

set all other €5, to zero. We also set (& )gq = (€fz)pa = Epq to simplify the
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Figure 3.3: (Left) Allowed regions in the (&,y, €4¢) plane for fixed L/Eq = 735 km/3 GeV
and four values of 7 in the 2v mixing approximation of the v, — v sector.
(Right) Allowed regions in (€, €7) for fixed L = 735 km and four values of
7, found by integrating over the NuMI beam neutrino energies.

notation. It is worth remarking that there is a subtle difference between the neutrino
NSI being present at production and detection. Because the outgoing lepton /2
at production is not measured, one must sum over the different initial flavours in
Eq. (3.28). For the MINOS experiment, however, it is kinematically forbidden for
pions in the NuMI beam to decay to * (ruling out any sensitivity to the coefficient
€:1.), and their decays to electrons are helicity-suppressed with respect to muons (so
that the v, or v, flux dominates). We therefore neglect this detail and assume that
a neutrino NSI at production is probed in the same way as an NSI at detection.

We will first examine the MINOS limit on S, in Eq. (3.39) using the 2v mixing
approximation. As mentioned previously, the baseline and neutrino energies of

the MINOS experiment were such that L/Eq ~ 27/ Am2,.. Because a hierarchy

2

exists between the atmospheric and solar mass-squared splittings, Am2,,, > Am),

the oscillations v;; = v; are accurately described by a 2v oscillation probability.
We therefore insert the 2v mixing expressions for the functions Fy, and Ggj )/ in
Eq. (3.37) into the non-standard probability Py, .y, in Eq. (3.33). Plugging this
into Eq. (3.39) then allows to place bounds on the (&, €u) parameter space. The
sensitivity to these two parameters is clear from dependence on &g, in Eq. (3.33);

the first index of €g, corresponds to the flavour of the outgoing charged lepton, in
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this case f = . The second index is summed over all other flavours, so in the 2v
mixing approximation A = {u, 7}.

To derive constraints in the (&, €r) plane we must perform the integrals
over the neutrino energy in the numerator and denominator of Eq. (3.39). For the
differential neutrino flux agTV: we will either assume a fixed neutrino energy or use
the NuMI v, differential flux of Ref. [309]. For the cross sections we will use the

quasi-elastic scattering result

GElVual? , 5 2\ 2
Ov, (Eq) = 0y, (Eq) = Y (g + 3gA)Eq7 (3.40)

where gy and g4 are the vector and axial vector couplings of the nucleon current
respectively [360]. We then perform each integral over the flux, normalised proba-
bility and cross section numerically, splitting the integration region 0 — 20 GeV into
bins of 500 MeV width. The result of this procedure is

(2v)

M €2+ 24 Gl ey e < 0.026. (3.41)

Su ~xy Fﬁv) eﬁ“ +yu F;S
where x;;, y, and z;, are numerical constants depending on the choice of flux and
integration method. This inequality excludes the area outside an ellipse in the
(€up, €ur) plane.

In Fig. 3.3 (left) we plot the allowed regions in the (€,y,&y¢) plane for fixed
L/Eq=735km/(3 GeV). We use best fit values for §m> ~ Am3; and ¥ ~ 63 in
the NO scheme (shown in Table 2.3), Gg = 1.166 x 107> GeV 2, |[V,4| = 0.974,
gv =1, g4 = 1.269 and four different values of the Majorana phase n [361]. The
choice of a fixed neutrino energy is equivalent to assuming the v, flux to be sharply
peaked at 3 GeV and evaluating the oscillation probability and cross section at this
energy. The constraints are most stringent for 7 = 0, 7, of order |&,,| < 0.2 and
|€uz| S 0.1. For values n = (n+ %)ﬂ: where n € Z, a specific direction in the pa-
rameter space appears to alleviate the constraints. This is because Fﬁv) < 1 for the

best fit parameters and these particular values of 1. In Fig. 3.3 (right) we instead

depict the allowed regions after the full numerical integration of the numerator and
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Figure 3.4: Allowed regions in the (€, &u7) plane for values of the Majorana phase ) =0
(left) and 1 = 7 /2 (right) and for four different values of the baseline L.

T
2

denominator of ;. For n = 7, 7, the allowed values are now ellipses more similar
to those for n = 0, w. The orientations of the ellipses have also changed marginally.
Upper bounds are now in the ranges |&,,| < 0.2—0.5 and |g,| < 0.2—0.6.

The baseline of the MINOS experiment was fixed at L = 735 km. We will
now briefly consider a hypothetical experiment similar in design to MINOS but at a
different baseline. In Fig. 3.4 (left) we set n = 0 and examine the allowed regions in
the (&uy, €ur) plane for different values of the baseline L, derived using the MINOS
limit S, < 0.026. We see that at L = 0 km this sets the bound || < 0.16, while
€y7 remains unbounded. This is because the factors Fﬁv) and G&zﬁ are directly
proportional to sin ¢ which vanishes at L = 0 km, while the first term in Fﬁlv) is
always non-zero. At L = 0 km, only the term containing sﬁ y emains in Eq. (3.41)
and it is therefore the only coefficient that can be constrained. At larger baselines
of 200, 600 and 800 km the functions F,ﬁv) and G,%Y% are non-zero and the allowed
regions again become ellipses. As L increases it can be seen that the bounded area
becomes more circular, i.e. improving the bound in the &, direction. For n = 7,
shown in Fig. 3.4 (right), Fﬁv) and Gﬁﬂ are non-zero even at L = 0 km and the
bound is an ellipse at zero distance. The bound now improves in the €, direction

as L increases.

Finally, it is interesting to examine the bounds on gy, as a function of L when
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Figure 3.5: Allowed values of g, with £,; = 0 (left) and &,; with &, = 0 (right) as
a function of the baseline L for three values of the Majorana phase 1. The
baseline of MINOS is indicated by the dashed line.

€y = 0. In Fig. 3.5 (left) we show the allowed values of €, (along the x-axis) as a
function of L (along the y-axis) for a fixed neutrino energy Eq = 3 GeV. Forn =0

(and 1 = nmw where n € Z), Fﬁv)

in the numerator of S, is exactly cancelled by
the standard probability Pvaﬁvﬁ in the denominator. The bound on g, is therefore
constant as a function of the baseline. For ) = 7 the constraint at L = 0 km is less
stringent, but improves as L is increased to 1000 km. For n = 7, the constraint
worsens as L reaches ~ 800 km but improves for larger baselines. For L 2 2000 km
the constraints for non-zero 1) values slowly oscillate but are roughly equivalent to
the n = 0 bound, |&,,| < 0.15. We show in Fig. 3.5 (right) a similar plot for &,
setting €, = 0 and plotting the bounds as a function of the baseline. At L = 0 km,
€y 1s unbounded for n = 0, as discussed previously. For large L the upper limits
converge to |&y7| < 0.16.

We summarise the 2v mixing approximation constraints on the coefficients €,
and g;¢ in Table 3.1. We allow one coefficient at a time to be non-zero, computing
an upper bound for fixed neutrino energy Eq = 3 GeV (left) and integrating over
the NuMI flux (right). The lower and upper values are the most and least stringent
upper bounds, respectively, as the Majorana phase 1 is varied. For a fixed energy,

one can see that &, is unbounded for a specific value of 17. We note that so far in
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&
NSI Coefficient — > [€pal
Fixed Energy NuMI Flux
Eup 0.11-0.76  0.15-0.55
Eut 0.12—  0.16-0.66

Table 3.1: Upper bounds from the MINOS experiment on the LNV NSI coefficients in the
2v mixing approximation. The range indicates the best and worst upper bound
depending on the choice of the Majorana phase. (Left) Bounds derived at a
fixed neutrino energy of 3 GeV. (Right) Bounds derived by integrating over the
energy-dependent NuMI flux, probability and cross section.

this analysis we have taken the best fit values of the standard mixing parameters to
be fixed. For a rigorous fit to the data it would be necessary to let these parameters
vary alongside the € coefficients, as is commonly done for the |AL| = 0 neutrino
NSIs [296,299,338,362]. We leave this for a future complete analysis.

We now examine the constraints that can be made from the MINOS experi-
ment in the full 3v mixing scheme. Instead of Eq. (3.36), we now use the standard
parametrisation of the PMNS mixing matrix U = Rp3Wi3R 2D shown explicitly in
Eq. (2.58). As the neutrinos are Majorana fermions, we must include the diagonal
matrix D containing the two Majorana phases o, and az. We now hope to be able
to probe the three generation flavour structure of the non-standard coefficients &g
(which are taken to be real).

To do this, we again expand the effective non-standard oscillation probability
Pva_M-,ﬁ as in Eq. (3.33), where now the flavour indices run over A, A’ € {e, u, 7}.
The factors F,; and G 3/ are now functions of the baseline L, neutrino energy Eq,
three-generation mixing parameters and Majorana phases o and oz. We use the
best fit values for the mixing parameters 0;,, 63, 03, Am%l, Am%2 and 6 in the NO
scheme (shown in Table 2.3), while L, Eq, o and o3 are again free parameters. It is
informative to compare the two Majorana phases used here to the single Majorana
phase 7 in the 2v mixing approximation. If we take the expression for Fy;;, in the 3v
scheme and take the limits Am%1 — 0and Am%1 — Am%z, we can compare to Flﬁv) in
Eq. (3.37) and find the correspondences ¥ ~ 653, Sm?* ~ Am%2 andn ~ (a3 —ap)/2.

In the three generation picture, the limit S, < 0.026 can be projected onto an
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Figure 3.6: (Left) Elliptical allowed regions in the (€., &) plane for &, =0, L = 735
km, o, = 0 and three values of the Majorana phase 3. (Centre) Eccentricity e
of the ellipse as a function of (@, a3). (Right) Angle ® from the positive &,
axis to the semi-major axis of the ellipse as a function of (a2, 03).

allowed region in the (&, €y, €uc) parameter space. For values of the baseline L
and Majorana phases (0, 03) we can again perform the integrals in Sy, numerically.
Firstly, in order to compare with the bounds from the 2v mixing approximation, we
set €, = 0 and depict in Fig. 3.6 (left) the allowed regions in the (€, €¢) plane
for o = 0 and three different values of oz. The elliptical allowed regions are of
similar size to those for the 2v mixing approximation but generally have different
shapes and orientations (which we can define as an eccentricity e and anticlockwise
angle © from the positive €, axis to the semi-major axis, shown in Fig. 3.6). We
show how the eccentricities and orientations depend on the Majorana phases in
Fig. 3.6 (centre and right). We can see that the angle © is roughly constant along
lines o3 = o + C, suggesting that it can approximately be taken as a single-valued
function of N ~ (a3 — az)/2. For example, at (0, a3) = (0,0) we see that the
bound is more stingent in the &, direction; this is also the case for 1 = 0 in the
2v approximation. Likewise, for (o, a3) = (0, ), the bound is more constraining
in the &, direction which is similar to 1 = 7. We see that the largest eccentricity
occurs at (0, 03) ~ (7, ), coinciding with the semi-major axis pointing in the &;¢
direction.

We will now allow each of the non-standard coefficients (€ye, €up, €uz) to be
non-zero. In Fig. 3.7, we plot the upper bounds on coefficients as a function of

(o, a3), setting the other coefficients to zero. For g, (left), we can see that the
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Figure 3.7: Upper bounds on the NSI coefficients &y, (left), &, (centre) and &, (right), as
a function of the Majorana phases o, and a3, derived from the MINOS limit
Su < 0.026. Best fit values for the mixing parameters 0815, 013 and >3, Am%l
and Am3, and § are taken in the NO.

upper bound is of order |g,.| < 1 for most values of (o, 03), but increases for
specific values of the phases to around || < 3.4. On the other hand, upper bounds
on the other two coefficients are in the ranges |€,,| < 0.2—0.6 and |g,7| $0.2—0.7.
We summarise these constraints (along with constraints derived in the next section)
to the right of Table 3.2. The lower and upper values are the most and least stringent
upper bounds depending on the value of the Majorana phases (0, 03).

OPERA was another LBL accelerator experiment which employed a magnetic
field in the far detector [363,364]. Unlike MINOS, OPERA searched for neutrinos
from the CNGS beam at CERN with energies above the production threshold for 7.

The main aim of the experiment was to confirm v; appearance; around ten T+

events
were recorded over four years of data taking [365]. Unfortunately, the experiment
was only able to distinguish the charge of a single 7~ event at 5¢ significance (the
other charges were undetermined). In theory, a future high-statisticc OPERA-like

experiment could be able to probe the neutrino NSI coefficients €., €7, and &;.

3.3.2 KamLAND Constraints

The LBL reactor experiment KamLAND operated for 185.5 days between March
4 and December 1 2002 and conducted a search for solar v, with the characteristic
flux of 8B neutrinos. The analysis of Ref. [354] instead searched for V,, assumed to
have been produced via the spin precession of V, in the solar magnetic field (due to a

non-zero neutrino magnetic moment) or via sterile neutrino decays. The experiment
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did not see an excess of V, above the backgound and therefore enforced the bound
S, <2.8x 107 at 90% C.L.. We will instead use this bound to place constraints
on the coefficients of the |AL| = 2 neutrino NSIs.

We assume that the initial solar v, are produced from the beta decays of B
and propagate from the solar core to the solar surface and then on to the KamLAND
detector. The oscillation probability must therefore take into account the resonant
conversion of solar Vv, to v, and v; through the MSW effect, a consequence of the
decreasing matter potential from the Sun’s core to surface. We approximate the
conversion as adiabatic and utilise the Am%l < Am%2 hierarchy to write the standard
Va — Vg oscillation probability in a similar form to that in Ref. [299],

) 2
PiSY ~ Y (RoaWis); (RasWia ) g Ui (x)| +1Uasl” U3 |, (3.42)
i,j
where Rp3 and Wj3 are Euler rotations in standard parametrisation of the PMNS

matrix and U (x) is a 2 X 2 unitary matrix satisfying the equation

.d _ M%X2

where x is the distance from the source. The matrix I\A/I%X2 is the 2 x 2 effective

squared mass matrix

2x2 — 2 2

o 2 2 2
51n2612Am12 COSZ@]zAmlz 7013ACC

~ Am?, 4+ Ace 1 [ —cos20p8m2, + 3 Acc sin261,Am?
M2 o 12 13 + 273 12 7 (3.44)

where Acc = 2\/§GFEqu and N, is the electron number density in the Sun. In
order to construct S, we now require the non-standard oscillation equivalent of
Eq. (3.42). This can be derived from Eq. (3.33), but an exact formula taking into
account the MSW effect, even in the Am3, < Am3, limit, is beyond the scope of this
chapter. The possibility that the neutrino NSI occurs at production also complicates
the derivation, because V, experience a different matter effect while propagating

through the Sun. We therefore concentrate on the neutrino NSI being at detection.
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|€qp| Previous Upper Bound  Process LBL Upper Bound LBL Experiment

|€ee] 2.1x 1077 —6.3x107° 0.017

€| 29x1077 —c0 ovBB 0.017 KamLAND
|€et] 2.6 x 1077 — oo 0.015

el  ~4x10°—1x10* 0.22 —3.47

Em ~6x 103 — oo p-—et  0.16-0.63 MINOS
€| ~5x10° —oo 0.16 —0.71

Table 3.2: Upper bounds on the LNV NSI flavour coefficients |€,g] in the ¢ and u sec-
tors. Left: bounds derived from conventional microscopic LNV processes, with
0vBB decay ("Ge) being the most effective the e sector and = —e™ conversion
loosely constraining the pt sector. Right: bounds from LBL oscillation experi-
ments MINOS and KamLAND. Two values indicate the variation in the upper
bound as (o, 03) are varied.

It is safe to assume that, by the time the solar neutrinos reach Earth and the
KamLAND detector, they make up an incoherent admixture of flavour eigenstates.

Naively, this has the effect of washing out any dependence on the Majorana phases,

MSW
P, Ve%\_/[;

MSW oscillation probability P‘l}fivgﬁ in Eq. (3.42) multiplied by the neutrino NSI

and we can approximate the non-standard oscillation probability as the
coefficient 8e2ﬁ (the incoming neutrino can be of any flavour vg as long as the neu-
trino NSI produces an outgoing positron e*). KamLAND is therefore sensitive to
the coefficients &, & and €.

The signal ratio S, can be written as

dl'y, pMSW .2
deq que 'Pve—wﬁ 'geﬁ ’

Oy
Se~ Y P <28x107* (3.45)
drVg ~ Y
5 JdEq gs- PN, oy,

where ‘ZFTV; is the ®B solar v, flux of Ref. [366] while Oy, Oy, are the quasi-elastic

scattering cross sections for the Vg +p — %r +n and v, +n — e~ + p processes,

respectively. We again numerically integrate the numerator and denominator of
Eq. (3.45), dividing the energy range 8.3 — 14.8 MeV into bins of 0.02 MeV width.
The left-hand side of the inequality is a function of the neutrino NSI coefficients,
and therefore an allowed region can be projected on to the (&, €.y, €.7) parameter

space.
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Figure 3.8: Microscopic |AL| = 2 processes sensitive to the neutrino NSI coefficients.
(Left) OvBB decay. (Centre) 1~ — e™ conversion in a nucleus. (Right) Kaon
decay K™ —mutut.

For each of these non-standard coefficients, we set the others to zero and derive
an upper bound; these are shown in Table 3.2. Because the dependence on the
Majorana phases is washed out, Eq. (3.45) can only set a single upper bound on
each coefficient. For the coefficient &,,, the numerator and denominator of S, in
Eq. (3.45) are identical except for the factor of €2, in the numerator; the upper
bound on || (for & = € = 0) is simply the square root of 2.8 x 10~*. For Eou
and €,¢, the ratio S, will contain different oscillation probabilities in the numerator

and denominator, giving different upper bounds.

3.4 Other Constraints on LNV Neutrino NSIs

We will now compare the constraints derived from MINOS and KamLAND to those
from conventional searches for |AL| = 2 processes. The most promising probe of the
Majorana nature of the active neutrinos continues to be Ov3 8 decay. However, light
Majorana neutrino exchange may not be the dominant contribution to the process.
The contribution of non-standard |[AL| = 2 mechanisms to Ov3 decay have also
been studied in the literature, including the dimension-six charged-current neutrino
NSI considered in this chapter [367-370]. We will now extend these results to the
3 x 3 flavour structure of the € coefficient in order to compare with the MINOS and
KamLAND constraints.

From Ref. [371], we use the general expression for the inverse half-life of the

OvB B decay process when a right-handed leptonic current is present at one of the
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interaction vertices (as shown in Fig. 3.8),

3 3 3
| G 2 2
(Tlo/‘é) = %‘ZUémi +G}’7‘ZU€”/€:’ +Gmy9{{ZUezimiU:j'}’ej} ) (3.46)
e ' i ij
where Gy, Gyy and G,y contain phase space factors and nuclear matrix elements,

given by Ref. [371]. We can now expand this inverse half-life in a similar manner

to the oscillation probability,

(105) " =X+ Y Ve + Y Fagl + ¥ Gareata, (347
A A A>A!

where F,) and G, ; are the functions in Eq. (3.34) with L = 0 km. The contribution
from light neutrino exchange is contained in the factor X, which is a function of the
Majorana phases (0, a3) and lightest neutrino mass mg (m; or m3 in the NO or 10
scenarios respectively). The interference between light neutrino exchange and the
non-standard mechanism is described by the factor Y, , again a function of (o, @3)
and myg. The inverse half-life depends on the coefficients €., €, and €. (the same
as KamLAND).

We now set Tlo/‘é > 5.3 x10% y from the "°Ge OvBB decay experiment
GERDA-II [372,373]. We may also make use of the lower bound from the 136% e

experiment KamLAND-Zen, T°),

1/2 > 1.07 x10%° y, but the exact lower bound is not

crucial for the following discussion [374]. For 76Ge we have Gy = 1.12 x 10713,
Gyy=4.44 % 102 and Gy =2.19 x 101, The lower bound from GERDA-II can
now be projected onto an allowed region in the (&, €y, €¢) parameter space. For
each coefficient we set the others to zero and solve Eq. (3.47) for an upper bound
on € as a function of (o, a3).

These upper bounds are displayed in the contour plots of Fig. 3.9 for a lightest
neutrino mass of m; = 0 eV in the NO scheme. The associated most and least
stringent of these upper bounds are shown in Table 3.2. The upper bound on |&.|
is of order 107 for all values of (@, @3). The upper bound on |€.,| and |€,¢| can
be of similar size, but for very finely tuned values of (0, 03) this bound tends to

infinity. This occurs when F;; and F,; vanish. Comparing these bounds to those
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Figure 3.9: Upper bounds on the NSI coefficients &, X 107 (left), Eop X 10° (centre) and
€0 x 10° (right) as a function of the Majorana phases (¢, o), found from the
76Ge OvBB decay limit Tl% > 5.3 x 10% y. Best fit values for the neutrino
mixing parameters in the NO scheme are chosen, with m; = 0 eV.

from KamLAND, we see that Ov33 decay is unequivocally the best method of
probing &,.. For a large portion of the (a, a3) parameter space it is also better at
constraining &, and €.;. However, for certain fine-tuned values of the phases these
coefficients not bounded and KamLAND can provide a better constraint.

While searches for OV decay remain the most sensitive probes of |AL| =2
processes, they can only probe NP in the electron sector (as there must be two
outgoing electrons). In the context of the non-standard charged-current neutrino
NSIs, Ov B decay is only sensitive to (€ce, Ep, Eer), but not the other flavour coef-
ficients. Other |AL| = 2 processes involving SM fermions not in the first generation
may instead shed light on different NP scenarios. An interesting process which
may provide complementary sensitivity is the LFV and |AL| = 2 conversion of cap-
tured muons in nuclei, 4~ + (Z,A) — et 4+ (Z—2,A). Proposed by Pontecorvo in
Ref. [74], it has gained recent interest due to the upcoming searches for the [AL| =0
muon conversion 4~ +(Z,A) — e~ +(Z,A) by the COMET and Mu2e experiments,
which aim to increase the experimental sensitivity by O(10%) [375,376]. While it
is doubtful that the current limit RE‘E <10~ [377] on the alternative |AL| = 2 rate
can also be improved due to different background considerations [378], = —e*
conversion is an important complementary probe to Ov3 3 decay.

J’_

To estimate the sensitivity of the 4~ —e™ conversion process on the neutrino

NSI coefficients considered in this chapter, we follow the estimate in Ref. [370]. In
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this approach, and using our notation, the conversion rate is approximated as

2 GE 0° 2 ’
Rue ~ |&uel” 577+ [Guel” = |1 (Uoimui + Upite)| - (3.48)

1

where g =~ 100 MeV is the momentum scale of the intermediate neutrino in the
process and Q ~ 15.6 MeV is the energy release of the emitted positron [379]. The

effective parameter &, can be expanded as

’5”6‘2 = Z(Felgﬁ/l "’Fulgez)L)
A (3.49)

+ Z (Gelk’eulg/.t)u’+Gu/ll’8elgek’)-
A>A!

The two terms in the first line of Eq. (3.49) account for the neutrino NSI being at the
interaction vertex of the incoming (~ or the outgoing e™ (the latter being shown in
Fig. 3.8). The difference between the two diagrams is the exchange Uy, <+ U, ﬁ,%i-

Because the process is incoherent and can result in excited nuclear final states,
Q also approximately includes the nuclear matrix element of this transition. The
relevant nuclear matrix elements have not been calculated in detail and Eq. (3.48)
can only be regarded as an estimate of the conversion rate. Nevertheless, using the
experimental limit REIe < 107!, we estimate a limit on |y, | of order || < 10,
This limit corresponds to a LEFT effective operator scale of Axp = (|&ye|Gr) ™/ ~
3 GeV > g, pushing the validity of the EFT approach. Even with the most optimistic
future sensitivity of Ry S 10716 [379], the coefficient |E1e| Will only be probed at
|Eue| ~ 30 which corresponds to a scale Axp ~ 50 GeV.

We summarise the constraints on the coefficients €., &, and &, (with each
of the other coefficients is set to zero) in Table 3.2. These limits are also of order
€l S 10*. However, we see that the coefficients €uyu and g, are unbounded for
particular values of (@, a3). The factors preceding eﬁ 5 in Eq. (3.49) are F,,, and
therefore the dependences on (0, o3) for the £t~ — e™ upper bounds are identical

to those from Ov 3 decay in Fig. 3.9 (except being weaker by a factor of ~ 10'2).

We can see from Eq. (3.49) that 1~ — e™ conversion also probes the coefficients &,
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Figure 3.10: Contributions of the |AL| =2 neutrino NSIs at dim-6 to the light neutrino mass
at two loops. The diagrams are for operators with coefficients EXL (left), 81§L
(centre) and ex,/€k, (right).

€eu and &.¢, but sets bounds weaker than Ov 38 decay by a factor of 102,

Searches for rare |[AL| = 2 meson decays such as K* — zfu*u® and
Bt — D utu™ and rare 7 decays such as T~ — 7~ ut are also able to probe
the neutrino NSI coefficients considered in this chapter, as well as &, & and
er7 [329,380,381]. However, at present the bounds on the rates of these processes

are similar or worse than the bounds on u= —e*

conversion. We then emphasise
the main result of this chapter; comparing the constraints on the coefficients g,
€uyu and g7 in Table 3.2, we see that the constraints from MINOS (and similar fu-
ture LBL oscillation experiments) are currently far more stringent than searches for
microscopic |[AL| = 2 processes.

So far we have only focused on the constraints from the non-observation of
|AL| = 2 processes; in general, however, |AL| = 2 neutrino NSIs can be constrained
alongside the |AL| = 0 NSIs by processes that are insensitive to lepton number, such
as the beta decays of neutrons and nuclei, 2v 3 decay and charged pion decays
(where the outgoing neutrinos are not detected). For these processes, the angular
distributions for left- and right-handed currents can be different. Limits are set on
the electron flavour coefficients of order |(€%y)eals [(€0y)erls |(EFx)en] < 1073 —
102 [300-303]. Both |AL| = 0 and |AL| = 2 charged-current neutrino NSIs can
also lead to single electron and missing energy signatures at colliders and deviations
from CKM unitarity [382—-384].

To conclude this discussion, we briefly mention the contribution of the dim-6
|AL| = 2 charged-current neutrino NSIs in Eq. (3.26) to the light active neutrino
masses. In Ref. [270], the radiative contributions of odd-dimensional operators in

the SMEFT to the left-handed neutrino Majorana mass matrix M; were estimated.
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In Refs. [385,386], the two-loop radiative contributions of the |AL| = 2 operators in

Eq. (3.26) to the light Majorana neutrino masses was found to be

2 o 2
2-100p _ 38 GFéeRy 22 M
va ~ memw In (@) N (350)

where &g, € {SXL, el“gL, ng, 81€R}. The corresponding two-loop diagrams are shown
in Fig. 3.10. For each operator, a mass insertion my, is required for one of the
quark or charged lepton legs. For example, the vector-type operator with coefficient
8XL contains a right-handed charged-lepton field. A mass insertion is needed to
connect this with a left-handed charged lepton field which couples with the W=
boson. The vector-type operator with coefficient SXR requires a mass insertion on
all internal fermion lines and therefore its contribution to Sm%,'kmp is suppressed. A
limit can be placed on the neutrin NSI coefficients by requiring that the radiative
neutrino mass not exceed the cosmological upper bound on the sum of neutrino
masses Y m, < 0.12 eV. This conservatively gives the bounds |&}; | < 1072 and
l€rc s l€Rrl- |€kr] S 1072 [3871.

To conclude this chapter, we have studied the effect of |AL| = 2 charged-current
neutrino NSIs on long-baseline neutrino oscillations. If the light active neutrinos are
of Majorana fermions the |AL| = 2 oscillation process vy = Vg become possible,
either via the standard ‘helicity-flip” process or a |AL| = 2 right-handed interaction
at production or detection. These dim-6 LEFT operators can be matched to dim-7
(and above) operators in the SMEFT.

We first reviewed the derivations of neutrino oscillations v = vg in QM and
QFT; the latter framework takes into account the coherence of overlapping wave
packets at production and detection. We showed that there is a stringent (my, /Ey)?
suppression for the helicity-flip of Majorana neutrinos, and that the total rate in
this case cannot be factorised into a production flux, oscillation probability and
detection cross section. With a non-standard right-handed leptonic current at one of
the interaction vertices, we demonstrated that a non-standard oscillation probability
Pva_H-,ﬁ can be factorised out from the total rate of the process. We derived this

probability in Eq. (3.33) and showed that the (m, /E,)? suppression is replaced by
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a factor of |€|%, where & parametrises the strength of the |AL| = 2 neutrino NSI
compared to the Fermi coupling Gr.

Using a bound made by the MINOS experiment on the v, — V,, process, we
put limits on the € flavour coefficients in the case of right-handed vector leptonic
current at detection. In the 2v mixing approximation (which is roughly valid for
accelerator LBL experiments such as MINOS) we derived upper bounds on the ab-
solute values of the coefficients (&, €u¢), shown in Table 3.1. The upper bounds
depend on the value of the single Majorana phase 17. We also studied the sensitivity
of a future MINOS-like experiment at a different baseline. We next generalised the
to the full 3v scheme, using the best fit values for the mixing parameters and the
MINOS bound to constrain the (&ue, €y, €u7) parameter space as a function of the
Majorana phases (¢, o3). Similarly, we used a KamLAND bound on the number
of solar ¥, from the source of solar B v, to place constraints on the (&, €t €e1)
parameter space. We raised the possibility of a future OPERA-like experiment con-
straining the (&, €ru,Er7) parameter space.

We discussed some of the constraints on these coefficients derived from the
non-observation of other |AL| = 2 processes. We compared the KamLAND con-
straints to those from OvBB decay ("°Ge). While OvB decay still provides the
most stringent bound on |&,,|, for particular values of the Majorana phases (a;, 03)
the coefficients |&.| and |&.;| become unbounded. Similarly, 1~ —e™ conversion
sets very loose bounds on the same coefficients as MINOS. The upper bounds from

MINOS are more stringent for all values of the Majorana phases (@, @3).



Chapter 4

Neutrino-Mediated Long-Range

Forces

In this chapter we will investigate the impact of neutral-current neutrino NSIs on
long-range forces. Four fundamental forces have been observed so far in nature,
corresponding to the strong, weak and electromagnetic forces of the broken SM
gauge group SU(3), x SU(2).L x U(1)y EWSB, SU(3). x U(1)g, and gravity. In
QFT, the first three of these forces are understood as the exchange of virtual particles
(gluons, W=, Z bosons and photons, respectively) between interacting states. The
graviton is the postulated spin-2 mediator of gravity [388-391].

Forces are characterised by their potentials V (r), which can be derived in QFT
and depend on the mass and gauge interactions of the mediator. For example, the
photon is massless and neutral under U(1)p and thus the Coulomb potential falls

off with the distance r as Vc(r) = 442

where ¢; = eQ; are the particle charges.
The theorised graviton is likewise massless which reproduces the observed gravi-
tational potential Vi (r) = —% where m; are the particle masses and G is New-
ton’s gravitational constant. Potentials that scale with an inverse power of the dis-
tance between interacting states describe long-range forces. The gluons, on the
other hand, are charged under SU(3), are therefore self-interacting, leading to the
confinement of quarks in hadrons. The associated potential increases with the dis-

tance as Vocp(7) o< r. The W and Z bosons are massive and usually much heavier

than the energy exchange between the interacting states. The result is a potential
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Viweak (1) o< %e‘m’, which scales as % at distances below the Compton wavelength of
the mediator r ~ % but is exponentially-suppressed above this distance. These are
often called short-range forces.

There may exist additional forces beyond the four fundamental forces. These
are generically induced by the exchange of a new spin-0 or spin-1 boson between
SM fermions. For example, axions (spin-0), dark photons and light Z’ bosons (both
spin-1) are potential candidates for the mediator of an exotic fifth force. A variety
of experimental methods, which we will review later in this chapter, are being used
to search for the effects of such a fifth force [392—431]. The exchange of a fermion
(spin—%) between two interacting states is forbidden by Lorentz invariance and the
conservation of angular momentum. However, the exchange of two fermions can
ensure that the quantum numbers of the interacting particles are unchanged, and can
potentially lead to a long-range force if the fermions are light.

The neutrinos in the SM are massless and can only interact with the other SM
fermions via the charged- and neutral-current weak interactions, described at low
energy by Fermi’s effective interaction. Thus, the long-range force mediated by
two massless neutrinos was first mooted by Feynman to be gravity [432]. However,
the neutrino-mediated force was studied in proper in Ref. [433] which found a long-
range potential of the form V (r) = %, falling off too fast with the distance to be
the gravitational potential. This work only considered the charged-current neutrino
interaction, which must be Fierz-transformed to bring it into an useful form for the
calculation. The contribution of SM neutral-current interactions was included in
Ref. [434] and the dependence on the interacting particle velocity v (calculated to
first order) in Ref. [435]. In all of these calculations the neutrinos were assumed to
be massless.

In Ref. [436], the neutrino-mediated potential was determined for either Dirac
or Majorana massive neutrinos, where now the potential falls off exponentially as
V(r) o< 2™ above a distance r ~ ﬁ (for a single neutrino of mass m, = 0.1 eV,
r ~ 1 um). Below this cut-off, the Dirac and Majorana neutrino potentials both

scale as V(r) o« ,is Above the cut-off the Dirac and Majorana neutrino potentials
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depend differently on the distance (in addition to the exponential suppression). This
picture was extended to the mixing of three neutrinos in Refs. [437,438] for the
spin-independent part of the force.

Recently, improvements in the precision of atomic and nuclear spectroscopy
experiments has encouraged studies of their sensitivity to fifth forces [439-443].
Ref. [444] in particular examines the ability of spectroscopy measurements to probe
the neutrino-mediated force. In Refs. [442, 445], it was discussed how the Dirac
and Majorana neutrino-mediated potentials can be distinguished at long distances.
In order to make this distinction, the former suggests tests (specifically, searches for
violations) of the weak equivalence principle (the notion that the only long-range
force felt by an electrically neutral object is gravity) and the latter measurements of
a neutrino-induced Casimir force between two plates.

Given the significant progress made in the literature, it seems desirable to have
a systematic analysis of all possible realisations of the neutrino-mediated force. In
particular, a model-independent approach for parametrising both the SM predic-
tion for the neutrino-mediated potential and also non-standard variations of this ex-
change. For example, one could consider non-standard right-handed vector, scalar
and tensor interactions instead of the SM Fermi interaction. It is also important
to characterise the spin-independent and spin-dependent parts of the SM and non-
standard neutrino-mediated potentials. This is especially important for atomic and
nuclear spectroscopy, where the spin-dependent part of a potential plays a crucial
role [444]. To add to this, the model-independent approach should take into account
the neutrino masses and mixings, allowing for both Dirac and Majorana neutrinos
which are known give different predictions at long distance.

The neutral-current neutrino NSIs of relevance to this chapter are therefore in
Tables 2.5 and 2.8, or written in Eq. (2.92) in the usual parametrisation (normalised
to Gr). The Majorana case corresponds to the operators in Table 2.5; a right-handed
current in Eq. (2.92) picks out the charge-conjugate of the left-handed neutrino
field vi =C v/ . The Dirac case corresponds to the |AL| = 0 operators in Tables

2.5 and 2.8; there are ng = 3 fields Ng (or Vg) corresponding to the right-handed
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component of a Dirac spinor v. One could also include the neutral-currents of
additional heavy Majorana neutrinos N = N¢, described by Eq. (2.99), but these
will not be considered further in this chapter.

We begin this chapter by reviewing in Section 4.1 the derivation of a potential
in QFT, setting up a framework to derive the long-range potential mediated by a
pair of neutrinos. We next outline our parametrisation for neutral-current type neu-
trino NSIs in Section 4.2 and discuss the necessary steps to go from quark fields
to hadronic fields using chiral perturbation theory. We will also outline the cur-
rent bounds on the NSI coefficients from charged Lepton Flavour Violation (cLFV),
neutrino-electron scattering, neutrino-nucleon scattering, beta decays and LEP data.
In Section 4.3 we derive the neutrino-mediated potential for SM charged- and
neutral-current interactions. In Section 4.4.1 derive the potentials when one or both
of the neutrino currents are right-handed. In Section 4.4.2 we introduce scalar in-
teractions and derive the vector-scalar and scalar-scalar potentials. In Section 4.4.3
we consider tensor interactions, determining the vector-tensor potential. We will
also examine in Section 4.4.4 the potential when the neutrinos have non-standard
electromagnetic properties. We derive each potential for Dirac and Majorana neu-
trinos, examining the dependence on the distance in the short and long-range limits
and on the spins of the external states. Finally, we will study the phenomenology
of the spin-independent and spin-dependent terms in atomic and nuclear laboratory
experiments, setting upper bounds on the coefficients of NSIs and comparing these
to those from other processes such as cLFV. This chapter is based on the work of

Ref. [142].

4.1 Deriving a Long-Range Potential

In the QFT framework, a force resulting in the scattering of two on-shell particles
can be interpreted as the exchange of one (or multiple) virtual mediator(s). As
depicted to the left of Fig. 4.1, one or more mediators are required to exchange the
momentum g = py, — Pl = pb — pp between two interacting particles Yy and l;/[’3

with initial momenta p,, and p B and final momenta p/, and p’ﬁ, respectively.
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Figure 4.1: (Left) Long-range force mediated between fermions y and llll’3 by virtual me-
diators carrying the momentum g = p,, — pl, = p’ﬁ —Pg (Right) The exchange
of two mass-eigenstate neutrinos between fermions Y, and Wl/3' The inter-
action vertices are four-fermion interactions with coefficients (cyy); jiae and

(c;‘('ly),- ;:pp respectively, where the superscripts X, Y € {L, R} refer to the chi-
rality of the neutrino and fermion currents.

In the Feynman-diagrammatic approach it is possible to derive a long-range
potential V (r,v) for an interaction, which is generally a function of the relative

displacement between the particles r and the average velocity of the system,

v:l(p—a+p—ﬁ> . 4.1

2 \mg mg

The potential can be computed by taking the Fourier transform of the invariant

amplitude A of the scattering process [446],

3

d )
V(rv) = / ﬁelqm(s,t), 4.2)

where the invariant amplitude A(s,?) is an analytic function of the Mandelstam
variables s = P* = (po +pg)* = (P +pp)* and 1 = ¢* = (po, — Po)* = (Pl — g )*-
The potential V(r,v) is time-independent in the static limit of momentum transfer,
g~ (0,q) and t =~ —q?, which is a good approximation for particles interacting at a

distance. Furthermore, one can also make use of the analyticity properties of A(s,?)

which enable the so-called spectral decomposition [434]

Als,—q?) = — /0 dt’ It)’(i;g (4.3)
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where p(s,1) is the spectral function of the process. The spectral function is related

to the imaginary part of the discontinuity along the real t-axis of A(s,1),

p(s.0) = %S[A(s,t)] _ %dsc[A(s,t)] , @.4)

where the discontinuity is defined as
dsc[A(s,t)] = A(s,t +ie) — A(s,t —ig), 4.5)

for € — 0. It is now possible to insert the spectral decomposition of Eq. (4.3) into
Eq. (4.2) and integrate over the angular variables d€2 = sin@d0d¢ contained in
d3q. This integration is non-trivial if A(s,z) and therefore p(s,t) are functions
of O and ¢. For example, the angular dependence is non-trivial if there are spin-
dependent terms containing the dot product of q and a particle spin 6. Such terms
arise after taking the non-relativistic limit of the scattering amplitude. The non-
relativistic limit is convenient when examining the long-range interactions between
two particles in, for example, an atomic system, and we will make use of it later in
this chapter.

We therefore follow the approach of Ref. [447] and decompose the general
spectral function p(¢) (omitting the s dependence) according to a complete basis
of 16 spin-dependent operators that may arise when the non-relativistic limit of the

scattering amplitude is taken,

Zpk Ok(a,P) il 0*), (4.6)

where f(v?) are polynomials in powers of v? corresponding to higher order terms
in the non-relativistic expansion. The operators Oy(q,P) are a complete basis of
operators constructed from the three-momenta q and P and the interacting particle
spins s = G /2 and sg=0g /2 (where © is a vector of Pauli matrices) given in

Appendix B. Combining Eqs. (4.2), (4.3) and (4.6), the potential V(r,v) can also be
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written as
16
V(rv) =Y Vi(rv)fi(v), 4.7)
k=1

where the spin-dependent potentials are

Eq qr [0 P:() Ok(d,P)
_ ar [ q¢ ’ 4.8
Vk(n‘)) / (27’[)3 ¢ /0 t’+q2 ’ (4.8)
and the variable ¢’ = —(q')? is integrated over dt’ while q is integrated over d*q.

The potentials Vi (r,v) can be computed by first evaluating the integral in

Eq. (4.8) without the spin operator O, and multiplying by a single power of r,

B e [ Pl) 1 -
Piy — iqr / _ rt
Vi(r) = r/ e e /0 dt P _47r/0 dtpi(t)e , 4.9)

where in the second equality we have integrated over |q|, 6 and ¢ and relabelled the
dummy variable ¢’ as 7. As outlined in Ref. [447], the potentials Vi (r) are finally
computed by applying derivatives to the V; (r) functions. We have for the operators
01=1,0,=0¢-6p and O3 = (64 -q)(0p -q) which will be the most important

in this chapter,

1
Vi(r) = 01V (1),

1
Va(r) =~ 0, Va(r),

1 d d 2 d2
V3(r):r—3{02(1—rd—r> —303(1—r5+%d7)}vé(r>- (4.10)

4.2 Neutral-Current Neutrino NSIs

We will now outline the parametrisation of neutral-current neutrino NSIs to be used

in this chapter, which arise at dim-6 in the LEFT. We write Eq. (2.92) as

4G _ _ _ _
£ = =2 (TP B (v + gy (VP (WRY)

+h§x(vc“Vva)(1pc“vPXw)}, .11
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where c;’(ly, g;’{Y and h;’('x are the coefficients of the vector-, scalar- and tensor-type
neutral-currents, with X, Y € {L, R} and y € {{, u,d}. In the following we drop
the superscripts ¥ when they are not needed explicity. The currents in Eq. (4.11)
are thus the combinations (V £A), (S£P) and (T +T), rather than separating out
the scalar and pseudoscalar currents as in the standard parametrisation. The rela-
tions between the € coefficients and cxy, gxy and hxy are given in Appendix A.
The fields in Eq. (4.11) are written in the flavour basis and so the coefficients have
four flavour indices, i.e. (cyy) posap (Vo V" Px Ve )(WaYuPrwg). As mentioned pre-
viously, the right-handed projector Pr selects out Vg in the Dirac case and v; in
the Majorana case. As stated below Eq. (2.92), the Dirac or Majorana scenario
determines the number of free parameters contained in the NSI coefficients. The
relationships between cyy, gxy and hxx summarised in Appendix A.

In the Majorana case there are the important relations

(CLL)pG;aﬁ = _(CRL)Gp;a/S ) (CLR)pG;aB = _(CRR)cp;a/S ) (4.12)

which mean that the cg;, and crg coefficients can be eliminated. Thus, the vector-
type neutral-current neutrino NSIs can only be |AL| = 0. Conversely, the relations
(8LL)posap = (8RR 5 pap: (8LR)poiap = (8RL)5p.qp AN (MLL)poiap = (hRR)Gp.0p
imply that the scalar- and tensor-type neutral-current neutrino NSIs can only be
|AL| = 2. The additional Majorana neutrino relations (gxy)pc:ap = (8xv)op:ap
and (hxx)po:ap = —(hxx)op:ap imply that there are six independent (gxy)po:ap
coefficients and three independent (hyx),q.qp coefficients (the diagonal elements
vanish).

Unlike our parametrisation of the charged-current neutrino NSIs in Eq. (3.26),
where we explicity isolated the SM charged-current interaction, in Eq. (4.11) the
SM contributions are contained implicitly in the coefficients cz; and cpg. For
charged leptons (y = /) both charged- and neutral-current SM weak interactions
contribute to cz; (through an appropriate Fierz transformation of the charged-
current term), while only the neutral-current interaction contributes to c g. For

the up- and down-type quarks (¥ = u, d) only the neutral-current SM interaction
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contributes to ¢y and czg. We will write down these contributions shortly.

So far we have kept the coefficients cxy, gxy and hxx in the flavour basis of
neutrino and fermion fields. We will follow the convention that the charged lepton
and up-type quark Yukawa matrices Y, and Y, are diagonal. In the Dirac case, the
diagonalisation of the neutrino and down-type quark Yukawa matrices proceed via
the biunitary transformations VLV TYVVIQ’ =Y/, and VLd TYdVd =Y. The V), Vy, Vfl
and VI?, matrices rotate the left- and right-handed up-type quark and neutrino fields

according to
dy=Vidy, dg=Vidy, vi=VV], VR=VgVg, (4.13)

where the unprimed fields denote flavour eigenstates and the primed fields mass
eigenstates. Neutrino mass eigenstates are labelled with the indices i or j. The
matrices VY = U and V¢ = V then correspond to the PMNS and CKM mixing
matrices, respectively. The matrices V¥ = U and V¢ =V do not appear in any SM
interaction; while the right-handed fields dg are present in the SM neutral-current,
the matrix V cancels in the bilinear iRy up if it is unitary. Furthermore, the fields
Vg are sterile under the SM and V and U are usually taken to be unphysical. They
will, on the other hand, make an appearance for some of the operators in Eq. (4.11)
after rotating from the flavour to mass basis. In the Majorana case we instead have
the redefinition UM, U = m, for the neutrino fields (assuming the 3 x 3 effective
Majorana mass matrix My is generated by physics at a high scale). For example,

)T can

in the seesaw scenario we have v, = QP n/, where n’ = (vi v v3 Ny ---
contain heavy Majorana states. For simplicity, we can assume that the active-sterile
mixings are negligible and v; ~ UP, V' where v/ = (v v, v3)T.

In the Dirac case, one can choose to define the coefficients cxy, gxy and hyyx

in the mass basis by absorbing the U, V, U and V matrices into the flavour basis

coefficients. For example, the coefficient ¢z is given in the mass basis by

(¢lL)ij:ap = Z% 5UsiVoaVep (cly) pos (4.14)
p,0y,
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where the Vy,, Visg factor is only present for y = d. On the other hand the coefficient

CRrr 18 written in the mass basis as

(ckr)ijiap = X 2 UpiUcVyaVsp(Cir)poiys (4.15)
1,6 P;C

which now contains the right-handed rotation matrices U and V (the V factors are
again only present for y = d). However, there is a redundancy in Eq. (4.15) because
there is more than one unknown parameter on the right-hand side. The unknown
mixing angles and phases in V and U can instead be absorbed into the cgg matrix
in the flavour basis, which is equivalent to setting U = V = 1 from the start. In the
Majorana case the transformation of the coefficients ¢y and czg is similar to that

above. For the scalar and tensor coefficients, e.g. gr7,

(gZ/L)ij;ocB = Z ZUpanjV;aVSﬁ (gZ/L)pG;Y5 ) (4.16)
P767,6

where now the combination of PMNS mixing matrix elements Up;U ; can contain
Majorana phases. However, these can also be absorbed into the coefﬁ01ent gLL on
the right-hand side. If we are considering a seesaw mechanism, the active-sterile
mixings have been neglected in Eq. (4.16). However, U can in principle be replaced
with the 3 x N matrix Q and i, j € {1, ---, N}.

In both the Dirac and Majorana cases, the coefficients cz;, and cgy, (in the mass

basis) get contributions from the SM charged- and neutral-current interactions of

(cin)ij:ap = UailUp;+2818ap 8181, (Cir)ij:ap = 28i8up 818k
(CﬁL)ij;ocB = 251]505[3 gzgﬁ7 (cZR)lj,OCB = 251]505!3 ngll'te, “4.17)

(CiL)ij;ocB = 25ij5aﬁ gZé’Z, (CiR)ij;ocﬁ = 25ij5aﬁ 8Zg?e-

where the gl‘f’( g) are the combinations (73 — S%V Q) given in Table 2.2 and we have
assumed the unitarity of the matrices U, V and V. We have neglected possible
active-sterile mixings in the Majorana case, but in general we can make the replace-

ments U — Q and 6;; — C;; where C;; = YpQpQ, and i, j € {1,---,N}. The



4.2. Neutral-Current Neutrino NSIs 125

matrices c¢zz and ¢y g are now N x N matrices in the mass basis.

For the low energies relevant to long-range neutrino exchange, the quarks are
confined within non-relativistic nucleons (protons and neutrons), which are in turn
bound within nuclei. The quark currents in the neutral-current NSI Lagrangian
of Eq. (4.11) can be matched onto non-relativistic nucleon currents using heavy
baryon Chiral Perturbation Theory (¥PT) as detailed in Refs. [297,448,449]. This
is a general framework to match the quark-level coefficients (e.g. cj; and ch) to
non-relativistic nucleon coefficients at some order in the power counting scheme,
i.e. a power of the ratio g/A, where Ay ~ 1 GeV is the chiral symmetry breaking
scale. The effective theory is therefore only viable when the relevant momentum
exchange g of the long-range force is below the cut-off scale Ay ~ 1 GeV. At
leading order in % PT, the light pseudoscalar meson masses are of order mz ~ O(q)
and neutrinos only interact with a single nucleon. Interactions of neutrinos with
more than one nucleon (for example, both the proton and neutron in deuterium) are
suppressed by powers of g/A,.

Following the approach of Ref. [297], we write the coefficients for the neutrino

NSIs at the nucleon-level in terms of the quark-level coefficients as

1
=y TR @l ) + B @) el ) |
| 1 y N (4.18)
=3 DA @) ety ete) Y ) )
q

where the sum is over the g € {u,d,s} quarks and qu/N(qz) and FAq/N(qz) are
respectively the neutral-current vector and axial vector form factors for the quark ¢
within the nucleon or nucleus V. For the proton, the following linear combinations

at zero-momentum exchange (¢ = 0) are given in the SM by
(e )ij+ (clr)ij = 8vdij, (cfp)ij— (cir)ij = 840 (4.19)

where g€ ~ (Zg@ —|—g§1,) and gﬁ ~ ga(284 —i—gf\). Here g‘l’,/ = gz/—i—g;g, g}f = gzl - g;’{

and g4 ~ 1.27 is the nucleon axial vector coupling. To derive Eq. (4.19) we have
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used that Flu/p(O) =2, Fld/p(O) =1, F:/p(O) =2g4 and Ff/p(O) = g4 and neglected

the small contribution from non-valence quarks. Likewise we have for the deuteron

(ctn)ij+ (ctr)ii = 8V 8ij, (cip)ij— (cir)ij = 846, (4.20)

where g ~3(g% +g¢) and g ~ F ;/ D(O)gf‘. To derive this we have used that the

vector form factors for the valence quarks in the deuteron are Flu/ D(O) = Fld / D(O) =
3. The equivalent axial form factors vanish, Flu/ b (0) = Fld/ D(O) = 0, and the main
contribution arises from strange quarks. The strange quark deuteron form factor is

determined in ¥PT to be

2 2 2
s/D gampmy 8y(n—7)
a0 s( 47rf7%(mn+2y)) mp L2 0.09, (4.21)

where ¥ = \/mpEp [450]. Here As is the strange axial moment of the deuteron, mp
is the deuteron mass, Ep is the deuteron binding energy, my is the neutral pion mass
and f7 is the pion decay constant. We take the renormalisation scale pt to be at the
neutral pion mass my.

In the SM, the left-handed neutrino fields v are components of the SU(2).,
doublets L; = (vz £7)7, with the charged leptons as their partners. The neutrino
NSIs in Eq. (4.11) containing v;, must therefore be matched onto SMEFT operators
containing L; doublets. For NP at some high scale Axp, the resulting SMEFT opera-
tors that generate the neutral-current neutrino NSIs (and thus the neutrino-mediated
potentials studied in this chapter) can also induce cLFV processes, which are highly
constrained [291,451-453]. The cLFV decays u — ey, 4 — 3e and T — 3e, and
U~ — e~ conversion in nuclei are particularly relevant probes as they are subject to
precision searches at ongoing and upcoming experiments. The decays of tau leptons
into a lepton and light mesons, T — ep and T — en, are also relevant because the
associated bounds are expected to be improved by Belle II [454]. It should be noted
that the neutrino NSIs can be generated by higher-demensional SMEFT operators
that do not induce cLFV at tree-level. For example, the neutrino NSI with coeffi-

cient ¢z, can be matched to dim-6 or dim-8 SMEFT operators. However, even if
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> ]cw |
NSI Coefficient  cLFV Process Ly
Y=L Y =R

() pesee U — 3e 7.8x 1077 9.3x1077
() e U —e ,Au  60x107% 6.3x1078
(c¢dy) pewda U —e ,Au  53x107% 54x10°8
(chy)rewce T — 3e 2.8x107* 4.0x1074
(chy)tpeee T — peé 3.2x107% 32x107*

T—ep,T—en T.1x107* 7.1x107*

—~
)
~

~
~— | —
a
o
)
S

THiqq T up, T—un 5.9x107* 59x107*

Table 4.1: Bounds on neutral-current neutrino NSI coefficients ¢}y for w € {£, u, d} and
Y € {L, R} from the current best limits from cLFV experiments. For the bottom
two coefficients g € {u, d}.

the chosen SMEFT operator does not induce tree-level cLFV, the RG runnings and
mixings of operators at one-loop (from Anp down to the EW scale) ensures that
tree-level cLFV operators are always present. In Table 4.1 we display the limits
on the vector-type neutral-current neutrino NSI coefficients c7y that can be derived
from the non-observation of cLFV processes [453].

One point to note regarding these limits is that the relevant cLFV processes
occur at the energy scales of the decaying muon and tau lepton masses. The
LEFT framework (or neutrino NSI Lagrangian in Eq. (4.11)) must therefore be
valid at these energy scales; the NSI coefficients are sensitive to NP scales heav-
ier than my and m;. The neutrino-mediated exchange process considered in this
chapter can take place at an energy scale corresponding to the inverse Bohr radius
ag ' = am, ~ O(10) keV (for atomic-scale measurements) or scales as small as the
neutrino masses my ~ O(eV) (for macroscopic forces). The LEFT framework, in
this case, is sensitive to much lighter NP scales. It is then possible to explore NP
scenarios where new light degrees of freedom couple to neutrinos and other SM
fermions.

The neutrino NSI coefficients of first and second-generation leptons are also
also subject to direct bounds from scattering processes such as vye scattering

in CHARM-II [455, 456] (which will be improved by an order of magnitude at
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the DUNE near detector [353]) and neutrino-nucleon scattering at CHARM and
CDHS [296, 455, 456]. The NSI coefficients for tau leptons are bounded by
e¢ — vVvy data at LEP where the flavour of the outgoing neutrino is not mea-
sured [457]. These bounds are unfortunately orders of magnitude weaker compared
to the cLFV bounds [292, 301, 457—460]. In addition, the observation of Coherent
Elastic Neutrino-Nucleus Scattering (CEVNS) at COHERENT [461,462] can also

place bounds on the scalar and tensor coefficients gxy and hxx [289].

4.3 Standard Model Neutrino Potential

We start by deriving the potential VOLC;g(r) arising from the exchange of two neutri-
nos between the interacting fermions Y and l//l’g. We restrict the interactions to SM
charged- and neutral-currents, as shown in Fig. 4.2. We determine the amplitude
Agp (and the corresponding spectral function p,g) by integrating out the W and
Z bosons and using the neutrino NSI Lagrangian of Eq. (4.11). The exchange of a
W boson can only occur for interacting charged leptons while Z boson exchange
is possible for both charged leptons and quarks (within a nucleon/nucleus \). Both
W= and Z exchange contribute to the coefficient c¢;; while only Z exchange con-
tributes to czg. The SM values for these were given in Eq. (4.17).

Using the appropriate Feynman rules from the neutrino NSI Lagrangian of
Eq. (4.11), we can write the invariant amplitude of the scattering process in

Fig. 4.1 (right) as

; _ 1 A4Gr\’ v v ap \ruv
lAaB_4mamﬁ( l\/i) ;XZ{/(CLX)U;OC(CLY)ij;ﬁHuv-N-ij ) (4.22)

where 4%
m,

7 is a normalisation factor commonly used in the non-relativistic
o

limit [434]. The amplitude contains the sum over the neutrino mass eigenstates,
i,j€{1,2,3} (ori, j€{l,---, N} if there are ng additional Dirac or Majorana
states). It also contains the sum over the possible chiralities X, Y € {L, R} of the
interacting fermions. We are interested in scattering processes where the flavours

of the interacting fermions do not change, i.e (c;’(ly) i = (c;’(’y)i a
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l B8 U;S'z U; 3 l 8 4/’;1

Figure 4.2: The exchange of two massive neutrinos v; and v; between fermions y, and l//[’3
with SM charged- and neutral-current interactions at each vertex. The charged-
current interactions are only possible for y = ¢.

The amplitude in Eq. (4.22) is split conveniently into the factors ’Hffe and

./\/'l’]i V. The first factor is the product of external fermion bilinears

Hﬁe = [ity, (Pe) Yiu Px s, (Poz)][ﬂs;3 (PB) WPy usy (Pp)] = [Yu Pxlalt Prlp, (4.23)

where ug, (Po.) and sz (pg) are the incoming four-component Dirac spinors for the
fermions v and l//é (or nucleon \) and Py and Py are the usual chirality projection
operators with X, ¥ € {L, R}. The Dirac spinors uy (py,) and g, (pb) are for the
outgoing fermions.

The second factor is a loop integral over the product of massive neutrino prop-

agators. For Dirac neutrinos,

ARV /(d“k Tr{y" PL(g +k+m)) v PL(K +mi)] (424)

)t (kR —mp) (g +k)>—m3)

where k is the loop momentum. For Majorana neutrinos the vector part of the neu-
trino current vanishes and the axial vector is a factor of two larger than in the Dirac

case. The neutrino loop factor /\/ 1Y is now

4/ d4k Tr| V“Ys(q+k+m])7 Vs (k+mi)]

uv
i = m;) ((q+k)?—m3)

(4.25)
where the factor of % takes into account the permutation symmetry of the Majorana
neutrinos in the loop.

We will now use the method of Section 4.1 to calculate the potential for this

exchange process. Using Eq. (4.4), we first compute the spectral function by taking
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the discontinuity of .A,g. The discontinuity for the Dirac loop integral,

V2002 2 2 ) 212
seirgy= YOI TG o

127 q* 2q*
2l 2(8m3)? gtgY
+<1+ qz” - q4” qq;f O(g* — (mi+m;)?), (4.26)

where O(x) is the Heaviside step function, m_lzj = (m? + mf) /2 is the average of
the squares of the neutrino masses, Amlzj = ml2 — m? is mass-squared difference and
A(x,y,x) is the Killén function, A(x,y,z) = x> +y? + 2> — 2xy — 2yz — 2zx. To com-
pute the spectral function we must now contract 2B uv with dsc(N i ). The Lorentz
indices of Huv either contract with gV in dsc(./\/’iﬁ.‘ ) to give [y Px]a[Y" Py]g or
with g*g" to give [¢ Px]ald Pr]p-

We now assume that the external fermions are non-relativistic. In this limit it is
possible to replace [y, Px|a[Y" Pr]g and [¢ Px]«|d Pr]p with the lowest-order terms
in the non-relativistic expansion in q/mg, and q/mg. Appendix B.1 lists the lowest-
order terms for bilinear products such as [Yu]a[1*]g, [Yula[V* ¥5]p and [¢Y5]al4¥s]p-

The terms that dominate the spectral function are proportional to 4mgmg, therefore

cancelling the 4m1 normalisation factor in the amplitude. Higher-order terms in
amp
the expansion are suppressed by powers of q/m, and can be neglected.

Assembling these different components, we can now write the spectral function

Gl% v ' ap Y
ﬂmamﬁ %‘(};};(CLX)U 0 (CLY),] B 7‘[ dSC(N ) . (4.27)

pLs(t) =~

Inserting Eqgs. (4.26) and (4.23) into Eq. (4.27) and taking the non-relativistic limit,

we obtain to lowest-order

G2
Pélfz DMy = TE Y Ot — (mi+mj)?) A? (3, m3)

/

x { O s = (01 e (0 0) | )™ (1)

YY) (G- 0)(65-q) F,,V-<r>} C@28)
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where we explicitly see spin-independent and spin-dependent terms. This spectral
function is valid for both Dirac (D) and Majorana (M) neutrinos. The factors X L"?’/

and Y, Lllzll” are the following combinations of the NSI coefficients,

/

(XLVQV )ij;aﬁ = (CZ’L + CZR)ij;oc (CEIL + CZ’R);};[B ) (4.29)

(YLVSI/ )ijap = (CZIL - CZ/R)U;OC(CZ/L - CZ/R);;';;; ) (4.30)

Inserting the SM values of the coefficients in Eq. (4.17) and assuming a unitary
light neutrino mixing matrix U such that C;; = 9;;, these factors for charged leptons

(y,y' =/land a, B € {e, i, t}) are for example

(XiL)ij:ap = WUaiUq;j+ 8y ) (UpUp ; + 8y 8i)", (4.31)
(Yi1)ij:ap = (UaiUo; +848:) (UpUp ; + 848ij)" (4.32)
The functions Fi]j), FlljvI and Fl‘]/ in Eq. (4.28) are given by

m?, (Amlzj)2

FP()y=1-— - —~ 4,
i (1) ” TR (4.33)
m2 4 3mm;  (Am?)?
M _ ij vt ij
F')=1- . - (4.34)
1 2m?; 2(Am?)?
Fj()=- (1+ P all (4.35)

The distinction between the Dirac (D) and Majorana (M) cases is reflected in the

(M)

different functions Fl]]) multiplying the term in square brackets in Eq. (4.28). The

—3mim;

Majorana function Fllj\’I contains an additional term —;

. This corresponds to the
helicity-suppressed process of two neutrinos (with negative helicity) being created
and two ‘antineutrinos’ (neutrinos with positive helicity) being annihilated, usually
referred to as a ‘helicity-flip’. This process is not possible for Dirac neutrinos as
the right-handed fields vg are sterile under the SM gauge group; one would need to

introduce a right-handed current to make the process possible.

As in Eq. (4.6), the spectral function of Eq. (4.28) can be split into terms mul-
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tiplying the spin operators O1 =1, 0 = 64 -6 and O3 = (0¢-q)(0p - q). To de-

VLII;( r), we the evaluate the integral over 7 in Eq. (4.9)

termine the overall potential
for each of these three terms. We then take the appropriate derivatives in Eq. (4.10)

to derive the three potentials )V ( ) (k =1,2,3) and add these to obtain

G2
Vég’D(M)(r) - 47r3Fr5 Z{(ng)ij;aﬁ IB(M)(”)
l7j
~ (0 )i | (G- 0p) )™ (1) = (60 F) (0 F) I (r )}} (4.36)

where # = r/|r| is the unit displacement vector between the interacting fermions

and the integral functions IB(M) (r) JPM

,Jij(r) and Jl-‘;(r) are given in Appendix B.2.

These functions are defined to be dimensionless so that the dimensionful factor

2
% can be taken out of the sum. The potential therefore naively scales with the

4
distance as }’1_5’ though we will see that this behaviour changes in the long-range
limit. The variation between the Dirac and Majorana cases is reflected in the func-
tions IB(M)(r) and JE(M) (r) appearing in Eq. (4.36).

The SM neutrino-mediated potential in Eq. (4.36) is simplified when only a
single massive neutrino v of mass m, is considered. Firstly, the mixing factors
in (XLVZV )ij:ap and (YLLW )ij:ap have the replacements Ug,U,; — 1 and &;; — 1;
in the case of two interacting charged leptons we have (Xfﬁ)v.aﬁ =(1+ gf/)2 and
(Y/)v:ap = (1+g}4)*. Secondly, the integral functions I)(r), I} (r) and I} (r) take
the closed-forms

1) (r) = myr K3 (2myr), (4.37)

PYr) = 2m2 2Ky (2myr), (4.38)
v n’ 5 2.20( 22| 13 3.3

I, (r) = 2myrK,(2myr) + > —mir G24 ( o 03’%2 1) +2mmy,r’,  (4.39)

where the K,(x) are modified Bessel functions of the second kind and Gy is the
Meijer G-function [463,464]. Using the relations in Appendix B.2, the functions

JD(r), IM(r) and JY (r) can also be determined. For interacting charged leptons, the
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spin-independent parts of the Dirac and Majorana potentials become

LD, _ Gim3(1+gh)?

v LS Ks (2myr), (4.40)
G2m3 (1 +
VM () = =E ;23 3gV) K>(2myr), (4.41)

respectively, in agreement with previous results [438].

The functions in Egs. (4.37)-(4.39) depend on the product 2m,r; therefore,
given the behaviour of the modified Bessel functions Kj,(x) in the limits x < 1 and
x> 1, the potential VOLCﬁ(r) displays contrasting behaviour in the limits r < ry and
r > ry, where ry, = ﬁ is half the Compton wavelength of the neutrino. In the
short-range limit (r < ry) the exchanged neutrinos are relativistic and their masses
can be neglected. Therefore the Dirac or Majorana nature of neutrinos cannot be
probed. Explicity, this is because the — ’m’ in the function F; M( t) is suppressed,
and so Fl-lj)(t) ~ Flljw( ) and VLE Py & VéﬁM(r) In the long-range limit (r > ry)
the neutrinos are now non-relativistic and the Dirac and Majorana potentials become
exponentially suppressed as Vég’D(M)(r) oc ¢=2™" The additional term w in
the function Elj\/l(t) due to the ‘helicity-flip” process is no longer suppressed and
thus the Dirac and Majorana potentials can in theory be distinguished.

To verify these statements quantitatively, we write the SM potential (4.36) for
a single neutrino v. We then expand the functions in Eqs. (4.37)—(4.39) in the

opposing limits r < ry and r > ry. For r < ry we find to lowest order

LL,D(M) Gi vy’
Vs (r) ~ 47.[3’,5{(XLL )viap

O v 3100 0) - S(0wPopR)] |, @)

in both the Dirac and Majorana cases, confirming that the potentials are degenerate
in this limit. The potentials scale with the distance as rij up to half the neutrino

Compton wavelength ry. In the limit » < r, we can also approximate the potential

Vég’D(M)(r) for three generations by neglecting the neutrino masses m; and m; in

the integral functions Il-l? M) (r),J D(M

) o .
,Jip(r) and Jl‘;(r) In this limit the functions tend
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to the constant values IB(M) (r) =1, JE(M) (r) =~ % and Ji‘;(r) R~ % as outlined in
Appendix B.2. Itis then possible to relate the single and three generation parameters

as

(XLVQV )v;aﬁ = Z(XLVZW )ij;oc[ia (YLV?V )v;aﬁ = Z(YvaW )ij;ocﬁ . (4.43)
i,] LJ

Expanding the potential in the opposing limit » > ry gives in the Dirac case

5/2 _
B Glzimv/ e 2myr

LL,D yy/
Vep (r)NW{(XLL Jviap

~ (VY viap | (Oa-0p) — 2(00 - 7)(0p - 7)) } . (444)

while in the Majorana case

2 3/2 _omyr
A L F T
ap A475/2/7/2 LL Jviap

— (Y )vap B(Ga -65) —myr(64-#)(0p -?)] } . (4.45)

In the Dirac case both the spin-independent and spin-dependent terms scale as

r

. .. —2m
. In the Majorana case the spin-independent and 6 - O'g terms scale as eﬂ—/zv,

6*2"1\/"
75/2

—2myr

while the (G4 - #)(0p - F)term scales as “—;—.

4.4 Non-Standard Neutrino Potentials

We will now consider neutrino-mediated potentials where the interactions between
the neutrinos and interacting fermions can be any of the neutral-current neutrino
NSIs in Eq. (4.11), i.e of vector type (cxy), scalar type (gxy) or tensor type (hxx).
Assuming that the non-standard coefficients are suppressed by small couplings or
physics at a high scale Axp, we examine the first-order effect of a SM interaction
(czr, and crr) at one vertex and a neutrino NSI at the other.

Finally, we note that the operators with coefficients (c71);j:qp and (crr)ij:ap
may also include the effects of new physics, which can be parametrised as small

corrections (8¢rL);j.qp and (8¢Lr);j.qp to the SM values of (crr)ij.ec and (cLr)ijia-
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We will assume that the NP does not change the flavour of the fermion, i.e. a = f3.
Deviations from the SM potential VOLCE(r) will therefore arise as corrections to the

vy’ vy’
factors X;;" and Y, ",

(8X,7" )ijuap = (el +cl)ijia(Scfy + 5CI]i/R):'<j;B + (Yo yp), (446

(8Y,1" ijap = (cfr — clp)ija(Scfy — SCZ/R);};[; + (Ya<ryp), (447

where we take into account that the correction will be at both the interaction vertices

of W and l//[’3 by adding (yy <> l//é)

4.4.1 Right-Handed Vector Interactions

Motivated by theories such as left-right symmetric models, we now introduce the
vector-type neutral-current neutrino NSIs with a right-handed neutrino current. In
other words, we will now allow the coefficients cg; and cgr to be non-zero in
Eq. (4.11). We will first derive the neutrino-mediated potential Volzg(r) induced
by SM weak interactions at one vertex and a right-handed neutrino current at the
other, shown in Fig. 4.3.

The spectral function péﬁ (t) in this case is the same as Eq. (4.28) but with one
coefficient replaced as czx — cgrx and one chirality projection operator replaced as

P, — Pg in the neutrino loop factor /\/5 Y

. We also add an identical contribution with
(Yo < wl’g) to account for the right-handed current being either interaction vertex.
If the external fermions are identical (yy = l[/[’;) we must then multiply the spectral
function by an additional factor of % to avoid double counting. We can account for
this with the factor Dy = W.

The discontinuity of the neutrino loop factor ./\/l’; ¥ in the Dirac case is now

Al/z(t’m.z,mz.) i
47[1 J ;2 / gy ®(q2 — (m; —|—mj)2) ) (4.48)

ase(N") = -

m;?j with respect to the SM case.

which is now helicity-suppressed by the factor
This is because a negative helicity neutrino v; created by the left-handed current

will be annihilated by the right-handed current with an associated factor %. For
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ta Usi _ Uaj ta

Figure 4.3: The exchange of two massive neutrinos between fermions Y, and l//l’3 with SM
charged- and neutral-current interactions at one vertex and a neutral-current
neutrino NSI at the other. In our framework the effective interaction may be of
vector (cxy), scalar (gxy) or tensor (hyx) type.

both neutrinos this results in m;;"-i .

Contracting the g"V factor in Eq. (4.48) with the product of external fermion
bilinears Hﬁ@ we now obtain [y Px|a[Y" Pr]g. Taking again the non-relativistic
limit of the fermion bilinears, the following spectral function can written in the

Dirac case

G2
PLEL(1) = 5Dy Y O — (mi-+-my)?) AVt )
LJ

m;m;

(R isap = R Visap (Ga-0p) }, - (449)

/ /
where the prefactors XLV;;V and Y, LII;QW are

(XLV;QW )ij:oB = (CZIL"‘Cz/R)ij;a(C;le/L‘i‘C;gR)?j;ﬁ + (o, B), (4.50)

YR Dijap = (efr = cip)ijalcp, —chr)izp + (@, B). (4.51)

where (a, B) is shorthand for (yy <> l,l/l/}) Using the same approach as the previ-
ous section to derive the potential from the spectral function, we find in the Dirac

scenario

G2 '
V50 = Dy 1
l?]

— (R e (00 0p) IR (), (452)

where the dimensionless function IiLjR (r) is given in Appendix B.2.
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In the Majorana case we must be careful about the relations between coeffi-
cients cyy discussed below Eq. (4.11). The right-handed neutrino current operator
with coefficient (crr);j.qp is equivalent to the left-handed current operator with co-
efficient (cz1) ;.- This is also why vector currents vanish for Majorana neutrinos.
The coefficient (cge);j.qp therefore gets the same contributions from the SM weak
interactions as (crr);j.qp and the potential we derive is identical to Eq. (4.36). This
is true only for i, j € {1,2, 3} and not for additional Majorana states.

It therefore makes sense to consider the corrections (0czr)ij.a = —(0CRrL) jiza
to the SM-valued coefficients (czz)ij.a = —(crL) i from NP, as discussed at the

start of this section. The correction to the spectral function is

G2 3
pégM(l) = 1271221)&[3 'Z] O - (mi+mj)2) Al/z(t,ml-z,mg)
i,j=
<A [OX Y~ OV Vi (00| )

SV )10 (Ga-) (65 -) F,X(r)} 453)

where (8X% )ijap = —(8XY ) jiap and (8Y % )ivap = —(8Y2Y)jiap are

given in Eq. (4.46). This gives the following potential

Gt /
VM) =~ Do X { X s 10
L
— (8Y )i [(oa -05)J}) (r)— (04 F)(0p -?)J};(r)} } . (454

In order to study the properties of the potentials in Eqs. (4.52) and (4.54) we
again use the single neutrino simplification. In this case the function IiLjR(r) takes

the closed form

IER(r) = 2myr Ky (2myr) . (4.55)
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In the short-range limit (r < ry) we can write the Dirac potential in Eq. (4.52) as

G2m? / )

LR,D

Vas P (1) = S5 Dap { 0GR Vviap — X v (Ga-0p) . 456)
For r < ry we also have that IiLjR(r) ~ 1 in Eq. (4.52) which enables the relations

(X )viap = ¥ (X ):jop and (Y )viap = Y (R )ij:ap- In the long-range

limit (» > ry) we instead obtain

G2m5/ ef2mvr ,
LR.D F/My Yy
Vap (r) = 875/215/2 Daﬁ{<XLR Jviap

— 8 vap (Ga-0p) b (45T

For Majorana neutrinos, the single neutrino simplification for the potential in
Eq. (4.54) takes the same form as Eqs. (4.42) and (4.45) in the short and long-range
limits respectively.

We finish this subsection by considering the case where both of the interaction
vertices have right-handed neutrino currents. Now the potential takes the same form

as Eq. (4.36),

RR.D(M) vy D(M)
Vop (r) 47r3r5 ]21{ (Xgg' ijiaplij (r)

~ R )ijap | (0a-05) 1™ (1) = (60 7)o - P)I(r >}}, (4.58)

where

/! /!

(Xig;ew )ij;aﬁ = (C;IQIL + ClllelR)ij;oc(C;’e/L + C;I?/R);'kj;ﬁ ) (4.59)
(YRy;eW,)ij;aB = (c;é/L - C;’elk)ij;a(ch - Czlge)?j;ﬁ : (4.60)

Consequently, the short and long-range limits of the potential in Eq. (4.58) are

given by Eqs. (4.42) and (4.45) respectively with the replacements (XLVQ'/)Z- jaB =

(Xpx )ij:ap and 044 )ij:ap — (Yee' )ijsap-
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4.4.2 Scalar Interactions

We now derive the neutrino-mediated potential when a scalar neutrino NSI is
present. In our Lagrangian Eq. (4.11) these are the operators with the coefficients
gxy where X, Y € {L, R}. We first focus on the case where a scalar interaction is at
one vertex and a SM charged- or neutral-current interaction at the other, as shown

Fig. 4.3. The spectral function can be determined in this scenario according to

)
% Z {(Czlx)tja(gyz)uﬁ?‘[u dsc(V, ) + (o, B)}7 (4.61)

Vs
Pogpt) =
op Tmomp = xy.7

where X, Y, Z € {L, R}. We have taken into account that the scalar interaction may
either be at the interaction vertex of Yy or l//l’j by adding an identical contribution
with (Y < Wllf)' If the interacting fermions are identical we must multiply by the
factor Dy to avoid double counting. For Majorana neutrinos we only retain twice
the SM axial vector current and multiply by a factor of % due to the permutation
symmetry of the neutrinos in the loop.

The discontinuity of the neutrino loop factor /\/f]‘ in the Dirac case is

:FAl/Z (qzv mi27 m?) m;q*
87 g%

22
dsc(N}) = (1—m‘ 2mf)®(q2—(m,-+mj)2), (4.62)

q

where the minus (positive) sign is for Y = L (R) and the product of external fermion
bilinears is Hffﬁ = [Yu Px]a[Pr]p. Contracting Hff‘B with dsc(Nj; ) and making use
of the non-relativistic limits of the fermion bilinear products given in Appendix B.1,
we obtain in the Dirac case

VSD()

paﬁ

2 aﬁZG)(t—(mmLmj) )m,Al/z(t m; m?)
ij

8
A iap (Ga- @)+ (@ B) (), 463)
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while in the Majorana case we obtain

G2
PUSM0) = Dy YO — (mitm; ) (i) A0, )
LJ

< { S )ijap (G- @)+ (o B FS(0).

!
The factor X;,’g” contains the scalar coefficients as

/ / /
*

vy _(v v v % %
(Xys )ijap = (cpp —cip)esij(81 + &1k _gRL_gRR)B;ij7

while the functions FI? and Fl‘j are given by

140

(4.64)

(4.65)

(4.66)

(4.67)

The above spectral functions only contain terms proportional to the parity (P)

violating spin operators Oy = G - q and O}, = O - q, which are proportional to

linear combinations of the operators Og and O1¢ in Eq. (B.2). Splitting the spectral

functions into terms multiplying these spin operators, we can compute the functions

V4 (r) and V{(r) in Eq. (4.9) and from these the components of the overall potential

using

as outlined in Ref. [447].

(4.68)

By adding these factors we derive the following vector-scalar potentials for
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the Dirac and Majorana cases

VS,D iGE

Vg (1) =1c 33 1637 aﬁZmz )ijap (Oa )+ (0, B)}I5(r), (4.69)
G2 ,
VggM(r) 16l7r3Fr4DaﬁZ(mi+mj){(Xll/’lsw)ij;aﬁ(O'a P+ (o, B)} (), (4.70)
l’.]

respectively, where the dimensionless integral functions Jﬁ(r) and JiSj(r) are given
in Appendix B.2.

The first thing to note is that these potentials depend on the distance as % and
contain a single power of the neutrino masses in the numerator. Due to the small
neutrino masses, this is more suppressed than the SM potential in Eq. (4.36) which
scales as rls but less suppressed than the right-handed current potential for Dirac
neutrinos in Eq. (4.52), which scales as r% but is suppressed by two powers of the
neutrino masses.

We now consider the situation where scalar neutral-current NSIs are at both

interaction vertices. We now obtain the potential via the spectral function

2
Gy 3 (Y (6l M dselNy) + ()} @)

TmaMp = w Xy z

AGE

where W, X,Y,Z € {L,R}. The discontinuity of the neutrino loop factor N; is

given in the Dirac case by

. A1/2(q2,mi2’m5) mimj @

dsc (MJ) = AT q2

(¢* — (mi+m;j)?), 4.72)

if the chirality of the neutrino currents are the same (W =Y) and

dsc(Nj)) =

A2 (g m? m?) 2m2,
87[’ ! <1— q;’)®(q2—(m,-+m,-)2), (4.73)

if the chiralities of the neutrino currents are opposite (W # Y). The external fermion

bilinear product is now H*? = [By]q[Py] p and after taking the non-relativistic limit
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we obtain the following scalar-scalar potential in the Dirac case

SS, D 5 /
Vap () = g3,3 Z{ 3 a7 = mam (0 Va5 | .74
where the combination of scalar coefficients are given by

(X&s" Vijap = (811 + &1 R)ija(8h + &hp)ijp + (2 B), (4.75)
(Y5 )ijiap = (gt +&1p)ija(8l + glLVR)ij;B

+ (gp.+ &or)iji(8RL+ 8oR)ii B » (4.76)

and the dimensionless functions Z;°(r) and Z/*(r) are given in Appendix B.2. For
Majorana neutrinos we instead obtain

YSSM () 3GF Z

o (=555 M), (4.77)

lj oflij

where the combination of scalar coefficients is

(Z;VSW )ij:ap = (gZ’L + 8sz - g}\gL - nggR)ij;a(glLVL + glLVR - gRIVL - gRWR)ij;ﬁ ,  (4.78)
and the function I-S-M(r) is also given in Appendix B.2.

We see that the Dirac potential depends on the distance as = only when the

neutrino currents are of opposite chlrahty (the first term in Eq. (4.74)). When they

ond term in Eq. (4.74)). For Majorana neutrinos the potential scales as -~ for any

combination of the coefficients gxy.

4.4.3 Tensor Interactions

We next examine the neutrino-mediated potential when a tensor neutrino NSI is
present. In our framework these are the operators in Eq. (4.11) with the coefficients
hxx where X € {L,R}. We first focus on the case of a tensor interaction at one

vertex and a SM charged or neutral-current interaction at the other, shown Fig. 4.3.
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The spectral function can be determined in this scenario according to

2
Ty 3 L (Hoa (W) M dseNE) (0, B) ) @.79)

Tmemp = X Y.z

AGE

where X, Y, Z € {L, R}. We take into account that the tensor interaction may be at
either interaction vertex by adding an identical contribution with (Y <> l//[/;). The
Dirac and Majorana cases are treated in the same way as previous subsections.
The discontinuity of ./\flﬁt YP in the Dirac case is
Al/z(qzamizan/%) imi

dse(N;*P) = o 7 (8" ap —g"Pqv Fie""P%qo)

(l 7 J) @(qz— (mi—i—mj)z),

(4.80)

and the external fermion bilinear product is ’Hffep = [Yu Px]alOvp Pr]p-
Contracting these factors and using the non-relativistic limits in Appendix B.1,

we obtain the spectral function for Dirac neutrinos

%?WF' QBZ® (i +m;)?) mi AV (e, m? ,m?)
i,j=1

X {(X&”T"”L-j;aﬁ (65-Q) +i(hY)ijap(0a % Op) -q+ <a,ﬁ>}ﬂj‘~<r>, (4.81)

while in the Majorana case we obtain

GZ
Pag " (1) = —5 5 Dag $ Ot — (-4 m))?) (s — ) AVt )
hI= (4.82)

/

X {(X\I/I/ij )ij;aﬁ (6.3 q) +i(Y\;VTw )ij;aﬁ (0o x 6.3) q+ (O@ﬁ)}FzJT(I)’
where the prefactors X,/ "and Y‘}VT"’, are

(XVWTW )ij:ap = (CZL + cllgL)ij'a(h‘LVL - hllgR);'kj‘ﬁ ) (4.83)

(Y\yfTw ijiop = (cf1 —crp)ii: a(hLL +hRR)lj B (4.84)
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The function Fl? remains the same as Eq. (4.66) and FiJT- is given by

. 2
Fr (1) = % (1 - M) . (4.85)

The spectral functions above contain terms proportional to the P violating spin
operators Oy = G -q, O}y = 6 -qand Oy = (64 x 6p) -q. We can again split the
spectral functions into terms multiplying these operators and evaluate the functions
V4(r), Vio(r) and Vi, (r) of Eq. (4.9). From these we use Eq. (4.68) and

i . d
Vii(r) = = (0o X op) (1 —r

r

)Vh(r), (4.86)

to derive the full vector-tensor potential in the Dirac case

/

G} ) .
VX/BT’D(F) - _4E3Fr4paﬁ th {l(XvWT]’V )ij:ap (Op - F)
i\j
-y )ij:ap (Oa X Op)-F+ (a7ﬁ)}JiAj(r)7 (4.87)

and in the Majorana case

G2 _ X
Vag " (1) = = 43,4 Dap L, (mi —m)) {Z<XVWTW )ij:ap (Op - F)
ij

!

VY ) (G G) P (a,ﬁ)}15<r>, (4.88)

where the dimensionless functions Jé(r) and Jg.(r) are given in Appendix B.2.

We note that these two potentials, similar to the vector-scalar potentials of the
previous subsection, scale as % They also contain only P violating spin operators.
The difference between the potentials for Dirac and Majorana neutrinos arises from
the different distance dependence of the functions Jl%(r) and Jg(r) Finally, we
observe that the diagonal elements in the i, j sum vanish for Majorana neutrinos.

We will now compare the neutrino-mediated potentials derived in the previous
subsections. To the left of Fig. 4.4 we plot the spin-independent parts of the vector-

vector potentials Véﬁ, Vég and Volfg for positronium e et (ot = B = e) and three
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Figure 4.4: (Left) Spin-independent parts of the vector-vector potentials VO%, Vég and Véfg
for positronium (e~ e™) and three Dirac (D) or Majorana (M) neutrinos with
mi = 0.1 eV and NO mixing parameters, taking (cgz)ij.c = 10*25,7. The solid
(dashed) lines indicate positive (negative) potentials. (Right) Spin-independent
parts of the potentials V55 in the Dirac and Majorana cases compared to VL,
using (gxy)ij:e = 10728;; and for X =Y € {L, R}. In both plots the neutrino-
mediated potentials are compared with the gravitational potential Vi between

the electron and positron.

massive Dirac or Majorana neutrinos. The potentials VeLeL’D and VeLeL7M (blue and
red lines, respectively) are calculated using SM values for the prefactors (Xf{) ijiee
and (Yf{) ij:ee N Eq. (4.31). In the Dirac case, the potential VeLeR’D (green line) has a

single SM interaction and a non-standard cgy interaction. In the Majorana case, the

coefficient cgy, is equivalent to ¢z and the potential VeLeR’M

VeI;L’M, though we plot this contribution separately

is instead interpreted as
a correction to the SM potential
(purple dashed line). The potential VERD s derived assuming both interactions
have coefficients cgr. We set the lightest neutrino mass to m; = 0.1 eV and use
the best fit normal-ordered (NO) values of the mixing angles, Dirac CP phase and
mass-squared splittings in Table 2.3. We set the non-standard coefficients to be
(ckp)ijie = 10725;; (or (8ck; )ij.e = 10725;; in the Majorana case).

We first compare Dirac and Majorana SM potentials VeLeL’D and VeLeL’M. In the

1

short-range limit r < o the potentials are identical, while in the long-range limit

r> 2%11 the Majorana potential is smaller than the Dirac potential, confirming with

the results of Ref. [442]. The potentials both fall off as ,ls until the neutrinos become
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non-relativistic around r ~ ﬁ, and the potentials are exponentially suppressed. In
the long-range limit the potentials are many orders of magnitude smaller than the

2
gravitational potential Vg = —% between the electron and positron. We also note

the large difference between the Dirac and Majorana potentials eLeR’D and VeLeR’M.

While the Dirac potential is slightly larger than the Majorana potential in the long-

range limit, in the short-range limit the former scales as r% and is suppressed by two
powers of the neutrino masses while the latter scales as ,ls and is unsuppressed. As

stated before, this is because the Majorana potential is interpreted as a correction to

the SM potential VeI;L’M and thus scales in the same way. Due to the suppression

from cgy,, VeLeR’M is around two orders of magnitude smaller than VeLeL’D(M). It can be

seen that the potential £R7D is further suppressed because it contains two factors
of CRL.
To the right of Fig. 4.4 we plot the scalar-scalar potentials for e"et and

. ) . SS,D SS,M .
Dirac and Majorana neutrinos, Vg, '~ and Ve, ', and compare them to the spin-

independent part of LLD and the gravitational potential V. We choose a scalar
coefficient (gxy)ij.e = 10_2&]- for X =Y. Looking at Egs. (4.74) and (4.77) we see
that the surviving terms of the Dirac potential scale in the short-range limit as r%
while for the Majorana potential as rls, as can be seen in the diagram. As the vector-

scalar and vector-tensor potentials V2 and VXBT only contain spin-dependent terms,

we do not plot them here. However, these potentials depend on the distance as %

and will therefore have a slope between the VOLCI[;’D and VOL‘gD potentials.

4.4.4 Neutrino Magnetic and Electric Dipole Moments

In this final subsection we will derive the long-range potentials generated by non-
zero neutrino magnetic and electric dipole moments. Long-range potentials induced
by neutrino electromagnetic properties have been studied before, for example in
Ref. [437].

In Section 2.3 we reviewed how magnetic and electric dipole moments can
be parametrised for Dirac and Majorana neutrinos. For Dirac neutrinos one intro-
duces three right-handed fields Nk (or vg) and writes the dim-5 LEFT operator in

Eq. (2.94). The neutrino flavour fields are transformed to the mass basis by the
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Figure 4.5: (Left and centre) Diagrams depicting the exchange of two massive neutrinos
between fermions y, and l//l’3 with SM interactions at one vertex and the ex-
change of a photon via a neutrino magnetic moment ;; at the other, leading to

the vector-dipole potential V;/ Y (Right) Diagram when p; ; 1s present at both
Y

vertices, resulting in the dipole-dipole potential V, B
PMNS matrix U and a matrix U rotating the right-handed fields. The coefficient of
the operator in the mass basis is pf, = UTupU. Dipole moments for the light Ma-
jorana neutrinos are produced by the dim-5 LEFT operator in Eq. (2.89), assumed
to be generated by NP at a high energy scale. Neglecting possible active-sterile
mixings if ng right-handed states Ng are also included in the theory, the operator
coefficient can be rotated to the mass basis as i, = 4y =U Ty U. The mass basis
coefficients can then be split up into “1/3(M) = [L]/)(M) —i&] (w) to write the Lagrangian

z 1 A
r® — _EV’GHV(,Q]’)(M) + ie]/)(M) ¥s)V' Fuy +hec., (4.89)

where ﬁ]’)(M) and é]’)(M) correspond to the magnetic and electric dipole moments
of the Dirac (Majorana) neutrinos respectively. We will drop the hats on these
quantities in the following discussion.

We now compute the long-range potential corresponding to the two-neutrino
exchange diagrams to the left and centre of Fig. 4.5. In these diagrams a pair of
mass eigenstate neutrinos interacts via SM charged- or neutral-current interactions
at one vertex and via a photon at the other, coupled to the magnetic or electric dipole

moment of the neutrino. The amplitude for this process is given by

_ AGF Vo l of i\ ruv
N 4mamﬁ (_l \/E)ZZ{<CLX)EJ;OC 7 %uv -/V;'j + (a,ﬁ)}, (4.90)

ij X
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where ”Hﬁe = [Yu Px]a|W] g with X € {L, R} and the neutrino loop factor ﬁJFV is

AR /(d“k Tr[—io"P qp (1]; + i€} vs) (4 + K +m;)y VPL(keri)]‘ 491)

2m)t (k2 —m7) ((q+k)* —m3)

Taking the non-relativistic limit of Hffe = [Yu Px]a[W]p and the discontinuity
of Eq. (4.90), we can construct a spectral function p(‘;g(t) Using the method of

Section 4.1, from this the following vector-dipole potential can be derived in the

Dirac case
Vy,D, \ o Gg 1 vy S
Vol ") = 5 s g D A () (O3 )

= i(mi =) (Y a5 () + (0, B) . (4.92)

where we have normalised by the Bohr magneton g = 57— - and the Dgp factor

again takes into account double counting if Yy = I;IB. The prefactors are given by

Xy ijsap = (cr +clr)ija(HD)i (4.93)

(Y‘%’w )ij;aﬁ = (C\LVL“‘CILVR)ij;a(g]/))ij ) (4.94)

In the Majorana case we instead have

Vy,M . iOCGF ‘I/ T
Vo () = ﬂn2r3meu3 ﬁZj{ @ )ijap 15 () + (@, B}, (4.95)

where the prefactor is
<ZW’ ijop = (e +cip)ijo(En)i (4.96)

where it can be seen that the magnetic dipole moment does not contribute. The first
thing to observe in these potentials is that the distance dependence is r%, similar to
the right-handed current potential Vég in the Dirac case. However, there is now a
factor of aGF instead of Gl% and the potential is proportional to a single power of the

neutrino masses instead of two. For y;; ~ tp and noting that G%m%, < %‘:gmv for
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Figure 4.6: Neutrino-mediated potentials Ve‘éy and V)Y compared to the SM potential VeLKL,

plotted for positronium (e~ e*) and three Dirac neutrinos with m; = 0.1 eV
and NO mixing parameters, setting [;; = [y = 10~!2 up. These potentials are
compared with the gravitational potential V; between the electron and positron.

my ~ 0.1 eV, we see that the potential is far less suppressed than V, /3 in the Dirac
case.

We can also consider the process depicted by the Feynman diagram to the right
of Fig. 4.5, where the two neutrinos are both coupled to the interacting fermions by
their magnetic or electric dipole moment. The dipole-dipole potential obtained in

this case (valid for both Dirac and Majorana neutrinos) is

3.2 Z{ il u (r) - (Yw)ijlgy(r)}, (4.97)

Vﬁ() 127”3 enu’Bl]

where (Xyy)ij = (Upm))ij(pvy)7; and (Yyy)ij = (€pw))ij(€pwm));; and the integral
functions 1?1.4 ¥(r) and I?J{Iy(r) are given in Appendix B.2. The two terms correspond
to the presence of magnetic and electric dipole moments respectively. The cross-
term (i.e. a magnetic dipole moment at one vertex and electric dipole moment at the
other) vanishes.

In Fig. 4.6 we compare for positronium e~ e™ the spin-independent potentials
V,YJ (red) and 7244 (green) to the spin-independent part of SM potential VeLeL (blue).

We take non-zero values of the magnetic dipole moment entries 11/ = 10712 g and
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let the electric dipole moment vanish. As expected we see that the potentials scale
as r% in the short-range limit r < 2_;1, However, unlike the potentials VX and V35
it is possible for V!J and VQQ/ to be greater than the SM potential VeLeL over a wide

range of distances.

4.5 Atomic Spectroscopy Constraints

There are a number of ways to test for the presence of non-standard (or fifth) forces
over a range of distances. At the macroscopic scale, precision torsion balance ex-
periments have adapted the method first used by Cavendish to measure Newton’s
gravitational constant G. Theories looking to resolve the discrepancy between the
observed dark energy density ps ~ 3.8 keV /cm? and the theoretical prediction from
QFT (~ 10'%° larger) predict power-law modifications of the gravitational force
at length-scales of r ~ 1 um to 1 mm [465]. These theories can involve extra
time [466] and space [467] dimensions and mediators such the axion [468], dila-
ton [469], dark photon and Z’ boson [470], all of which can change the typical
% scaling of the gravitational potential and violate the so-called weak equivalence
principle. Torsion balance experiments have been able to exclude a large region in
the parameter space of the Yukawa-type parametrisation of deviations from the %
potential [471-479]. Other novel techniques for probing macroscopic forces include
optical levitation [480,481] and atom interferometry [482]. Finally, experiments
with polarised electrons have been able to constrain macroscopic spin-dependent
potentials [483,484].

In Fig. 4.2, the neutrino-mediated potentials can be seen to fall off sharply
for r 2 1 um, corresponding to the Compton wavelength of the lightest neutrino
with m; = 0.1 eV. For interacting electrons and positrons, the associated forces
are many orders of magnitude smaller than their gravitational attraction. In theory,
however, this suppression can be overcome by using neutral matter with a coherent
weak charge, boosting the strength of the neutrino-mediated force with respect to
the gravitational force [442]. Another suggested method is to measure the pressure

exerted on two parallel plates by the Casimir-like force induced by the neutrino
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potential [445]. However, current experimental sensitivities are around 20 orders of
magnitude below what is required to measure the neutrino contribution.

To be sensitive to the neutrino-mediated potentials it is therefore necessary to
go to smaller distances, where the potentials can result in forces exceeding the grav-
itational force. The most stringent measurements come from nuclear and atomic
spectroscopy probing distance scales of 7 ~ 1 fm and r ~ 1 A respectively. We will
outline some of the methods explored in the literature.

Naively, atomic spectroscopy of heavy atoms (Z > 1) is useful for probing
the spin-independent part of a neutrino-mediated potential because the force scales
coherently with the number of neutrons N in the nucleus. The spin-dependent part
on the other hand will be cancelled out because nuclear pairing interactions leave
the ground-state nucleus with at most two unpaired nucleon spins. Unfortunately,
the complexity of many-electron interactions makes the theoretical predictions for
atomic transition frequencies inadequate for current experimental precisions. One
can instead measure isotope shifts (the differences in splittings between isotopes)
in systems such as Ca™ by observing a non-linearity in the King plot [485]. In
the literature this has been used to constrain models with Z’ bosons, exotic Higgs
bosons and chameleon particles [486—489] and recently the neutrino-mediated po-
tential [444].

A useful probe at nuclear scales is the binding energy of the deuteron D, a
bound state of a proton and a neutron. It is possible to model the binding energy
as a spherical potential well with an infinitely repulsive inner hard core in order
to find the radial wavefunction of the system. This can then be used to calculate
the expectation value of the neutrino-mediated potential and the predicted shift to
the binding energy. The difference in the measured [490] and predicted [491,492]
binding energies has been used to constrain the neutrino-mediated potential [444].

The sensitivity of atomic-like leptonic systems such as positronium (¢~ e™) and
muonium (e~ ™) to the neutrino-mediated potential could be more promising than
the deuteron and other nuclear probes. As we will see, the characteristic cut-off

scale (below which the distance dependence of the potential no longer holds) of
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these systems is the cut-off of validity of the EFT, not the charge-radius (rr) of the
nucleon/nucleus in semi-leptonic systems like hydrogen (e~ p), deuterium (¢ D™)
or their muonic counterparts (1t~ p and g~ D™). The best measured splittings of
these systems at present are the 15 — 25 and ground state hyperfine splittings. These
splittings have already been predicted to high accuracy and used as precision tests
of QED. For example, QED corrections to the ground state hyperfine splitting Ef
in atomic systems have been calculated up to orders a?(Za)?Er [493-495]. Much
smaller weak [496,497] and hadronic corrections [498] have also been calculated.

We will now follow the same approach as Ref. [444], which derives the shifts to
energy levels using the expectation value of the position-space potential V (r). With
the experimental and SM-predicted values for the 1S — 2§ and hyperfine splittings
of positronium and muonium, we will also examine the contributions from the non-
standard neutrino-mediated potentials to put upper bounds on the coefficients cxy,
gxy, hxx and neutrino dipole moments.

The small shift §E to an atomic energy level due to a non-standard force can
be computed to first order in perturbation theory as the expectation value of the

associated potential V (r),
SE =—(V(r) = —(n® LoV (r)[n*=*Ly), (4.98)

where 12571 L; labels the atomic state. 7 is the principal quantum number, S the total
spin, L € {S,P,D,...} the total orbital angular momentum and J the total angular

momentum. Shifts to the 1§ — nS and n-hyperfine splittings are, respectively,

SE'S™S — SE(n38)) — SE(13S)), o)
SE"™S — SE(n3S)) — GE(n'Sp). '

The average of the potential over the atomic quantum numbers is the following

position-space integral

<V(r)>n,£7m = /d3 rlP;:,(,m(r) V(I’) an,f,m(r) ) (4.100)
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where W, ¢, () = Ry ¢(r)Yr,m (0, ¢) is the atomic wave-function. For the two-body
systems we are considering this is the separable solution of the Schrodinger equa-
tion with the Coulomb potential V¢(r) = —4Z—f; = —£%  Assuming that V(r) is
only a function of r (and not 8 and ¢), the integration over the spherical harmonic

Y, m(60,9) is unity and the average for general distance dependence % is,

1 %}
VO pom=(Z) :/ dr >~ (Ryi(r))?, (4.101)

where R, ¢(r) is a hydrogen-like radial wave-function and r. is a distance cut-off
corresponding to an upper cut-off of validity for the EFT. For Fermi’s effective
theory of the SM weak interactions this distance is around the inverse Z boson mass
(or reduced Compton wavelength), i.e. r, = miz =2.16 x 1073 fm. We can write the

Fermi coupling constant in terms of this length scale as

1/2
o T 29 . To

This cut-off scale could be different for a non-standard interaction mediated by
a particle with a different mass, for example a Z’ boson. In this case the distance
cut-off will be r. = mLZ/ If this mediator interacts with the SM via a coupling g/, for
large my we can match this onto the vector neutrino NSI normalised to the Fermi

coupling constant,

2

Grexy = 55 = g%r2. (4.103)

Regardless of the new physics being above or below the EW scale, or strongly or
weakly coupled, the lower distance scale of validity r. compares to the SM Fermi

interaction cut-off r. as

A? m
r=""cxyro=—%r;. (4.104)
8 mz,

While this discussion is valid for an EFT with point-like particles, for semi-leptonic
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systems the cut-off r. must take into account the finite size of the nucleon or nucleus.
For a nucleus, r. = (ry/) ® Ry = r()Al/3 with rg ~ 1.2 fm.
Eq. (4.101) can now be integrated using the hydrogen-like radial wave-

function,

(n—1-1)! (2Z\> _2z (27zr\' 5., (2Zr
Roy(r) =/ = (22 o7 (220 L il 4.105
ni(r) \/ 2n(n+1)! \ ndoy ¢ niap) "1\ nag )’ ( )

where L,{(x) is the associated Laguerre function and dj is the reduced Bohr radius

of a system with reduced mass m,

1 My My \
dp=— = ( SR (4.106)
myo mwml,,;3 o
For hydrogen this is the standard Bohr radius dp ~ ap = m%a. For different values

of the power d in Eq. (4.101) and expanding in r. we obtain

1 473 27Zr, re
— =—— A, — -1 O —=
<r3 >n,€—0 na; [ n ¥ < nag )} * (ﬁé) ’

<1> _ 42 o] (4.107)
Alneo~ wra FO\G) -
1 273 1
<r_5>n =0 - n3r2a’ 0 (W) '
’ c™0 <%0

Here the parameter A, is given by

n—1 n—1
A=Y CL@2j-1)+ Y Ch(j+k—1)!, (4.108)
j=1 k>j=0
with
1 —1) K [(n—1)1)?

K= (n— 1= (T4 ) (n—1—k) (1 +k)!

It is possible that the potential in Eq. (4.100) contains spin-dependent terms.
For example, the factors 64 - 0pg and (G- F) (GB -#) appear in VO% and Volgg.

Firstly, as we will be only considering n>5*1S; states for the 1.5 —nS and n-hyperfine
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splittings, the following equality holds for £ =0

((0a-?)(0p-7) )= <0a 5 )1 (4.110)

In order to determine the hyperfine splittings between the singlet (s = 0) and triplet
(s = 1) configurations of interacting particle spins, we also need to evaluate the
average of the spin dot-product <O‘a . Gﬁ>s in these cases. From the properties of
the Pauli matrices, these averages are (G -Gpg) _, = —3 and (64 -0Gp) _, =1
respectively.

V(;/ ﬁT , which depend on

The averages of the P violating potentials Vg g and
the spin operators O -7, 6 - F and (6 X 6g) -, vanish. However, the poten-
tials can induce transitions between different ¢ states similar to an electric dipole
moment. While not the focus of this section, atomic and molecular electric dipole
moment experiments have constrained spin-dependent, P- and T-violating potentials
induced by axion exchange in Ref. [424]. In the context of the neutrino-mediated
force, Ref. [441] has suggested probing atomic P violation by measuring the optical
rotation of light as it passes through vaporised atoms.

We now wish to compute the shifts to energy levels brought about by the SM
neutrino-mediated potential VOL/B‘ The expectation value of the SM-induced poten-

tial VOLC[I; can be written as

(Vag (r 7[32{ )ijap <I’r#>

) D(M) (.
_(YL%W/)ij;aﬁ <(G(X o-ﬁ)']z] ()>_<(Ga r)(aﬁ )JV( )> } @.111)

7o

To evaluate these averages, recall that the functions 15 ™) (r), Jg ™M) (r)and Ji‘; (r) are
exponentially suppressed for distances greater than the Compton wavelength of the
neutrinos r > 2 . For r < 2 the neutrino masses can instead be neglected (m; ~

m; ~ 0) and the functlons take constant values, discussed in Appendix B.2. For

atomic spectroscopy measurements the relevant distance scale (the reduced Bohr
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radius dp) is within this regime. The averages in Eq. (4.111) therefore become

I (r) 223
(U57)  ~m @112)
r n /=0 n rcaO
D(M)
(Oa-0p)J;; (1) 3 273
< ;: zim<0‘a-aﬁ>, (4.113)
n,{=0 70

(4.114)

l
(o)}
S
W
<
o
3
w
~
Q
Q
Q
=
~—

<<oa 7)o I >>  sop
r’ n,¢=0

giving the average for the potential

Wiy o~ G5 L Ly 2 leaap) b @l1s)
B\T) Jne=0~ 27T3n3r2 3 e Jviap = 3L Jviap\@aOp/ ¢ .

where (X" )v.ap = Xij(X/1 )ij:ap and (YLVEV/)v;aﬁ =Y i )i

Calculating the average of the potential VLg for Dirac neutrinos in Eq. (4.52)

; ]LR .
requires evaluating the average of the factor +(r) For distances r < %"i’
mym IR (r 2™y
< 4 ]é]()> <<<lj 5()> : (4116)
r r
n,é:O nj:()

which shows that the potential is too suppressed to be a useful probe of the non-
standard coefficients cgy and cgg. In the Majorana case the potential Vég has the

same distance dependence as VL[I; and so
LR - Gy 7 vy 2 owy
<Vaﬁ(r)>n7£:0fv——2ﬂ3—n3r2d8 (X% Jviap =3 (VR Jviap(Oa-0p) 0 (4117)
2

where (X Jviap = Z,-,j(XLl’ﬁ” )ij:ap and (v Jviap = Zivj(YL",’eW )ijap- Recall that
(XLV;QW )ijiap = _(XLVZW ) jizap and (YLVIIQW )ijiap = _(YLVSV ) jizop for Majorana neutri-
nos, so any NP contribution to cgy, is added to the SM contributions.

Computing the shifts to the 15 — 2§ and n-hfs splittings in Eq. (4.99) due to



4.5. Atomic Spectroscopy Constraints 157

LL .
% g now gives

G2 23 1 /
1S—nS _ ~F vy

2

- g(YL"i"’J)v;aMGa -0p)._, } . (4.118)

G: 7°

—hfs __ vy
S0, = 35 UL ] (0 0p), — (0w o),y | 4119

which can be written as

SEIS—nS == )XY s — (Y ) s b (42120
2
SEy \y = faGF (wa)v;aﬁ- 4.121)

VoV 3722 S%V n3a0

where we have made use of Eq. (4.102). Recalling that dy = m+a, the shifts to the
splittings are of order a*Grm?. As a particular example, the shift to the hyperfine

splitting of the n = 1 energy level for two charged leptons ¢, and EE is

nis | 2V200GEmd & \
5E€1ag§s:—3 55— 3 (Uailaj+846)) (UpiUj ; + 84.8) (4.122)
sy

while the same shift for a charged lepton £z and nucleon/nucleus A is

4Zzoc3G

33 3

Z(\UazlergA)gN, (4.123)

i

where the cut-off r. = (rys) corresponds to the size of the nucleon/nucleus.

With Egs. (4.122) and (4.123) we list in Table 4.2 the predicted shifts to the
1S — 2§ and n-hyperfine splittings (specific n values are given in the table) due to
the SM-induced potential VL[L3 for a range of leptonic and semi-leptonic two-body
systems. For both the 1§ — 2S and hyperfine splittings we compare the predicted
shift in units of mHz to the differences between experimental and theoretical values
(from QED, hadronic and first-order weak contributions). References for these are

provided in the table.
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15-28 n—hf
System SEyy > [mHz] SEp3"™ [mHz]
VOLCE exp — theory VOLCE exp — theory
(e,e) 10 —5.8(3.3)-10° (1) 57 2.2(1.9)-10° @
(e,) 13 5.2(9.9)-10° ) —150 —1.1(52)-10° ®
€r) 41004 _1405)000® M 107 —1.1(0.1)-107
(e,DF) ~1.7-107®  1.4(0.1)-10° (@)
(u,p)  22-10° - ~1.0-10° —9.4(1.5)-10'2
(u, DY) =550 - —13 —1.1(2.1)-102®

(1) 14991, 5001, @ [501], [502], @) [503] (Deuterium—Hydrogen 1S — 25 Isotope Shift)
(@) [504], [500] (1S-hfs), ®) [505], [493] (1S-hfs), (©) [506], [507] (1S-hfs)
) [508,509], [510-512] (2S-hfs), (¢ [513], [512,514] (2S-hfs), (D [515], [516] (2S-hfs)

Table 4.2: Predicted shifts to the 15 —2S and hyperfine splittings of two-body systems
(Wa, IVI/3) due to the SM-induced neutrino-mediated potential VOLC;; for three ac-
tive neutrinos with m; = 0.1 eV and the other masses and mixings determined in
the NO case. Where possible we compare these to the differences between the
experimental and theoretical values for these splittings. Uncertainties are calcu-
lated by adding the experimental and theoretical uncertainties in quadrature.

We see that the expected shifts from Véﬁ are much smaller than the discrepancy
between experiment and theory; the leptonic systems provide larger shifts in relation
to the discrepancy compared to the semi-leptonic systems. This is mainly due to the
cut-off r. = mLZ being two orders of magnitude smaller than the charge radii of
the proton and deuteron. Of the leptonic systems we see muonium has the most
precise experimental measurements. The predicted shift due to neutrino-exchange
SEZI bfs ~ —150 mHz is three orders of magnitude smaller than the experiment-
theory difference. This makes the hyperfine splitting of muonium the most stringent
probe at present.

The shift to the hyperfine splitting for a leptonic system from the potential Voch

(in the Majorana case) can be found from Eq. (4.117) to be

~ 4G2 3 i}
SEL 1 = <5 2= Dap Y| (UlaUaj + 853) (che — chudisp + (@ )}, (4.124)
c®0 i,j

which depends linearly on the coefficient cly (X € {L, ,R}). In theory the potential

relies on two effective interactions, an effective SM Fermi interaction and a neutrino
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y LR.M v 5SS, M
System Cpy (Vaﬁ ) 8xy (VocB )
(e,e) oy <5.7-107 g%y <7.2-10°

oy < 3.6-10?
Chy < 3.6-102
oy < 1.5-10°
chy <5.5-10°

(e, 1) gy - gy <5.9-10°

(e,p)/(e,DT) 85y (g%y —6.48g%,) < 1.6-101°

Table 4.3: (Left) Upper limits on cgy (for X € {L, R}) from the right-handed current po-
tential Vofg, probed by the hyperfine splittings of the systems (g, 1//,’3) We
assume three light active Majorana neutrinos with m; = 0.1 eV and NO masses
and mixings and (cky)a.ij = c% &;;. (Right) Upper limits on (gxy)ij:a = 8%y i/
(for X,Y € {L, R}) from the scalar-scalar potential V(fg, probed by the 15 —2S§
splittings of the same systems.

NSI, which in general have different cut-offs r. and .. The cut-off appearing in
Eq. (4.124) must therefore be the larger of these two scales. For simplicity we
1

assume that the NP arises around the EW scale my and therefore 7. ~ r, = pr

regardless of the exotic coupling strength g’. For the equivalent shift of a semi-
leptonic system, O E l}j\fs, we instead set . = (rr) and replace cfy with c%(.

We now use Eq. (4.124) to compute the predicted hyperfine splitting shift as
a function of the non-standard coefficient cgy. To simplify the sum over mass
eigenstates i, j, we take the coefficients to be diagonal in the mass basis, i.e.
(chy)ija = c%5i;. We now write the following inequality relating this predicted
shift to the difference between experimental and theoretical values,

SELI, ol < [SELI — SELMS) (@.125)

and rearrange to put an upper bound on the value of ¢%,. We note that (cky)ij.«
gets a contribution from the SM weak interactions for Majorana neutrinos. Even
if we include this contribution, it is too small to alter the upper bound derived for
the correction (Scky)ij:a to the coefficient. In Table 4.3 we give the constraints
from positronium on c%y, muonium on c%y and ch and hydrogen on c%y and cky.
The constraints from muonium are five orders of magnitude better than those from

positronium and hydrogen.
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System u /s (VIEP™) /s (VM. wo N)
(e,e) 3.6-1072 (4.4-1072) 7.6-1072
(e,pt) 1.3-1072 (1.5-1072) 2.6-1072
(e,p)!(e,DT) 2.7-1073 (3.3-1073) 5.7-1073

Table 4.4: Upper limits on the magnetic moment uy in units of the Bohr magneton probed
by the dipole-dipole potential V%, derived from the 1S5 — 28§ splittings of the

systems (Y, 1/11’3) Equivalent limits apply for the electric dipole moment &,,.
We assume three light active neutrinos with m; = 0.1 eV and NO masses and
mixings. For Dirac neutrinos we take (ip);; = Ly, while for Majorana neutrinos
(um)ij = My(1 — &) fori < jand (um);j = —puy fori > j. We also derive upper
limits on the transition magnetic moments between two heavy sterile neutrinos
(Um)as = —(Um)sa = Uy. Active and active-sterile neutrino magnetic moments
are neglected.

We now consider the scalar-scalar potential Vofg in Eq. (4.64) which does not
depend on the spins of the interacting particles. We must instead use the 15 — 2§
splitting to derive upper bounds on the coefficients gxy. The shift to the 15 — 2§

splitting is found to be (for leptonic systems)

21G} ¢
15-28 _ F N (ol
SEZaEB - 32753’%&8 ;(gXY)ljga(gXY)u,ﬁ . (4.126)

where we take r, = mlz For semi-leptonic systems we find the equivalent BEZOfX/zS

by setting r. = (rys) replacing one g, with g%.

Examining again the differences in the experimental and theoretical values for
the splittings, we derive the upper bounds on the coefficients in Table 4.3. We
assume that (gxy)ij.« = &%y 0ij for X, Y € {L, R}. Positronium can put an upper
bound on g%y, while muonium can only constrain the product of coefficients g% -
gy~ We also use the experimental and theoretical values of the difference between

the 18 — 28 splittings of deuterium and hydrogen, SE'5725 — 5E61[§_2S. This can

S
eD
only constrain the combination g%y - ( gQY — 6.48g§ y)- The limits from positronium
and muonium are roughly comparable while those from hydrogen/deuterium remain
less stringent.

We now examine the constraints on neutrino electromagnetic properties from

the neutrino-mediated potentials of Egs. (4.92), (4.95) and (4.97). The vector-dipole
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potential Vgg is proportional to the neutrino masses and therefore suppressed in the

short-range limit, so we will only focus on the shifts induced by the dipole-dipole

potential Vg};. Using the procedure outlined above, we find the expectation value of

the potential,
2 3
104 o 1 4z 27r,
<VaB n(=0" 127 m2u2 n’a} Ap—7Ye—In nao {Typv = Xyp)v}, (4.127)

where (Xyy)v = ¥ j(Mpov))ij(Mpow))i; and (Yyy)v = X j(€pow))ij(€pm);j- The
potential is spin-independent so we can only use the 1§ — 2 splitting to put an
upper bound on the neutrino magnetic and electric dipole moments. This is found
from Eq. (4.127) as 5E;/i;%s = <Vg};>n:17€20 — <Vg};>n:27£:0.

In Table 4.4 (left) we show the upper bounds on the magnetic moments when
we assume (Up);; = My such that (Xy,)y = 9u2 (for three light Dirac neutrinos)
derived from the positronium, muonium and hydrogen/deuterium 15 — 25 splittings.
In brackets is the upper bound when we assume there to be three light Majorana
neutrinos with (tm);; = (1 — &;;) for i < jand (um)ij = —py for i > j, such that
(Xyy)v = 6,u3. These limits also apply for the Dirac and Majorana electric dipole
moments.

In Table 4.4 (right) we consider the scenario where two right-handed neutrinos
Ng are introduced in the Type-I seesaw. We neglect the magnetic moments of the
light active neutrinos and the transition magnetic dipole moments between active
and sterile states, taking (twm)ij = 0 except for (Un)as = —(Um)s54 = Hn, Where Uy
is the transition dipole moment between the two sterile states. We again use the
1§ — 25 splittings of the different systems to put an upper bound on this parameter
in units of the Bohr magneton, shown in Table 4.4.

To conclude this chapter, the interpretation of forces as the exchange of virtual
particles is key to our understanding of nature. On scales larger than nuclei, the
long-range electromagnetic force is induced by the exchange of photons in QED.
Gravity is also experienced by massive bodies. A number of experiments have
searched for a so-called fifth force, mediated by new particles. However, within the

SM, it is technically possible for two neutrinos to be exchanged between fermions
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and induce a long-range force. This corresponds to a one-loop Feynman diagram,
shown in Fig. 4.2. Due to the weakness of neutrino interactions and the loop sup-
pression, the effect is small but nevertheless possible to be probed by spectroscopy
measurements of (exotic) atoms, especially muonium [444].

In this chapter we have used an EFT approach to parametrise the effect of
neutral-current neutrino NSIs on the long-range potential induced by the exchange
of two neutrinos. This includes all possible Dirac structures (e.g. vector, scalar
and tensor) for effective interactions between two neutrinos and fermions. We have
calculated the spin-independent and spin-dependent long-range potentials between
interacting fermions Y, and l//k assuming a SM interaction at one vertex and an
NSI at the other. We have also considered an NSI at both interaction vertices and
the presence of neutrino magnetic moments. We have kept the discussion general
to allow for both Dirac or Majorana neutrinos.

Using our results, we discussed how the NSI couplings and magnetic moments
can be probed using state-of-the-art atomic and nuclear spectroscopy experiments
and high precision QED calculations. Normalising the NSI coefficients to the Fermi
coupling constant, we have found that the current precision in atomic spectroscopy
is sensitive to coefficients as low as cxy = O(10?) for muonium. If the exchange
is induced by a neutrino magnetic U, or electric dipole moment &y, values of order
Uy (&y) = O(1072) up are being probed.

The limits on neutrino NSIs from atomic spectroscopy can be used to constrain
NP scales. For example, the muonium n = 1 hyperfine splitting energy shift in the
SM is of order

6E,,"| ~0.14 a*m}Gr ~ 6 x 1071° eV ~ 150 mHz. (4.128)

This compares with the current sensitivity of [SE'™| <7 x 1071% eV [493,505].

On the other hand, NP at a scale Axp would also induce a shift of order

4 3 2
o 60 GeV
SELM ~ 2R m 107 (2 ) ev. (4.129)
Axp Anp
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Thus, NP at the EW scale is currently being probed. Experimental advancements
in muonium spectroscopy [497] and QED precision calculations [517,518] are ex-
pected to improve the sensitivity to |5E§ﬁhfs| ~ 10 Hz ~ 5 x 1071 eV.! While this
will not improve on the existing limits from other (e.g. cLFV) processes, atomic-
scale probes have the advantage that the effective operator treatment is valid down
to very low energy scales corresponding to the Bohr radius, Anp = am, ~ 3 keV,

and therefore could be sensitive to much lighter NP.

IThe sensitivity in atomic systems involving nuclei is expected to be much weaker as the larger
distance cut-off r/. > 1 fm only makes it possible to probe NP at scales Axp = 100 MeV.



Chapter 5

Probes of the Inverse Seesaw

Mechanism

In this chapter we will return to a specific model (reviewed in Chapter 2) generating
Majorana masses for the light active neutrinos. The inverse seesaw mechanism
(ISS) introduces two sets of sterile neutrinos, Ng ; and Ng >, which makes it possible
to write the general Majorana mass matrix in Eq. (2.70). In the canonical Type-I
seesaw mechanism, light active neutrino masses my ~ —MBMEI Mp are induced by
large Majorana masses Mg of the right-handed neutrinos Ng. However, the mixings
between active and sterile states are small, Vyy ~ M]TDI\/IEI. In the ISS, the small
active neutrino masses my = MB(ME)_IHSMEIMD are instead the result of small
Majorana masses Ugs of the N ; fields. It is technically natural for these masses to
be small, because global lepton number is conserved when g — 0. A priori, the
active-sterile mixings Vyy in this scenario can be large. This feature of ISS models
is of phenomenological interest, because heavy sterile states N which have masses
kinematically accessible to collider experiments can have large enough mixings to
be produced in sufficient quantities. Conversely, the non-observation of sterile states
in a variety of experiments allows to constrain the ISS parameter space.

Another characteristic of the ISS mechanism is the suppression of |[AL| = 2
processes. If the sterile fields Ng 1 and Ng > have opposite CP parities, then in the
small pg limit they will form pseudo-Dirac neutrino pairs (with mass splittings

proportional to g). In the limit ug — 0, the active neutrinos are exactly massless
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and the pseudo-Dirac pairs become Dirac fermions. Furthermore, lepton number
is conserved and |AL| = 2 processes are forbidden. If the ISS mechanism is to
describe the observed non-zero active neutrino masses, tg must indeed be small
and as a consequence |AL| = 2 processes are suppressed. In the Type-I seesaw the
heavy sterile neutrinos are purely Majorana fermions. However, this distinction
between the Type-I seesaw and ISS mechanisms may not be as clear in the presence
of additional CP phases in the sterile sector, which can depend on the sterile neutrino
mass spectrum [519-521].

In this chapter, we aim to show that the Majorana and pseudo-Dirac cases can
be understood as opposite limits in a general model containing left-handed neu-
trino fields v, and sterile neutrino fields Ng | and Ng>. The two limits depend on
the a priori measurable masses, mixing angles and CP phases of the model. To
study these limits analytically, in Section 5.1 we will work in a simplified single-
generation picture (involving only the electron flavour) and two SM-singlet Weyl
fermions Ng ; and Ng . In this case, the unitary matrix V;” diagonalising the 3 x 3
Majorana neutrino mass matrix M, contains three mixing angles and three CP
phases. We will identify the regions of parameter space allowed by consistency
relations among the neutrino mass matrix elements. Most importantly, we will ex-
amine how the Majorana and pseudo-Dirac limits depend on the CP phases. These
phases are completely determined by the active-sterile mixings as a result of the
condition (My);; =0, i.e. that the VITC v;, Majorana mass term is forbidden due to
SU(2),, invariance in the SM.

In Section 5.2 we will review the experimental constraints on the parame-
ter space of a sterile neutrino (N) mass my and active-sterile mixing |VeN|2 (with
the electron flavour). The majority of these are searches for the direct produc-
tion of N, and so are insensitive to the Majorana or pseudo-Dirac nature. We also
note the searches for |AL| = 2 processes and put particular emphasis on the most
promising probe of lepton number, OV 3 decay. In Section 5.3, we re-evaluate
the constraints from OvB decay on the simple parametrisation discussed above

and show how these bounds are affected by the sterile neutrino mass splitting and
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CP phases. Under certain conditions (close to the pure Dirac limit), we find that
the OvB B decay constraints are weaker than the direct search limits, reinforcing
the importance of independent searches for sterile neutrinos in all flavours. On
the other hand, for the theoretically interesting (e.g., for leptogenesis) mass range
0.1 GeV < my < 10 GeV, OvB decay is still competitive to current and future
collider searches. As we work in a single-generation framework containing an the
electron neutrino, we cannot model the coherent contribution of the other two light
states to OV 3 B decay. However, our main focus is on the constraints on sterile neu-
trinos in a simplified yet consistent seesaw picture. In Section 5.4 we will finally
take the agnostic view on the nature of N and derive constraints on the active-sterile
mixings from 2vB B decay, complementing the other direct searches reviewed in

Section 5.2. This chapter is based on Refs. [143, 144].

5.1 Phenomenological Parametrisation

For simplicity, we neglect the flavour structure of the lepton sector and work in a
single-generation picture with a left-handed (electron flavour) neutrino field and two
sterile fields; v,r, N,‘éJ and Nzcé,z- In this scenario the general neutrino mass matrix
My in Eq. (2.71) can be diagonalised by a 3 x 3 unitary matrix V}” as described
in Eq. (2.61). It is straightforward to reverse this diagonalisation to express M, in

terms of the a priori measurable mixing angles, CP phases and mass eigenvalues,

0 mp O my 0 0
0 M v vT
My = =\ mo o oms [ =Vl oomy o |-V, (5.1)
Mp Mg
0 ms Us 0 0 my,

where my, my, and my, are the masses of the mostly-active and (two) mostly-sterile
mass eigenstates respectively. The mixing angles and CP phases are contained in
VY and so we must choose a suitable parametrisation for this matrix.

The parametrisation of V¥ chosen for this analysis is analogous to that of the

PMNS mixing matrix U. Just as for three flavour neutrinos, VL" must contain three

mixing angles and three CP phases (one Dirac and two Majorana phases). We write
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1t as
1 0 0 Ced 0 seze”"S Cel Ser1 O
Uy Ven
v \4 e
VL = = 0 C12 S12 . 0 1 0 . —Se1 Ce1 O D
Vne Uy .
0 —s12 12 —se2e'® 0 Ced 0 0 1
—is
CelCe2 Se1Ce2 Se2€
— 73‘9161276‘1}13'('2*3‘1231.(s Ct."lClZ73‘913'('251231.(s Ce2512 'D (52)

i i
Se1812 — Ce1802€12€"0  —Cel1S12 — Se15e2€12€"° CoaC12

—ié

1 Sel  Se2e
~ . s ‘ D+0O (s
~ —Se1C12 — Sc2512€ 12 s12 ei)
Se1512 — Seac12€'® —s12 2

where ¢;; = cos¥;; and s;; = sin¥);;. The mixing angles 9.1, ¥, and 9> control
the active-sterile mixings between the mostly-active neutrino mass eigenstate v, and
the mostly-sterile mass eigenstates N; and N, and the sterile-sterile mixing between
Ny and N,. The angles can lie in the range ®;; € [0, ] and the Dirac CP phase in
the range § € [0,2x]. The matrix D is diagonal and contains the remaining two

Majorana phases ¢; > € [0,27],

N‘f
N‘[\?

= diag(1, ). (5.3)

Only two Majorana phases are physical because an overall phase can be rotated

away by a redefinition of the neutrino fields.

5.1.1 Consistency Relations

Without a triplet Higgs extending the SM field content, the active neutrinos cannot
acquire a mass of the form v, TCv; and therefore the (1,1) entry of My in Eq. (5.1)
is strictly zero at tree-level. This requirement must be satisfied irrespective of the
remaining mass matrix structure (i.e. Type-I seesaw or ISS). Written in terms of the

phenomenological parameters this condition may be written as

(My);1 =0 = glcgzm——l—selc el¢1—|—s l(92728) 0, (5.4)
my, le
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Figure 5.1: Visualisation of the (M, );; = 0 constraint in Eq. (5.4) in the complex plane.
The sides are given in terms of the dimensionless ratios r, and rp and the
squared sines and cosines of the active-sterile neutrino mixing angles 1, U».

where we have divided by the heavy neutrino mass my,. We first note that this
constraint has no dependence on the sterile-sterile mixing angle ¥,. It can also
be seen that such a constraint is equivalent to the vanishing of the effective Ovf3
decay mass mgg =3, U, ezl-mi, where the summation is over the three light neutrino
mass eigenstates. This would need to be an accidental cancellation (for particular
values of the Majorana phases), while the condition in Eq. (5.4) must always be
satisfied at tree-level, putting requirements on the values of the three masses, three
mixing angles and three CP phases. Instead of the mass my, we can define the
system with mass splitting Amy = my, —my;, .

As depicted in Fig. 5.1, the condition in Eq. (5.4) can be visualised as a triangle

in the complex plane, formed by three sides with lengths Ly = ryc?,c2,, Ly = 52,¢%,

ny
my

and Ly = (1 + rA)sgz. The dimensionless ratios are defined as r, = and rp =

1

%. The angles between these sides are determined by the phase ¢; and the linear
1

combination ¢} = ¢, —28. Not all combinations of the masses and mixings allow a

triangle to be formed with sides of lengths L, L; and L,. Specifically, the triangle

can only be closed (for some values of ¢; and ¢3) if the longest length is less than
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or equal to the sum of the shorter lengths, i.e.
max(Lv,Ll,Lz) < min(Lv,Ll,Lg) —I—med(Lv,Ll,L2) . (55)

From this requirement we can find allowed regions for the squared active-
sterile mixing strengths 551 and szz. These are shown in Fig. 5.2 (left) for different
choices of r,, and r4. The light blue region corresponds to the choice r, = 10~1° and
ra = 1072, This could correspond to a light neutrino mass m, = 10> eV and heavy
neutrino masses my, = 10 MeV and my, = 10.01 MeV. The allowed mixings can
be seen to form a region centred around 551 s sgz ~ ry. However, thin extensions to
large 52, ~ 52, and small s, or s2, are also possible.

As can be seen from the dark blue and green regions, increasing (decreasing) ry
will move the bulk of the region along the diagonal to higher (smaller) mixings. As
demonstrated by the yellow region, increasing the splitting in rx shifts the allowed
region to smaller values of sgz but not sﬁl. The red region, on the other hand, shows
the scenario in which r5 (i.e. Amy) becomes negative (when my, < my,). The
allowed region now moves to larger sgz values for the same 551- We will study
this behaviour more quantitatively below. In Fig. 5.2 (right), we show the same
regions but with the axes given by the ratio and sum of the mixing strengths, %

and sgl + sgz, respectively. This illustrates that there is a lower limit on the total

active-sterile mixing strength 52, + 2, for specific choices of ry or ra.

5.1.2 CP Phases

We will now demonstrate that particular limits of the mixings correspond to the CP-
conserving cases e = +1, el — 41, which control the relative CP parity of the
sterile fields (the CP parity of the m,, state is conventionally defined as +1). Keeping
the dependence on the parameters my, my, and Amy explicit, three possibilities

emerge:

(i) € = ¢ = +1: In this case, the condition (My)11 = 0 in Eq. (5.4) cannot
be satisfied (unless my, = my, = my, = 0) as all three contributions add up

constructively, Ly + Ly + Ly > 0.
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Figure 5.2: (Left) Values of the squared active-sterile mixing strengths le and sgz satis-
fying the tree-level condition (My);; = 0 in Eq. (5.4) for different combina-
tions of the light and heavy neutrino masses in the ratios ry, = my/my,, and
ra = Amy/my,, as shown by the shaded regions. (Right) Equivalent regions in
the 52, /52, and 52, + s2, parameter space.

(i) €% = e = —1: Here, the contributions of the states Ny and N, are nega-
tive and cancel the active neutrino contribution, L, — (L; +Lp) = 0. Now,

Eq. (5.4) can be solved for one of the active-sterile mixing angles as

2 my — (my, +my)s2,

my, + Amy +my — (my, —}—mv)sgl

2
N my /my, — s

f dst < 1. 5.6
T Ay Jm, or my < my,and sy < (5.6)

Because s2, > 0 this can only be satisfied if s2, < —— < v je for
e2 el my, +my ~ my,

2 . . 2 o
s5, values up to the ordinary seesaw mixing s;, = my/my,. Consequently,

2 2 __ 2 _ my
s2, can range from s, = 0 (when 57, = ]

2 2 _
) to 55, & n’f]\jz (when 55, = 0).

This scenario case therefore corresponds to the canonical seesaw with two
heavy Majorana states. The active state can mix with either of them with
adjustable strength. In Fig. 5.2 (left), this limit corresponds to the line-like

extensions of the allowed regions towards vanishing sgz at the bottom (N,

2

decouples, 57,

N r:l"—[\yl) and vanishing s, to the left (V; decouples, 52, —

,;"—NV). Intermediate solutions lie on the lower left edge of the allowed regions.
2

nmy

e, a behaviour that
N

Rearranging Eq. (5.6) for small Amy gives 52, + 52, ~

s
1
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can be seen in Fig. 5.2 (right).
(iii) ? = +1, 2 = —1: Now, it is possible that the contributions of the heavy

states can (partially) cancel each other, Ly + (L; — Lp) = 0. We can again

solve for the mixing s2,,

2, = my + (my, —my)s;,
¢ my, + Amy +my + (my, —my)s?,
2
s
~——<  for m< my, and sgl < 1. 5.7)
1 —1—AmN/mN1

In this case, no upper bound on S31 exists and it can in principle take values
between 0 < sgl < 1. For a small mass splitting Amy < my, this corresponds
to the ISS scenario where the two heavy Majorana states form a pseudo-Dirac
pair. In Fig. 5.2 (left), this limit is equivalent to the thin extension of the
allowed region to large mixing strengths (in the top right). It should be noted
that this parametrisation does not enforce a small mass splitting and Amy can
be arbitrarily large for a given light neutrino mass my. As we will discuss

below, however, this will induce large loop corrections to m.

For arbitrary values of the phases ¢ and ¢ the interior of the shaded regions in
Fig. 5.2 is covered. For arbitrary phases, Eq. (5.4) in fact represents two conditions;
R{(My)11} =0and 3{(My);;} = 0. These relations can be rearranged to find two

. . 2
equivalent expressions for s2,,

1 (14ra)cos¢y;  (1+rp)sing;
52, ry+(cos@—ry)s?, sin 52,

; (5.8)

where the first equality is derived from the real condition and second equality from

the imaginary. We can also rearrange Eq. (5.8) to find the tangent of ¢,

2
sin ¢ %1 +O(s?) fors?, <ry

sin (l)lszl
tan ¢, = € R 2 =y s 5.9
(03} ry + (COS 91 — rv)S§1 tan(¢; /2) forss, =ry (5.9)

tan@; + O(ry) for sgl >y
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where we also show the approximate solutions for the different limits of sgl.

In effect, the (M, )1; = 0 condition has allowed us to eliminate two parameters:
sgz and ¢}. These are now a function of the other free parameters ry, r, sgl and
¢1. The freedom to divide (My);; = 0 by my, and using the ratios ry and r, also
effectively removes a mass degree of freedom. This is evident from the behaviour
of the allowed regions in Fig. 5.2; a shift in the (sgl, sgz) plane only occurs when ry,
and ry are changed. To be fully consistent, the other elements of M, (e.g. mp, mg,
Ug, s) must also be divided by my,, so this factor must be taken into account when
writing these flavour-basis parameters as functions of the mass-basis parameters.

Alternatively, one can solve for cos ¢; and cos ¢, by using the cosine rule on
the (My )11 = O constraint triangle in Fig. 5.1, i.e.

24 24 4 4 4 24 2 4
(1 +rA) Se2 —TvCe1Ce2 ~ Se1Ce2 —~ (1 +rA) Sep — Ty = 3¢ (5 10)
~ , .

cosPy =
2rvsglcgl cjz 2rvs§1

4 4 2.4 4 2 4 4 2 2.4
Se1€e2 ~ TvCe1Cen — (1 +rA) Se2 Sl — v (1 +rA) Se2
2ry(14rp)c2 s5c2, 2ry(14rp)s%,

cos ¢) = , (5.11)
where the approximate expressions hold for small mixings s2,, s2, < 1. In this way
the phases ¢; and ¢) are determined (up to a pair of solutions in the range [0, 27],
modulo 7) by the ratios ry and rp and the mixing strengths szl and szz, all of which
are in principle measurable. If the solution for ¢; lies in the first or second quadrant
(i.e. @1 € [0,7]), in order to close the triangle in Fig. 5.1 it is a requirement for ¢}
to be in the third or fourth quadrants (¢, € [r,27]) and vice versa.

An important parameter in determining the nature of the two heavy states is the
phase difference A¢p = ¢ — ¢ = ¢ — @2 + 25 between N; and N>. If A¢ = 0, the
heavy states should behave like Majorana fermions, while for A¢ ~ +x they should
form a pseudo-Dirac pair with an associated suppression of |AL| = 2 effects. Using
the solutions Eqgs. (5.10) and (5.11), or alternatively using the cosine rule for the

third angle of the triangle in Fig. 5.1, A¢ is given in terms of the other parameters
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Figure 5.3: (Left) Heavy neutrino CP phase difference A¢ as a function of the normalised
active-sterile mixings 551 and sgz. The edges of the allowed region are deter-
mined by the limiting values for (¢;, ¢5) as indicated. (Right) Sterile-sterile
neutrino mixing strength s%z as a function of sgl and sgz, setting 6 = 0.

by

24 4 4 4 2
TvCe1Ced — Se1Ced — (1+rA) Se2 Iy _Sel (1+rA) se2

~ (5.12)
2(1+ra)s 31052332 2(1+ rA)Se1S.32

cos(A¢) =

This phase difference is plotted in Fig. 5.3 (left) as a function of the mixing strengths
52, and s2, within the region allowed by the (My);; = O constraint. Note that the
active-sterile mixing strengths s2; and s, are normalised by ry and ry /(1 +ry +74)
respectively, making the plot valid for an arbitrary choice of the light and heavy
neutrino masses. The edges of the allowed region again correspond to the CP-
conserving combinations of phases: (i) ¢; = ¢5 = 7 to the lower left correspond-
ing to the canonical seesaw with two Majorana heavy states and (ii) ¢; = 0(7),
¢5 = m(2m) on the top (lower right) edge, corresponding to an ISS-like scenario.
Intermediate scenarios between these limiting cases are characterised by the phase
difference |A¢| increasing from O to 7, as shown.

We have seen that is it possible to eliminate the two phases ¢; and ¢} from the
nine initial phenomenological parameters. Further parameters can be eliminated if

we can make convenient choices for the remaining parameters in M,, . For example,

without lack of generality we can assume that the (1,3) element of My, in Eq. (5.1)
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is zero. This can always be achieved by performing a rotation among the sterile

states [233]. In our phenomenological parametrisation this is

1)
(My)13 = ryceice2 (Se1S12—€l CelseZCIZ)
j 1)
- €l¢lselceZ (Celsl2 +é SelseZCIZ) (5.13)

+ei(¢2_5)(1+rA)cezsegc12 = 0.

The linear combination ¢; = ¢, — 28 does not appear explicitly in this condition.
As we would like to continue using the relations for cos ¢; and cos ¢5 in Egs. (5.10)
and (5.11), we introduce the linear combination 6’ = 2¢, + 8 orthogonal to ¢5. The
phases ¢;, ¢ and & can thus be written as linear combinations of ¢;, ¢; and J'.
Similar to the (My);; = O constraint, we can take both the real and imaginary part

of Eq. (5.13) and rearrange for s?, as a function of s2,, 52, and the phases,

2 2 2 2

1
oL R B Rl (5.14)
S12 Sez s€2
where
o (ry —cos ¢p)?
BT (14 7a)cos(92— 8) — rycos & + (ry cos § — cos(9y +8)) 52,2
-2
¢ _ sin” 9 (5.15)

((14ra)sin(¢y — 8) —rysind + (rysind —cos(¢1 + §)) s2,)?

where the first and second equalities in Eq. (5.14) are derived from the real and
imaginary conditions respectively.

The sterile-sterile mixing s%z is shown in Fig. 5.3 (right) in the normalised
(sgl, sgz) plane for 6 = 0. Furthermore, we can equate the real and imaginary solu-
tions of s%z in Eq. (5.14), i.e. Cgr = C;. Rewriting these in terms of the phases ¢y,
¢ and 8’ and making use of the solutions for cos ¢; and cos ¢, allows to solve for
the final phase 8’ in terms of ry, ra, sgl and sgz. In practice it is difficult to do this
analytically, but numerically 6’ can be found by finding the intersecting points of

the curves Cg(8’) and C;(&’).
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We have therefore demonstrated that, given values of the parameters ry, ra,

2

21 and 552 and assuming a particular parametrisation of the Majorana mass matrix

s
My, the remaining parameters s%z, ¢1, 95 and &' are fully determined. Thus, if the
absolute neutrino mass scale my is known and an experiment observes two sterile
states with a mass splitting Amy and mixing strengths sgl and szz, the sterile-sterile
mixing strength s%z and CP phases ¢;, ¢; and 8’ are predicted quantities. We remind
the reader that this is true for a single generation; if we were to consider the three
active states and an arbitrary number of sterile states, an analytical treatment would
not be possible. This is because the number of angles and phases between the active
and sterile states rapidly increases for additional generations.

As we will see in Section 5.2, direct searches for the production and decay of
heavy states can probe (if not sensitive to the lepton numbers of the final states) the
|2

mixings |Ven, |* ~ sgl and ’VeN2|2 ~ sgz for particular values of my, or my,. If the

splitting Amy is large enough for the two states to be resolved, |V,y, |*> and [V, |?
can be measured independently, constraining the values of the other parameters. If
Amy is below the energy resolution of an experiment, it will only be sensitive to the
sum |V, |2+ |[Ven,|?. An upper bound on [V, |? + [Ven, |* excludes a region to the
top right of Fig. 5.3 (left), thus placing an upper bound on A¢. The parameters s%z
and &’ remain unconstrained. Most current and future direct searches are probing
the regime |V,, |> = |V.n,|? > ry where the phase difference is Ag = £7. Some
experiments like the KATRIN upgrade TRISTAN [522] and the future LBL neutrino
oscillation experiment DUNE [523] may test mixings |V, > < ry, thus being able
to pin down phase differences in the range |A¢| € [0, 7], cf. Fig. 5.7.

We next ask whether the parameters s%z, ¢1, 95 and ¢’ can be measured in
order to confirm the predictions of the generalised ISS. The Majorana and pseudo-
Dirac limits (governed by ¢; and ¢3) are primarily distinguished by the magnitude

AL| = 2 searches

of |AL| = 2 processes. In the case where Amy is not too small,
are currently probing mixings in the pseudo-Dirac limit. It is unlikely for future
|AL| = 2 searches to reach |[V,y,|> < ry needed for the Majorana limit. In other

words, if an experiment sees two sterile states with mixings [V, |2 & |Ven,|? > 1y,
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but also a large |AL| = 2 signal (e.g. from a large asymmetry in the pseudorapidity
distribution at the ILC [524]), it would strongly imply some other source of |AL| =
2 [525]. For example, the states Ny and N, could possess additional strong couplings
to SM particles from a TeV-scale Type-III seesaw mechanism, or the light neutrino
masses are not generated by the seesaw (e.g. instead, radiatively) [526].

In the small mixing limit sgl, szz < 1, the matrix

clp s £i91/2 0
Uy~ ). (5.16)
—S12 12 0 €2

diagonalises the 2 x 2 submatrix Mg of M, as U; MgUy in the basis where the
charged lepton Yukawa coupling Y\, is diagonal. In Ref. [527] it was noted that the
Dirac submatrix Mp can always be redefined as My = MpU. ;, so that it is impossible
to measure the angle ¥, making it unphysical (see also Ref. [528]). If right-
handed interactions are introduced, for example in a left-right symmetric model,
s%z is an observable because the lower two sub-blocks of V¥ in Eq. (5.2) (called E
in Chapter 2) rotate the W gauge boson interaction. It becomes possible to observe
the sterile neutrino mixing via the ratio of same-sign to opposite-sign charged lepton

production rates in colliders [521, 529, 530],

Am?
R v

=—0 5.17
T+ Amy -7

where I'y is the average decay width of the sterile neutrinos. The ratio Ry can
be between O (Dirac limit) and 1 (Majorana limit). The sterile-sterile mixing s%z
appears in the same-sign and opposite-sign rates in the numerator and denomator of
R, but cancel for A¢p = £x. This is generally not true for |A¢| < 7.

The sterile-sterile mixing s%z is nevertheless needed to evaluate the radiatively-
generated neutrino mass at one-loop in Eq. (2.79) (exact expression) and Eq. (2.80)
(in the limit g ¢ < mg). When written in terms of the masses, mixing angles
and CP phases (in the particular parametrisation with (M, )3 = 0), the flavour-
space parameters mp, mg, Us and g are functions of s%z. Using these parameters

to evaluate Smy,°, we will for simplicity assume 8 = 0 instead of numerically
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solving Cg = C; for s?, and &' for particular values of ry, my,, ra, s2; and s2,.
We reiterate that my, must be chosen independently because an overall factor my;,
cannot be eliminated from mp, mg, [ and g as for the (My);; =0and (My)13=0
constraints.

In this scenario we can investigate the value of the sterile-sterile mixing angle
Y, for the limiting cases of ¢; and ¢, = ¢, along the edges of the allowed region

in Fig. 5.3. In the limits sgl, sgz < 1 and ry < 1, we find from Eq. (5.14),
(i) ® = ¢% = 41: No solution.

(i) €% = ¢%2 = —1: In this case we have

tandiy = \/(14+7a)(rv/s2 — 1) . (5.18)

where sgl < ry as discussed before in this case, ensuring that the square root

is positive.

(iii) €® = +1, ¢'% = F1: Now the sterile-sterile mixing angle is determined as

tandyy = \/(1+ra)(1£rv/52) . (5.19)

which is only valid for sgl > ry in the e = —1, % = +1 case.

The behaviour of s%z is shown in Fig. 5.3 (right) as a function of the active-sterile
mixing strengths sgl and sﬁz. At each point in the allowed region the phases ¢
and ¢ = ¢, (8 is set to zero) are calculated according to Egs. (5.10) and (5.11).
We observe that the sterile-sterile mixing angle is ¥y, = % when sgl < ry. As sgl
approaches r, along the canonical seesaw side of the allowed region the mixing
angle falls to ¥ = 0. These two values represent physically equivalent cases,
signifying an exchange in the role of the two heavy states as one state becomes
decoupled while mixing of the other state increases to ry or Hrrv—"HA. In the ISS
limit the sterile-sterile mixing angle approaches ¥, = /4, i.e. maximal mixing.
Having quantified the behaviour of s%z as a function of the other parameters,

we now return to the neutrino mass generated at one-loop. So far in this section we
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have worked at tree-level. Due to the gauge invariance of the SM under SU(2);, it
is not possible to write a Majorana mass term VLTC vy, for the left-handed neutrino
fields, and thus (M, )1} = 0. However, the inclusion of loop corrections will lead to

the appearance of a finite value for (My) 1, i.e.

5171",'100}) mp O
Mv = mp MR ms | (5.20)

0 mg  ps

where 5m1,'l°°p is given by Eq. (2.79) in the single generation case. This will result

in a mass eigenvalue of the lightest state of
my = m + &my, P, (5.21)

where mif* = % for a single generation. When using m, from now on we assume
that the physical mass (measured by an experiments) includes both the tree-level and
one-loop contributions.

In Fig. 5.4 (left), we plot the exact formula for 8m " in Eq. (2.79) as a func-
tion of the heavy neutrino mass my, and mixing sgl. The parameters my, ra, ¢; and
¢ (for 6 = 0) are fixed, while sgz and s%z are determined according to Egs. (5.8) and
(5.14). Specifically, the tree-level mass and heavy neutrino splitting are set to the
benchmark values m, = 1073 eV and r, = 1072 respectively, while the Majorana
phases are chosen such that the scenario is located on the right edge of the allowed
parameter space in Fig. 5.3 (left). We also plot (in grey) the ‘seesaw’ line sgl =ry.

Below this line s2, tends to the constant value T, & Iv while 57, tends to 3.

2
Above this line is the ISS limit with 57, = 73 ~ 57, and 57, = %.

This plot illustrates the strong dependence of |6mi,'10°p| on the parameters my,
and 551- For large my, , the one-loop correction is dangerously large as a result of the
large splitting between the heavy states Amy = ramy,. Looking at the approximate
loop formula in Eq. (2.80) and recalling that mp, mg, Ug are functions of my, (when
written in terms of the mass-basis parameters and mixing angles), the strong depen-

op

. .. 1-1 .
dence on my, is not surprising because Sm, ' naively scales as m13v1 In(my, ) for
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Figure 5.4: (Left) Absolute magnitude of the one-loop neutrino mass contribution
|8my, "°P| as a function of the lighter sterile mass my, and mixing strength
sgl for indicated values of the other parameters. The canonical seesaw case
with sgl = ry is indicated by the diagonal grey line. (Right) Maximally allowed
value of s2, +s%, from the condition |§my, '°P| < 0.1my, as a function of my,

for different values of the heavy neutrino splitting ratio rp = %. Solid lines

are found by using the exact formula Eq. (2.79), while the dashed1 lines use this
same formula but in the limit pg g < msg.

my, < mgz,my, and as my, ln(le) for my, > mz, my. The discontinuities or ‘kinks’
in Fig. 5.4 occur at my, = mz and my, = my, i.e. when the one-loop contribution is
enhanced.

In this analysis, we will require for consistency that the one-loop correction is
subdominant compared to the tree-level mass. We choose the benchmark limit of

10% the size of the tree-level mass!,

8my | < 0.1my . (5.22)

Using different benchmark limits will not change our results qualitatively. This limit
can now be used to put an upper limit on the active-sterile mixing strengths. The
maximally allowed values of sgl + sgz are shown in Fig. 5.4 (right) as a function of
the heavy neutrino mass my, for different values of ro. The solid and dashed lines

correspond to the upper limit derived from the exact formula Eq. (2.79) and the

IThis condition excludes by construction the scenario where g # 0 and g = 0 and the neutrino
masses are generated purely at one-loop.
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Figure 5.5: Modified allowed regions for the active-sterile mixing strengths satisfying the
tree-level constraint (My )11 = 0 and the condition for the one-loop contribution
to be small, |8my, | < 0.1m,.

approximation Eq. (2.80), respectively. It can be seen that as ro becomes smaller,
the associated upper limits on 531 + sgz become weaker. The exact and approximate
upper limits diverge for small my, and 551; this is because Ug ¢ < mg no longer
holds in this particular region of the parameter space.

In Fig. 5.5 we plot again the allowed region from the tree-level constraint
(My)11 = 0, but now also exclude the region no longer satisfying the inequality
in Eq. (5.22) for different values of the relative splitting ro. It can be seen that
increasing rp reduces the size of the allowed region, excluding much of the ISS re-
gion. The loop requirement only excludes mixings around 551 ~ ry for large relative
splittings.

1

While combining the constraints (M, );; = 0 and |5mv'10°p| < 0.1my roughly

consistent for small ]5mb’1°°p] values, it breaks down for larger values. An exact

. . -1 11
treatment would need to combine the conditions (My )1, = 8m, " and |6m,, P | <
0.1m,. Consequently,
5 5 mtree 5 o 5 my. , 6m1'100P
1 1 A%
CoiCar = +spcn et 2t = —— (5.23)
le le le

where we approximate the neutrino mass on the left-hand side to be the tree-level
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neutrino mass. Substituting m® = m, — 8m,, °® via Eq. (5.21), Eq. (5.23) can

be rearranged to solve for sgz and cos @5, but now as a function of the loop mass.
However, sgz and ¢, are themselves required to evaluate the loop mass in Eq. (2.79)
as a function of my, and sgl. We must therefore solve for sgz and ¢ iteratively
by first setting (My )11 = 0 and then re-inserting the values of sgz and ¢} back into
the one-loop formula. We find that the difference between the initial values of sgz
and ¢ (setting (My);; = 0) and iterated loop values is negligibly small when the
inequality in Eq. (5.22) is enforced. This should not then significantly affect the
upper bounds on sgl + sgz derived from the loop condition. In other words, we keep
the constraints on sgl +s§2 derived using (My); ~ 0 and |6m%,'10°p| < 0.1m,y (as

shown in Fig. 5.4).

5.2 Constraints on Heavy Sterile Neutrinos

In this section we will provide a review of the direct searches for sterile neutrinos
and hence constraints on the active-sterile mixing |Vyy|* over the sterile neutrino
mass range 1 eV < my < 10 TeV. For masses my < 1 eV it becomes possible for
one of the sterile states to form a guasi-Dirac state with an active state. A large
portion of this parameter space is excluded by solar neutrino oscillations [214,531].
For heavier masses my 2 10 TeV, sterile neutrinos can generate the light active
neutrino masses via the conventional seesaw mechanism. These neutrinos, however,
are not kinematically accessible to direct searches.

The constraints from existing searches and observations in the (my, [V.y|?)
plane are shown in Fig. 5.6 as various shaded regions. The sensitivities of expected
future experiments and observations are shown in Fig. 5.7. As our ultimate focus
is on a comparison with constraints from Ovff decay in Section 5.3, we focus on
the first generation mixing element |V,y|?. The constraints on |Vyy|? and |V¢y|? are
depicted in the plots of Ref. [143]%. Constraints on sterile neutrinos or heavy neutral

leptons have been reviewed before in the literature, e.g. in Refs. [532-535].

ZFurthermore, at the time of writing the current and future constraints are reviewed and provided
by the website http://sterile-neutrino.org/, produced by the author of this thesis.
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Figure 5.6: Current constraints on the mixing squared \VeN|2 between the electron neutrino

and sterile neutrino N as a function of the sterile neutrino mass my. The shaded
regions are excluded by the searches and observations discussed in Sec. 5.2. For
my < 10 MeV, constraints are derived from neutrino oscillation, beta decay and
reactor neutrino experiments. For my > 10 MeV, constraints are set by meson
decay, beam dump and collider measurements. Cosmological and astrophysical
bounds from CMB, BBN, Hubble constant, supernovae and X-ray observations
are relevant for my < 10 GeV. The grey diagonal line labelled Seesaw indicates
the seesaw relation |V,y|> = m,, /my with m, = 0.05 eV.

5.2.1 Collider Searches

Heavy states can be produced by SM charged- and neutral-current interactions

through their admixture with the active states (the neutrino portal), and thus their

decay products can be searched for at high-energy colliders. For sufficiently small

mixings, the macroscopic decay length of the heavy neutrinos can result in displaced

vertices with distinct detector signatures. We consider the following searches (key-

words in bold correspond to lines/shaded regions in Figs. 5.6 and 5.7):

* The LHC collaborations ATLAS and CMS have searched for N production

and decay through a variety of channels. Both have recently searched for de-

cays of W-produced N to three charged leptons, W= — (N, N — (*(Tv,

(¢ = e, ), either in the |AL| = 0 or |AL| =2 mode. ATLAS used the prompt
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final state of three isolated leptons and no opposite-charge same-flavour lep-
ton pairs (JAL| = 2 channel) to reject Drell-Yan, W + jets and #7 back-
grounds. CMS broadened the search to the |AL| = 0 channel with a sensi-
tivity to displaced decays [536,537]. ATLAS and CMS have also conducted
searches for the |AL| = 2 same-sign dilepton + jets channel, W* — /=N, N —
* JJj [538,539]. For my > myz the limits can be improved by ATLAS and
CMS during the high luminosity (£ = 3 ab~!) LHC phase (HL-LHC) and by
a future /s = 27 to 100 TeV Future Circular Collider (FCC-hh) [540, 541].
Around my = my, limits can also be set from the SM Higgs decay to sterile

neutrinos [542].

In the future, ATLAS, CMS and LHCb will be able to probe smaller mix-
ings |Vyy|? through displaced vertex searches. For a given mixing, ny must
lie in a specific range in order to avoid N decaying promptly or outside the

detector [536].

At the LEP collider, the collaborations L3 [543, 544] and DELPHI [545]
searched for N produced through on-shell Z production, ete™ — Z — Nvy,
followed by the decays N — (TW*, N — v,Z and N — v;h. Limits may
be improved by future electron-electron colliders such as the ILC, CLIC
and FCC-ee colliders [546-549]. The ILC may also be able to distin-
guish the |AL| = 0 and |AL| = 2 W exchange channels between the e*e™
pair by measuring the asymmetry of the outgoing lepton pseudorapidity
distribution [524]. Finally, the proposed Large Hadron-Electron Collider
(LHeC) LHC upgrade may also provide competitive constraints for my >
myz [548,550,551]. An overview of proposed collider sensitivities is given in

Ref. [552].

Proposed detectors positioned near existing LHC interaction points have been
designed specifically to search for displaced vertex signatures. These include
AL3X [553], CODEX-b [554], FASER2 [555, 556], MATHUSLA [557,
558] and the MoEDAL experiment MAPP detector [559].
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Figure 5.7: Future constraints on the mixing squared \Vez\/|2 between the electron neutrino
and sterile neutrino /N as a function of the sterile neutrino mass my. The bounds
are based on the sensitivities of future beta decay, meson decay, beam dump and
collider experiments, as detailed in the main text. The blue shaded region indi-
cates the parameter space already excluded by current experiments, as shown
in Fig. 5.6. The red shaded region further specifies the current limits from
searches for LNV signals (e.g. from meson decays and collider searches).

As for the |AL| = 2 signature at colliders, in a natural seesaw scenario with
approximate lepton number conservation, the |AL| = 2 amplitude for the on-shell

production of heavy neutrinos can be written as [519, 560]

2AmN AmN
Ay = VA ——N Lo =), 5.24
LNV N A4 T2 i (5.24)

for Amy < Ty, ie. for a small mass splitting |[Amy| = |my, — my, | between the
heavy neutrinos compared to their average decay width I'y = (I'y, +I'y,)/2. Thus,
the |AL| = 2 amplitude in Eq. (5.24) will be suppressed by a small Amy, except for
the case Amy ~ I'y when it can be resonantly enhanced [519,561].

For the 5 GeV < my < 50 GeV range of sterile neutrino masses probed by the
ATLAS and CMS same-sign trilepton and dilepton + jets analyses, the total sterile

neutrino decay width (if decays only takes to place to SM leptonic and hadronic
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degrees of freedom) is given by
Ty = Y au(mn)|Ven |, (5.25)
[

where the expressions for the factors ay(my) are given in Refs. [532,562]. The
factors ay(my) include the contributions from two-body semi-leptonic and three-

body leptonic decays, and are approximately given by
ag(my) ~ Ni_ol'i0 +Ni3l 3, (5.26)

where Ni_,, and Nj_,3 are the number of decay channels open for the two decay
topologies. The factors I'y_,; and I'j_,3 are given roughly by

2423 2.5
Gg fumy Gpmy

~ 5.27
571«' 9 1-3 200”3 I ( )

Moo ~

where f)s represents the meson decay constants [532]. For my ~ 50 GeV, all three-
body leptonic decays and two-body semi-leptonic decays to pseudoscalar and vector
mesons are open, and so the total decay width (assuming [Vn|*> = |Ven|? = 0) is

approximately
Iy ~ (30-T12+10-T1_3) [Voy > ~ 107 [V.n|? GeV. (5.28)

For small splittings, e.g. rp = 10~* and therefore Amy ~ 5 MeV (for my ~ 50 GeV),
and the |V,y|?> ~ 107> mixings probed by the |AL| = 2 analyses, Eq. (5.28) im-
plies that AFTNN ~ 1078, Collider searches specifically looking for a |AL| = 2 sig-
nal in Fig. 5.7 are therefore still valid for this splitting and also splittings down to
ra ~ 10710 As will be discussed later, this is important for the comparison with
OvB B decay in this mass range. We finally note that the analysis of Ref. [563] gives
an estimate for the regions of the (my, |Vyy|?) parameter space where the ratio R
in Eq. (5.17) is less than or greater than a third. Comparing with Fig. 1 of that
work, we again confirm that |AL| = 2 signals below the EW scale remain unsup-

pressed, particularly for Amy of order the light neutrino mass splittings (motivated
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by naturalness).

5.2.2 Meson Decays and Beam-Dump Experiments

At the intensity frontier N can be produced in beam-dump experiments and through

meson decays. We consider the following limits:

* The TRIUMF PIENU experiment [564] conducted a search for N produced
in pion decays at rest. Utilising the helicity suppression of the &7 — ev decay
channel in comparison to 7 — pv channel, the presence of N induces extra
peaks in the lower positron energy region. The collaboration improved on

previous results limited by the background pu* — et v, ¥, [565-567].

* The NA62 experiment [568] used a secondary 75 GeV hadron beam contain-
ing a fraction of kaons, and has been able to probe the decays K — (TN
(¢ = e,u). For small [Vy|? the N decay length is much longer than the 156
m detector volume and the process is characterised by a single detected track;
a positive signal is a peak in the missing mass distribution. In future, NA62
will be converted to a beam-dump configuration and will be able to probe
hadronic decays to N, followed by N decays, up to the D meson mass [569].
A re-analysis of the impact of sterile neutrinos on kaon decays was conducted

in Ref. [570].

* The Belle experiment [571] was a B factory that extended the peak search
method to higher energies; using BB pairs collected at the Y(4S) resonance,
the decay mode B — (X)¢N, with X a charmed meson D) or light meson,
could be followed by N — ¢z (£ = e, ). Constraints on |Vy|*> were made

between the K and B meson masses [572].

* The NA3 experiment [573] collided a secondary 300 GeV ©~ beam with
an iron absorber, producing hadronic states which subsequently decayed to
leptonic, semi-leptonic or fully hadronic final states. N decays producing
leptonic or semi-leptonic final states could be produced from the decays of 7,

K, D and B mesons. NA3 was most sensitive up to the D meson mass.
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* Accelerator neutrino beam experiments have conducted a variety of paral-
lel searches. The CHARM [574,575] and PS191 [576] experiments and the
IHEP-JINR neutrino detector [565,577] searched for a small fraction of N in
a predominantly v, beam. The beams were produced by colliding a primary
beam of protons with an iron or copper fixed target, with the hadronic prod-
ucts decaying as ©/K/D — ¢v(N) (¢ = e, 1t). If sufficiently massive, N may
decay before reaching the detector via the channel N — ¢*¢/~v,. CHARM
also used a wide-band neutrino beam to constrain the neutral-current process
vun(p) — NX followed by N — uX within the detector. THEP-JINR and
PS191 provide constraints up to the kaon mass and CHARM up to the D

meson mass.

* The LBL neutrino oscillation experiment T2K [578] searched for an admix-
ture of N in its initial neutrino beam flux, produced by colliding 30 GeV
protons with a graphite target at J-PARC. Daughter K= of a given charge
are focused and decay via K — ¢v(N). The off-axis near-detector at a base-
line of 280 m searched for N decays via the channel N — /7, improving on
the constraints made by PS191. In future, the near detector of the oscilla-
tion experiment DUNE will be highly sensitive for my up to the Dy meson

mass [579,580].

* The future beam-dump experiment SHiP [581] is purposely designed to look
for exotic long-lived particles. Utilising a 400 GeV proton beam from the
CERN Super Proton Synchrotron, it is expected to be sensitive to sterile neu-

trinos with my up to the B, meson mass (~ 6 GeV) [582].

e In parallel with collider searches it is possible to look for |AL| = 2 or LNV
Decays of tau leptons and pseudoscalar mesons as discussed in Refs. [532,
562,583,584]. One issue is that if the |AL| = 2 process is mediated by the
light neutrinos the amplitude is proportional to and suppressed by the small
m?, while if mediated by heavy neutrinos it is suppressed by 1/my and [Vyy|?.

However, |AL| = 2 decays can be strongly enhanced if the sterile state is pro-
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duced on-shell. The sensitivity of NA62 to three-body |AL| = 2 light meson
decays, BESIII to charmed meson decays and BaBar, Belle and LHCb for B
meson decays were estimated most recently in Ref. [584]. The BESIII exper-
iment has also conducted its own analysis on the (D" — (¢t~ /K~) decay
channel [585]. Finally, the Future LNV decay sensitivities of NA62, LHCb,
Belle-1I, MATHUSLA, SHiP and FCC-ee have been explored in Ref. [586]

5.2.3 Beta Decays and Nuclear Processes

Active neutrinos are produced in the beta decays of unstable isotopes and in nuclear
fission processes. Heavy sterile neutrinos can also be produced via the active-sterile
mixing if the sterile mass is smaller than the energy release (Q-value) of the nuclear
process. The production of a sterile state produces a distortion or ‘kink’ in the beta

decay spectrum and associated Kurie plot. We consider the following searches:

* Heavy neutrinos produced in beta decays significantly alter the energy spec-
trum of the emitted f electron. To be kinematically accessible, my must be
smaller than the Q-value of the process. If the sterile states are also consid-
erably more massive than the active states, the beta decay spectrum can be

written as the incoherent sum

= AT ) +;|veN|zj—,§<mﬁi>®<Qﬁ ), (5.29)
where mf3 = Y« |Uek|*m7 is the usual neutrino mass scale probed by beta
decay [587]. This expression can give rise to multiple kinks in the spec-
trum at energies E = Qp — my; and of relative size |Ven:|2. This effect for
a single sterile neutrino has been probed for a variety of isotopes with a
range of Q-values, and therefore sensitive to different my. Isotopes include
SH [588-591], 2°F [592], 35S [593], ¥*Ca [594], ®Ni [595], **Cu [596],
144Ce-1%Pr [597] and '¥"Re [598]. In the future, limits will be improved by
the operating tritium beta decay experiment KATRIN and its upgrade TRIS-
TAN [522]. The Project 8 and CRESDA experiments will instead use the

alternative method of cyclotron radiation emission spectroscopy [599, 600].
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* Reactor neutrino experiments are sensitive to sterile neutrinos with masses in
the range 1 MeV < my < 10 MeV, where it is possible for N to decay within
the detector via the channel N — e™e™ v. Limits have been set by searches at
the Rovno [601] and Bugey [602] reactors. This effect was also searched for
by the Borexino experiment [603], which detected neutrinos produced by the
fission processes in the Sun; heavy neutrinos with masses up to 14 MeV can
be produced in the decay of ®B and then decay before reaching the terrestrial

detector.

5.2.4 Active-Sterile Neutrino Oscillations

Anomalies in neutrino oscillation experiments are still providing hints for the exis-
tence of an additional mass-squared splitting Am? ~ 1 eV? to the well-established
solar and atmospheric mass-squared splittings [139, 176]. This apparent splitting
has been established in the measurement of multiple channels, including v, — V.
accelerator neutrino appearance (LSND anomaly), vV, — V, reactor neutrino disap-
pearance (reactor anomaly) and the v, — v, disappearance of 3’ Ar and °!Cr elec-
tron capture decay neutrinos (gallium anomaly). Attempts have been made to fit the
data to models with additional eV-scale neutrinos, e.g. phenomenological (3 + 1)
and (3 +2) models. While recent reactor experiments such as DANSS [135] and
NEOS [134] have improved the statistical significance of an additional eV-scale
sterile state, when combined with the v, appearance data of MiniBooNE they are
in strong tension with the observed v;, — vy, accelerator neutrino disappearance of
the MINOS, NOVA and IceCube experiments.

In the context of the single generation model of this chapter, we interpret the
mass-squared splitting to be Am%H = mjzV —m?. As we are focused on the active-
sterile mixing with the electron flavour, only experiments sensitive to v, — Vv, and
V. — V, and measuring $in%26,, ~ 4]V6N]2 are relevant. For sub-eV sterile neutrino
masses the Daya Bay [604], KamLAND [531] and upcoming JUNO [605] experi-
ments can probe the mixing down to |V,y|> < 1073, However it should be noted that
if one wants to fit the solar and atmospheric mass splittings in a minimal (3 + 1) or

-+2) extension, solar data excludes the region 10" eV <my <0.6e s .
342 i lar d ludes th ion 1072 eV 0.6eV [214,606]
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Below this region is the quasi-Dirac scenario and above the mini-seesaw extending
to the conventional high-scale seesaw. Light sterile neutrinos can be implemented
in an ISS model as in Refs. [227,607, 608].

Above the eV-scale, DANSS and NEOS provide limits down to |V,y|* <
102 (as both exclusions are similar, Fig. 5.6 shows NEOS only) while the
PROSPECT [609] experiment provides constraints up to my = @/Amgu +m3 ~
5 eV. Over the same mass range Super-Kamiokande, IceCube and DeepCore

(SK+IC+DC) provide complementary limits [138].

5.2.5 Indirect Laboratory Constraints

As discussed in Chapter 2, any mixing between active and sterile neutrinos induces
non-unitarity effects among the active neutrinos which are visible in SM charged
and neutral-current processes [610-612]. This is most easily parametrised by a

non-unitary light neutrino mixing matrix
Uy =(1-n)U, (5.30)

where U is a unitary matrix corresponding to the standard PMNS mixing matrix
and the matrix 1 measures deviations from unitarity. The elements of 1) are given
in a general seesaw model by \/2|n7 =Y, VEMV;N,» and alter electroweak pre-
cision data (EWPD) observables. These include leptonic and hadronic measure-
ments of the weak mixing angle s%v, the W boson mass myy, ratios of fermionic
Z boson decay rates R;, R., R; and Gl(l)ad’ the Z invisible decay width FiZ“V and ra-
tios of leptonic weak decays testing EW universality R7,, R%,, ng, and Réé,. Fur-
thermore, by modifying Gp, the non-unitarity of U, impacts the values of CKM
mixing matrix elements extracted from experiments. Numerous weak decays have
been used to pin down the CKM elements V4, Vs, V,, and the unitarity con-
dition |V,g|? + [Vis|? + |Vin|?> = 1. Assuming a single sterile state coupling to
just the first generation, all of these measurements enforce a constant bound of
V/2[Nee| = [Ven| < 0.050 for my > 1 GeV [242,612-616].

Another indirect measurement of 1y and hence different combinations of the
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active-sterile mixings comes from the non-observation of lepton flavour violating
(LFV) processes £q — £gyand 1~ — e~ conversion in nuclei [451]. Due to the dif-
ferent flavours of charged leptons involved in these processes, active-sterile mixings
to at least two active generations are required. For the purpose of our single active

generation picture we therefore do not show the LFV constraints in Fig. 5.6.

5.2.6 Cosmological and Astrophysical Constraints

The presence of sterile states with masses my and mixings [Vyy|? can have drastic
consequences on early-universe observables and have been explored extensively in
the literature [617]. These include the abundances of light nuclei formed during Big
Bang Nucleosynthesis (BBN), temperature anisotropies in the Cosmic Microwave
Background (CMB) radiation and the large-scale clustering of galaxies. Devia-
tions from the standard smooth, isotropic background evolution (and perturbations
around this background) impose severe constraints, especially for sterile states with
masses my < 100 MeV. The limits are however highly sensitive to the production
and decay mechanism of the sterile state and can be relaxed in extensions to seesaw

models. We consider the following:

* Sterile neutrinos with masses my < 1 GeV can be long-lived and disrupt the
standard formation of light nuclei *He, D, *He and "Li during BBN [618,619].
For larger masses the decay products from the accessible two-body and three-
body decays have enough time to thermalise with the plasma. For decay times
7 2 1 s occuring below 7' < 1 MeV, i.e. roughly after neutrino decoupling and
the onset of BBN, both the modified background expansion due to the pres-
ence of non-relativistic N and the altered weak processes n+V <> p+ e~
and p+V <> n+e" involving non-thermal decay product neutrinos lead
to modified nuclei abundances. To limit the impact of N, the naive condi-
tion T = F;,l 2 1 s is commonly used. This translates to a lower limit of
[Ven|? 2> 10711 (GeV /my)? for N — 3v, N — ve'e™ and the sub-dominant
radiative decay N — v7y. Above the pion mass threshold the constraints are

made weaker by including the decays N — va® and N — et 7.
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* Sterile neutrinos decaying at later times (with T < frec & 1.2 X 103 5) to non-
thermal active neutrinos can modify the amount of dark radiation measured
(beyond the usual value including active neutrino oscillations, Neg ~ 3.046)
at recombination, ANgr. Decays after recombination but before the current
epoch (frec < T <9~ 4.3 x 107 s) can also be important. Useful probes of
these effects on the smooth, isotropic expansion history include the CMB shift
parameter Rcyvp (related to the position of the first acoustic peak in the CMB
temperature power spectrum), the first peak of Baryon Acoustic Oscillation
(BAO) sound waves imprinted on the large-scale distribution of galaxies and
finally the value of the Hubble parameter H inferred from Type Ia supernova,
BAO and Lyman-a survey data. These exclude values of ny and |V,y|? cor-
responding to lifetimes up to fy, where the condition that N does not make
up more than the observed matter density Qgerile < Qpm ~ 0. 1272 and thus
overcloses the Universe also applies. This constraint can be evaded in exotic
models [620-623], for example those that inject additional entropy and dilute
the dark matter (DM) energy density. We indicate the combined constraints

from Ref. [624] in Fig. 5.6 as CMB+BAO+H,.

* Sterile neutrinos with masses 1 keV < my < 100 keV can avoid the global
constraints above if the active-sterile mixing is sufficiently small, i.e 10710 <
[Von|? < 1078, With lifetimes longer than the current age of the Universe,
these sterile states are viable DM candidates [599, 625, 626]. Depending on
the size of the lepton-antilepton asymmetry 1y = n;/ny, production can oc-
cur either through resonant (1, > 10° 7Mp) or non-resonant (1 ~ 0) active-
sterile oscillations. The former (Shi-Fuller mechanism [627]) is independent
of |Vyy|? while the latter (Dodelson-Widrow mechanism [628]) requires now-
excluded |Vyy|? values. If DM is composed entirely of keV sterile neutrinos,
their fermionic nature limits the phase space density of DM-rich dwarf galax-

ies and imposes the so-called Tremaine-Gunn bound, my = 0.4 keV.

It is also possible to search for anomalous X-ray lines from the radiative

decays N — vv in the diffuse X-ray background and from DM-rich astro-
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physical objects. An observed signal at E ~ 3.55 keV may imply a sterile
neutrino with a mass of 7.1 keV and has continued to persist in observations
of stacked galaxy clusters [629], the Perseus galaxy cluster and Andromeda
M31 galaxy [630] and the centre bulge of the Milky Way [631]. In Fig. 5.6
we show the most recent limits from observations of M31 and the Milky Way
by NuSTAR [632,633]. In Fig. 5.7 we show the improved future sensitivity of
ATHENA [634]. These limits assume Qpn = Qgerile and must be multiplied

by % to account for other DM species [624].

Mixings can be excluded for sterile neutrinos in the mass range 10 eV <
my < 10 keV by examining their impact on Type-II Supernovae. Active-
sterile neutrino oscillations hinder the standard neutrino reheating of the re-
flected shock wave which becomes stalled in the first fraction of a second
after the supernova core bounce. For the explosion to continue and addition-
ally produce the observed SN1987A Vv, flux at Kamioka [635] and IMB [636],

a certain region of the (my, |Vyy|?) parameter space must be excluded.

In Refs. [637-643], the resonant conversion V, — N was studied. Mean-
while, Refs. [644-646] have investigated v, ; — N conversions for which
the MSW resonance conditions are different. An open question is whether
the conditions for r-process nucleosynthesis (producing heavy elements in
the supernova outflows) are met in these scenarios [639, 642]. Lastly, sterile
neutrinos that escape supernovae can subsequently decay via N — v,y and
N — v.eTe™ v, producing an excess of gamma rays arriving soon after the
detection of the v,. The non-observation of such an excess for SN1987A
provides a stringent limit in the mass range 1 MeV < my < 30 MeV [647].
Given the various assumptions and calculational differences of the constraints
discussed we show for illustration in Fig. 5.6 the excluded region from

Ref. [638].

Sufficiently stable and light sterile neutrinos with masses my < 50 eV can be

produced with quasi-thermal temperatures via active-sterile oscillations be-
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fore the neutrino decoupling [599, 648, 649]. While relativistic they continue
to contribute towards the extra effective number of light fermionic degrees

of freedom AN.g. Once non-relativistic they add to the matter density as
sterile

Qqterite B2 = gfffif -v» While also damping density perturbations below a mass-

dependent free-streaming scale. The most simple case of a single sterile neu-
trino thermalising through oscillations at the active neutrino temperature has
ANegr = 1 and mS€rle ~ my [531,650,651] which is now excluded [652]. The
Planck collaboration has made fits of CMB (TT+lowP+lensing+BAO) data to
the parameters (¥ my, Negr) and (mS11¢, ANegr) [114]. In Refs. [624] and [653]
these constraints are mapped to the (Amil, sin®26,,) parameter space which

we plot as grey dot-dashed CMB constraints in Fig. 5.6.

5.3 Neutrinoless Double Beta Decay Constraints

In this section we will now determine the constraints from Ov 3 decay on our
phenomenological model. The bounds from Ov3 3 decay have been covered before
in the literature in the context of the Type-I seesaw [654,655], ISS mechanism [656,
657] and left-right symmetric models [260, 369, 658-664].

Of particular importance will be the dependence of the OvB decay con-
straints on the sterile neutrino mass my and the average momentum exchange pr

of the process. We will see that for my > pr, the contribution from a heavy

‘VeN|2.

sterile neutrino is proportional to =2

this is equivalent to integrating out the
heavy states. If my < pr, the ‘light’ sterile neutrino contributes much like a light
active neutrino in the standard OvB 3 decay exchange mechanism. However, in
this case the (My);; = 0 condition suppresses the total Ov 3 decay rate because

(T()V

) /2)_' ~ (My)1; in the my < pr regime. Multiple sterile states, some with

masses above and some below pp, is an intriguing intermediate scenario.

We will also give a broad comparison between Ov 3 decay constraints and
those from the direct searches discussed in Sec. 5.2, particularly where the OV 3
decay constraints are the most relevant (my ~ 100 keV). One of the most interesting

aspects of this comparison is the dependence of the OV 3 decay constraints on the
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mass splitting Amy between the heavy states. Because Ov3f decay is an |AL| =2
process we know it must vanish in the g s — 0 limit of the ISS mechanism. The
|AL| = 2 mass matrices [ig s also control the splitting between the heavy states, so
in the limit Amy — O (the heavy states form a pseudo-Dirac fermion) the OV 3
decay limits vanish. We will compare this to the suppression of |AL| = 2 collider
and meson decay constraints. No such suppression occurs for the |AL| = 0 search
constraints discussed in Section 5.2.

However, it is important to consider the effect Amy has on the interpretation of
the direct search constraints. For example, the analyses of beta decay kink searches
and meson decay peak searches assume a single sterile state and constrain the asso-
ciated mixing ]VeN|2 and mass my. On the other hand, it could also be the case that
there are two sterile neutrinos with a splitting Amy below the energy resolution of
the experiment; the searches are then probing the sum of mixings |Vyy, |2+ [Viw, |2
In the single-generation case there is a lower limit on this sum from the (My);; =0

condition,

1 my

>
(14-r4) cos ¢ ~ my ’
T s o ND 1
ry—+(cos ¢1—ry)s3,

!V4N1\2+\V£N2!2 ~ s51+s§2 = s§1+ (5.31)

where we assume rp << 1. If Amy is instead larger than the energy resolution of
direct searches, the non-observation of a sterile state excludes regions in both the
(mn,» |Vin, |?) and (my,, |Von, |*) parameter spaces. So far, direct searches have only
probed mixing strengths in the ISS region of the parameter space, i.e. |Viy, ? =~
Vi, |*(1 + 7). Thus, the excluded region in (my,, [Viy,|?) excludes additional
portions of (my, , |Vin, %) parameter space. This is simply the same excluded region
but shifted to smaller my, and larger |Vyy, | by the factor (1+r5).

The OvB B decay rate or inverse half-life, taking into account the exchange of
three active and ng sterile neutrinos, can be written as

2
3 ns
(T95) 1 = G gk m2 | Y UZmiM® (my) + Y Vimn M (my)| . (5.32)
i=1 1

1=
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where G% is a kinematic phase space factor (PSF) for the outgoing electron pair,
ga the axial coupling for the nuclear current, m,, the proton mass and Mov(m,-) the
nuclear matrix element (NME) for the process of an exchanged Majorana neutrino
of mass m; [665].

The most recent calculations of G for relevant Ov33 decay isotopes have
included effects such as electron screening and the Coulomb distortion of the elec-
tronic wave functions due to the finite size of the daughter nucleus [666—668]. The
NME:s are in principle much more difficult to compute as they encode the non-
trivial transition between the initial and final state nuclei in the process. The NMEs
entering Eq. (5.32) take the form

M (my) = 1 R /d3x/d3y/j—;eil"(x_ )

memy, g4(0)?

(F IR (x) ) (nlIf (y)I1)
7 o;(w; + 1)

, (5.33)

where JH is a hadronic current, R4 the nuclear radius and @; = |/ p? + ml2 the energy
of the exchanged neutrino. It is necessary to sum over all possible intermediate
nuclear states n between the initial and final states / and F respectively, and y =
E, — %(EI + Ep) is the relative energy of these virtual states with respect to the
average energy of the process. This sum, along with the non-perturbative nature of
the hadronic currents, makes the calculation of Eq. (5.33) extremely difficult, and
at present there are still large theoretical uncertainties in computed values.

Four common simplifying assumptions are: (i) the closure approximation, (ii)
the impulse approximation, (iii) J¥ = 0" nuclear states and (iv) s-wave electron
wavefunctions. Assumption (i) is that only neutrino momenta p of similar size to
the nucleon-nucleon spacing contribute to the amplitude; this allows the denom-
inator in Eq. (5.33) to be removed from the sum and cancels the contribution of
intermediate odd-odd nuclei. Approximation (ii) allows the hadronic current matrix
elements to be expressed in terms of the nucleon current form factors associated
with the vector (gy), axial vector (g4), weak-magnetic (gps) and pseudoscalar (gp)

couplings. Because Ov3 3 decay parent and daughter isotopes must have even num-
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: MOV (8IMOY]) M| (8|MRY])
NME Calculation T6Ge Ko T6Ge 36y

QRPA Tiibingen [669] 4.73 (0.18) 2.05 (0.20) 318.5(0.36) 168.0(0.36)
QRPA Jyviskyld [670] 5.90 (0.11)  3.21 (0.09) 437.5 (0.08) 202.3 (0.08)
IBM-2 [671] 4.68 (0.32) 3.05(0.32) 104.0 (0.54) 73.0 (0.54)
ISM [672] 2.79 (0.30) 2.15(0.30) 132.7 (0.38) 114.9 (0.38)

Table 5.1: Light | MY and heavy |M$’| NMEs and associated fractional uncertainties
8| MY| and §| MYY| for 7°Ge and '3°Xe used in this work, taken from QRPA,
IBM and ISM calculations in the literature, which are the only available methods
quoting both light and heavy neutrino NMEs. When not explicitly given in the
reference we estimate the uncertainties from the variation of NMEs with g4 and
the choice of short-range correlations.

bers of protons and neutrons, their ground state is always J© = 0" (while decays to
excited states are suppressed) thus justifying the assumption (ii1). Lastly, the emis-
sion of p-wave electrons is also suppressed and the computation of G% is greatly
simplified in the s-wave case, as assumed in (iv).

A useful interpolating formula for the NMEs can be derived when considering

Eq. (5.33) in the limits m; < pr and m; > pr,

MOV Oov
MY (m; < pr) = ——, MY (m;> pr) = =, (5.34)
mem,, m;

where MY¥ and MY are dimensionless light and heavy NMEs respectively. It
is possible to write the following interpolating formula that includes both of these

scaling behaviours,

MY (m;) =~ MY (p?) = mem My (5.35)
l (p2) +m;’ TEIMO '

so that the half-life formula Eq. (5.32) including sterile states becomes [583,669]

2
3 Uezlml—f—i VezN;mNi
&= (p?)

= (p?) +my,

(Th) " = GV gamy | MY (5.36)

p

The values of the NMEs |MY| and | M{Y| have been calculated for different
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isotopes in a variety of frameworks [673]. These include the Quasiparticle Random
Phase Approximation (QRPA) [669, 670], Interacting Boson Model (IBM-2) [671,
674,675] and Interacting Shell Model (ISM) [672]. In Table 5.1 we show the light
and heavy NMEs and their associated uncertainties for the Ov 3 decay isotopes
76Ge and !30Xe. The QRPA calculations of the Tiibingen and Jyviskyli groups and
the IBM-2 calculations of the Yale group give NME values for quenched (g4 = 1)
and non-quenched (g4 = 1.269) values of the axial vector coupling and also for the
Argonne [676] and CD-Bonn [677] forms of the Jastrow potential (describing two-
nucleon short-range correlations). For the purposes of Table 5.1 we take average of
these NME values and the uncertainty (when not provided by the reference) to be
half of the total range in values.

In Fig. 5.8 we plot the 7°Ge and !3®Xe NME:s as a function of the exchanged
neutrino mass my; using the interpolating formula of Eq. (5.35) and the light and
heavy NMEs given in Table 5.1. It can be seen that the NMEs are constant below

(p?) ~ 100 MeV? and suppressed by ' above. However, if all the masses are

L
I7l2

Nl
below (p?) we will see that the (My);; = O condition suppresses the Ov33 decay
rate regardless of the NME value. To plot the uncertainty bands in Fig. 5.8 we

propagate the uncertainties of | M%Y| and | MY through Eq. (5.35) as

IMOV \? IMO \?
MY = \/(awm) 6|M9V|2+(8W0v‘) 5|M,0VV|2, (5.37)
Y N

where the fractional uncertainties for the light and heavy NMEs, §|MYY| and
8| MYY| respectively, are given in Table 5.1. These are the uncertainties on the
NME:s divided by the NMEs themselves. It can be seen that the IBM-2 NMEs have
the largest uncertainties; for illustrative purposes and to give conservative estimates
we therefore use these NMEs in the following discussion.

In our single-generation model, the summation appearing in the interpolating

formula Eq. (5.35) is approximately

my e’¢"mN1 sgl e’¢2mN1 (1+ rA)sgz

) 0%+, (08 (14 7a)?

~ o+ Bs2 e, (5.38)
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Figure 5.8: Normalised Ov3 decay NMEs for °Ge (left) and '3®Xe (right) as a func-
tion of the exchanged sterile neutrino mass my; using the interpolating formula
Eq. (5.35). We make use of the light and heavy NMEs shown in Table 5.1. The
bands indicate the NME uncertainties arising from the choice of quenched g4
and short-range correlations.

where in the equality we have used (My);; = 0 to eliminate sgz and assumed

sgl, 552 < 1 to rewrite the summation using the factors

1 1
o = my <<p2> - <P2>+m12v1(1+”A)2) )

B 1 1
B = mp; <<p2>+m]%71 o <P2>+m12\/](1+rA)2> . (539)

Alternatively, one can eliminate sgz and ¢, using the relations Eqgs. (5.8) and (5.9).
Taking the square of the summation in Eq. (5.38) and inserting into the inverse

OvB B decay half-life in Eq. (5.36) gives

1

ov ~0v ,4 ov|2,,,2 °
T)hG gl MY [Pm3

xz = a2+[32s31+2aﬁs51 cosr; x = \/ (5.40)

Experimental lower bounds on the Ov3 3 decay half-life Tl% > (Tlo/vz)exp (or

equivalently y2 < xezxp) can therefore be used to put an upper bound on sgl as a
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function of my,, my, ra, ¢1 and the light and heavy NMEs | M| and M|,

o 1 :
sgl < —Ecos¢1+3\/xgxp—azsm2¢1. (5.41)

Another limit can be derived from the quadratic inequality > < xgxp that is a lower

2
bound on 57,

o 1 }
2 > oS- 1_3\/ X2 — 02 sin? ¢ (5.42)

For most of the parameter space this is negative and therefore unphysical. It will be
important however when cos ¢ < 0 and & > Xexp.

Because we work in a one-generation model with a single light neutrino v
which we identify as the electron neutrino, the effective Ov 3 decay mass is not

the usual coherent sum,

: (5.43)

3
mgp = | )3 Ugmy,

but simply mgg = my. In our parametrisation, my is always real and positive. We
calculate the Ov3 3 decay rate consistently in this framework by including the co-
herent summation of the light neutrino and the two heavy neutrino contributions as
detailed above. In this sense, m,y is a surrogate for the general effective Ov3 B decay
mass mgg, but we cannot include the possible destructive interference between light
neutrinos due to the Majorana phases in the PMNS mixing matrix. This effect has
been studied extensively in the literature (for a review, see Ref. [678]) whereas our
focus is on the constraints on the heavy neutrino parameters.

The precise value of m, will only be important if it saturates the limit from
OvBp decay searches. This is shown in Fig. 5.11 (right) and the accompanying
text where the choice my = 6 x 1072 eV is near the excluded mgg limit and thus
the constraints on the extra contributions of the heavy neutrinos become overly
restrictive. These may instead be relaxed if there is a sizeable cancellation among

the light neutrino contributions reducing mgg. A full analytic discussion of Ov33
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Figure 5.9: Upper limits on |V, |* 4 |V.x,|? for three small values of 7y < 1. We show the
limits from '3°Xe (solid) and 7°Ge (dashed) experiments with the bands indicat-
ing the NME uncertainties. The red curves highlight the limit in which Ovff3

decay is driven by a single sterile neutrino. The curves sloping down to the
lower right indicate the upper bounds by enforcing |3m1v*l°0p| < 0.1my. These

constraints are compared with the current and future sensitivities of |AL| =0
(blue shaded) and |AL| = 2 (red shaded) searches, cf. Figs. 5.6 and 5.7.

decay in presence of three active neutrinos mixing with sterile neutrinos is beyond
the scope of this chapter and is the topic of future work.

In Fig. 5.9 we depict the upper bounds on the sum of squared active-sterile
mixings |Ven, |2+ [Ven,|* = sﬁl + sgz as a function of the first sterile neutrino mass
my, for three small values of the sterile neutrino mass splitting ratio rp < 1 and
benchmark values of the light neutrino mass m, = 10~ eV and Majorana phase
@1 = 0. The sum is used assuming that the energy resolutions of direct searches are
larger than Amy and can only constrain |V, %+ |Ven, |? as a function of my, = ny;,.
Using sgl inequality in Eq. (5.41), we take the most recent lower limits on Tl% from
the 136Xe experiment KamLLAND-Zen [374] (76Ge experiment GERDA 1I [373])
and the IBM-2 light and heavy NMEs in Table 5.1 to plot the solid (dashed) curves
in the upper right portion of Fig. 5.9. The bands illustrate the uncertainty on the

|Ven, |2+ [Ven,|? upper bound found by propagating the IBM-2 NME uncertainties
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through Eq. (5.41). The red lines in Fig. 5.9 show the upper limits on the sum of
mixings when only the contribution of a single sterile neutrino is included (light
active neutrino exchange is neglected). Finally, we show for these choices of ry the
upper limits on |V,y, |* + |Ven, | from the requirement that 16my "] < 0.1m,.

In Fig. 5.9 we compare the OvB decay bounds to the direct search limits
discussed in Section 5.2. These include the current (blue-shaded) and future (blue
dot-dashed line) sensitivities of |AL| = 2 probes. We also display separately the
current (red-shaded) and future (red dot-dashed line) sensitivities of other |AL| = 2
probes (e.g. from meson decays and colliders). The faint grey areas correspond to
the regions excluded by cosmology. Finally, the dark grey shaded region below the

seesaw line |V, >+ |VeN2’2 =

nT—Afl is excluded as shown in Eq. (5.31).

We first observe in Fig. 5.9 that the upper bounds are the most stringent for
my, ~ \/@ ~ 200 MeV. Towards lower my,, both sterile states are light and the
OvB B decay rate is suppressed by (M );; = 0 condition. For higher my, both sterile
states are heavy and the limits become weaker due to the growing suppression of
NME:s as '”L%ﬁ We also see a strong dependence on the sterile mass splitting ratio.
Decreasing r by a factor of 10> weakens the upper bound by a similar magnitude
both above and below my, ~ 1/(p2). This is to be expected, as r4 — 0 corresponds
the pseudo-Dirac limit in which lepton number is approximately conserved and the
0vBB decay process is forbidden. Comparing the bounds from 7°Ge and 3®Xe it
is interesting to note that the former are slightly more stringent despite the weaker
experimental lower bound on the half-life. As seen in Fig. 5.8, this is counteracted
by 7°Ge having larger NMEs on average compared to '3°Xe. Comparing with the
direct search constraints we see that for r, = 1072 the current upper bounds are
comparable with non-resonant meson decay limits for 1 MeV S my, <1 GeV and
more stringent than collider constraints for my, > 5 GeV.

We saw in Section 5.2 that when the sterile mass splitting ratio rx is decreased,
the |AL| = 2 collider constraints (shaded in red) do not weaken significantly. This
is because the amplitide is controlled by the ratio AFTNN' Considering the decays of

Ly Iy

Amy — Famy, < 1 in the mass range

sterile neutrinos to SM particles we found that
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Figure 5.10: As for Fig. 5.9, but showing the current '3*Xe Ov decay bounds (dashed)
and future bounds (solid) assuming a future half-life lower limit Tlo/‘; =10%8y.

5 GeV <my, <50 GeV for rp 2 10719, As a result, when ry < 1072 the OV
decay constraints become less stringent than the |AL| = 2 same-sign dilepton and
trilepton collider constraints.

In Fig. 5.10, we similarly show the upper bounds from Ovff decay and
radiatively-induced neutrino masses for the same (small) values of r, but instead
using the forcasted sensitivity of TIO/V2 > 1028 y for future **Xe experiments. The
current bounds are shown as dashed lines and the future bounds as solid. This
reach may be achievable at the proposed '*°Xe experiments PandaX-III [679] and
nEXO [680], the 76Ge experiment LEGEND [681] and the 130T, 100Mo, 82Se and
112 experiment CUPID [682].

The behaviour of the Ov3 8 decay upper bound in the light and heavy regimes
can be understood by taking the Taylor expansion of Eq. (5.41) in the opposite limits

"M« 1and 2N

(p?) Vv (p?)

> 1. In the light regime we derive

2 < <p2 > zxeXp

s < R (5.44)
el mf\,l ra(2+ra)
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while in the heavy regime,

2 il 2
2 my my sin” ¢y | my (1+VA)
s2 < Y cos¢1+\/x§,<p— P22 rA‘(2+rA) : (5.45)

The my, dependence of these upper bounds agrees qualitatively with Fig. (5.9); in

the light regime the upper bounds scale as —— and in the heavy regime as my,.

m
The dependence on rp is also consistent; for A;lA < 1 both Egs. (5.44) and (5.45)
are inversely proportional to ra. Thus decreasing or increasing ra shifts the upper
bound to higher or lower mixings respectively for the whole range of my, .

In Fig. 5.11 we examine more closely the |V, |> + [Ven, |* & 52, + 52, upper
bound in the ro = 102 case for different values of the Majorana phase ¢, (left) and
the light neutrino mass m, (right). To the left it is clear that changing ¢; has little
effect on the OV decay bounds. As shown in Eq. (5.44), in the light regime the
sgl upper bound is independent of ¢;. From Eq. (5.45) we see that in the heavy
regime changing @; also has little effect because <’:;—2V> < Xexp- 1.€. the light neutrino
contribution is negligible. OV decay is therefore driven by the two heavy states;

this is the limit o < 1 and 7, < %32 in Eq. (5.41). For my, > \/(p?) we have

VA(2—|— FA)
I’I’l}\]1 (1 +FA)2 ’

B ~ (5.46)

which gives the expected dependence on r5 and my, in Eq. (5.45).
To the right we see that increasing m, for ¢; = O strengthens the upper bound

in the heavy regime. This again is described by Eq. (5.45); there is a cancellation

my_
(p?)
active contribution becomes non-negligible compared to the difference between the

between the two terms in the brackets as approaches Xexp. In this limit the light

heavy sterile contributions. For the inverse seesaw region of the parameter space,

2

2 | my ra(24+ra) 5 i xezxp. (5.47)

~ S1€
0D iy (1 )2l

If for example (¢;, ¢») = (0, 7), the light contribution adds constructively with the

2

21 must be

difference between the sterile contributions and the upper bound on s
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Figure 5.11: Upper limits on the sum of squared active sterile mixing for the sterile neu-

trino mass splitting ratio rp = Am"’ = 1072 derived from Ov3 8 decay and loop
N

constraints. We show the 11m1ts from 13°Xe for different values of o1 (left) and
my (right).

smaller to account for the observed half-life lower bound. If on the other hand for
(¢1, ¢2) = (7, 0), the light and heavy contributions add destructively and the 52,
upper bound can be less stringent.

If (m oy > Xexp (Which may be the case for a large lower limit on 7)), no value

1 /2
of se1 in the heavy regime is permitted for ¢; = 0. This corresponds to @ > Yexp
and the upper bound in Eq. (5.41) becoming negative and unphysical. Constructive
interference between the light active contribution and the difference between the
heavy sterile contributions, e.g. for (¢1, ¢2) = (0, 7), now gives a T} e less than the
experimental lower limit. Conversely, if the light and heavy contributions interfere
destructively, e.g. for (¢, ¢2) = (,0) or (7, &), then 52, multiplying the heavy
contributions can be made large enough to meet the condition ¥ < Xexp (but not so
large as to dominate over the light contribution). As well as an upper bound, this
sets a lower bound on sgl in the heavy regime. This corresponds to the lower bound
in Eq. (5.42) becoming non-negative.

In Fig. 5.11 we also see how the bounds from radiative neutrino masses change
when ¢; and my are varied. For the values ¢; = 0, 7 and 7, the loop constraints are
broadly the same. However for ¢; = ’—2’ the upper bound becomes nearly two orders

of magnitude more excluding. As my, is increased by an order of magnitude (we do
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Figure 5.12: Upper limits on |V,y, |? for three large values of 5 > 1. We show the limits
for 130Xe with shaded bands indicating the NME uncertainties. The red curve
highlights the limit in which Ov3 8 decay is driven by a single sterile neutrino.

The curves sloping down to the lower right indicate the upper bounds by en-

forcing |5m1v*lOOp| < 0.1my. These constraints are compared with the current

and future sensitivities of |AL| = 0 (blue shaded) and |AL| = 2 (red shaded)
searches, cf. Figs. 5.6 and 5.7.

not go above my, ~ (p?) Xexp ~ 0.083 €V for the reasons discussed in the previous
paragraph) we can also see that the loop constraints are weakened by an order of
magnitude.

In Fig. 5.12, we display the active-sterile mixing |V,n, |*> &~ s?, as a function of
my, for three large values of the sterile neutrino mass splitting 7o > 1 and bench-
mark values of my, = 1072 eV and ¢; = 0. We do not use the sum |Ven, 1>+ |VeN2|2
in this case because the splittings are assumed to be large enough for the two states
to be resolved individually in direct search experiments. We again compare these
bounds to the direct search limits discussed in Section 5.2. Due to the large splitting,
shifted versions of the excluded region in the (my,, |Ven,|?) parameter space now
apply in the (my,, |Vey,|?) plane. The shift is to smaller my, and to larger |V, |> by
a factor (1 +ra). For example, if the T2K experiment excludes a neutrino of mass

my,

.« . 2 . . . . . ~
my, and mixing |Ven, |, it also implies the non-existence a neutrino at my, ~ T
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and |V, |> & [Ven, |2 (1 + 1) in this model. These particular relations apply because
the T2K bounds are in the ISS region of the parameter space. For large splittings
we see that the Ov33 decay constraints converge towards the upper bound in the
limit of single heavy neutrino exchange, shown by the thin red curves in Figs. 5.9,
5.10 and 5.12.

We have so far neglected the one-loop contribution to the neutrino mass
Smb 1 in this discussion (other than restricting it to be small). One could ask

if this has a large impact in the my, < /(p?) limit because

tree

2 2
0v\—1 2 2 2 2 i 2 i9) 1-loop
(Tl/Z) < |Ce1Cea My + 851 CoIMN, € o tSeomn, e 2| o ‘51’)’1\/ , (5.48)

which would be expected to alter the suppression and m% scaling of the upper bound
M
on the mixing. However, examining Fig. 5.4 we see that |5m%,71°Op |~ 1072 eVin

this regime. Thus we safely neglect its effect on the Ov 8 decay constraint curves.

5.4 Two-Neutrino Double Beta Decay Constraints

Before moving on the the conclusions of this chapter, in this section we will assess
the sensitivity of Ov3 3 decay experiments to kinks in the two-neutrino double beta
(2vBB) decay spectrum caused by the presence of sterile neutrinos N with masses
my < 1 MeV. This is analogous to the kink searches of single beta decays, dis-
cussed around Eq. (5.29), but 2vB 3 decaying isotopes typically have Q-values of
order Qgg ~ O(1) MeV and are thus expected probe different values of my. The
2vB B decay process is suppressed and so at first it may seem difficult to achieve
high enough statistics. While 2v3 3 decay does not improve on the limits in the
0.1 MeV < my < 3 MeV mass range considerably, 2v3 3 decay spectra will be
measured to high precision in several isotopes as OV 3 decay is searched for in
ongoing and future experiments. Generally speaking, 2v decay can be used to
look for signs of NP in its own right [303, 683].

In addition to a sterile neutrino coupling to the SM charged-current interac-
tion via an active-sterile mixing, we can also consider right-handed current inter-

actions of the ‘sterile’ neutrino, e.g. arising in left-right symmetric models. Right-
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handed interactions alter the angular distribution of the electrons emitted in 2v3 3
decay [303]. For the energy scales relevant to 2v3 decay (~ 10 MeV), we will
therefore parametrise the interactions as LEFT + Ng operators containing SM fields

with a light sterile neutrino N, as in Eq. (2.98).

5.4.1 Effective Interactions with Sterile Neutrinos

We now outline our parametrisation for operators in the LEFT + Ni framework, i.e.
all operators built from the SM degrees of freedom plus a gauge-singlet fermion
N respecting the SU(3). x U(1)y gauge symmetry of the broken SM. However,
as we are considering the second-order weak process of 2v 3 decay, we restrict
ourselves to charged-current type operators and the first generation of SM fermions.
We will also only consider left- or right-handed vector-type currents. The effective

Lagrangian takes the form

. 4GFVud
V2

8 = { Jud} A+ Ven NI} + ErLiR L + ErrjR J;} +he., (549
where the leptonic and hadronic currents are j; = ey*Ppv, jﬁ R= ey" P, gN and
JLr= d YuPL ru, respectively. The active-sterile mixing described by V,y and the
exy coefficients encapsulate the impact of integrating out NP giving rise to (V +A)
currents. We neglect any further effective operators, such as non-standard contribu-
tions to the SM charged-current interaction and right-handed currents for the active
neutrinos, which has been studied in Ref. [303].

In Eq. (5.49), v and N are four-spinor fields of the light electron neutrino and
the sterile neutrino. They can either be Majorana fermions, v = v, + v; and N =
Ny + Ng (i.e. a Majorana spinor constructed from the left-handed Weyl spinor and
its charge-conjugate) or Dirac fermions v = v; + vg and N = Nr + N (a Dirac
spinor constructed from two different Weyl fields). The calculation of 2v3 3 decay
is not affected by this, i.e. it is insensitive lepton number and therefore to the Dirac

or Majorana character.
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dr,

p— =

Figure 5.13: (Left) Standard 2v3 3 decay process with the emission of two electrons and
two electron antineutrinos. (Right) Non-standard VN 8 process, where the
active-sterile mixing V,y or a right-handed current egx creates a my ~ 1 MeV
sterile neutrino N instead of an antineutrino at one of the vertices.

5.4.2 Double Beta Decay Rate with a Sterile Neutrino

We will now outline the derivation of the 2v[3 3 decay rate with the operators in
Eq. (5.49). Considering a sterile neutrino N' with a mass my < Qgg S O(1) MeV
and an active-sterile mixing strength |V,y|?, now a N is emitted instead of a V, in
2vB B decay (we call this new process VNBB). We assume that N is long-lived
and does not decay within the detector. The final state is different to the stan-
dard 2v B decay and thus there is no interference between VNS 3 and 2v 3. No
anti-symmetrisation is needed with respect to the two different neutrinos in vN 3.
Moreover, the sterile neutrino can also be produced via a right-handed current which
further affects the 2v 3 8 observables, mainly the angular correlation of the outgoing
electrons.

To write down expressions for the 2v3 3 and vN3 3 decay rates (including the

possibility of right-handed currents) we start with the general expression [684]

AT = 2(2 — 8,,)n8(Ee, + Ee,+Ey, + Ev, + Ep — Ey)
x Y [R¥dQ,,dQ,,dQy,dQy,,  (5.50)

spins

where Ej, Ep, E,, = \/|pe,|* +m2 and Ey, = /|py,|2 +m3, (with i = 1,2) are the

energies of the initial and final nuclei, electrons and antineutrinos, respectively.

d’p. d’pe;
(2m)3
Eq. (5.50) is (2 — &y,v;) = 1 if identical neutrinos are emitted and (2 — &y,y,) = 2 if

The phase space differentials are d€Q,, = and so on. The symmetry factor in

they are distinguishable, i.e. in the case of VN decay. The amplitude R?¥ con-
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tains the average contribution of the two diagrams with the neutrinos interchanged,
with a relative minus sign if the neutrinos are identical. In our calculations we will
neglect the mass of v and retain only the mass my of the sterile neutrino.

After integrating over the phase space of the outgoing neutrinos, the resulting
differential 2vf 8 decay rate can be written in terms of the energies 0 < E,,, E,, <
Qpp + me of the two outgoing electrons, with Qgg = Er — EF — 2m,, and the angle

0 < 6 < 7 between the electron momenta p,, and p,, as [684]

ar= — 2% (A% 4 B 05 0) [Pe, | e, [Pes |Ees (5.51)
dE, dE,,dcos 0 2 rrere e

4.9

Gﬁme .
where ¢py = (2 — 6‘_’1“_’1‘)W with Gg = GFVuq.
The factors A2 and B?" in Eq. (5.51) are functions of the electron energies E,,

and E,, and include the integration over the neutrino phase space as

2v BimBr—ta~bea oy [ 2 2_ 2
A :/ A\ JE2 — i \J(E1 — Er — Ee, — Ee, — Ev, 2 — i},

m\;l

x Ey,(Ej —Ey—E,, —E., — Ev,) dEy,,  (5.52)

2v Brbr=be~ta oy 2 2
B :/ B> \JE3 —mi\J(E1 — Er — Eo, — Eey — Ev, > — i},

mvl

x Ey,(Ej — Er —E,, —E., —Ey,) dEy,,  (5.53)

where Ey, = E; — Er — E,, — E,, — Ey, due to energy conservation and we have
kept the dependence on the neutrino masses my, and my,, though in the SM case
they can be neglected. The factors A%Y and B2 are functions of the electron and
neutrino energies and are calculated using the nuclear and leptonic matrix elements.
The vNB B decay rate then differs from 2v 3 3 decay rate only by the non-negligible
my entering 4 /E‘%1 — m%,l and the integration bounds. In the standard case with only
left-handed lepton currents the quantities 42" and %Y do not depend on neutrino
masses; hence, the main effect of the sterile neutrino mass is to ‘shrink’ the electron
energy distribution according to the smaller Q-value, now given by Qgg = Ej —

EF — 2me — mn.
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In these calculations we take the standard S, spherical wave approximation

for the outgoing electrons, i.e.

,1(Ee) s
%(pe):(f(g * ) (5.54)

. Ee) (6 'fJE)Xs

where, p, = \S_Z\ is the direction of the electron momentum, ¥, is a two-component
spinor and g_; (E,) and fi(E,) are the radial electron wave functions depending on
the electron energy E,. We will approximate them with their values at the surface
of the nucleus, i.e. at a distance R4. The neutrinos can be simply described as plane

waves in the long-wave approximation,

EV \% s
w(py) = o ( * ) (5.55)

2EV (0-pv)

Ey+my Xs

The standard contribution from the SM charged-current interaction to 2v3f3
decay has been studied in great detail [685, 686]. Following the notation of those

works and the formalism outlined above, the decay rate is described by the functions

AN = (821 (Ee)) + [T (Ee (821 (Eey) + [T (Eey)]

1 2
‘ {Z (3 (ME -+ ME) — g (Mg + Mbp)]

1 2
H1 @ ME-Mb g (M- b | 5o

I

and

Bél‘\//[ =4fi (Eel)fl (Eé’z)g—l (Eel)g—l (Eez)

1
. {z (g3 (ME + ME) - & (Mg + My)]’

1 1 2
-3 {g% (MF = ME) + 383 (M&r - MéT)} } SNCRD
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where the Fermi and Gamow-Teller NMEs Mg and Mgt are defined as

E, — (E1+Ep)/2

MEL —m, Y M , 5.58
with
Mg = (0£1)_ 7,10, (0, 1Y 7,10 ), (5.59)
m n
Mar = (051, 5, 0m 1,1 (LY. T, 010]) . (5.60)
m m

Here, 7, are nuclear isospin lowering operators, 0, are Pauli matrics and the sum
Y ,, is over intermediate nuclear states. The electron mass m, is inserted in Eq. (5.58)
to make the NMEs dimensionless. The lepton energies enter Eq. (5.58) through the

terms

1 1
& = ) (Ee, +Ev, —Ee, —Ev,), &= B (Ee, +Ev, —E, —Ey,) , (.61

which satisfy —% <& < % In case of 2vBf decay with energetically
forbidden transitions to the intermediate states, E, — E; > —m,, the quantity
E,— (Ej+Er)/2= @ +m,+ (E, — Ej) is always larger than %.

The above expressions may be further simplified using several well-motivated

approximations:

(1) Isospin Invariance: Neglecting the isospin non-conservation in the nucleus,
the double Fermi nuclear matrix elements vanish, i.e. M& = ML =0. The

factors in Eqgs. (5.56) and (5.57) then acquire the approximate forms

AN % (821 (Ee)) + [T (Ee)[8% 1 (Eer) + /7 (Ee, )]

1 1
x g8 [(ME+ M) +3 (ME - MEr)'| G562
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Isotope /\/lGT ] /\/lGT 3 /\/lGT 5
%Ge 0.111  0.0133  0.00263
82Se 0.0795 0.0129 0.00355
10Mo 0.184  0.0876  0.0322
136Xe 0.0170 0.00526 0.00169

Table 5.2: Gamow-Teller NMEs for four 2v 3 decay isotopes calculated within the pn-
QRPA with partial isospin restoration assuming the axial vector coupling g4 = 1.

and

Bél‘\}dzétfl(Eﬂ)fl( ez)g 1(Ee )

(MEr+ M) + (M —MED)L (5.63)

(ii) NME Dependence on the Lepton Energies: If we neglect the dependence of

NMES on &gk 1, the nuclear and leptonic parts can be separated and we obtain

A%K/I ~ [g%l (E€1) +f12(Ee1 )] [g%l (Eez) +f12(E€2)]gf\MéT ) (5'64)
B3 ~ 4f1(Ee,) f1(Ee,)8-1(Ee, )81 (Ee,) g4 MG, (5.65)

with the Gamow-Teller NME now defined as

0 oL (1) 6,0
MGT:meZ< F|ZmeGm| n>< n|ZmeGm| 1>‘

A En— (Ei + Er)/2 (566)

A more accurate approximation is obtained by Taylor expanding the NMEs in the

small parameters €x ; [686]. Retaining terms up to e,‘é’ 7 gives

AN = 1821 (Eey) + /1 (Ee))] (821 (Eey) + [T (Eey)]

1
X g {(MGT )?+ (82 + e} ) Mgr_1Mgr— 3+3€K€L(MGT 3)°

—|—(8;§—|—8£) (MGT 1Mgr—s+ = (MGT 3) )} (5.67)
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and

B3~ 4f1(Ee,) fi(Ee;)g-1(Ee,)g-1(Ee,)

4
X g4 [(/\/IGT—l)2 +(eg + &} ) Mgr_1 Magr_s + 5812(83(/\/1@—3)2

5
+(eg+€f) (MGT1MGT5 + E<MGT3)2) ] ) (5.68)

Here, the introduced NMEs are defined (in the notation of Ref. [686]) as

Mgr-1 = Mg, (5.69)

Merz=4m) Y Mor , (5.70)
~ (E,— (E;+Er)/2)?

Mot (5.71)

o 5
Mars=16me} (e 2

This is the approximation we employ in our later numerical analyses.
The non-standard contribution to 2v3 3 decay from the right-handed currents

proportional to the €gx coupling, as appearing in the Lagrangian in Eq. (5.49), was
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calculated in Ref. [303]. The corresponding functions A%¥ and B?" factors are

AP = 4!8RX!2{[g21(Ee1) + ST (Ee))) (821 (Eey) + 17 (Eey)]

+ [g%l(Eel) —flz(Eel)][gal(Eez) _flz(Eez)]Zlvv’gy }

W =

9 { [gwg—wu g;t<MéT—MeT>2]

+ [g‘&(M? +ME)+

W | —

M+ b2 |
2leer P 1684 (Ee) = FHE A (Ee) B
181 )+ P )+ A7) |
{ [ - M2 et Ml - it
= b AR = Sk M+ M)
+2g7.84 [(ME — ME) (M — MGr)
+ME+ ME M+ MEn)] | 672

and

Bgv = 4’8RX’2f1 (Eel )fl (Eez)g—l(Eel )g—l(Eé’z)

{2t [(ME + MER - (ME - Mb?] 7
vitvy

8
+ §gi [(MgT — Mgr)* + (M + Méﬂz]

10 v
+ =g} [(ME+ Mbp)? — (MEp — Mhp)?] 22

9 Ey,Ey,
4
+ 3 8heh (M — ME)ME — MEy)
+ (ME 4+ MEYME;+ M) 22

8
- gg‘z/g% [(Mf - MJLV)(MIG<T - MéT)

T (ME 4 MEYMEp + MEp)] } 67
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In Egs. (5.72) and (5.73) the terms proportional to m,my are small, as one of
the emitted neutrinos is still assumed to be the light with m, < 0.1 eV. As in the
SM case, we estimate the above expressions with their Taylor expansions up to the
fourth power in the small parameters € ; .

The kinematics of the outgoing electrons in the decay is described by the fully
differential decay rate in Eq. (5.51) depending on the electron energies E,,, E,, and
angle O between the electron momenta. All the information is contained by the
quantities A%” and B?¥ presented above for both the SM (Egs. (5.56) and (5.57))
and right-handed current with sterile state N (Eqgs. (5.67) and (5.68)) cases. The
following values of the physical constants are used in our numerical analysis: Gg =
1.1363 x 1075 GeV 2, & = 137, me = 0.511 MeV, m), = 938 MeV, Ry ~ 1.241/3
fm and gy = 1. Since the axial vector coupling g4 is expected to be quenched in the
nucleus [687], we take g4 = 1 instead of the usual value of g4 = 1.269 for a free
neutron. Furthermore, we use the 2v3 8 decay NMEs from Ref. [686] as shown in
Table 5.2.

We can now calculate the total 2v33 decay rate and the decay distributions
potentially observable in experiments. At present, the 2v[3 3 decay experiments
primarily measure the differential rate in the total kinetic energy Ex = E,, +E,, —

2m, — my, —my, of the outgoing electrons,

ar*v  Egx [E&™ ar?’
_ K /K dE -2 (5.74)
dEx  E¢*™ Jo dE, dE,,
where Eg™* = E; — Ep — 2m, — my, —my, and
Ex Ex
Eo, = Ex — ZogEtMe, Eey = o E+me. (5.75)
K K

In the SM my, , are negligible, but for a heavy sterile neutrino one of these will be
the non-negligible my, i.e. my, = my, my, = 0. We will also neglect the recoil of
the final state isotope which could shift the endpoint by ~ % < 0.1 eV, with the
Opp < 3 MeV and the mass of the nucleus is my ~ 76 — 136 GeV. Some experi-

ments capture the energies and tracks of individual electrons, therefore allowing to
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study the single electron energy distribution 4— d E. ’ and double differential distribution

dEierez These are calculated from Eq. (5.51) as
dr?v Ej—EF—my, —my, —Ee dr?v
= E, —
dE,, /m “dE, dE,,’
dl—Qv dl—QV
dcos — 5.76
dE, dE,, /_ S dEdErdcos® (5.76)

Given that most experiments only provide the differential 2v3 3 decay distribution
in the total kinetic energy of the electrons Eg, in the following analysis we focus
primarily on this observable.

The integration over the electron energies in Eq. (5.51) instead leads to the

equation

dl—*2v FZV

g = U +K* cos0) , (5.77)

describing the differential angular distribution of the decay. Here, I'>V denotes the

total 2vB B decay rate and K2V = 25~ stands for the angular correlation factor. The

r2v
factors I'?Y and A?" are given by

1—~2v CZ EI—EF—me E[ EF Eel A2v
=i / dEe, [Pe, |Ee, / dEc, |pe, | Ee, (5.78)
sz me me me BZV

The inclusion of right-handed current can result in an opposite sign for the angular

correlation of the emitted electrons [303]. The angular distribution is therefore
useful for distinguishing the possible contributions, as analysed in the following

section.

5.4.3 Sensitivity to Sterile Neutrino Parameters

We will now use the differential 2v3 B decay rates derived in the previous section to
exclude regions of the sterile neutrino parameter space; namely, the sterile neutrino
mass my and active-sterile mixing (with the electron flavour) [V.y|>. We will use
the non-observation of distortions to the SM 2v 3 8 decay spectrum by (Ov3 8 decay
search) experiments such as GERDA II, CUPID-0, NEMO-3 and KamLLAND-Zen
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to put upper limits on |V,y|? as a function of nmy. We will also estimate upper limits
from the forecasted sensitivities of LEGEND, SuperNEMO, CUPID and DARWIN.
Finally, we will compare these to bounds in the 0.1 MeV < my < 3 MeV range
from single beta decay (*Cu, **Ce—!*Pr and ?°F) and sterile neutrino decays
(Borexino) as discussed in Section 5.2.

To obtain upper limits on the mixing |V,y|*> we follow the standard frequentist
approach of Refs. [688, 689] outlined in Appendix C. Firstly, we define the total
differential 2vB B decay rate as the incoherent sum of the SM and sterile neutrino

rates for a given my and total kinetic energy Ek,

ar?v argy dr) (my)
= (1= |Von|?)?=M 4 (1 — |V y [P [Von [P — 222 5.79
dEx (1—=1[Ven|?) dEx + (1= [Ven )| Ven| dEx (5.79)

where we have extracted the dependence on the active-sterile mixing |V,y|*> from
the rates. The total differential rate depends on the parameters (my, |V,y|*) and Ex.
Here, the contribution % due to the sterile neutrino includes a factor of two with
respect to the SM contribution, as two distinguishable neutrinos are emitted in the
process, cf. Eq. (5.50).

In Fig. 5.14, we plot the total differential rate in Eq. (5.79) and compare it
to the sterile neutrino contribution |V,y|? % for the isotopes '°°Mo and '6Xe.
We normalise both to the total SM decay rate F%K/I The respective Q-values of
the isotopes are indicated by the vertical dotted lines and the benchmark values
of my = 1.0 MeV and |[V,y|> = 0.5 are chosen. In the panel below we show the

percentage deviation of the total differential rate from the SM rate,

2 2V AY 2V 2V
dr=v B dl'gyy I'Sm _ !VeNfz dry’ /Ty 1) (5.80)
dEg dEg dEg dEx / dEg
v 2v
It can be seen that the magnitude of % decreases with respect to the d;%:" as Ex

increases, eventually plateauing at around —10%. This is because the sterile neu-
. oo arzy .
trino contribution \VeN\Z ﬁ falls when Ek increases above ~ 1.0 MeV. Eventually

its contribution is negligible, but there remains a suppression from the (1 —|V,y|?)
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Figure 5.14: Total differential 2v 3 decay rate (solid) and the sterile neutrino contribution
(dashed) with my = 1.0 MeV and \Ve/\/|2 = 0.5 for the two isotopes '*°Mo
(purple) and 136Xe (blue). Both distributions are normalised to the SM decay
rate. The vertical dotted lines indicate the respective Q-values and the panel at
the bottom shows the corresponding percentage deviations from the SM rate.

factor multiplying the SM contribution, which is particularly large for |V,y|*> = 0.5.
It is apparent from Eq. (5.80) that the deviation tends to a factor of —|V,y|?. The
characteristic signature of the sterile neutrino is a relative increase of the differential
rate for Ex < Opp — mn.-

We note that the main uncertainty is from the experimental measurement of the
2vB B decay rate and not the theoretical calculation of the corresponding NMEs.
This is because the SM 2vB and VNS decays approximately have the same
NMEs and depend for example on the axial vector coupling g4 in the same way,
at least to very good approximation. Thus, the individual decay rates have large
theoretical uncertainties, e.g. considering a range of 0.7 < g4 < 1.27, but their ratio
is largely unaffected. One may then use the experimental measurement to fix the
overall scale.

The sterile neutrino mass my does change the factors in Eq. (5.61), resulting
in different NMEs as a sub-leading effect. This will affect the differential decay

properties, such as the electron energy spectrum, but is essentially negligible for the
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sterile neutrino produced by a left-handed current. This is because the distinctive
feature of VN 3 decay, the different energy threshold to 2v3 B decay, is practically
unaffected. Its location is determined by kinematics and its shape is already smooth,
< (Qpgg—my—E )7/ 2. We expect small corrections due the NMEs from my to have
little effect within the experimental energy resolutions considered.

The same procedure can be applied to place upper limits on the right-handed
current coefficients |€gz|? and |egg|>. As seen in the previous sections, the right-

handed current modifies the total kinetic energy distribution to

dr?  drgy, , dI%Y (my)
= erx|” — N ——= 5.81
dBx ~ agx g ©.51)

where the SM contribution is no longer reduced by the sterile neutrino mixing. The
right-handed current also changes the total rate I'?Y and angular correlation factor

K?V inEq. (5.77) to

BZY + B2Y (my)|erx |?
I = A +AY (my)|erx [*, K2 = 3N v )| Erx|

= , (5.82)
A%vM —|—A]2vv (mN) ’8RX ’2

where A%K/{ and BgK,I are found by plugging Eqgs. (5.67) and (5.68) into Egs. (5.53)
and (5.53). The factors Ajzv" and Blzvv are likewise found by inserting Eqs. (5.72) and
(5.73) into Egs. (5.53) and (5.53) and extracting |€gx |*>. Assuming |ezx|> < 1, K2V

can now be Taylor expanded as
K* ~ Ky + ou(my)|erx |*, (5.83)

where the SM and right-handed current contributions, respectively, are

BZV(mN) _K2v sz(mN)
= a(my) == AéKS/[M N, (5.84)

We have the SM values Kél‘\’,l = —0.627 for %Mo and K3y, = —0.631 for 823e
(the isotopes of experiments sensitive to the angular correlation factor, NEMO-3

and SuperNEMO respectively). The o(my) factors are plotted for 32Se (red) and
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Figure 5.15: The factor o(my) multiplying the right-handed current coefficient |egy|?
yielding the sterile neutrino contribution to the angular correlation factor K2V
for 82Se (red) and '°Mo (blue).

10Mo (blue) in Fig. 5.15, which also explicitly shows the values at my = 0. The
factor a(my) is positive, indicating a change of the angular distribution away from
the back-to-back configuration of electrons in the SM case. It is maximal for my =0
and is suppressed as my approaches the Q-value.

As outlined in Appendix C, we will now follow the frequentist approach to set
bounds on the (my, [Voy|?) and (my, |€rx|*) parameter spaces. We assume that the
OvB B decay experiments do not see a 2v 33 decay spectrum deviating significantly
from the SM prediction. For each (my, |V.n|?), we use the differential rate in the
total kinetic energy % to construct the binned test-statistic ¢ in Eq. (C.11), quan-
tifying the level of compatibility between the null and sterile neutrino hypothesis.
For each my, we exclude at 90% CL the mixings |V,y|> which have a test-statistic

g > 2.71. The (my, |€rx|?) parameter space can be similarly constrained by using

dl—QV dl—*Zv

either m or dcosO

to construct a binned test-statistic. The two observables provide
complementary limits.

A selection of current and next generation Ov 3 3 decay experiments measuring
the 2vB B decay of isotopes "°Ge, 82Se, '%Mo and '3°Xe are shown in Table 5.3.
This list is not exhaustive; for example, the nEXO and SNO+ experiments will also

search for Ov3 8 decay in *Xe and '3*Te respectively [690,691]. For a review of
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Isotope Experiment Exposure [kg-y] Nevens AE [keV] (oy,07) [%]

G, ~ OERDATI[693] 103.7 3.63x10* 15 (4.6,1.9)
LEGEND [694] 103-10* 10°-10° 2.5 (0.5,0.5)

g, ~ CUPID-0[695] 9.95 58x10° 50 (1.5,1.0)
SuperNEMO [696] 10>-103 10*-10° 50 (0.5,0.5)

00y,  NEMO-3[697] 34.3 495%x105 100  (5.4,1.8)
CUPID [698] 102-10° 106-107 5 (0.5,0.5)

36y, KamLAND-Zen [699] 126.3 9.83x10* 50 (3.1,0.3)
DARWIN [700] (2-5) x 10*  10°-107 5 (0.5,0.5)

Table 5.3: A selection of current and future Ov3 3 decay search experiments measuring the
2vB B decay spectrum of the four isotopes considered in this chapter. Shown are
the current and forecasted exposures, total number of events Neyents, €nergy res-
olutions AE and parameters (0y, Oy) estimating the effect of systematic errors
on the log-likelihood function.

current and next generation experiments, see Ref. [692]. Listed in Table 5.3 are the
exposures, total number of events Neyenis, €nergy resolutions AE and estimates for
the parameters oy and 07 quantifying the uncertainties on the nuisance parameter
and from other systematic effects, respectively. Values are taken from the list of ref-
erences given for the experiments. For each experiment we make use of Eq. (C.11)
to set an upper limit on the active-sterile mixing |V,y|? as a function of the sterile
neutrino mass my.

Fig. 5.16 (left) shows the 90% CL upper limits from the current generation
experiments GERDA 1I (grey), CUPID-0 (red), NEMO-3 (purple) and KamLAND-
Zen (blue). We also show a combined constraint (black dashed) found by adding
the log-likelihoods of the experiments (each minimised with respect to a separate
nuisance parameter 7). It can be seen that the upper limits worsen for smaller and
larger values of my in the range 0.1 MeV < my < 3 MeV, with the best upper bounds
being found at my similar to the peak energy of the spectrum. We compare the
constraints to those from single beta decay experiments and sterile neutrino decays
(shaded areas). While NEMO-3 and KamLLAND-Zen provide the best constraints,
they are not as stringent as previous limits. However, it is interesting that 2v 3

decay is most sensitive to sterile masses in the range 0.3 MeV < my < 0.7 MeV
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Figure 5.16: Upper limits and sensitivities at 90% CL on |VeN\2 as a function of my from
2vBB decay in current (left) and future (right) experiments. We show the
individual constraints (as indicated in the legend) as well as a combined con-
straint (black dashed). The bands in the right plot correspond to the range of
possible future exposures in Table 5.3. The combined future sensitivity uses
the maximum forecasted exposure of each experiment.

where existing constraints are less stringent.

Fig. 5.16 (right) shows the corresponding sensitivities of the next generation
of OvB B decay experiments. The forecasted exposures given by the collaborations
are often one or two orders of magnitude larger than those of current experiments.
We estimate the total number of events Neyents s€en in future by multiplying the
current number by the ratio of future to current exposures. Energy resolutions are
taken from the references in Table 5.3 and we assume an optimistic value of oy ~
oy ~ 0.5% for the systematic uncertainties. We compute the 90% CL sensitivity for
both the higher and lower forecasted number of events in Table 5.3, shown as bands
for LEGEND (grey), SuperNEMO (red), CUPID (purple) and DARWIN (blue).
Also shown is the combined sensitivity (black dashed) using the largest predicted
exposure of each experiment. For a given experiment the upper bounds exhibit the
same improvement for sterile masses close to the maximum of the total differential
decay rate. The most stringent upper limits come from CUPID and DARWIN,
IVon|? < 2.5 x 1073, which would exclude the currently unconstrained region in the
0.3 MeV < my < 0.7 MeV range.

Likewise, we estimate the current limits and future sensitivity on the right-
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Figure 5.17: Current upper limits and future sensitivities at 90% CL on |egx |* as a function
my. The solid (dashed) blue line shows the combined constraint from current
(future) 2vB B decay experiments measuring the total kinetic energy distribu-
tion. The solid red line is the upper limit derived from the angular distribution
measurement of NEMO-3. The dashed red band indicates the range of upper
limits expected from the angular distribution measurement of SuperNEMO.
The dot-dashed red line shows the upper limit from a future 3>Se experiment
with an exposure of 107 events.

handed current coefficients |egy |*> and |egg|?> from measuring the 2v 3 decay en-
ergy distribution and angular correlation. In Fig. 5.17 we plot the upper limits at
90% CL on |egr | and |egg|? as a function of the sterile neutrino mass my. The blue
solid line is the combined constraint from current 2v3 3 decay experiments using
the total kinetic energy distribution, while the red solid line is the upper limit derived
from the angular distribution measurement of NEMO-3. The blue dashed line is the
combined sensitivity from future 2v decay experiments, while the red dashed
band indicates the sensitivity of the SuperNEMO angular measurement. The latter
is not a large improvement as SuperNEMO is not expected to have a significantly
increased exposure compared to NEMO-3, see Table 5.3. We therefore also indicate
the sensitivity of a hypothetical 8>Se angular measurement with an exposure of 10’
events (red dot dashed).
drzv

The combined constraints on |egz|?> and |egg|?> (dashed lines) from B are

slightly weaker than the equivalent constraints on |V,y|?. This is because the SM
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Figure 5.18: Current upper limits (solid blue) and future sensitivities (dashed blue) on the
mixing strength |V,y|? between the electron and sterile neutrino as a function
of the sterile mass my. Likewise, the red curves give the current limit and
future sensitivity on the right-handed coefficient |ezx|? using a measurement
of the angular distribution in 2v decay. The shaded regions are excluded
by existing searches in single beta decay and sterile decays in reactor and solar
neutrino oscillation experiments.

contribution in Eq. (5.81) is not suppressed, as is the case for Eq. (5.79). The
constraints from the NEMO-3 angular distribution are generally better, tending to a
constant upper bound ’8RX,2 < 1073 for my < 0.2 MeV. This roughly agrees with
the result egy < 2.7 x 102 in the massless case found in Ref. [303].

To summarise the sensitivity of 2v3 8 decay, we compare in Fig. 5.18 the cur-
rent limits on |V,y|*> from existing 2v3B decay (solid blue) to constraints from
single beta decays and sterile neutrino decays over the 100 eV < my < 10 MeV
mass range. The blue curve uses the combined constraints from measurements of
2vB B decay electron energies. The red curve shows the current constraint on the
right-handed coefficient |£RX|2 using the NEMO-3 angular distribution measure-
ment. The dashed curves indicate the corresponding future sensitivities. At lower
masses both the current and future upper limits on |V,y|*> cannot compete with ex-
isting constraints from *Cu and '“*Ce—'44Pr beta decays. At higher masses they

are also less stringent than constraints from Borexino, Bugey and Rovno. It is the
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0.3 MeV < my < 0.7 MeV range where 2v3 3 decay can provide competitive con-
straints in the future, though we expect that similar improvements from 2°F and
144Ce—144Pr beta decays are also possible. The constraints on the right-handed co-
efficient |ggx|? using an angular distribution measurement in 2v 38 decay are most
sensitive for light sterile neutrino masses my < 0.1 MeV as the effect is otherwise
phase-space suppressed. We note, though, that the limits from single beta decays
(and the other processes shown) apply to |V,y|? and should be re-evaluated for a
sterile neutrino coupling through a right-handed current. However, we expect the
upper bounds on |egy|? to be different by a factor of O(1).

To conclude this chapter, we reiterate that heavy sterile neutrinos are one of the
most interesting candidates for particles beyond the SM. They are conspicuously
absent from the SM field content, so that the left-handed neutrinos v; are the only
fermions that do not have right-handed partner fields. Adding ng right-handed fields
Npg to the SM field content opens up a number of possibilities, with the two main
classes of models either forbidding or allowing |[AL| = 2 mass terms for the sterile
Ng fields. The situation may be somewhere inbetween these two limiting cases.
For example, two Majorana sterile neutrinos with opposite CP phases may form a
pseudo-Dirac states if the source of |AL| = 2 is small. The phenomenology of these
scenarios can be vastly different.

In Section 5.1 we introduced a phenomenological parametrisation of a single-
generation seesaw model in terms of experimentally measurable quantities, such as
active-sterile neutrino mixing angles, CP phases, masses and mass splittings. We
have identified the regions of parameter space allowed by consistency conditions
for the neutrino mass matrix (M, ) in the single-generation case, and have showed
how Type-I seesaw and ISS limits can be recovered (cf. Fig. 5.2). Imposing the
additional constraint that the radiative contribution to the active neutrino mass must
be less than 10% of the tree-level mass further reduces this allowed parameter space,
as shown in Fig. 5.5.

There is a strong ongoing and planned effort to search for sterile neutrinos over

a wide range of masses and active-sterile mixing strengths. The main focus of this
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chapter was to compare direct searches (e.g. direct production at colliders and in
meson decays) with constraints from OV 3 decay. The latter is the most important
probe of light Majorana neutrino masses, but also of exotic |AL| = 2 processes such
as the exchange of heavy sterile Majorana neutrinos. They are therefore constrained
by current Ov3 3 decay searches.

In Section 5.2 we summarised the current and future experimental constraints
on the sterile neutrino (my, |V,y|?) parameter space over a wide mass range, includ-
ing both |AL| = 0 and |AL| = 2 processes (cf. Figs. 5.6 and 5.7), remairking that
the |AL| = 2 constraints are dependent on the relative CP phase and mass splitting
between the two sterile states. This is especially true for OV 3 decay searches,
which are significantly weakened for quasi-Dirac sterile neutrinos (small Amy), as
shown in Fig. 5.9. For large Amy, the Ov3 3 decay constraint remains strong in the
electron sector (cf. Fig. 5.12) and it is most stringent heavy neutrino masses in the
region O(100) MeV < my < O(1)GeV. Future Ov 8 decay experiments be able
to exclude active-sterile mixings close to the Type-I seesaw prediction.

In this chapter we have also analysed the ability of OV 3 decay experiments
to constrain the (my, |V,y|?) parameter space from precision measurements of the
2vB B decay spectrum. If one of the two emitted neutrinos is heavy, we showed
that this changed the differential distribution in the total kinetic energy Ex of the
electrons. The kinematic endpoint is shifted to lower values depending on my and
the the usual SM contribution is reduced by |V,y|?. The very long 2vB 3 decay
half-lives and small rates compared to single beta decay may appear to hinder this
probe. Nevertheless, future searches for Ov 3 decay will push the exposure up to
107 events, making it possible to probe NP with 2v 3 decay [683,683]. We have
also extended the analysis to consider a right-handed current for the sterile neutrino.
Asin Ref. [303], this gives rise to an anomalous angular distribution of the electrons
in 2vB B decay which we use to constrain the (my, |€gx|?) parameter space. While
current limits are not as strong as those from single beta decays, future searches will
improve the bounds in the interesting region 0.3 MeV < my < 0.7 MeV. We note

that sterile neutrinos in this mass range are also constrained by astrophysical and
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cosmological bounds (c.f. Fig. 5.6), but these may be relaxed in certain models. It

is nonetheless important to use all available data in the search for NP.



Chapter 6

Conclusions

“All truths are easy to understand once they are discovered; the point

is to discover them.”
- Galileo Galilei

To conclude this thesis, we have studied a number of topics related to the light
neutrinos (V,, Vy, and vz). From the observation of neutrino oscillations, we know
that the neutrinos are massive and mixed. However, neutrinos are strictly massless
in the Standard Model (SM) of particle physics; this is therefore a hint of physics
beyond the SM. We call the SM plus the new physics (NP) generating the light
neutrino masses the vSM.

The primary question of whether the neutrinos are Dirac or Majorana fermions
is a recurring theme and was reviewed in Chapter 2. There, we outlined how these
two scenarios depend on the conservation of the global lepton number symmetry
U(1),. We also explored the introduction of ng sterile (under the SM gauge group)
states Ng to the SM field content. The resulting phenomenology heavily depends on
the a priori arbitrary masses and CP phases of these states. Regardless of the many
possibilities for the field content of the vSM, we also examined how to parametrise
exotic neutrino interactions using effective operators. Constraining the coefficients
of these operators is a model-independent approach for probing the effect of NP in
low-energy neutrino observables.

In Chapter 3, we investigated the effect of lepton number violating (|JAL| = 2)

charged-current non-standard interactions (NSIs) on long baseline (LBL) neutrino



230

oscillations. If the neutrinos are Majorana fermions, it is in theory possible for the
Vo S \75 oscillation to occur with SM charged-current interactions. However, this
process is highly suppressed by the ‘helicity-flip’ factor ~ (my /Ey)?. We showed
that a |AL| = 2 neutrino NSI at the production or detection process replaces this
suppression with |&|?, where € is the coefficient of the neutrino NSI normalised to
the Fermi coupling constant Gg. Experiments that are sensitive to the charge of the
outgoing Eg are thus able to constrain this parameter. We used the non-observation
of an excess of wrong-signed charged leptons in MINOS and KamLLAND to put
bounds on the flavour structure of this coefficient, comparing the constraints from
microscopic |AL| = 2 processes such as neutrinoless double beta decay (Ovff3)

T conversion in nuclei.

decay and ©~ —e

In Chapter 4 we instead examined the effect of neutral-current neutrino NSIs
on the long-range force mediated by a pair of neutrinos. We re-derived the potential
between charged leptons and quarks (within nucleons) induced by the exchange of
three massive Dirac or Majorana neutrinos with SM charged- and neutral-current
interactions. We next studied the dependence of the potential on the separation and
spins of the interacting particles when one (or both) of the interactions is a right-
handed vector, scalar or tensor interaction. We also introduced a neutrino magnetic
and electric dipole moment and derived a corresponding potential with the exchange
of a photon between the neutrinos and an interacting fermion. With these potentials,
we set out how to derive shifts to the energy levels of atomic and nuclear systems
using perturbation theory. We then used the observed and predicted 15 — 2S5 and
hyperfine splittings in systems such as positronium (e~ e™), muonium (e~ u™) and
hydrogen (e~ p) to derive constraints on the NSI coefficients.

Finally, in Chapter 5 we returned to the inverse seesaw (ISS) mechanism first
outlined in Chapter 2. To study the phenomenology of this extension, we made
use of a single-generation model with one active and two sterile neutrinos. We
showed how the two sterile states can behave like a pair of Majorana fermions
or a single pseudo-Dirac limit depending on the parameters of the model. If the

absolute mass scale m,y of the light neutrino is known, and an experiment observes
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two sterile states with a splitting Amy and mixing strengths |V, ? and [Ven, 2, the
sterile-sterile mixing and CP phases (and thus the Majorana versus pseudo-Dirac
limit) are uniquely determined. We reviewed the constraints on the (my, [Voy|?)
parameter space from a variety of direct search experiments. We compared these
to the constraints from Ov 3 decay; as a |AL| = 2 probe, these constraints heavily
depend on the splitting Amy between the sterile states. In this chapter was also
derived constraints on the (my, |V,y|?) parameter space from measurements of the
2vB B decay spectrum in OV 3 decay search experiments. Using the frequentist
limit setting approach of Appendix C, we took the non-observation of deviations
from the SM differential 2v3 3 decay rate (in the total electron kinetic energy Ex)
at experiments to set limits at 90% CL. We also introduced right-handed vector
charged-current interactions for the sterile neutrinos. We used both the differential
2v BB decay rate in Ex and the enclosed angle between the outgoing electrons cos 6
to set bounds on the (my, |€gx|?) parameter space.

In the near future, the properties of the light neutrinos will be probed to greater
precision by astrophysical and cosmological observations, neutrino oscillations,
beta decays, and Ov3 3 decay searches. For example, the Dirac CP phase dcp and
normal or inverted neutrino ordering may become clear at the next-generation os-
cillation experiments DUNE and Hyper-Kamiokande. Upper limits on the absolute
neutrino mass scale will be pushed down to the sub-eV scale by the beta decay ex-
periments KATRIN and Project 8 and cosmological surveys. Entering this precision
era, the neutrino sector also provides a complementary window to NP. The mecha-
nism generating the light neutrino masses is still unknown and the related NP may
be accessible at future experiments. As reviewed in this thesis, there are a plethora
of possible mass-generation models predicting different experimental signatures.
Depending on the scale of the NP, signatures can explicitly or implicitly imply the
presence of new particles or interactions (e.g. a sub-TeV pseudo-Dirac neutrino or a
right-handed current). For heavy NP, it is important to have a systematic framework
for parametrising the effective interactions induced in the neutrino sector. In the

SM and low energy effective field theories, one can consider the effective operators
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generated by a particular model, or alternatively remain model-agnostic and study
a certain operator or class of operators. To constrain the coefficients of such opera-
tors, it is beneficial to use all the available experimental data, i.e. remain impartial
about where the NP can appear. In this thesis, we have seen how the results from a
variety of experiments (neutrino oscillation, atomic spectroscopy, Ov3f3 and 2v 3
decay experiments) can be interpreted to constrain non-standard neutrino interac-
tions as well as a specific model, the ISS mechanism. As the precision of these
and other experiments improves in the future it will become possible to explore and

constrain more of the landscape of physics beyond the SM.



Appendix A

Neutrino NSI Parametrisation

As mentioned in Chapter 2, in the low-energy effective field theory (LEFT) the
standard parametrisation of charged- and neutral-current type neutrino NSIs in

Ref. [289] is

- —%e (VT0) (dT"u) +h.c., (A1)
e
[,1(\1% = —\/—ge’ (vIv) (yT'y) , (A.2)

where ¥ = {{,u,d} and I and I’ run over the ten combinations of Dirac matrices
in Table 2.6. The coefficients € and &’ have the associated subscripts L, R, S, P or T
and a tilde if the leptonic current is right-handed.

In Chapter 3 we consider the charged-current type operators in the context
of long-baseline neutrino oscillations. Our parametrisation for these operators in
given in Eq. (3.26). The relations between the coefficients ey, with X, Y € {L, R}

(~)
and o € {S,V, T} and the € coefficients are

1% 1%
€L = €L, €IR = ER;
Vo Vo«
ErL = €L, ERR = &R,
SLSL =& +ép, SER =& —€p, (A.3)

S _xl z S x oz
SRL:85+8P7 SRRIES—SP,

T / T _
&iL=2¢r, Err = €1,
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where flavour indices have been omitted.

In Chapter 4 we consider the neutral-current type operators in the context of
neutrino-mediated potentials. Our parametrisation for these operators in given in
Eq. (4.11). The relations between the coefficients cxy, gxy and hxx with X, Y €

(~) .
{L,R} and the €’ coefficients are

/ /
cLL = €, CILR = &g,
o Y
CRL = &, CRR = &g,
/ / / /
8LL =&+ €p, &LR = & —Ep, (A.4)

=~/ ~/ ~/ ~/
8RL=Es+E€p, &RR=E;— €p,
/ ~/
hip = €r, hrr = Er,

where flavour indices have again been omitted. Now including flavour indices, the

following relations apply for the neutral-current coefficients

(AS)

=
=
N~—— N—
q *
2
Q
=
—~
)
=
N—
©
2
Q
=
I
—~
oQ
=
~
N—
q *
2
Q
=

where p, o are the neutrino flavours and a, 8 are the flavours of y. If the neutrinos

are Majorana fermions, additional relations apply to the neutral-current coefficients

(cLL)poiap = —(CrL)opiap: (CLR)poiap = —(CRR)op:ap

(81L)poiap = (8LL)opsaps  (8LR)poiap = (8LR)op:ap » A6)
(8RL)po;ap = (8RL)op:ap>  (8RR)poiap = (RR)op;ap

(hir)po:ap = —(her)opiap> (PRR)poiap = —(PRR)op:ap -



Appendix B

Additional Formulae for Long-Range

Potentials

In this appendix we will summarise some of the key formulae for the derivation of

neutrino-mediated long-range potentials in Chapter 4.

B.1 Spinor Identities and Non-Relativistic Limits

A crucial step to take in deriving the spectral functions or absorptive parts pyg of
the invariant scattering amplitudes Ap is taking the non-relativistic limit of the
external interacting fermion bilinears. This can be done by expanding the bilinears
to first order in both the 3-momentum transfer q = py — py, = pb — pp and the sum

of three-momenta P = py +pg = Po + P};,

[T]a = [y, (Pe) Tusq (Pa)]

P. .
ész <2mwa1“a _ 31 {Fa7},j} _ % [1"“, yﬂ) &y s (B.1)

Q

where I € {1, %, Yu, YuY5, Ouv } is one of the 16 irreducible products of y matrices
and us, (pe) and &, are respectively the four-component Dirac spinor and two-
component Weyl spinor for a fermion Y, with mass my,, three-momentum p,, and
spin sq.

This expansion must be made for the external fermion bilinear at each of the

interaction vertices. Hence the bilinears only appear as the products [I][I"]4.
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We retain the higher orders terms in P and q arising from this product for compar-
ison with the basis of 16 operators in Ref. [447], a complete set of scalar operators

constructed from two spins and two momenta. These are

01=1, (B2)
0,=0y- o3, (B.3)
0s=(64-9)(05-q), (B4)
Ous = %(Ga:tcﬁ)(qu), (B.5)
057 =51(6u P)(05-a)+ ()], (B.6)
O3 = (64 P)(05-P), (B.7)
09,10 = %(oaioﬁ)-q, (B.8)
011 =i(0g X Gﬁ) -q, (B.9)
On2,13= %(oa +0op)-P, (B.10)
O14=(6q x0p)-P, (B.11)
015 = 5 [6a (Px a)(05-) + (. B)]. (B.12)
O16= 560 (Px Q)05 P)+ (o, B)] (B.13)

where (¢, ) is shorthand for (& < B).

The products of scalar-like fermion bilinears are

Na(l]g = d4mgmg,
[%lal¥lp ~ (6a-q)(05-q), (B.14)
Nalyslp ~ —2ma(0p-q),

which are proportional to the O, O3 and Oy + O operators in Ref. [447] respec-
tively. Throughout this work however we consider a SM weak vector interaction
at one vertex and an arbitrary scalar, vector or tensor-like interaction at the other.
These fermion bilinears are therefore not used in this work, but are relevant for

axion-mediated long-range potentials [424,429,701].
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The products of vector-like fermion bilinears are

Wila[P]p = (4mamp —P*) + (64~ 65)4* — (64~ q)(05-q),
—i(6a+0p) - (Pxq),
Wl [Y* 5] =~ 2img (6o x 6) -q—2(mg —mg) (05 - P), (B.15)
[uslalV 15]p ~ —(4mamg —P?) (64 - Gp),
[47s] (V5] = dmamp (6o -q)(Op-q) -

The first of these products contains terms proportional to O, O, O3 and Oy, the
second to O1; and Ojy &= Oq3, the third to O; and finally the fourth to O3. These
products are relevant in the case of a vector-like current at both interaction vertices.
We have not included products containing the bilinear [¢]4 which vanishes accord-
ing to the equations of motion.

The relevant products of scalar-like and vector-like (which must be contracted

with the momentum exchange ¢*) fermion bilinears are

alg1slp = 4mamp (o -q), (B.16)

[%s]ald¥slp =~ —2mg(64-q)(0p-q),

proportional to O, and Oz respectively. These are used for the case of a scalar

interaction at one vertex and a charged or neutral-current interaction at the other.
Finally, we list the relevant products of vector-like and tensor-like (where

again the free Lorentz index must be contracted with the momentum exchange g*)

fermion bilinears,

[ulalo™ av]p ~ 2imaq’ —2img [(6a- 65) 4"~ (64~ q)(0p )]
+2(mg —mg)[op - (Pxq)],
[Yulalo™ qvslp ~ i(4mamp —P*)(65-q) + [0 - (P x q)](65-q),
[Vu¥slal0" qvlp ~ —4mamp (6o x 65)-a— (0a-P)[iq’ + 05 (Pxq)],

(W¥slalo" qvislp = 2i(mg —mg)(6a - P)(0p-q) — 2ime (64 - 6p5)(P-q).
(B.17)
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X
JE(r) 3

O
<

A S T
5
5 3 3 3

M
3
2

Table B.1: Exact values of the dimensionless integrals J(r) for N = {D, M, V, A, S, T}
derived from the potentials Il.’; (r) ~ 1 in the limit of vanishing neutrino masses,

m; =~ 0. These appear in the potentials VO%‘, Vég , Volfg, va and VVﬁT in this work.

The first product contains terms proportional to O, O,, O3 and O4 * Os, the second
to Og £ 019 and Ogs, the third to O11, O12 £ 013 and O and finally the fourth
to O¢ = O7 and O,. These are needed when evaluating the potential for a tensor

interaction at one vertex and a charged- or neutral-current interaction at the other.

B.2 Integrals for Long-Range Potentials

The generic form for the dimensionless integrals appearing in Chapter 4 (functions
of the distance r between the interacting fermions and labelled by the superscript

X)is

IX /dyAl/z(y mr2mr)GX( r)e”Y, (B.18)

(m; +m1)

where the dimensionless variable y = rv/¢, the indices i, j run over either the three
massive Dirac states or N = 3 + ng massive Majorana states, and A(x,y,z) = x> +
y* 42 — 2xy — 2yz — 2zx is the Kaillén function. The functions G(y,r) for the

integrals appearing in the SM neutrino-mediated potential are given by

22 2.4
y m:.r (Am )
Gg(y,r)zg{l— ljz )

y 2y4
m_2—|—3m,'m' 2 (Am%)
GM(y.r) == - i :
J 6 y2 2y4
1 2m_l-2-r2 2(Am?)*rt
Gli(y,r) = 5 {1 + yz{ — y4] , (B.19)
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The functions Gl’; (y,r) needed for the non-standard potentials are

1
Gl[}R(y7r):;7
1 Am? r?
<%mw=;&— 2 },
1 (m —m')2r2
Gi(y,]"):;{l_ ! y2] ’
2m?; r?
Y i
G;S})(yvr)zg{l_ yé }7
o =gli- g
1 (mt+M')2r2
GIT »r _—{1— J ;
) = - ;
22 2,2
G%y(y,r)zl{l—(m’ "2”) s }{1+2(m’+’2"1) r }7
y y y
1 L m2 2 e — )2 2
Ggq%r):__{l_ﬁﬂziggll_}{1+"lﬁi_gﬁll;}’ B20)
y y y

A second set of dimensionless integrals Jl?§ (r) appear in some of the potentials.

These are derived from the first set by performing the operations

5 7rd r*d?
\4 _ \4
%i(r) G‘EE Eaﬁ%m7
d
I35 (r) = (3 - rd—r> >0 (r). (B.21)

The first set of integrals are normalised such that If; (r) =~ 1 for vanishing neutrino
masses m; ~ 0. The values of the second set Jg(r) in this limit are given in Table.
B.1. The functions tend to these constant values in the short-range limit of the

potentials in which they appear.



Appendix C

Statistical Method

This appendix will review the frequentist limit setting approach used in Chapter 5
to derive constraints on the sterile neutrino mass and mixing from 2v 3 decay. We
assume that an experiment measuring a differential rate g—}; will count a number of
events Neyengs distributed over a number of bins Ny, in the observable X. In 2v 3
decay, for example, X could be the total kinetic energy Ex of the outgoing electrons
or the enclosed angle cos 0 between their momenta. The relevant differential rates

dr¥’ drv (i)

are therefore dEx and ;5. The expected fraction of events ANy, per bin will be

the integral of fl—;; over the width of the bin X; to X; 1,

- 1 X dar Xmax (I
AN(’):—/ ax . N:/ ax = Cl
P N Xi dX Xmin dX ( )
where the normalisation factor A\ is the total area enclosed by Z—}; between limits
Xmin and Xmax. In the presence of NP, for example the emission of a sterile neutrino

N in 2v3 3 decay, we assume that the differential rate can be split into contributions

from the SM and NP as

dU _dTsy  dTnp
ax =~ ax M ax

(€), (C2)

where U is a parameter controlling the magnitude of the NP contribution and § is a
set of parameters characterising the shape of the NP distribution.
) ) v . .
For example, the differential rate % in Eq. (5.79) can be written as a sum of

SM and sterile neutrino (produced by the active-sterile mixing |VeN\2) contributions.
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Expanding Eq. (5.79) gives

~ C3
dEx ~ dEx T dEx ~ dEg (€3)

dl—*ZV dFZV dFZV dFZV
neglecting terms proportional to |VeN|4. The first and second terms correspond to

dl'sm d FNP
dX

and in Eq. (C.2) and we identify p = |V,y|%. The mass my of the sterile

o dTRY oo .
neutrino changes the shape of the distribution —~- and so it is included in §. The

dEk

2V and K?" factors in the angular differential rate -2 089 of Eq. (5.77) can also
be split into contributions from the SM and sterile neutrino emission, where now
i = |egx|?>. The SM differential rate constitutes the background, while the NP
correction is the postulated signal. The parameter u is often referred to as the
signal strength.

We now split up the expected number of events in each bin as

Né)lg)p(€> = Nevents ANéQp(é) = Ng(lé(g) +N]§k)g» (C4)

where the expected number of signal and background events per bin are

(i) _ Nevents Xiet  dDnp
Nsig(g) _“ N X; dX dX (C)? (CS)
(i) _ Nevents /X”l X dl’sm
Noe =3 o Xy (C.6)

and & = (£, ). The probability of an experiment observing Né]?s events per bin

given Né,i()p expected events per bin is given by the Poisson probability P(Nél?s \Né,’()p)
The likelihood of the data D given the NP hypothesis, £(D|&), is defined as the
product of the Poisson probabilities over all bins. It is convenient to use the log-

likelihood

Nbins

(i)
—2log L(D|&) =2 Z { exp(§) — N() —I—N(b)slog< Nops )}
eXp(g)

i i 2
Nbins <N(§b)s - Ne(x)p(é ))
NEH (&)

Q

(C.7)
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where the second equality holds via Wilks’ theorem if there are a large number of

events per bin [702]. From this we can construct the fest-statistic

ag =2 (log L(DI&) ~log L(DIE) ). c$)

where é are the values of the NP parameters and g that minimise the log-likelihood
function. The quantity g¢ is expected to follow a x? distribution with one degree of
freedom.

We assume that the experiments do not observe rates deviating significantly
from the SM prediction. We therefore set the number of observed events in Eq. (C.7)
toN, (EQS = Ng()p (&) with & = (£, 0). In reality, however, experiments can be repeated
many times and record a different value of Négs each iteration. This fluctuation
can be imitated by running a series of toy Monte Carlo (MC) simulations of the
experiment. For every toy MC there is a value of g¢, with the mean of these values
being the relevant test-statistic. A representative data set is commonly used as a
good approximation of the MC method in the large sample limit [703]. This is
the so-called Asimov data set D4 for which the observed number of events per bin
N(EQS equals the number of background events Né]’gg [704]. The é that minimises the
log-likelihood to —2log£(DA]é) = 0 is then simply é = (&, 0) which matches our
initial approach.

The magnitude of the test-statistic gg = —2log £(Da|&) translates to a de-
gree of compatibility between the Asimov data set D4 and the NP hypothesis with
parameters & = (§, pt). If § contains a single parameter, combinations of this pa-
rameter and U giving g 2> 4.61 are excluded at 90% confidence level (CL). For
2vBB decay with sterile neutrinos, we will be interested & = (my, |V.y|?) and
& = (my, |€rx|?) parameter spaces. Rather than performing two-dimensional scans
of these parameters, we instead fix my for values over the range ~ 0.1 —3 MeV and
find the value of |V,y|? or |egx|? for which qg = 2.71, corresponding to the 90% CL
upper limit on the mixing/right-handed coefficient.

We finally note that we have not yet included the impact of systematic un-

certainties. Systematic errors altering the total number of observed events without
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leading to distortions in the spectrum can be accounted for by introducing the nui-

sance parameter n

—2log L(D|&,n) ~ Z

. . 2

g (Ve — (1 MNSR(E)) /1 \?
D2t oy - ©Y
i (Gstat)2 + (GSYS)2

On
where oy, is a small associated uncertainty. The remaining systematic uncertainties
are included in the quantity Gs(;?g = Gng()p which adds in quadrature with the statis-
tical uncertainty (G(i) )2 = Né,‘;)p in the denominator of Eq. (C.9). The test-statistic

stat

becomes

ag =2 (log L(DIE, 7) ~log L(DIE. M) ) (C.10)

where ﬁ minimises the log-likelihood for a given & while é and 7] are the values at
the global minimum of the log-likelihood. For the Asimov data set the parameters
at the global minimum are & = (my,0) and 1) = 0 such that —210g£(DA|é ,f)=0.

The test-statistic now reduces to

qe = min (C.11)

LS (624 ()2

. . 2
Nbins (ngk)g—(l—l-n)Ne(x)p(g)) . ( n )2

On

which will is used derive constraints from 2v3 3 decay in Chapter 5.
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