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Abstract: This review is devoted to summarizing recent developments of the linear sigma
model (LSM) in cold and dense two-color QCD (QC;,D), in which lattice simulations
are straightforwardly applicable thanks to the disappearance of the sign problem. In
QC;D, both theoretical and numerical studies derive the presence of the so-called baryon
superfluid phase at a sufficiently large chemical potential (34), where diquark condensates
govern the ground state. The hadron mass spectrum simulated in this phase shows that the
mass of an iso-singlet (I = 0) and 0~ state is remarkably reduced, but such a mode cannot
be described by the chiral perturbation theory. Motivated by this fact, I have invented
a LSM constructed upon the linear representation of chiral symmetry, more precisely
Pauli-Giirsey symmetry. It is shown that my LSM successfully reproduces the low-lying
hadron mass spectrum in a broad range of j; simulated on the lattice. As applications of the
LSM, topological susceptibility and sound velocity in cold and dense QC,D are evaluated
to compare with the lattice results. Additionally, the generalized Gell-Mann-Oakes—Renner
relation and hardon mass spectrum in the presence of a diquark source are analyzed. I also
introduce an extended version of the LSM incorporating spin-1 hadrons.

Keywords: two-color QCD; linear sigma model; chiral effective model; lattice QCD simulation;
cold and dense QCD; baryon superfluid phase

1. Introduction

In recent years, the elucidation of quantum chromodynamics (QCD) in cold and
dense systems has gathered much attention, motivated by the progress of neutron star
observations [1]. In these dense system, quarks confined inside hadrons begin to overlap
as the density increases, and finally, quark degrees of freedom govern the matter. Due to
the complexity stemming from the strong coupling and nonperturbative nature of QCD,
however, it is not easy to unveil this transition in detail.

One of the most powerful tools to shed light on the QCD problem is the first-principles
lattice QCD simulation. However, lattice simulations with a chemical potential at a lower
temperature are not straightforward due to the so-called sign problem of the Monte Carlo
computation [2,3]. Additionally, considering the current difficulty of accelerator experi-
ments, cold and dense QCD can be regarded as a frontier of quark-hadron physics.

The sign problem of lattice simulations occurs when the path integral yields complex
values. Hence, when we focus on two-color QCD (QC;,D) where the gluodynamics is gov-
erned by the SU(2). gauge theory possessing pseudoreality, the troublesome sign problem
disappears. This advantage enables us to apply the lattice simulation straightforwardly
even in a cold and dense system. Indeed, thus far, lattice simulations in QC;D with a
baryon-number (or a quark-number) chemical potential have been conducted by several
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groups to explore the phase diagram with order parameters, hadron masses, thermody-
namic properties, gluondynamics, transport coefficients, and so on [4-34].

In the QC,D world, the pseudoreal nature of the SU(2), gauge theory allows us to
treat a quark and an antiquark belonging to 2 and 2* representations on an equal footing.
As a result, at a hadronic level, for instance, certain mesons and diquarks share the same
properties. In terms of the flavor representation, this is reflected by the enlargement of chiral
symmetry; SU(Ny) x SU(Ny)g chiral symmetry is extended to the so-called Pauli-Giirsey
SU(2Ny) symmetry in QC,D [35,36].

Since (anti)diquarks are bosonic in QCyD, obeying Bose-Einstein statistics similarly to
mesons, they start to exhibit Bose-Einstein condensations (BECs) at an adequately large
chemical potential p4. This condensed phase is referred to simply as the diquark condensed
phase, or the baryon superfluid phase to stress the U(1) baryon-number violation with no
breakdown of color symmetry. Meanwhile, the calm phase connected to the vacuum (zero
temperature and zero chemical potential) is called the hadronic phase.

A schematic picture of a QC,D phase diagram is depicted in Figure 1. In this figure,
the Bardeen—Cooper-Schrieffer (BCS) regime in the baryon superfluid phase is defined

by which the quark density 1, is consistent with the Stefan-Boltzmann-limit value of free

SB

quarks n
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T
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Figure 1. A schematic phase diagram of QC,D.

In order to gain qualitative and predictive insights into the numerical experiments of
cold and dense QC;,D performed on lattice, it is inevitable to translate the numerical results
in terms of appropriate effective degrees of freedom. In the low-energy regime of QC,D
where the system is governed by highly nonperturbative dynamics, such excitations are
brought about by light hadrons. Hence, hadron effective models can be regarded as useful
tools there. The lattice results predict sufficiently suppressed Polyakov loops even in
the dense regime [22,34], indicating that hadronic and quark matters are connected by
crossover. Therefore, hadron effective models would be able to explore the deeper regime
of dense QC,D.

The spirit of hadron effective models is expressed by the following matching equal-
ity [37,38],

ZQCZD = Zeff. model 7 (1)

where the left-hand side (LHS) and right-hand side (RHS) stand for the generating func-
tionals of underlying QC,D and of an effective model, respectively. That is, (maybe concise)
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quantum theory developed in hadron effective models must match that of the nonperturba-
tive QC,D model at low energy. More practically, we make use of

Toc,d = Teft. model (2)

as the matching condition, with the corresponding effective action I' = —ilnZ. This I can
be regarded as an action incorporating quantum corrections, so that symmetry properties
inhabiting QC;,D at a quantum level must be mimicked by the effective model properties.
Those matching properties are the essential points when adopting hadron effective models.

The (approximate) Pauli-Gtirsey SU(2Ny) symmetry is spontaneously broken due to
the emergence of chiral condensates (1) in the vacuum, the breaking pattern of which
is SU(2Ny) — Sp(2Ny) for identical quark masses [39,40]. Accordingly, the Nambu-~
Goldstone (NG) bosons dominate over the low-energy dynamics of QC;D. Due to the equal
treatment of certain mesons and diquarks, those NG bosons are played by N]% — 1 pions
and NJ% — Ny flavor-singlet scalar (anti)diquarks.

When describing those NG boson dynamics, the chiral perturbation theory (ChPT)
framework is useful thanks to its systematic low-energy expansion; it was developed
in Refs. [39,40]. Indeed, this effective model successfully reproduces, e.g., hadron
masses [11,41] and sound velocity [30,34] measured on the lattice for N f=2in the
vicinity of the phase transition to the baryon superfluid phase. However, since the ChPT
is based on the low-energy expansion for only the NG bosons where other excitations are
integrated out [42,43], it is unclear whether the ChPT framework still works at larger y,,.
Moreover, the recent lattice results in Ref. [41] indicate that the next-lightest excitation in
the superfluid phase is an iso-singlet mode carrying a negative parity (I = 0, 07), which
cannot be handled by the ChPT, as depicted in Figure 2. These facts require us to extend
the ChPT to describe other hadrons including the I = 0, 0~ mode for which the low-energy
spectrum of dense QC,D is appropriately delineated.

hadronic baryon superfluid hadronic baryon superfluid
3.0 omeson (/=0,0%) 3.0 - -& nmeson (1=0,0")
-} Antidiquark (/=0,0%) /% -~ Antidiquark (/=0,07)
25 -¥- Diquark (I=0,0%*) 250 i// = -¥- Diquark (I=0,0")
DEE 20 °E= 2.01%:\\ - -¥- mmeson (I=1,07)
s g §15 * s = as T
E E L % s
e 2 Tam -
Lo the lowest 1'09”"'6""’97%%:% =
05 - tg 1 05 \?Tj:g%‘:ﬁ TE AN
VS I S~ S B = L the second-lowest

%860 0.25 0.50 0.75 1,00 0860 0.25 0.50 0.75 .00
HImg HImY

Figure 2. y; dependences of the spin-0 hadron masses at a low temperature, which were computed
in Ref. [41]. The second-lowest state (I = 0, 07) in the superfluid phase cannot be described in the
ChPT framework.

Motivated by this fact, I invented a linear sigma model (LSM) as an extension of the
ChPT based on the linear representation of the Pauli-Glirsey symmetry for Ny = 2 [44].
This effective model allows us to describe not only the NG bosons such as the pions and 0
diquarks but also the scalar mesons and 0~ diquarks collectively, although the systematics
is rather obscure. The latter hadrons are referred to as the parity partners or chiral partners
to the NG bosons, which are predicted to degenerate with the NG bosons at the chiral
restoration point. Additionally, the linear representation of the LSM implies its validity at
a rather high y,, where the nonlinearly realized ChPT framework cannot affect it, since
chiral symmetry is restored at a sufficiently large ;.
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In addition to the ChPT and LSM approaches, other effective models containing quark-
gluon degrees of freedom such as the Nambu—Jona-Lasinio (NJL) and massive gluon model
were employed to theoretically examine cold and dense QC;D properties [39,40,44-74].

In this review, I summarize the main points of Refs. [44,70-72] achieved within the LSM
framework. Since effective models such as the LSM must obey QC;D-inspired symmetry
properties due to the matching condition of Equation (1) or Equation (2), first in Section 2,
I explain the Ward-Takahashi identities (WTIs) related to the spontaneous breakdown
of the Pauli-Glirsey symmetry from the underlying QC,D theory. Next, in Section 3, I
show a derivation of the ChPT based on the Maurer-Cartan 1-form and summarize its
predictions. Then, in Section 4, I construct the LSM and review our works accomplished in
Refs. [44,70,72], comparing them with the ChPT results. Section 5 is devoted to presenting
an extended version of the LSM where, additionally, spin-1 hadrons are incorporated,
which is referred to as the extended linear sigma model (eLSM) [71]. Finally, in Section 6,
the present article is concluded.

2. QC,D Lagrangian for Quarks
2.1. Pauli-Giirsey SU(2N¢) Symmetry

The flavor structure, i.e., chiral symmetry, of QC,D is extended due to the pseudo-
reality of the SU(2), gauge group, which plays an essential role in describing hadronic
excitations in the low-energy region of QC;D. In this subsection, we explain how such
enlarged symmetry emerges by rewriting the QC,D Lagrangian for quarks.

The Lagrangian for Ny massless quarks interacting with the SU(2). gluons is of
the form

L&D = Pily, 3)

where ¢ = (u,d, - - - ) is an Ny-components quark field, and the covariant derivative reads
Dy = (9 — igsAu)y with the SU(2). gauge field A, = Aj (/2 (t{ is the Pauli matrix)
and the gauge coupling gs. To see the chiral structures of the quarks, it is useful to introduce
the left-handed and right-handed quark fields, yr and 1, which are eigenstates of the
chirality operator 5. When employing the Weyl representation, those fields are expressed
as g = 5159 = (Pg,0)7 and g = 5759 = (0,¢,)". Hence, Lagrangian (3) is rewritten
in terms of the two-component spinors 1/3 r and 1/3L as

ﬁlSEZD = 1%51'0’*(8;‘ —igsAu)Pr + 1,[1{1’(7”(8,4 —igsAu) YL, 4)

where o# = (1,0') and 7#* = (1, —0¢") (¢ is the Pauli matrix inhabiting the spinor space).

The form of Equation (4) is universal for any number of colors. The characteristic
feature of the SU(2). gauge theory appears when making use of the pseudoreality of the
Pauli matrix, 7% = —72(7%)T12 (and ¢/ = —¢?(0?)T0?). In fact, these relations enable us to
reduce Equation (4) to the following simple form:

L&, p =Yrio"d, ¥ + g ¥ o' ALY . 6)

In this equation, the extended 2N¢-component quark labeled ¥ is defined by

~

¥ = (P, 91)" = (g, dp, -+, L,de,"')T/ (6)

sl
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with l; R = 0272(% and JJL = 02129} being the “conjugate fields” played by the complex
conjugate of ;. The QC,D Lagrangian expressed in terms of ¥ in Equation (5) clearly
shows a global symmetry under an SU(2Ny) transformation, generated by

¥ g¥ with g€ G =SU(2Ny). )

Since ¥ is a 2Ny-component column vector in the (enlarged) flavor space from Equation (6),
the symmetry determined by Equation (7) is regarded as an extended version of the
SU(Ny)L x SU(Ny)r chiral symmetry. This is sometimes referred to as Pauli-Giirsey
SU(2Ny) symmetry [35,36]. Intuitively speaking, the extension of chiral symmetry reflects
the blindness of SU(2). gluons; quarks and antiquarks belong to 2 and 2* representations
of SU(2).. However, due to the pseudoreality 2 ~ 2*, gluons cannot discriminate quarks
and antiquarks. As a result, these states can be treated on an equal footing in a single
multiplet, and the flavor structure, i.e., chiral symmetry, is enlarged.

From the above argument, QC;D with massless quarks has been found to possess an
SU(2N¢) symmetry generated by Equation (7). Meanwhile, the quark mass term reads

1 _
mass) = —5 (‘I’T(fzrcz/\/lq‘l’ + H.C.) =—¢pMyyp, ®)

where the quark mass matrix in terms of the extended quark multiplet (6) takes the form of
the following 2Ny x 2Ny matrix:

0 —-M
My = i 9
! ( M, 0 ) ©)
with My = diag.(my, mg, - - - ). This mass term obviously breaks the SU(2Ny) symmetry,
similarly to the (explicit) chiral symmetry breaking in three-color QCD. In particular, when

all the quark masses are identical, m,; = m, = my; = - - -, the mass term (8) is reduced to
Bess, = — 2L (YTPRETY + He) = —my (10)
QCzD - 2 () e ) qwlp 7

where E is a 2Ny X 2N¢ symplectic matrix

0 1
E= (1 0) ) (11)

The operator ¥7o?72ETY is not generally invariant under ¢ € G (= SU(2Ny)), but it is
only invariant under h € H belonging to a subgroup of G, which satisfies

W'Eh=E. (12)

This relation is nothing but the definition of an Sp(2Ny) group. Therefore, H = Sp(2Ny),
and the symmetry breaking pattern reads SU(2N¢) — Sp(2Ny) in this particular case.
The number of generators of SU(2Ny) and Sp(2Ny) are 4NJ% —land Nf(2Nf + 1), respec-
tively; thus, the number of NG bosons associated with the breaking of SU(2Ny) — Sp(2Ny)
is

4N7 —1— Np(2Ng+1) =2N7 - Ny - 1. (13)

As in three-color QCD, Nj% — 1 pseudoscalar mesons are responsible for the NG bosons,

which cannot cover the whole number of Equation (13). That is, in QC,D, N J% —Nf=2 Ny @)
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NG bosons emerge in addition to the pseudoscalar mesons. These additional NG bosons
are played by the flavor-antisymmetric and scalar (anti)diquarks which are in the lightest
(anti)baryonic modes, as can be indeed understood by the combination factor 2 Ny Cy.
The simultaneous emergence of mesonic and (anti)baryonic NG modes also stems from the
“blindness” of SU(2), gluons.

The U(1) baryon-number and U(1) axial transformations of ¥ are easily understood
from definition (6). That is, the upper and lower Ny components of ¥ carry opposite
baryon charges and identical axial charges. Thus, when we assign quark-number +1
(baryon-number +1/2) for 1, the resultant U(1)p transformation law of ¥ reads

w UWB —ifsly wigh | — ( (1) 01 ) . (14)
Similarly,
y U4 o—ibay (15)

under the U(1) axial transformation. It should be noted that the U(1) baryon-number
transformation (14) belongs to a subgroup of SU(2Ny). Meanwhile, the U(1) 4 rotation
simply changes the overall phase of ¥, which is not generated by any of the SU (2N ) values.

In the following, we restrict ourselves into two-flavor (Ny = 2) with an exact isospin
symmetry, m; = my = my, which corresponds to the often-used lattice simulation
setup [33], otherwise stated. In this particular case, the symmetry breaking pattern is
SU(4) — Sp(4).

2.2. Algebra of SU(4) and Sp(4)

For Ny = 2 with isospin symmetry, the Pauli-Giirsey symmetry turns out to be
G = SU(4), which contains 15 generators. Since the symmetry breaking pattern is SU (4) —
Sp(4), it is convenient to separate the 15 generators into those belonging to the algebra of
H = Sp(4) and G/H = SU(4)/Sp(4): S' € H(i=1-10)and X* € G —H (a = 1 - 5).
In this paper, we employ

i—1—4 1 T} 0 i=5-10 1 0 Bj‘
- . = . 1
> z¢z<o @y ) 23\ Bt 0 ) (16)

and

s L (70 a5 _ L (0 Dp
X _2ﬁ<0 @) T aa ot o ) 47

to parametrize them, in which TJ‘} =1, B? =1, BJ? = i1, BJZ = 13, B? = i'r]?, B? = 1l
B0 = inl, D* = 12, and D% = it?, with 7123 being the Pauli matrices acting on the flavor
space. The generators belonging to the algebra of the unbroken Sp(4) satisfy

SIE=—E(S)T (SteH) (18)
from Equation (12). Accordingly, the broken generators X* obey
X'E=EX)T (X"eG-H). (19)

The above bases are convenient since mesonic and baryonic modes can be properly sepa-
rated once an effective Lagrangian is constructed.
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For later convenience, we further define

azO_L 10
X _2ﬁ<0 1) (20)

to parametrize the trivial algebra.

2.3. Spurion Fields

Since QC,D with massless quarks preserves the Pauli-Giisey SU(4) symmetry when
Ny = 2, itis convenient to regard, e.g., quark masses as an external-source contribution
breaking the SU(4) symmetry properly. In this subsection, we introduce the so-called
spurion fields so as to formulate such a systematic inclusion of the breaking effects [37,38].
The source term of QC,D takes the form of

same = —¥To 20" — Y220y + Yo Y, (21)

where the spurion fields { (= —{ Tyand ¢ u (= Q;) transform under local SU(4) transforma-
tion as

¢ — 88", Tu—8lg" —iougg". (22)
In this way, the whole QC,;D Lagrangian
Loc,p = LE,p + LEES (23)

preserves the local SU(4) symmetry. We note that the spin-1 spurion {, is introduced as if
to be a gauge field with respect to G = SU(4) symmetry. The spurions can be decomposed
into real fields s*, p?, V;;, and Vp/l‘Z as

5 10 5
I=V2Y (s"—ip")X"E, {u= 2&(2 oS -y UﬁX“) : (24)
a=0 i=1 a=0

In the source contribution (21), by replacing the scalar field s*= with their vacuum

a:0>

expectation value (VEV) as (s = my and setting all other fields to be vanishing, one

can obtain

source o Mg

o P (¥To*2ETY + Hee) = —myp. (25)
— g

This form is, indeed, identical to the mass term in Equation (10). Similarly, a quark chemical
potential p; can be introduced by choosing the VEV of spin-1 spurions as <UZ::%> = Hyg.
Moreover, a diquark source term which leads to condensations of the isospin-singlet and
color-singlet scalar diquarks breaking U(1)p symmetry can also be realized by (p*=°) = j.

To summarize, within basis (24), when taking the following VEVs,

(s"=) = mg, (") =], <U;¢::40> = Hq, (26)
the source term (21) is reduced to

e (¥T2ETX ¥ +he.) — v2j(i®To*2ETX ¥ + hic.)

+2V2u, ¥ sty

= gy -] (;¢T675r3r%¢ + h-c.) +pg 7"y, (27)
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which, indeed, correctly reproduces the quark mass, diquark source, and chemical poten-
tial terms.

In addjition to the systematic inclusion of the physical parameters as in Equation (27),
our spurion-field treatment plays a key role in matching QC,;D and low-energy effective
models. For instance, taking a functional derivative of I'qc,p with respect to s” and p° and
imposing the VEVs (26), one can easily obtain formulas

_ 5FQC2D ‘SFQCZD
= , = , (28)
W =50 (@42 ) =0p° 10).(@w)
respectively, with a shorthand notation of
i
P = —El/JTC’y5TCZTf21/J +he.. (29)

Therefore, making use of matching condition (2), the condensates are found to be evaluated
within effective models as

T 5reff‘ model 5reff~ model
_ OTeff. model , — OLeff. model . 30
W9 =750 oo’ YT o600 o 0

In the same way, any n-point functions of underlying QC,D can be matched with those of
the low-energy effective models.

2.4. Ward-Takahashi Identities

Here, we derive the WTIs from symmetry properties of the SU(4) which also play a
central role when matching QC,D and the effective models. Here, we only focus on the
WTIs connecting spin-0 operators.

Let us define the following spin-0 composite operators:

0% =¥YTo*2EX"Y  (a=0-5). (31)

Under the infinitesimal transformation driven by the broken generators X*, ¥ — e "Xy,
those operators are transformed as

o P01 —igheTe22 ((Xb)TEX“ + EX“Xb)‘I’
o[- \i@e“@g’( (a=1-5), 32)

and
0% B 0% —io"¥ o (x)E+ EX] X ¥

i
0% — —=0"0% (a=1-5), 33
x5 Ox ( ) (33)
where the algebras in Equation (19) and {X*, Xh} = 6YE/4(a,b = 1 —5) are used. Similarly,
under U(1)p transformation ¥ — e ~¥8/¥, one can see

) 0% (a=0-3)
0% =" 0% —ibp¥T?2{], EX}Y = O +2050% (a=4) . (34)
0% —2050%  (a=5)
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Although the composite operators (31) exhibit concise transformation properties, they
include positive-parity and negative-parity states collectively and are not useful as building
blocks of the physical states. For this reason, we also define

Oy = gy =—V20%-V20¥,

0L = iy =—V20% —V20¥ (a=1-3),

O, = Piysp = —V2i0% +V2i0Y,

0% = PisTiy = —V2i0% +V2i0¥ (a=1-3), (35)

for mesonic operators, and

Op, = %wTC’)gTCZTJ%l[J +he = —V2i0% +V2i0%,
Op, = _%qﬂc%rfr}w +he = —V2i03} + V2013,
Oy = f%lpTCTCZTJ%lIJ +he = —V20% — V20%,

1
Op = —EIIJTCTCZTJ%IIJ +he = —V20% - V209, (36)

for baryonic ones. Their transformation laws are easily seen from Equations (32)—(34).
Inserting the VEVs (26) of the spurion fields, the QC,;D Lagrangian (23) now takes the
form of

Lhe,p = Yiey DI + Vamy (0% + OF ) + V2 (i0% - i0% ), (37)

with DY = (0, — igsAy — iuy])¥ and the composite operators being defined by
Equation (31). Under the local transformation generated by X € G —H (a = 1 -5),
this Lagrangian transforms as

G/H . . . .
ﬁZngD o ﬁchzD — 0 [D#]?(a — My (1(9?( - 103?) + 76 (O?( + 09;)} , (38)

in which we have made use of the integration by parts to collectively treat the corrections.
The broken current ]?(a is given by

i =¥t Xy, (39)
with the covariant derivative of the form
. ) ) 4 5
Dyj' = 9uj% — ingduo¥ (X% J] = 9y ]g‘% + 2yq5,40]§4 (a=4) . (40)
dufx —2mgdu0fy  (a=5)

Here, let us focus on an arbitrary functional which takes the form of
(Al
T[0)] = [lafdy] a0y o @)

Assuming that the G/ H transformation law of the operator O reads O GL>H O + 075" @, the
invariance of the functional Z[O(y)] yields the following identity for Green’s functions:

(8°0)6%5(x) = i<T* [ang‘f’ +my (iOé’( - iolg) + \}i(s%a,} (x)@(o)> . (42)
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In this identity, we have set ¥ = 0, and the symbol T* stands for the time-ordering operator
but commutes with any derivatives that maintain the explicit Lorentz covariance of the path-
integral formulation. Therefore, choosing O%, Op,, Op,, and O, for O, from Equation (42),
we arrive at the following WTIs:

(00)8™3(x) = V2T iDLk (x) O%(0)) — img(TO% () O%(0))  (a,b=1-3),  (43)
(00)d(x) = V2(T"iD} ! (x) O, (0)) — iy (TOp, (x) O, (0)) , (44)

(00)d(x) = V2(T* iDL (x) Op; (0)) — itmg (TOp, (x) O, (0)) + ij{TOx (x)Op,(0)) ,  (45)
and
—(0p,)d(x) = V2T D] (x) 00 (0)) — img(TOp, (x) Oy (0)) + if (TO (x) Oy (0)) ,  (46)

respectively, with the help of the transformation laws presented in Equations (32) and (33).
Likewise, the local U(1)p transformation law of the Lagrangian (37) reads
£ UM g 0 [a 140\ IOk — ot 17
QC,D Qc,p — 9B |9ujp t ji0x —i X)} (47)
from ¥ — e 5/¥, with ]g = Y0¥ ¥ being the baryon-number current. Hence, tracing
the same procedure below Equation (41),

(550)8(x) = i<T* [aﬂjg - 2]'(934] (x)@(0)> (48)

is derived, where the transformed part, Jp O, has been defined through O u(_1>) PO+ 05650.

Taking Op, for O in this identity, one can find the following WTI in terms of
U(1)p symmetry:

2(0p,)o(x) = iai‘[(Tjg(x)OB4(0)> — 2ij(TOg, (x)Op,(0)) . (49)

It should be noted that all the WTIs derived in this subsection are valid at any temper-
ature and density since only the symmetry properties of the functional (41) are utilized in
the derivations.

2.5. Gell-Mann—Oakes—Renner Relationships with the Diquark Source

In Section 2.4, the WTIs connecting the chiral and diquark condensates to the particular
two-point functions were derived from the appropriate invariance of the path-integral
formalism. Here, based on the identities, we present the so-called Gell-Mann—Oakes—
Renner (GOR) relationships [75] in the presence of the diquark source j, which is valid as
long as we stick to low-energy QC,D.

First, we focus on the pion sector (43) that is separated from the baryonic sectors and
explicit chemical potential effects. By inserting only a pion one-particle state

3
| G ) ) 50)
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as a part of the complete set (E is a pion dispersion relation), the first term in the RHS of
Equation (43) can be simplified to be (T is the ordinary time-ordering operator)

(T (x) O%(0)) ~ T / aryaE e Anne (51)

where we assume that the amplitude can be evaluated as

O ()| (p)) = ifapoie e,
O[Ok ()7 (p)) = Axzo™e e, -

with a pion decay constant f; and a p-independent matrix element A, . The momentum
ph is defined by p = (Ex, p). Thus, the matrix element (51) is reduced to

* :x HD a _ d4p fﬂpzAT[ﬂ —ip-x
(T2 (x) 0%.(0)) ~ /(Zﬂ)4 g (53)

In a similar way, the second term of the RHS of Equation (43) reads

1|A7m\

e iPY (54)
—E2

(TO4)O%0) ~ T [ s AnfPeire =

and, hence, one can arrive at (A%, = Axrx)

\ﬁfnpzAmr + qugnr

0p) = - .
Ol pi—EX = pi—EZ

(55)

When taking pp — 0 and pg — Ex after choosing the rest frame p = 0, two equations,
m
(Og) = = FAor /0= —V2faZ A+ mg A%, (56)
T

are obtained, with m,; = E; |p:0 being the pion mass. Therefore, eliminating the matrix
element A, we finally find

22 = MO0, 7)
which is nothing but the familiar GOR relation. The factor 1/2 in the RHS is due to the
normalization of f in QCyD, as will be explained in Section 2.6. It should be noted that
this relationship holds at any density as long as the one-pion saturation of the complete set
and momentum independence of A are reasonably satisfied.

Next, we move on to the baryonic sector. The p; independence of the GOR relationship
for the pion sector is due to decouplings from the baryonic sector; meanwhile, the baryonic
WTIs are easily affected by y; and contaminations from O, due to the U(1)p violation
too. In order to reduce these difficulties, here, we restrict ourselves to y; = 0. In this
case, the WTI for Op,, Equation (44), coincides with the pion’s. Additionally, due to the
charge-conjugation symmetry, Op, is always separated from Op. and O,. (Only Op, carries
C = —1, while O, and O, carry C = +1.) Thus, the GOR relation from Equation (44) coin-
cides with that of Equation (57), from which the mass of By is equal to the pion mass. On the
other hand, the WTI for Oj; is still complicated due to mixings from O, stemming from the
U(1)p violation.
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The WTIs for (935 and O, are combined into a single relationship, as shown below.
By defining the mass eigenoperators Op, and O through

Op, \ _ ( cosf —sind Os,
( Os >_ ( sinf  cos@ )( 0, |’ (58)

overlaps of the operators Op, and O, between the B state and the vacuum can be evaluated
to be

(01O, Bs(p)) = c03 (0] O B () = Apgg, cost,
(0104 |Bs(p)) = — sin (0|0, [Bs(p)) = —Agp, sin 59)

where Aj 5. has been defined similarly to Equation (52). Then, introducing the decay
constant f5 by

(017 (0)|Bs(p)) = ifsp", (60)
from Equations (45) and (46), one can derive

ﬂf5p2,43535 cos 6 quZB5B cos? 6 jAZB 5.8in6cos

(O) = + 5 + 585 ,
Po — E3, Ps— E3, Po—Eg,
V2 Ap5.f5 p? sin 0 qu%S B sin 0 cos 0 jA%S B sin? @
<OBS> = = 2 _ 2 2 _ 2 2 _ g2 ’ (61)
Po — Eg, Po — £, Po — E3,

as siblings of Equation (55). We note that all transitions to |7(p)) have been omitted in the
derivation since only the (approximate) NG bosons are assumed to saturate the low-energy
physics of QC,D. Taking py — 0 and py — m at the rest frame p = 0 (the mass of Bs is
identical to the pion mass) in Equation (61),

(Oc) (O5;)
As 5 = — — 5 62
BsBs \@f5 cos 6 \ﬁfg, sin 6 (62)
is found; so, inserting this relation into either part of Equation (61) at p — 0 yields
@ (O
o = "800 IOl (63)
2 2
Finally, the WTI (49) related to U(1)p symmetry is easily derived to be
2 .
@

where the decay constant associated with the baryon-number current fp has been defined
through

(01j5(0)[B4(p)) = ifppt . (65)
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In summary, the GOR relation with respect to the broken current ]?(H and the U(1)
baryon-number current ji, are obtained as

202 = MY Gaany ), (66)
f52m3r _ <2¢’¢’> _ ]<§g¢> (only at y; = 0), (67)
5 )

where the decay constants are introduced from Equations (52), (60), and (65). Additionally,
we have used O, = 1Py and shorthand notation for the diquark operator Op, = .

2.6. Comment on the Decay Constant f

In Section 2.5, the pion decay constant f,; was introduced through matrix element (52)
associated with the broken current ]? and one-pion state |71?(p)). The broken current for
the pion sector can be expressed in terms of the ordinary quark field i as

-Ha

1 - ua
i = Yot Xoe — \—@qﬂy”%Tfalp = ]g (a=1-3), (69)

where Tj’? = Tjﬂ /2 and the familiar axial current jt* = ¢y# s Tj‘h,b have been defined. Then,
the matrix element is rewritten into
1

ﬁ<0|j§m(x)|7fb(;7)> : (70)

(I ()" (p))

The decay constant in three-color QCD, f7; =3 — 93MeV, is introduced with respect
to the familiar broken current ]g “ though

(01" ()7 (p)) = ifpplotePrs. (71)
Hence, Equation (70) can be expressed in terms of fﬂf:3 as

0175 (x)|7"(p)) =Sphgtbeipnx (72)

i
:ﬁfn

and comparing this equation with the QC,D definition in Equation (52), one can find

h—%mﬂ- 73)

Equation (73) implies that the decay constant in QC,D is different from the three-color
QCD one by a factor 1/ /2. Within chiral effective models such as the ChPT, LSM, and
NJL model in QC;,D, the decay constant is, of course, defined through the broken current
associated with the generator X“, which corresponds not to fn”:3 but f.

3. Chiral Perturbation Theory
3.1. Model Construction Based on the Maurer—Cartan 1-Form

Among hadron effective models, the ChPT which treats NG bosons in association with
a certain symmetry breaking is one of the most powerful and standard models due to its

systematic low-energy expansion. Thus, in this subsection, we explain derivation of the
ChPT in QC,D in terms of the so-called Maurer—Cartan 1-form [76].
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Let us introduce the following representative which parametrizes the coset space
G/H = SU(4)/Sp(4),

E=exp(in"X*/fo), (74)

where the 7t%s can be regarded as the NG bosons: three pions, a diquark, and an antidiquark.
Additionally, fj is a parameter with a mass dimension of 41, which corresponds to the
pion decay constant in the lowest order of ChPT, at a vanishing .

From the properties of the coset and representative, one can choose that the ¢ defined
in Equation (74) be transformed under the global SU(4) transformation as [76]

& — gCht(g,m). (75)

We note that 11(g, 71) must be a function of ¢ and 7t for which the representative ¢ correctly
transforms. Here, for later convenience, we introduce the Maurer—Cartan 1-form

ay =i 19,87¢. (76)

This 1-form is indeed useful to construct a Lagrangian from the viewpoint of low-energy ex-
pansion since it includes one derivative, and the G-transformation law is simply generated

by h(g, 7):
ay — h(g, n)aHth(g, ) —id,h(g, mht(g, 7). (77)

The 1-form (76) generally belongs to the algebra of both # and G — H, so we try to separate
them. The decomposition is performed by introducing a sibling of ¢ as

E=E'ZE. (78)

In fact, when defining

1 -
wip = 507 -9u80),
= T+ 8,8 79)
Bl = 27\ e &)
so as to satisfy a, = a, , +a) ,,, those are expanded as

oumtmt
e
Here, [X?, X'|E = —E[X?, X"]T follows from Equation (19); then, the commutator [X?, X"]

is understood to belong to the algebra H from definition (18). In this way, we can conclude
that

a7’
DCJ_/]I - — fO

Xl = X%, X4 (80)

LAINTIS G —H while &)y eH. (81)

Additionally, the transformation laws of &, ;, and a , under G = SU(4) read

aly = hlgmaght(g ),
X, h(g,n)zxuryh*(g,n)—iayh(g,n)h‘L(g,n), (82)
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respectively, with the help of the following property:
¢ — E'g"C"h! (3, m)E = ETg"ECh' (3, 7) (83)

following from the algebras in Equations (18) and (19).
Based on the above building blocks, the SU(4)-invariant ChPT Lagrangian of O(p?)
is constructed as

o(p? -
£o0) = el ] + el + £, (84)
where we have defined
{ =BoZ'(ETE (85)

with By being a constant with the mass dimension +1, the SU(4) transformation law of
which is

{— (g min' (g m). (86)

The field ¢ in Equation (85) is the spin-0 spurion field, which is replaced by its VEV to
incorporate, e.g., the quark mass m, effect in the end, as explained in Section 2.3.

Our main aim to employ the ChPT is to explore the low-energy physics of cold
and dense QC,D, so we need to incorporate a quark chemical potential. The chemical
potential is introduced systematically by gauging Equation (84) with respect to SU(4) to
incorporate the spin-1 spurion field {, and replacing it by the VEV with <v;::‘10> = pq from
Equations (24) and (26). Then, in the following analysis, we will use

1 ot~
&1y = 5:(Dpg’E = Dué™) (87)
as the 1-form, where the covariant derivative reads
Dyt =0, +ig'g, , D&t =0,8"—if'ETCIE, (88)

with §, — (Cu) = 1q0u0], from the transformation properties (75) and (83). On the other
hand, for a while, we ignore the diquark source j.

3.2. ChPT in the Hadronic Phase

In Section 3.1, we constructed the ChPT Lagrangian of O(p?) in terms of the Maurer—
Cartan 1-form in Equation (84). Defining U = ¢ET¢T, the Lagrangian is rewritten to

2
o) = %Otr[DuU*D” uj + Uzt + uty], (89)

which is, indeed, identical to the Lagrangian invented by Kogut et. al. [39,40]. In this
equation, the covariant derivative reads

DU = 2,U —ig, U —ilg) . (90)

Setting (71") = 0, or (¢) = 1, one finds (U) = ET from its definition. This VEV must
be associated with the ground-state configuration of low-energy QC,D, i.e., the chiral
condensate () in the hadronic phase, as long as the diquark source j is switched off
and y, is adequately small. In other words, conceptionally, the VEV takes the form of
(U) « (y)ET for which the remaining Sp(4) symmetry of QC,D is properly built in.
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To gain more insights into this structure, we introduce a quark bilinear ®;; with flavor
indices uncontracted as

Dy =¥ P (91)

Using definition (6), one can easily show that the VEV of a scalar operator ({1) can be
embedded into (®) as (®) = —(1/4)(pyp)ET, and hence, the VEV of ® corresponds to the
correct ground-state configuration of (U): (U) o« (®). This fact implies that when U is
expanded up to O(7), its quark-bilinear representation is identical to the linear operator ®.
In this linearization U reads

0 m —imt - — (! —in?)
. (5 .4 O 3
UnET 4 (m 3171) 10‘2 (" +im?) 571'4 ©92)
V2f s T+ i 0 >+ i
rl —im? - —(r®+in?) 0
Meanwhile, pionic and baryonic bilinear operators ('L'fi = T} + iT]%)
mt ~ i1/_11 Ty, 710~ PivsTiY
\/E 6 f ’ Y5 f ’
[T 2.2 o Lo 2.2 %
B~ ——21/) Cystitsyp, B~ —Elp CrsTT5y™, (93)
are involved in ® as (regardless of the normalization)
0 V2iB —in®  —\2in"
_ . _ . — . O
P ~ \@zB 0 2i7 ¥ (94)

in® 2 0 V2iB ’
V2int  —ind —+/2iB 0

from Equation (91). Therefore, comparing the second term of Equations (92) and (94)
enables us to identify pions and (anti)diquarks as
1o ;2 5_ 4 54 ;4
i:n¢m1ﬂ0:ﬂ3,B:n zﬂ,B:n+z7r, 95)
V2 V2 V2

by choosing normalizations appropriately. We note that the ET part in Equation (92) simply
denotes the vacuum configuration in the hadronic phase: (U) = ET.

By reading off the quadratic term of 77 (@ = 1-3) in the ChPT Lagrangian (89), the pion
masses are derived to be

(m'™)* = 2Bym, ; (96)

meanwhile, the diquark and antidiquark masses read

méH) = mng) —2ug, m,(gH) = mgtH) +2pg - ©7)

In these equations, the superscript (H) has been attached to emphasize that the mass
formulas are valid only in the hadronic phase.

3.3. ChPT in the Baryon Superfluid Phase
The ground-state configuration (U) = ET corresponding to the hadronic phase is in-

. : . . 0t ) p07)
deed realized as a stationary point of the effective potential Vi p" = —( L pr ), unless the
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chemical potential is sufficiently large (or j # 0). On the other hand, this configuration
is altered for p; > mSTH) /2 due to the emergence of diquark condensates, resulting in the
baryon superfluid phase. This phase transition is also signaled by the diquark mass; when
Hg > mSTH) /2, the diquark mass turns to negative, as seen from Equation (97). In this
subsection, we explain how the ChPT Lagrangian is modified in the superfluid phase.

In the baryon superfluid phase, the VEV of (U) is rotated from E” to

U, = VETVI = V2ZET  with V2 =ei®X | (98)

Here, following Refs. [39,40], we employ X = —2ﬁX5 as the rotation axis in such a way
that Equation (98) at a sufficiently large y, approaches U; = diag(r}, T]%) and the diquark
condensates dominate over the ground state. Thus, deviation from &« = 0 denotes the
beginning of the chiral restoration and emergence of superfluidity. In association with the
rotation of the ground-state configuration (98), it is useful to rotate subgroup H so as to
keep parametrizing 1% as the representative of G/ H appropriately. When we define the
rotated generators

Si=V,S'vE X =V, XV, (99)
one can easily show that they satisfy the following algebras of H and G — H correctly,
Sily = —Uy(SHT , XUy = Up(X")T, (100)

similarly to Equations (18) and (19). Thus, adopting these generators, the representative of
rotated-G/ H is provided by

Gy = X8 = VeVt (ga S ol with by € H) ) (101)

with ¢ being Equation (74). Similarly, the other important building block in constructing
the ChPT Lagrangian is provided by

=Wl (&S g ulénl), (102)

like Equation (78). With these quantities, following the same procedure as in Section 3.1,
one can finally arrive at (the rotated field {, would be given by {y = Bo&!{X,&,, the G-
transformation low of which is {, — h,xé,xhl)

2
£ _ JjTOtr[Dy U DU + tr[Ungt + UTE] (103)
We note that the structure of G is not modified even in the superfluid phase, whereas sub-
group H is rotated, and thus the covariant derivative associated with the gauge symmetry
of G takes the same form as Equation (90).

The value of angle « fixing the ground-state configuration is determined by a stationary
condition of the potential within the mean-field approximation:

2 2
VCOh(IfT) = —<£8§I’ZT)> =2f2 {y%(l —cos2u) + (mSTH))z cos IX} , (104)
namely,

2;4% sin2x = (mgTH))2 sina , (105)
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o _ (H)
which yields (per = my ' /2)
e for Mg < Mer : a=0,
H)\2
. _ (mi")
o for pe < py: cosa= —— (106)
4yq

The former and latter solutions represent the hadronic and baryon superfluid phases,
respectively. Upon this ground state, the ChPT Lagrangian is expanded to be

2 1
E?}E?T) = an T T + 24 cos e (dptt® — o)
2 2 2
- ) Mg ~ M pana M5 505 , (107)
A 2 2 2
a=123
in which we have defined
m% = (mng))2 cosa — 25 (cos2a — 1) = 4p7,
mi = (mng))zcoszx — Zyé(cosm +1)=0,
2 (m(H))4
= (mgI )) cos & — 47 cos 20 = 4ji; — 4”7]42 : (108)
q

Therefore, the pion mass is found to be simply given by 2y, in the superfluid phase.
In this phase, the U(1) baryon-number violation leads to a rotated kinetic mixing with
cos « accompanied for diquark and antidiquark states, as shown in the second term in
Equation (107).

Based on the derived mass formulas of pions and (anti)diquarks, we can depict g4
dependences of the masses predicted by the O(p?) ChPT with a vanishing diquark source,
shown in the left panel of Figure 3. In the hadronic phase, the hadron masses exhibit
stable y1; dependences, as analytically evaluated in Equations (96) and (97). In the baryon
superfluid phase, in addition to the monotonic pion mass increment with formula (108),
the diquark mass is found to be always zero, indicating that this state is responsible for the
NG boson associated with the breakdown of U(1) baryon-number symmetry [39,40].

3.0 30[ 7 Z02m, |
@ 2.5 @ 2.5
g 2.0 é 2.0
c 1.5 c 1.5 "_‘%
5 1.0f 5 1.0}~ B
@®© © S~
T 05 T 05 RS T ——
0.0 ; 0.0 :
00 02 04 06 08 10 12 14 0.0 02 04 06 08 10 12 14
g/ m5 gl mi)

Figure 3. j1, dependences of the hadron masses evaluated by the O(p?) ChPT with j = 0 (left) and
j = 0.2my (right).

3.4. ChPT with a Diquark Source j

In order to achieve the baryon superfluid phase appropriately on the lattice, it is
necessary to incorporate a diquark source j; then, we take, or extrapolate, the j — 0 limit at
its end. Sometimes, this extrapolation is not easily achieved, and the diquark source effects
remain in the actual lattice simulation. Then, in order to gain insights into the source effect
based on effective models, here, we keep j finite.
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As demonstrated in Section 2.3, the diquark source j is introduced by replacing the
spin-0 spurion field as p> — (p°) = j. Proceeding with this treatment within the ChPT
framework, as gathered from Equation (103), the phase of the bare-mass term is modified as
cos« — cos(a — ¢) with tan ¢ = j/m,. Hence, in the presence of j, the phase « is not simply
fixed by Equation (106), but is determined by the following modified stationary condition:

2p2 sin2a = (my")? sin(a — ¢) . (109)

This equation implies that « is nonzero when j # 0 even in the vacuum (yq = 0); that is,
the superfluidity always governs the system due to the explicit U(1)p symmetry breaking.
With a finite j, the NG boson masses read

2 _ 2 2 _ -2
my = g cos(a —¢) —2py(cos2a —1) = s T
2 _ 2 2 __sing 5
my = g cos(a—¢) —2pg(cos2a+1) = sy
2 L2
) a2 [ cos*a n-u 5
ms = iy cos(a — ¢) — 4y, cos2a = ( — ¢+ L cos 4)) my,  (110)

where 2 = 2By, /m% + j? is the vacuum pion mass. In these equations, we made use of
the corrected stationary condition (109) to find the right-most expressions. When we take
j = 0.2m, as a demonstration, the hadron mass spectra at finite y, are obtained, as depicted
in the right panel of Figure 3, where y; dependences are slightly modified. In particular,
the NG mode disappears, reflecting the explicit U(1)p symmetry violation.

From the matching (30), the chiral and diquark condensates can be evaluated within
the ChPT as

by :
b = —=12 = —4Gficosa,
i —0s0 ‘<z;>,<zy> o
Ly :
= = —4Gf§sina, (111)
) —op’ ‘<g>,<¢y> o
respectively. This expression is universal to any value of .
2
The broken current within the ChPT is evaluated by taking a derivative of Egng) with
respect to ¢k’ = —ZﬁV’T and setting Equation (26), resulting in
jxu = —focosadym’+--- (for a=1-3),
j§(# = —focos aa},n‘l — 2fopgbuo cos 2u w4 (for a=4),
jg(y = —foBHTES + 2fopgbu0 cos ... (for a=5). (112)
Similarly the U(1)p current is calculated to be
jep = —2V2fr sinad,m* — 4V2frpugdu0sin 20 7 4 -+, (113)

by taking a derivative with respect to {l, = V##=*. From the pionic sector in Equation (112),
one can easily see

fr = focosa (114)
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at any 4, from the argument in Section 2.5. Thus, utilizing the pion mass formula in
Equation (110) together with the chiral condensate (111), the GOR relation (66) is read-
ily confirmed.

As for the baryonic sector, when taking y; = 0 so as to eliminate difficulties due to
the mixings, the decay constants associated with the baryonic broken current and U(1)p
current read

fs = fo (a=5), (115)
and
fg =2V2frsina, (116)

respectively. Thus, using mass formulas (110) and decay constants (115) and (116), we can
easily Verify that GOR relations (67) and (68) certainly hold within the ChPT. (It seems that

(2{’}) m4— %—lp)holds at any p,.)

3.5. Thermodynamic Properties

The ChPT Lagrangian in the hadronic and superfluid phases was derived in Section 3.2
and Section 3.3, respectively, and thus we are now ready to evaluate thermodynamic
properties such as pressure, energy density, and sound velocity. Here, we exhibit y,
dependences of those quantities with a vanishing j [10,77].

From Lagrangians (89) and (103), the pressure p = (L) in the hadronic and superfluid
phases is evaluated to be

2
P = 2f5(mi)?,

BS H\2( 2, 1
perer = fe(m") <u2+ ;ﬂ) (117)
respectively, where I = pg/pier = 214/ mn . The stability of the vacuum (y; = 0) requires
that the vacuum pressure be zero, and thus the correct pressure in the superfluid phase is
the following subtracted one:

1

2
P%lﬂgPT = p(ChP)T PchpT fo ( ) <P_‘ - ﬁ) . (118)

With this subtracted pressure, the baryon-number density and baryon susceptibility are
derived to be

Nchpr =

2
iy _ ng(mng)) < 2 1>
Hq '

g i
Xcher = Ppehin _ = 8f2 (1 + 3) (119)
3 8
respectively. Moreover, the (subtracted) energy density is also straightforwardly evalu-
ated as
2 22
H)\2 (A +3 -1
et = —Pipr + Hencner = fo (mg'[ )) (7 ;(ZM ) . (120)
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Another significant quantity which characterizes a dense matter is the (squared) sound
velocity c2 = dp/de defined along the isentropic trajectory. As long as we stick to zero
temperature, the trajectory is identical to the T = 0 line and the sound velocity is simply
evaluated using

5 n
2= (121)
° HgX

Hence, from Equation (119), one can find

a4
(rryz _ tawr 117 1)
HgXcher 1+3/f

This formula will be used in Section 4.6 to see a difference between the ChPT and LSM
results, focusing on the bulk structure of dense QC,D.

3.6. Hidden Local Symmetry

The ChPT is capable of describing NG boson dynamics based on a systematic low-
energy expansion since the theory is constructed upon the Maurer-Cartan 1-form (76)
including a derivative. However, the expansion cannot converge as the energy scale is
increased due to the appearance of other hadronic modes. Among them, spin-1 hadrons
such as p mesons and axialvector diquarks can also be treated in the systematic-expansion
scheme as an extension of the ChPT, by regarding them as gauge bosons associated with
subgroup H. This systematic treatment of the spin-1 hadrons is called the hidden local
symmetry (HLS) technique [78]. In this subsection, we briefly review how the HLS extension
is achieved in the ChPT of QC;D. For a detailed argument, please see Ref. [52].

In the decomposition of > = GE T@ T one can find redundant degrees of freedom, ot
incorporated via

E=&(m)&(e) with &) =e™X/fr and &(o) =e5/fr, (123)

which is hidden in X because of Equation (18). These secret fields can be identified as
NG bosons of the spontaneous breakdown of Hjoca) = [Sp(4)]1ocal- In other words, now,
the whole symmetry is extended from SU(4) to SU(4) X [Sp(4)]ioca, and &(7t) and &(o)
transform as

E(m) = g&(mh'(x) , &) = h(x)E(e)h'(x), (124)

respectively. Accordingly, the gauge bosons associated with Hjoca1 = [Sp(4)]10cal, Vi, Which
transform as

Vi — h(x) V' (x) —iduh(x)h' (x), (125)

join the low-energy spectrum. This V), belongs to the algebra of H containing 10 degrees of
freedom: V), = V;;Si. They correspond to three p mesons, one w meson, three axialvector
diquark baryons, and three axialvector antidiquark baryons.

With transformation laws (124), we only need to change h(g, 77) to h(x) in Formulas (75)
and (83). Therefore, when we define

(Dug'¢ —Dug's),

1
%
(DU T+ D,E), (126)

=
%
|
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as extensions of Equation (88) with the covariant derivatives
D' = g’ =iVl +ig'gy,
D& = 0,8 —iv,&" —il'ETCE, (127)
one can easily check
Ry — h(X)& LT (x) &y, — ()R hT (%), (128)
and the HLS Lagrangian is readily constructed as
o(p? 1 XA XA -
Lk = *@WWWVW] + fatry 8]+ fgtr[“\l,u"‘ﬁ] + fatr[l+ 1. (129)

In this Lagrangian, the (dressed) spurion field transforms as { — h(x){h'(x), and we
incorporate the kinetic term of the vector bosons from their field strength

Viw = 3 Vy — 9V — i[Vy, Vi, (130)

with an HLS-gauge coupling g,. Within the unitary gauge, the NG bosons are simply
absorbed by the longitudinal modes of the vector bosons, leading to o = 0.

The HLS Lagrangian (129) only includes O(p?) contributions. The O(p*) terms are
listed in Ref. [52] and their contributions to spin-1 hadron masses at finite y; are also
explored in the literature.

4. Linear Sigma Model

The ChPT which describes five NG bosons—three pions, a diquark, and an
antidiquark—is reviewed in Section 3, as the low-energy effective model of QC;D. One way
to extend the model to incorporate spin-1 bosons systematically based on the HLS technique
is also briefly explained in Section 3.6. Although those frameworks are powerful thanks to
their systematic expansion with the power counting, we know that QC,D involves other
light excitations, e.g., the scalar mesons and negative-parity diquark baryons that cannot
be treated by those models. Lattice simulations have been, indeed, used to measure those
hadrons. In particular, the recent lattice simulation claims that in the superfluid phase,
there exists an iso-singlet 0~ mode as the second-lightest hadron, which is lighter than the
pions [41]. This fact implies that the ChPT is no longer a correct low-energy effective model
of dense QC;D, so it is inevitable to construct another effective model which is capable of
describing such hadrons as well based on the Pauli-Giirsey SU(4) symmetry. Thus, in this
section, we introduce the LSM pursuant to the linear representation of the SU(4) symmetry
treating 0¥ mesons and diquark baryons comprehensively.

4.1. Model Construction

In Equation (91), the following 4 x 4-matrix bilinear operator made of ¥,
@y =¥, (131)

is introduced to understand the bilinear representation of NG boson s, which are in-
corporated nonlinearly within the ChPT framework. Meanwhile, the bilinear operator
® contains 12 degrees of freedom as real numbers since ® = —®7, implying that we
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can assign 12 hadronic states to parametrize ® maximumly when employing the linear
representation of Pauli-Giirsey SU(4) symmetry. Thus, the following 12 hadron fields,

e~ Piysy, 7 \[EL’WSTf p, 1~ iy, o~ Py, f¢Tf v,
ag ~ 1/31']?1/; , B~ — flpTC%TZTJ%lp B~ —71/; CysT szl[)* ,
B ~ \flpTCTszzp B ~ ﬁw CTPtry*, (132)

can be embedded into ® as

Ufileragfino

0 —B'+iB 7 ag —in"
; - —in—aQ+im®
1 B’ —iB 0 ag —im~ %
OnT=o| e o V2 %)
_T _ﬂo +17T 0 _B +1B
Cin—a0 i _ _
—af +int T BB 0

In this equation, X is defined as a mass-dimension +1 matrix with a normalization factor
of 1/2, chosen for later convenience. Matrix (133) is expressed concisely in terms of the
generator X“ together with the symplectic matrix E as

%= (8 —iP"XE, (134)

where the §%s and P?s (@ = 0-5) are related to the hadron fields by

1 ;p2 5_ pi 54 pid
p=P0, gt = D FPT 0 s g PP PRAIP
V2 V2 V2
1:g2 5_ ;G4 54 ;G4
U:SO, gzﬂ,agzg?’,]g/:ﬁlglzﬁ_ (135)
V2 V2 V2
Quantum numbers of these spin-0 hadrons are tabulated in Table 1.
Table 1. Quantum numbers of the hadrons in Equation (135).
Hadron Spin and Parity (J*) Quark Number Isospin
n 0~ 0 0
T 0~ 0 1
o o+ 0 0
ap 0Jr 0 1
B (B) 0+ +2(-2) 0
B’ (B') 0~ +2(-2) 0

From interpolating field (131), the SU(4) transformation law of X. is readily understood
to be

¥ — g¢xg! with g€ SU4). (136)
Thus, one can construct an LSM Lagrangian preserving the SU(4) symmetry as [44]

Lisy = tr[D,ETDFE] — mdtr[EFE] — A (tr[2F2))? — Agtr[(ZF2)?]
+C tr[CJrZ + Z+€] ~+ Lanom. (137)
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where Lanom. is responsible for the U(1) 4 anomaly of QC,D, which generally takes the
form of

Lanom. = St[EX+ £121 + T (€2 + £721)% + 2u(S'eju(fs + £127],  (139)

with ii]- = %eijklzkl- These terms indeed break U(1) 4 symmetry, with which the U(1) 4
transformation of X is simply generated by & — e~ 04 ¥e =04 = e~2%4¥%, Tn Equation (137),
the covariant derivative is defined by

DX = 9,% —if, L —i%{}, (139)
and the spurion fields { and {, exhibit transformation laws of

7 — 828", Tu— 8lug" —idugg’, (140)

which are, of course, the same as the ones introduced in the QC,;D Lagrangian in
Equation (21). In the end, we replace them with the VEVs in Equation (26) using
Equation (24) to take into account the quark mass, diquark source, and chemical potential
effects. We note that the det® + det™" term for the anomaly effects adopted in Ref. [44] is
obtained from the c; term with the help of the following identity:

(tr[EZ + £F21)? = —8tr[(Z12)2) + 4(tr[=12])” + 16(detT + detZt) . (141)

The latest lattice result where disconnected diagrams are also included seems to imply
that m,gH) / mgtH) is close to unity, and the U(1)4 anomaly effects may be suppressed, at
least in the vacuum [79]. Hence, in the following arguments, we will ignore the anomalous
contributions, a = ¢; = ¢» = 0, otherwise stated.

4.2. Phase Structure from the LSM

As in the ChPT analysis, the current LSM undergoes a phase transition to the baryon
superfluid phase, driven by the emergence of diquark condensates. Unlike the ChPT,
within the LSM based on linear representation, such effects can be represented directly by a
mean field of the positive-parity diquark baryon. Hence, here, we consider

o= (o), A= (P, (142)

for the chiral condensate and diquark condensate. From formula (30) matching the under-
lying QC,D, diquark condensates within the LSM are evaluated to be

. dL1sm N
= - — 2 7
<llnl]> _aSO <€>r<é}t> o0
9L1sm N
= = —V2CA. 143
W) —ap° 1)) (143)

At the mean-field level, the effective potential takes the form of

2
A .
0 (A2 4 02y + 208 + 822 = V2e(mgo + ), (144)

ViSu = —2gA% + =
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where A = (4A1 + A3)/4. The phase structures, i.e., ji; dependences of 0y and A, are
determined by finding stationary points of this potential with respect to these mean fields,

V2ém V26
2 q _ 2 2 ]
<mn— - 00=0, |mzy—4uz— A

0

)Azo, (145)

from which the pion mass at any y, reads
m2 = md + A(og + A?) (146)

by expanding Lagrangian (137) upon oy and A. Here, we take j = 0 to exclude the diquark
condensates in the vacuum. In this case, solving the gap equations yields

° for pg < pler: 09 = USH) = (constant), A=0.
e H)\2 H)\2\11/2
o for e <py: o= 3% 8= (@) - ef o} (4 - ("))
(147)
where mng) = ﬁch‘/ O’éH) is the pion mass in the hadronic phase. Thus, the critical

chemical potential por = mng) /2 separating the hadronic and baryon superfluid phases
is identical to that found in the ChPT framework. It should be noted that the NJL model
analysis also derives the same pi¢ [47].

The 14 dependences of 0y and A with j = 0, j = 0.2my, and j = 0.5m, are depicted
in Figure 4. In plotting this figure, we used large-N, suppression [80] for the parameters,
ie, Ay =0, and adopted

(H)

mt — 738Mev, m!E)

b = 1611MeV, (148)

as inputs from the measured hadron masses on the lattice [41]. In addition,

ol = 250 MeV (149)
was employed as a typical value for the chiral condensate in order to fix the remaining
parameter. The figure indicates that when j is finite, A always acquires nonzero values
leading to the superfluid phase, whereas the hadronic and superfluid phases are well
separated for j = 0, as analytically found in Equation (147). As long as j is not sufficiently
large, the prominent chiral restoration and evolution of A start at y; ~ mgTH) /2.

2.0 i0 2.0
—_——— j=02m,
15 - = j=05m, 15
<5 s
T 1.0} S0
o N — - SR
0.0 0.0

00 02 04 06 0.8

Figure 4. p; dependences of the mean fields oy and A with j = 0 (solid), j = 0.2m, (dashed), and

H
gl mi

1.0

1.2

1.4

00 02 04 06 08 10 12 14

pg!m(y

j = 0.5m; (dot-dashed). The vertical gray line represents j4/ mSTH> =1/2.
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4.3. Hadron Mass Spectrum at Finite i,

In this subsection, we restrict ourselves to a vanishing diquark source, j = 0. In this
limit, the parameters are fixed to be

M=0, Ay =656, mj=—(693MeV)?, mye = (456MeV)>, (150)

where A; = 0 stems from the large-N. expansion [80]. With these parameters, we are
ready to numerically explore the hadron masses in cold and dense QC,D matter with the
LSM. The pion mass formula is provided in Equation (146). The other hadron masses are
evaluated by reading off the quadratic terms of each field in Equation (137), which reads

A -
mgo = m2 + 72(05+A2) , m%ﬂ = m2 —4;%, mgﬁ = m% —4],13 +2AA%,
my = my + 205, mhs, = 2A00A, (151)
/\2 AZ
mé4 = i—4y§+ 7(U§+A2) , m285 = m%—4y§—0—7(73,
m? = m? + M p A2 (152)
i T 2 7 85,7 2 [

We note that (P*, P2, ) and (S*, S, ) exhibit state mixings due to the baryon-number vio-
lation, leading to the following 3 x 3 propagator-inverse matrices in the momentum space:

p?—mb,  2ilgpo 0
iDoips, (P) = | —2iugpo  p? —Zm%s —Zmésaz , (153)
0 s, PP g
p2 — m§4 2ipgpo 0
iDgigs, () = | —2iHgpo P2 —mG  —ms, (154)
0 _W%S'? p* —my

The former hadrons share I = 0 and 0, while the latter share I = 0 and 0.

Depicted in Figure 5 are the y; dependences of the mass of the 0" hadrons (left) and
0~ hadrons (right) with parameter set (150). Both figures indicate the stable y; dependences
of the hadron masses in the hadronic phase, reflecting the so-called Silver—Braze property.
In the baryon superfluid phase, meanwhile, notable behaviors are found. For instance,
o, B, and B mix, while 5, B/, and B’ do not, due to the U(1)p violation. Among the
0-B-B mixed states, a massless mode is obtained, which corresponds to the NG boson
accompanied by the U(1)p breaking. Additionally, the nonlinear mass suppression of the
lightest mode of the -B’-B’ mixed state which was observed by the lattice simulation [41]
is successfully reproduced, in contrast to the ChPT framework. From this reproduction, one
can conclude that the present LSM is regarded as a plausible effective model which correctly
describes the low-energy hadron spectrum in cold and dense QC,D. For comparison, we
exhibit the simulated mass spectra of iso-singlet 0* hadrons at a finite y, in Figure 6,
although some artifacts originating from a finite diquark source j contaminate the spectra.
On the lattice, the mixings are indicated by the mass degeneracies. We note that the
pion mass is analytically evaluated to be m, = 24, which is consistent with the lattice
simulations [41].
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0* hadron masses
N

N ——0
B
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0, B, Bmix
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00 02 04 06 08 10 12
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0~ hadron masses
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o
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n, B', B mix
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00 02 04 06 08 10 12

l‘q/mﬁrH)

Figure 5. Mass spectra of 0" (left) and 0~ (right) hadrons evaluated within the present LSM.
(H)

The masses are scaled by m ,TH . The figures are taken from Ref. [44] and legends are slightly modified.

3.0 Meson (/=0,0%) 3.0 _ -@~ Meson (I=0,0")
-H} Antidiquark (/=0,07%) /% -f} Antidiquark (/=0,07)
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Figure 6. Mass spectra of 07 (left) and 0~ (right) iso-singlet hadrons measured on the lattice.
The figures are taken from Ref. [41].

Quantitatively, the nonlinear suppression of the mass of the lightest 7-B’-B’ mixed
state measured on the lattice is rather mild, while the present LSM result, in the absence of
a U(1) 4 anomaly effect, exhibits a substantial mass reduction, as shown in Figures 5 and 6.
In Ref. [44], it was demonstrated that as the U(1) 4 anomaly effects are enhanced within
the LSM analysis, and the suppression is weakened so as to approach the correct behavior
measured on the lattice. This observation suggests that the anomaly effects for hadrons
are enhanced in the superfluid phase, while in the vacuum, the effects seem to be signifi-
cantly suppressed. A similar anomaly enhancement at a finite density was also discussed
with respect to three-color QCD by means of the functional renormalization group (FRG)
method [81,82].

In Figure 7, we depict the mass spectrum of 0" and 0~ hadrons collectively for
which mass degeneracies of the parity partners are clearly seen. At a sufficiently large
114, the mass degeneracies hold for the pairs (71,0), (17,a0), (B, B'), and (B, B’), where the
mixings disappear.

ag g m=—— T mm—— 7
— B B - B’ B’
0, B, Bmix =~ ===-- n, B', B' mix
4f
0
g
n
g
c 2|
o
el
£
0L, . . . . . ;
00 02 04 06 08 10 12

Mq/erH)

Figure 7. j1; dependences of 0* hadron masses. The figure is taken from Ref. [44], and legends are
slightly modified.
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4.4. LSM with a Diquark Source j

The inclusion of the diquark source j has no influence on the hadron mass formu-
las directly, but it modifies their effective potential, since j couples to A linearly, as in
Equation (144). As a result, ; dependences of ¢y and A are altered, as demonstrated in
Figure 4, and accordingly, the hadron mass spectrum is changed.

Figure 8 exhibits the y; dependences of the hadron mass with j = 0.2m;. For a
finite j, A is always non-vanishing and ¢-B-B mixing and #-B’-B’ mixing occur at any .
Additionally, the NG mode does not emerge since U(1)p symmetry is explicitly broken.
The figure shows that the mass degeneracies between the chiral partners are clearly realized
for a large ;.

4.I '
[}
3 3t ]
(2]
g /
c 2l ]
e ag
g, T
L 0,B, Bmix |4
T 0, B', B' mix
00 02 04 06 08 10 12 14
/Jq/m(rlr_l)

Figure 8. ;1; dependences of 0* hadron masses with j = 0.2m,.

In the following, we check the GOR relation analytically presented in Section 2.5
within the LSM. The broken current within the LSM is obtained by taking a derivative of
EifoM with respect to @g(y = —2/2V’?, as shown in Section 3.4, which yields

&V:A%%ﬂ+m (fora=1-3),

e = %aﬂﬂ + V20080 PP -+ (fora=4),

. A

]§(V = \%aﬂﬁ — — 0,0 — V2ua008,0P* + -+ (fora=5). (155)

V2

Similarly, the U(1)p current is derived to be
jl = 200, P* + 81 AP + - - -, (156)

by taking a derivative of the Lagrangian with respect to ¢ g = V=% From the pion sector,
immediately,

_ %
fﬂi\/i

is found by virtue of the definition of decay constant (52), regardless of its trivial sign. Thus,

(157)

we can easily check the GOR relation for pions in Equation (66), from which the pion mass

and chiral condensate are denoted by m2 = \/2¢m, /0y and Equation (143), respectively.
As for the baryonic sector, again, we take y; = 0 to achieve concise relations. In the

LSM framework, even in the vacuum, P° and ¢ mix due to the baryon-number violation
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that was absent in the ChPT analysis, as explicitly shown in Equation (153). The mixing is
solved by introducing mass eigenstates P° and & via

D5 o 5
(7? ) _ (C(.)Sﬁ sml9><77 >’ (158)
o sind cos®d o

where the mixing angle ¢ is determined to satisfy tan® = A/cp from Equation (153).
The corresponding mass eigenvalues read

m% =m2 , ms=m>% +2A(0f +A?). (159)

Inverting mixing matrix (158), P> and ¢ are expressed as a function of P?, and the current
jg(y in the vacuum in Equation (155) can be rewritten into

6+ Asinf_ §HA%
],;H:aocos\}% sin 8;ﬂ>5+~~: oy + a}1735_’_.”1 (160)

resulting in

0—2 +A2
fs=1\l"5— (161)

Using m% = /2emgy /oy = V26j/ A at #q = 0 and Equation (143), the GOR relation for the
baryon in this limit, Equation (67), can be verified.
Finally, from Equation (156), the decay constant fg is evaluated to be

fB=2A (162)

within the LSM. Meanwhile, m% = /2j¢/A at #qg = 0. Hence, using these equations
together with Equation (143), one can confirm that the GOR relation associated with U(1)p

2
symmetry (68) is certainly satisfied. (At a finite y,, (%) m%4 = <‘/’1P> seems to hold,

similarly to the ChPT framework).

4.5. Topological Susceptibility

The hadron mass spectrum from the LSM was presented in Section 4.3, indicating that
the U(1) 4 anomaly effects in the superfluid phase are enhanced from the behavior of the
lowest mode of the 7-B’-B’ mixed state. One of the useful quantities to explore within the
U(1) 4 anomaly is the topological susceptibility, which is defined by

52T
4 QGC,D
Atop = /d 30(x)56(0)

/ d*x(0]T*Q(x)Q(0)[0) , (163)

since Q = g¢2/(64m? )eMPrGL, Go, (Gyy = 0uAj — 0y A} + gsAZAfj is the gluon field
strength) is nothing but the topological charge responsible for the anomaly. Regarding the
lattice, two groups, a Japanese group and a Russian group, have simulated the topological
susceptibility at a finite y4 [25,34,83]. However, those results seem to be inconsistent even
on a qualitative level; the latter result indicates a suppression of xop at a large y,, while
the former result exhibits a constant behavior. Thus, in this subsection, we investigate
the topological susceptibility at a finite y; within the LSM to present useful information
from a model study, and discuss the fate of the U(1) 4 anomaly effects in cold and dense
QC,D [70].
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The QC,D Lagrangian with the 6 term is given by
— 1 82
Loc,p = Loc,p — 4G;VGW” +0 :r "Gy, Goo (164)

where the quark part CqQCZD is defined by Equation (23). After a U(1) 4 transformation of
p — exp|(i60/4)7s]¢, Fujikawa’s method [84] yields a modified Lagrangian as

Lhesn = iy — myfexpl(i6/2)s]p — 1L G™, (165)

whose 0 dependence is now absorbed into the fermion mass term. Therefore, the topological
susceptibility is evaluated to be

1 - .
Xtop = /d4 QCZD = -1 {mq@plp} +1m§)(,7}

lm;
= T(Xn - Xiy) ’ (166)

with FGQCZD = —ianGQQD being the effective action generated by the rotated QC,D La-
grangian (165). In this equation, the meson susceptibilities are defined by

vo= [ dx(010,(x)0,(0))0),

X0 = [ dO[TOL)04O)0), (167)

and the composite operators are defined in Equation (35). Additionally, in obtaining
Equation (166), we have made use of

($y) = —imgxr, (168)

which is nothing but the first identity in Equation (56). Equation (166) indicates that
the finite topological susceptibility is induced only when x; deviates from x. These
susceptibility functions are two-point functions of the corresponding composite operators
with vanishing momentum. Thus, unless state mixings occur, they are essentially denoted
by X o« —i/m? and x, o —i/m%, where m; and m, are the pion and 77 meson masses.
The difference between 7 mass and pion mass is generated by the U(1) 4 anomaly effect,
so one can understand that the finite topological susceptibility is induced by the anomaly
effect together with the current quark mass m, [70].

The functions x, and Xy are evaluated within the present LSM by virtue of matching
condition (2). That is,

1 .4 07Taoop 1[4 0Tism 2
=7 [ s = | P e =26Dy(0), (169)
i. pO(x)sp°(0) Oz p°(x)op°(0) DAL
and
1 52T 1 5T
g — L [ g4, 9 1QGD == [y LSM = 267D (0)(170
X ; / x5p”(x)5pb(0) ; / x(SPa(X)5Pb(O) ¢“D7(0)(170)
(9R() (D)A8u)
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(a,b = 1 - 3), respectively, for which the spurious p? were introduced in Section 2.3.
In these equations, D, (p) and D (p) are propagators of 77 and pion, respectively. Using
these effective-model expressions, the topological susceptibility can be evaluated to be

I, (H)\2, (H)\2
xiop = 5 (1) () (D (0) = D (0) ) (171)
In the hadronic phase, these propagators are simply given by

i i
—m5 + Drlp) =
H)\2 i

p? — (my")

(172)

On the other hand, in the superfluid phase, Dy (p) is contaminated by mixings among the
11-B'-B (or 7-8*-8%) modes due to the U(1) baryon-number violation, but it is straightfor-
wardly evaluated by picking up a D; component by inverting the 3 x 3 matrix (154).
The resultant p; dependences of the topological susceptibility with a vanishing di-
quark source j are depicted in the left panel of Figure 9. For this figure, we chose
m,gH) / mSTH) =1.0,1.05,1.2,1.5 to take a closer look at the anomaly effect, where the anomaly
effects are incorporated through the det®. + detZ' term following Ref. [70]. The figure im-
plies that the topological susceptibility is always vanishing when the anomaly effect is
absent. When the anomaly effect is switched on, in the hadronic phase, a constant xop is
induced, the magnitude of which is enhanced as we impose a stronger effect.

0.020 «— Analytic j=0 0.020
+ 0.015 TS
Tk (A
é 0010 ------------------------ miyt = 1.5mgY
g 5 -
<0005 T =< 0.005 = 0.18m, S
0000700 0.000
00 02 04 06 08 10 1.2 00 02 04 06 08 10 12
g/ mi) g/ miE)

Figure 9. p; dependences of the topological susceptibility xtop normalized by (mng))4.
The left and right panels show mglm / mSTH) dependences with j = 0 and j dependences with

m,gH) / mng) = 1.5, respectively.

The left panel of Figure 9 exhibits suppression of the topological susceptibility at
a large p,, particularly for a larger m,gH) / mSTH). To explore this behavior in detail, we
rewrite Equation (166) in terms of the low-energy quantities. That is, with the help of GOR
relationship (66), we can express the topological susceptibility (166) as

2,2

Yiop = 226, with 5m=1—j§i.
s

(173)

In this equation, f and m are the pion decay constant and pion mass in the superfluid
phase, which read f; = 09/ /2 and m; = 2u, within the present LSM, respectively. Using
the asymptotic value of x,/xx ~ 1/3 [44] and an identity fam} = ( 7(TH>)2 (mSTH))4, one
can approximate Xtop for a sufficiently large y, as

H)\2, (H)\4 H)\2,  (H)\4
00 0 W 0 N0 (74)
Xtop 3m2 B 12 Fa
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In the left panel of Figure 9, the black curve corresponds to this analytic solution, which is in
good agreement with the numerical behaviors. Therefore, we conclude that the asymptotic
suppression of the topological susceptibility is accompanied by an increment in pion mass,
mz = 214 in the superfluid phase, i.e., chiral restoration.

In the actual lattice simulation, it is not so easy to take a zero limit of the diquark
source, so it is worth studying the effects from the diquark source j within the LSM analysis.
These effects are incorporated by (p°) = j for the spurion field, leading to

X:\(;}/)] = Xtop + 5Xtop ’ (175)

in which xiop is defined in Equation (166) and the corrections driven by the diquark
source read

i i,
Stop = 5MqjXpyy + 71 (X8, — Xpy) - (176)
The first contribution represents a mixed effect from the baryonic and mesonic sectors
proportional to 1m,j, while the second one shows a pure baryonic effect proportional to j2,
with the susceptibilities defined by

Koy = [ @O0, (x)050)/0),
xo, = [ dx(0TOR,(x)0s, 0)]0)
Yo, = [ @x(0TOy (x)0y (0))0) (177)

Here, we define the following composite operator of the negative-parity diquark:
Op, = —%l[JTCTCZszl/J +Hec.. (178)

Susceptibility functions (177) can be evaluated within the LSM framework similarly to
Equations (169) and (170).

The resultant topological susceptibilities with j/m,; = 0,0.05,0.1,0.18 and
mS]H) / mgTH) = 1.5 are exhibited in the right panel of Figure 9. As j increases, the sup-
pression of xtop diminishes. In particular, when j/m,; = 0.18, the topological susceptibility

is approximately constant in a range of 0 < p; < 1.2m STH).

4.6. Sound Velocity

Recently, the sound velocity at a low temperature was simulated on the lattice [30,34],
as exhibited in Figure 10, indicating that the sound velocity exceeds the conformal limit
¢z =1/3 for g 2 0.7m ;H). Meanwhile, we know that, finally, it must converge on the limit-
ing value ¢ from the following simple dimensional analysis. When the chemical potential

is sufficiently large, y; > Aqc,p, the pressure p takes the form of (« is some constant)
p~ g, (179)
since the system is dominated by only y,;. Hence, the number density and its susceptibility

are derived to be n = 4ap) and x = 12ap3, resulting in

== (180)

2 40(;43 1
S pgx12ap2 37
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with the help of formula (121). Therefore, the lattice result implies the existence of peak
structures of CS at some p,.

1 PSP A L | B 1 i
[ conformal bound .
L ChPT i
0.8F T=80MeV —O— [ .
~ [ T=40MeV —A— T ]
O 06k Hadronic | BEC! [ 17 4
=t O I % % Rag ]
T oaf ? 2 .
: /A
0.2 4 | BCS 1
0 N M P PR | 1
0 025 05 0.75 1 1.25

Figure 10. The lattice result on the sound velocity at a finite chemical potential. This figure is taken
from Ref. [34].

As investigated in Section 3.5, the sound velocity evaluated within the ChPT exceeds
the conformal value ¢Z = 1/3 but monotonically approaches c2 ~ 1 at a large y; without
exhibiting any peaks [10,77]. This behavior contradicts the above simple dimensional
analysis. This contradiction emerges because the ChPT framework is constructed upon
the manifold of G/ H, which requires a definite energy scale to break certain symmetries.
In fact, pressure (118) is always proportional to the decay constant fy. On the other hand,
the LSM is based on a linear representation of the Pauli-Giirsey SU(4) symmetry which
naturally allows us to enter the symmetry restored phase. Thus, there is no intrinsic energy
scale to characterize the symmetry breaking, and the correct asymptotic behavior of the
sound velocity is expected to be reproduced. Keeping this expectation in mind, here, we
examine the sound velocity within the LSM, particularly focusing on the influence from
the chiral partner structure, as an extended model of the ChPT.

From the effective potential (144), the appropriately subtracted pressure derived within
the LSM is evaluated to be [72]

sub

it = PEhpr + 0P, (181)

where pﬁj‘ﬂgPT is the subtracted pressure from the ChPT (118). The additional contribution
Spis (1 = 1o/ tier = 231, /MY
pis (i = pg/Her = 2pq/ Mz ")

4
5P:(f7(TH))2(m51H))2[5-2 <ﬁ2—1>2], (182)
mU‘*T[
with
H)\2 H)\2
sl (mi)? = (m3") (183)
-1 2 ’
W

and f,(TH) = 0'(()H) /+/2. In this equation,

(mfN? = mE+3i(ei™)?, (184)



Symmetry 2025,17, 124 34 of 45
are the masses of the pion and sigma meson in the hadronic phase, so that
3 ((H)\2
24 (™)
-2 0
Oy g = ——75—. (185)
MCI'

Thus, in a limit of y1; — oo, we can see dp — yg /A, which dominates over the ChPT result
peiipr and
sub 1 4

Pism = 5Hq - (186)
This scaling is indeed consistent with the simple dimensional analysis (179). Notably,
the correction (182) is proportional to the inverse of the chiral partner mass difference
sm2_ . In a limit of m((TH) — 00, p vanishes and the pressure is reduced to psC‘ﬁ’PT, which is
consistent with a fact that integrating out the o meson from the LSM derives the ChPT.

From the pressure (181) and the energy density, the number density and its suscepti-
bility are readily obtained in the following forms,

sub _ sub
€lsM = €Chpr T 0€,
sub _ sub
nigm = Meppr 01,
b b
XisM = XCnpr +OX, (187)

with the corrections evaluated as

e = ()|

Sz,
2(fIN (T g
o = X )qu( ) 511‘13771(#4_#2)'
8
ox = 8(f7(zH>)2[5m3n(3142—1)]. (188)

All these corrections vanish when taking m, — oo to reproduce the corresponding ChPT
results. The resultant sound velocity is given by

(CLSM)Q _ NchpT + on _ (1 — 1/‘124) —+ 8(]22 — 1)/517_13,” .
: po(Xcner +0x)  (1+3/f*) +8(32 —1)/om3_

(189)

Depicted in Figure 11 is the p,; dependence of the sound velocity (189), with
m,(TH) / mSTH) =2,5,20 and co. The gray dashed line is an analytic solution expanded in
the vicinity of p5 ~ pcr in Equation (189), 2 ~ fi — 1, which is independent of mgH). This
figure shows that the sound velocity peak is successfully reproduced within the present
LSM, where the chiral partner contribution proportional to 1/m2_ is incorporated [72].
Thus, from this reproduction, one can conclude that the LSM is capable of accessing a more
dense region of QC,D, where the ChPT cannot be applied. For quantitative comparisons, it
is inevitable to include fluctuations and spin-1-hadron contributions.
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Figure 11. 7 (= pg/pa = 2pq/ mSIH)) dependences of the sound velocity 2 with

m((,H) / meU =2,5,20,00. The dashed gray line denotes cg = ji — 1, evaluated analytically. This
figure is taken from Ref. [72].

5. Extended Linear Sigma Model (eLSM)
5.1. Model Construction

In Section 4.3, the mass spectra of negative-parity and positive-parity spin-0 hadrons
in cold and dense QC,;D were explored within the LSM framework, and y,; dependences of
the hadron masses were elucidated from a symmetry viewpoint. Meanwhile, the lattice
simulation indicates the flipping of the mass ordering, where the pion becomes heavier than
the p meson in the superfluid phase [11,41]. This behavior implies that a model analysis
including spin-1 hadrons is inevitable to further correctly explore the low-energy physics
of dense QC,D. Thus, here, we invent the eLSM, describing spin-0 and spin-1 hadrons in a
unified way based on the linear representation of the Pauli-Gtirsey SU(4) symmetry [71].
(The eLSM in three-color QCD was invented by the Frankfurt group [85,86]).

Employing the linear representation, the interpolating fields of the low-lying spin-1
mesons and baryons are given by

Wl ~ Pty o~ Prsty, o™ ~ Pty
1 0 _ 4 1 -
:l:,]/{ ~ — TAH " ~ 3 H H ~ — + H
p \/Elpff Y lrb ’ al lPTf’YS’Y IIJ ’ al \/Elpr Y5Y l/" 7 (190)
and

L=0, i L==+1, i
Bg ! ~ _\EUJTC’Y”TET}'#/ By M~ —EIPTCV”Tg(lfiT]%)#’/

1 _1,—0,+1, L=0,41, _
BZS ~ _7¢’TC'Y5’YHTc2TJ%¢ , Bg = (Bg nr, BZS = (Bisf , (191)

V2

respectively, the quantum numbers of which are summarized in Table 2. Thus, a useful
4 x 4 matrix describing the quark bilinear fields of the spin-1 hadrons is introduced as

q>§.;. ~Yio"¥;, (192)
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as a sibling of X in Equation (133), for which the hadron fields can be embedded in the
following manner,

w+p°?[(2fl+a?) ot —af ﬁBéz:Jrl Béz:O — Bus "
2| vaBE U BE V4B I (omggy |
BE0 - Bys  VEBETTL (ot +af) -

from Equations (190) and (191). This matrix is reduced to
0 5 K
PH = 2 V's' — 2 viexe (194)
i=1 a=0

such that symmetry properties of the spin-1 hadrons become clear when assigning the
hadron fields as

Vl ¥ iVZ V/l ¥ I'V/2
w:VO, p:t: \/E ,pozv3/ leV,O/ ait:T/u(l):VISI
L0 _ Vo +iv1io BL=0 _ VOVl o (VP iVe) £ (V7 +ivE)
S \/E ’ S \/E ’ S 2 7
L V5 —ive) £ (V7 —iv8 Vo —ivi VB 4ivi
Béz—:tlz( )j( ) B = 5 Bs=— 5 (%)
The Pauli-Giirsey SU(4) transformation law of ®* is
OF — gdFg" with g€ SU(4), (196)
from Equation (192).
Table 2. Quantum numbers of the spin-1 hadrons.
Hadron Spin and Parity (J*) Quark Number Isospin
w 1~ 0 0
0 1~ 0 1
fi 1" 0 0
a 1+ 0 1
Bg (Bis) 1t +2(—2) 1
Bs (Bas) 1 +2(-2) 0

From transformation laws (136) and (196), an effective Lagrangian describing the
low-lying spin-0 and spin-1 hadrons of QC,D comprehensively, i.e., the eLSM Lagrangian,
is readily obtained as [71]

Lasy = t[DZ'DIE] — mdtr[EE] — A; (r[215))® — Aptr[(ETE)2)
1
+etr[0PE + 2] + Lanom, — S @ @] + mitr[®, ]
+igstr[ Dy [@F, Y]] + hytr[ZTE]tr[D, D] + Iotr[ZE @, D]
+hstr[@) T DIE] 4 gytr[D), D, PF D] + g5tr[D, DH D, D]
+86tr[@, P! |tr[®, D] + gytr[D, D, Jtr[DPH D] . (197)
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In this Lagrangian,
@,y = D, ®y — DOy (198)

is a field strength for the spin-1 hadrons, and the covariant derivatives for £ and & take the
forms of

DX = 0,5 — il L —iL{, —ig1®yL — igsX®),
D@y = 0, ®y —i[Zy, o], (199)

respectively, with the spurion field {¥. It should be noted that

tr[D, 2 DFE] + hptr [ D, D] + hatr[D), E DT
= [0, TP L] + (81 + ) tr[EZZH{ @y, Y] + 2(81 + g2)tr[®,, 27T
+ i(g + g)tr[@, (MRt — T EN)] + (¢2 + &% + hy)r[EX T D, D]
+ (25182 + 3 tr[@ T OME (200)

holds, from which £ = —%, implying that the four parameters g1, ¢», 12, and h3 can be
rearranged into the following three:

G = g1+,
G = G+ +h,
C = 28182 +h3. (201)

The eLSM Lagrangian (197) effectively contains 14 parameters, regardless of the
anomalous contributions, which are hard to be completely fixed due to the current limited
lattice results. Here, to pick up only the leading contributions, first, we assume the large
N, limit that would be also supported by the so-called Zweig rule for spin-1 sectors. Thus,
A = hy = g6 = g7 = 0. Also, we again ignore the anomaly effects. Next, we assume
C = (1 = (C; since those parameters essentially play the same role, controlling the mixings
between the spin-0 and spin-1 hadrons. Then, as for the couplings among spin-1 hadrons,
we employ the following relations,

B3 =80, §4=—8 = 9%, (202)

which can be inferred by the O(p?) contributions of the HLS formalism [52]. After those
reductions, seven free parameters are left.

5.2. Hadron Mass Spectrum

In this subsection, we investigate the y; dependences of the spin-1 hadron masses
predicted by our eLSM.

To delineate the hadron mass spectrum, we need to take into account the mean
field contributions appropriately. In the present analysis, we assume the following four
mean fields:

n=(0), A=(B), @=(w=0), V=(Vty). (203)

The spin-0 mean fields 0y and A correspond to the chiral and diquark condensates, respec-
tively, similarly to the analysis in Section 4.3. The third one, @, is a mean field of the w
meson modifying the chemical potential effects. The last one, V, is responsible for a mean
field of the iso-singlet and vector diquark, which is allowed due to the U(1)p violation
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in the baryon superfund phase. The configuration of those mean fields is determined by
solving each the stationary condition. The resultant gap equations are rather complicated,
so we leave their concrete forms to Ref. [71].
In the following numerical analysis, we adopt

m —908Mev, m{ = 1614MeV, (204)
as inputs associated with the spin-1 hadron masses simulated on the lattice [41,79], in ad-
dition to inputs (148) and (149). Hence, there remain only two free parameters, C and go.
When choosing C = 12, the p; dependences of the mean fields (203) can be determined as
exhibited in Figure 12, regardless of the value of go.

Hadronic phase Baryon superfluid phase
2.0f asymptotic
—
1.5} A/U(()H)
» 10t
o
2 0.5}
c -
3 0.0 ] V/‘T(()H>
= 05 §
-1.0} BT
-1.5} . ‘ <[
0.0 0.5 1.0 1.5 20
pg/m{)

Figure 12. p; dependences of the four mean fields: op, A, @, and V. The figure is taken from Ref. [71].

Figure 12 indicates that only oy is finite in the hadronic phase, whereas the remaining
mean fields are always vanishing there. In the superfluid phase induced by a nonzero
A, the spin-1 mean fields @ and V also acquire non-vanishing values. In particular, @
grows linearly with respect to y;. Meanwhile, the gap A converges on a certain value at a
sufficiently large 14, which is indicated by the arrow in this figure. The remaining mean
fields 0p and V asymptotically vanish for y; — oo. It should be noted that the critical
chemical potential to enter the baryon superfluid phase is again given by pier = mSTH) /2, as
the other chiral effective models predict, as long as we take into account the additional two
spin-1 meson fields correctly.

We are now ready to examine the hadron mass spectra of the spin-1 hadrons at a finite
Hgq, since their mass formulas are straightforwardly obtained by reading off the quadratic
terms from the reduced eLSM Lagrangian. The resulting formulas are complicated due
to considerable mixings, so we do not present those here. (For details, please see the
Appendices of Ref. [71]).

Depicted in Figures 13 and 14 are the spin-1 hadron mass spectra with (g¢,C) = (10,12)
and (g, C) = (10, 8), respectively, where the parameters are tuned to reproduce the mass
reduction of the p meson in the superfluid phase measured on the lattice. The figures
indicate that all the spin-1 hadron masses are constant or just linearly corrected with y,
in the hadronic phase, similarly to the spin-0 meson masses. In the superfluid phase,
meanwhile, several nonlinear behaviors are obtained due to state mixings from the U(1)p
violation; the three pink curves in the left panels denote the w-Bas-Bas mixed stats, while
the green ones in the right panels denote the a1-Bs-Bg mixed stats. In Figure 14, the colored
area represents the axialvector condensed phase triggered by the mass of the lowest state
of the a1-Bs-Bs mixed mode, which converges on zero. The possibility of the (axial)vector
condensations was also predicted in Ref. [45], although the gap equation to determine the
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ground-state configuration was not solved consistently. Thus, it would be challenging to
seek for such SO(3)-violating phases in future lattice simulations.

4 9o =10,C =12 [— 7 4 g0 =10,C =12 |- fi

......... Buas —

Bas Bg

3 \ w 3| ay
w, Bas, Bas mix | ay, Bs, Bs mix

1~ hadron masses
— N
¢
1* hadron masses
= N
/

0 0
0.0 0.5 1.0 1.5 2.0 0.0 05 1.0 15 2.0
HglmEh plmi)

Figure 13. 11, dependences of the 1~ (left) and 17 (right) hadron masses with go = 10 and C = 12.
The figures are taken from Ref. [71].

4 _ A 4 — L
go =10,C =38 axialvector condensed phase go =10,C =8 axialvector condensed phase

1~ hadron masses
N

1* hadron masses
N

1f —— ay, Bs, Bg mix

w, Bag, Bag mix

0 ¥ zero point
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
Halmi¥) Halm)

Figure 14. p; dependences of the 1™ (left) and 1% (right) hadron masses with ¢¢ = 10 and C = 8.
The figures are taken from Ref. [71].

The mass degeneracies between the parity partners, i.e., chiral partners, are realized
among the spin-1 hadrons, similarly to the spin-0 hadrons. To see this behavior, we show
the 31, dependences of the masses of all 1 hadrons in Figure 15. For this figure, we adopted
(@, C) = (10,16) to clearly confirm the mass degeneracies and plotted them up to 1, = 2.5.
This figure indicates that the degeneracies hold for (Bs, Bas), (p,41), (w, f1), and (Bs, Bas).

W —p  mmmfi =——a
m—Bas Bpas === Bg Bs
e 0, Bag, B mix === a1, Bg, Bs mix

Hadron masses

0.0 0.5 1.0 1.5 2.0 25
ﬂq/”’(:)

Figure 15. ;1; dependences of all the spin-1 hadron masses. We employed (g, C) = (10,16) to see
the mass degeneracies of the chiral partners clearly. This figure is taken from Ref. [71].

6. Conclusions

In this review, I summarized the main points of recent works on cold and dense QC,D
by means of the LSM, which is capable of describing the low-energy hadron spectrum in
the baryon superfluid phase correctly [44,70-72], as an extension of the ChPT.
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As for the spin-0 hadron mass spectrum, in the baryon superfluid phase, the LSM
yielded a massless (the lowest) mode in the iso-singlet 0 system, which can be regarded
as the NG boson of U(1)p symmetry breaking. Additionally, a nonlinearly suppressed
second-lowest mode was found in the iso-singlet 0~ system. Those lowest-lying behaviors
are qualitatively consistent with the lattice results. From a quantitative comparison of the
latter nonlinear mass suppression, an enhancement of the U(1) 4 anomaly effects on the
hadrons was predicted. The mass spectrum of 0 hadrons and some GOR relationships in
the presence of the diquark source were also newly evaluated.

As for the spin-1 hadron mass spectrum, we found several parameter sets for which
the p meson mass reduction in the superfluid phase observed by the lattice simulation
is reproduced. Then, a possibility of the (axial)vector condensations violating the SO(3)
rotational symmetry was discussed. For both the spin-0 and spin-1 hadrons, mass degen-
eracies between the parity partners, i.e., the chiral partner structure, at higher densities
were predicted.

Our WTI-based LSM analysis implies that topological susceptibility in cold and dense
QC,D is suppressed, followed by chiral symmetry restoration. If the U(1) 4 anomaly effect
is assumed to be enhanced in such dense system, however, the suppression is weakened.
Thus, the fate of the topological susceptibility largely depends on the behavior of the U(1) 4
anomaly on a hadronic level.

We also observed that the peak structure of a (squared) sound velocity in the su-
perfluid phase can be successfully reproduced within our LSM framework, whereas the
ChPT analysis cannot. This fact, in addition to the reproduction of the low-energy hadron
spectrum in the superfluid phase, implies that the LSM constructed upon the linear repre-
sentation of quark fields is applicable in the deeper region of the crossover from hadronic
to quark matter.

In the following, I will present some topics related to the QC,D study. Similarly to
QGC;D, the isospin QCD (QCDj) where the isospin chemical potential is included, can also be
regarded as a useful testing ground aiming toward the elucidation of cold and dense QCD,
thanks to disappearance of the sign problem in lattice simulations [77,87-93]. The present
LSM is easily translated into the QCD; language; hence, dense QCDj is another field helpful
in checking the results harvested from the LSM analysis in QC;D. Examinations in these
systems are expected to provide useful information on the equations of the state of dense
matter, which are crucial to explain the observation data of neutron stars [94,95].

QC;,D is not only useful for delineating cold and dense QCD but also related to dark
matter candidates, such as strongly interacting massive particles [96-102]. In this regard, it
would be intriguing whether the present LSM is capable of contributing to those beyond
standard analyses.

QC3D has the advantage that (anti)diquarks are counted as color-singlet hadrons,
while in three-color QCD, they cannot be directly observed. In the latter real-life application,
diquark properties play an important role in determining the chiral dynamics of singly
heavy baryons (SHBs) made of a heavy quark and a diquark, by virtue of the heavy quark
effective theory [103]. Thus, the examination of diquarks in QC,D through both theoretical
and lattice studies is expected to provide useful information on SHB spectroscopy, e.g., the
so-called “inverse mass hierarchy” induced by the U(1)4 anomaly for the unobserved
chiral partner SHBs [104-106]. As long as we stick to zero chemical potential, lattice
simulations with 2 + 1 flavors are straightforward for any number of color. (In three-
color QCD, lattice studies on diquarks by means of, e.g., gauge-fixing treatment, potential
problems, and static color-source methods, are being conducted [107-112].) In this regard,
lattice simulations focusing on diquarks in QC,D with Ny = 2 + 1 are a challenging issue
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toward the elucidation of SHB properties in our world, considering chiral symmetry and
the U(1) 4 anomaly.

Those applications imply that, although QC,D is a “virtual” theory affected by QCD-
like quarks and gluons, plenty of benefits are expected broadly, not to mention the numerical
experiments in cold and dense media.
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Abbreviations

The following abbreviations are used in this manuscript:

BCS Bardeen-Cooper—Schrieffer
BEC Bose-Einstein condensation
ChPT  Chiral perturbation theory
ELSM  Extended linear sigma model
GOR  Gell-Mann-Oakes—Renner
LHS Left-hand side

LSM Linear sigma model

NG Nambu-Goldstone

QCD Quantum chromodynamics
QC,D  Two-color QCD

QCD; Isospin QCD

RHS Right-hand side

SHB Singly heavy baryon

VEV Vacuum expectation value
WTI Ward-Takahashi identity
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