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Joaqúın Sánchez Guillén Christoph Adam

Compostela, Xuño de 2013.
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Chapter 1

Introduction

1.1 Motivation

Despite its non-renormalizability, field theories with kinetic terms with pow-

ers higher than two (usually called K field theories) arise naturally in many

areas in theoretical physics as effective field theories. Moreover, if we focus

on a specific non-linear phenomenon of special importance, the topological

solitons, and we want to ensure its stability in higher dimensions, we have

two natural ways. One possibility consists of the inclusion of gauge fields.

Known examples are the Abelian Higgs or the Chern-Simons Higgs models

in 2 + 1 dimensions, the BPS monopole in 3 + 1... These models have a

rich topological structure which can be exploited via their supersymmetric

extensions (remember the relation between topological charges and central

extensions of the supersymmetric algebra). The other possibility consists of

the addition of higher derivative terms, leading us again to K field theories

(therefore, it is natural to think on supersymmetric extensions of these mod-

els because of the intimate relation between supersymmetry and topology).

The study of K field theories is interesting in itself (from a formal point

of view), but, in addition, it has multiple applications. The canonical ex-

ample of a K field theory is the Skyrme model (SkM). Other K field models

have direct applications in cosmology, for example, they are used to describe

phenomena like K-inflation [2] or K-essence [3].

15



CHAPTER 1. INTRODUCTION 16

Moreover, these theories include new features studied in for example [4],

[5], [7], [33] and [51]. Of course, in the context of cosmology (in the inflation-

ary epoch) the supersymmetric extension of such theories becomes relevant

and arises naturally.

Relevant phenomena associated to the supersymmetric versions of K field

theories (Galileons, ghost condensates, DBI inflation) have been studied in

[135] and in lower dimensions in [132]. More applications of these models

can be found in [31], [60] and [59]. The existence of topological defects with

compact support (compactons), a usual feature of this kind of theories, have

been discovered in [36].

In general, topological defects resulting from K field theories are quite dif-

ferent from the corresponding ones of the standard theories [5], [74] and [12].

However, under certain conditions both defects can share the same energy

density and profile (Doppelgänger effect [51]), in this case we say that the

theories are twin-like. This feature makes them interesting in a wide range

of applications of K field theories.

In the framework of K field theories, the SkM is singled out especially due

to its rich structure and applications. The most popular application of the

SkM is found in strong interaction and nuclear physics ([102], [103], [150],

[106]), for which it was formulated. In this field, the SkM is interpreted as

a low energy effective model for QCD when the number of colors becomes

large, [109] and [108]. Its supersymmetric extensions in 3 + 1 dimensions

have been studied in [16] and [15] (in its CP 1 restriction).

On the other hand, the baby Skyrme model (bSkM) is a non-linear theory

with topological solitons in 2 + 1 dimensions and S2 as target space [156],

[81],and [82]. Topologically speaking, this model is similar to the SkM (for

example, solitons in this model are labeled by a winding number), moreover,

the fact that it is almost impossible to obtain analytic solutions directly from

SkM justifies the study of its restrictions to simpler models, in our case the
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bSkM. This model is interesting in itself and has its specific applications for

example to Hall ferromagnets [85] or spin textures [86] and [87]. Moreover,

the analysis of supersymmetric extensions of the bSkM can be useful as

a model for the study of general properties of supersymmetric topological

solitons, an issue widely discussed throughout this thesis.

1.2 Content of this thesis

It this Ph.D. thesis, supersymmetric extensions of non-linear field theories

are investigated, in particular, supersymmetric extensions of the so-called

K field theories. Moreover, features of the specific solutions of this models

inherited from supersymmetry are analyzed. For example, BPS solutions,

energy bounds or central charges of the SUSY models are directly related to

the topological charges.

We will see that supersymmetry provides enough structure to determine

systematically first-order BPS equations. We will pay special attention to

the SkM in lower dimensions (the so-called bSkM) which is a paradigmatic

example of a theory with higher derivatives. We will show how supersymme-

try constrains in 2 + 1 dimensions the coexistence of quadratic, quartic and

potential terms. It is even more interesting to see what happens if you try to

reconcile the bSkM with N = 2 extended supersymmentry. In this case, the

quadratic term is absent due to supersymmetry, but we can add a potential

which depends on the metric of the target manifold. It will be shown how to

obtain systematically the BPS equations for gauged and ungauged models,

from the corresponding SUSY transformations. These results are interesting

by themselves, but moreover, taking into account the dimensional reduction

from N = 1 in d = 3 + 1 to N = 2 in d = 2 + 1, we can extend our lower

dimension results with extended supersymmetry to three dimensional space

with ordinary supersymmetry.

In a slightly different way of investigation with K field theories we will find

the conditions that ensure the existence of twin models, even up to equiva-

lence between fluctuation spectra. These results provide a kind of dictionary
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of a correspondence between K and standard theories. This correspondence

allows us to investigate, in a specific range, more complex theories (in this

case, K field theories) in terms of standard theories, which are generally sim-

pler. This construction is then extended to supersymmetric models.

Finally, symmetries and solutions of the BPS Skyrme model are analyzed.

The BPS Skyrme model is a Skyrme type model in 3 + 1 dimensions which

includes a sextic term in derivatives. The BPS bound for the energy as well

as different solutions preserving symmetries of subgroups of the group of

Volume Preserving Diffeomorphisms are calculated.

1.3 Structure of this thesis

This Ph.D. thesis is organized as follows:

• Chapters 2 to 4 are dedicated to present general features of supersym-

metry which will be necessary in the following chapters. In chapter 5 a

brief presentation of classical results about complex geometry and its

relation with supersymmetry is given.

• Chapter 6 includes a basic introduction to the SkM and some relevant

properties.

• In chapter 7 a first example of a supersymmetric extension of K field

theories is presented. We will see in this section why supersymmetric

extensions of K field theories are not at all trivial.

• In chapter 8 we present a supersymmetric extension of K field theories

of the form L =
∑

i αiX
i + V (φ) where X = ∂µφ∂

µφ and V (φ) is a

potential. General properties and solutions are analyzed.

• In chapter 9 domain wall solutions and BPS bounds of K field models

of the form L =
∑

i αiX
i + V (φ) are calculated. Concretly, we demon-

strate that all the domain wall solutions which exist for this family

of theories are BPS solutions and that the corresponding BPS energy

reappears as a central charge in the SUSY algebra.
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• In chapter 10 algebraic conditions which imply the existence of the

so-called twin-like models are found.

• In chapter 11 the algebraic conditions which imply the existence of

the twin models are generalized to imply the equivalence of the linear

fluctuation spectra between the corresponding solutions.

• In chapter 12 an explicit N = 1 supersymmetric extension of the baby

Skyrme model is presented, and different consequences of the super-

symmetrization are analyzed.

• In chapter 13, in a first step an N = 1 SUSY extension of a the gauge

bSkM is presented. Then we analyze a N = 2 SUSY extensions of

both gauged and ungauged bSkM. Moreover, the relation between Bo-

gomol’nyi equations and extended supersymmetry is studied more gen-

erally. A general scheme that generates Bogomolny equations in 2 + 1

dimensions is found both for general gauged and ungauged theories

with N = 2 supersymmetry.

• Chapter 14 is devoted to the study of the BPS Skyrme model (A Skyrme

type model consisting of a sextic term in derivatives in 3+1 dimensions).

The symmetries of Volume Preserving Diffeomorphisms symmetry are

used to calculated solutions.

• Chapter 15 contains a brief summary of the results obtained along this

thesis.

• Finally, chapter 16 contains the main conclusions of this work.





Chapter 2

SUSY N=1 d=1+1 and d=2+1

For this chapter we will follow the conventions of [18]. N = 1 supersymmetry

in 2+1-dimensional (and also in 1+1-dimensional) space is specially simple,

because in this case the Lorentz group is SL(2,R) (instead of SL(2,C))

and the fundamental representation acts on real (Majorana) 2-component

spinors. We can lower or rise spinor indices with the totally antisymmetric

symbol, Cαβ = −iεαβ, with ε12 = 1, i.e.:

ψα = ψβCβα , ψα = Cαβψβ (2.1)

where the Majorana spinor ψα = (ψ+, ψ−). To denote a general coordi-

nate on superspace we use the short notation z = (xµ, θα), where the first

components correspond to usual space-time coordinates and the second ones

to the anticommutative part of the superspace:

{θα, θβ} = 0→ (θi)2 = 0 (2.2)

2.1 Berezin integration

At the end of the day we will need to integrate over anticommuting vari-

ables (Grassmann variables) in order to obtain the supersymmetric invariant

actions. In this section we introduce the concept of integration over an-

ticommuting objects (Berezin integration). The main two ingredients are

21
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the linearity and the invariance under translations in the Grassman vari-

able. Suppose that our superspace has only one anticommuting variable,

then, the dimension of the Grassmann part of the space is exactly one. If we

are working in 3-dimensional Minkowski space we denote the corresponding

superspace as R3|1. The most general superfunction that we can construct

is:

Φ(θ) = a+ θb (2.3)

where a : M3 → N , and b is an anticommuting field, being M3 the

3-dimensional Minkowski space and N whatever manifold. Imposing trans-

lation invariance we have∫
dθΦ(θ) =

∫
dθΦ(θ + η) (2.4)

or equivalently: ∫
dθbη = 0 (2.5)

by linearity: ∫
dθ1 = 0 (2.6)

Now integrating again Φ(θ):∫
dθΦ(θ) = b

∫
dθθ (2.7)

and what we need now is to fix the normalization of the integral, for

example we can take: ∫
dθθ = 1 (2.8)

finally the result for the total inegral is:∫
dθΦ(θ) = b (2.9)

Note that:
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∫
dθ ≡ d

dθ
(2.10)

Now it is straightforward to generalize this integration to Grassmann algebras

of arbitrary dimension. Let {θ1, ..., θN} be anticommuting variables:

{θα, θβ} = 0 (2.11)

From this we can construct a Grassmann algebra of dimension 2N . A

generic basis has the following form:

f(θ1, ..., θN) = f0 +
∑

fiθ
i +
∑

fijθ
iθj + ...+ f1,2,..,Nθ

1θ2...θN (2.12)

We must be careful with the order of θ′s in the integration, because a

minus sign appears if the integration variable appears in an odd position

w.r.t. the number of anticommuting variables, i.e.:∫
dθiθ1...θi...θn = (−1)i+1θ1...θ̂i...θn (2.13)

(in this case the superindex labelled the position of the variable in the

product). One interesting and fundamental feature of the Berezin integration

is that after integration over all Grassmann space only the component with

the highest order in θ′s survives, for the previous expression:

∫
dθN ...dθ1(f0+

∑
fiθ

i+
∑

fijθ
iθj+...+f1,2,..,Nθ

1θ2...θN) = f1,2,..,N (2.14)

2.2 Superfields

In order to construct the correct algebra we need to grade the Poincarè alge-

bra by introducing the generators of supersymmetry (Qα). The commutation

relations involving translations and Qα are (assuming no central extension):

[Pµν , Pρσ] = 0

{Qµ, Qν} = 2Pµν (2.15)

[Qµ, Pνρ] = 0
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where a single index is interpreted as a spinor index and a double index

means: Aαβ = (γµ)αβAµ. The algebra (2.15) can be realized on superfields

(functions depending on both space-time coordinates and Grassmann coor-

dinates) in terms of:

Pµν = i∂µν , Qµ = i(∂µ − iθν∂µν) (2.16)

If we have N = 1 supersymmetry in either 1 + 1 or 2 + 1 dimensions the

supersymmetric generators are two-component spinors. This implies that

our superspace will be Rd|2, i.e. the most general superfield we can costruct

in these dimensions is:

Φ(x, θ) = φ(x) + θαψα(x)− θ2F (x) (2.17)

(with θ2 = iθ+θ−). φ(x) is a real scalar field, ψα(x) a real two-component

Majorana spinor and F (x) a real auxiliary field. As we will see, usually F is

non-dynamical and we can eliminate it using its (usually algebraic) equations

of motion, but it is necessary to have it in the superfield formulations to com-

pensate the bosonic and fermionic degrees of freedom. The supersymmetric

derivative is defined to be:

Dα = ∂α + iθν∂µν . (2.18)

From a general supersymmetric transformation it is easy to obtain the

corresponding transformations on the components:

δΦ(x, θ) = iεαQαΦ(x, θ) = −εα(∂α − iθβ∂αβ)Φ(x, θ) (2.19)

or

δΦ(x, θ) = δφ(x) + θαδψα(x)− θ2δF (x). (2.20)

Now equating powers of θ:
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δφ(x) = εαψα(x) (2.21)

δψα(x) = εβ(CαβF (x) + i∂αβφ(x)) (2.22)

δF (x) = −iεα∂βαψβ. (2.23)

It is straightforward to verify that this supersymmetric algebra in com-

ponents closes:

[δ(ε), δ(η)] = −2iεαηβ∂αβ (2.24)

or supersymmetric transformations are the “square root” of the space-

time translations. The question now is: how to construct supersymmetric

invariant actions? And the answer in 2 + 1 and 1 + 1 dimensions and N = 1

supersymmetry is simple : Everything constructed in terms of superfields is

supersymmetric!

Let us analyze general actions in 3 dimensions:

S =

∫
d3xd2θf(Φ, DαΦ, ∂µφ, ...) (2.25)

In superfield formalism a supersymmetric actions is obtained by integrat-

ing over all the Grassmann space. The action (2.25) is invariant under SUSY

transformations if:

δS =

∫
d3xd2θδf(Φ, DαΦ, ∂µφ, ...) =

∫
d3x∂µJ

µ (2.26)

i.e. if the variation of the integrand is a 3-divergence. But if we remember

the form of the supersymmetric charge:

Qα = i
∂

∂θα
+ θβ∂βα (2.27)

then:

δS =

∫
d3xd2θεα(i

∂

∂θα
+ θβ∂βα)f(Φ, DαΦ, ∂µφ, ...) (2.28)

and the term corresponding to the derivative w.r.t. θ vanishes after the

integration over the grassmann space, while the space-time derivative is itself
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a boundary term. In order to simplify all the superfield calculations we will

use the following property of the integration w.r.t anticommuting variables:∫
d2θΣ(x, θ) ≡ D2Σ(x, θ)| (2.29)

where D2 = 1
2
DαDα and ”|” means to set all θ′s equal to zero after the

derivation. Also the following identities will be useful:

DαDβ = i∂αβ + CβαD
2 (2.30)

DαDβDα = 0 (2.31)

{D2, Dα} = 0 (2.32)

D2Dα = i∂αβD
β (2.33)

(D2)2 = � (2.34)

Next, let us fix the gamma matrix conventions. We want to choose a

representation where the components of the Majorana spinor are real. This

may be achieved by choosing an imaginary, hermitian β ≡ γ0 and hermitian,

real αk ≡ βγk. Concretely, we choose (the σi are the Pauli matrices)

β = σ2 , α1 = −σ1 , α2 = −σ3 ⇒ γ0 = σ2 , γ1 = iσ3 , γ2 = −iσ1.

(2.35)

This choice of gamma matrices enables us to introduce the“barred spinor”

notation of [19], [20]. The introduction of a second notation may seem a

bit artificial, but it turns out that some calculations (especially the rather

lengthy ones of section 4 of chapter 7) are significantly simpler in this second

notation. We define the barred spinor

ψ̄ ≡ ψ†γ0 = ψTγ0 ⇒ ψ̄α = ψβ(σ2)βα. (2.36)

It may be checked easily that the barred spinor is identical to the spinor

with upper components in the notation of [18], ψ̄α ≡ ψα = i(ψ2,−ψ1), where

ψα = (ψ1, ψ2). The main advantage of the barred spinor notation is that

all spinor indices are lower and we may dispense with the spinor metric.

There is one possible source of confusion related to the use of two different

notations, which we resolve by introducing a further bar. The problem is
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that the gamma matrices should be objects with two lower indices in the

barred spinor notation, whereas they should be objects with one lower and

one upper spinor index in the spinor metric notation of [18]. That is to say,

(γµψ)α ≡ γµα
βψβ ≡ γ̄µαβψβ (2.37)

where summation over repeated indices is assumed in both cases. Here,

γ0
α
β ≡ γ̄0

αβ ≡ (σ2)αβ (2.38)

etc., and obviously γ̄µαβ belongs to the barred spinor notation and should

not be confused with γµαβ = γµα
γCγβ.

In the barred spinor notation, the spinorial expressions assume a simpler

and more familiar form, like

χ̄ψ = χ̄αψα = χαψα , ψ̄ψ = ψ̄αψα = ψαψα = 2ψ2 (2.39)

or

ψ̄/∂ψ ≡ ψ̄γµ∂µψ = ψ̄αγ̄
µ
αβ∂µψβ = ψαγµα

β∂µψβ. (2.40)

In the barred spinor notation, the scalar superfield reads

Φ(x, θ) = φ(x) + θ̄ψ(x)− 1

2
θ̄θF (x). (2.41)

For example, we can obtain a supersymmetric model consisting of one

Klein-Gordon plus Dirac field from an action in terms of superfields:

Sk =
1

2

∫
d3xd2θDαΦDαΦ =

1

2

∫
d3xD2[DαΦDαΦ] (2.42)

and using the previous identities:

Sk =
1

2

∫
d3x

(
D2DαΦDαΦ +DαΦD2DαΦ +DαDβΦDαDβΦ

)
(2.43)

or in components (only the bossnic sector):

Sk =
1

2

∫
d3x

(
F 2 − iψα∂αβψβ + ∂µφ∂

µφ
)

(2.44)

In this case the equation of motion for auxiliary field F is F = 0, and the

on-shell action is finally:
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Sk,on−shell =
1

2

∫
d3x

(
−iψα∂αβψβ + ∂µφ∂

µφ
)

(2.45)

What is interesting now is how to include a potential, and in lower di-

mension and N = 1 supersymmetry the solution is trivial: Every function

without derivatives works as a potential:

Sp =

∫
d3xd2θW (Φ) =

∫
d3x(W ′′(φ)ψ2 +W ′(φ)F ) (2.46)

Now adding (2.43) and (2.46) and eliminating the auxiliary field:

Sk + Sp =
1

2

∫
d3x

(
−iψα∂αβψβ + ∂µφ∂

µφ−W ′(φ)2 +W ′′(φ)ψ2
)

(2.47)

i.e. we have obtained the standard kinetic terms for bosons and fermions

plus a semidefinite positive potential and a coupling between bosonic and

fermionic fileds. Having in mind the previous example, it seems that to

generate a supersymmetric action it is enough to replace the scalar field

in the bosonic action with a superfield and a space-time derivative with a

superderivative.

∂µφ∂
µφ −→ DαΦDαΦ (2.48)

But unfortunately this is not true in general. Supersymmetric higher

derivative terms are another story. For example, if we try to generate a

quartic term in derivatives with this rule:

(∂µφ∂
µφ)2 −→ (DαΦDαΦ)2 (2.49)

we obtain:

S|ψ=0 =

∫
d3xd2θ(DαΦDαΦ)2|ψ=0 = 0 (2.50)

i.e. this action has no bosonic sector. In the following chapters we will

show how to generate this kind of actions.
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2.3 Susy, solitons and Bogomolny in two di-

mensions

It is well known that supersymmetric algebras are modified by the existence

of solitons. Following Witten and Olive [44] we present a naive example where

the relation of supersymmetry with soliton states and Bogomolny bounds is

shown:

The supersymmetric form of a scalar field theory in two dimensions is:

L =

∫
d2x[

1

2
(∂µφ)2 +

1

2
ψ̄i/∂ψ − 1

2
V 2(φ)− 1

2
V ′(ψ)ψ̄ψ] (2.51)

The supercurrent associated with the supersymmetry transformation is:

Jµ = (∂νφ)γνγµψ + iV (φ)γµψ (2.52)

And from the 0-component of the this current we can write explicitly the

supersymmetric charges. In chiral components are:

Q+ =

∫
dx|(∂0φ+ ∂1φ)ψ+ − V (φ)ψ−| (2.53)

Q− =

∫
dx|(∂0φ− ∂1φ)ψ− + V (φ)ψ+| (2.54)

These supercharges satisfy the algebra (2.15) in chiral components, i.e.:

{Q+, Q−} = 0 (2.55)

Q2
+ = P+ (2.56)

Q2
− = P− (2.57)

But considering the first of this relations carefully and keeping the surface

terms what we obtain is (from (2.53) and (2.54)):

{Q+, Q−} = 2

∫
dxV (φ)

∂φ

∂x
(2.58)

or equivalently, taking W ′(φ) = V (φ):
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{Q+, Q−} = 2

∫
dx

∂

∂x
W (φ) (2.59)

and we obtain an integral of a divergence that must vanish, but in a non

trivial solionic state this is not neccesarly zero.

Let V be the corresponding function for λφ4 theory, V (φ) = −λ(φ2 − 1).

Then the potential energy is λ2(φ2 − 1)2. This theory has two ground states

corresponding to φ = ±1. W (φ) = λφ − 1
3
λφ3. The bosonic non-trivial

solitons for this theory are :

-4 -2 2 4
x

-1.0

-0.5

0.5

1.0

ΦHxL=±tanhHxL

and therefore:

T := {Q+, Q−} =

∫ +∞

−∞
dx

∂

∂x
(2λφ− 2

3
λφ3) =

8

3
λ (2.60)

and what we see is that this quantity T depends basically on the topo-

logical structure of the vacuum and will be related to the usual topological

charge. Moreover, the correct supersymmetric algebra is now:

{Q+, Q−} = T (2.61)

Q2
+ = P+ (2.62)

Q2
− = P− (2.63)

From this relations it is easy to find:

P+ + P− = T + (Q− −Q−)2 (2.64)

P+ + P− = −T + (Q+ −Q−)2 (2.65)
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but (Q±−Q−)2 ≥ 0, so P+ + P− ≥ T . If we think in a particle at rest of

mass M then P+ = P− = M , then eqns. (2.65) implies:

M ≥ 1

2
|T | (2.66)

And now we can ask: When is (2.66) saturated? To answer this question

we can analyze first the energy of the model:

E =
1

2

∫
[(
∂φ

∂t
)2 + (

∂φ

∂x
)2 + V (φ)2]dx = (2.67)

=
1

2

∫
[(
∂φ

∂t
)2 + (

∂φ

∂x
∓ V (φ))2]dx±

∫
V (φ)

∂φ

∂x
dx ≥ (2.68)

≥ |
∫
V (φ)

∂φ

∂x
dx| (2.69)

the inequality for E turns into an equality iff:

∂φ

∂t
= 0 ,

∂φ

∂x
= ±V (φ) (2.70)

Now if we go back to supersymmetry, the condition for a state |α〉 to

saturate (2.66) is (Q+ +Q−)|α〉 = 0 or (Q+−Q−)|α〉 = 0. But this condition

is automatically satisfied (taking into account (2.54)) if:

∂φ

∂t
= 0 ,

∂φ

∂x
= ±V (φ) (2.71)

the same condition we obtained before! Generalizing this result we can

conclude that supersymmetry provides a systematic way to obtain Bogo-

mol’nyi solutions. The strategy in principle seems to be simple:

1. Supersymmetric extension of the corresponding bosonic model.

2. Calculation of supercharges.

3. Try to find a solution which annihilates certain combination of super-

charges.





Chapter 3

SUSY N=2 d=1+1 and d=2+1

3.1 Introduction

In this section we will study extended supersymmetry in 2−dimensional

space-time following the conventions of [174]. Of course it is interesting by

itself, but, moreover, it constitutes the dimensional reduction from N = 1,

d = 3 + 1 to N = 2, d = 1 + 1 and therefore we can say that we can translate

the results in this dimension to 3 + 1 space-time with one supersymmetry.

In this chapter we present N = 2 SUSY in 1 + 1 dimensions, but, due tot

he similarity of the spinor representation, it is formally equivalent to N = 2

in 2 + 1 dimensions. In chapter 13 we will fix the notation for this dimen-

sion. Note that, in this case, the Grassmann space has twice the number of

Grassmann variables (4 in this case):

θ+, θ−, θ̄+, θ̄− (3.1)

satisfying the usual anti-commuting algebra. A general superfield is a

function defined in superspace:

G(x0, x1, θ+, θ−, θ̄+, θ̄−) = g0(x0, x1) + θ+g+(x0, x1) + (3.2)

+ θ−g−(x0, x1) + θ̄+ḡ+(x0, x1) + ... (3.3)

+ θ+θ−g+−(x0, x1) + ... (3.4)

33
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Note that a general superfield has 16 terms. In analogy with N = 1

supersymmetry we introduce the the supersymmetry generators:

Q± =
∂

∂θ±
+ iθ̄±∂± (3.5)

Q̄± = − ∂

∂θ̄±
− iθ±∂± (3.6)

Where ∂± are the derivatives in light-cone coordinates:

∂± =
1

2

(
∂

∂x0
± ∂

∂x1

)
(3.7)

As usual we introduce the set of superderivatives:

D± =
∂

∂θ±
− iθ̄±∂± (3.8)

D̄± = − ∂

∂θ̄±
+ iθ±∂± (3.9)

satisfying the following anticommutation relations:

{Q±, Q̄±} = −2i∂± (3.10)

{D±, D̄±} = 2i∂±. (3.11)

For centrally extended N = 2 superalgebras we have:

{QL
α, Q

M
β } = −2iδLM∂αβ + TεLMεαβ (3.12)

(with L,M = 1, 2). Due to the dimension of the Grassmann space, it will

be a little bit more difficult to construct supersymmetric actions. First of

all, we need to constrain our general superfields, so we define a superfield Φ

satisfying the following equation,

D̄±Φ = 0 (3.13)

which is called chiral superfield. The complex conjugate of the previous

equation is
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D±Φ̄ = 0 (3.14)

and this superfield Φ̄ is called anti-chiral superfield. We can also define

superfields Σ with twisted conditions, for example:

D̄+Σ = D−Σ = 0 (3.15)

called twisted chiral superfield, but we will not use it.

3.2 Supersymmetric actions

We will repeat the same formalism as before but taking into account the

new Grassmann space. From the form of supercharges it is obvious that any

action constructed in terms of general superfields and superderivatives and

integrated over all the Grassmann space is supersymmetric, i.e.:

S =

∫
d2xd4θH(Φ, Φ̄, D±Φ...) =

∫
d2xdθ+dθ−dθ̄+θ̄−H(Φ, Φ̄, D±Φ...).

(3.16)

We see that

δS =

∫
d2x∂µF

µ (3.17)

where δ is the supersymmetric transformation

δ = ε+Q− − ε−Q+ − ε̄+Q̄− + ε̄−Q̄+. (3.18)

Taking into account that the first part of Q′s is a derivative w.r.t. θ, the

contribution of this terms after integration over θ′s gives zero and the second

term of Q′s is directly a derivative, this shows (3.17). As we will see later,

this kind of integrals (D-terms) give us kinetic terms, so we need another

integration in order to generate potentials. Suppose that we only integrate

in half the Grassmann space, for example:

SP =

∫
d2xd2θW (Φ) =

∫
d2xdθ−dθ+W (Φ)|θ̄±=0 (3.19)
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where Φ is a chiral superfield. This kind of terms are called F-terms.

Let’s check that this action is supersymmetric. First of all, we will restrict

to the component ε+ of δ (the calculation is the same for ε−):

δ|ε+SP =

∫
d2xdθ−dθ+

(
∂

∂θ−
+ iθ̄−∂−

)
W (Φ) (3.20)

The second term vanishes because we put θ̄± = 0 and the first vanishes

after θ-integration. But if we look now at the term involving ε̄+:

δ|ε̄+SP =

∫
d2xdθ−dθ+

(
− ∂

∂θ̄−
− iθ−∂−

)
W (Φ) (3.21)

in principle we can not guarantee that it is a total derivative, but using

the following relation

Q̄± = D± − 2iθ±∂±, (3.22)

we obtain

δ|ε̄+SP =

∫
d2xdθ−dθ+ε̄+

(
D̄− − 2iθ−∂−

)
W (Φ). (3.23)

Now it is clear that the second term is a total derivative in xµ and the

first term is zero because Φ is chiral,

D̄−W (Φ) = W ′(Φ)D̄−Φ = 0 (3.24)

since D̄−Φ = 0. We have seen that, in order to construct susy F -terms

(which generate the potentials) we have to use chiral superfields integrating

over chiral anti-commuting variables (θ±) or anti-chiral superfields integrat-

ing over anti-chiral anti-commuting coordinates (θ̄±).

The way to generate supersymmetric actions is different from the one

with N = 1, for example, to generate a standard action we need a D-term of

the form:

SD =

∫
d2xd4θΦ̄Φ (3.25)

being Φ and Φ̄ chiral and antichiral superfields. After the expansion of

the product we need only to integrate in θ′s:
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SD =

∫
d2x

(
∂µφ̄∂

µφ+ iψ̄−(∂0 + ∂1)ψ− + iψ̄+(∂0 − ∂1)ψ+ + F̄F
)

(3.26)

Performing the same calculation for the F-term with superpotential W

we get

SF =

∫
d2x

(
W ′F + W̄ ′F̄ −W ′′ψ+ψ− − W̄ ′′ψ̄+ψ̄−

)
. (3.27)

We can add these actions, and after the elimination of the auxiliary field

we obtain

SD + SF =

∫
d2x(∂µφ̄∂

µφ+ iψ̄−(∂0 + ∂1)ψ− +

+ ψ̄+(∂0 − ∂1)ψ+ −W ′′ψ+ψ− − W̄ ′′ψ̄+ψ̄− − |W ′|2). (3.28)

We observe in this actions small but fundamental differences w.r.t the

N = 1 action. First of all, the kinetic part has been built in terms of a

real combination of complex superfields (this is a Kähler potential) and this

condition constrains the possible N = 2 supersymmetric actions. The second

part is that the superpotential is coming from the F-term which is a sum of

holomorphic plus antiholomorphic functions of the superfields, and this fact

constrains again the possibilities. It is always possible to reduce an N = 2

model to N = 1 by restriction of the superspace. Obviously the other way

is not true in general, but only under certain conditions: if we accomodate

Majorana spinors of a N = 1 scalar multiple into complex spinors and there

exists a U(1) symmetry under the fermion rotation ψ → eiαψ it is possible

to accomodate N = 1 supermultiples in N = 2 supermultiplets.

3.3 Gauge invariant N = 2 actions

We can think on the lagrangian

L =

∫
d4θΦ̄Φ. (3.29)
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If we generalize the usual phase rotation φ → eiαφ which leads to gauge

invariance, in terms of superfields we have the natural generalization Φ →
eiAΦ, being A a chiral superfield, which sends chiral fields to chiral fields.

The integrand of (3.29) is not invariant under such a transformation:

Φ̄Φ→ Φ̄e−iĀ+iAΦ, (3.30)

but if we introduce a real superfield V that transforms as

V → V + i(Ā− A) (3.31)

when

Φ→ eiAΦ (3.32)

then a gauge invariant lagragian under transformations (3.31) and (3.32)

can be written as

L =

∫
d4θΦ̄eV Φ. (3.33)

The real superfield in the Wess-Zumino gauge (equivalent to V 3 = 0) is

expessed in the form:

V = θ−θ̄−(v0 − v1) + θ+θ̄+(v0 + v1) + iθ−θ+(θ̄−λ̄− + θ̄+λ̄+) (3.34)

+ iθ−θ+(θ−λ− + θ+λ+)− θ−θ̄+σ − θ+θ̄−σ̄ + θ−θ+θ̄+θ̄−D

where vµ is the gauge field, σ is a complex field, λ is a Dirac fermions

and D is a real auxiliary field. If we have chiral superfields coupled to vector

superfields, the supersymmetric transformations of the chiral fields are mod-

ified because of the gauge symmetry, in the present case, the supersymmetric

transformation for Φ = (φ, ψ, F ) and V = (vµ, λ, σ,D) are:
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δφ = iε̄±λ± + iε±λ̄± (3.35)

δψ+ = iε̄−(D0 +D1)φ+ ε+Fε+σ̄φ (3.36)

δψ− = −iε+−(D0 −D1)φ+ ε−F + ε̄−σφ (3.37)

δF = −iε+−(D0 −D1)ψ+ − iε̄−(D0 +D1)ψ− + (3.38)

+ ε+σ̄ψ− + ε̄−σψ+ + i(ε̄−λ̄+ − ε̄+λ̄−)φ

δv± = iε̄±λ± + iε±λ̄± (3.39)

δσ = iε̄+λ− − iε−λ̄+ (3.40)

δD = −ε̄+∂−λ+ − ε̄−∂+λ− + ε+∂−λ̄+ + ε−∂+λ̄− (3.41)

δλ+ = iε+(D + ivµν) + 2ε−∂+σ̄ (3.42)

δλ− = iε−(D − ivµν) + 2ε+∂−σ (3.43)

with vµν = ∂µvν − ∂νvµ. This supersymmetric transformation will lead

us to BPS equations of the gauged bSkM in chapter 13. Again the N = 2

and gauge invariant lagrangians are constructed like always, for example, if

we gauge the lagrangian (3.29) we obtain:

Lk,gauged =

∫
d4θΦ̄eV Φ = (3.44)

= −Dµφ̄Dµφ+ iψ̄−(D0 +D1)ψ− + iψ̄+(D0 −D1)ψ+ +

+ D|φ|2 + |F |2 − |σ|2|φ|2 − ψ̄−σψ+ − ψ̄+σ̄ψ− − iφ̄λ−ψ+ +

+ iφ̄λ+ψ− + iψ̄+λ̄−φ− iψ̄−λ̄+φ

The super Yang-Mills lagragian in 1+1 dimensions is constructed in terms

of the superfield strength Σ := D̄+D−V as:

LYM = − 1

2e2

∫
d4θΣ̄Σ = (3.45)

=
1

2e2

(
−∂µσ̄∂µσ + iλ̄−(∂0 + ∂1)λ− + iλ̄+(∂0 − ∂1)λ+ + v2

01 +D2
)

(e2 is the gauge coupling). In chapter 13 we will use the generalization of

(3.44) with a general Kähler potential which will allow us to construct the

N = 2 bSkM.





Chapter 4

SUSY N=1 d=3+1

4.1 Introduction

Although we will not use explicitly supersymmetry in 3+1 dimensions along

this thesis, we include here a brief introduction that will allow us to see

the parallelism between this and N = 2 supersymmetry in 1 + 1 or 2 + 1

dimensions. This connection via dimensional reduction ensures, in particular,

that our results in 2 + 1 dimensions and extended supersymmetry can be

extended to the ordinary space. We follow for this chapter [160] and [161].

4.2 Superspace

We first define the superspace coordinates:

z = (xµ, θα, θ̄α̇) (4.1)

where xµ are ordinary space-time coordinates and θ and θ̄ are two com-

ponent Grassmann variables which transforms as Weyl spinors. We define

susy transformation in superspace:

(xµ, θ, θ̄)→ (xµ + iθσµξ̄ − iξσµθ̄, θ + ξ, θ̄ + ξ̄) (4.2)

In this relation ξ and ξ̄ are Weyl spinors and describe translations in

superspace for the Grassmann coordinates. We can write this transformation

in terms of the generators as:

41
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δξ = ξαQα + ξ̄α̇Q̄
α̇ (4.3)

with:

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ (4.4)

Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµαα̇∂µ (4.5)

we have the algebra:

{Qα, Q̄α̇} = 2iσµαα̇∂µ (4.6)

in the general expression for extended SUSY in 3 + 1-dimensions the

central charges are included: {QI
α, Q̄

J
α̇} = 2iδIJσµαα̇∂µ + δαβU

IJ + (γ5)αβV
IJ ,

where U IJ = −UJI and V IJ = −V JI are the central charges.

4.3 Superfields

A general superfield can be expanded in components like:

F (x, θ, θ̄) = f(x) + θψ(x) + θ̄ψ̄(x) + θθm(x) + θ̄θ̄n(x) + (4.7)

+ θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θχ(x) +

+ θθθ̄θ̄d(x)

We define again the set of superderivates which allows us to define chiral

and anti-chiral superfields:

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ (4.8)

D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ (4.9)

A superfield Φ satisfying the condition D̄Φ = 0 is called chiral cuperfield

while a superfield Φ† satisfying the condition DΦ† = 0 is called anti-chiral.
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To obtain explicitly the components of chiral and antichiral superfields we

can act with Dα and D̄α̇ in (4.8) and solve the equations

DαF (x, θ, θ̄) = 0 (4.10)

D̄α̇F (x, θ, θ̄) = 0 (4.11)

but this is a little bit tedious. To write the explicit form in components

we introduce the chiral coordinate

yµ = xµ + iθσµθ̄ (4.12)

which satisfies the condition D̄α̇y
µ = 0. If the superfield Φ is written in

terms of this coordinate the chirality condition is automatically satisfied,

D̄α̇Φ(y, θ) = 0 (4.13)

We may now write

Φ(y, θ) = A(y) +
√

2θαψα(y) + (θθ)F (y) (4.14)

and reexpanding again we obtain

Φ(x, θ, θ̄) = A(x) + iθσµθ̄∂µA(x)− 1

4
(θθ)(θ̄θ̄)�A(x) + (4.15)

+
√

2θψ(x)− i√
2

(θθ)∂µψ(x)σµθ̄σµθ̄ + (θθ)F (x).

We can impose other conditions on the superfields to obtain different

constraint superfields. For example, to obtain a vector superfield V (x, θ, θ̄)

we impose the reality condition V (x, θ, θ̄) = V (x, θ, θ̄)†. This new superfield

can be written in components as:

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
(θθ)(M(x) + iN(x))−(4.16)

− i

2
(θ̄θ̄)(M(x)− iN(x))− θσµθ̄vµ(x) + i(θθ)θ̄[λ̄(x) +

+
i

2
σ̄µ∂µχ(x)]− i(θ̄θ̄)θ[λ(x) +

i

2
σµ∂µχ̄] +

+
1

2
(θθ)(θ̄θ̄)(D(x) +

1

2
�C(x)).
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Here the bosonic components C, D, M , N and vµ are real. One can

simplify this superfield through some ”covariant” constraint. We will see

that the superfield transformation

V (z)→ V (z) + Λ(z) + λ†(z) (4.17)

is the supersymmetric version of an abelian gauge transformation (here

Λ(z) and Λ†(z) are chiral and antichiral superfields, respectively, with com-

ponents (A(x), ψ(x), F (x))). The gauge transformations of the component

fields of V (x, θ, θ̄) are given as:

C(x) → C(x) + A(x) + A(x)? (4.18)

χ(x) → χ(x)− i
√

2ψ(x) (4.19)

M(x) + iN(x) → M(x) + iN(x)− 2iF (x) (4.20)

vµ(x) → vµ(x)− i∂µ(A(x) + A(x)?) (4.21)

λ(x) → λ(x) (4.22)

D(x) → D(x) (4.23)

For a special gauge transformation

C(x) = −(A(x) + A(x)?) (4.24)

χ(x) = i
√

2ψ(x) (4.25)

M(x) + iN(x) = 2iF (x), (4.26)

and the vector superfield is reduced to

V (x, θ, θ̄) = −θσµθ̄vµ(x) + i(θθ)θ̄λ̄(x)− i(θ̄θ̄)θλ(x) + (4.27)

+
1

2
(θθ)(θ̄θ̄)D(x). (4.28)

This special gauge (4.26) is known as the Wess-Zumino gauge. And, what

about supersymmetric gauge actions? The procedure is the same as in the

previous chapter,
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Sk =

∫
d4xd4θΦ̄eV Φ (4.29)

which in terms of the component fields reads

Sk =

∫
d4x[Dµφ̄Dµφ+ iψσµDµψ̄ + F̄F + (4.30)

+ Dφ̄φ+
√

2λψφ̄+
√

2]

where Dµ is the covariant derivative. Defining Wα = −1
4
D̄α̇D̄

α̇DαV the

super Yang-Mills action can be written as an F -term,

SYM =

∫
d4xd2θWαWα + h.c. = (4.31)

=

∫
d4x[

1

4
F µνFµν + iλσµ∂µλ̄+

1

2
D2]

where Fµν = ∂µ∂ν − ∂ν∂ν is the field strength for the abelian gauge field.

We see what happens in 1 + 1 dimensions and extended supersymmetry, the

actions there are essentially equal except because two components of the

gauge field (in 3 + 1) are absorbed in the complex scalar field σ. In 2 + 1

dimension the only difference is that σ is real. It is because of this reason

that we say that d = 3+1, N = 1 and d = 2+1, N = 1 are almost equivalent.





Chapter 5

Geometry and Supersymmetry

5.1 Introduction

In this chapter we will present briefly the relation between supersymmetry

and geometry. We use the results of Álvarez-Gaumé and Freedman [68] and

also [69] and [70], to discuss the relation between the complex structure of

the target space manifold for bosonic non-linear σ-model and the number of

supersymmetries which this model can allow. We start with 2-dimensional

σ-models.

5.2 Relation between complex geometry and

SUSY

Given a n-dimensional Riemannian manifold with metric gij(Φ
k) one can

define a supersymmetric σ-model with N = 1 supersymmetry. The superfield

action is

S[Φ] =
1

4i

∫
d2xd2θgij(Φ

k)D̄ΦiDΦj, (5.1)

where Φk is a real scalar superfield,

Φk(x, θ) = φk(x) + θ̄ψk(x) +
1

2
θ̄θF k(x). (5.2)
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After integration in θ and the elimination of the auxiliary field, we obtain,

in terms of physical fields,

S[φ, ψ] =
1

2

∫
d2x{gij(φ)∂µφ

i∂µφj + igij(φ)ψ̄iγµDµψ
j +

1

6
Riklj(ψ̄

iψl)(ψ̄kψj)}
(5.3)

with the covariant derivative Dµψ
k = ∂µψ

k + Γkji∂µφ
jψk. The action is

invariant under the following supersymmetric transformations,

δφk = ε̄ψk (5.4)

δψk = −i/∂φkε− Γkji(ε̄ψ
j)ψi (5.5)

We want to study the possibility of additional supersymmetric invariances

of the action (5.3). First of all, we know that the action is invariant under

(5.5) and also under reparametrizations of the target manifold M :

φ
′k = φ

′k(φ) (5.6)

ψ
′k =

∂φ
′k

∂φ′j
ψj (5.7)

It can be checked that the most general Ansatz for SUSY transformation

rules which is consistent with dimensional arguments, and Lorentz and parity

invariance is

δφk = fkj ε̄ψ
j (5.8)

δψk = −ihkj /∂ψjε− Skji(ε̄ψj)ψi − (5.9)

− V k
ji(ε̄γ

µψj)γµψ
i − P k

ji(ε̄γ5ψ
j)γ5ψ

i (5.10)

Commutations with diffeomorphisms implies that f , h, V and P are

tensors. We require that the action (5.3) be stationary under the variations

(5.10). Absence of linear term in ψ of δS requires the conditions

gikf
k
j = gjkh

k
i (5.11)

∇kf
i
j = 0, (5.12)
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then fkj is covariantly constant. Let us suppose now the general rules

(5.10) obey the supersymmetric algebra

{Qa, Q̄b} = 2δab /P , (5.13)

which implies

f ijh
j
k = δik, (5.14)

and these relations plus the previous one between h and f allow us to

write

gijf
i
kf

j
l = gkl. (5.15)

We now assume that there are several supersymmetries with covariantly

constant tensors f
(a)i
j . Then (5.13) implies

f (a)f (b)−1 + f (b)f (a)−1 = 2δab. (5.16)

Assuming that one of these transformations is the original (f
(0)i
j = δij)

and b = 0 we have

f
(a)i
k f

(a)k
j = −δij. (5.17)

We collect these properties for the tensor f ,

∇kf
i
j = 0 (5.18)

gijf
i
kf

j
l = gkl (5.19)

f ikf
k
j = −δij. (5.20)

The third one implies that the dimension of M is even. From the three

relations it follows that M can be covered smoothly with complex coordi-

nate charts (zα, zᾱ) such that transition functions in overlapping coordinate

patches are holomorphic. In complex coordinates the line element ds2 can

be written as:

ds2 = 2gαβ̄dz
αdzβ̄; (5.21)
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the two form

F = igαβ̄dz
α ∧ dzβ̄ (5.22)

is closed which implies locally

gαβ̄ =
∂2

∂zα∂zβ̄
K(z, z̄), (5.23)

where K(z, z̄) is the Kähler potential. Thus a supersymmetric σ-model

on a Riemann manifold M admits a second supersymmetry if and only if M

is Kähler. It is possible to extend these results to more dimensions or more

supersymmetry. In the following table we summarize some of these results:

dimension SUSY manifold

d=2 N=1 no restriction on M

N=2 M is Kähler

N=4 M is hyper-Kähler

d=4 N=1 M is Kähler

N=2 M is hyper-Kähler

N=4 No extension exists

(bosonic sector with spin 1) .

We emphasize that these geometric constraints hold for SUSY extensions

of σ-models, the inclusion of gauge fields changes the geometry in general.

This relationship between supersymmetry and geometry will be important

in Chapter 13.



Chapter 6

The Skyrme model

Let us analyze first the sine-Gordon model in order to suggest a kind of

generalization to the Skyrme model. To do this, we need two components φ0

and φ1 which are functions on the (1 + 1)-dimensional space-time with the

constraint

φ2
0 + φ2

1 = 1, (6.1)

then it is possible to fulfill this constraint by setting

φ0 = cosα(x, t) , φ1 = sinα(x, t). (6.2)

Now substituting this explicit form for the fields in the original Lagrangian

proposed by Skyrme to describe nucleon fields interacting with pseudo scalar

meson field,

L =
1

2

∑
ρ

[(∂µφρ)
2 +

1

2
k2φ4

ρ] + ψ̄[iγµ∂µ + g(φ0 + iγ5τ · φ)]ψ (6.3)

we obtain the lagrangian of the sine-Gordon model,

LSG =
1

2
[(∂tα)2 − (∂xα)2]− k2(1− cosα) (6.4)

with the corresponding Euler-Lagrange equation

∂2
xα− ∂2

t − k2 sinα = 0 (6.5)
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with solutions of the form (2π-solitons)

α(x) = 4 tan−1[exp{±k(x− x0)}] (6.6)

with the following profile

-4 -2 2 4
x

1

2

3

4

5

6

ΑHxL

There are solutions interpolating all different neighboring values of the

vacuum.

6.0.1 The topological charge

All solutions of the model satisfy the following boundary condition

α(x)→ 0(mod2π) as |x| → ∞. (6.7)

In this family of solutions satisfying these boundary conditions we can dis-

tinguish between solutions where α(x) takes the zero value at both boudaries

x = ±∞, on the other hand we have α(−∞) = 0 and α(∞) = 2π. Those

solutions are not transformable into each other by any continuous transfor-

mation, hence the space of solutions with the boundary condition (6.7) is

split into distinct connected components. Since a continuous deformation

could be regarded as an evolution of the classical system, we can assign to

these solutions a‘characteristic” which does not change its value under time

evolution. Now taking into account the existence of the conserved current

Jµ =
1

2π
εµν∂να (6.8)
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such that ∂µJ
µ = 0 independent of the equations of motion, we can define

the topological charge

Q =

∫ ∞
−∞

dxJ0 =
1

2π

∫ ∞
−∞

dx
∂α

∂x
=

1

2π
]α(+∞)− α(−∞)] (6.9)

which is exactly the quantity (winding number, Chern-Pontryagin num-

ber...) which labels the different sectors where solutions live. If we write our

fields in the form φ = φ0 + iφ1 or φ(x) = exp(iα(x)), the constraint (6.1) can

be written as

φ(x)φ(x)? = 1 (6.10)

and the integrand of the second term in (6.9) as

∂α

∂x
= −iφ?∂φ

∂x
(6.11)

such that φ? = φ−1. We can try to construct an analog of this kind of

models in (3+1) dimensions. The boundary condition at infinity compactifies

R3 onto the three sphere S3, which is topologycally isomorphic to SU(2).

Hence we can use a quarternionic representation of SU(2). Our fields now

are:

U(x, t) = φ0(x, t) + iτ · φ(x, t) (6.12)

where x ∈ R3 and τ are the Pauli matrices. The constraint (6.1) in terms

of U is rewritten as

U · U † = 1. (6.13)

To ensure the compactification R2 ∪∞ w S3 the field satisfies

U(x)→ 1 as |x| → ∞. (6.14)

We can write now a straightforward generalization on the condition (6.11)

in terms of the quaternionic field

Rµ = U−1∂µU = iτaR
a
µ, (6.15)
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this field must satisfy the Maurer-Cartan structural equations of the zero

curvature conditions,

∂µRν − ∂νRµ + [Rµ, Rν ] = 0. (6.16)

These conditions are necessary and sufficient conditions for the recon-

struction of the field U in terms of BRµ. At this point we can write down

the lagrangian proposed by Skyrme as a low energy effective theory for QCD,

becoming exact as the number of quark colors becomes large,

L =
ε

4π2
{κ2Ra

µR
a
µ −

1

2
[(Ra

µR
a
µ)2 − (Ra

µR
a
ν)

2]}, (6.17)

or in terms of the quaternionic field,

L =
F 2
π

16
Tr(∂µU∂µU

†) +
1

32e2
Tr[∂µUU

†, ∂νUU
†]2. (6.18)

This is the lagrangian corresponding to the Skyrme model (with λ =

2/Fπ and ε = (
√

2e)−1). We will analyze different features of this model in

this chapter. After scaling the parameters the Euler-Lagrange equations of

motion can be written as

∂µ

(
Rµ +

1

4
[Rν , [Rν , R

µ]]

)
= 0. (6.19)

If one restricts to static fields, then the Skyrme energy functional derived

from the Lagrangian is

E =
1

12π2

∫
d3x{−1

2
Tr(/RiRi)−

1

16
Tr([Ri, Rj][Ri, Rj])}. (6.20)

Now the boundary condition at infinity implies a one-point compactifica-

tion of space, so that U : S3 7→ S3, where the domain S3 is to be identified

with R3 ∪ {∞}.The homotopy group π3(S3) is Z, which implies that maps

between 3-spheres fall into homotopy classes indexed by an integer. This

integer B is also the degree of the map U and has the explicit representation

B = − 1

24π2

∫
d3xεijkTr(RiRjRk). (6.21)
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As B is a topological invariant, it is conserved under continuous deforma-

tions of the field, including time evolution. It is this conserved topological

charge which Skyrme identified with baryon number. But the existence of

this invariant is not enough to ensure the existence of stable topological soli-

tons. Note that the energy decomposes into two contributions, quadratic

and quartic in derivatives E = E2 + E4. Under a rescaling of the spatial

coordinates x→ µx. the energy becomes

E(µ) =
1

µ
E2 + µE4. (6.22)

We see that these two terms scale in an opposite way, leading to a mini-

mal value of E(µ) for a finite µ 6= 0. From this discussion is now clear why

the σ-model (consisting only on the quadratic term) does not support stable

solitons. Any term with 4 or more derivatives can cure this problem but the

Skyrme term is the unique expression of minimal degree (4 in this dimension)

which is Lorentz invariant and for which the resulting equations of motion

are second order in the time derivative. However, notice that the antisym-

metric sextic contribution, of topological origin, also satisfies this consistency

requirement, this fact will be important in our work.

6.1 The Baby Skyrme model

Faddeev suggested [173] that stable closed strings may exist as topological

solitons of an O(3) σ-model modified by terms with higher derivatives. The

following model realizes this idea. If we restrict the Skyrme field to the 2-

sphere, S2, the usual SU(2) target space, the field corresponding to the SkM

is a real three-component vector of unit length, φa, with φaφa = 1. This field

is related to the original Skyrme field via U = iφaτa (where τa are the Pauli

matrices). Subtsituting this into the Skyrme lagrangian results in

L = ∂µφ
a∂µφa − 1

2
(εabc∂µφ

b∂νφ
c)2. (6.23)

The above lagrangial is known as Skyrme-Faddev lagrangian. We can

generalize this lagrangian by adding an additional higher derivative term

following [169], [168]
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L = ∂µφ
a∂µφa − 1

2
(εabc∂µφ

b∂νφ
c)2 +

1

2
(∂µφ

a∂µφa)2. (6.24)

Now if we go to 2 + 1 dimensions, the basic field of the reduced model

maps the three-dimensional Minkowski space M3 onto S2,

φ : M3 7→ S2. (6.25)

Now, after the addition of a potential term depending on the third com-

ponent of the field, we obtain the class of baby Skyrme models we shall

consider along this thesis,

L =
λ2

2
∂µφ

a∂µφa − λ4

4
(εabc∂µφ

b∂νφ
c)2 + (6.26)

+
λ̃4

4
(∂µφ

a∂µφa)2 − λ0V (φ3)

with φaφa = 1. The relevant homotopy group is π2(S2) = Z which implies

that maps between 2-spheres fall into homotopy classes indexed by an integer

(like for the original Skyrme model). The degree of such maps Q can be

written explicitly as:

Q =
1

4π

∫
dxdyεabcφ

a∂xφ
b∂yφ

c (6.27)

After the stereographic projection

φa = (u+ u?,−i(u− u?), (|u|2 − 1)/(1 + |u|2)) (6.28)

the above lagrangian can be written as

L = 2λ2
∂µu∂

µu?

(1 + |u|2)2
+ 2λ4{

(∂µu)2(∂νu
?)2

(1 + |u|2)4
+ (6.29)

+ (
2λ̃4

λ4

− 1)
(∂µu∂

µu?)2

(1 + |u|2)4
+ V ((|u|2 − 1)/(1 + |u|2))}.

We will see that the N = 1 supersymmetrization of this model if pos-

sible for any λ̃4, because each term can be extended separately. However,

N = 2 extended SUSY constrains the parameters of the model enforcing the

condition λ̃4 = 0.



Chapter 7

First try: N=1 SUSY K field

models

7.1 Introduction

In this chapter we analyze a first example for the supersymmetric exten-

sion of K field theories. This extension is quite simple and will constitute a

pedagogical example to illustrate different problems related with such super-

symmetric theories. In section 7.2.1, we briefly discuss the standard scalar

supersymmetric kink. Then, in Section 7.2.2, we introduce a different super-

symmetric extension of the (non-supersymmetric) scalar kink. This extension

is on-shell, i.e., the scalar field equation agrees with the field equation of the

non-supersymmetric scalar theory, whereas the bosonic part of the action

is not equal to the action of the non-supersymmetric theory. It is this sec-

ond supersymmetric extension which can be easily generalized to K theories.

In Section 7.3.1, we briefly describe the class of scalar K field theories we

want to consider, whereas in Section 7.3.2 we introduce the supersymmetric

extensions of these K field theories, analogously to what we did in Section

7.2.2 for the standard scalar kink. In Section 7.4, we investigate the issue

of central extensions of the SUSY algebra in a kink background for our new

supersymmetric extensions of K field theories. However, in the last section

we show the problem of this extension (in the sense that it contains ghosts),

although we will solve this problem in the next chapter.
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7.2 Two versions for the supersymmetric kink

7.2.1 The standard supersymmetric kink

For comparison with later results, let us first briefly review the standard

supersymmetric kink theories. The simplest scalar superfield action is

S =

∫
d3xd2θ

[
−1

4
DαΦDαΦ + P (Φ)

]
=

∫
d3xD2

[
−1

4
DαΦDαΦ + P (Φ)

] ∣∣∣
(7.1)

where use was made of the fact that Grassmann integration is equivalent to

Grassmann differentiation. Performing the derivatives explicitly and setting

θα to zero at the end results in

S =

∫
d3x
[1

2
F 2 +

1

2
iψ̄/∂ψ +

1

2
∂µφ∂

µφ+
1

2
P ′′(φ)ψ̄ψ + P ′(φ)F

]
. (7.2)

Finally, eliminating the auxiliary field via its field equation F = −P ′ we get

the standard supersymmetric action

S =

∫
d3x
[
− 1

2
(P ′(φ))2 +

1

2
iψ̄/∂ψ +

1

2
∂µφ∂

µφ+
1

2
P ′′(φ)ψ̄ψ

]
. (7.3)

Here, P (φ) is the prepotential which provides both the potential V = (1/2)P ′2

and the Yukawa type interaction Y = P ′′ with the fermion. observe the pres-

ence of the factors (1/2) in the fermionic part of the action in the conventions

used here.

The Euler–Lagrange equations for the action (7.3) are

∂µ∂
µφ+ V ′(φ) = 0 (7.4)

for the scalar and

iγ̄µαβ∂µψβ + Y ψα = 0 (7.5)

for the spinor field. With our gamma matrix conventions we may now spe-

cialize the Euler–Lagrange equations to 1+1 dimensions and to the static

case of kink or soliton solutions and the corresponding fermionic zero mode

equation. Concretely we get

φxx − V ′(φ) = 0 ⇒ 1

2
φ2
x = V (7.6)
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for the scalar field and

∓∂xψ± + Y ψ± = 0 (7.7)

for the fermion field (here ψα = (ψ+, ψ−)). If V has more than one vacuum,

then there exist finite energy solutions (kinks) of Eq. (7.6) which interpo-

late between different vacua. In the background of such a kink, one of the

fermionic zero mode equations (7.7) generically has a normalizable solution

(e.g. (ψ+, 0)), whereas the second equation has a non-normalizable solution

(e.g. (0, ψ−)). We remark for later use that if we apply, e.g., the minus Dirac

operator to the plus Dirac (zero mode) equation then we get

(∂x + Y )(−∂x + Y )ψ+ = (−∂2
x + Y ′φx + Y 2)ψ+ = (−∂2

x + V ′′)ψ+ (7.8)

where we used Y = P ′′, V = (1/2)P ′2 and φx =
√

2V = P ′. Further,

the normalizable solution (zero mode) ψ+ is just the derivative of the kink,

ψ+ = εφx (here ε is a Grassmann-valued constant):

(−∂x+Y )ψ+ = ε(−∂x+P ′′)φx = −ε(φxx−P ′′P ′) = −ε(φxx−V ′) = 0. (7.9)

This is a consequence of both supersymmetry, which implies that the bosonic

and fermionic zero modes (=zero energy solutions of the linear fluctuation

equations) in the kink background are the same, and of the translational sym-

metry of the kink, which implies that the bosonic zero mode is the derivative

of the kink.

7.2.2 A new supersymmetric action

Now let us introduce a new supersymmetric action by simply supersym-

metrizing (in the sense of replacing scalar fields by superfields) the bosonic

part of the above action (7.3). This bosonic part reads

Sbos =

∫
d3x

(
1

2
∂µφ∂

µφ− V (φ)

)
(7.10)

so let us introduce the action

S =

∫
d3xd2θ

(
1

2
∂µΦ∂µΦ− V (Φ)

)
(7.11)
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where

X ≡ 1

2
∂µΦ∂µΦ =

1

2
∂µφ∂

µφ+ θα∂µφ∂
µψα − θ2

(
∂µφ∂

µF +
1

2
∂µψ

α∂µψα

)
(7.12)

is a genuine superfield like Φ itself. In components this action reads∫
d3xD2(X − V (Φ))| =

∫
d3x(∂µφ∂

µF +
1

2
∂µψ

α∂µψα −

− 1

2
V ′′(φ)ψαψα − V ′(φ)F ). (7.13)

In this action, derivatives act on the auxiliary field F , so its field equation

is no longer algebraic. Nevertheless, this field remains auxiliary in a certain

sense, as we shall see in a moment. The field F only appears linearly in the

above action, therefore it disappears from its own Euler–Lagrange equation.

Indeed, varying w.r.t. F gives the equation

∂µ∂
µφ+ V ′(φ) = 0, (7.14)

i.e., the standard field equation of the scalar field. In other words, F es-

sentially is a Lagrange multiplier which enforces the standard scalar field

equation.

The Euler–Lagrange equation for the fermion field is

∂µ∂
µψα − V ′′ψα = 0, (7.15)

which is not exactly equal to the Dirac equation of the standard theory.

However, the two theories share the same zero modes in a kink background,

i.e., the same static, one-dimensional solutions. Indeed, the restriction of this

equation to one-dimensional, static configurations is identical to Eq. (7.8).

observe that the auxiliary field F does not show up in the two above

equations for φ and ψα, i.e., there is no backreaction of F on the evolution

of φ and ψα. In precisely this sense F still is an auxiliary field. The field F

may in principle be calculated from the Euler–Lagrange equation for φ,

∂µ∂
µF + V ′′F +

1

2
V ′′′ψ̄ψ = 0 (7.16)

once φ and ψ have been determined, but due to the auxiliary nature of F in

the sense explained above we treat these solutions as physically irrelevant.
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7.3 The supersymmetric extended models

7.3.1 K field theories with kinks

Firstly, let us briefly introduce the K field theories we want to discuss here.

The class of bosonic Lagrangians we consider read

SK,bos =

∫
d3x (f(X)− V (φ)) , X ≡ 1

2
∂µφ∂

µφ (7.17)

where f is an at the moment arbitrary function of its argument. Several phys-

ical conditions (positivity of the energy, global hyperbolicity, well-defined

Cauchy problem) may impose further restrictions on f . The resulting Euler–

Lagrange equation is

∂µ (f ′(X)∂µφ) + V ′(φ) = 0. (7.18)

For convenience, let us display two explicit examples of these K theories. A

first example is the purely quartic model

L = X|X| − 3

4
λ2(φ2 − 1)2 (7.19)

which has the compact kink solutions

φ(x) =


−1 x ≤ − π

2
√
λ

sin
√
λx − π

2
√
λ
≤ x ≤ π

2
√
λ

1 x ≥ π
2
√
λ
,

(7.20)

see [12]. Here the absolute value symbol in the kinetic term is irrelevant for

static (compact kink) solutions, but is important to guarantee positivity of

the energy in the full, time-dependent system.

The second example is specifically designed such that the resulting K

theory still has the standard φ4 kink as a solution (of course, the dynamics

will be different from the standard φ4 theory). These K theories have been

originally introduced in [58], and we just briefly repeat their construction.

Indeed, for a general K field theory of the type (7.17), the field equation for

a static, one-dimensional (kink) solution may be integrated once to give

f − 2f ′X = V (7.21)
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where X = −1
2
φ2
x in the static one-dimensional case. For the φ4 kink f = X,

V = 1
2
(1 − φ2)2, we get the equation φ2

x = (1 − φ2)2, and the kink solution

is φ = tanhx. For general f we may still assume that φ2
x = (1 − φ2)2

(i.e., the standard φ4 kink solution) and use this condition to determine the

corresponding potential in Eq. (7.21). A specific example of this type is

provided by f = X + αX2 where α is a real parameter. Assuming −2X =

φ2
x = (1− φ2)2 and using Eq. (7.21) to determine the potential, one gets the

Lagrangian density

L = X + αX2 − 1

2
(1− φ2)2 − 3

4
α(1− φ2)4. (7.22)

other choices for the potential are, of course, possible, but in general they do

not lead to closed, analytic expressions for the corresponding kink solutions.

7.3.2 The supersymmetric extensions

In complete analogy with what we did in section 2.B we now supersymmetrize

the K field action of the above section in the sense of replacing the scalar

field by a superfield. Doing this, we get the supersymmetric action

SK,SUSY =

∫
d3xd2θ (f(X )− V (Φ)) (7.23)

where X is defined in Eq. (7.12). In components this action reads

SK,SUSY =

∫
d3xLK,SUSY =

∫
d3xD2 (f(X )− V (Φ)) | =

=

∫
d3x[

1

2
f ′′(X)∂µφ∂

µψα∂νφ∂
νψα +

+ f ′(X)(∂µφ∂
µF +

1

2
∂µψ

α∂µψα)

− 1

2
V ′′(φ)ψαψα − V ′(φ)F ]. (7.24)

The field equation for φ is again provided by the Euler–Lagrange equation

w.r.t. the auxiliary field F . Explicitly it reads

∂µ (f ′(X)∂µφ) + V ′(φ) = 0 (7.25)
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and is, therefore, identical to Eq. (7.18). The Euler–Lagrange equation for

the spinor field is

∂µ (f ′′(X)∂νφ∂νψα∂
µφ+ f ′(X)∂µψα) + V ′′(φ)ψα = 0. (7.26)

We remark that again the auxiliary field F does not couple to either the

scalar or the spinor field and may be treated as auxiliary or unphysical in

this sense.

Finally, let us demonstrate that the fermionic zero mode in a kink back-

ground continues to be the derivative of the kink. For a static, one-dimensional

scalar field φ(x) the Euler–Lagrange equation (7.25) reads

−∂x(f ′(X)φx) + V ′(φ) = 0 (7.27)

or, with the help of Xx = −φxφxx,

f ′′φ2
xφxx − f ′φxx + V ′ = 0. (7.28)

on the other hand, the Euler–Lagrange equation (7.26) for a static spinor

ψα(x) in a kink background φ(x) reads

∂x(f
′′φ2

xψα,x − f ′ψα,x) + V ′′ψα = 0 (7.29)

and is identically satisfied for a spinor ψα = εαφx where εα is a constant

spinor. Indeed, inserting this spinor in the above equation we get

εα∂x(f
′′φ2

xφxx − f ′φxx + V ′) = 0 (7.30)

i.e., just the x derivative of the kink equation (7.28).

7.4 Supercurrent and SUSY algebra

It is a well-known fact that a standard supersymmetric scalar field theory in

1+1 dimensions has a centrally extended SUSY algebra if it supports topolog-

ical soliton solutions (kinks) [22], where the central charges are related to the

topological charges of the solitons. Here we want to investigate whether this

phenomenon continues to hold in the case of the supersymmetric extensions
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of K field theories introduced in the last section. The SUSY transformations

of the fields are

δφ = ε̄ψ , δψ = −iγµε∂µφ− εF
δF = iε̄γµ∂µψ , δψ̄ = iε̄γµ∂µφ− ε̄F. (7.31)

The supersymmetric K field Lagrangian related to the action (7.24) trans-

forms under the SUSY transformations by the following total derivative

δLK,SUSY = iε̄∂µ[f ′(X)∂νφγ
µ∂νψ − V ′(φ)γµψ] ≡ ∂µJ

µ
2 (7.32)

where the following relations are useful for the calculation,

ε̄ψ = ψ̄ε , ε̄γµψ = −ψ̄γµε , (7.33)

ε̄γµγνψ = ε̄

(
1

2
{γµ, γν}+

1

2
[γµ, γν ]

)
ψ = ψ̄

(
1

2
{γµ, γν} − 1

2
[γµ, γν ]

)
ε .

(7.34)

The part of the SUSY Noether current related directly to the field variations

is

Jµ1 ≡
(
δφ

∂

∂(∂µφ)
+ δF

∂

∂(∂µF )
+ δψ

∂

∂(∂µψ)
+ δψ̄

∂

∂(∂µψ̄)

)
LK,SUSY

= ε̄f ′(X)[∂µFψ − F∂µψ + i∂µφ/∂ψ + i/∂φ∂µψ]

+ ε̄f ′′(X)
(1

2
(∂µψ̄∂νφ∂

νψ + ∂νψ̄∂νφ∂
µψ)ψ +

∂µφ[(∂νφ∂
νF +

1

2
∂νψ̄∂

νψ)ψ + i∂νφ/∂φ∂νψ − F∂νφ∂νψ]
)

+
1

2
ε̄f ′′′(X)∂µφ(∂λφ∂

λψ̄∂νφ∂
νψ)ψ (7.35)

(here in the first line it is understood that the field insertions should be made

exactly at the positions where the corresponding field derivatives act), and

the full SUSY Noether current is

JµSUSY = Jµ1 − J
µ
2 ≡ ε̄J µ ≡ ε̄αJ µ

α (7.36)

where we introduced some notation at the r.h.s. It may be checked by a

lengthy but straight forward calculation that this current is conserved on-

shell.
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For an evaluation of the SUSY algebra it is useful to study the simpler

case f(X) = X (the model of Section 2.C) first. The current in this case is

J µ
α = ∂µFψα−F∂µψα+ i∂µφ(/∂ψ)α+ i(/∂φ∂µψ)α− i∂νφ(γµ∂νψ)α+ iV ′(γµψ)α

(7.37)

and the correct field equal time (anti) commutators are

[φ(x), Ḟ (y)] = iδ(x− y) , [F (x), φ̇(y)] = iδ(x− y) (7.38)

{ψα(x), ˙̄ψβ(y)} = iδαβδ(x− y) , {ψ̇α(x), ψ̄β(y)} = −iδαβδ(x− y). (7.39)

The bosonic commutators are obvious from the action (7.13), whereas the

anticommutators are obvious up to an overall sign. An easy way to check

that our sign choice is right is to observe that with this sign choice the correct

SUSY transformations of the fields are produced, i.e.,

[iεQ, φn] = δφn φn = (φ, ψ, ψ̄, F ) (7.40)

where

Qα =

∫
dxJ 0

α . (7.41)

For the SUSY anticommutator {J 0
α (x), Q̄β} we find after another lengthy

calculation

{J 0
α (x), Q̄β} = 2T 0

ν(γ̄
ν)αβ + 2i(γ̄5)αβV

′φ′ (7.42)

(remember (γµε)α ≡ γ̄µαβεβ ≡ γµα
βεβ in the barred spinor and spinor metric

notations, respectively, where ε is an arbitrary spinor; further, γ5 = γ0γ1).

The corresponding energy momentum tensor is

T µν = ∂µφ∂νF + ∂νφ∂µF +
1

2

(
∂µψ̄∂νψ + ∂νψ̄∂µψ

)
−

gµν
(
∂λφ∂

λF +
1

2
∂λψ̄∂

λψ − 1

2
V ′′ψ̄ψ − V ′F

)
. (7.43)

It is interesting to contrast this result with the corresponding one for a stan-

dard theory like the one in Section 2.B (where the energy-momentum tensor

is different, of course),

{J 0
α (x), Q̄β} = 2T 0

ν(γ
ν)αβ + 2i(γ5)αβP

′φ′. (7.44)
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The result looks formally almost identical, with the only difference that in the

second term at the r.h.s. the prepotential P appears instead of the potential

V itself. This difference is, however, important. Indeed, in the standard case

a further integration
∫
dx leads to the SUSY algebra with central extension,

{Qα, Q̄β} = 2Pν(γν)αβ + 2i(γ5)αβ(P (φ+)− P (φ−)) (7.45)

where φ± = φ(x = ±∞), and Pν is the momentum operator. For a kink,

φ+ 6= φ−, and also P (φ+) and P (φ−) are different, so a central extension

appears in the SUSY algebra in a kink background.

For the anticommutator (7.42), on the other hand, a further integral leads

to

{Qα, Q̄β} = 2Pν(γν)αβ + 2i(γ5)αβ(V (φ+)− V (φ−)) = 2Pν(γν)αβ (7.46)

because φ± must take vacuum values, and V (φ) is zero by definition for a

vacuum value. Therefore, for the theory of Section 2.C there is no central

extension in the SUSY algebra in a kink background.

It remains to calculate the SUSY algebra for the supersymmetric K field

theories of Section 3.B. For this purpose it is useful to introduce the canonical

momenta from the variations of the Lagrangian

∂LK,SUSY

∂(∂µφ)
= f ′′′(X)∂µφ∂λφ∂

λψ̄∂νφ∂
νψ +

+ f ′′(X)
(
∂µψ̄∂νφ∂

νψ + ∂νφ∂
νψ̄∂µψ + ∂µφ∂νφ∂

νF
)

+

+ f ′(X)∂µF (7.47)

∂LK,SUSY

∂(∂µF )
= f ′(X)∂µφ (7.48)

∂LK,SUSY

∂(∂µψ̄α)
=

1

2
(f ′′(X)∂µφ∂νφ∂

νψα + f ′(X)∂µψα) (7.49)

∂LK,SUSY

∂(∂µψα)
=

1

2

(
f ′′(X)∂µφ∂νφ∂

νψ̄α + f ′(X)∂µψ̄α
)
. (7.50)

For the bosonic fields we have directly

Πφ ≡
∂LK,SUSY

∂(∂0φ)
, ΠF ≡

∂LK,SUSY

∂(∂0F )
, (7.51)
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whereas for the fermi fields we have to take into account that ψ and ψ̄ are

not independent, i.e,

ε̄α(Πψ)α ≡ (Πψ̄)αεα = ε̄α
∂LK,SUSY

∂0ψ̄α
+
∂LK,SUSY

∂0ψα
εα (7.52)

for an arbitrary spinor ε. It follows that e.g.

(Πψ)α = f ′′(X)φ̇∂νφ∂
νψ̄α + f ′(X) ˙̄ψα, (7.53)

and the SUSY charge density is

J 0
α = ψαΠφ+i(/∂ψ)αΠf +i(/∂φΠψ)α−F (Πψ)α−i∂νφ(γ0∂νψ)α−iV ′(φ)(γ0ψ)α.

(7.54)

Finally, the equal time (anti) commutators are

[φ(x),Πφ(y)] = iδ(x− y) , [F (x),ΠF (y)] = iδ(x− y) (7.55)

{ψα(x), (Πψ)β(y)} = iδαβδ(x− y) , {ψ̄α(x), (Πψ̄)β(y)} = −iδαβδ(x− y)

(7.56)

(the anticommutators for ψ and ψ̄ are of course not independent). For the

SUSY charge and charge density algebra we find again Eq. (7.42). The

SUSY algebra in a kink background, therefore, again contains no central

extension. The energy-momentum tensor is, of course, different from the

one in Eq. (7.43). Its explicit expression is rather long and not particularly

illuminating, therefore we do not display it here.

7.5 Problems of the extension

Remember that, in fact, all these constructions are explicitly supersymmetric,

because, first of all, we are promoting bosonic fields to superfields. We leave

space-time derivatives unchanged and do not promote them to superderivates

as is usually done. Space-time derivatives, however, are anticommutators of

superderivatives and, therefore, map superfields into superfields,

{Dα, Dβ} = 2i∂αβ. (7.57)

Then our scheme for this supersymmetrization is the following,
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Lbos = L(φ, ∂µφ, ...) −→ LSUSY = L(Φ, ∂µΦ, ...). (7.58)

Although the bosonic sector in the SUSY version is not the same we had

in the original bosonic model, the variation of the action w.r.t the auxiliary

field F generates the e.o.m. of the bosonic field, remember the trivial example

Lbos =
1

2
∂µφ∂

µφ− 1

2
(P ′(φ))2 (7.59)

with e.o.m.

∂µ∂
µφ+ P ′(φ)P ′′(φ) = 0 (7.60)

and the corresponding extension

LSUSY = ∂µφ∂
µF +

1

2
∂µψ

α∂µψα −
1

2
V ′′(φ)ψαψα − V ′(φ)F. (7.61)

Variation w.r.t. F implies:

∂µ∂
µφ+ V ′(φ) = 0. (7.62)

Now, making the right choice for the superpotential, i.e., such that V ′(φ) =

P ′(φ)P ′′(φ), we have the same equation. Up to here nothing new. Another

interesting observation is that this scheme is absolutely general (at least for

scalar field theories), we always obtain the equation of motion of the original

model from the variation of the susy model w.r.t. the auxiliary field. Then,

where are the problems? If we have a look at (7.61), we see that F becomes

dynamical, and if we change the field like

φ = A+B (7.63)

F = A−B, (7.64)

we can rewrite the lagrangian as

LSUSY,ghost = ∂µA∂
µA− ∂µB∂µB +

1

2
∂µψ

α∂µψα − (7.65)

− 1

2
V ′′(φ)ψαψα − V ′(φ)(A−B),
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and the field B constitutes a ghost which allows to have infinitely nega-

tive energy. Still, the study of these models has been instructive in under-

standing the new structures and difficulties in SUSY extensions of K field

theories, because we were able to go rather far in the explicit calculation and

even determine the complete SUSY algebra with its central extensions. In

the following chapters we propose different extensions to avoid the problem

mentioned above with the ghost field.





Chapter 8

N=1 SUSY extension of K field

theories

After having displayed the inherent complications related with the supersym-

metrization of K field theories, we propose in this chapter a possible SUSY

extension of these models with a detailed analysis of solitonic solutions and

exact calulations of energies. This chapter consists of a paper published in

[95].

Supersymmetric K field theories and defect structures

C. Adam 1, J.M. Queiruga 1, J. Sanchez-Guillen 1, A. Wereszczynski 2

1 Departamento de F́ısica de Part́ıculas, Universidad de Santiago de

Compostela and Instituto Galego de F́ısica de Altas Enerxias (IGFAE)

E-15782 Santiago de Compostela, Spain 2 Institute of Physics, Jagiellonian

University, Reymonta 4, Kraków, Poland

Abstract: We construct supersymmetric K field theories (i.e., theories with

a non-standard kinetic term) in 1+1 and 2+1 dimensions such that the

bosonic sector just consists of a nonstandard kinetic term plus a potential.

Further, we study the possibility of topological defect formation in these su-

persymmetric models. Finally, we consider more general supersymmetric K

field theories where, again, topological defects exist in some cases.

71
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8.1 Introduction

Topological defects are of fundamental importance in a wide range of physical

theories. Both in particle theory and in condensed matter physics, topolog-

ical defects may exist as stable, particle-like excitations above the ground

state of a theory. In some cases, states containing topological defects are

even energetically preferred over the homogeneous state, such that the true

ground state of the system is a condensate or lattice of topological defects.

Another field where topological defects are deemed relevant is cosmology. On

the one hand, topological defects are crucial in inflationary scenarios, where

they may form domain walls separating different vacua of some primordial

fields in the symmetry-breaking phase. As a consequence, it is widely be-

lieved that a pattern of these topological defects might be responsible for the

structure formation in the very early universe, see e.g. [23], [24], [25]. On the

other hand, topological defects also play an important role in the so-called

brane-world scenario, where it is assumed that the visible universe is a 3+1

dimensional subspace “brane”) in a higher-dimensional bulk universe. The

brane may be either strictly 3+1 dimensional “thin brane”) or have a small

but nonzero extension also in the additional dimensions “thick brane”). In

the latter, thick brane case, these branes are normally topological defects in

the higher-dimensional bulk space [26], [27], [28], [29], [30] [9]. In all these

cosmological applications, the relevant topological defects are usually solu-

tions of some effective field theories of one or several scalar fields. The scalar

field theories may either consist of the standard kinetic term of the scalar

fields plus a potential, in which case the specific properties of the defects are

related to the properties of the potential. Or one may relax the condition on

the kinetic term and allow for more general field theories with a Lagrangian

depending both on the fields and their first derivatives. These so-called K

field theories have been increasing in importance during the last years, be-

ginning with the observation about a decade ago that they might be relevant

for the solution of some problems in cosmology, like K-inflation [2] and K-

essence [3]. K field theories have found their applications in cosmology [4],

[5], [7], [33], [51], and they introduce some qualitatively new phenomena, like

the formation of solitons with compact support, so-called compactons [35] -
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[40].

If K field theories turn out to be relevant for the cosmological problems

described above at sufficiently early times (e.g., in the inflationary epoch)

and/or sufficiently small scales, then the question of supersymmetric ex-

tensions of these theories naturally arises (see, e.g., [41], [42]). Here the

situation is quite different for theories supporting topological defects with

standard kinetic term (possibly coupled to gauge fields), on the one hand,

and K field theories, on the other hand. Standard scalar field theories (for

co-dimension one defects), the abelian Higgs (or Chern–Simons Higgs) mod-

els (for co-dimensions two defects), the t’Hooft-Polyakov monopole theory

(for co-dimension 3 defects) and pure Yang–Mills theory (for co-dimension

4 defects) are all well-known to allow for supersymmetric extensions [43],

[44], [45], [46], [129], and these supersymmetric extensions have been studied

intensively over the last decades.

On the contrary, much less is known about supersymmetric extensions of

K field theories supporting topological solitons. To the best of our knowledge,

the problem of supersymmetric extensions was first investigated in relation

to the Skyrme model [1], which is one of the best-known theories supporting

topological solitons and possessing a non-standard kinetic term. Concretely,

the supersymmetric extensions of a S2 (or CP(1)) restriction of the Skyrme

model (the so-called Skyrme–Faddeev–Niemi (SFN) model [48]) were inves-

tigated in [15] and in [16]. In both papers, a formulation of the SFN model

was used where the CP(1) restriction of the Skyrme model is achieved via

a gauging of the third, unwanted degree of freedom. As a result, the SFN

model is expressed by two complex scalar fields and an undynamical gauge

field, which are then promoted to two chiral superfields and a real vector

superfield in the Wess–Zumino gauge, respectively. The result of the analy-

sis is that the SFN model in its original form cannot be supersymmetrically

extended by these methods. Instead, the supersymmetric extension contains

further terms already in the bosonic sector, and also the field equations of the

bosonic fields are different. Recently, we were able to show, using methods

similar to the ones employed in the present article, that the baby Skyrme

model in 2+1 dimensions does allow for a supersymmetric extension [49].

Quite recently, the investigation of the problem of possible supersymmet-
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ric extensions of scalar K field theories has gained momentum, [17], [50],

[135], [136]. Here, [17] and [50] studied supersymmetric extensions of K field

theories in 1+1 and in 2+1 dimensions, whereas the investigations of [135]

and [136] are for 3+1 dimensional K theories, and related to some concrete

cosmological applications (ghost condensates and Galileons).

It is the purpose of the present article to introduce and study a large

class of supersymmetric extensions of scalar K field theories as well as their

static topological defect solutions. The supersymmetric field theories we con-

struct exist both in 1+1 and in 2+1 dimensional Minkowski space, due to the

similarity of the spin structure in these two spaces. The topological defect

solutions we study, on the other hand, all will belong to the class of defects

in 1+1 dimensions (kinks), or to co-dimension one defects in a more gen-

eral setting. Concretely, in Section 8.2 we introduce a set of supersymmetric

Lagrangians which we shall use as ”building blocks” for the specific super-

symmetric Lagrangians we want to construct. We find that it is possible to

construct supersymmetric Lagrangians such that their bosonic sectors just

consist of a generalized kinetic term plus a potential term. We also inves-

tigate stability issues (energy positivity and the null energy condition). In

Section 8.3, we investigate topological defect solutions of the theories intro-

duced in Section 8.2. We find that there exist two classes of solutions, namely

the so-called ”generic” ones, which exist for a whole class of Lagrangians, and

”specific” ones which depend on the specific Lagrangian under consideration.

As these non-linear theories are rather uncommon, we discuss one prototyp-

ical example of the ”specific” solutions in some detail. In this example, it

results that all specific topological kink solutions belong to the class C1 of

continuous functions with a continuous first derivative. We then briefly dis-

cuss some further examples, where both compact solitons and C∞ functions

may be found among the specific solutions. In Section 8.4, we introduce

and study a more general class of supersymmetric Lagrangians, where the

bosonic sector no longer can be expressed as a sum of a generalized kinetic

term and a potential. We also comment on the relation of our results with

the results of Bazeia, Menezes, and Petrov [17]. Finally, Section 8.5 contains

a discussion of our results.
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8.2 Supersymmetric models

8.2.1 Conventions

Our supersymmetry conventions are based on the widely used ones of [18],

where our only difference with their conventions is our choice of the Minkowski

space metric ηµν = diag(+,−,−) (or its restriction to 1+1 dimensions, where

appropriate). All sign differences between this paper and [18] can be traced

back to this difference. Concretely, we use the superfield

Φ(x, θ) = φ(x) + θγψγ(x)− θ2F (x) (8.1)

where φ is a real scalar field, ψα is a fermionic two-component Majorana

spinor, and F is the auxiliary field. Further, θα are the two Grassmann-

valued superspace coordinates, and θ2 ≡ (1/2)θαθα. Spinor indices are risen

and lowered with the spinor metric Cαβ = −Cαβ = (σ2)αβ, i.e., ψα = Cαβψβ

and ψα = ψβCβα. The superderivative is

Dα = ∂α + iθβ∂αβ = ∂α − iγµαβθβ∂µ (8.2)

and obeys the following useful relations (D2 ≡ 1
2
DαDα):

DαDβ = i∂αβ + CαβD
2 ; DβDαDβ = 0 ; (D2)2 = −� (8.3)

D2Dα = −DαD
2 = i∂αβD

β ; ∂αγ∂βγ = −δγβ� (8.4)

and

D2 =
1

2
∂α∂α − iθα∂βα∂β + θ2� (8.5)

D2Φ = F − iθγ∂δγψδ + θ2�φ (8.6)

D2(Φ1Φ2) = (D2Φ1)Φ2 + (DαΦ1)(DαΦ2) + Φ1D
2Φ2 (8.7)

The components of superfields can be extracted with the help of the

following projections

φ(x) = Φ(z)|, ψα(x) = DαΦ(z)|, F (x) = D2Φ(z)|, (8.8)

where the vertical line | denotes evaluation at θα = 0.
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8.2.2 Lagrangians

For the models we will construct we need the following superfields

DαΦDαΦ = 2ψ2−2θα(ψαF+iψβ∂αβφ)+2θ2(F 2−iψα∂αβψβ+∂µφ∂
µφ) (8.9)

DβDαΦDβDαΦ =

= 2∂µφ∂
µφ− θγ∂αβψγ∂αβφ+ θ2∂αβφ∂αβF +

+
1

2
θ2∂αβψγ∂αβψγ + F 2 − 2iFθγ∂δγψ

δ + 2θ2F�φ

+ θ2∂δ
γψδ∂βγψ

β) (8.10)

D2ΦD2Φ = F 2 − 2iFθγ∂δγψ
δ + 2θ2F�φ+ θ2∂δ

γψδ∂βγψ
β (8.11)

as well as their purely bosonic parts (we remark that all spinorial contribu-

tions to the lagrangians we shall consider are at least quadratic in the spinors,

therefore it is consistent to study the subsector with ψα = 0)

(DαΦDαΦ)ψ=0 = 2θ2(F 2 + ∂µφ∂µφ) (8.12)

(DβDαΦDβDαΦ)ψ=0 = 2(F 2 + ∂µφ∂µφ) + 4θ2(F�φ− ∂µφ∂µF )(8.13)

(D2ΦD2Φ)ψ=0 = F 2 + 2θ2F�φ. (8.14)

Next, let us construct the supersymmetric actions we want to investigate.

A supersymmetric action always is the superspace integral of a superfield.

Further, due to the Grassmann integration rules
∫
d2θ = 0,

∫
d2θθα = 0,∫

d2θθ2 = −1 = D2θ2, the corresponding Lagrangian in ordinary space-

time always is the θ2 component of the superfield. Besides, we are mainly

interested in the bosonic sectors of the resulting theories, therefore we shall

restrict to the purely bosonic sector in the sequel. We will use the following

supersymmetric Lagrangian densities (in ordinary space-time) as building

blocks,

(L(k,n))ψ=0 = −
(
D2[(

1

2
DαΦDαΦ)(

1

2
DβDαΦDβDαΦ)k−1(D2ΦD2Φ)n]|

)
ψ=0

= (F 2 + ∂µφ∂
µφ)kF 2n (8.15)

where k = 1, 2, . . . and n = 0, 1, 2, . . .. The idea now is to choose certain

linear combinations of the L(k,n) with specific properties. We observe that



CHAPTER 8. N=1 SUSY EXTENSION OF K FIELD THEORIES 77

a general linear combination contains terms where powers of the auxiliary

field F couple to the kinetic term ∂µφ∂
µφ. But there exists a specific linear

combination where these mixed terms are absent, namely

(L(k))ψ=0 ≡ (L(k,0))ψ=0 −
(
k

1

)
(L(k−1,1))ψ=0 +

(
k

2

)
(L(k−2,2))ψ=0 + . . . (8.16)

. . .+ (−1)k−1

(
k

k − 1

)
(L(1,k−1))ψ=0 = (∂µφ∂µφ)k + (−1)k−1F 2k.

The Lagrangians we want to consider are linear combinations of the above,

where we also want to include a potential term, because we are mainly in-

terested in topological solitons and defect solutions. That is to say, we add

a prepotential P (Φ) to the action density in superspace which, in ordinary

space-time, induces the bosonic Lagrangian density (D2P )| = P ′(φ)F (here

the prime denotes a derivative w.r.t. the argument φ). Therefore, the class

of Lagrangians we want to consider is

L(α,P )
b =

N∑
k=1

αk(L(k))ψ=0 + P ′F

=
N∑
k=1

αk[(∂
µφ∂µφ)k + (−1)k−1F 2k] + P ′(φ)F (8.17)

where the lower index b means ”bosonic” (we only consider the bosonic sector

of a supersymmetric Lagrangian), and the upper index α should be under-

stood as a multiindex α = (α1, α2, . . . , αN) of coupling constants. Further,

N is a positive integer. In a next step, we eliminate F via its algebraic field

equation
N∑
k=1

(−1)k−12kαkF
2k−1 + P ′(φ) = 0. (8.18)

For a given function P (φ) this is, in general, a rather complicated algebraic

equation for F . However, we made no assumption yet about the functional

dependence of P , therefore we may understand this equation in a second,

equivalent way: we assume that F is an arbitrary given function of φ, which

in turn determines the prepotential P (φ). This second way of interpreting

Eq. (8.18) is more useful for our purposes. Eliminating the resulting P ′(φ)
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we arrive at the Lagrangian density

L(α,F )
b =

N∑
k=1

αk[(∂
µφ∂µφ)k − (−1)k−1(2k − 1)F 2k] (8.19)

where now F = F (φ) is a given function of φ which we may choose freely

depending on the theory or physical problem under consideration.

8.2.3 Energy considerations

We would like to end this section with some considerations on the positivity

of the energy. The energy density corresponding to the Lagrangian (8.19) is

(in 1+1 dimensions and with φ̇ = ∂tφ, φ′ = ∂xφ)

E (α,F )
b =

N∑
k=1

αk

(
(φ̇2 − φ′2)k−1((2k − 1)φ̇2 + φ′2) + (−1)k−1(2k − 1)F 2k

)
.

(8.20)

This expression is obviously positive semi-definite if only the αk with odd

k are nonzero and positive. It remains positive semi-definite if both the

lowest (usually k = 1) and the highest value of k (k = N) with a nonzero

and positive αk are odd, provided that the intermediate αk for even k are

not too large. For a given value of N , inequalities for the coefficients αk

guaranteeing positive semi-definiteness of the energy density can be derived

without difficulties.

A second, less restrictive condition which is deemed sufficient to guarantee

stability is the so-called null energy condition

Tµνn
µnν ≥ 0 (8.21)

where Tµν is the energy-momentum tensor and nµ is an arbitrary null vector.

For general Lagrangians L(X,φ) whereX ≡ 1
2
∂µφ∂

µφ, the energy momentum

tensor reads

Tµν = L,X∂µφ∂νφ− gµνL (8.22)

(here L,X is the X derivative of L), and the null energy condition simply

is L,X ≥ 0. For our specific class of Lagrangians (8.19), the null energy
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condition therefore reads

(L(α,F )
b ),X =

N∑
k=1

2kαk(∂µφ∂
µφ)k−1 ≥ 0. (8.23)

Again, this condition is automatically satisfied if only αk for odd k are

nonzero, or if the αk for even k obey certain restrictions.

Remark: in [50] a class of models based on the superfield (8.82) of Section

4.2 were introduced. These models satisfy neither energy positivity nor the

null energy condition. They support, nevertheless, topological kink solutions,

and their energy densities can be expressed as the squares of the correspond-

ing supercharges. A more complete analysis of these models which would

resolve the issue of stability is, therefore, an open problem at the moment

which requires further investigation.

8.3 Solutions

The Euler-Lagrange equation for the Lagrangian density (8.19) is

N∑
k=1

2kαk
(
∂µ[(∂νφ∂

νφ)k−1∂µφ] + (−1)k−1(2k − 1)F 2k−1F,φ
)

= 0 (8.24)

which, in 1+1 dimensions and for static (time-independent) fields simplifies

to
N∑
k=1

2k(−1)k−1αk
(
−∂x(φ2k−1

,x ) + (2k − 1)F 2k−1F,φ
)

= 0. (8.25)

8.3.1 Generic static solutions

First of all, we want to demonstrate that, due to the restrictions imposed by

supersymmetry, this equation has a class of static, one-dimensional solutions

which are completely independent of the coefficients αk, which we shall call

the ”generic” solutions. Indeed, if we impose equation (8.25) for each k (i.e.,

for each term in the sum) independently, the resulting equation is

∂x(φ
2k−1
,x ) = (2k − 1)F 2k−1F,φ (8.26)
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or, after multiplying by φ,x and dividing by (2k − 1),

φ2k−1
,x φ,xx = F 2k−1F,φφ,x (8.27)

which may be integrated to φ2k
,x = F 2k and, therefore, to the k independent

solution

φ,x ≡ φ′ = ±F. (8.28)

That is to say, these solutions only depend on the choice of F = F (φ), but do

not depend on the αk and, therefore, exist for an infinite number of theories

defined by different values of the αk. Depending on the choice for F (φ),

the static solutions may be topological solitons. E.g. for the simple choice

F = 1 − φ2, the solution of (8.28) is just the well-known φ4 kink solution

φ(x) = tanh(x − x0) where x0 is an integration constant (the position of

the kink). As another example, for F =
√
|1− φ2|, we get the compacton

solution

φ(x) =


−1 x− x0 ≤ −π

2

sin(x− x0) −π
2
≤ x− x0 ≤ π

2

1 x− x0 ≥ π
2

(8.29)

where, again, x0 is an integration constant.

The energy of a generic supersymmetric kink solution may be calculated

with the help of the first order formalism, which has the advantage that an

explicit knowledge of the kink solution is not needed for the determination

of its energy (for details on the first order formalism we refer to [32]). All

that is needed is the field equation of a generic solution φ′ = ±F (we shall

choose the plus sign corresponding to the kink, for concreteness). The idea

now is to separate a factor φ′ in the energy density with the help of the field

equation, because this allows to rewrite the base space integral of the energy

functional as a target space integral with the help of the relation φ′dx ≡ dφ.

Concretely, we get for the energy density of the generic kink solution

E =
N∑
k=1

(−1)k−1αk(φ
′2k + (2k − 1)F 2k) =

N∑
k=1

(−1)k−1αk2kF
2k

= φ′
N∑
k=1

(−1)k−1αk2kF
2k−1 ≡ φ′W,φ (8.30)
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where W,φ and its φ integral W (φ) are understood as functions of φ. For the

energy this leads to

E =

∫ ∞
−∞

dxφ′W,φ =

∫ φ(∞)

φ(−∞)

dφW,φ = W (φ(∞))−W (φ(−∞)). (8.31)

As indicated, all that is needed for the evaluation of this energy is the root

φ′ = F (φ) and the asymptotic behaviour φ(±∞) of the kink. We remark

that the integrating function W (φ) of the first order formalism is identical

to the prepotential P (φ),

W (φ) = P (φ) (8.32)

as is obvious from Eq. (8.18). This is exactly as in the case of the standard

supersymmetric scalar field theory with the standard, quadratic kinetic term.

It also remains true for the class of models introduced and studied in [17], as

we shall discuss in some more detail in Section 8.4.2 Both for the standard

supersymmetric scalar field theories and for the models introduced in [17] it

is, in fact, possible to rewrite the energy functional for static field configura-

tions in a BPS form, such that both the first order field equations for static

fields and the simple, topological expressions E = P (φ(∞))−P (φ(−∞)) for

the resulting energies are a consequence of the BPS property of the energy

functional (for the models introduced in [17] we briefly recapitulate the BPS

property of static kink solutions in Section 8.4.2). on the contrary, for the

models introduced in the previous section there is no obvious way to rewrite

them in a BPS form, despite the applicability of the first order formalism, be-

cause the energy functional contains, in general, many more than two terms

(just two terms are needed to complete a square and arrive at the BPS form).

on the other hand, for the additional, specific solutions of the theories

of Section 8.2 to be discussed in the following two subsections, the relation

W = P is no longer true, although it is still possible to calculate the energies

of the specific solutions with the help of the first order formalism.

8.3.2 Specific solutions: an example

Next, we want to study whether in addition to the solutions φ2
,x = F 2, which

do not depend on the specific Lagrangian (i.e., on the coefficients αk), there
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exist further (static) solutions which do depend on the Lagrangian. Both

the existence of such additional solutions and their properties (e.g., being

topological solitons) will depend on the Lagrangian, therefore the results

will be less general and have to be discussed separately for each model. So,

let us select a specific Lagrangian (specific values for the αk) as an example.

Concretely, we want to study the simplest case which gives rise to a potential

with several vacua and obeys certain additional restrictions (positivity of the

energy). Positivity of the energy requires that both the highest and the

lowest nonzero αk are for odd k, so we choose nonzero α3 and α1 for the

simplest case. Further, we want that the potential factorizes and gives rise

to several vacua, so we choose the concrete example α3 = 1
5
, α2 = 2

3
, and

α1 = 1, which gives rise to the Lagrangian density

Lexb =
1

5
(∂µφ∂

µφ)3 +
2

3
(∂µφ∂

µφ)2 + ∂µφ∂
µφ− F 6 + 2F 4 − F 2 (8.33)

where, indeed, the potential in terms of F factorizes, F 6 − 2F 4 + F 2 =

F 2(1− F 2)2. Next, we want to assume the simplest relation between F and

φ, namely F 2(φ) = φ2. The resulting Lagrangian is

Lexb =
1

5
(∂µφ∂

µφ)3 +
2

3
(∂µφ∂

µφ)2 + ∂µφ∂
µφ− φ2(1− φ2)2. (8.34)

We already know that it gives rise to the static solutions

(φ,x)
2 = φ2 ⇒ φ(x) = exp±(x− x0). (8.35)

These solutions have infinite energy and are not solitons. We want to in-

vestigate whether there exist additonal solutions and, specifically, whether

there exist topological solitons. The potential has the three vacua φ =

(0, 1,−1), therefore topological solitons (static solutions which interpolate

between these vacua) are not excluded. We shall find that these solitons ex-

ist in the space C1 of continuous functions with a continuous first derivative,

but not in the spaces Cn (with continuous first n derivatives) for n > 1.

The once-integrated field equation for static solutions (with the integra-

tion constant set equal to zero, as required by the finiteness of the energy)

reads (φ′ ≡ φ,x)

φ′6 − 2φ′4 + φ′2 = φ6 − 2φ4 + φ2 (8.36)
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and obviously has the solutions (8.35). For a better understanding of further

solutions the following observations are useful. Firstly, for a fixed value x = x̃

of the independent variable x, the field φ and its derivative φ′ have to obey

the equation

V (φ) = V (φ′) = c (8.37)

where c is a real, positive constant (or zero) and

V (λ) ≡ λ6 − 2λ4 + λ2 = λ2(1− λ2)2 (8.38)

is the potential (see Figure (8.1)). In general, the equation V (λ) = c has

six solutions λ = ±λi(c), i = 1 . . . 3. In other words, if we choose the initial

condition φ(x̃) = φ̃, then φ′(x̃) is not uniquely determined (as would be the

case for a linear first order equation) and may take any of the six values

±λi(c) such that V (±λi(c)) = V (φ̃) = c. obviously, the choice φ′(x̃) = ±φ̃
leads to the exponential solutions (8.35), whereas other choices will lead to

additional solutions.

-1.0 -0.5 0.5 1.0
Φ

0.05

0.10

0.15

0.20

0.25

VHΦL

Figure 8.1: The potential V (φ) = φ6 − 2φ4 + φ2.

Secondly, the field equation (8.36) leads to the following equation for the

second derivative

φ′′ =
(3φ4 − 4φ2 + 1)φ

3φ′4 − 4φ′2 + 1
(8.39)

where the numerator is zero for all critical points (minima and maxima)

φ = (0,±1,± 1√
3
) of the potential V (φ), whereas the denominator is zero for

the critical points φ′ = (±1,± 1√
3
). For later convenience we also remark that
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at the two local maxima φ = ± 1√
3

the potential takes the value V (± 1√
3
) = 4

27

and that the equation V (λ) = 4
27

has the two further solutions λ = ± 2√
3

which

are not critical points.

We observe that the equation V (φ′) = V (φ) can in fact be solved alge-

braically for φ′ and leads to the solutions

φ′ = ±φ (8.40)

(that is, the exponential solutions (8.35)) and to the four further solutions

φ′ = ±1

2

(
φ±

√
4− 3φ2

)
. (8.41)

For this last expression, reality of φ′ requires that |φ| ≤ 2√
3
. The resulting

integral for φ ∫ φ

0

dφ̃

±(φ±
√

4− 3φ2)
=

1

2
(x− x0) (8.42)

may be resolved explicitly, providing an implicit solution x − x0 = H(φ)

where, for each choice of signs, H(φ) is a combination of logaritms and in-

verse trigonometric functions. The explicit expressions for H are, however,

rather lenghty and not particularly illuminating, therefore we prefer to con-

tinue our discussion with a combination of qualitative arguments and nu-

merical calculations. We want to remark, however, that the graphs of the

numerical solutions shown in the figures below agree exactly with the graphs

of the analytic solutions (8.42) (we remind the reader that for the graph of

a function the implicit solution is sufficient).

For the qualitative discussion, we now assume that we choose an ”initial

value” at a given point x̃. Due to translational invariance we may choose

this point at zero x̃ = 0, i.e. φ(0) = φ0, without loss of generality. For

0 < |φ0| < 1√
3
, 1√

3
< |φ0| < 1 and 1 < |φ0| < 2√

3
, φ′(0) may take any

of the six real solutions of the equation V (φ′) = V (φ0). Further, φ′′(0) as

well as all higher order derivatives at x = 0 are uniquely determined by

linear equations, as we shall see in a moment. Therefore, for these ”initial

conditions” φ0, there exist indeed the six solutions (8.35) and (8.42). For

|φ0| > 2√
3
, only the two solutions φ′(0) = ±φ0 of the equation V (φ′) = V (φ0)

are real, therefore only the two exponential solutions (8.35) exist. At the



CHAPTER 8. N=1 SUSY EXTENSION OF K FIELD THEORIES 85

critical points φ0 = 0,±1 and φ0 = ± 1√
3
,± 2√

3
the situation is slightly more

complicated (strictly speaking φ0 = ± 2√
3

are not critical points, because

V ′(± 2√
3
) 6= 0; however, φ0 = ± 2√

3
provides the same level height of the

potential like the critical points φ0 = ± 1√
3
, that is, V (± 1√

3
) = V (± 2√

3
) = 4

27
,

therefore these points play a special role in the analysis, too). In order to

understand what happens it is useful to insert the Taylor expansion about

x = 0,

φ(x) =
∞∑
k=0

fkx
k (8.43)

into the field equation V (φ)− V (φ′) = 0, which, up to second order, reads

0 = f 2
0 (1− f 2

0 )2 − f 2
1 (1− f 2

1 )2 + (8.44)

[2f0(1− 4f 2
0 + 3f 4

0 )f1 − 4f1(1− 4f 2
1 + 3f 4

1 )f2]x+ (8.45)

[(1− 12f 2
0 + 15f 4

0 )f 2
1 + 2f0(1− 4f 2

0 + 3f 4
0 )f2 −

−4(1− 12f 2
1 + 15f 4

1 )f 2
2 − 6f1(1− 4f 2

1 + 3f 4
1 )f3]x2 + . . . (8.46)

It can be inferred easily that for generic values of f0 and f1 (values which

are not critical points), f2 is determined uniquely by a linear equation from

the term of order x1. on the other hand, if f1 takes a critical value, then the

coefficient multiplying f2 in the order x1 term is zero, and f2 is determined,

instead, by a quadratic equation coming from the term of order x2. These

points will be important in the following, because precisely at these points

we may join different solutions such that the resulting solution belongs to the

class C1 of continuous functions with a continuous first derivative. Specifi-

cally, we find the following possible values for f1 and f2 for a given, critical f0

(we only consider the cases f0 ≥ 0 because of the obvious symmetry φ→ −φ
of the theory). For f0 = 0

(f0, f1, f2) = (0, 0, 0) or (0,±1,±1

4
) (8.47)

where the first case corresponds to the trivial vacuum solution φ ≡ 0, and the

second case corresponds to the four solutions (8.42). The exponential solu-

tions (8.35) are obviously incompatible with the ”initial condition” φ(0) = 0

(the vacuum solution φ(x) = 0 can be understood as a limiting case of the two
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exponential solutions for infinite integration constant x0). Next, for f0 = 1

(f0, f1, f2) = (1, 0, 0) or (1,±1,±1

2
) (8.48)

where the first case corresponds to the trivial vacuum solution φ ≡ 1. The

second case consists of the exponential solutions (two solutions) and of two

of the four solutions (8.42). The other two are incompatible with the ”initial

conditions”. For f0 = 1√
3

we get

(f0, f1, f2) = (
1√
3
,± 1√

3
,± 1

2
√

3
) or (

1√
3
,± 2√

3
, 0) (8.49)

where the first case contains both the two exponential solutions and two of

the four solutions (8.42), and the second case corresponds to the other two

solutions (8.42). Finally, for f0 = 2√
3

we find

(f0, f1, f2) = (
2√
3
,± 2√

3
,

1√
3

) or (
2√
3
,± 1√

3
,∞) (8.50)

where the first case provides the two exponentail solutions (8.35), whereas

the second case shows that the solutions (8.42) run into a singularity when

|f0| = 2√
3
.

Now let us study some of these cases in more detail. Concretely, we inves-

tigate the case (f0, f1, f2) = (0, 1, 1
4
). Firstly, for negative x, φ(x) diminishes

from φ(0) = 0 towards −1, and φ′(x) diminishes from φ′(0) = 1 towards 0,

such that for a fixed value of x φ and φ′ have the same height on the graph

of V , see Fig. (8.1). If x is sufficiently negative such that φ(x) is close to

its vacuum value −1 and φ′(x) is close to zero, the field equation may be

linearized about the vacuum −1, and it follows easily that the vacuum is

approached exponentially, like φ(x) ∼ −1 + exp(4x) (remember that x is

negative). In other words, for negative x the solution behaves like a nice

kink or topological soliton and does not reach the vacuum value −1 for finite

x. For positive x, in a first instant both φ(x) and φ′(x) grow till they reach

the values φ(x1) = 1√
3

and φ′(x1) = 2√
3

for some x1 > 0. At this point

φ′′(x1) = 0 therefore φ′ may change direction in a smooth way. For x > x1, φ

continues to grow while φ′ shrinks till they reach the values φ(x2) = 2√
3

and

φ′(x2) = 1√
3

for some x = x2. At this point φ′′(x2) = ∞, and the solution
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Figure 8.2: For the ”initial condition” φ(0) = 0 all the five solutions (includ-

ing the trivial solution φ ≡ 0) φ(x) (left figure) and the first derivatives φ′(x)

(right figure). The singularity at φ(x2) = ± 2√
3
, φ′(x2) = ± 1√

3
for some x2,

where the integration breaks down, is clearly visible.

hits a singularity. A numerical integration confirms these findings, see Figure

(8.2).

There exists, however, the possibility to form a topological soliton or

kink solution in the class C1 of continuous functions with continuous first

derivatives by simply joining the solution (f0, f1, f2) = (0, 1, 1
4
) for negative

x with the solution (f0, f1, f2) = (0, 1,−1
4
) for positive x. Indeed, both

φ(0) and φ′(0) agree, so the resulting solution is C1. Further, φ′ in the

second case diminishes for positive x because φ′′(0) is negative. Therefore,

φ(x) approaches 1 and φ′ approaches 0 for large positive x, and a linearized

analysis reveals that in that region φ(x) ∼ 1− exp(−4x). As a consequence,

the solution obtained by the joining procedure behaves exactly like a kink

interpolating between the vacuum −1 at x = −∞ and the vacuum +1 at

x = ∞. For the corresponding result of a numerical integration, see Figure

(8.3).

Finally, let us discuss the possibility to form a kink in the class of C1

functions which interpolates, e.g., between the vacuum 0 and the vacuum 1.

For this purpose, we should join the solution (f0, f1, f2) = ( 1√
3
, 1√

3
, 1

2
√

3
) for

x < 0 with the solution (f0, f1, f2) = ( 1√
3
, 1√

3
,− 1

2
√

3
) for x > 0. Indeed, the

solution (f0, f1, f2) = ( 1√
3
, 1√

3
, 1

2
√

3
) is just the exponential solution exp x and

behaves well (approaches 0 exponentially) for negative x. For the solution

(f0, f1, f2) = ( 1√
3
, 1√

3
,− 1

2
√

3
), on the other hand, both φ(0) and φ′(0) are equal



CHAPTER 8. N=1 SUSY EXTENSION OF K FIELD THEORIES 88

-4 -2 2 4
x

-1.0

-0.5

0.5

1.0

ΦHxL

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

Φ¢HxL

Figure 8.3: For the ”initial condition” φ(0) = 0, the kink solution interpo-

lating between φ = −1 and φ = 1 (left figure) and its first derivative (right

figure).

to 1√
3

at x = 0. For increasing x, φ(x) increases and φ′(x) decreases until

they get close to 1 and 0, respectively. But near these values, again, a lin-

earized analysis applies and tells us that φ behaves like φ(x) ∼ 1−exp(−4x).

Therefore, the solution produced by the joining procedure describes a kink

which interpolates between the vacuum φ = 0 at x = −∞ and the vacuum

φ = 1 at x = ∞. The general solution for the initial condition φ(0) = 1√
3

is

displayed in Figure (8.4), and the kink solution is shown in Figure (8.5).
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Figure 8.4: For the ”initial condition” φ(0) = 1√
3

all six solutions φ(x) (left

figure) and the first derivatives φ′(x) (right figure). Again, the singularities

at φ(x2) = ± 2√
3
, φ′(x2) = ± 1√

3
for some x2 for the non-exponential solutions

are clearly visible.

The remaining kink and antikink solutions which we have not discussed

explicitly may be easily found with the help of the obvious symmetries

x → −x and φ → −φ. We remark that from the point of view of the
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Figure 8.5: For the ”initial condition” φ(0) = 1√
3
, the kink solution interpo-

lating between φ = 0 and φ = 1 (left figure) and its first derivative (right

figure).

variational calculus, solutions in the C1 class of functions are perfectly valid.

They provide well-defined energy densities and, therefore, well-defined crit-

ical points of the energy functional. Whether they are acceptable from a

physics point of view depends, of course, on the concrete physical problem

under consideration.

Finally, we want to calculate the energies of the kinks constructed by the

joining procedure described above. These energies can again be calculated

exactly and do not require the knowledge of the explicit solutions φ(x) but,

instead, just the knowledge of the six roots (8.40), (8.41) of the first order

equation V (φ) = V (φ′), Eq. (8.36). Indeed, with the help of the first order

equation we find for the energy density for static solutions

E = −Lexb =
1

5
φ′6 − 2

3
φ′4 + φ′2 + φ2(1− φ2)2 =

6

5
φ′6 − 8

3
φ′4 + 2φ′2 (8.51)

and for the energy

E =

∫ ∞
−∞

dxE =

∫ ∞
−∞

dxφ′(
6

5
φ′5 − 8

3
φ′3 + 2φ′)

≡
∫ ∞
−∞

dxφ′W,φ =

∫ φ(∞)

φ(−∞)

dφW,φ = W (φ(∞))−W (φ(−∞))(8.52)

where

W,φ(φ) =
6

5
φ′5 − 8

3
φ′3 + 2φ′ (8.53)

(and its φ integral W (φ)) must be understood as a function of φ which results

when evaluating the above expression for one of the six roots (8.40), (8.41)
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for φ′. Here we use again the first order formalism of [32] to which refer for

a detailed discussion.

In our case, the kinks are constructed by joining two different solutions,

therefore the expression for the energy is slightly more complicated and reads

E = W (2)(φ(∞))−W (2)(φ(0)) +W (1)(φ(0))−W (1)(φ(−∞)) (8.54)

where W (2) and W (1) are the functions which result from evaluating the

expression (8.53) for the two different roots φ′ which form the specific kink

solution, and from performing the corresponding φ integrals. The joining may

be done at any point x0 in base space (because of translational invariance)

but we chose x0 = 0 in our specific examples, therefore the joining point in

target space is φ(0).

Concretely, for the soliton of Figure 3 which interpolates between φ(−∞) =

−1 and φ(∞) = 1, with joining point φ(0) = 0, the correct roots are

φ < 0 : φ′ =
1

2
(φ+

√
4− 3φ2) , φ > 0 : φ′ = −1

2
(φ−

√
4− 3φ2).

(8.55)

Further, positive and negative φ regions give exactly the same contribution

to the total energy, therefore the soliton energy can be calculated to be

E(−1,1) = 2

∫ 0

−1

dφ

(
6

5
[
1

2
(φ+

√
∆)]5 − 8

3
[
1

2
(φ+

√
∆)]3 + φ+

√
∆

)
= 2

[
φ6

10
− φ4

12
+

(
φ

10
+

11

60
φ3 − φ5

10

)√
∆ +

2

3
√

3
arcsin

(√
3

2
φ

)]0

φ=−1

= 2

(
1

6
+

2π

9
√

3

)
=

1

3
+

4π

9
√

3
. (8.56)

For the kinks which interpolate between 0 and ±1, we choose the one which

interpolates between φ(−∞) = −1 and φ(∞) = 0, because then we may

use exactly the same solution as above for the region between φ = −1 and

φ = − 1√
3
. For φ between − 1√

3
and 0, the correct root is φ′ = −φ, therefore



CHAPTER 8. N=1 SUSY EXTENSION OF K FIELD THEORIES 91

we get for the total energy of this kink

E(−1,0) = [
φ6

10
− φ4

12
+

(
φ

10
+

11

60
φ3 − φ5

10

)√
4− 3φ2 +

+
2

3
√

3
arcsin

(√
3

2
φ

)
]
− 1√

3

φ=−1 +

+

[
−1

5
φ6 +

2

3
φ4 − φ2

]0

φ=− 1√
3

=
1

6
+

2π

9
√

3
− 7

45
− π

9
√

3
+

4

15
=

5

18
+

π

9
√

3
. (8.57)

The remaining kinks, obviously, have the same energy. We remark that

E(−1,1) > 2E(−1,0). Therefore, the kink interpolating between −1 and 1 prob-

ably is unstable against the decay into one kink interpolating between −1

and 0 plus one kink interpolating between 0 and +1. Establishing this conjec-

ture would, however, require a numerical integration of the time-dependent

system, which is beyond the scope of the present article.

8.3.3 Further examples of specific solutions

In this subsection we shall discuss two more examples which are similar to the

theory studied in the last subsection. In the first example, the main difference

is that the kinks no longer approach their vacuum values in an exponential

fashion. Instead, two of the three vacua are approached compacton-like (i.e.

the field takes the corresponding vacuum value already for finite x), whereas

the third vacuum is approached in a power-like way (concretely like φ ∼ x−1).

In the second example, we will find that there exists a specific kink solution

which belongs to the class of C∞ functions. In both examples, we use the

same values for the αi like in (8.33). Besides, these examples are similar

in many respects to the one discussed above in detail, so the discussion

which follows can be much shorter. Also the resulting soliton energies can

be calculated analytically, using exactly the same method like in the above

example, therefore we do not repeat this calculation.

In the first example, we choose for F

F =
√
|1− φ2|. (8.58)
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We already know that this model leads to the α-independent static field

equations

φ′ = ±F = ±
√
|1− φ2| (8.59)

which have the compacton solutions (8.29) (the corresponding anti-compacton

solutions for the minus sign). The once integrated static field equation is

φ′6 − 2φ′4 + φ′2 = |1− φ2|3 − 2(1− φ2)2 + |1− φ2| = φ4|(1− φ2)| (8.60)

and might lead to further solutions, as in the previous subsection. Indeed, the

potential Ṽ = φ4|1−φ2| has the three vacua φ = 0,±1. Further, the potential

Ṽ behaves like Ṽ ∼ |δφ| near the two vacua ±1 (i.e., for φ = ±(1− δφ) and

small δφ), whereas it behaves like Ṽ ∼ δφ4 near the vacuum 0 (i.e. for φ = δφ

and small δφ). The asymptotic field equations for δφ are δφ′2 ∼ |δφ| near

the two vacua ±1, with the asymptotic compacton-like solution

δφ ∼ 1

2
(x− x0)2 for x ≤ x0 ; δφ = 0 for x > x0.

The asymptotic field equation near the vacuum 0 is δφ′2 ∼ δφ4 with the

solutions

δφ = ± 1

x− x0

+ o

(
1

x

)
, |x| → ∞

and, therefore, the algebraic, power-like localization announced above. It

only remains to determine whether it is possible to join a solution with this

asymptotic behaviour to a compacton-like solution, forming a kink of the

semi-compacton type, which interpolates, e.g., between the vacuum φ(−∞) =

0 (with a power-like approach) and the vacuum φ(x1) = 1 (where x1 is the

compacton boundary). For this purpose we note that Eq. (8.60) has, in

addition to the two roots (8.59), the four roots

φ′ = ± 1√
2

√
1 + φ2 +

√
1 + 2φ2 − 3φ4 (8.61)

φ′ = ± 1√
2

√
1 + φ2 −

√
1 + 2φ2 − 3φ4. (8.62)

The solution with the right behaviour (i.e., approaching the vacuum φ = 0)

is the lower one, Eq. (8.62). Now we just have to determine whether it is

possible to join this solution with the compacton solution such that both
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φ and φ′ coincide at the joining point. The result is that this joining is

indeed possible, as may be checked easily. For the kink interpolating between

φ(−∞) = 0 and φ(x1) = 1, e.g., the joining point is φ(x0) =
√

2
3
, φ′(x0) = 1√

3

where, as always, the joining point x0 in base space is arbitrary. Further,

for joining point x0, the compacton boundary of the semi-compacton is at

x1 = x0 + π
2
− arcsin

√
2
3
.

We remark that in this example all kink solutions (both the compactons

and the semi-compactons) are solutions in the C1 class of functions, because

the second derivative of the field at the compacton boundary is not uniquely

determined (its algebraic equation has three solutions, corresponding to the

vacuum, the compacton, and a third solution with infinite energy, respec-

tively). For the semi-compacton, the second derivative of the field at the

joining point obviously is not uniquely determined, as well, analogously to

the kinks formed by the joining procedure in the previous subsection.

For the second example we choose

F = 1− φ2 (8.63)

which leads to the following first order equation

φ′6−2φ′4+φ′2 = (1−φ2)6−2(1−φ2)4+(1−φ2)2 = φ4(1−φ2)2(2−φ2)2. (8.64)

Therefore, the resulting potential ˜̃V = φ4(1 − φ2)2(2 − φ2)2 has the five

vacua φ2 = (0, 1, 2). Further, the four vacua φ = ±1 and φ = ±
√

2 are

approached quadratically and will, therefore, lead to the usual exponential

kink tail. The vacuum φ = 0, on the other hand, is approached with a fourth

power, ˜̃V ∼ δφ4, and will lead to an algebraic, power-like tail, like in the last

example. Concretely, we find near φ = 0, δφ′2 ∼ 4δφ4 and therefore

δφ ∼ ± 1

2(x− x0)
, |x| → ∞. (8.65)

The six roots of Eq. (8.64) are

φ′ = ±(1− φ2) (8.66)

(which is just the first order equation for the standard φ4 kink) and the four
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additional equations

φ′ = ±1

2

(
1− φ2 +

√
1 + 6φ2 − 3φ4

)
(8.67)

φ′ = ±1

2

(
1− φ2 −

√
1 + 6φ2 − 3φ4

)
. (8.68)

Here, equation (8.67) describes solutions which approach the two vacua

φ = ±
√

2, whereas equation (8.68) describes solutions which approach the

vacuum φ = 0. By joining different solutions, we may create kinks in the

class C1 which interpolate between any two different vacua of the model, as

we did in the previous two examples. Two of the kinks belong, however, to

the class of C∞ functions. The first C∞ kink is just the standard φ4 kink

interpolating between the two vacua φ = −1 and φ = 1, and it respresents

a generic solution of the model. The second C∞ kink is the one interpo-

lating between φ = −
√

2 and φ =
√

2, as we want to demonstrate now.

Indeed, equation (8.67) describes a solution which approaches the two vacua

φ = ±
√

2. Further, this equation (we choose the root with the plus sign,

for concreteness) is completely regular in the interval −
√

2 ≤ φ ≤
√

2 (the

equation develops singularities at the two points φ2 = 1 + 2√
3
, but these

points are outside the interval where the kink takes its values). Therefore,

we expect that this equation should describe a smooth C∞ kink which in-

terpolates between the two vacua. Both an exact, implicit integration and

a numerical integration precisely confirm this expecation. We display the

result of a numerical integration in Fig. (8.6).
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Figure 8.6: The specific, regular kink solution interpolating between the two

vacua φ = −
√

2 and φ =
√

2 (left figure) and its first derivative (right figure).
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We remark that this kink has the interesting feature that its first deriva-

tive (and, therefore, also the energy density) has a local minimum at the

position of the kink center, whereas the two local maxima are slightly dis-

placed to the right and left of the center. We further remark that this example

demonstrated explicitly that C∞ kinks may exist not only among the generic

solutions but also among the specific solutions of our supersymmetric K field

theories (which was not obvious in the other two examples studied so far).

8.4 Further models

8.4.1 Field-dependent αk

Here we want to construct further supersymmetric K field theories based

on the observation that the models introduced in the last section remain

supersymmetric when the factors αk multiplying each power of the kinetic

term depend on φ instead of being constants. Indeed, a superfield which is

just an arbitrary function α(Φ) of the basic superfield Φ has the superspace

expansion in the bosonic sector ψ = 0

(α(Φ))ψ=0 = α(φ)− θ2α′(φ)F (8.69)

(the prime α′(φ) denotes the derivative w.r.t. the argument φ). If this

superfield is multiplied by the superfield (DαΦDαΦ)ψ=0 which only has a θ2

component in the bosonic sector, then in the product only the θ-independent

component of α(Φ) contributes,

(α(Φ))ψ=0| = α(φ) (8.70)

and the multiplication with the superfield α(Φ) corresponds to a multiplica-

tion with the ordinary field α(φ) of the Lagrangian densities (8.15), i.e., to

the new building blocks

− (L(k,n))ψ=0 = (8.71)

=

(
D2[α(k,n)(Φ)(

1

2
DαΦDαΦ)(

1

2
DβDαΦDβDαΦ)k−1(D2ΦD2Φ)n]|

)
ψ=0

=

= −α(k,n)(φ)(F 2 + ∂µφ∂
µφ)kF 2n (8.72)
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where again k = 1, 2, . . . and n = 0, 1, 2, . . .. The cancellation of the mixed

terms (∂µφ∂
µφ)iF 2j may again be achieved by calculating the sum analogous

to (8.17) provided all the α(k,n) in the sum are equal. Linear combinations

of these Lagrangians are therefore

L(α,P )
b =

N∑
k=1

αk(φ)[(∂µφ∂µφ)k + (−1)k−1F 2k] + P ′(φ)F (8.73)

just like in Section 8.2, but now with φ dependent coefficients αk(φ). Also,

the field equation for the auxiliary field F is the same and leads to the

Lagrangian

L(α,F )
b =

N∑
k=1

αk(φ)[(∂µφ∂µφ)k − (−1)k−1(2k − 1)F 2k] (8.74)

where F = F (φ) is an arbitrary function of φ, like in (8.19), but now with

field dependent coefficients αk(φ). This result provides us with a new class

of supersymmetric K field theories where now different powers of the kinetic

term may be multiplied by functions of the scalar field.

Now we shall discuss an explicit example, where we choose the functions

αk(φ) and F (φ) such that the resulting model possesses a simple defect so-

lution. Concretely we choose the nonzero αk

α3 =
1

24
, α2 =

1

4
(1− φ2)2 , α1 =

1

2
[1 + (1− φ2)4]. (8.75)

For non-constant αk(φ) positivity of the energy and the null energy condi-

tion become slightly more involved. For the moment we only consider the

null energy condition, which is satisfied for this specific model. Indeed, the

resulting Lagrangian is

L =
1

24
[(∂µφ∂

µφ)3 − 5F 6] +
1

4
(1− φ2)2[(∂µφ∂

µφ)2 + 3F 4] + (8.76)

+
1

2
[1 + (1− φ2)4](∂µφ∂

µφ− F )

and for LX we get

LX = X2 + 2(1− φ2)2X + (1− φ2)4 + 1 = (X + (1− φ2)2)2 + 1 > 0 (8.77)
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(remember X ≡ 1
2
∂µφ∂

µφ), so the null energy condition holds. In order to

have simple defect solutions we now choose for F

F 2 = (1− φ2)2 (8.78)

such that the Lagrangian becomes

L =
1

24
[8X3 − 5(1− φ2)6] +

1

4
(1− φ2)2[4X2 + 3(1− φ2)4] + (8.79)

+
1

2
[1 + (1− φ2)4][2X − (1− φ2)2].

The once integrated field equation for static solutions is equivalent to the

condition that the one-one component of the energy momentum tensor is

constant (see, e.g. [32, 17]). Further, for finite energy solutions this constant

must be zero,

T11 = L − 2XLX = 0 (8.80)

where now X = −1
2
φ′2 because φ is a static configuration. For the concrete

example this equation reads

−5

3
X3−3(1−φ2)2X2−[1+(1−φ2)4]X+

1

24
(1−φ2)6− 1

2
(1−φ2)2 = 0. (8.81)

It may be checked easily that this equation is solved by X = −1
2
(1 − φ2)2,

i.e., φ′2 = (1 − φ2)2 which is just the field equation of the φ4 kink with the

solution φ(x) = ± tanh(x − x0). Therefore, our concrete example has the

standard φ4 kink as a defect solution (it was specifically chosen to have this

solution). Due to the nonlinear character of the above field equation, the

model probably has more solutions (like the ones of Section 8.3), but this

issue is beyond the scope of the present paper.

Finally, let us remark that, although for the above model (i.e., the choice

(8.75) for the αk) the energy density is not positive semi-definite, it is easy to

find a small variation of the model with positive semi-definite energy density.

All one has to do is to increase the relative size of α3 and (or) α1 as compared

to α2. Choosing, for example, α1 and α2 as in (8.75), and α3 = 1
3
, the

resulting energy density is positive semi-definite for arbitrary F (φ), as may be

shown easily. If we further choose F 2 ∼ (1−φ2)2 then the resulting potential

will have at least the two vacua φ = ±1, and a linearization of the model
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near these two vacua shows that the vacua are approached exponentially, like

in the case of the standard kink. Therefore, the model most likely supports

kinks which interpolate between the two vacua, although the explicit kink

solutions will be more complicated.

8.4.2 The models of Bazeia, Menezes and Petrov

The supersymmetric K field theories of Bazeia, Menezes and Petrov (BMP)

[17] are based on the superfield

∂µΦ∂µΦ = ∂µφ∂
µφ+ 2θα∂µφ∂

µψα − 2θ2∂µφ∂
µF − θ2∂µψ

α∂µψα. (8.82)

Indeed, the bosonic component of the superfield DαΦDαΦ only consists of

a term proportional to θ2, therefore multiplying this superfield by an ar-

bitrary function of the above superfield (8.82), f(∂µΦ∂µΦ), only the theta

independent term f(∂µφ∂
µφ) will contribute, leading to the Lagrangian

LBMP = −
(
D2[f(∂µΦ∂µΦ)

1

2
DαΦDαΦ]|

)
ψ=0

= f(∂µφ∂
µφ)(F 2 + ∂µφ∂

µφ).

(8.83)

obviously, these Lagrangians produce a coupling of the auxiliary field F with

the kinetic term ∂µφ∂
µφ. on the other hand, the auxilliary field only appears

quadratically, implying a linear (algebraic) field equation for F .

First of all, we want to remark that for functions f(∂µφ∂
µφ) which have

a Taylor expansion about zero, the same bosonic Lagrangians may be con-

structed from the building blocks (8.15) of Section 8.2 by taking a different

linear combination (the fermionic parts of the corresponding Lagrangians will

in general not coincide)

L(k)
BMP ≡ (L(k,0))ψ=0 −

(
k − 1

1

)
(L(k−1,1))ψ=0 +

(
k − 1

2

)
(L(k−2,2))ψ=0 + . . .

. . . +(−1)k−1

(
k − 1

k − 1

)
(L(1,k−1))ψ=0 = (8.84)

= (∂µφ∂µφ+ F 2)(∂µφ∂
µφ)k−1.

We may easily recover the Lagrangian (8.83) by taking linear combinations
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of these,

LBMP =
∞∑
k=1

βkL(k)
BMP = (F 2 + ∂µφ∂

µφ)
∑
k

βk(∂µφ∂
µφ)k−1 ≡ (8.85)

≡ (F 2 + ∂µφ∂
µφ)f(∂µφ∂

µφ).

In order to have more interesting solutions, BMP added a potential term,

as we did in Section 8.2. The resulting theories can, in fact, be analyzed

with methods very similar to the ones employed in the previous sections.

Concretely, they studied the Lagrangians

L(P )
BMP = f(∂µφ∂

µφ)(F 2 + ∂µφ∂
µφ) + P ′(φ)F (8.86)

which after eliminating the auxiliary field F using its algebraic field equation

F = −P
′

2f
(8.87)

becomes

L(P )
BMP = f(

P ′2

4f 2
+ ∂µφ∂

µφ)− P ′2

2f
= ∂µφ∂

µφf − P ′2

4f
(8.88)

where we suppressed the arguments of P and f in the last expression to

improve readability. The X derivative of this Lagrangian is

(L(P )
BMP),X = f,X

(
P ′2

4f 2
+ 2X

)
+ 2f (8.89)

(please remember that X ≡ 1
2
∂µφ∂

µφ and f = f(2X) such that f,X = 2f ′).

The null energy condition already imposes rather nontrivial restrictions on

the function f . A sufficient condition is f ≥ 0, f,X ≥ 0 and f ≥ |Xf,X | as

may be checked easily. Finally, the once integrated field equation (8.80) for

static fields, after a simple calculation, leads to

1

4f 2
(f + 2Xf,X)(8Xf 2 + P ′2) = 0 (8.90)

where now X = −1
2
φ′2 and f = f(−φ′2) and, therefore, to the two equations

2φ′(x)f(−φ′(x)2) = ±P ′(φ) (8.91)
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where we reinserted the arguments in the last expression for the sake of

clarity. For some choices of f and P these equations lead to defect solutions.

Finally, in the models of BMP the energy of a kink may be calculated with

the help of the first order formalism first introduced in [32], in close analogy

to the calculations presented in Section 8.3.1. It also remains true that, like

in Section 8.3.1, the prepotential P (φ) is equal to the integrating function

W (φ). The energy functional for static configurations (but without the use

of the field equation) may, in fact, be re-written in a BPS form (exactly like

for the standard supersymmetric scalar field theory), from which both the

first order equations and the equality P = W follow immediately. Indeed,

the energy functional may be written like

E
(P )
BMP =

∫
dx

(
φ′2f +

P ′2

4f

)
=

∫
dx

(
1

4f
(2φ′f ∓ P ′)2 ± φ′P ′

)
(8.92)

and for a solution to the first order (or BPS) equation (8.91) (we take the

plus sign for definiteness) the resulting energy is therefore

E
(P )
BMP =

∫ ∞
−∞

dxφ′P ′ =

∫ φ(∞)

φ(−∞)

dφP ′ = P (φ(∞))− P (φ(−∞)) (8.93)

which proves the above statement. For a more detailed discussion we refer

to [17] (we remark that BMP use a slightly different notation in [17]: they

use the notation h instead of P for the prepotential, and their X is defined

like X = ∂µφ∂
µφ instead of the definition X = 1

2
∂µφ∂

µφ used in the present

paper and in [32]).

8.5 Discussion

We developed and described a method to construct general supersymmetric

scalar K field theories in 1+1 and 2+1 dimensions. Among these theories,

we found a large class of models which, in the purely bosonic sector, consist

of a generalized kinetic term plus a potential, where the vacuum structure

of the potential is crucial for the determination of the topological defect

solutions, similarly to the standard case (i.e., kinetic term ∼ ∂µφ∂
µφ). Due

to the enhanced nonlinearity of these supersymmetric K field models there
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are, nevertheless, some significant differences, like different roots of the first

order field equations leading to a larger number of kink solutions, or the

possibility to join different solutions forming additional kinks in the space C1

of continuous functions with a continuous first derivative 1. These results are

new and are by themselves interesting, broadening the range of applicability

of supersymmetry to a new class of field theories and, at the same time,

enhancing our understanding of these field theories.

As far as possible applications are concerned, the natural arena seems to

be the area of cosmology, as already briefly mentioned in the introduction.

Indeed, if these scalar field theories are interpreted as effective theories which

derive from a more fundamental theory with supersymmetry (like string the-

ory), then it is natural to study the supersymmetric versions of the effective

models. If, in addition, the defect formation and phase transition (e.g. from

a symmetry breaking phase to a symmetric phase) relevant for cosmologi-

cal considerations occur at time or energy scales where supersymmetry is

still assumed unbroken, then also the defect solutions of the supersymmetric

effective field theories are the relevant ones.

At this point, several questions show up. The first one is the inclusion

of fermions. It is, e.g., expected that, as a consequence of supersymmetry

and translational invariance, there should exist a fermionic zero mode for

each kink background where, in addition, the fermionic zero mode is equal

to the spatial derivative of the kink. This fact has already been confirmed

explicitly in some supersymmetric K field theories [17], [50]. The inclusion

of fermions in the Lagrangians studied in the present article does not present

any difficulty on a fundamental level, the only practical obstacle being that,

for purely combinatorical reasons, the resulting expressions will be rather

lengthy. A second question is whether the SUSY algebra in a kink back-

ground contains central extensions related to the topological charge of the

kink, as happens for the standard supersymmetric kink [44]. Again, this prob-

1Whether such C1 solutions are physically relevant depends, of course, on the concrete

physical system under consideration, but we want to emphasize that if the supersymmetric

scalar field theory is interpreted as an effective theory then the C1 solutions should be taken

into account. In this case, the spike in the field derivative (and in the energy density) of

a C1 solution will, in any case, be resolved by the true UV degrees of freedom.
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lem has already been studied for some supersymmetric K field theories [50].

A further question concerns the issue of quantization. If the SUSY K field

theories are interpreted as effective theories, as would be appropiate, e.g., in a

cosmological context, then already the classical model contains some relevant

information of the underlying quantum theory, like spontaneous symmetry

breaking or the existence of topological defects. In this context, the quan-

tization of quadratic fluctuations about the topological defect is the correct

procedure to obtain further information about the underlying theory. Inde-

pendently, one may, nevertheless, pose the problem of a full quantization of

the supersymmetric K field theory, where the enhanced degreee of nonlinear-

ity certainly implies further complications. one may ask, e.g.,. whether the

additional, non-quadratic kinetic terms may be treated perturbatively, like

the non-quadratic terms of the potential in the standard case. The answer

will certainly depend on the space-time dimension. A related question is

whether supersymmetry simplifies the task by taming possible divergences,

as happens in the standard case. Here it is interesting to note that, even

at the classical level, supersymmetry implies some restrictions on possible

Lagrangians which are visible already in the bosonic sector. Indeed, as is

obvious e.g. from Eq. (8.19), there exists a relation between the kinetic

and the potential terms (this relation is responsible for the existence of the

so-called generic solutions). one wonders what this relation implies for the

quantum theory, e.g., in the form of Ward-like identities. These and related

questions will be investigated in future publications.

Finally, we think that the supersymmetric models we found present some

independent mathematical interest of their own, given their high degree of

non-linearity, on the one hand, and the possibility to obtain rather precise

information on their solutions (e.g. all kink solutions together with their

exact energies), on the other hand. Further investigations in this direction

(e.g., time-dependent solutions, or the stability of topological solitons) will

be pursued, as well.



Chapter 9

BPS bounds in N=1 K field

theories

Continuing the line of analysis of supersymmetric K field theories presented

in the previous chapter, we demonstrate that all domain wall solutions of such

models are, in fact, BPS solutions. Moreover, in this chapter a first analy-

sis of the supersymmetric algebra is done, finding that the central charge of

the SUSY algebra coincides with the one for standard models. This chapter

consists of a paper published in [96].

Supersymmetric K field theories and defect structures

C. Adam 1, J.M. Queiruga 1, J. Sanchez-Guillen 1, A. Wereszczynski 2

1 Departamento de F́ısica de Part́ıculas, Universidad de Santiago de

Compostela and Instituto Galego de F́ısica de Altas Enerxias (IGFAE)

E-15782 Santiago de Compostela, Spain 2 Institute of Physics, Jagiellonian

University, Reymonta 4, Kraków, Poland

Abstract: We demonstrate that in the supersymmetric extensions of a class

of generalized (or K) field theories introduced recently, the static energy

satisfies a BPS bound in each topological sector. Further, the corresponding

soliton solutions saturate the bound. We also find strong indications that the

BPS bound shows up in the SUSY algebra as a central extension, as is the
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case in the well-known supersymmetric field theories with standard kinetic

terms.

9.1 Introduction

If a quantum field theory is assumed to be applicable to physical processes

at arbitrary energy scales, then both its field contents and possible terms

contributing to the Lagrangian are quite constrained, mainly by the require-

ment of renormalizability. Recently, however, a different point of view has

gained support, where the field theory under consideration is interpreted as

a low-energy effective field theory which, at sufficiently high energies, is su-

perseded by a more fundamental theory (string theory being the most promi-

nent proposal). In this effective field-theory interpretation, the presence of

non-renormalizable terms in the lagrangian just indicates the existence of a

natural cutoff in the effective field theory, beyond which calculations within

the effective field theory framework are no longer trustworthy, and effects of

the fundamental theory have to be taken into account. The effective field

theory point of view, therefore, allows to consider a much broader class of

Lagrangians, which may, in a first instance, be rather general functions of

the fields and their space-time derivatives. Allowing for higher than first

derivatives in the Lagrangian, however, may introduce some further prob-

lems like, e.g., the necessity to introduce ghosts, so it is natural to consider

a class of generalized field theories given by Lagrangians which depend in a

Poincare-invariant way on the fields and on their first derivatives. Specifi-

cally, a broader class of kinetic terms, generalizing the standard quadratic

kinetic terms, may be considered. These theories with generalized kinetic

terms (termed K field theories) have been studied with increasing effort in

the last years, especially in the context of cosmology, where they might re-

solve some problems like inflation or late time acceleration (K-inflation [2] or

K-essence [3]). Another relevant issue in cosmology is the formation of (topo-

logical or non-topological) defects [23], [27], [28], [30], [29], [26], [9] where,

again, K field theories allow for a much richer phenomenology [4], [33], [51],

[36], [10], [11], [39], [40]. Specifically, the formation of domain walls is de-

scribed by effectively 1+1 dimensional theories [5], [7], [31], [32], [12], with
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possible applications to the structure formation in the early universe. In

this context, the problem of supersymmetric extensions of K field theories

emerges naturally. Indeed, if the fundamental theory (e.g., string theory)

is supersymmetric, and if some of the supersymmetry is assumed unbroken

even for the effective field theory in a regime of not too low energy (e.g., in

the very early universe [41], [42], [52], [53]), then it is an important question

whether the resulting supersymmetric effective field theory can be described,

at all, in the context of K field theories. The investigation of this problem

has been resumed very recently. Concretely, in [54], supersymmetric (SUSY)

extensions of some 3+1 dimensional K field theories with cosmological rel-

evance (ghost condensates, galileons, DBI inflation) have been investigated,

whereas the SUSY extensions of some lower-dimensional theories relevant,

e.g., for domain wall formation, have been studied in [17], [64], [56].

If SUSY extensions of some K field theories can be constructed, and if

these SUSY K field theories support topological defect solutions, then the

following very important questions arise immediately: are the topological

defects BPS solutions? And, if so, are they invariant under part of the

SUSY transformations? Further, if the defect solutions can be classified by

a topological charge, does this charge reappear in the SUSY algebra as a

central extension? All these interrelated features are well-known to show

up in SUSY field theories with standard kinetic terms [43], [44], [45], [46],

[129], and SUSY allows, in fact, to better understand both the existence

and the structure of BPS solutions. Analogous results for SUSY K field

theories would, therefore, be very important for a better understanding of

these theories. It is the purpose of the present paper to investigate this

question for a large class of SUSY K field theories in 1+1 dimensions.

Concretely, in [56] we introduced a class of SUSY K field theories and

studied their domain wall solutions, but in that paper we were not able to

determine whether these topological defects were of the BPS type. As a

consequence, all the related questions listed above could not be adressed,

either. In the present paper we shall close these loopholes. In Section 9.2, we

briefly review the class of SUSY K field theories we consider and, in a next

step, demonstrate the BPS property of all their domain wall solutions. In

Section 9.3, then, we demonstrate that the domain wall (kink) solutions are



CHAPTER 9. BPS BOUNDS IN N=1 K FIELD THEORIES 106

invariant under part of the SUSY transformations, and that they show up

in the SUSY algebra as central extensions. We also briefly discuss the same

issue for the class of models originally introduced in [17]. Finally, Section 9.4

contains our conclusions.

9.2 The BPS bound

9.2.1 The models

The present paper continues the investigation of the models introduced in

[56], therefore we use the same conventions as in that reference, to which

we refer for details. The field theories we consider exist in 1+1 dimensional

Minkowski space, and we use the metric convention ds2 ≡ gµνdx
µdxν =

dt2 − dx2. Furhter, we use the superfield (θ2 = 1
2
θαθα)

Φ(x, θ) = φ(x) + θγψγ(x)− θ2F (x), (9.1)

and for the spinor metric to rise and lower spinor indices we use Cαβ =

−Cαβ = (σ2)αβ. For the gamma matrices we choose a representation where

the components of the Majorana spinor are real. Concretely, we choose (the

σi are the Pauli matrices)

γ0 = σ2 , γ1 = iσ3 , γ5 = γ0γ1 = −σ1. (9.2)

Further, the superderivative is

Dα = ∂α + iθβ∂αβ = ∂α − iγµαβθβ∂µ (9.3)

and allows to extract the components of an arbitrary superfield via (D2 ≡
1
2
DαDα):

φ(x) = Φ(x, θ)|, ψα(x) = DαΦ(x, θ)|, F (x) = D2Φ(x, θ)|, (9.4)

(the vertical line | denotes evaluation at θα = 0). A Lagrangian always is the

θ2 component of a superfield, so it may be calculated from the corresponding

superfield via the projection D2|.
Attempts to find supersymmetric extensions of field theories with non-

standard kinetic terms typically face the problem that the auxiliary field
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couples to derivatives or becomes dynamical. Recently, however, we found

linear combinations of superfields such that the auxiliary field F still obeys

an algebraic field equation and, in the bosonic sector, only couples to the

scalar field φ and not to derivatives [56]. The construction uses the following

superfields as building blocks,

S(k,n) = (
1

2
DαΦDαΦ)(

1

2
DβDαΦDβDαΦ)k−1(D2ΦD2Φ)n (9.5)

where k = 1, 2, . . . and n = 0, 1, 2, . . .. The right linear combinations are

S(k) ≡
k−1∑
n=0

(−1)n
(
k

n

)
S(k−n,n) (9.6)

and arbitrary linear combinations of these expressions, each one multiplied

by an arbitrary real function αk(Φ) of the superfield Φ, are permitted. In

addition, we may include a superpotential −P (Φ). That is to say, we define

the superfield

S(α,P ) ≡
N∑
k=1

αk(Φ)S(k) − P (Φ) (9.7)

(here α = (α1, α2, . . . , αN) is a multiindex of scalar functions), then the

bosonic sector (i.e., with the fermions set equal to zero, ψα = 0) of the

corresponding Lagrangian,

L(α,P )
b ≡

(
−D2S(α,P )|

)
ψ=0

(9.8)

(b stands for ”bosonic”) reads explicitly

L(α,P )
b =

N∑
k=1

αk(φ)[(∂µφ∂µφ)k + (−1)k−1F 2k]− P ′(φ)F (9.9)

and, as announced, F only appears algebraically and does not couple to

derivatives, see [56] for details.

In a next step, we should eliminate F via its algebraic field equation

N∑
k=1

(−1)k−12kαk(φ)F 2k−1 − P ′(φ) = 0 (9.10)

which, however, for a given P (φ) is a rather complicated equation for F with

several solutions. It is, therefore, more natural to assume a given on-shell
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value F = F (φ) for F and interpret the above equation as a defining equation

for the corresponding superpotential P . Eliminating the resulting P ′(φ) we

arrive at the Lagrangian density

L(α,F )
b =

N∑
k=1

αk(φ)[(∂µφ∂µφ)k − (−1)k−1(2k − 1)F 2k] (9.11)

where now F = F (φ) is a given function of φ which we may choose freely

depending on the system we want to study. The αk(φ), too, are functions

which we may choose freely, but they should obey certain restrictions in or-

der to guarantee, e.g., positivity of the energy, or the null energy condition

(NEC), see [56] for details. Next, we have to briefly discuss the field equa-

tions. For a general Lagrangian L(X,φ) where X ≡ 1
2
∂µφ∂

µφ = 1
2
(φ̇2 − φ′2),

the Euler–Lagrange equation reads

∂µ(L,X∂µφ)− L,φ = 0, (9.12)

and the energy momentum tensor is

Tµν = L,X∂µφ∂νφ− gµνL. (9.13)

For static configurations φ = φ(x), φ′ ≡ ∂xφ, only two components of the

energy momentum tensor are nonzero,

T00 = E = −L (9.14)

T11 = P = L,Xφ′2 + L (9.15)

where E is the energy density and P is the pressure. Further, for static

configurations the Euler–Lagrange equation may be integrated once to give

−2XL,X + L = φ′2L,X + L ≡ P = 0 (9.16)

(in general, there may be an arbitrary, nonzero integration constant at the

r.h.s. of Eq. (9.16), but the condition that the vacuum has zero energy

density sets this constant equal to zero). For the Lagrangian (9.11), we,

therefore, get the once integrated static field equation

N∑
k=1

(2k − 1)(−1)k−1αk(φ)
(
φ′2k − F 2k

)
= 0. (9.17)
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In a first step, it is useful to interpret this equation as an algebraic, polyno-

mial equation for φ′ of order 2N . It obviously has the two solutions (roots)

φ′ = ±F (φ) (9.18)

which are independent of the αk(φ), therefore we call them“generic” roots.

In addition, in general it will have 2N − 2 further roots

φ′ = ±Ri(φ) , i = 2, . . . , N (9.19)

(we set R1 = F ), which depend both on F (φ) and on αk(φ). We, therefore,

call them ”specific” roots.

9.2.2 Kink solutions

In a next step, we now interpret the roots φ′ = ±Ri(φ) as first order differen-

tial equations and want to understand under which conditions their solutions

may be topological solitons (kinks and antikinks). A first condition is that

the potential term in the Lagrangian (9.11),

V (α,F ) =
N∑
k=1

αk(φ)(−1)k−1(2k − 1)F 2k (9.20)

must have at least two vacua, i.e., field values φ = φ0,l such that V (φ0,l) =

0, where l = 1, . . . , L and L ≥ 2. Now we will make some simplifying

assumptions. The functions αk(φ) should have no singularities, i.e., |αk(φ)| <
∞ for |φ| <∞, such that no kinetic term gets artificially enhanced. Further,

the standard kinetic term should never vanish, i.e., α1 > 0 ∀ φ. Under

these assumptions, the standard kinetic term dominates in the vicinity of

the vacua, and the standard asymptotic analysis for kink solutions applies.

A kink (antikink) is a static solution φk(x) which interpolates between two

vacua, φk(±∞) ≡ φ± ∈ {φ0,l}, where for a kink it holds that φ+ > φ−,

whereas for an antikink φ− > φ+. We shall assume in what follows that the

signs of all the roots Ri have been chosen such that φ′ = +Ri corresponds

to the kink (if this equation has a kink solution, at all), and φ′ = −Ri

corresponds to the antikink.
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A necessary condition for a root Ri(φ) to provide a kink solution is that

it must have two zeros at two different vacua, i.e., Ri(φ±) = 0. This is a

nontrivial condition because, generically, roots may have no or one zero, as

well, with the only condition that the total number of zeros of all the roots

coincides with the number of vacua of the potential, including multiplicities.

In other words, both the existence of a sufficient number of vacua and the

existence of roots with two zeros requires some finetuning of the functions

F and αk. The simplest way to achieve this finetuning is via symmetry

considerations. If, for instance, F and all the αk are symmetric under the

reflection φ→ −φ, then all the roots Ri inherit this symmetry. If, therefore,

a root has a zero φ0,l then it has the second zero −φ0,l, by construction. The

only additional finetuning required in this case is that the potential must

have at least one vacuum at φ 6= 0.

The generic root φ′ = F will lead to a kink solution if the function F has

at least two zeros, which obviously provide the corresponding vacua in the

potential, see Eq. (9.20). We shall call the resulting kink solutions ”generic

kinks”. If we choose, e.g., F = 1 − φ2, then all models with this F (i.e.,

for arbitrary αk) will have the standard φ4 kink φk = tanh(x − x0) (here

x0 is an integration constant reflecting translational invariance). Depending

on the αk, these models may have further kink solutions, based on some

of the specific roots Ri, i = 2, . . . , N . If these kinks exist, we shall call

them“specific kinks”.

We remark that for different roots which only have one zero each, but

for different vacuum values, it is sometimes still possible to construct kink

solutions interpolating between the two vacua in the space C1 of continuous

functions with a continuous first derivative. Indeed, if two different roots Ri

and Rj with two different zeros have a common range of values φ ∈ [φ<, φ>]

between the two vacua, then we may form a kink solution in the space C

of continuous functions with a discountinuous first derivative by joining the

two local solutions at any value in the common range (the joining point x0

in base space is arbitrary due to translational invariance). If, in addition,

the equation Ri(φ) = Rj(φ) has a solution φs in the common range, then

the derivatives of the two local solutions coincide at this point, and we may

form a kink solution in the space C1 by joining the two local solutions at φs.
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Let us point out that if we require kinks to be solutions of the corresponding

variational problem, then solutions in the space C1 are perfectly valid. They

lead to well-defined energy densities and, therefore, provide well-defined crit-

ical points of the corresponding energy functional. For more details and some

explicit examples, we refer to [56].

9.2.3 Kink energies and BPS bounds

In a next step, we want to study the energies of kinks. The energy density

for the Lagrangian (9.11) is

E (α,F )
b =

N∑
k=1

αk(φ)
(

(φ̇2 − φ′2)k−1((2k − 1)φ̇2 + φ′2) + (−1)k−1(2k − 1)F 2k
)

(9.21)

and, for static configurations,

E =
N∑
k=1

(−1)k−1αk(φ)
(
φ′2k + (2k − 1)F 2k

)
. (9.22)

With the help of Eq. (9.17), for kink solutions this may be expressed like

E =
N∑
k=1

(−1)k−12kαk(φ)φ′2k = φ′
N∑
k=1

(−1)k−12kαk(φ)φ′2k−1 ≡ φ′w(φ, φ′)

(9.23)

where the last expression is especially useful for the calculation of the corre-

sponding energies. Indeed, for the energy calculation we should now replace

φ′ in w(φ, φ′) by the root Ri which corresponds to the kink solution, and

interpret the resulting function of φ as the φ derivative of another function.

That is to say, we define an integrating function Wi(φ) for each root Ri via

Wi,φ ≡ w(φ,Ri(φ)) =
N∑
k=1

(−1)k−12kαk(φ)R2k−1
i , (9.24)

then the kink energy is

E =

∫
dxφ′Wi,φ =

∫
dφWi,φ = Wi(φ+)−Wi(φ−). (9.25)
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For the calculation of the kink energy we, therefore, do not have to know the

kink solution. We just need the root and the two vacuum values φ± of the

kink. For the C1 kinks described above which are constructed by joining local

solutions for two different roots Ri and Rj, we need the two corresponding

integrating functions and the joining point φs. The energy then results in

E = Wj(φ+)−Wj(φs) +Wi(φs)−Wi(φ−). (9.26)

Until now, the energy considerations have been for arbitrary roots, but now

we shall see that the generic root R1 ≡ F apparently plays a particular role.

Firstly, the integrating function of the generic root is just the superpotential,

W1 = P . Indeed, we find

W1,φ =
N∑
k=1

(−1)k−12kαk(φ)F 2k−1 ≡ P ′(φ) (9.27)

see Eq. (9.10). Secondly, if the generic root has a kink solution, then this

solution is, in fact, a BPS solution and saturates a BPS bound, as we want to

demonstrate now. In general, an energy density has a BPS bound if it may

be written off-shell (i.e. without using the static Euler-Lagrange equation)

as

E = (PSD)(φ, φ′) + t(x) (9.28)

where (PSD) is a positive semi-definite function of φ and φ′, and t(x) is a

topological density, i.e., a total derivative whose integral only depends on the

boundary values φ±. Further, a soliton solution (a kink φk) is of the BPS

type, i.e., saturates the BPS bound if the positive semi-definite function is

zero when evaluated for the kink, (PSD)(φk, φ
′
k) = 0. In our case, the

possible topological terms are the expressions φ′Wi,φ for the different roots.

In any case, a possible topological term must be linear in φ′ in order to be

a total derivative (we emphasize, again, that the BPS form (9.28) must be

valid off-shell, i.e., it is not legitimate to replace φ′ by a root Ri or vice versa).

Let us now demonstrate that the energy density may be expressed in BPS

form (9.28) for the generic topological term t = φ′W1,φ ≡ φ′P,φ, and that the

corresponding positive semi-definite function is zero precisely for the generic

kink, i.e., for φ′ = F . Indeed, we find for the difference E − t for the generic
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topological term

E − φ′P,φ =
N∑
k=1

(−1)k−1αk(φ)
(
φ′2k + (2k − 1)F 2k − 2kφ′F 2k−1

)
=

= (φ′ − F )2S(φ′, F ) ≡

≡ (φ′ − F )2

N∑
k=1

(−1)k−1αk(φ)Hk(φ
′, F ) (9.29)

where

Hk(φ
′, F ) ≡

2k−1∑
i=1

iφ′2k−1−iF i−1. (9.30)

Before proving this algebraic identity, we want to make some comments.

The above result implies a genuine BPS soliton provided that the positive

semi-definite function is zero only iff φ obeys the corresponding generic kink

equation φ′ = F . This implies that S(φ′, F ) must be strictly positive for

any nontrivial field configuration (for the trivial vacuum φ′ = 0 and F = 0

it holds that S(0, 0) = 0), i.e., S(a, b) > 0 unless a = 0 and b = 0. This

inequality, indeed, holds for each individual term Hk(a, b), i.e., Hk(a, b) > 0

unless a = 0 and b = 0 (the proof requires two complete inductions, therefore

we relegate it to appendix A). The inequality S(a, b) > 0 for the complete

function S, therefore, implies some restrictions on the functions αk(φ) (one

possible choice is that the αk are zero for even k and positive semi-definite for

odd k, but there are less restrictive choices). This is similar to the conditions

of positivity of the energy density, or the NEC, which, too, imply some

restrictions on the αk, (again, αk zero for even k and positive semi-definite for

odd k is a possible choice), and we shall assume in the sequel that the αk obey

these restrictions (i.e., the restrictions resulting from the condition S > 0,

and either positivity of the energy density or the NEC; these restrictions

are probably related, but we shall not investigate this problem further and

assume the two restrictions independently). Now let us prove the algebraic

identity between Eq. (9.29) and Eq. (9.29). This follows from the following
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identities (we set φ′ = a, F = b)

a2k + (2k − 1)b2k − 2kab2k−1 (9.31)

= (a− b)
(
a2k−1 + a2k−2b+ a2k−3b2 + . . .+ ab2k−2 − (2k − 1)b2k−1

)
= (a− b)2

(
a2k−2 + 2a2k−3b+ 3a2k−4b2 + . . .+ (2k − 1)b2k−2

)
≡ (a− b)2Hk(a, b) (9.32)

where the equality of adjacent lines may be checked easily.

So we found, indeed, that generic kinks (if they exist) saturate a BPS

bound, whereas up to now we could not make a comparable statement about

additional ”specific” kinks. This special role played by the generic kink solu-

tion is not surprising from the point of view of the supersymmetric extension,

because only the generic kink obeys the simple equation φ′ = F , and only

the generic kink has a topological charge which may be expressed in terms

of the superpotential. on the other hand, the special character of the generic

kink is surprising from the point of view of the purely bosonic theory

Lb =
N∑
k=1

αk(φ)(∂µφ∂µφ)k − V (φ) (9.33)

(with given αk and a given potential V ), whose once-integrated static field

equation just leads to the 2N roots

φ′ = ±Ri(φ) , i = 1, . . . , N (9.34)

without distinguishing them in terms of an auxiliary field or a superpotential.

The resolution of the puzzle may be understood if we express the once-

integrated static field equation both in terms of the potential and in terms

of the on-shell auxiliary field,

N∑
k=1

(2k−1)(−1)k−1αk(φ)
(
φ′2k − F 2k

)
=

N∑
k=1

(2k−1)(−1)k−1αk(φ)φ′2k−V = 0.

(9.35)

Up to now we assumed a given F (φ) which lead to the two generic roots

φ′ = F and the remaining, specific roots. But now we may interpret this

equation in a different way. We may treat only V and the αk as given and
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try to find all the solutions for F of the equation

N∑
k=1

(2k − 1)(−1)k−1αk(φ)F 2k = V. (9.36)

obviously, the solutions are just the roots Fi = Ri(φ) (see Eq. (9.17)), and

the corresponding first order equations now just read φ′ = ±Fi. We remark

that different on-shell choices Fi for the auxiliary field F lead to different

superpotentials and, therefore, to different supersymmetric extensions. As a

result, the resolution of the puzzle is that one given bosonic theory allows

for N different supersymmetric extensions such that each kink solution is the

generic solution of its corresponding supersymmetric extension. As a con-

sequence, the energy density allows for BPS bounds for all kink solutions.

The existence of several BPS bounds for one and the same energy density

may seem surprising, but the different bounds exist, of course, in different

topological sectors (i.e., for different boundary values), so there is no contra-

diction. Finally, all topological charges (i.e., all BPS energies) are now given

in terms of the corresponding superpotentials. Indeed, we calculate (see Eqs.

(9.10), (9.23) and (9.24))

Wi,φ(φ) = w(φ,Ri(φ)) = w(φ, Fi) = P ′(Fi(φ)) ≡ P ′i (φ). (9.37)

We remark that from a practical point of view it is still useful to choose a

specific on-shell F (φ), because in this way we may choose simple functions

with simple kink solutions. For generic αk and a generic V , on the other

hand, the resulting roots will usually be quite complicated.

9.3 SUSY algebra and central extensions

From now on, we will, again, restrict to a fixed supersymmetric extension,

i.e., to fixed, given αk, a fixed, given on-shell auxiliary field F (φ) and the cor-

responding superpotential given by Eq. (9.10). The SUSY transformations

of the fields read

δφ = εαψα , δψα = −i(γµ)α
βεβ∂µφ− εαF , δF = iεα(γµ)α

β∂µψβ (9.38)
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(where εα = (ε1, ε2) are the Grassmann-valued SUSY transformation param-

eters, and εα = (iε2,−iε1)), or more explicitly

δφ = i (ε2ψ1 − ε1ψ2)

δF = i
(
ε2(ψ′1 − ψ̇2)− ε1(ψ̇1 − ψ′2)

)
δψ1 = ε1(φ′ − F )− ε2φ̇
δψ2 = ε1φ̇− ε2(φ′ + F ). (9.39)

obviously, for a generic kink solution (φ̇ = 0, φ′ = F, ψα = 0) the SUSY

transformation restricted to ε2 = 0 is zero, whereas for a generic antikink the

restriction ε1 = 0 gives zero.

On the other hand, the SUSY transformations of the fields are gener-

ated by the SUSY generators Q = εαQα via the commutators δφ = [iQ, φ],

etc., where Q should be determined from the Noether current of the SUSY

transformations, and the commutators are evaluated with the help of the

canonical (anti-)commutation relations of the fields. The supercharges Qα

are known to obey the algebra

{Qα, Q
β} = 2Πν(γ

ν)α
β + 2iZ(γ5)α

β (9.40)

or, explicitly,

Q2
1 = Π0 + Z

Q2
2 = Π0 − Z

{Q1, Q2} = 2Π1 (9.41)

where the curly bracket is the anti-commutator, Πν = (Π0,Π1) are the energy

and momentum operators, and Z is a possible central extension which the

SUSY algebra may contain. An explicit calculation of the operators which ap-

pear in the SUSY algebra requires the knowledge of the Noether current and

the canonical momenta and, therefore, of the complete SUSY Lagrangian,

including the fermionic terms, which, in general, is quite complicated. If we

only want to determine the central charge, however, it is enough to evaluate

the SUSY algebra for a specific field configuration, because the central charge

is essentially a number (it commutes with all operators) and, therefore, must
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take the same value for all field configurations within a given topological

sector. We now evaluate the SUSY algebra for a generic kink solution and

make the reasonable assumption that not only the restricted SUSY transfor-

mation (i.e., the action of the corresponding SUSY charge on the fields) for

a generic kink is zero, but that the corresponding SUSY charge itself is zero

when evaluated for the generic kink. As we know the energy of the kink,

this allows then to determine the central charge. Concretely, for the kink the

corresponding charge is Q2, and we get

Q2
2 = 0 = Ek−Z = P (φ+)−P (φ−)−Z ⇒ Z = P (φ+)−P (φ−), (9.42)

where P is the superpotential, and φ± are the asymtopic values of the kink.

For the antikink, Q1 is zero, and we find Z = P (φ−) − P (φ+). We remark

that for positive semi-definite energy densities the resulting restrictions on the

functions αk imply that the central extension Z is always positive, because

P ′ ≥ 0 for the kink, and P ′ ≤ 0 for the antikink, as follows from the energy

density (9.22) and the defining equation for P ′, Eq. (9.10). We, therefore,

found exactly the same result for the central extension as in the case of the

SUSY extension of a standard scalar field theory with a quadratic kinetic

term for the boson field.

9.3.1 Central extensions for the models of Bazeia, Menezes

and Petrov

Here we want to demonstrate that the same central extensions of the SUSY

algebra in terms of the superpotential may be found for another class of

supersymmetric K field theories, originally introduced by Bazeia, Menezes

and Petrov (BMP) [17]. They are based on the superfield

SBMP = f(∂µΦ∂µΦ)
1

2
DαΦDαΦ (9.43)

and lead to the bosonic Lagrangian

LBMP = f(∂µφ∂
µφ)(F 2 + ∂µφ∂

µφ). (9.44)

Here, the Lagrangian produces a coupling of the auxiliary field F with the

kinetic term ∂µφ∂
µφ, but, on the other hand, the auxiliary field only appears
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quadratically, implying a linear (algebraic) field equation for F . The same

bosonic Lagrangians may, in fact, be constructed from the building blocks

(9.5) of Section 9.2 by taking a different linear combination (the fermionic

parts of the corresponding Lagrangians will in general not coincide)

S(k)
BMP ≡

k−1∑
n=0

(−1)n
(
k − 1

n

)
S(k−n,n) (9.45)

leading to the bosonic Lagrangians

L(k)
BMP = (F 2 + ∂µφ∂

µφ)(∂µφ∂
µφ)k−1. (9.46)

We may easily recover the Lagrangian (9.44) by taking linear combinations

of these,

LBMP =
∞∑
k=1

βkL(k)
BMP = (F 2 + ∂µφ∂

µφ)
∑
k

βk(∂µφ∂
µφ)k−1 ≡ (9.47)

≡ (F 2 + ∂µφ∂
µφ)f(∂µφ∂

µφ).

Adding a superpotential, the resulting bosonic Lagrangians are

L(P )
BMP = f(∂µφ∂

µφ)(F 2 + ∂µφ∂
µφ)− P ′(φ)F, (9.48)

or, after eliminating the auxiliary field F using its algebraic field equation

F =
P ′

2f
, (9.49)

L(P )
BMP = f · (P

′2

4f 2
+ ∂µφ∂

µφ)− P ′2

2f
= f · ∂µφ∂µφ−

P ′2

4f
. (9.50)

The energy functional for static configurations may be written in a BPS form.

Indeed,

E
(P )
BMP =

∫
dx

(
φ′2f +

P ′2

4f

)
=

∫
dx

(
1

4f
(2φ′f ∓ P ′)2 ± φ′P ′

)
(9.51)

and for a solution to the first order (or BPS) equation

2φ′(x)f(−φ′2) = P ′ (9.52)
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(we take the plus sign for a kink) the resulting energy is

E
(P )
BMP =

∫ ∞
−∞

dxφ′P ′ =

∫ φ(∞)

φ(−∞)

dφP ′ = P (φ+)− P (φ−). (9.53)

Finally, from Eq. (9.49) for F and the BPS equation (9.52) it follows that the

equation φ′ = F still holds for a kink solution and, therefore, the restricted

SUSY transformation with only ε1 nonzero is, again, zero when evaluated for

the kink. We conclude that the central charge in the SUSY algebra is, again,

given by the topological term

Z = |P (φ+)− P (φ−)| (9.54)

for this class of models.

9.4 Conclusions

In this paper we carried further the investigation of a class of SUSY K field

theories originally introduced in [56]. Concretely, we demonstrated that all

the domain wall solutions which exist for this class of field theories are, in

fact, BPS solutions. Further, these BPS solutions are invariant under part

of the SUSY transformations. We also found strong indications (based on a

very reasonable assumption) that the topological charges carried by the do-

main wall solutions show up in the SUSY algebra as central extensions. That

is to say, the situation we found is exactly equivalent to the case of standard

SUSY theories with BPS solitons, despite the much more complicated struc-

ture of the SUSY K field theories investigated here. Let us emphasize, again,

that from an effective field theory point of view, K field theories are as valid

as field theories with a standard kinetic term, and there exists no reason

not to consider them. Even one and the same topological defect with some

given, well-known physical properties may result either from a theory with

a canonical kinetic term, or from a certain related class of K field theories

(so-called noncanonical twins of the standard, canonical theory), [51], [57].

K field theories should, therefore, be considered on a par with standard field

theories in all situations where they cannot be excluded a priori. This implies

that also the study of their possible SUSY extensions is a valid and relevant
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subject. Structural investigations of the type employed in the present paper

are, then, important steps towards a better understanding of these super-

symmetric generalized field theories with nonstandard kinetic terms.

Appendix A

We want to prove that

a2k−2 + 2a2k−3b+ . . .+ (2k − 1)b2k−2 > 0 ∀ k (9.55)

unless a = 0 and b = 0. For a = 0, b 6= 0, and for a 6= 0, b = 0 this is obvious,

so we may restrict to the case a 6= 0 and b 6= 0. In this case, we may divide

by b2k−2, so that we have to prove (x ≡ a/b)

fk(x) ≡ x2k−2 + 2x2k−3 + . . .+ (2k − 1) > 0 (9.56)

which we do by complete induction. obviously, the statement is true for

k = 1: f1(x) = x2 + 2x+ 3 = (x+ 1)2 + 2 > 0. Now we assume that it holds

for fk and calculate fk+1. We get

fk+1(x) = x2k + 2(x2k−1 + x2k−2 + . . .+ 1) + fk(x) ≡ gk(x) + fk(x) (9.57)

and the statement is true if gk(x) ≥ 0 ∀ k. This, again, we prove by induction.

obviously, it is true for k = 1: g1(x) = x2 + 2x+ 2 ≥ 0. For gk+1 we calculate

gk+1(x) = x2k(x+ 1)2 + gk(x) (9.58)

and it is obviously true that gk(x) ≥ 0 ⇒ gk+1(x) ≥ 0 and, therefore,

fk(x) > 0 ⇒ fk+1(x) > 0, which is what we wanted to prove.



Chapter 10

Twin-like models and SUSY

In the previous chapters we accomplished the SUSY extension of general K

field theories and we also analyzed different properties. In this chapter, we

show the algebraic conditions that a K field theory must verify to have a

twin model, i.e. a standard theory whose solutions have the same profile and

the same energy density. This property would provide a method to study in

more detail such theories. This chapter consists of a paper published in [97].

An algebraic construction of twin-like models

C. Adam 1, J.M. Queiruga 1,
1 Departamento de F́ısica de Part́ıculas, Universidad de Santiago de

Compostela and Instituto Galego de F́ısica de Altas Enerxias (IGFAE)

E-15782 Santiago de Compostela, Spain

Abstract: If the generalized dynamics of K field theories (i.e., field theories

with a non-standard kinetic term) is taken into account, then the possibil-

ity of so-called twin-like models opens up, that is, of different field theories

which share the same topological defect solution with the same energy den-

sity. These twin-like models were first introduced in Phys. Rev. D82, 105006

(2010), Ref. [51], where the authors also considered possible cosmological im-

plications and gave a geometric characterization of twin-like models. A fur-

ther analysis of the twin-like models was accomplished in Phys. Rev. D84,

045010 (2011) , Ref. [58], with the help of the first order formalism, where
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also the case with gravitational self-interaction was considered. Here we show

that by combining the geometric conditions of Ref. [51] with the first order

formalism of [58], one may easily derive a purely algebraic method to explic-

itly calculate an infinite number of twin field theories for a given theory. We

determine this algebraic construction for the cases of scalar field theories, su-

persymmetric scalar field theories, and self-gravitating scalar fields. Further,

we give several examples for each of these cases.

10.1 Introduction

There exist wide classes of classical non-linear field theories which support

topological defect solutions. These topological defect solutions typically have

their energy densities concentrated in a certain finite region of space and are

stable, where their stability is related to topological properties of the base

and target spaces. Here, a nontrivial topological structure in base space (e.g.,

an effective compactification) is usually induced by the requirement of finite

energy. These topological defects have found applications in many fields of

physics, and in particular may have important applications in the field of

cosmology. On the one hand, they may be relevant for structure formation

in the early universe, and for its resulting evolution. Indeed, if the very early

universe passed through a phase transition from a symmetric to a symmetry-

breaking phase, then in the broken phase topological defects may have formed

and influenced the distribution of matter and energy, see e.g. [23], [24], [25].

On the other hand, there exists the idea that the whole visible universe might

be just a topological defect in some higher-dimensional bulk space, the so-

called brane-world scenario. The brane (i.e., our universe) in this scenario

may be either strictly 3+1 dimensional (”thin brane”) or have a small but

nonzero extension also in the additional dimensions (”thick brane”). In the

latter, thick brane case, these branes are normally topological defects in

the higher-dimensional bulk space [26], [27], [28], [29], [30], [9]. In these

applications, the relevant topological defects are usually solutions of some

(effective or fundamental) scalar field theory, where the theory may either be

of the standard type (standard kinetic term plus a potential) or of a more

general type where the Lagrangian density may be a general function of the
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fields and their first derivatives. These generalized theories where the kinetic

term does not have to be of the standard form (so-called K field theories)

have already found some applications, beginning with the observation about

a decade ago that they might be relevant for the solution of some problems

in cosmology, like K-inflation [2] and K-essence [3]. Further applications

of K fields to cosmological issues may be found, e.g., in [59], [7], [4], [5],

[60], [31] [33], whereas other, more formal or mathematical aspects of K field

theories, like the existence of topological defects with compact support (so-

called compactons) have been studied, e.g., in [35] -[40]. Well-posedness of

the K field system and the issue of signal propagation in K field backgrounds

has been investigated, e.g., in [4] and, recently, in [62].

The larger class of models allowed by generalized K field theories in-

troduces further scales into the system under consideration via additional

dimensionful couplings, therefore the resulting topological defects are, in gen-

eral, quite different from their standard counterparts, see e.g. [5], [32], [12].

Quite recently it has been found, however, that there exists the possibility

that a topological defect of a non-standard K field theory perfectly mimics

a defect of a standard field theory by coinciding with the standard solution

both in the profile (i.e., in the defect solution itself) and in the corresponding

energy density [51]. These coinciding solutions with their coinciding energy

densities were dubbed twin or Doppelgänger defects in Ref. [51]. The shape

(profile) of a defect together with its energy density are the physically most

relevant properties of a defect in a cosmological setting, therefore the possi-

bility of these twins implies that, e.g., the influence of a pattern of K defects

on the evolution of the universe could be mimicked by its standard twin,

or vice versa. More generally, all measurable physical properties which are

determined by the field profile and the energy density are indistinguishable

between the K field theory and its standard twin. A more refined analysis

shows, however, that there remain some differences between two twin-like

models. The spectrum of linear fluctuations about the K field theory and its

standard twin, for instance, are in general different [51], [58]. The authors

of [51] discussed the example of a Dirac–Born–Infeld (DBI) type twin of a

standard field theory in some detail, motivated by string theory considera-

tions. They also gave a geometric characterization which possible twins of
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a standard theory have to obey and concluded from these that there exist,

in general, infinitely many K field twin models for a given standard scalar

field theory. The study of twin-like models was carried further in Ref. [58],

where the authors employed the first order formalism in their analysis. They

also considered the case with gravitational backreaction in 4+1 dimensions,

where their results are of direct relevance for the brane world scenario. Fur-

ther, they gave explicit examples of all cases they considered.

It is the purpose of the present acticle to derive a purely algebraic method

for the construction of K field twins of a given scalar field theory which does

not require knowledge of either the defect solution or its energy density. This

algebraic construction may be found by combining the geometric character-

ization of twins of Ref. [51] with the first order formalism of [58] and allows

to explicitly calculate an infinite number of twin field theories for any given

scalar field theory.

Our paper is organized as follows. In section 10.2 we briefly review the

first order formalism and the geometric characterization of twins. Then we

explain the algebraic construction of twin models and give several explicit

examples among which the examples of Refs. [51] and [58] can be found.

We also briefly discuss stability issues (energy positivity and the null energy

condition (NEC)). In Section 10.3 we repeat the same analysis for super-

symmetric K field twins of supersymmetric scalar field theories. Here, one

important pillar of the construction is, of course, the fact that supersym-

metric K field theories exist at all, which has been demonstrated recently

[63], [17], [64] (for supersymmetric K field theories in 3+1 dimensions see

[135], [136]). Defects of supersymmetric theories may be of cosmological rel-

evance if the formation of these defects occurs at time or energy scales when

supersymmetry is still unbroken. In section 10.4 we consider the case of a

self-gravitating scalar field in arbitrary dimensions, where the defects are of

the wall type (i.e., still co-dimension one defects, like in the previous sec-

tions). We again derive the purely algebraic construction of K field twins

of a self-gravitating standard field theory with topological defect solutions

and provide several examples. In 3+1 dimensions these are just the defect

solutions which are required for cosmological considerations, but now with

the gravitational backreaction taken into account. In 4+1 dimensions the
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defects are the ones relevant for the brane world picture, where we also red-

erive the example already given in [58]. Section 10.5 contains a discussion of

our results.

10.2 Twin-like models

10.2.1 Generalized K fields and first order formalism

The first order formalism for generalized K fields has been developed, e.g.,

in [32], to which we refer for a more detailed discussion. Here we just re-

view those aspects which we shall need in the subsequent discussion. For a

general Lagrangian L(X,φ) where X ≡ 1
2
∂µφ∂

µφ = 1
2
(φ̇2 − φ′2), the energy

momentum tensor reads

Tµν = L,X∂µφ∂νφ− gµνL (10.1)

and the Euler–Lagrange equation is

∂µ(L,X∂µφ)− L,φ = 0 (10.2)

For static configurations φ = φ(x), φ′ ≡ ∂xφ, the nonzero components of the

energy momentum tensor are

T00 = E = −L (10.3)

T11 = P = L,Xφ′2 + L (10.4)

where E is the energy density and P is the pressure. The static Euler–

Lagrange equation reads

(L,Xφ′)′ + L,φ = 0 (10.5)

and, after multiplication with φ′, may be integrated once to give

−2XL,X + L = φ′2L,X + L ≡ P = c (10.6)

where c is an integration constant. For our purposes the only acceptable

value of this constant is zero for the following reason. All the models we

shall consider will have one or several (constant) vacuum values φ = φ0i,
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i = 1, ..., n, where the energy density takes its minimum value, and this

minimum value is equal to zero (this may always be achieved by adding a

constant to the Lagrangian). Further, static finite energy solutions (kinks)

have to approach vacuum values for |x| → ∞, which implies that for these

finite energy solutions c in the above equation must be zero in the same

limits. But c is a constant, so it is zero everywhere. Therefore, the once

integrated field equation for static fields (or zero pressure condition) in our

case reads (φ′2 = −2X)

−2XL,X + L = 0. (10.7)

Eq. (10.7) is a nonlinear first order oDE, but sometimes it is preferable to

view it just as an algebraic equation for φ′ with one or several (N) pairs of

roots

(φ′i)
2 = fi(φ)2 ⇒ φ′i = ±fi(φ) , i = 1 . . . N (10.8)

as solutions. A kink solution will, in general, be the solution to one of these

roots (when viewed as a first order oDE), or it may even be the result of

joining different solutions in a smooth way.

It is one of the virtues of the first order formalism that the knowledge

of the roots (10.8) together with the asymptotic values (i.e., vacuum values)

φ± ≡ φk(±∞) of the kink solution φk(x) is sufficient for the calculation of

the kink energy, i.e., one does not need the explicit solution φk(x). The

important point is that with the help of the corresponding root, the energy

density of a kink may be viewed as a function of either only φ or only φ′. This

allows one to separate a factor φ′ from the energy density which, together

with the base space differential dx in the energy functional, may be traded

for a target space differential according to dφ = dxφ′. The remainder must,

of course, be interpreted as a function of φ only. Explicitly, the energy reads

E =

∫ ∞
−∞

dxE ≡
∫ ∞
−∞

dxφ′W,φ =

∫ φ(∞)

φ(−∞)

dφW,φ = W (φ(∞))−W (φ(−∞))

(10.9)

where W,φ (and its φ integral W (φ)) must be interpreted as a function of φ

only, which results upon replacing φ′ by its corresponding root fi(φ) in the

above expression.
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For theories with a standard kinetic term X and a potential V (φ),

Ls = X − V, (10.10)

the integrated static field equation simply is

−X − V = 0 ⇒ φ′2 = 2V (10.11)

with the two roots φ′ = ±
√

2V . If the potential V has at least two vacua

(which we assume from now on), then there will exist, in general, finite energy

solutions of Eq. (10.11) which interpolate between different vacua (kinks),

and the two roots correspond to kink and antikink, respectively. The static

energy density for the standard theory is

Es = −X + V =
1

2
φ′2 + V (10.12)

and for a kink solution it may be written as

Es|φk = (−X + V )|φk = 2V (φk) = −2X|φk (10.13)

where φk(x) is the kink solution under consideration, and the notation |φk
means that the expression (in general, a function of φ and φ′), is evaluated

at the kink solution φ = φk(x). Finally, the energy of a kink in this standard

case simply is

E =

∫ ∞
−∞

dxφ′2 =

∫ φ(∞)

φ(−∞)

dφφ′ =

∫ φ(∞)

φ(−∞)

dφ(±
√

2V ) = (10.14)

= ±[WV (φ(∞))−WV (φ(−∞))]

where

WV,φ =
√

2V (10.15)

and the explicit expression for WV depends, of course, on V . The two signs

correspond to kink and antikink, respectively.

10.2.2 Twin or doppelgaenger defects

In [51] the authors observed the possibility of twin-like models within the

class of generalized K field theories, that is, of field theories which share
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the same kink solution with the same energy density with a given standard

field theory. They discussed a Dirac-Born-Infeld (DBI) like example in some

detail where, however, the DBI term is multiplied by a target space geometric

factor, because a pure DBI theory cannot be the twin of a standard field

theory. Then they derived a necessary and sufficient geometrical condition

which a second field theory L2 has to obey in order to be the twin of a given

field theory L1. From their geometric description they already concluded that

there exist, in principle, infinitely many twin theories for a given standard

scalar field theory. We shall review this geometric construction in a first

step, because we will find that combining it with the first order formalism

provides us with a simple and purely algebraic method to explicitly calculate

an infinite number of twin models for any given field theory. The authors of

[51] demonstrated that if the theory L1 has a kink solution φk(x) with energy

density Ek(x), then a necessary and sufficient condition for a second theory

L2 to have the same kink solution with the same energy density is that both

L and L,X agree when evaluated for the kink solution, that is,

L1|φk = L2|φk (10.16)

L1,X |φk = L2,X |φk . (10.17)

obviously, the first condition implies that the energy densities are equal,

see Eq. (10.3). Further, the first order equation Eq. (10.7) holds for L1

by assumption, then the two conditions (10.16) and (10.17) imply that Eq.

(10.7) is an identity for L2. It follows that the two conditions (10.16) and

(10.17) are sufficient for L2 to be a twin of L1. That the two conditions

are necessary follows easily from the fact that the two equations (10.3) and

(10.7) are linear in L and LX .

From what has been said above, it might appear that for the explicit

construction of a twin model L2 for a given theory L1 it is necessary to

know an explicit kink solution φk of the theory L1, and to use this kink in

the evaluation of possible twin models L2, which would render calculations

rather cumbersome. But this is, in fact, not true. The important point is that

the lagrangian densities are functions of the target space variables φ and φ′

only, therefore it is sufficient to implement the root φ′ = ±fi(φ) which leads

to the kink (or antikink) solution under consideration. Further, we shall use
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the fact that all lagrangians we consider depend on φ′ only via X = −1
2
φ′2

(for static configurations), so that the above conditions transform into

L1|2X=−f2i = L2|2X=−f2i (10.18)

L1,X |2X=−f2i = L2,X |2X=−f2i (10.19)

where fi(φ) is a known root (10.8) of the theory L1 leading to a kink solution.

The above conditions are purely algebraic conditions in the target space

variables φ and X and do not involve the base space variable x or explicit

knowledge of a kink solution φk(x) at all.

Up to now we allowed for completely general lagrangians L1 and L2 to

emphasize the general character of the procedure. Now, however, we will

concentrate on the case of a standard lagrangian L1 = Ls = X − V for

concreteness, so the problem consists in finding possible twins to standard

scalar field theories. Here V (φ) is a positive semi-definite potential with at

least two vacua (zeros) such that kink solutions exist. The two roots for kink

and antikink may be combined into X = −V , and the above conditions read

(we write L for L2)

L|X=−V = −2V (10.20)

L,X |X=−V = 1. (10.21)

Again, these two conditions are purely algebraic and allow an easy calculation

of twin models, as we shall see in the next section.

10.2.3 Examples of twin models

As a first class of twin models let us consider the class of Lagrangians

L =
K∑
k=1

fk(φ)Xk − U(φ) (10.22)

where the kinetic terms Xk are multiplied by functions of φ in a sigma-model

like fashion. Here, the condition

L,X |X=−V =
K∑
k=1

kfk(φ)(−V )k−1 ≡ 1 (10.23)
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imposes one condition on the functions fk(φ). one may, for instance, choose

arbitrary fk for k ≥ 2, then the above condition determines f1 in terms of

the remaining fk and V . We remark that it is not possible to choose all fk

constant, but if at least one fk has a nontrivial φ dependence then the above

condition can always be fulfilled. The second condition

L|X=−V =
K∑
k=1

fk(φ)(−V )k − U(φ) ≡ −2V (φ), (10.24)

in turn, determines U(φ) in terms of the fk and V .

One question to ask is whether the resulting twin models constitute vi-

able field theories on their own, that is, whether they obey certain stability

requirements like energy positivity or the null energy condition (NEC). Here

we shall mainly be concerned with the NEC, because i) it is deemed sufficient

for stability, ii) it is weaker than the condition of positivity of the energy

density and iii) it is easier to implement for the class of models we study in

this paper. The NEC in general is the condition that

nµnνTµν ≥ 0 (10.25)

where Tµν is the energy-momentum tensor and nµ is an arbitrary null vector.

For the class of models L(X,φ) the NEC simply reads

L,X ≥ 0. (10.26)

It is, in general, not completely trivial to reconcile the NEC with the two twin

conditions (10.23) and (10.24), but it is easy to find certain special classes of

models where the NEC holds by construction.

A first class of models which obeys both the NEC and the condition

(10.23) by construction is given by field theories which obey

L,X = Kf(φ)(X + V )K−1 + 1 (10.27)

where f is an arbitrary, positive semi-definite function f(φ) ≥ 0 and K is an

odd integer. The resulting Lagrangian (i.e., X integral) is

L = f(φ)(X + V )K +X − Ũ(φ) (10.28)
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(where the integration ”constant” Ũ(φ) is an arbitrary function of φ), and

the second twin condition (10.24) requires Ũ = V such that the class of twin

Lagrangians reads

L = f(φ)(X + V )K +X − V , K = 3, 5, . . . (10.29)

As a concrete example, we may e.g. choose f = 1 and K = 3 which results

in the Lagrangian

L =
1

3
X3 + V X2 + (V 2 + 1)X +

1

3
V 3 − V (10.30)

which shares both the kink solution φ′ = ±
√

2V and the corresponding

energy density with the standard scalar model Ls = X − V . A second class

of twin models obeying the NEC may be constructed from the equation

L,X = f 1−K(X + V + f)K−1 (10.31)

(where f = f(φ) ≥ 0, and K is an odd integer) with Lagrangian

L =
f 1−K

K
(X + V + f)K − Ũ . (10.32)

Here the second twin condition leads to Ũ = 2V + (f/K) and, therefore, to

the Lagrangian

L =
f 1−K

K
(X + V + f)K − 2V − f

K
. (10.33)

Next, let us describe another class of examples of twin models, different

from the power expansion in X of Eq. (10.22). We start from the ansatz

L = f(φ)g(X)− U(φ) (10.34)

and calculate

L,X = f(φ)g′(X) (10.35)

and the NEC leads to the conditions

f ≥ 0 , g′ ≥ 0. (10.36)
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Further, the two twin conditions lead to f(φ) = (g′(−V ))−1 and U = 2V +

(g(−V )/g′(−V )) and, therefore, to the Lagrangian

L =
g(X)

g′(−V )
− g(−V )

g′(−V )
− 2V. (10.37)

Among this class we may easily recover the DBI type example originally

presented and discussed in [51]. Indeed, choosing for the kinetic function

g(X) the DBI type expression

g(X) = −
√

1− 2X (10.38)

we calculate

g′(X) =
1√

1− 2X
, f(φ) =

√
1 + 2V , U = 2V −(1+2V ) = −1 (10.39)

and the resulting Lagrangian is

L = −
√

1 + 2V
√

1− 2X + 1. (10.40)

It is obvious from the derivation that the nontrivial target space geometry

factor f(φ) =
√

1 + 2V is necessary for this DBI type action to be the twin

of a standard scalar field theory, as announced above.

10.3 Supersymmetric twin models

To begin with, let us remind that a standard scalar field theory Ls = X − V
with a positive semi-definite potential V ≥ 0 may always be viewed as the

purely bosonic sector of a supersymmetric scalar field theory. Indeed, before

the elimination of the auxiliary field F the bosonic sector of the supersym-

metric standard scalar field theory reads

Ls =
1

2
(∂µφ∂

µφ+ F 2)− FP ′s(φ) (10.41)

where Ps(φ) is the prepotential (also sometimes called superpotential) of the

standard SUSY scalar field theory. Elimination of the auxiliary field F with

the help of its algebraic field equation F = P ′s leads to the lagrangian

Ls =
1

2
∂µφ∂

µφ− 1

2
P ′2s (10.42)
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which is just the standard scalar field lagrangian with the identification

V =
1

2
P ′2s ≥ 0. (10.43)

This observation leads to the obvious question whether there exist supersym-

metric K field theory twins for the supersymmetric standard field theories.

For this purpose, in a first instance we have to know whether there ex-

ist supersymmetric scalar K field theories at all. The answer is that these

supersymmetric K theories do exist. Some classes of examples have been

introduced and studied in [63], [17] (these theories exist both in 1+1 and in

2+1 dimensional Minkowski space, due to the similar spin structure in the

two spaces), and we shall use some of these examples for the construction of

our supersymmetric K field twins. In [63] a class of supersymmetric models

was introduced such that their purely bosonic sector before the elimination

of the auxiliary field reads

L(α,P ) =
N∑
k=1

αk(φ)[(∂µφ∂µφ)k + (−1)k−1F 2k]− P ′(φ)F. (10.44)

Next, the auxiliary field F should be eliminated via its algebraic field equation

N∑
k=1

(−1)k−12kαkF
2k−1 − P ′(φ) = 0 (10.45)

which in general is, however, a rather complicated algebraic equation for

F . As no assumption was made yet about the functional dependence of P ,

this equation may be understood in a second, equivalent way: one assumes

that F is an arbitrary given function of φ, which in turn determines the

prepotential P (φ). This second way of interpreting Eq. (10.45) is more

useful for our purposes. Eliminating the resulting P ′(φ) we arrive at the

Lagrangian density

L(α,F ) =
N∑
k=1

αk(φ)[(∂µφ∂µφ)k − (−1)k−1(2k − 1)F 2k] (10.46)

where now F = F (φ) is a given function of φ which may be chosen freely

depending on the theory or physical problem under consideration. This class
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of lagrangians is exactly of the type (10.22), therefore the conditions for

being the twin of a standard theory are exactly analogous to the conditions

(10.24) and (10.23). The restrictions implied by supersymmetry (i.e., the

requirement to express the ”potential function ” U(φ) in Eq. (10.22) in

terms of F (φ)), nevertheless, impose some additional restrictions, as we want

to show now. Indeed, the second twin condition L,X |2X=−F 2
s

= 1 leads to∑
2kαk(−F 2

s )k−1 = 1, (10.47)

where we introduced the function Fs(φ) of the standard SUSY theory, i.e.,

the auxiliary field F of the standard theory evaluated at its field equation

via

2V (φ) ≡ Ps
′2(φ) ≡ F 2

s (φ) (10.48)

for convenience. The first twin condition L|2X=−F 2
s

= −F 2
s then leads to

L|2X=−F 2
s

=
∑
k

αk((−F 2
s )k − (−1)k−1(2k − 1)F 2k)

=
∑
k

αk((−F 2
s )k − (−F 2)k − 2kF 2(−F 2)k−1)

≡ −F 2
s

where we used (10.47) in the last step. This condition is solved by

F = ±Fs. (10.49)

As we shall see in a concrete example below, this is typically the only ac-

ceptable solution, therefore supersymmetry seems to imply the additional

relation F = Fs for the algebraic solutions of the auxiliary fields of standard

and K field twin theories.

Again, the NEC is not automatic in these theories, but a more specific

class of examples which obeys the NEC by construction may be given, analo-

gous to the last subsection. Concretely, we give some examples starting from

the X derivative

L,X = 2K(2X + 2V )K−1 + 1 (10.50)

(we write 2X instead of X in order to be as close as possible to the notation

used in Ref. [63] and in Eq. (10.46); K is an odd integer). The resulting

Lagrangian is

L = (2X + 2V )K +X − Ũ(φ) (10.51)
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and obeys the NEC and the twin condition L,X |X=−V = 1 by construction.

For a more concrete example, let us now assume K = 3 which leads to

the Lagrangian

L = (2X)3 + 6V (2X)2 + (12V 2 +
1

2
)(2X) + 8V 3 − Ũ (10.52)

and therefore to

α3 = 1 , α2 = 6V , α1 = 12V 2 +
1

2
(10.53)

and to the Lagrangian

L = (2X)3 − 5F 6 + 6V ((2X)2 + 3F 4) + (12V 2 +
1

2
)(2X − F 2) (10.54)

which explicitly is of the form (10.46) (we replaced the arbitrary integra-

tion“constant” Ũ(φ) by the required F terms). Now the second twin condi-

tion L|X=−V = −2V leads to

5F 6 − 18V F 4 + (12V 2 +
1

2
)F 2 + 8V 3 − V = 0 (10.55)

which may be viewed as a third order algebraic equation for F 2. The only

acceptable (i.e., real and positive) solution is

F 2 = 2V ≡ F 2
s (10.56)

and leads to the Lagrangian

L = (2X)3 − 40V 3 + 6V ((2X)2 + 12V 2) + (12V 2 +
1

2
)(2X − 2V ) (10.57)

which is the desired supersymmetric twin of the standard Lagrangian. As

already remarked for the more general class of examples above, it holds that

also the (algebraic) field equations for the auxiliary fields coincide, see Eq.

(10.49). This equality is not a further condition, but a consequence of the

twin conditions and supersymmetry.

Another class of supersymmetric theories has the following purely bosonic

sector (before the elimination of the auxiliary field F ) [17]

L = g(φ)f(X)(F 2 + 2X2)− P ′(φ)F (10.58)
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where f and g are arbitrary, fixed functions of their arguments and for the

moment we just assume g ≥ 0. The algebraic field equation for the auxiliary

field F has the solution

F =
P ′

2gf
(10.59)

and leads to the Lagrangian

L = 2Xgf − P ′2

4gf
≡ 2g

(
Xf − h

f

)
(10.60)

where

h(φ) ≡ P ′2

8g2
. (10.61)

The X derivative of this lagrangian is

L,X = 2g

(
f +Xf,X + h

f,X
f 2

)
. (10.62)

A sufficient condition for the NEC consists in the following inequalities

f +Xf,X ≥ 0 , f,X ≥ 0 (10.63)

but we have not been able to find a function f which obeys these inequalities.

There exists, however, another possiblity to obey the NEC, and for this

possibility we found solutions. Concretely, assume that

f +Xf,X ≥ 1 (10.64)

and that further ∣∣∣∣f,Xf 2

∣∣∣∣ ≤ 1 (10.65)

and

h ≤ 1 (10.66)

then the NEC holds. A specific function f obeying these conditions is

f = 1 +X2 (10.67)

which indeed leads to

f +Xf,X = 1 + 3X2 ≥ 1 ,

∣∣∣∣f,Xf 2

∣∣∣∣ =
2|X|

(1 +X2)2
≤ 1. (10.68)
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We will study this explicit example in what follows. We remark that, as we

shall see, the condition h ≤ 1 leads to restrictions on possible potentials V ,

so if we insist on the NEC we may construct twins of the type considered

here only for standard theories with certain potentials. For the specific choice

f = 1 +X2 the lagrangian and its X derivative read

L = 2g

(
X +X3 − h

1 +X2

)
(10.69)

L,X = 2g

(
1 + 3X2 + h

2X

(1 +X2)2

)
. (10.70)

The twin condition L,X |X=−V = 1 leads to the equation

h =
(1− V 2)2

2V

(
1 + 3V 2 − 1

2g

)
(10.71)

and the second twin condition L|X=−V = −2V leads, together with Eq.

(10.71), to the solution
1

2g
= 1 +X2 (10.72)

which, in turn, leads to

h = V (1 + V 2)2. (10.73)

Now, the NEC requires h ≤ 1 which obviously restricts possible potentials

V . An example of a potential which is compatible with this condition is

V =
1

2

(1− φ2)2

(1 + φ2)2
(10.74)

as may be checked easily. Further, this potential has the same vacuum struc-

ture as the standard φ4 potential V = (1/2)(1−φ2)2, so it will lead to similar

kink solutions.

We want to end this section with the remark that the auxiliary field F ,

when evaluated at the kink equation X = −V , again coincides with the

auxiliary field of the standard supersymmetric theory F 2
s = 2V . Indeed,

from Eq. (10.59) we infer that

F 2 =
P ′2

4g2f 2
=

2h

f 2
(10.75)
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which depends both on φ and on X. But evaluating it for the kink equation

leads to f |X=−V = 1 + V 2, which together with the solution h = V (1 + V 2)2

just leads to

F 2|X=−V =
2V (1 + V 2)2

(1 + V 2)2
= 2V ≡ F 2

s (10.76)

which is, again, identical to the field equation of the auxiliary field for the

standard supersymmetric scalar field theory.

10.4 Self-gravitating twins

Here we want to study the existence of twins of the standard scalar field

theory fully coupled to gravity, that is, K field theories which give rise to

exactly the same defect solution, energy density, and induced metric than the

standard scalar field theory with self-gravitation fully taken into account. We

shall find that the situation is completely equivalent to the Minkowski space

case in that, again, there exist two purely algebraic ”twin conditions” which

allow to calculate twins of self-gravitating standard scalar field theories. The

only differences will be that i) the ”on-shell” condition for a defect is no

longer X = −V but, instead, X = −(1/2)W,φ
2, where the relation between

W and V is slightly more complicated than in the flat space case; and ii) the

”on-shell” value which the Lagrangian has to take will be different, as well,

i.e., L|X=−(1/2)W,φ
2 = −W,φ

2 + cdW
2 instead of L|X=−V = −2V (here cd is

a numerical coefficient which depends on the dimension d of space-time; in

principle, it also depends on the gravitational constant κ and vanishes in the

limit κ→ 0, but we shall choose units such that κ = 1 in the following).

Before starting the detailed calculations, some remarks are in order. The

topological defect solution in flat Minkowski space may be either viewed

as a kink solution in 1+1 dimensions or as a co-dimension one domain wall

solution in higher dimensions. Both the defect solution and its energy density

per length unit in the direction perpendicular to the wall do not depend on

the dimension. This is no longer true once the gravitational self-interaction is

taken into account. In 1+1 dimensions there is no gravitational interaction,

because the Einstein tensor is identically zero, and for higher dimensions

d > 2 the Einstein equations depend on the dimension d, therefore also the



CHAPTER 10. TWIN-LIKE MODELS AND SUSY 139

self-gravitating defect solutions will depend on d. Here we shall discuss the

case for general d, but probably the two cases d = 4 and d = 5 are the

most interesting ones. d = 4 is the dimension of our universe, at least at

a macroscopic scale, so the resulting defects of the standard theory and its

twins may be viewed just as domain walls in the universe. The case d = 5

is especially interesting in relation to the braneworld scenario, where our

universe is identified with the domain wall, and the direction perpendicular

to the domain wall is identified with a fifth direction or coordinate which

is invisible due to the resulting warped geometry in five dimensions, which

essentially confines all physics to the three dimensional domain wall or brane

(four dimensional brane world hypersurface). As already stated, the d = 5

case was studied in [58], and we shall build on the results of that paper.

Another remark concerns the possibility in flat space to express the linear

energy density of a defect solution with the help of the integrating function

W as E = φ′W,φ. Using the static field equation for a defect (10.7), this

relation may be re-expressed like

E = −L = φ′2L,X = φ′W,φ ⇒ φ′L,X = W,φ (10.77)

and this last form is the most useful one for our purposes, because it may be

generalized directly to the case with gravity, as we shall see below.

If the Einstein–Hilbert action is normalized as

SEH =
1

κ

∫
ddx
√
|g|R (10.78)

(where g is the determinant of the metric gMN , M,N = 0, . . . , d − 1, R is

the curvature scalar, and κ = 4πG where G is Newton’s constant), then the

Einstein equation is

GMN = 2κTMN (10.79)

where

TMN = ∇Mφ∇NφL,X − gMNL (10.80)

is the energy-momentum tensor. Further, ∇M is the covariant derivative,

and

X ≡ 1

2
∇Mφ∇Mφ. (10.81)
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We shall choose length units such that κ = 1, therefore the Einstein equation

we use reads

GMN = 2TMN . (10.82)

For the self-gravitating defect solution we use the ansatz for the metric

ds2 = e2A(y)ηµνdx
µdxν − dy2 (10.83)

where xM = (xµ, y), y is the coordinate for the direction perpendicular to

the domain wall (or brane), and ηµν = diag(+,− . . . ,−) is the Minkowski

metric in d− 1 dimensions. Further, we assume that φ = φ(y) only depends

on the y coordinate. With this ansatz, the expression for X reduces to the

same expression like in the flat space case, X = −(1/2)(∂yφ)2 ≡ −(1/2)φ′2.

The Einstein equations for this ansatz reduce to two independent equa-

tions for A(y) and φ(y), and they depend on the dimensions d of space-time.

Explicitly, they read

(d− 1)(d− 2)

2
A′2 + (d− 2)A′′ = 2L (10.84)

(d− 1)(d− 2)

2
A′2 = −4XL,X + 2L (10.85)

which may be resolved for A′2 and A′′,

A′′ =
4

d− 2
XL,X (10.86)

A′2 =
4

(d− 1)(d− 2)
(L − 2XL,X). (10.87)

The field equation for the scalar field φ is not an independent equation, but

rather a consequence of the Einstein equations therefore we do not display

it here. The first order formalism for static domain walls now consists in in-

troducing an integrating function or superpotential W = W (φ) proportional

to −A′ [65], [66], [67], [32], [58]. The right choice is

A′ = − 2

d− 2
W (φ), (10.88)

and inserting it into Eq. (10.86) leads to

A′′ = − 2

d− 2
W,φφ

′ =
4

d− 2
(−1

2
φ′2)L,X ⇒ W,φ = φ′L,X (10.89)
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exactly as in the flat space case. In order to find the twin conditions which

twin models of the standard Lagrangian Ls = X − V should obey, we first

have to solve the Einstein equations for the standard Lagrangian. obviously,

the first integral for the standard Lagrangian is

φ′ = W,φ ⇒ X = −1

2
W,φ

2 (10.90)

just like in the flat space case. This implies that the first twin condition for

a K field lagrangian is just L,X |X=−(1/2)W,φ
2 = 1, in close analogy to the flat

space case (although it is no longer true that (1/2)W,φ
2 = V , as we shall

see in a moment). In order to find the relation between V and W we just

insert the standard Lagrangian, the ansatz for A′ and the first integral for

the standard Lagrangian into the second Einstein equation (10.87) and find

A′2 ≡ 4

(d− 2)2
W 2 =

4

(d− 1)(d− 2)
(X−V−2X) =

4

(d− 1)(d− 2)
(
1

2
W,φ

2−V )

(10.91)

⇒ V =
1

2
W,φ

2 − d− 1

d− 2
W 2. (10.92)

We remark that the first, W,φ term is exactly like in the flat space case,

whereas the second, W term is the correction due to gravity and depends on

the dimension d. Inserting this result back into Ls leads to

Ls|X=−(1/2)W,φ
2 = −W,φ

2 +
d− 1

d− 2
W 2 (10.93)

and the resulting twin conditions for a general Lagrangian L to be the twin

of a standard Lagrangian Ls = X − V are therefore

L,X |X=−(1/2)W,φ
2 = 1 (10.94)

L|X=−(1/2)W,φ
2 = −W,φ

2 +
d− 1

d− 2
W 2 (10.95)

where the relation between the integrating function W and the potential V

is given in (10.92). These relations are, again, purely algebraic and do not

require the explicit knowledge of a defect solution.

We remark that solving Eq. (10.92) for a given potential V is, in general,

quite difficult. It is simpler to choose an integrating function (or superpoten-

tial) W and determine the resulting potential V . In addition, by choosing
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an adequate W , it is also easy to assure that the simple equation φ′ = ±W,φ

does support topological defect solutions.

Finally, let us present some explicit examples. As a first example, we

choose the Lagrangian (10.28) of Section 2, but with V replaced by 1
2
W,φ

2

(where f(φ) is an arbitrary, nonnegative function),

L = f(φ)(X +
1

2
W,φ

2)K +X − Ũ(φ)

which, by construction, obeys both the NEC and the twin condition (10.94).

The second twin condition (10.95) determines Ũ to be

Ũ =
1

2
W,φ

2 − d− 1

d− 2
W 2 ≡ V, (10.96)

just like in the case without gravity.

For a second class of examples, we use the ansatz (as in Section 2)

L = f(φ)g(X)− U(φ). (10.97)

The first twin condition (10.94) leads to

f(φ) =
1

g′(−(1/2)W,φ
2)

(10.98)

and the second twin condition (10.95) results in

U(φ) = W,φ
2 +

g(−(1/2)W,φ
2)

g′(−(1/2)W,φ
2)
− d− 1

d− 2
W 2 (10.99)

For the specific, DBI type example g(X) = −
√

1− 2X we, therefore, get the

Lagrangian

L = −
√

1 +W,φ
2
√

1− 2X + 1 +
d− 1

d− 2
W 2 (10.100)

which, for d = 5, precisely coincides with the example presented in [58].

We remark that for the case with selfgravitation the authors of [58] use the

definition W,φ = 1
2
φ′L,X for the integrating function (or superpotential) W ,

which differs by a factor two from the definition W,φ = φ′L,X employed here

(but also in Ref. [58] for the case without gravity).
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10.5 Discussion

In this article, we have derived a simple and purely algebraic method for the

construction of K field twins of a standard scalar field theory, that is, of K

field models which share the same topological defect with the same energy

density with a given standard scalar field theory. This method may be de-

rived for the cases of non-supersymmetric field theories, supersymmetric field

theories and for self-gravitating fields. Further, we gave several examples for

all these cases. The interest of these twin models lies in the fact that the field

profile together with the energy density are the most relevant physical data

of a defect which makes the twins almost indistinguishable from their stan-

dard counterparts in many situations. A pattern of defects in the very early

universe will look the same irrespective of whether it is formed by defects

of a standard theory or of a K field twin. The spectrum of linear fluctua-

tions, on the other hand, is in general different between the standard theory

and its twins [51], [58], so small differences will set in once dynamics (i.e.,

time dependence) is taken into account. A similar question is related to the

behaviour of additional matter fields (e.g., fermion fields) coupled to twin

defects. In the non-supersymmetric case there exist different possibilities to

couple fermions to each field theory, therefore general statements cannot be

made. The situation is different, however, for supersymmetric (SUSY) K

field twins of standard SUSY scalar field theories. Here, the first important

piece of information is, of course, the existence of SUSY K field theories [63],

[17], [49], [136]. We want to point out again that defects of supersymmetric

theories are the relevant ones to study if the symmetry breaking and the

subsequent defect formation in the early universe occur at an energy scale

where supersymmetry is still intact (e.g., at the end of inflation). For su-

persymmetric twins of the standard supersymmetric scalar field theories, it

is interesting to observe that these SUSY twin models not only share the

defect solution and its energy density with the standard theory. Also the

(algebraic) field equation for the auxiliary field in the kink background is

identical for the standard theory and the twin. Another interesting problem

of these SUSY theories concerns, of course, the inclusion of fermions which

we have set equal to zero in our discussion. In general, the fermionic sectors
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of the standard theory and the twin will be different, like the bosonic sec-

tors. Standard and twin theory will, however, share some common features

in the fermionic sector, too. They will, e.g., share the same fermionic zero

mode in the background of the same kink solution. This is a consequence of

translational invariance, on the one hand, which implies that both theories in

the kink background have the same bosonic zero mode (or Goldstone mode)

equal to the derivative of the kink. The second ingredient is, of course, su-

persymmetry, which guarantees that each bosonic Goldstone mode is paired

by a fermionic zero mode which is, again, equal to the derivative of the kink

field.

A final issue is the existence of twin models when the gravitational backre-

action is taken into account, i.e., of twin defects sharing the same field profile,

energy density and induced metric. Already for defect structures in cosmol-

ogy (i.e., in the early universe) the full self-gravitating case should, in prin-

ciple, be taken into account, although in many circumstances a Minkowski

space calculation is sufficient. In the brane world scenario taking into account

the full self-gravitating solution is mandatory. We found that, again, there

exists a simple algebraic method to calculate infinitely many K field twins

of a standard self-gravitating scalar field theory and gave several examples.

We emphasize that for the 4+1 dimensional case relevant for the brane world

scenario an example of a self-gravitating twin has already been given in [58]

with the help of the first order formalism.

It was the main aim of the present article to shed more light on the

existence of K field twin defects and the mathematical structures behind

them, on the one hand, and to provide a simple calculational tool for the

construction and study of twin-like models, on the other hand. We want

to point out that, whenever K field theories cannot be excluded on purely

theoretical grounds, they have to be considered on a par with the standard

field theories as an immediate consequence of the existence of twin defects,

because for twin-like models their most relevant physical manifestations are

completely indistinguishable. This is the case, e.g., for effective field theories

resulting from the integration of UV degrees of freedom, where higher kinetic

terms are naturally induced.



Chapter 11

More on twin-like models

After the general framework which provides the algebraic conditions that

twin-like models must verify, in this chapter we show that it is possible to

add more purely algebraic constraints to the lagranian of the twin-like model

to ensure that both linear fluctuation spectra coincide. The interesting result

is that a semiclassical quantization about the topological defect provides the

same results for the standard field theory and its K field twins. This chapter

consists of a paper published in [98].

Twinlike models with identical linear fluctuation spectra

C. Adam 1, J.M. Queiruga 1,
1 Departamento de F́ısica de Part́ıculas, Universidad de Santiago de

Compostela and Instituto Galego de F́ısica de Altas Enerxias (IGFAE)

E-15782 Santiago de Compostela, Spain

Abstract: Recently, the possibility of so-called twinlike field theories has

been demonstrated, that is, of different field theories which share the same

topological defect solution with the same energy density. Further, purely

algebraic conditions have been derived which the corresponding Lagrangians

have to obey in order that the field theories be twins of each other. A fur-

ther diagnostical tool which, in general, allows to distinguish the topological

defects of a given theory from the corresponding defects of its twins is the

spectrum of linear fluctuations about these defects. Very recently, however,
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explicit examples of twin theories have been constructed such that not only

their shapes and energy densities coincide, but also their linear fluctuation

spectra are the same. Here we show that, again, there exist purely algebraic

conditions for the Lagrangian densities which imply that the corresponding

field theories are twins and that the fluctuation spectra about their defects

coincide. These algebraic conditions allow to construct an infinite number of

twins with coinciding fluctuation spectra for a given theory, and we provide

some explicit examples. The importance of this result is related to the fact

that coinciding defects with coinciding energy densities and identical fluctua-

tion spectra are almost indistinguishable physically, that is, indistinguishable

in a linear or semiclassical approximation. This implies that the measurable

physical properties of a kink, in general, do not allow to determine the theory

which provides the kink uniquely. Instead, in principle an infinite number of

possible theories has to be considered.

11.1 Introduction

One of the most fertile concepts in theoretical physics in the last decades

has been the concept of topological defects or topological solitons (see e.g.

[162]). They are ubiquitous in condensed matter systems and, besides this,

are deemed relevant for the cosmology of the early universe. Topological

defects may, for instance, contribute to the structure formation in the very

early universe (e.g., during or at the end of inflation) [23]-[25]. A topological

soliton is, in general, a static solution of the Euler–Lagrange equations of the

given field theory with finite energy which obeys nontrivial boundary condi-

tions. Further, the stability of the topological soliton against transitions to

the vacuum is guaranteed by the fact that a deformation to the vacuum con-

figuration with trivial boundary conditions would require to change the field

in an infinite volume and, therefore, cost an infinite amount of energy. The

relevant data characterizing the physical properties of a soliton are, first of

all, its shape or profile (i.e., the soliton solution itself), and its energy density.

Additional important information is contained in the so-called spectrum of

linear fluctuations about the topological defect. In order to determine this

spectrum, one calculates the fluctuations about the soliton up to second or-
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der in the action (or up to first order in the Euler–Lagrange equations). For

the fluctuation field then one introduces a temporal Fourier decomposition,

which results in a stationary second order equation of the Schrödinger type.

The (in general, infinitely many) solutions of this equation together with the

allowed frequencies constitute the spectrum of linear fluctuations. The first

relevant information contained in the spectrum of linear fluctuations is lin-

ear stability. For a stable soliton, the spectrum should contain no negative

mode (i.e., no imaginary frequency). Another aspect where the fluctuation

spectrum is important is the issue of semiclassical quantization in the pres-

ence of solitons [72] (for an easy to follow discussion see [73]). Concretely,

the discrete part of the fluctuation spectrum describes some excited states

of the soliton or, equivalently, soliton-meson bound states. Here by ”meson”

we mean a fluctuation field which is Gaussian in the leading approximation

and obeys the boundary conditions of the vacuum configuration. Further,

the continuous part of the spectrum describes soliton-meson scattering.

The discussion so far has been for general soliton models, but now we

want to restrict to the case of a real scalar field in 1+1 dimensions. The

standard scalar field theory in 1+1 dimensions is

Ls = X − U(φ) , X ≡ 1

2
∂µφ∂

µφ (11.1)

and we shall require that U is nonnegative,

U(φ) ≥ 0 ∀φ (11.2)

This theory may support topological solitons (kinks) provided that the po-

tential U has at least two vacua, i.e., there exist at least two (constant)

values φ = φi such that U(φi) = 0. A kink is a static solution φk(x) which,

in general, interpolates between two adjacent vacua, i.e., φk(−∞) = φi,

φk(∞) = φi+1. The corresponding static kink equation is (φ′ ≡ ∂xφ)

1

2
φ′2 ≡ −X = U (11.3)

with the two roots (for kink and antikink)

φ′ = ±
√

2U. (11.4)
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The kink equation (11.3) results from the static second order Euler–Lagrange

equation by performing one integration, where the integration constant must

be set equal to zero in order to satisfy the kink boundary conditions. Finally,

the linear fluctuation equation in the kink background may be derived by

inserting the decomposition φ(t, x) = φk(x)+η(t, x) and the temporal Fourier

decomposition η(t, x) = cos(ωt)η(x) into the Euler–Lagrange equation and

keeping terms linear in η. Explicitly, the linear fluctuation equation reads

(U,φ ≡ ∂φU , etc.)

−η′′ = (ω2 − U,φφ|φk)η (11.5)

where the notation |φk means that the expression has to be evaluated for the

kink solution. The solutions of this Schrödinger type equation together with

the allowed frequencies ω determine the spectrum of linear fluctuations in

this case.

Up to now the logical line of reasoning has been to begin with a field

theory and to derive from this starting point the topological defect (kink)

and its properties. Now we want to see whether and how far this logical arrow

can be reversed. That is to say, we start with a kink solution together with

its properties, like energy density and linear fluctuation spectrum, and we

want to know whether or to which degree we may recover the theory which

gives rise to this defect solution with its properties. The answer depends

on the class of Lagrangians we are willing to admit. For a standard scalar

field theory (11.1), the kink solution itself is already sufficient to recover the

Lagrangian, i.e., the potential, by inverting the solution φ = φk(x) ⇒ x =

xk(φ) and by inserting the resulting expression into the kink equation,

φ′2(x) = φ′2(xk(φ)) ≡ 2U(φ), (11.6)

which determines U(φ). on the other hand, the situation will be different if we

allow for a more general class of Lagrangians. Concretely, we want to admit

Lagrangians which are general functions of both φ and X ≡ (1/2)∂µφ∂
µφ.

There are several reasons which make these theories with a generalized ki-

netic term (the so-called K field theories) worth considering. First of all, K

field theories have been applied already to some problems in cosmology, like

inflation (so-called K-inflation [2]), late time acceleration (so-called K-essence

[3]), or in the brane world scenario [31], [7], [74]. Secondly, generalized kinetic
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terms may serve to stabilize static field configurations, evading thereby the

Derrick theorem and allowing the existence of soliton solutions. The third

and probably strongest case in favor of K field theories is related to the fact

that in many circumstances scalar field theories are interpreted as effective

field theories which result from the integration of UV degrees of freedom

of some more fundamental theory. In this case of an effective field theory,

higher powers of derivatives are induced naturally, and therefore they have

to be taken into account. In this paper we are specifically interested in K

field theories whose topological defects coincide with the standard ones, but

let us mention, nevertheless, that K field theories in general give rise to a

much richer phenomenology of possible topological defects [5], [61], like, e.g.

solitons with compact support (so-called compactons) [35] - [40]. other more

mathematical aspects of K field theories have been discussed, e.g., in [4] and

in [62].

For the generalized dynamics of K field theories (i.e., for general La-

grangians L(X,φ)) it was found recently [51] that different field theories

may exist which share the same topological defect with the same energy

density. The coinciding kinks with their coinciding energy densities were

dubbed twin or Doppelgänger defects in [51], and the models which give rise

to these identical kink solutions are called twinlike models. The investiga-

tion of twinlike models was carried further in [75] and in [76]. Specifically,

in [76] it was demonstrated that there exist purely algebraic necessary and

sufficient conditions for a Lagrangian L(X,φ) to be the twin of a standard

theory Ls = X − U . As these conditions are algebraic, they do not require

the knowledge of the topological defect solution and, therefore, allow the

simple construction of an infinite number of twins for any given standard

field theory supporting topological defects. Very recently, in [77] explicit

examples of K field theories were found which not only are twin models of

standard field theories, but where also the fluctuation spectra of the stan-

dard defect and its K field twins coincide, making the standard defect and its

twins almost completely indistingushable physically. This implies that the

measurable physical properties of a kink, in general, do not allow to deter-

mine the theory which provides the kink uniquely. Instead, in principle an

infinite number of possible theories has to be considered.
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It is the purpose of the present paper to show that, again, there exist

purely algebraic conditions for a Lagrangian density which imply that the

corresponding field theory is the twin of a standard scalar field theory and

that the fluctuation spectra about their defects coincide. Further, these al-

gebraic conditions allow to explicitly construct an infinite number of twins

with coinciding fluctuation spectra for any given standard field theory. Con-

cretely, in Sec. 11.2 we briefly review some known facts about twinlike models

which we need. In Sec. 11.3, we derive the algebraic conditions for coinciding

fluctuation spectra and provide some explicit examples. Further we discuss

the relation of our results with the examples of Ref. [77]. Finally, Sec. 11.4

contains our conclusions.

11.2 Twinlike models

The algebraic twin conditions require the first order form of the static field

equations, so let us briefly review this issue (for more details see, e.g., [76],

[32]). For a general Lagrangian L(X,φ) where X ≡ 1
2
∂µφ∂

µφ = 1
2
(φ̇2 − φ′2),

the Euler–Lagrange equation reads

∂µ(L,X∂µφ)− L,φ = 0. (11.7)

Further, the energy momentum tensor is

Tµν = L,X∂µφ∂νφ− gµνL (11.8)

which, for static configurations φ = φ(x), φ′ ≡ ∂xφ, simplifies to

T00 = E = −L (11.9)

T11 = P = L,Xφ′2 + L (11.10)

where E is the energy density and P is the pressure. The static Euler–

Lagrange equation may be integrated once to give

−2XL,X + L ≡ P = 0. (11.11)

The general first integral allows for a nonzero constant on the r.h.s. (nonzero

pressure), but the boundary conditions for finite energy field configurations
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require this constant to be zero (zero pressure condition). For a standard

field theory Ls = X − U , the energy density and pressure read

Es = −X + U =
1

2
φ′2 + U (11.12)

Ps = −X − U =
1

2
φ′2 − U, (11.13)

and for a kink solution φk obeying φ′2k = 2U these simplify to

Es|φk = −2X|φk = 2U |φk (11.14)

−Ps = X + U ≡ 0. (11.15)

obviously, a K field theory will be the twin of a standard theory (i.e., have

the same kink solution φk with the same energy density) if both E and P ≡
0 agree when evaluated for the kink solution. A necessary and sufficient

condition for the K field Lagrangian is [51]

L|φk = −2U (11.16)

L,X |φk = 1, (11.17)

as may be checked easily. Now the important point is that the first order

form φ′2 = −2X = 2U of the static kink equation may be interpreted as

an algebraic equation involving the variables X and φ on which the K field

Lagrangian depends. As a consequence, the evaluation condition |φk may be

replaced by the purely algebraic condition |X=−U , leading to the so-called

algebraic twin conditions [76]

L|X=−U ≡ L| = −2U (11.18)

L,X |X=−U ≡ L,X | = 1 (11.19)

(here and below the evaluation of an expression at X ≡ −(1/2)φ′2 = −U
(and its prolongations, when required) will always be denoted by the vertical

line |, and will be called on-shell condition or on-shell evaluation frequently).
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11.3 The algebraic conditions

11.3.1 The fluctuation equation

We start from the Euler–Lagrange equation (11.7) and insert the decompo-

sition

φ(t, x) = φk(x) + η(t, x) (11.20)

where φk is the kink solution and η is the fluctuation field. In first order in

η we find

∂µ (L,X∂µη + L,XX∂νφk∂νη∂µφk + L,Xφη∂µφk)−
− L,φφη − L,Xφ∂µφk∂µη = 0. (11.21)

Now we use the fact that φk only depends on x, and the ansatz for the

fluctuation field

η(t, x) = cos(ωt)η(x) (11.22)

and get (
−L,Xη′ + L,XX(φ′k)

2η′ − L,Xφφ′kη
)′ −

− L,φφη + L,Xφφ′kη′ − ω2L,Xη = 0 (11.23)

or, more explicitly

−(L,X + 2XL,XX)η′′ −
− (L,Xφ + 2XL,XXφ − φ′′k(3L,XX + 2XL,XXX))φ′kη

′ =

=
(
ω2L,X + L,φφ − 2XL,Xφφ + φ′′k(L,Xφ + 2XL,XXφ)

)
η. (11.24)

This expression should now be evaluated for the defect solution φk, i.e.,

implementing the on-shell condition X| = −U and its first prolongation (that

is, the original second order static field equation) φ′′| ≡ φ′′k = U,φ. Inserting

these on-shell expressions above produces an expression containing U and

its derivative, whereas the variables of L and its derivatives are X (= −U)

and φ. The problem is that for a general potential U the algebraic relation

between φ and U is undetermined, so we would have to treat each potential

separately, losing thereby some of the generality of the algebraic method.
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The obvious alternative is to assume that the Lagrangian depends on φ only

via the potential U , that is, L = L(X,U). With

L,φ = L,UU,φ , L,φφ = L,UUU2
,φ + L,UU,φφ (11.25)

we may rewrite the fluctuation equation like

− (L,X + 2XL,XX) η′′ −
− ((L,XU + 2XL,XXU)U,φ − φ′′k(3L,XX + 2XL,XXX))φ′kη

′ =

= (ω2L,XU + L,UU,φ,φ − 2XL,XUUU2
,φ − 2XL,XUU,φφ +

+ φ′′k(L,XU + 2XL,XXU)U,φ)η

or, after implementing the on-shell conditions

X| = −U , φ′′| = φ′′k = U,φ, (11.26)

like

− (L,X + 2XL,XX) | η′′ −
− [(L,XU − 3L,XX + 2U(L,XXX − L,XXU)] |U,φφ′kη′ =
= [ω2L,X + U2

,φ(L,UU + L,XU + 2U(L,XUU − L,XXU)) + (11.27)

+ U,φφ(L,U + 2UL,XU)]| η

This expression should now be compared with the fluctuation equation of

the standard case,

−η′′ = (ω2 − U,φφ|)η. (11.28)

Comparing the standard and generalized fluctuation equations for a twin

defect solution, and taking into account the twin condition L,X | = 1, we find

that a sufficient condition for the equality of the two fluctuation equations is

provided by the following on-shell conditions

L,XX | = 0 (11.29)

[L,XU + 2U(L,XXX − L,XXU)]| = 0 (11.30)

[L,UU + L,XU + 2U(L,XUU − L,XXU)]| = 0 (11.31)
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and

(L,U + 2UL,XU)| = −1. (11.32)

These conditions are, again, purely algebraic conditions which the Lagrangian

has to obey. If a Lagrangian obeys these conditions and the two twin condi-

tions (11.18), (11.19), then it not only shares the same twin defect with the

standard Lagrangian, but also the spectra of linear fluctuations about the

defects coincide.

11.3.2 Examples

It is easy to understand that there must exist infinitely many Lagrangians

for each U which obey these conditions. Indeed, if the Lagrangian L(X,U)

is interpreted as a function of two independent variables X and U , then the

six twin and linear fluctuation conditions are just conditions which the first

few Taylor coefficients of L must obey “on the diagonal”, i.e., for X = −U .

In a next step, let us construct, as a first example, a class of infinitely many

Lagrangians which obey these conditions. These Lagrangians were, in fact,

already introduced in [76] as examples of twins of the standard Lagrangian

without noticing that they also give rise to coinciding fluctuation spectra.

The class of Lagrangians is given by

Lex1 =
2N+1∑
i=3,5,...

fi(U)(X + U)i +X − U , fi(U) ≥ 0 (11.33)

where the fi are arbitrary nonnegative functions of their argument. The re-

striction to odd i implies that the above Lagrangian obeys the null energy

condition (NEC) and, therefore, defines a healthy (stable) field theory. We

remark that this restriction may be relaxed without violating the NEC pro-

vided that the fi for even i obey certain inequalities, but here we restrict to

odd i for reasons of simplicity. It is easy to check that the above Lagrangian

obeys

Lex1| = −2U ; , Lex1
,X | = 1 (11.34)

i.e., the twin conditions, as well as

Lex1
,XX | = Lex1

,XU | = Lex1
,UU | = 0 , Lex1

,U | = −1 (11.35)
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and

Lex1
,XXX | = Lex1

,XXU | = Lex1
,XUU | = 6f3. (11.36)

Further, these conditions obviously imply the ”fluctuation conditions” (11.29)

- (11.32), therefore the class of Lagrangians (11.33) not only are twins of the

standard Lagrangian Ls = X − U (i.e. they share the same kink solution

with the same energy density), but also the linear fluctuation spectra about

the kink solutions coincide.

We remark that it is obvious from the above derivation that the restriction

to fi = fi(U) in the above class of examples is not necessary, and we may in

fact allow for functions fi = fi(φ) ≥ 0 without changing our results.

Another class of examples is provided by the power series expansion

Lex2 =

M,N∑
i=0,j=0

aijX
i(X + U)j − 2U (11.37)

where the twin and fluctuation conditions lead to

a0j = 0 ∀ j , a10 = 1 , a1j = 0 , j = 1 . . . N , a2j = 0 ∀ j. (11.38)

It is again possible to satisfy the NEC by imposing the corresponding condi-

tions (inequalities) on the nonzero coefficients aij.

For a more systematic search for examples it is useful to perform the

following transformation of variables,

Y = X + U, Z = U ⇒ ∂X = ∂Y , ∂U = ∂Y + ∂Z (11.39)

where the evaluation condition now means evaluation at Y = 0, i.e., | ≡ |Y=0.

Shifting, in addition, the lagrangian by 2U ,

L̃ = L+ 2U (11.40)

the two twin conditions and the first fluctuation condition read

L̃| = 0 (11.41)

L̃,Y | = 1 (11.42)

and

L̃,Y Y | = 0 (11.43)
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and, taking these into account, the remaining fluctuation conditions become(
L̃,Z + 2ZL̃,Y Z

)
| = 0 (11.44)(

L̃,Y Z − 2ZL̃,Y Y Z
)
| = 0 (11.45)

and [
2L̃,Y Z + L̃,ZZ + 2Z(L̃,Y Y Z + L̃,Y ZZ)

]
| = 0. (11.46)

As an application, let us study the Dirac–Born–Infeld (DBI) type theory

which was first introduced in [51] as an example for a K field twin,

L̃DBI = −
√

1 + 2U
√

1− 2X +
∑
i

fi(U)(X + U)i

= −
√

1 + 2Z
√

1− 2Y + 2Z +
∑
i

fi(Z)Y i (11.47)

where the task consists in determining the coefficient functions fi(Z) = fi(U)

such that all the twin and fluctuation conditions are satisfied. After some

calculation one finds that the two twin conditions (11.41), (11.42) and the

first fluctuation condition (11.43) lead to

f0 = 1 + 2Z , f1 = 0 , f2 =
1

2

1

1 + 2Z
(11.48)

whereas the remaining fluctuation conditions are satisfied identically pre-

cisely for the above solutions for f0, f1 and f2. We conclude that the DBI

type Lagrangian

LDBI = −
√

1 + 2U
√

1− 2X + 1 +
1

2

1

1 + 2U
(X + U)2 (11.49)

is a twin of the standard Lagrangian X−U with coinciding linear fluctuation

spectra about the common (twin) defect solution. The above DBI type La-

grangian as it stands does not obey the NEC, but we are allowed to add, e.g.,

a cubic term f3(X +U)3 without altering the twin or fluctuation conditions.

It may be checked easily that, e.g., for functions f3(U) obeying the inequality

f3 ≥ [1/(3(1 + 2U)2)], the resulting Lagrangian does obey the NEC.

Obviously, our algebraic method may be used without difficulty to pro-

duce more examples of K field twins with coinciding linear fluctuation spec-

tra.
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11.3.3 The examples of Bazeia and Menezes

In their recent paper [77], Bazeia and Menezes introduced a class of La-

grangians given by the following ansatz,

LBM = −UF (Y ) , Y ≡ −X
U

(11.50)

where F is an arbitrary function of its argument. This ansatz may be justified

by the observation that both the twin conditions (11.18), (11.19) and the

fluctuation conditions (11.29) - (11.32) are compatible with a Lagrangian

which is a homogeneous function of degree one in its two variables X and

U . The Lagrangian in (11.50) obviously is such a homogeneous function of

degree one. For the partial derivatives w.r.t X and U we get

LBM
X = F ′ , LBM

XX = −F
′′

U
, LBM

XXX =
F ′′′

U2
(11.51)

LBM
U = −F − X

U
F ′ , LBM

UU = −X
2

U3
F ′′ (11.52)

and

LBM
XU =

X

U2
F ′′ , LBM

XUU = −2
X

U3
F ′′ +

X2

U4
F ′′′ , LBM

XXU =
F ′′

U2
− X

U3
F ′′′.

(11.53)

These expressions should now be evaluated on-shell, i.e., for X = −U , and

inserted into the twin and fluctuation conditions. We shall find that the ho-

mogeneity of the ansatz (11.50) not only is compatible with these conditions,

but also leads to a considerable simplification for the fluctuation conditions.

First of all, for the twin conditions we find

LBM| = −UF (1) = −2U ⇒ F (1) = 2 (11.54)

and

LBM
,X | = F ′(1) = 1 (11.55)

where the on-shell condition X = −U implies that the function F (Y ) and

its derivatives are evaluated at Y = 1. For the fluctuation conditions we

find that condition (11.31) is satisfied identically without providing a further

restriction, whereas the remaining conditions lead to

LBM
XX | = −

F ′′(1)

U
= 0 (11.56)
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[L,XU + 2U(L,XXX − L,XXU)]| = − 2

U
F ′′(1) = 0 (11.57)

and

(L,U + 2UL,XU)| = −F (1) + F ′(1)− 2F ′′(1) = −1− 2F ′′(1) = −1 (11.58)

where we used the two twin conditions in the last expression. In other words,

for the ansatz of Bazeia and Menezes, all four fluctuation conditions just boil

down to the simple condition

F ′′(1) = 0. (11.59)

Finally, Bazeia and Menezes gave the following explicit example (one-

parameter family of Lagrangians)

F (Y ) = 1 +Y +
α

3
(1−Y )3 ⇒ LBM,α = X −U +

α

3U2
(X +U)3 (11.60)

where α is a real, positive constant. This example belongs, in fact, to the

first class of examples discussed in the previous subsection. Concretely it is

of the type (11.33) for the choice

f3(U) =
α

3U2
, fi = 0 for i > 3. (11.61)

11.4 Conclusions

In this article we demonstrated that for every standard scalar field theory

Ls = X − U(φ) which supports a topological defect (a kink), there exist

infinitely many generalized (or K) field theories L(X,φ) (”twins” of the stan-

dard field theory) which support the same kink with the same energy density

and with the same spectrum of linear fluctuations about the kink. Further,

we gave a simple and explicit algebraic method to construct these twins of

the standard scalar field theory with identical linear fluctuation spectra. As

stated, some first examples of such twinlike models with coinciding kink solu-

tions, energy densities and linear fluctuation spectra have been given already

in [77]. K field twin defects with coinciding linear fluctuation spectra are al-

most completely indistinguishable from their standard counterparts and, as a

consequence, the K field theories giving rise to them have to be considered on
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a par with the standard field theories in all situations where K field theories

cannot be excluded on theoretical grounds. In particular, in the context of

effective field theories, where higher kinetic terms are induced naturally, the

topological defects formed in K field theories should be taken as seriously as

their standard field theory twins, because they give rise to almost exactly the

same physics. In this context, an observation of special interest is related to

the fact that the coinciding linear fluctuation spectra imply that a semiclas-

sical quantization about the topological defect provides the same results for

the standard defect and its K field twins. This not only facilitates specific

physical properties of the K field defect, but, more generally, provides us

with a first partial result on the quantization of K field theories, which, in

general, is a still unsolved and probably quite difficult problem.

Finally, let us briefly comment on possible generalizations and future

work. A first issue is the inclusion of fermions and the supersymmetric ex-

tension of K field twins. Supersymmetric (SUSY) extensions of scalar K

field theories have been found recently [78], [63], [64], and some examples

of SUSY K field twins of standard SUSY theories have been given already

in [76]. Here, one interesting question obviously is what the coinciding fluc-

tuation spectra in the twin kinks imply for the SUSY fermions. Another

interesting generalization concerns the issue of twins of topological defects in

higher dimensions, like, e.g., vortices, monopoles, or skyrmions, possibly af-

ter a symmetry reduction (e.g. to spherical symmetry) of the Lagrangian or

Euler–Lagrange equations. The case of vortices in generalized abelian Higgs

models has been investigated in the very recent paper [79], where the authors

do find twins of standard vortices. Certainly these issues are worth further

investigation.





Chapter 12

N=1 SUSY extension of the

BSkM

This chapter is devoted to a detailed analysis of an outstanding example

of a K field theory, the baby Skyrme Model, in its supersymmetric version.

The need for supersymmetric extensions of this model can be justified in

two ways: if the baby Skyrme Model is an effective model (or possibly a toy

model for a more realist effective model) of a fundamental theory (QCD in

the case of Skyrme model), its supersymmetric extension arises naturally.

On the other hand, the supersymmetric structure provides a powerful tool

in the analysis of different aspects of the underlying theory. We will see in

this chapter how supersymmetry constrains the model, avoiding for example

a BPS baby Skyrme model (quartic term plus potential). This chapter con-

sists of a paper published in [99].

161
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N = 1 supersymmetric extension of the baby Skyrme model

C. Adam 1, J.M. Queiruga 1, J. Sanchez-Guillen 1, A. Wereszczynski 2

1 Departamento de F́ısica de Part́ıculas, Universidad de Santiago de

Compostela and Instituto Galego de F́ısica de Altas Enerxias (IGFAE)

E-15782 Santiago de Compostela, Spain 2 Institute of Physics, Jagiellonian

University, Reymonta 4, Kraków, Poland

Abstract: We construct a method to supersymmetrize higher kinetic terms

and apply it to the baby Skyrme model. We find that there exist N = 1

supersymmetric extensions for baby Skyrme models with arbitrary potential.

12.1 Introduction

The interest in topological soliton models has been rising ever since their

discovery, both because of their rich intrinsic mathematical structure and

due to a large field of possible applications, ranging from particle physics

to condensed matter systems. One interesting question concerning topo-

logical soliton models is whether they allow for supersymmetric extensions

and whether other mathematical properties of (some of) the models, like the

existence of Bogomolny bounds and corresponding BPS solutions, may be

related to the supersymmetric extensions and their properties, like central

extensions in the corresponding SUSY algebra. In 1+1 dimensions, simple

scalar field theories consisting of a standard kinetic and potential term sup-

port topological solitons if the potential allows for more than one vacuum.

Further, it has been known for a long time that these simple models allow for

supersymmetric extensions [43], and that the corresponding SUSY algebra

has a central extension where the central charge is related to the topologi-

cal charge of the soliton [44]. In higher dimensions, on the other hand, as

a result of the Derrick theorem simple scalar field theories do not support,

in principle, topological solitons and, therefore, one has to introduce more

structure.

One possibility consists in the inclusion of gauge fields, and it is well-

known that the resulting theories, like the abelian Higgs or the Chern–Simons
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Higgs models in 2+1 dimensions, the BPS monopole model in 3+1 dimen-

sions, or pure Yang–Mills theory in 4+0 dimensions, allow for supersymmet-

ric extensions and that their topological charges are reflected in the central

extensions of the corresponding SUSY algebras [45], [46], [129], [44].

Another possibility to circumvent the Derrick theorem in higher dimen-

sions is to allow for non-standard kinetic terms, usually higher (than sec-

ond) powers of first derivatives in the Lagrangian. The probably best-known

model of this type which allows for topological solitons is the Skyrme model

[1] in 3+1 dimensions with the group SU(2) as the field (target) space. Much

less is known about supersymmetric extensions of this second type of topo-

logical soliton models. The supersymmetric extensions of a S2 (or CP(1))

restriction of the Skyrme model (the so-called Skyrme–Faddeev–Niemi (SFN)

model) were investigated in [15] and in [16]. In both papers, a formulation of

the SFN model was used where the CP(1) restriction of the Skyrme model is

achieved via a gauging of the third, unwanted degree of freedom. As a result,

the SFN model is expressed by two complex scalar fields and an undynami-

cal gauge field, which are then promoted to two chiral superfields and a real

vector superfield in the Wess–Zumino gauge, respectively. The result of the

analysis is that the SFN model as it stands cannot be supersymmetrically

extended by these methods. Instead, the supersymmetric extension contains

further terms already in the bosonic sector, and also the field equations of

the bosonic fields are different.

In a different line of development, more general field theories with a non-

standard kinetic term - so-called K theories - have been studied with in-

creasing effort during the last years, beginning with the observation about a

decade ago of their possible relevance for the solution of some problems in

cosmology (k-inflation [2] and k-essence [3]). K field theories have found their

applications in cosmology [4] - [9], and they introduce some qualitatively new

phenomena, like the formation of solitons with compact support, so-called

compactons [35] - [40]. Quite recently, investigations of the problem of pos-

sible supersymmetric extensions of these K field theories have been resumed

[17], [50], [135], [136]. Here, [17] and [50] studied supersymmetric extensions

of K field theories in 1+1 and in 2+1 dimensions, whereas the investigations

of [135] and [136] are for 3+1 dimensional K theories, and with some concrete
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cosmological applications (ghost condensates and Galileons) in mind.

It is the purpose of this letter to explicitly construct an N = 1 super-

symmetric extension of the baby Skyrme model. The baby Skyrme model

is a model supporting topological solitons in 2+1 dimensions, with a S2 tar-

get space [156], [81], [82]. For some recent results see e.g., [83], [84]. Its

field contents and its Lagrangian are like the ones of the SFN model, but

the topology is more similar to the Skyrme model (solitons are classified by

a winding number, not by a linking number like in the SFN model). The

baby Skyrme model serves, on the one hand, as a simpler toy model to study

general features of topological solitons. Its supersymmetric extensions will,

therefore, be interesting for the general understanding of the role of super-

symmetry in topological soliton models, as well. On the other hand, the

baby Skyrme model has found some applications, especially in condensed

matter physics, e.g. for the description of quantum Hall ferromagnets [85] or

of spin textures [86], [87]. The supersymmetric extension method we use is,

in fact, similar to the methods used in [135], [136], but adapted to the case

of 2+1 dimensions with its specific spin representation of the Lorentz group

and its specific SUSY algebra. We shall find that our supersymmetric exten-

sion method may be applied to each term in the baby Skyrmion Lagrangian

separately, which explains why it may be applied to arbitrary baby Skyrme

models, in principle even allowing for the addition of further terms which do

not belong to the standard baby Skyrme models.

12.2 Supersymmetric baby Skyrme models

The class of baby Skyrme models we shall consider in this letter is given by

the Lagrangian

L =
λ2

2
L2 +

λ4

4
L4 +

λ̃4

4
L̃4 + λ0L0 (12.1)

where the λi are coupling constants and the Li are (the subindices refer to

the number of derivatives)

L2 = ∂µ~φ · ∂µ~φ (12.2)
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(the standard nonlinear sigma model term),

L4 = −(∂µ~φ× ∂ν~φ)2 (12.3)

(the Skyrme term),

L̃4 = (∂µ~φ · ∂µ~φ)2 (12.4)

(another quartic term), and

L0 = −V (φ3) (12.5)

is a potential term which is usually assumed to depend only on the third

component φ3 of the field. The three-component field vector ~φ obeys the

constraint ~φ2 = 1. The term L̃4 is absent in the baby Skyrme model (i.e., λ̃4 =

0), but this term is considered in some extensions of the model, especially

in the corresponding model in one dimension higher (the SFN model in 3+1

dimensions), see, e.g., [88]. Further, we shall see that our supersymmetric

extension can be applied to each term separately, therefore we include the

L̃4 term in the discussion for the sake of generality.

The field theories we consider exist in 2+1 dimensional Minkowski space,

and our supersymmetry conventions are based on the widely used ones of

[18], where our only difference with their conventions is our choice of the

Minkowski space metric ηµν = diag(+,−,−). All sign differences between

this paper and [18] can be traced back to this difference. We introduce three

N = 1 real scalar superfields, i.e.

Φi(x, θ) = φi(x) + θαψiα(x)− θ2F i(x), i = 1, 2, 3 (12.6)

where φi are three real scalar fields, ψiα are fermionic two-component Ma-

jorana spinors, and F i are the auxiliary fields. Further, θα are the two

Grassmann-valued superspace coordinates, and θ2 ≡ (1/2)θαθα. Spinor in-

dices are risen and lowered with the spinor metric Cαβ = −Cαβ = (σ2)αβ,

i.e., ψα = Cαβψβ and ψα = ψβCβα.

The components of superfields can be extracted with the help of the

following projections

φ(x) = Φ(z)|, ψα(x) = DαΦ(z)|, F (x) = D2Φ(z)|, (12.7)
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where the superderivative is

Dα =
∂

∂θα
− iγµαβθβ∂µ ≡

∂

∂θα
+ iθβ∂αβ , D2 ≡ 1

2
DαDα (12.8)

and the vertical line | denotes evaluation at θα = 0.

The problem now consists in finding the supersymmetric extensions Li
of all the contributions Li to the Lagrangian (12.1). For the non-linear O(3)

sigma model term L2 this supersymmetric extension was found long ago in

[89], [90]. one simply chooses the standard SUSY kinetic termD2(−1
2
DαΦiDαΦi)|

for the lagrangian L2 and imposes the constraint ~φ2 = 1 on the superfield,

i.e., ~Φ2 = 1, which in components reads

φi · φi = 1 (12.9)

φi · ψiα = 0 (12.10)

φi · F i =
1

2
ψ̄aψa (12.11)

or, in the purely bosonic sector with ψ = 0

φi · φi = 1 (12.12)

φi · F i = 0. (12.13)

It may be checked easily that the constraint ~Φ2 = 1 is invariant under the

N = 1 SUSY transformations

δφi = εαψiα , δψiα = −i∂αβεβφi − εαF i , δF i = iεβ∂β
αψiα. (12.14)

Remark: the fact that the constraint ~Φ2 = 1 provides just one real constraint

in superspace makes it appear natural to consider just N = 1 supersymmetry.

It turns out, nevertheless, that the supersymmetric O(3) nonlinear sigma

model possesses an extended N = 2 supersymmetry, which is not completely

obvious in the N = 1 SUSY formalism, see [109]. In fact, all nonlinear sigma

models with a Kähler target space metric have the N = 2 supersymmetry

[91].

Our task now is to find the (N = 1) SUSY extensions of the remaining

terms in the Lagrangian. As we are mainly interested in the bosonic sector of

the resulting theory we shall set the spinor fields equal to zero, ψiα = 0, in the
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following. We remark that all spinorial contributions to the lagrangian we

shall consider are at least quadratic in the spinors, therefore it is consistent

to study the subsector with ψiα = 0. The following superfields (we display

them for ψiα = 0) are useful for our considerations,

(DαΦiDαΦj)ψ=0 = 2θ2(F iF j + ∂µφi∂µφ
j) (12.15)

(DβDαΦiDβDαΦj)ψ=0 = 2(F iF j + ∂µφi∂µφ
j) +

2θ2(F i�φj + F j�φi − ∂µφi∂µF j (12.16)

− ∂µφ
j∂µF i)

(D2ΦiD2Φj)ψ=0 = F iF j + θ2(F i�φj + F j�φi). (12.17)

We observe that both the product of Eq. (12.15) with Eq. (12.17) and the

product of Eq. (12.15) with Eq. (12.17) contain terms of the type F 2(∂φ)2,

so by choosing the right linear combination we may cancel these unwanted

terms. Concretely, we propose the following supersymmetric Lagrangians

(remember that D2θ2 =
∫
d2θθ2 = −1)

(L2)ψ=0 = −1

2
[D2(DαΦiDαΦi)|]ψ=0 = F iF i + ∂µφi∂µφ

i (12.18)

(L̃4)ψ=0 = [D2(DαΦiDαΦi)(D2ΦjD2Φj − 1

4
DβDαΦjDβDαΦj)|]ψ=0

= −(F i)2(F j)2 + (∂µφ
i)2(∂νφ

j)2 (12.19)

(L4)ψ=0 =

− 1

2
εijkεi′j′k[D

2(DαΦiDαΦi′D2ΦjD2Φj′ +DαΦjDαΦj′D2ΦiD2Φi′)|]ψ=0

+
1

8
εijkεi′j′k[D

2(DαΦiDαΦi′DγDβΦjDγDβΦj′ +

+ DαΦjDαΦj′DγDβΦiDγDβΦi′)|]ψ=0

= εijkεi′j′k(F
iF i′F jF j′ − ∂µφi∂µφi

′
∂νφ

j∂νφj
′
) =

− (∂µ~φ× ∂ν~φ)2 (12.20)

and for the potential term, as usual

(L0)ψ=0 = [D2P (Φ3)|]ψ=0 = F3P
′(φ3) (12.21)
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where P is the prepotential and the prime denotes derivation w.r.t. its ar-

gument φ3. The resulting bosonic lagrangian is

(L)ψ=0 =
λ2

2
[(~F )2 + ∂µ~φ · ∂µ~φ] +

λ̃4

4
[(∂µ~φ · ∂µ~φ)2 − ((~F )2)2]

− λ4

4
(∂µ~φ× ∂ν~φ)2 + λ0F3P

′ + µF (~F · ~φ) + (12.22)

+ µφ(~φ2 − 1)

where µF and µφ are Lagrange multipliers enforcing the constraints (12.13)

and (12.12).

From now on, we restrict to the standard baby Skyrme SUSY extension

with λ̃4 = 0 so that the term L̃4 is absent. In this restricted case, the

(algebraic) field equation for the field ~F is

λ2F
i + λ0δ

i3P ′(φ3) + µFφ
i = 0. (12.23)

Multiplying by ~φ we find for the Lagrange multiplier

µF = −λ0φ3P
′ (12.24)

and for the auxiliary field ~F

F i =
λ0

λ2

(φ3φ
i − δi3)P ′ (12.25)

and, therefore, for the bosonic Lagrangian

(L)ψ=0 =
λ2

2
[(~F )2 + ∂µ~φ · ∂µ~φ]− λ4

4
(∂µ~φ× ∂ν~φ)2 + λ0F3P

′ + µφ(~φ2 − 1)

=
λ2

2
∂µ~φ · ∂µ~φ−

λ4

4
(∂µ~φ× ∂ν~φ)2 − λ2

0

2λ2

(1− φ2
3)P ′2 + (12.26)

+ µφ(~φ2 − 1).

This is exactly the standard (non-supersymmetric) baby Skyrme model with

the potential term given by

V (φ3) =
λ0

2λ2

(1− φ2
3)P ′2(φ3). (12.27)

obviously, all positive semi-definite potentials V (φ3) may be obtained by an

appropriate choice for the prepotential P (φ3).
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Remark: the relation between prepotential and potential differs slightly

(by the additional factor (1−φ2
3)) from the standard SUSY relation between

prepotential and potential, due to the constrained nature of the superfield
~Φ.

Remark: The baby Skyrme model has a Bogomolny bound in terms of

the topological charge (winding number) of the scalar field ~φ, but nontrivial

solutions in general do not saturate this bound. There exist, however, two

limiting cases where nontrivial solutions do saturate a Bogomolny bound

and solve the corresponding first order Bogomolny equations. one might

wonder whether these limiting cases allow for the supersymmetric extension

discussed in this letter, as well. The first limiting case is the case of the

pure o(3) sigma model where both the potential and the quartic (Skyrme)

term are absent, and, as discussed above, it is well-known that this case has

a supersymmetric extension. Concerning the second case, it has been found

recently that the model without the quadratic O(3) sigma model term (i.e.,

λ2 = 0) originally introduced in [92], has nontrivial Bogomolny solutions and,

further, an infinite number of symmetries and conservation laws [93], [94].

Given the close relation between Bogomolny solutions and supersymmetry,

one might expect that this limiting case should have the supersymmetric

extension, too, but this is, in fact, not true. The field equation (12.23) for ~F

for the case λ2 = 0 reads

λ0δ
i3P ′(φ3) + µFφ

i = 0.

It does not contain ~F at all, so ~F itself is a Lagrange multiplier in this case.

For a nontrivial field configuration ~φ, the only solution of this equation is

µF = 0 and λ0 = 0, therefore the potential term is absent. We conclude that

the model consisting only of the quartic Skyrme term L4 does allow for a

supersymmetric extension, whereas the model consisting of both the quartic

Skyrme term and the potential term L0 does not allow for the supersymmetric

extension discussed in this letter.

Remark: we also calculated the full Lagrangian with the spinors included.

The contributions from L2 and L0 are just the standard spinor kinetic term

and the Yukawa-type coupling term, respectively. The contribution from the

Skyrme term L4, on the other hand, is quite long (it consists of 17 more
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terms) and not particularly illuminating, therefore we do not display it here.

12.3 Summary

We described a method to calculate the supersymmetric extensions of higher

kinetic terms (K field theories) and applied it to the baby Skyrme model. We

found that the baby Skyrme model has a supersymmetric extension which

preserves the form of the original (non-supersymmetric) baby Skyrme La-

grangian in the bosonic sector for arbitrary potential. This possibility to su-

persymmetrize the baby Skyrme model seems to have gone unnoticed up to

now, probably because of some inherent difficulties in the supersymmetriza-

tion of higher K terms. Indeed, in general supersymmetric extensions of

higher kinetic terms tend to render the ”auxiliary” field dynamical, or at

least to couple it to field derivatives, which in turn drastically changes the

behaviour of the field theory under consideration. Also, higher kinetic terms

tend to jeopardize the energy balance between bosonic and fermionic degrees

of freedom characteristic for standard SUSY theories. We remark that topo-

logical soliton models already at the classical or semiclassical level describe

relevant degrees of freedom as low-energy limits of more complete quantum

field theories in the ultraviolet. As a consequence, the possibility to directly

supersymmetrize these topological soliton models is certainly of interest de-

spite the fact that, at this moment, we are not aware of a direct physical

application of the baby Skyrme model where supersymmetry is assumed to

play a role. In addition, the possibility to construct supersymmetric exten-

sions is an interesting mathematical property of a topological soliton model

like the baby Skyrme model and might be useful for a better understanding

of its theoretical structure. Interestingly, we found that the limiting case of

the baby Skyrme model without the quadratic linear sigma model term (that

is, the model consisting of L4 and L0), does not allow for the supersymmetric

extension in spite of its infinitely many exact Bogomolny solutions and its

infinitely many symmetries [93].

A further problem of interest concerns the possibility to apply the su-

persymmetric extension method presented in this letter to further K field

theories. In 1+1 and 2+1 dimensions the supersymmetric extension is rather
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straight forward and may be applied to a quite general class of K field theo-

ries. A more detailed discussion of these issues will be published elsewhere. In

3+1 dimensions, on the other hand, the class of K field theories which admit

a supersymmetric extension might be more restricted. There, the simplest

superfield is the chiral superfield with a complex scalar field in the bosonic sec-

tor, which implies some restrictions on the field contents of theories amenable

to supersymmetric extensions. Nevertheless, it might be possible to super-

symmetrize topological soliton models in 3+1 dimensions by first choosing

a field contents in accordance with the requirements of 3+1 dimensional

supersymmetry, and by then introducing the constraints necessary for the

reduction of the degrees of freedom to the soliton model one wants to inves-

tigate. We finally remark that, as already stated, supersymmetric extensions

for some K field theories in 3+1 dimensions with applications in cosmology

have been studied recently in [135], [136], using analogous methods.





Chapter 13

Extended SUSY and BPS

solutions

The schemes of supersymmetrization are not uniques, and in this chapter an-

other N = 1 SUSY extension of the bSM in presented which allows the BPS

baby Skyrme model, this suggests directly a possible hidden second super-

symmetry which is explicitly constructed. At this point, as already stated,

due to the dimensional reduction N = 1, d = 3 + 1 ←→ N = 2, d = 2 + 1

we can extend our results to d = 3 + 1 finding analog result as in [16] and

[15]. We explore also gauged and ungauged SUSY extensions, both N = 1

and N = 2, and analyze their Bogomolnyi equations. A general method to

obtain Bogonolnyi equations from extended supersymmetry in d = 2 + 1 is

presented. This chapter consists of a paper published in [100].
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N = 1 supersymmetric extension of the baby Skyrme model

C. Adam 1, J.M. Queiruga 1, J. Sanchez-Guillen 1, A. Wereszczynski 2
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Abstract: We continue the investigation of supersymmetric extensions of

baby Skyrme models in d = 2 + 1 dimensions. In a first step, we show that

the CP(1) form of the baby Skyrme model allows for the same N = 1 SUSY

extension as its O(3) formulation. Then we construct the N = 1 SUSY

extension of the gauged baby Skyrme model, i.e., the baby Skyrme model

coupled to Maxwell electrodynamics. In a next step, we investigate the issue

of N = 2 SUSY extensions of baby Skyrme models. We find that all gauged

and ungauged submodels of the baby Skyrme model which support BPS

soliton solutions allow for an N = 2 extension such that the BPS solutions

are one-half BPS states (i.e., annihilated by one-half of the SUSY charges).

In the course of our investigation, we also derive the general BPS equations

for completely general N = 2 supersymmetric field theories of (both gauged

and ungauged) chiral superfields, and apply them to the gauged nonlinear

sigma model as a further, concrete example.

13.1 Introduction

The Skyrme model [1] is a nonlinear field theory in 3+1 dimensional Minkowski

space which supports topological soliton solutions. Its field variables take

values in SU(2) which, together with an one-point compactification of the

base space R3 → S3 implied by the condition of finite energy, leads to the

classification of field configurations by an integer-valued winding number or

topological degree. The most important application of the Skyrme model is

in the field of nuclear and strong interaction physics [102], [106], [107], [150],

[103], [151], [162]. In this context, the Skyrme model (or some of its gener-

alizations) is interpreted as a low energy effective field theory which may be

justified from the underlying fundamental theory (QCD), e.g., by invoking



CHAPTER 13. EXTENDED SUSY AND BPS SOLUTIONS 175

some large Nc (number of colors) arguments [108], [109]. In this interpre-

tation, the primary fields of the effective theory are related to mesons (e.g.

pions in the SU(2) case), whereas baryons and nuclei are described by the

topological solitons of the theory, and baryon number is identified with the

topological degree of the corresponding soliton.

The baby Skyrme model was introduced originally as a planar analogue of

the three dimensional Skyrme model [110]-[118], although it has found its own

applications, e.g., in condensed matter physics [119] or in brane cosmology

[120]. Its target space is simplified accordingly, as well (S2 instead of the

SU(2) target space of the Skyrme model), such that static field configurations

again can be classified by a winding number. Like the original version of the

Skyrme model, as proposed by Skyrme, also the Lagrangian of the baby

Skyrme model consists of a kinetic term quadratic in first derivatives (the

O(3) nonlinear sigma model term) and a quartic kinetic term (the analogue

of the Skyrme term). Further, for the baby Skyrme model, the inclusion of a

potential term is obligatory for the existence of static finite energy solutions.

The specific form of this potential term is, however, quite arbitrary, and

different potentials have been studied [110]-[118]. The Skyrme model, too,

allows for the addition of a potential (not obligatory in that case) or of

some further terms like, e.g., the square of the topological current, which

is sextic in first derivatives. In any case, the presence of higher derivative

terms (”non-standard kinetic terms”) in Skyrme-type models is necessary

for the existence of topological solitons. In addition, in both models the

energies of static configurations can be bound from below by a Bogomol’nyi

bound (a multiple of the topological degree), but generic soliton solutions do

not saturate this bound. It is, however, possible both for the baby Skyrme

model [121]-[124] and for a generalized Skyrme model [125], [126], [101],

[159] (i.e., a generalization of the original model proposed by Skyrme) to

find certain submodels such that their topological soliton solutions saturate

the corresponding Bogomol’nyi bound, that is, they are of the BPS type and

obey certain first-order BPS equations.

At this point, it is useful to compare the properties of Skyrme-type theo-

ries with those of the abelian and nonabelian Higgs models with their vortex-

type or monopole-type solitons (see e.g. [162]). The topology of these solitons
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is different, because now the one-point compactification of the base space is

not assumed, and the scalar fields “Higgs fields”) may be classified by a topo-

logical degree related to their winding about the sphere at spatial infinity.

As mentioned already, this behaviour leads to an infinite energy due to the

presence of angular gradients in the kinetic energy density with a rather slow

decay for large distances. The well-known way to remedy this problem is

via the coupling of the Higgs field to a gauge field such that the unwanted

angular gradients are converted into pure gauge configurations and do not

contribute to the energy. If the standard kinetic terms for the gauge fields

(Maxwell or Yang-Mills terms) are added, we just arrive at the abelian Higgs

model or the t’Hooft-Polyakov (nonabelian) Higgs model, respectively. In

spite of the different topology of the corresponding solitons, these theories

share many properties with the Skyrme-type ones. For the Higgs theories,

too, the energies of static configurations can be bound from below by Bogo-

mol’nyi bounds where, however, solitons of generic theories do not saturate

the bounds. Again, submodels can be found (usually, by a judicious choice

of the Higgs potential) whose solitons (vortices or monopoles) are of the BPS

type and saturate the bound.

There exists, however, one aspect where the two classes of theories are ap-

parently rather different, namely the issue of supersymmetry. The Higgs-type

theories are well-known to possessN = 1 supersymmetric (SUSY) extensions.

Further, the submodels with BPS solitons even allow for an N = 2 SUSY ex-

tension such that the BPS soliton solutions are, in fact, one-half BPS states

in the sense of SUSY, that is, field configurations which are annihilated by

one-half of the SUSY charges (see, e.g., [43] - [45]). The construction of these

SUSY extensions is facilitated by the fact that the kinetic terms both for the

Higgs and for the gauge fields are of the standard form (quadratic in deriva-

tives), because the SUSY extensions of these kinetic terms are well-known.

On the other hand, until recently not much was known about the SUSY ex-

tensions of Skyrme-type theories, where the presence of nonstandard kinetic

terms is mandatory. To the best of our knowledge, the first investigations

of SUSY extensions of Skyrme-type theories were performed in [15], [16].

Concretely, the authors studied possible SUSY extensions of the so-called

Skyrme-Faddeev-Niemi (SFN) model, which has exactly the field content of
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the baby Skyrme model, but in 3+1 dimensions (in 3 spatial dimensions the

potential term is not mandatory and is usually omitted). In this model field

configurations are no longer classified by a winding number but, instead, by

a linking number (the Hopf index). In both papers, the authors treated the

SFN model as a CP(1) restriction of the original Skyrme model, where the

elimination of the third, unwanted degree of freedom is achieved by trans-

forming it into pure gauge via the introduction of a non-dynamical gauge

field. One consequence of this procedure is that the Skyrme term (which is

non-standard) may be expressed as the standard Maxwell term of the non-

dynamical gauge field. As a consequence, the resulting action only contains

standard kinetic terms (the nonlinear sigma model term for the CP(1) field

and the Maxwell term) and standard SUSY techniques may be used. The

result of these investigations is that the original SFN model cannot be ex-

tended to a SUSY theory by these methods. Any SUSY extension achieved

in this way contains additional terms already in the bosonic sector.

The investigation of SUSY extensions of genuinely nonstandard kinetic

terms has been resumed only recently [132]-[139] (see also [140]-[143] for re-

lated discussions), where this rising interest is partly owed to the fact that

field theories with non-standard kinetic terms may be instrumental in the res-

olution of some enigmas of cosmology [2]-[9]. Concretely, in [64] we demon-

strated that the baby Skyrme model in the O(3) formulation does have a

N = 1 SUSY extension for arbitrary non-negative potential. It turned out,

however, that a submodel supporting BPS solitons (the so-called BPS baby

Skyrme model, where the non-linear sigma model term is suppressed) can-

not be supersymmetrically extended by the methods of that paper. It is the

purpose of the present paper to go much further in the analysis of SUSY ex-

tensions of baby Skyrme models where, among other issues, the puzzle just

mentioned will be resolved in the course of the investigation.

Our paper is organized as follows. In Section 13.2 we introduce the baby

Skyrme models and fix some notation. In Section 13.3 we give our conven-

tions for N = 1 SUSY in 2+1 dimensions. In Section 13.4 we discuss the

N = 1 SUSY extension of the baby Skyrme model in the CP(1) formulation.

In Section 13.5 we introduce the N = 1 SUSY extension of the gauged baby

Skyrme model [144], i.e., the baby Skyrme model coupled to Maxwell elec-
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trodynamics in the standard way. In Section 13.6 we give our conventions

for extended N = 2 SUSY. In Section 13.7 we attempt to find an N = 2

extension of the SUSY baby Skyrme model. We find that, in addition to the

well-known Kähler potential term giving rise to the non-linear sigma model,

we have to introduce a further term into the lagrangian superfield. This fur-

ther term has the surprising effect that, after the substitution of the auxiliary

fields via their field equations, not only the quartic (Skyrme) term is pro-

duced in the bosonic sector but, at the same time, the quadratic (nonlinear

sigma model) term is eliminated for arbitrary values of the Kähler potential.

Besides, a potential term depending on the Kähler metric is automatically

induced in this process. In other words, in the purely bosonic sector we find

precisely the BPS baby Skyrme model consisting of the Skyrme term and

a potential, but without the sigma model term. Due to the absence of this

sigma model term, we may choose arbitrary Kähler metrics and, therefore,

arbitrary non-negative potentials. So in this case the potential is induced

by the Kähler metric and not by a superpotential. A superpotential term is,

in fact, forbidden in this construction. In Section 13.8 we discuss the issue

of BPS (or Bogomol’nyi) equations for the BPS baby Skyrme models from

the point of view of N = 2 SUSY. Concretely, in a first step we derive the

equation for one-half BPS states for a completely general N = 2 chiral super-

field. Then we apply the resulting equation to the SUSY BPS baby Skyrme

model and find that its one-half BPS states are precisely the BPS solutions

of the BPS baby Skyrme model [121]-[124]. In Section 13.9 we introduce the

N = 2 SUSY extension of the gauged baby Skyrme model. Again, the pro-

cedure implies the absence of the (gauged) quadratic sigma model term, and

we find the gauged BPS baby Skyrme model [145]. For this model, a BPS

bound and BPS solitons have been found recently, where the construction

of the BPS bound implied the introduction of a certain ”superpotential” W
which is related to the potential V by a first order differential equation (”su-

perpotential equation”). We find that, again, the BPS solitons are one-half

BPS states of the N = 2 SUSY extension, and the ”superpotential equation”

may be understood from the fact that both the ”superpotential” W and the

potential V are derived from a certain Kähler potential. In Section 13.10 we

apply our methods to the gauged nonlinear sigma model, which is known to
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possess BPS solitons for a certain choice of potential [146]. It follows easily

from our general construction that this model has an N = 2 SUSY extension

and that the BPS solitons are one-half BPS states. In this case, the sigma

model term and, therefore, the Kähler metric, have a fixed, given form, so, as

a result, also the potential (which is again a function of the Kähler metric)

is fixed. Finally, Section 13.11 contains our conclusions.

13.2 The baby Skyrme model

The field variables of the baby Skyrme model take values in the two-sphere,

so it is naturally parametrized by a three component unit vector field ~n(x),

where ~n2 = 1. The lagrangian density is a sum of three terms,

LbS = L2 + L4 + L0 (13.1)

where L2 is the sigma model term

L2 =
λ2

4
(∂µ~n)2, (13.2)

L4 is the Skyrme term

L4 = −λ4

8
(∂µ~n× ∂ν~n)2 ≡ −λ4

16
K2
µ, (13.3)

where Kµ is the topological current

Kµ = εµνρ~n · (∂ν~n× ∂ρ~n), (13.4)

such that

k = (1/8π)

∫
d2xK0, k ∈ Z (13.5)

is the winding number (topological degree) of the map ~n. Finally, L0 is the

potential term

L0 = −λ0V(~n). (13.6)

The lagrangian density has dimensions of [action]

[length]2[time]
or, equivalently,

[energy]

[length]2
. Further, we shall assume natural units where the velocity of light
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is equal to one such that [length] = [time]. Extracting a common energy

scale E0 we may write the Lagrangian density like

L = E0

(
ν2

4
(∂µ~n)2 − λ2

8
(∂µ~n× ∂ν~n)2 − µ2V(~n)

)
(13.7)

where now ν is dimensionless, and λ and µ−1 have the dimension of length.

A nonzero ν may always be set equal to one, ν = 1, by an appropiate choice

of the energy scale E0. We shall, therefore, assume ν = 1 or ν = 0 in what

follows, depending on whether the term L2 is present or absent. Besides, all

energies will be measured in units of E0, which is equivalent to setting E0 = 1,

what we assume from now on. In a next step, we shall introduce dimensionless

coordinates via xµ = l0y
µ (here, l0 is a universal length scale) which are

more appropriate for SUSY calculations, where we continue, however, to use

the symbols xµ (instead of yµ) for the new, dimensionless coordinates. For

nonzero λ, we may always choose l0 = λ. Choosing, in addition, length units

such that l0 = 1, we get again the lagrangian (13.7) where, now, both ν and

λ take the values 1 or 0 (depending on whether the corresponding terms are

present or absent), and µ is a dimensionless coupling constant. But we have

not yet made any assumption on the form of V , therefore we may always

reabsorb this constant into the definition of the potential. Doing so, our

lagrangian density for the full baby Skyrme model (with all terms present)

now reads

L =

(
1

4
(∂µ~n)2 − 1

8
(∂µ~n× ∂ν~n)2 − V(~n)

)
, (13.8)

which is the dimenionless lagrangian density in the O(3) formulation of the

baby Skyrme model. In the following, however, we shall need the model in

the CP(1) formulation, where the field variable is parametrized by a complex

scalar field u(x) related to ~n by stereographic projection,

~n =
1

1 + |u|2
(u+ ū,−i(u− ū), 1− |u|2). (13.9)

In terms of the field u (i.e., in CP(1) formulation), the dimensionless la-

grangian density reads

LbSCP 1 = L2 + L4 + L0 (13.10)

where

L2 =
∂µu∂

µū

(1 + uū)2
(13.11)
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is the nonlinear sigma-model term,

L4 = − 1

(1 + uū)4
[(∂µu∂

µū)2 − (∂µu∂
µu)(∂ν ū∂

ν ū)] (13.12)

is the ”Skyrme” term quartic in first derivatives, and

L0 = −V(uū) (13.13)

is the potential term. From now on, we assume that V only depends on the

modulus (squared) of u (i.e., only depends on n3 in the O(3) formulation),

which implies that the potential does not completely break the SU(2) target

space symmetry (the O(3) symmetry in the O(3) formulation) of L2 + L4,

but leaves a U(1) subgroup (the phase transformation u→ eiλu) intact. This

is of special importance if we want to couple the Skyrme field u to the U(1)

gauge field of electrodynamics.

It is sometimes useful to consider the slightly more general class of models

given by

L2 = g(u, ū)∂µu∂
µū, (13.14)

L4 = −h(u, ū)[(∂µu∂
µū)2 − (∂µu∂

µu)(∂ν ū∂
ν ū)] (13.15)

where the original baby Skyrme model corresponds to the choice

g(u, ū)2 = h(u, ū) =
1

(1 + uū)4
. (13.16)

Geometrically, g and h may be interpreted as the target space metric and

the (square of the) target space area density, respectively.

13.3 N = 1 supersymmetry in d = 2+1 dimen-

sions

We use the Minkowski space metric ηµν = diag(+,−,−). Then, an N = 1

real scalar superfield is given by

Φ(z) = φ(x) + θαψα(x)− θ2F (x), (13.17)

where the coordinate z stands collectively for (xµ, θα), φ is a real scalar field,

ψα is a fermionic two-component Majorana spinor, and F is the auxiliary



CHAPTER 13. EXTENDED SUSY AND BPS SOLUTIONS 182

field. Further, θα are the two Grassmann-valued superspace coordinates,

and θ2 ≡ (1/2)θαθα. The components of a superfield can be extracted with

the help of the following projections

φ(x) = Φ(z)|, ψα(x) = DαΦ(z)|, F (x) = D2Φ(z)|, (13.18)

where the superderivative is

Dα =
∂

∂θα
− iγµαβθβ∂µ (13.19)

D2 ≡ 1

2
DαDα (13.20)

and the vertical line | denotes evaluation at θα = 0. From here it is easy

to construct supersymmetric lagrangian, which are just the θ integrals of

general superfields, that is, general functions of the basic superfields and

their superderivatives, i.e.:

LN=1 =

∫
d2θL(Φi, DαΦj, ...). (13.21)

It is also possible to construct N = 1 complex superfields by combining real

ones.

13.4 N = 1 CP(1) baby Skyrme model

13.4.1 N = 1 extension

We will construct a N = 1 supersymmetric extension of the model (13.10).

In a first step, we need the basic N = 1 superfields

Φ1 = φ1 + θαψ1
α − θ2F 1, Φ2 = φ2 + θαψ2

α − θ2F 2. (13.22)

Taking into account that u ∈ C and φi ∈ R, we introduce the following

combinations for the new superfields U and Ū :

U = Φ1 + iΦ2 (13.23)

Ū = Φ1 − iΦ2 (13.24)
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such that

U | = φ1 + iφ2 ≡ u (13.25)

Ū | = φ1 − iφ2 ≡ ū. (13.26)

Similarly we define

χα ≡ ψ1
α + iψ2

α, F ≡ F 1 + iF 2 (13.27)

χ̄α ≡ ψ1
α − iψ2

α, F̄ ≡ F 1 − iF 2. (13.28)

With these complex combinations of real superfields we can now generate

the quadratic term. Considering only the bosonic sector, we find

L2|bos =
1

2

∫
d2θg(U, Ū)DαUDαŪ |χ=0 = g(u, ū)(FF̄ + ∂µu∂

µū) (13.29)

that is, the quadratic term of the baby Skyrme model plus a term quadratic

in the auxiliary field F . For the quartic term we need two contributions,

which for the moment we write without their target space area factors h.

The first one is

L̃4a =

∫
d2θ[DαUDαU +DαŪDαŪ ][D2UD2U +D2ŪD2Ū −(13.30)

− 1

4
(DαDβUDαDβU +DαDβŪDαDβŪ)] (13.31)

and its bosonic part results in

L̃4a|bos = (F 2 + F̄ 2)2− (∂µu)2(∂νu)2− (∂µū)2(∂ν ū)2− 2(∂µu)2(∂ν ū)2 (13.32)

For the second contribution we define A1 = U and A2 = Ū , then the other

part for the quartic Lagrangian is

L̃4b =
∑
ij

∫
d2θ[DαAiDαA

j][D2AiD2Aj − 1

4
(DαDβAiDαDβA

j)] (13.33)

and the bosonic part results in

L̃4b|bos = (F 2 + F̄ 2)2 − (∂µu)2(∂νu)2 − (∂µū)2(∂ν ū)2 − 2(∂µu∂
µū)2 (13.34)

finally

L̃4|bos = −1

2
(L̃4a|bos − L̃4b|bos) = (∂µu∂

µū)2 − (∂µu)2(∂ν ū)2. (13.35)
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We remark for later use that in this specific linear combination, together

with the unwanted terms depending on ∂µu, also the auxiliary fields F and

F̄ have disappeared.

Including now the h(u, ū) factor, we get

L4a =

∫
d2θh(U, Ū)[DαUDαU +DαŪDαŪ ][D2UD2U + (13.36)

+ D2ŪD2Ū − 1

4
(DαDβUDαDβU +DαDβŪDαDβŪ)], (13.37)

L4b =
∑
ij

∫
d2θh(U, Ū)[DαAiDαA

j][D2AiD2Aj − 1

4
(DαDβAiDαDβA

j)],

(13.38)

and the final result for the quartic term has the following form,

L4|bos = −h(u, ū)[(∂µu∂
µū)2 − (∂µu)2(∂ν ū)2] (13.39)

or

L4|bos = − 1

(1 + uū)4
[(∂µu∂

µū)2 − (∂µu)2(∂ν ū)2]. (13.40)

As usual, in N = 1 SUSY a potential term results from a (real) superfield

U(U, Ū) called superpotential, which only depends on the basic superfields

U and Ū ,

LU =

∫
d2θU(U, Ū) (13.41)

with the bosonic part

LU ,bos = UuF + UūF̄ . (13.42)

Taking into account (13.29) and (13.42), the equations of motion for the

auxiliary fields are

g(u, ū)F̄ + Uu = 0, g(u, ū)F + Uū = 0 (13.43)

or

F̄ = − Uu
g(u, ū)

, F = − Uū
g(u, ū)

. (13.44)

Inserting these values in the total Lagrangian we obtain

Ltot =
1

(1 + uū)2
∂µu∂

µū− 1

(1 + uū)4
[(∂µu∂

µū)2 − (13.45)

− (∂µu∂
µu)(∂ν ū∂

ν ū)]− (1 + uū)2UuUū (13.46)
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and, therefore, precisely the lagrangian density (13.10) of the baby Skyrme

model with the potential

V(u, ū) = (1 + uū)2UuUū. (13.47)

For potentials V(uū) with the residual U(1) symmetry we have to assume

that also U = U(UŪ).

What is interesting here is that we cannot eliminate the quadratic term.

Setting g(u, ū) = 0 at the end leads to

UuUū
g(u, ū)

→∞, (13.48)

and starting without the quadratic term from the beginning has the conse-

quence that the auxiliary fields only appear linearly in the lagrangian from

the superpotential, L(F, F̄ ) ∼ UuF+UūF̄ . They act, therefore, like Lagrange

multipliers enforcing the ”constraints” Uu = Uū = 0. We conclude that, al-

though the quartic term L4 alone can be supersymmetrically extended by

the methods of this section, this is not true for the BPS baby Skyrme model

L4 + L0. We shall find in the next section, however, that we may find more

general N = 1 extensions which are capable of producing the BPS Skyrme

model in its bosonic sector. Later on, we will see that (reflecting its BPS

nature) the BPS baby Skyrme model even allows for an N = 2 SUSY exten-

sion. In both cases, the potential term L0 is not induced by a superpotential

but, instead, by the target space metric g or by a Kähler potential related

to g.

To summarize the results of this section, for the CP(1) version of the

baby Skyrme model we found exactly the same N = 1 SUSY extension as for

its O(3) version [64]. The two versions are, of course, classically equivalent.

The SUSY extensions, however, require the introducion of fermions which

must be treated as quantum objects to provide the correct SUSY algebra.

The equivalence of the two SUSY extensions is, therefore, not completely

obvious, but turns out to be true.

13.4.2 More general N = 1 extensions

The N = 1 SUSY extension of the previous section allows for certain gener-

alizations, among which also the SUSY extension of the BPS baby Skyrme
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model can be found. Later (in Section 13.7) we shall even find that the BPS

baby Skyrme model allows for an N = 2 extension. Concretely, let us de-

fine the following lagrangians which generalize the quartic lagrangian of the

previous subsection,

L̃λ =

∫
d2θL̃λ ≡

∫
d2θ{DαΦDαΦ†[D2ΦD2Φ† − (13.49)

− λDαDβΦDαDβΦ†]}

L̃µ =

∫
d2θL̃µ ≡

∫
d2θ{DαΦDαΦ[D2Φ†D2Φ† − (13.50)

− µDαDβΦ†DαDβΦ†]}.

Here, λ and µ are real parameters. In components, and for the bosonic sector

only, we get

L̃λ = (FF̄ )2(2− 4λ) + (FF̄ )(∂µu∂
µū)(2− 8λ)− 2λ(∂µu∂

µū)2 (13.51)

L̃µ = (FF̄ )2(2− 4µ) + F̄ 2(∂µu∂
µu)(2− 4µ)− 4µF 2∂µū∂

µū−(13.52)

− 4µ(∂µu∂
µu)(∂µū∂

µū).

It follows that

Re[L̃µ] = 2(FF̄ )2(1− 2µ) + F̄ 2(∂µu∂
µu)(1− 4µ) + (13.53)

+ F 2(∂µū∂
µū)(1− 4µ)− 4µ(∂µu∂

µu)(∂µū∂
µū)

and, specifically for µ = 1/4,

Re[L̃µ]|µ= 1
4

= (FF̄ )2 − (∂µu∂
µu)(∂µū∂

µū) (13.54)

A general linear combination of the two lagrangians is

δRe[L̃µ]|µ= 1
4

+
ρ

2
L̃λ = (FF̄ )2(δ + ρ− 2ρλ) + (13.55)

+ ρ(FF̄ )(∂µu∂
µū)(1− 4λ)− 2ρλ(∂µu∂

µū)2 −
− δ(∂µu∂

µu)(∂µū∂
µū)

where δ and ρ are real coefficients. Two choices for these parameters are of

special interest, namely

L̃
(1)
4 ≡

(
δRe[L̃µ] +

ρ

2
L̃λ

)
µ= 1

4
,λ= 1

4
,ρ=−2,δ=1

= (∂µu∂
µū)2 − |∂µu∂µu|2 (13.56)
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and

L̃
(2)
4 ≡

(
δRe[L̃µ] +

ρ

2
L̃λ

)
µ= 1

4
,λ=0,ρ=2,δ=−1

= 2(FF̄ )(∂µu∂
µū) (13.57)

+ (FF̄ )2 + |∂µu∂µu|2.

In a next step, we introduce, again, the target space area density h(u, ū).

This is done by multiplying the lagrangian densities in superspace by the

corresponding superfield h(U,U †) exactly like above, that is (where, again,

we only consider the bosonic sector)

L̃λ =

∫
d2θL̃λ ⇒ Lλ =

∫
d2θh(U,U †)L̃λ = h(u, ū)L̃λ (13.58)

(and the same for Lµ). The reason for this is that each superderivative

DαΦ is linear in θ in the bosonic sector, and both Lλ and Lµ are quadratic

in DαΦ (i.e., quadratic in θ in the bosonic sector), therefore all superfields

multiplying them only contribute with their θ = 0 component. For the two

quartic lagrangians L
(1)
4 = h(u, ū)L̃

(1)
4 and L

(2)
4 = h(u, ū)L̃

(2)
4 we get

L
(1)
4 = h(u, ū)

(
(∂µu∂

µū)2 − |∂µu∂µu|2
)

(13.59)

and

L
(2)
4 = h(u, ū)

(
2(FF̄ )(∂µu∂

µū) + (FF̄ )2 + |∂µu∂µu|2
)
. (13.60)

The first expression (13.59) precisely coincides with the lagrangian (13.39),

therefore this choice of parameters just reproduces the N = 1 extension of

the previous section. In order to understand the significance of L
(2)
4 , it is

useful to add it to the quadratic lagrangian (13.29) of the previous section

to obtain

L = L2 + L
(2)
4 = g(u, ū)(∂µu∂µū+ FF̄ ) +

+ h(u, ū)
(
2(FF̄ )(∂µu∂

µū) + (FF̄ )2 + |∂µu∂µu|2
)
. (13.61)

Now we solve for the auxiliary fields F, F̄ . on the one hand, we find the

trivial solution F = F̄ = 0 which leads to the lagrangian

L = g(u, ū)(∂µu∂µū) + h(u, ū) + |∂µu∂µu|2. (13.62)
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This lagrangian contains higher than second powers of time derivatives, and

we shall not consider it further in this paper. on the other hand, we find the

nontrivial solution

FF̄ = −∂µu∂µū−
g(u, ū)

2h(u, ū)
(13.63)

and, after substituting back into the lagrangian,

L = h(u, ū)[(∂µu∂µu)(∂µū∂µū)− (∂µu∂µū)2]− g(u, ū)2

4h(u, ū)
. (13.64)

For the choice h = (1 + uū)−4, this is precisely the lagrangian of the BPS

baby Skyrme model, where the quadratic term has disappeared, provided

that we identify the potential with

V(u, ū) =
g(u, ū)2

4h(u, ū)
. (13.65)

As the quadratic term has disappeared, we are free to choose any function

g(u, ū) we like and may, in this manner, produce the potentials we want.

We emphasize that in this model the potential does not come from a super-

potential but, instead, from the ”target space metric” g(u, ū). Including a

superpotential would result in a complicated fourth-order equation for the

auxiliary field F , and the resulting lagragians would be completely different

from the baby Skyrme model. We stop the discussion of the N = 1 SUSY

extension of the BPS baby Skyrme model at this point, because later we will

find that this model allows, in fact, for an N = 2 extension, such that also its

BPS equations may be derived from N = 2 SUSY (see Sections 13.7, 13.8).

13.5 Gauged N = 1 CP(1) baby Skyrme model

In order to construct the gauged version of the N = 1 CP 1 baby-Skyrme

model we need and extra superfield containing the gauge field Aµ and a

Majorana fermion λα (in this case the photon and the photino field). This

superfield, which we call Γα, has the following decomposition,

Γα = iθβ(γµ)βαAµ − 2θ2λα. (13.66)
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In addition, we need the same complex superfield as above (constructed from

two N = 1 real superfields)

U(x) = u(x) + θαχα(x)− θ2F (x) (13.67)

where u(x) and F (x) are complex fields and χα(x) is a Dirac fermion. Now

it is easy to see that promoting the superderivative Dα to a covariant su-

perderivative Dα,

Dα = Dα + ieΓα (13.68)

Dα = Dα − ieΓα (13.69)

(13.70)

and adding the Maxwell term, the model is automatically gauged. In close

analogy to the ungauged case, the quadratic term for the gauged model is

Lg2 =

∫
d2θg(U †, U)DαU †DαU (13.71)

and the bosonic (i.e., χα = λα = 0) sector results in

Lg2|bos = g(ū, u)(DµūDµu+ FF̄ ), (13.72)

where

Dµu = ∂µu+ ieAµu, Dµū = ∂µū− ieAµū. (13.73)

Analogously, we find for the gauged quartic term

Lg4a =

∫
d2θh(U †, U)[DαUDαU +DαU †DαU †][D2UD2U + (13.74)

+ D2U †D2U † − 1

4
(DαDβUDαDβU +DαDβU †DαDβU †)]

Lg4a|bos = h(ū, u)((F 2 + F̄ 2)2 − (Dµu)2(Dνu)2 (13.75)

− (Dµū)2(Dν ū)2 − 2(Dµu)2(Dν ū)2)

and, after again defining A1 = U and A2 = U †,

Lg4b =
∑
ij

∫
d2θh(U †, U)[DαAiDαAj][D2V iD2V j − 1

4
(DαDβAiDαDβAj)],

(13.76)
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Lg4b|bos = h(ū, u)((F 2 + F̄ 2)2 − (Dµu)2(Dνu)2 − (13.77)

− (Dµū)2(Dν ū)2 − 2(DµuD
µū)2)

and finally

Lg4|bos = −1

2
(Lg4a|bos − L

g
4b|bos) = (13.78)

− h(ū, u)
(
(DµuD

µū)2 − (Dµu)2(Dν ū)2
)
.

In addition, we need the Maxwell term which is generated in terms of the

spinor superfield only,

LM =
1

8

∫
d2θDβDαΓβDγDαΓγ. (13.79)

Now we choose g(ū, u) = 1/(1+ ūu)2, h(ū, u) = 1/(1+ ūu)4. Putting all these

terms together and eliminating the auxiliary fields we obtain in the bosonic

sector

Lgtot =
1

(1 + uū)2
DµuD

µū− 1

(1 + uū)4
[(DµuD

µū)2 − (13.80)

− (DµuD
µu)(Dν ūD

ν ū)]− (1 + uū)2UuUū −
1

4
FµνF

µν (13.81)

where

Fµν = ∂µAν − ∂νAµ. (13.82)

To summarize, we just find the gauged version of the baby Skyrme model,

where partial derivatives are replaced by covariant derivatives, and a Maxwell

term is included. This model is known to support soliton solutions [144]. We

remark that, exactly as in the ungauged case, within this SUSY extension

it is not possible to eliminate the (gauged) quadratic, i.e., nonlinear sigma

model, term without eliminating, at the same time, the potential. That is to

say, we cannot construct the gauged BPS baby Skyrme model [145] within

this SUSY extension. More general N = 1 extensions which do allow to find

the N = 1 extension of the gauged BPS baby Skyrme model certainly will

exist, like in the ungauged case (see Section 13.4.2). Here we shall consider,

instead, directly the N = 2 SUSY extension of the gauged BPS baby Skyrme

model (Section 13.9), which turns out to exist, exactly as for the ungauged

case.
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13.6 N=2 Supersymmetry in 2+1 dimensions

In this section we shall introduce our conventions for N = 2 supersymmetry

in 2 + 1 dimensions. We have four independent Grassmann variables, θα and

θ̄α̇, and the corresponding superderivatives

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ (13.83)

D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ. (13.84)

With these definitions it is easy to check the following anticommutation re-

lations,

{Dα, D̄α̇} = −2iσµαα̇∂µ (13.85)

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0. (13.86)

The supersymmetric generators Q and Q̄ have the same structure as the

superderivatives, up to a relative sign,

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ (13.87)

Q̄α̇ =
∂

∂θ̄α̇
− iθασµαα̇∂µ, (13.88)

therefore the anticommutation relations are

{Qα, Q̄α̇} = −2iσµαα̇∂µ (13.89)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (13.90)

and the mixed anticommutators all vanish,

{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0. (13.91)

Now we introduce the superfields. To construct our model, we will need

only chiral and anti-chiral superfields satisfying the following constraints (for

chiral and anti-chiral, respectively)

D̄α̇Φ = 0 (13.92)

DαΦ† = 0. (13.93)
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It is easy to solve the above constraints by introducing the chiral variables

yµ = xµ + iθσµθ̄ (13.94)

(we assume dotted indices for variable with bar, and undotted without bar).

These new variables satisfy the chiral constraint

D̄α̇(xµ + iθσµθ̄) = 0, (13.95)

therefore, by building superfields with this variable and expanding, the chiral

constraint is automatically implemented. Concretely, for the chiral superfield

Φ = u(x) + iθσµθ̄∂µu(x) +
1

4
θθθ̄θ̄�u(x) +

√
2θψ(x)− (13.96)

− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x)

and analogously for the anti-chiral superfield

Φ† = ū(x)− iθσµθ̄∂µū(x) +
1

4
θθθ̄θ̄�ū(x) +

√
2θ̄ψ̄(x) + (13.97)

+
i√
2
θ̄θ̄θσµ∂µψ̄(x) + θ̄θ̄F̄ (x).

13.7 The baby Skyrme model and N=2 su-

persymmetry

In a first step, let us try to find an N = 2 extension which produces the two

kinetic terms L2 and L4,

L2 + L4 =
∂µu∂

µū

(1 + |u|2)2
+

(∂µu)2(∂ν ū)2 − (∂µu∂
µū)2

(1 + |u|2)4
. (13.98)

In order to generate the quadratic term, we need only a D-term involving a

Kähler potential (this is just the N = 2 CP(1) σ-model), with the lagrangian

density

L2 =
1

16

∫
d2θd2θ̄ ln(1 + ΦΦ†) (13.99)

where Φ is a N=1 chiral superfield in (2+1) dimensions and Φ† the respective

antichiral superfield. Taking into account that K(Φ,Φ†) = ln(1 + ΦΦ†) is a
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Kähler potential with Kähler metric

g(u, ū) = gūu = ∂u∂ūK(u, ū) =
1

(1 + ūu)2
(13.100)

the only non-zero Christoffel symbols are

Γuu = guū∂ug(u, ū) (13.101)

Γūūū = gūu∂ūgūu (13.102)

or, explicitly,

Γuuu =
−2ū

1 + uū
(13.103)

Γūūū =
−2u

1 + uū
. (13.104)

The lagrangian can be written in components as

L2 = g(u, ū)[∂µu∂µū−
i

2
ψσµDµψ̄ +

i

2
Dµψσµψ̄ + FF̄ ] (13.105)

+
1

4
Ruūuū(ψψ)(ψ̄ψ̄)

where

g(u, ū) =
1

(1 + uū)2
(13.106)

Ruūuū = − 2

(1 + uū)4
(13.107)

Dµψα ≡
(
∂µ −

2ū

1 + uū
∂µu

)
ψα (13.108)

Dµψ†α̇ ≡
(
∂µ −

2u

1 + uū
∂µū

)
ψ†α̇. (13.109)

In a next step, we have to generate the N = 2 supersymmetric version of

the quartic terms in (13.98). We might choose a supersymmetric lagrangian

starting from a superfield quartic in superderivatives and depending on both

chiral and anti-chiral superfields. Let L̃4 be this quartic superfield,

L̃4 =
1

16
DαΦDαΦD̄β̇Φ†D̄β̇Φ† (13.110)
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then after integration in the Grassmann variables we get for the bosonic

sector

L̃4,bos = (∂µu)2(∂ν ū)2 + 2F̄F∂µu · ∂µū+ (F̄F )2. (13.111)

Right now, this quartic lagragian is still quite different from the quartic part

of (13.98). The first observation in that we can multiply this lagrangian by a

prefactor depending on the superfields. Let this prefactor be h(Φ,Φ†), then

the new superfield has the following form,

L4 =
1

16
h(Φ,Φ†)DαΦDαΦD̄β̇Φ†D̄β̇Φ† (13.112)

and after the θ−integration the bosonic sector of the corresponding lagrangian

is

L4,bos = h(u, ū)[(∂µu)2(∂ν ū)2 + 2F̄F∂µu · ∂µū+ (F̄F )2]. (13.113)

The reason for this result is that each superderivative DαΦ is at least linear in

θ or θ̄ in the bosonic sector, and the above superfield contains four powers of

DαΦ’s. Therefore, only the θ-independent part of the prefactor contributes

to the bosonic sector.

Adding the bosonic sector of the quadratic lagrangian to the above quartic

bosonic lagrangian we get

LT,bos = g(u, ū)[∂µu∂µū+ FF̄ ] + (13.114)

+ h(u, ū)[(∂µu)2(∂ν ū)2 + 2F̄F∂µu · ∂µū+ (F̄F )2]

Finally solving the algebraic equation of motion for FF̄ :

FF̄ = −∂µu∂µū−
g(u, ū)

2h(u, ū)
(13.115)

we get

LT,bos = h(u, ū)[(∂µu∂µu)(∂µū∂µū)− (∂µu∂µū)2]− g(u, ū)2

4h(u, ū)
. (13.116)

For our special case with g(u, ū) = 1/(1 + uū)2, h(u, ū) = 1/(1 + uū)4, this

turns into

LT,bos =
1

(1 + uū)4
[(∂µu∂µu)(∂µū∂µū)− (∂µu∂µū)2]− 1

4
, (13.117)
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so we apparently find a constant ”potential” V = (1/4). The important

observation here is that after the substitution of the auxiliary field F by its

on-shell value, the quadratic, nonlinear sigma model term has completely

disappeared from the above bosonic lagrangian, for arbitrary choices of g

and h. There is, therefore, no more reason to restrict the Kähler metric g

and the corresponding Kähler potential to their CP(1) form. Then, choosing

h(u, ū) = 1/(1 + uū)4 (which we maintain, because we want the standard

quartic term of the baby Skyrme model), and a general Kähler manifold

(different from CP(1)) with metric g(u, ū) we have in the bosonic sector

LT,bos =
1

(1 + uū)4
[(∂µu∂µu)(∂µū∂µū)− (∂µu∂µū)2]− (13.118)

− g(u, ū)2

4
(1 + uū)4.

This is precisely the lagrangian of the BPS baby Skyrme model with the

potential term

V(u, ū) =
g(u, ū)2

4
(1 + uū)4 (13.119)

where g is a Kähler metric. The potential in theN = 2 extension is, therefore,

induced by the Kähler potential of the nonlinear sigma-model type lagrangian

(13.99), and not by a superpotential term. The addition of a superpotential

is, in fact, forbidden in the sense that it would transform the algebraic field

equation of the auxiliary field F into a fourth order equation with complicated

roots of u and ∂µu as solutions. The resulting lagrangian would then be

completely different from the baby Skyrme lagrangian.

To summarize, we found the N = 2 supersymmetric extension of the

restricted baby Skyrme model. Let us give some concrete examples. For the

following family of potentials V(u, ū) depending on the parameter s,

V(u, ū) =

(
uū

1 + uū

)s
(13.120)

the corresponding Kähler metrics generating these potentials are

g(u, ū) = 2
(uū)

s
2

(1 + uū)
s+4
2

. (13.121)
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Integrating this metric we obtain the Kähler potential, which at the superfield

level is

K(Φ,Φ†) =
8(ΦΦ†)

s+2
2

(2 + s)2 2F1[
2 + s

2
,
2 + s

2
,
4 + s

2
,−ΦΦ†], (13.122)

for example,

s = 1, K(Φ,Φ†) = arcsinh (
√

ΦΦ†)−
√

ΦΦ†

1 + ΦΦ†
(13.123)

s = 2, K(Φ,Φ†) =
1

1 + ΦΦ†
+ ln (1 + ΦΦ†). (13.124)

Reintroducing the coupling constant µ of the potential terms, we get the

bosonic lagrangians

s = 1, L1
T =

1

(1 + uū)4
[(∂µu∂µu)(∂µū∂µū)− (∂µu∂µū)2](13.125)

− 2µ2

(
uū

1 + uū

)
s = 2, L2

T =
1

(1 + uū)4
[(∂µu∂µu)(∂µū∂µū)− (∂µu∂µū)2](13.126)

− 2µ2

(
uū

1 + uū

)2

...

We remark that the parameter µ is introduced in the D-term generated by

the Kähler potential, hence it is present in the fermionic sector of this term.

13.8 Bogomol’nyi equation

The BPS baby Skyrme model is well-known to support BPS solitons, that is,

solitons which saturate the Bogomol’nyi bound and obey the corresponding

first order BPS equation. In addition, we just found that the model admits

an N = 2 SUSY extension, so the natural question arises whether these BPS

solitons may be recovered as one-half BPS states of the supersymmetrically

extended theory. SUSY BPS states are characterized by the fact that they

are annihilated by some of the SUSY charges or, in the case of classical

BPS solutions, that some SUSY charges (SUSY transformations) are zero
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when evaluated for the BPS states. We, therefore, need the N = 2 SUSY

transformations in a first step. More concretely, a SUSY BPS solution has

the fermionic components of the basic superfield Φ equal to zero, and only

the scalar field u and the auxiliary field F are nontrivial. Further, the SUSY

transformation of both u and F is proportional to a fermion and therefore

trivially zero for a BPS state. The only nontrivial conditions, thus, come

from the SUSY transformations of the spinors. The N = 2 transformations

of the spinors have the following form

δψβ = −i∂βα̇uε̄α̇ + Fεβ (13.127)

δψ̄β̇ = i∂β̇αūεα + F̄ ε̄β̇ (13.128)

where εα and ε̄α̇ are the Grassmann-valued SUSY transformation parameters.

For static (time-independent) fields we find in components

δψ1|static = ∂1uε̄
1̇ − ∂2uε̄

2̇ + Fε1 (13.129)

δψ2|static = −∂1uε̄
2̇ − ∂2uε̄

1̇ + Fε2 (13.130)

δψ̄1̇|static = ∂1ūε1 − ∂2ūε2 + F̄ ε̄1̇ (13.131)

δψ̄2̇|static = −∂1ūε2 − ∂1ūε1 + F̄ ε̄2̇ (13.132)

or

δ ~ψ = M~ε (13.133)

where ~ψ = (ψ1, ψ2, ψ̄
1̇, ψ̄2̇)t, ~ε = (ε1, ε2, ε̄

1̇, ε̄2̇)t, and M is the matrix

M =


∂1u −∂2u F 0

−∂2u −∂1u 0 F

F̄ 0 ∂1ū −∂1ū

0 F̄ −∂2ū −∂1ū

 . (13.134)

The condition that some (linear combinations of the) SUSY transforma-

tions δψ are zero is equivalent to the condition det M = 0, therefore we

now need the eigenvalues of M . These eigenvalue may be calculated to be

(λ+,−λ+, λ−,−λ−), where

λ2
± = −∂iu∂iū±

√
(∂iu∂iū)2 − (∂iu)2(∂jū)2 − FF̄ , (13.135)
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and the determinant is

detM = (∂iu)2(∂jū)2 + 2∂iu∂
iūF F̄ + (FF̄ )2. (13.136)

The condition det M = 0 therefore leads either to λ2
+ = 0, that is,

FF̄ = −∂iu∂iū+
√

(∂iu∂iū)2 − (∂iu)2(∂jū)2 (13.137)

or to λ2
− = 0, that is,

FF̄ = −∂iu∂iū−
√

(∂iu∂iū)2 − (∂iu)2(∂jū)2, (13.138)

corresponding to soliton and antisoliton, respectively. As the eigenvalues

come in pairs, each condition has multiplicity two, and possible BPS solutions

are, therefore, always one-half BPS states (they leave invariant one-half of

the supersymmetries). We remark that the discussion up to now has been

completely general, and the above equations are therefore the completely

general one-half BPS equations for any N = 2 supersymmetric field theory

constructed from a chiral superfield. Specific models are characterized by the

specific field equations for the auxiliary field F .

Concretely, for the N = 2 BPS baby Skyrme model, the equation of

motion for FF̄ in the static regime is

FF̄ = −∂iu∂iū−
g(u, ū)

2h(u, ū)
, (13.139)

and we obtain the BPS equations

∓
√

(∂iu∂iū)2 − (∂iu)2(∂jū)2 =
g(u, ū)

2h(u, ū)
. (13.140)

In order to demonstrate that this is, indeed, precisely the BPS equation of

the BPS baby Skyrme model, we use

(∂iu∂
iū)2 − (∂iu)2(∂jū)2 = (iεjkujūk)

2 (13.141)

and the expression for the topological charge density q ≡ K0/2 where

q(x) =
2iεjkujūk
(1 + uū)2

,

∫
d2xq(x) = 4πk. (13.142)
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The normalization of q is useful because then q is just the pullback (under

the map defined by u) of the area two-form on the target space unit sphere

(the area of the unit sphere is 4π). Using this expression, and h = (1+uū)−4,

we get for the BPS equation

q(x) = ±g(u, ū)(1 + uū)2 = ±2
√
V(u, ū) (13.143)

where

V(u, ū) =
1

4
g(u, ū)2(1 + uū)4. (13.144)

This is precisely the BPS equation of the BPS baby Skyrme model, see e.g.

[123], [124] (in those papers the r.h.s. of Eq. (13.143) reads ±
√

2V , because

there the potential shows up in the lagrangian like −(µ2/2)V , whereas it

appears without the factor 1/2 in the present paper).

Remark: it might appear that the on-shell value (13.139) for FF̄ is neg-

ative, which would be contradictory. Here we want to show that, at least for

field configurations which are sufficiently close to the BPS bound, this is not

the case. Indeed, from (13.139) we easily derive

2FF̄

(1 + uū)2
=

2∇u · ∇ū
(1 + uū)2

− 2
√
V (13.145)

and, using the BPS equation (13.143),

2FF̄

(1 + uū)2
=

2∇u · ∇ū
(1 + uū)2

± q(x) ≥ 0. (13.146)

13.9 N=2 SUSY gauged Skyrme model in 2+1

dimensions

Recently it has been found that the gauged BPS baby Skyrme model still

has a BPS bound and supports soliton solutions saturating this bound [145],

so it is natural to attempt an N = 2 SUSY extension for this case, as well.

For this purpose, we need the formalism for N = 2 supersymmetric gauge

fields, concretely for abelian gauge fields (Maxwell electrodynamics). For

the gauged version of the Kähler potential term (i.e., the quadratic kinetic

term), we use the well-known fact that the combination of superfields Φ†eV Φ
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is gauge invariant, where V is the real vector multiplet with components (in

the Wess-Zumino gauge)

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ− 1

2
θθθ̄θ̄D + θγ5θ̄σ. (13.147)

Here D and σ are real fields. Again we need the chiral and antichiral su-

perfields (13.97), (13.98), which are N = 2 supersymmetric by construction.

The gauged quadratic term may now be constructed starting from

Lg2 =

∫
d2θd2θ̄K(Φ†eV Φ) (13.148)

where K is a generalized Kähler potential. Integrating we obtain the la-

grangian

Lg2 = guū

(
DµuDµū−

i

2
ψσµDµψ̄ +

i

2
Dµψσµψ̄ + FF̄

)
+

1

4
Ruūuū(ψψ)(ψ̄ψ̄) + σ2ūuguū +

(
u
∂K

∂u
+ ū

∂K

∂ū

)
D −

− iguū(uλψ + ūλ̄ψ̄). (13.149)

Here, Dµ is the standard covariant derivative, and Dµ is the covariant

derivative on spinors,

Dµψ = ∂µψ + (∂µu)Γuuuψ + ieAµψ. (13.150)

Further, guū is the Kähler metric.

In a next step, we have to covariantize the quartic term. This is easily

done by introducing the spinor gauge superfields defined by

Γα = DαV (13.151)

Γ̄α̇ = D̄α̇V (13.152)

and changing the superderivatives to the covariant superderivatives, D̃α and
˜̄Dα̇,

D̃α = Dα + Γα (13.153)

˜̄Dα̇ = D̄α̇ + ˜̄Γα̇, (13.154)
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hence Lg4 is the θ2θ̄2 component of the superfield

Lg4 =
1

16
h(Φ,Φ†)D̃αΦD̃αΦ ¯̃Dβ̇Φ† ¯̃Dβ̇Φ†. (13.155)

The bosonic part of this lagrangian reads in components

Lg4,bos = h(u, ū)[(Dµu)2(Dν ū)2 + 2F̄FDµu ·Dµū+ F †2F 2] + o(σ2). (13.156)

Finally, we need the N = 2 extension of the Maxwell lagrangian, which is

constructed from the superfields

Wα = −1

4
D̄D̄DαV (13.157)

W̄α̇ = −1

2
DDD̄α̇V. (13.158)

The corresponding Maxwell lagrangian then is

LM =
1

4
(WαWα|θθ + W̄α̇W̄

α̇|θ̄θ̄) (13.159)

or

LM = −1

4
FµνF

µν +
1

2
D2 +

1

2
∂µσ∂µσ − iλγµ∂µλ̄. (13.160)

The complete lagrangian in the bosonic sector, therefore, reads

Lgb = guū

(
DµuDµū+ FF̄ + (u

∂K

∂u
+ ū

∂K

∂ū
)D

)
+ (13.161)

+ h(u, ū)
(
(Dµu)2(Dν ū)2 + 2F̄FDµuDµū+ F †2F 2

)
−

− 1

4
FµνF

µν +
1

2
D2 + o(σ2).

The real scalar field σ appears at least quadratically, therefore, the trivial

vacuum configuration σ = 0 always is a solution. We eliminate σ using

this trivial solution. Further, the (algebraic) field equations for the auxiliary

fields F and D are solved by

FF̄ = −DµuDµū−
g(u, ū)

2h(u, ū)
(13.162)

D = −
(
u
∂K

∂u
+ ū

∂K

∂ū

)
(13.163)
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and, using them (and σ = 0), the complete bosonic lagrangian finally reads

Lgb = h(u, ū)
(
(Dµu)2(Dν ū)2 − (DµuDµū)2

)
− 1

4
FµνF

µν (13.164)

− g(u, ū)2

4h(u, ū)
− 1

2

(
u
∂K

∂u
+ ū

∂K

∂ū

)2

.

We, therefore, found a bosonic lagrangian where the quadratic, sigma-model

type contribution has disappeared, again, the quartic Skyrme term is covari-

antized, a Maxwell term has been created, and, finally, a potential has been

produced by the two auxiliary fields F and D, which explicitly reads

V(u, ū) =
g(u, ū)2

4h(u, ū)
+

1

2

(
u
∂K

∂u
+ ū

∂K

∂ū

)2

(13.165)

or

V(u, ū) =
1

4h(u, ū)

(
∂2K

∂u∂ū

)2

+
1

2

(
u
∂K

∂u
+ ū

∂K

∂ū

)2

. (13.166)

For later use we now assume that h(u, ū) = h(uū) and K(u, ū) = K(uū),

and define K ′ ≡ ∂uūK, then

V(uū) =
1

4h(uū)
(K ′ + uūK ′′)

2
+ 2 (uūK ′)

2
(13.167)

or

V(uū) =
1

4h(uū)
W ′2 + 2W2 , W ≡ uūK ′. (13.168)

13.9.1 Bogomol’nyi equations

In a next step, we want to recover the BPS equations of the gauged BPS

baby Skyrme model as one-half BPS states of the N = 2 supersymmetrically

extended theory, as in the ungauged model. For this purpose, we need the

supersymmetric transformations of the multiplet (for fermions)

δλα = −ηαD −
1

2
εµνλFµν(γλ)

β
αηβ − i(γµ)βα∂µσηβ (13.169)

δλ̄α̇ = −η̄α̇D − 1

2
εµνλFµν(γλ)

α̇
β̇
η̄β̇ + i(γµ)α̇

β̇
∂µση̄

β̇ (13.170)

δψβ = −iDβα̇uε̄
α̇ + Fεβ + iηασu (13.171)

δψ̄β̇ = iDβ̇αūεα + F̄ ε̄β̇ − iη̄α̇σū. (13.172)
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We, again, restrict to the trivial solution σ = 0 for the σ field to obtain

δλα = −ηαD −
1

2
εµνλFµν(γλ)

β
αηβ (13.173)

δλ̄α̇ = −η̄α̇D − 1

2
εµνλFµν(γλ)

α̇
β̇
η̄β̇ (13.174)

δψβ = −iDβα̇uε̄
α̇ + Fεβ (13.175)

δψ̄β̇ = iDβ̇αūεα + F̄ ε̄β̇. (13.176)

Now we are ready to repeat the strategy of the ungauged model. That is to

say, we have to calculate the matrices of the susy transformations of both

spinors, take the determinants (or their eigenvalues) and extract the Bogo-

mol’nyi equations. In the last step we then have to take into account the

on-shell values of the auxiliary fields. The matrices of the SUSY transforma-

tions for static fields are

Mψ|s =


D1u −D2u F 0

−D2u −D1u 0 F

F̄ 0 D1ū −D2ū

0 F̄ −D2ū −D1ū


and (where we also assume A0 = 0)

Mλ|s =


−D i

2
εijFij 0 0

− i
2
εijFij −D 0 0

0 0 −D i
2
εijFij

0 0 − i
2
εijFij −D

 ,

and from det(Mψ|s) = 0 and det(Mλ|s) = 0 we obtain the general BPS

equations

FF̄ = −DiuDiū±
√

(DiuDiū)2 − (Diu)2(Djū)2 (13.177)

D = ±εijFij. (13.178)

We emphasize that, again, these are the completely general BPS equations

for a general N = 2 chiral superfield coupled to an N = 2 extended abelian

gauge field. Specific models result from specific solutions for the auxiliary

fields F and D.
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Concretely, for the gauged BPS baby Skyrme model we get

g

2h
= ±

√
(DiuDiū)2 − (Diu)2(Djū)2 (13.179)(

u
∂K

∂u
+ ū

∂K

∂ū

)
= ±εijFij. (13.180)

For a comparison to known results it is useful to simplify the square root in

the first equation,

(DiuDiū)2 − (Diu)2(Djū)2 = (iεjkDjuDkū)2 (13.181)

and

iεjkDjuDkū = iεjkujūk + eεjkAk∂j(uū), (13.182)

then we get

W ′

2h
= ± (iεjkujūk + eεjkAk∂j(uū)) (13.183)

2W = ±εijFij (13.184)

where we also assumed K = K(uū), as above. Introducing now the topolog-

ical charge density q and its ”covariant” version Q,

Q =
iεjkDjuDkū

(1 + uū)2
= q +

e

(1 + uū)2
εjkAk∂j(uū) (13.185)

and using the explicit expression h = (1 + uū)−4, we finally get the BPS

equations

(1 + uū)2

2
W ′ = ±Q (13.186)

W = ±B (13.187)

where B is the magnetic field, B = εij∂iAj = F12. For a direct comparison

with the results of [145] we should take into account that in that paper

the potential V and the ”superpotential” W were treated as functions of n3

instead of uū, where

n3 =
1− uū
1 + uū

⇒ ∂uū = − 2

(1 + uū)2
∂n3 (13.188)



CHAPTER 13. EXTENDED SUSY AND BPS SOLUTIONS 205

which leads to the BPS equations

Wn3 = ∓Q (13.189)

W = ±B. (13.190)

These are precisely the BPS equations of Ref. [145], after the corresponding

coupling constants have been reintroduced. Finally, for the relation between

W and V we get

W2
n3

+ 2W2 = V (13.191)

which again, coincides with the relation (the ”superpotential equation”) of

Ref. [145]. In the present N = 2 SUSY context, this relation may be easily

understood from the fact that both W and V are derived from the same

Kähler potential K.

13.10 Bogomol’nyi solitons in a gauged O(3)

sigma model from N = 2 SUSY

As emphasized already, our method for the calculation of BPS equations for

N = 2 SUSY extended theories is completely general for chiral N = 2 su-

perfields with or without gauge interaction, therefore we may use it to study

further models. Concretely, we want to employ it to obtain the Bogomol’nyi

equations of the gauged nonlinear sigma model originally analyzed in [146].

We remark that the N = 2 SUSY extension of this model in the O(3) for-

mulation has already been discussed in [147]. The gauged non-linear sigma

term results from the generalized Kähler term

Lg2 =

∫
d2θd2θ̄ ln(1 + Φ†eV Φ) (13.192)

where now the target space metric (=the Kähler metric) is the one of the

CP(1) model and, therefore, the corresponding Kähler potential is fixed.

The resulting lagrangian is like in Eq. (13.149), but for fixed guū = (1 +

uū)−2. Further, we need the N = 2 extension of the Maxwell lagrangian,

Eqs. (13.159) and (13.160). Focusing on the D-dependent terms for the

moment we find (for a general Kähler potential K(uū))

(Lg2 + LM)|D = DuūK ′ +
1

2
D2 (13.193)
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(remember K ′ ≡ ∂|u|2K) with the solution

D = −uūK ′ (13.194)

and, therefore, the potential term contribution to the lagrangian is

V =
1

2
(uūK ′)2. (13.195)

For the specific Kähler potential of the CP(1) model, K = ln(1 +uū), we get

V =
1

2

(
uū

1 + uū

)2

. (13.196)

We emphasize that this potential stems exclusively from the auxiliary field

D, and that its form is fixed by the target space geometry (by the Kähler

potential). Specifically, there is no superpotential contribution to this poten-

tial, and the only solution for the auxiliary fields F for this lagrangian is the

trivial solution F = F̄ = 0. Using these solutions for F and D, and setting

the scalar σ from the Maxwell superfield equal to its trivial solution, σ = 0,

we get the lagrangian in the bosonic sector

(Lg2 + LM)|bos =
DµuDµū

(1 + uū)2
− 1

2

(
uū

1 + uū

)2

− 1

4
FµνF

µν (13.197)

that is, precisely the Lagrangian of the gauged nonlinear sigma model. Fur-

ther, inserting the on-shell values for the D and F fields into the general

N = 2 BPS equations (13.177), (13.178), we find the Bogomol’nyi equations

D1u = ±iD2u (13.198)

B ≡ F12 = ± |u|2

(1 + |u|2)
, (13.199)

which coincide precisely with the ones of Ref. [146].

We remark that in this case, in principle, we may add a superpotential

term

L0 =

∫
d2θU(Φ) +

∫
d2θ̄U †(Φ†), (13.200)

which leads to the F -dependent contribution

(1 + uū)−2FF̄ + UuF + U †ūF̄ (13.201)
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and to the on-shell values

F̄ = −(1 + uū)2Uu , F = −(1 + uū)2U †ū (13.202)

and, therefore, to the further contribution to the potential

Ṽ = (1 + uū)4|Uu|2. (13.203)

The BPS equations in this case read

F12 = ± |u|2

(1 + |u|2)
(13.204)

(1 + uū)4|Uu|2 = DiuDiū±
√

(DiuDiū)2 − (Diu)2(Djū)2.(13.205)

The second BPS equation may be rewritten like

2(1 + uū)4|Uu|2 = (Diu± iεijDju)(Diū∓ iεikDku)

or (after introducing the complex base space variable z = (1/2)(x + iy)),

depending on the sign, as

2(1 + uū)4|Uu|2 = (Dz̄u)(Dzū)

or as

2(1 + uū)4|Uu|2 = (Dzu)(Dz̄ū)

where ∂z = ∂x − i∂y and Az = Ax + iAy.

It might be interesting to investigate whether in this class of field theories

some models (i.e., some nontrivial choices of U) can be found which support

genuine solitons.

13.11 Conclusions

It was the purpose of the present work to investigate in detail possible super-

symmetric extensions of baby Skyrme models. First of all, we found that the

complete baby Skyrme model, consisting of three terms (potential, quadratic

and quartic term), allows for an N = 1 SUSY extension where, in addi-

tion, the potential derives from a superpotential via the field equation of
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the auxiliary field, as usual. This finding is related to the fact that for this

N = 1 extension, the SUSY extension of the quartic term does not depend

on the auxiliary field, at least in the bosonic sector. As a consequence, this

SUSY extension cannot be used for the so-called BPS baby Skyrme model

(a submodel without the quadratic term), because then the equation for the

auxiliary field automatically eliminates the potential. Still, there exists an-

other N = 1 SUSY extension which automatically eliminates the quadratic

term and induces the potential from the Kähler metric (and not from a su-

perpotential), leading directly to the BPS baby Skyrme model in the bosonic

sector. It turns out that this N = 1 extension is, in fact, secretly N = 2. We

explicitly constructed this N = 2 extension and demonstrated that, again,

the equation for the auxiliary field eliminates the quadratic term and induces

the potential from the Kähler metric. In a next step, we derived the general

BPS equations for any N = 2 supersymmertic field theory of chiral super-

fields and used this construction to demonstrate that the BPS solitons of

the BPS baby Skyrme model are one-half BPS states of the corresponding

N = 2 supersymmetric extension. Then we turned to the investigation of

SUSY extensions of gauged baby Skyrme models, i.e., of baby Skyrmions

coupled to an abelian gauge field. We found that the complete gauged baby

Skyrme model, too, has an N = 1 extension. Further, the gauged BPS baby

Skyrme model (without the quadratic term, but coupled to a gauge field)

again has an N = 2 extension where the auxiliary field of the chiral multi-

plet eliminates the quadratic term, whereas both auxiliary fields (from the

chiral and the gauge multiplets) induce the potential in terms of the Kähler

potential. We derived the completely general BPS equations for any N = 2

chiral multiplet coupled to an N = 2 gauge multiplet and used this result

to re-derive the BPS equations of the gauged BPS baby Skyrme model [145]

as one-half BPS equations of the N = 2 extension. Finally, we applied our

general N = 2 BPS equations to the gauged nonlinear sigma model as a

further, concrete application.

With these results at hand, the issue of possible applications and gener-

alizations arises naturally. First of all, our BPS equations hold completely

generally for any N = 2 supersymmetric field theory of (gauged or ungauged)

chiral superfields, so it can obviously be used to find BPS equations for other
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models. Baby Skyrmions as such have found some applications in brane

cosmology [120], so their supersymmetric extensions may be of interest in

this context. Another interesting issue is related to generalizations to higher

dimensions. An N = 2 supersymmetric theory in d = 2 + 1 dimensions

leads in a natural way to an N = 1 theory in one dimension higher, i.e., in

d = 3 + 1 dimensions. For the Skyrme-Faddeev-Niemi (SFN) model (same

field content and lagrangian as the baby Skyrme model, but in d = 3 + 1),

we conclude that we cannot find an N = 1 extension with our methods, in

agreement with the findings of [15], [16]. on the other hand, for the restricted

or extreme SFN model consisting of the quartic term and a potential only,

we conclude that an N = 1 SUSY extension does exist. This model has been

investigated recently [148], [149] where it was shown that it supports knotted

and linked solitons (Hopfions), like the full SFN model. In the same line of

reasoning, we conclude that the gauged nonlinear sigma model in d = 3 + 1

dimensions has an N = 1 SUSY extension.

This naturally leads to the question of SUSY extensions of the Skyrme

model in d = 3 + 1 dimensions. Indeed, the Skyrme model, too, has a

submodel which supports BPS solitons [125], and the results of the present

work make it plausible to conjecture that this submodel might allow for an

N = 2 extension, as well, but now in d = 3 + 1. This then implies that

there should exist certain generalizations (i.e., more general submodels of

the Skyrme model) which, while not possessing N = 2 extensions, still allow

for N = 1 extensions. It would be very interesting to find these Skyrme

submodels amenable to supersymmetry, to determine their SUSY extensions,

and to investigate whether these supersymmetrizable Skyrme models are of

special relevance in other contexts.

Another interesting class of problems is related to (and requires the de-

termination of) the fermionic sectors of the SUSY extensions of the non-

standard kinetic terms. Due to their complexity, these fermionic sectors

have remained undetermined in almost all calculations up to now. Their

knowledge, however, would allow to determine explicitly the supercharges

(not only their evaluation on BPS solutions) and to calculate the resulting

SUSY algebra with its possible central extensions. It is well-known that in

the presence of topological solitons these central extensions have to be ex-
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pected [44]. In addition, the inclusion of the fermions would allow to study

the presence of fermionic zero modes in the background of topological soli-

tons and, therefore, to investigate the corresponding index theorems relating

the topological charges to the number of zero modes. These issues are under

current investigation.

To summarize, in the present work we have made some important steps

towards a better understanding of SUSY extensions of field theories with

non-standard kinetic terms and, specifically, of non-standard field theories

which support topological solitons. We found - among other results - that

also for these theories the existence of BPS solitons is related to the existence

of higher SUSY extensions, such that the BPS solitons are realized as BPS

states in the SUSY extended theories, which for this type of theories is a new

result.



Chapter 14

Symmetries of the BPS Skyrme

model

The ultimate goal of the research was the supersymmetrization of the field

theories relevant for strong interactions, providing among other aspects sta-

bility under quantum corrections. For this purpose one requires some re-

finements like the one presented in this chapter. The BPS Skyrme model

is our main candidate. It is a specific subclass of Skyrme-type field theo-

ries which possesses both a BPS bound and infinitely many soliton solutions

(skyrmions) saturating that bound, a property that makes the model a very

convenient first approximation to the study of some properties of nuclei and

hadrons. A related property, the existence of a large group of symmetry

transformations, allows for solutions of rather general shapes, among which

some of them will be relevant to the description of physical nuclei. We study

here the classical symmetries of the BPS Skyrme model, applying them to

the construction of soliton solutions with some prescribed shapes, what con-

stitutes a further important step for the reliable application of the model to

strong interaction physics. This chapter consists of a paper published in [101].
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Abstract: The BPS Skyrme model is a specific subclass of Skyrme-type field

theories which possesses both a BPS bound and infinitely many soliton solu-

tions (skyrmions) saturating that bound, a property that makes the model a

very convenient first approximation to the study of some properties of nuclei

and hadrons. A related property, the existence of a large group of symmetry

transformations, allows for solutions of rather general shapes, among which

some of them will be relevant to the description of physical nuclei. We study

here the classical symmetries of the BPS Skyrme model, applying them to

construct soliton solutions with some prescribed shapes, what constitutes a

further important step for the reliable application of the model to strong

interaction physics.

14.1 Introduction

The Skyrme model [1] (SkM), a non-linear field theory for an SU(2)-valued

field, is meant to be a low energy effective theory, describing some interesting

aspects of strong interaction physics. In this model, pions play the role of

primary fields (excitations around the trivial vacuum), whereas nucleons and

nuclei are, on the other hand, represented by topological solitons, collective

excitations which are part of the nonperturbative spectrum of the theory.

The application of the SkM to nuclear and hadronic physics has been

quite successful at a qualitative level [102], [103], [150], [151], but it encoun-

ters some problems once a more detailed, quantitative agreement, is required.

The main obstacle for this is the absence of (almost) BPS solutions in the
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original SkM, as well as in its standard generalizations. Indeed, although

there exists a BPS bound already in the original model, as proposed by

Skyrme, nontrivial soliton solutions cannot saturate this bound. As a conse-

quence, higher solitons, meant to describe larger nuclei, are strongly bound,

in striking contrast to the weak binding energies of physical nuclei.

Some alternatives approaches to improve this situation have been re-

cently advanced. Basically they imply the extension of the symmetries of

the Skyrme type theory to conformal transformations [152] or to volume pre-

serving diffeomorphisms [153]. It it the aim of this paper to further elaborate

on one of them, namely, the proposal of [153].

The SkM may be generalized in a rather straightforward way, by simply

adding some judiciously chosen extra terms to its defining Lagrangian [154]-

[158]. Indeed, the addition of extra terms becomes a quite natural step

when one recalls the fact that the SkM is an effective theory, supplemented

with the condiment of some simplicity and symmetry constraints. In fact,

assuming, as one usually does, that we want to maintain the field content

of the original model, as well as its Poincaré invariance and the standard

Hamiltonian interpretation (Lagrangian quadratic in time derivatives), the

number of possible terms is in fact quite restricted. One may then just have:

a potential term (no derivatives), a standard kinetic term (the nonlinear

sigma model term) quadratic in first derivatives, the ‘Skyrme term’ originally

introduced by Skyrme (quartic in derivatives) and, finally, a term which is

the square of the baryon number current (topological current), which is sextic

in derivatives.

As it has been demonstrated in [153], there is a submodel, termed ‘BPS

Skyrme model’ (BPSSkM), defined by a Lagrangian consisting of just the

potential and sextic terms, which satisfies some quite interesting properties.

Indeed, it possesses a BPS bound, and infinitely many BPS solutions saturat-

ing this bound. Besides, it has been also shown in [153] that the static energy

functional of the model is invariant under an infinite number of symmetry

transformations, a fact that is obviously related to the properties enunciated

in the previous sentence.

Among the symmetry transformations, an interesting type are the volume

preserving diffeomorphisms (VPDs), since they are precisely the symmetries
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of an incompressible fluid, a fact pointing to a possible relation to the liquid

drop model for nuclei. The BPSSkM, therefore, has several appealing fea-

tures from the point of view of the description of nuclei (see, for example,

[153], [159]). The model is, in fact, constructed assuming that the coherent

(topological) excitations play an especially important role in strong interac-

tion physics. This assumption is directly related to the suppression of the

usual kinetic term in the Lagrangian and, as a consequence, one might expect

that the BPSSkM will not lead to reliable results in the weak field regime. To

overcome these shortcomings, it may be necessary to augment the lagrangian

by further structures for a more consistent description of nuclear or hadron

physics. There are, for instance, initial data for which the BPSSkM does

not have a well-defined Cauchy problem; thus, a standard kinetic term must

either be added explicitly or induced by quantum corrections, to remedy this

situation.

We think that the BPSSkM provides an approximation which may be

quite reliable for the study of static properties and for the dynamics in a

region of relatively high density (i.e., with a not too small baryon charge

density) like, e.g., in a soliton background. On the other hand, it will gener-

ally not be reliable in near-vacuum regions, and moreover cannot be applied

at all to consider perturbative phenomena corresponding to quantum fluctu-

ations of the pion field around the vacuum, since the dominant term would

then be non-quadratic.

Because of the above, it would be important to relate the properties of

solutions of the BPSSkM to the corresponding solutions of more general

Skyrme-type models. A stumbling block which immediately pops up when

attempting this task is the different sizes of the respective spaces of solutions,

which are in turn due to the different symmetry groups of the models. The

solutions of the BPSSkM may have almost any symmetry, due to the huge

symmetry group of the field equations. In particular, there are spherically

symmetric solutions (i.e., with spherically symmetric energy densities) for all

the possible values of the baryon charge, QB. This is not the case, on the

other hand, for the original SkM and its non BPS generalizations. Typically,

the QB = 1 skyrmion is spherically symmetric, the QB = 2 skyrmion has

cylindrical symmetry, while higher-charge skyrmions have, at most, a set of
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discrete symmetries. Indeed, their energy densities are invariant under some

discrete subgroup of the rotation group SO(3) (see, for example, [106], [107],

[162]). A skyrmion of the BPSSkM with the same set of discrete symmetries

would, therefore, be a good starting point for the inclusion of physical effects

induced by adding other extra terms to the Lagrangian. Because of this,

it would be important to find a method for the systematic construction of

solutions of the BPS Skyrme model with some prescribed symmetries.

It is the purpose of the present notes to investigate the space of BPS

solutions further, making explicit use of its symmetries as a tool to generate

new solutions. To that end, we shall take the spherically symmetric ones as

a starting point for the construction. Finally, we shall show that all local

solutions may, in fact, be constructed in this way.

This article is organized as follows: In section 14.2, we define the model,

and introduce our notation and conventions. Then we construct the classical

Hamiltonian in section 14.3. The BPS bound is considered in 14.4. In 14.5 we

explore the issue of symmetries, within both the Lagrangian and Hamiltonian

contexts. In 14.6 we derive and discuss the main properties of the BPS

solutions of the model. We also construct several explicit classes of solutions

with some prescribed symmetries, including the important case of discrete

symmetries. In 14.7 we summarize our results and conclusions.

14.2 The model

The Lagrangian density L, which has an SU(2) valued field U as dynamical

variable, may be written as follows:

L = L06 = −λ2π2BµB
µ − µ2V(U,U †) , (14.1)

where λ is a positive constant, Bµ denotes the topological current:

Bµ =
1

24π2
εµνρσtr

(
LνLρLσ) , Lµ ≡ U †∂µU , (14.2)

and V is a potential density. The current Bµ is ‘topologically conserved’,

namely, it can be shown to be conserved, regardless of the equations of mo-
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tion. The resulting conserved charge, QB, is therefore given by:

QB =

∫
d3xB0 =

1

24π2

∫
d3x εijktr

(
LiLjLk)

=
1

24π2

∫
d3x εijk tr

(
U †∂iUU

†∂jUU
†∂kU

)
, (14.3)

the degree of the map R3 → S3, an integer which is invariant under arbi-

trary globally well-defined coordinate transformations, as well as under global

isospin rotations of U . It is, in fact, invariant under the much bigger group of

target space transformations leaving invariant a certain target space volume

form, see below.

To proceed to the classical equations of motion, it is convenient to intro-

duce a specific parametrization for the three degrees of freedom of U .

Following [153] , we use a real scalar field ξ plus a 3-component unit

vector n̂, so that:

U(x) = eiξ(x)n̂(x)·τ , (14.4)

where τ are the three Pauli matrices. The real scalar ξ runs from 0 to π,

while the two independent parameters defining n̂ may be taken as the two

components of a complex variable u, by means of a stereographic projection:

n̂ =
1

1 + |u|2
(
u+ ū,−i(u− ū), |u|2 − 1

)
. (14.5)

In this way, one obtains for the Lagrangian density an expression in terms of

ξ, u and ū:

L =
λ2 sin4 ξ

(1 + |u|2)4
(εµνρσξνuρūσ)2 − µ2V(ξ) (14.6)

where the lower indices in those variables denote partial derivatives with

respect to the spatial coordinates, and we have assumed that the potential

may only depend on U through trU .

With the notation Vξ ≡ ∂ξV , the Euler–Lagrange equations read:

λ2 sin2 ξ

(1 + |u|2)4
∂µ(sin2 ξ Hµ) + µ2Vξ = 0

∂µ

(
Kµ

(1 + |u|2)2

)
= 0 , (14.7)
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where

Hµ =
∂(εανρσξνuρūσ)2

∂ξµ
, Kµ =

∂(εανρσξνuρūσ)2

∂ūµ
.

These objects satisfy, by construction, the relations

Hµu
µ = Hµū

µ = 0, Kµξ
µ = Kµu

µ = 0, Hµξ
µ = Kµū

µ = 2(εανρσξνuρūσ)2 ,

(14.8)

which are often useful.

14.3 Hamiltonian and static energy

In order to construct the Hamiltonian, we first introduce a more compact

notation, in terms of three real fields ξ(a), with a = 1, 2, 3, such that u =

ξ(1) + iξ(2) and ξ(3) ≡ ξ.

Then L may be written as follows (ξ
(a)
0 ≡ ∂0ξ

(a)):

L =
1

2
ξ

(a)
0 G(ab)ξ

(b)
0 −

4λ2 sin4 ξ(3)
(
εijkξ

(1)
i ξ

(2)
j ξ

(3)
k

)2[
1 + (ξ(1))2 + (ξ(2))2

]4 − µ2V(ξ) . (14.9)

where the kinetic term is determined by a metric G(ab), given by:

G(ab) =
2λ2 sin4(ξ(3))

[1 + (ξ(1))2 + (ξ(2))2]4
Q(a)
i Q

(b)
i (14.10)

where:

Q(a)
i = εijk ε

abcξ
(b)
j ξ

(c)
k . (14.11)

In order to see whether the system defined by L is regular or not, we note

that Q ≡ [Q(a)
i ] the 3×3 matrix defined by the nine elements Q(a)

i (i = 1, 2, 3;

a = 1, 2, 3) is proportional to the cofactor matrix of the matrix X ≡ [ξ
(a)
i ]:

Q = 2 cof(X) . (14.12)

Thus, we see that the metric [G(ab)] (hence, the Lagrangian system) is regular

if and only if det[ξ
(a)
i ] 6= 0. In other words, the regularity of the system is

equivalent to the non vanishing of the Jacobian determinant:

J ≡ det[X] = det
[∂ξ(a)

∂xi

]
6= 0 , (14.13)



CHAPTER 14. SYMMETRIES OF THE BPS SKYRME MODEL 218

for the mapping between the sphere (i.e., one-point compactified R3) in co-

ordinate space and the one in SU(2).

Under the assumption that (14.13) holds true, the inverse of G = [G(ab)]

may be found by elementary algebra. Indeed,

[G−1](ab) =
[1 + (ξ(1))2 + (ξ(2))2]4

8λ2 J 2 sin4(ξ(3))
ξ

(a)
i ξ

(b)
i . (14.14)

Thus, the Hamiltonian density in terms of the variables ξ(a), its spatial

derivatives, and their canonical momenta Π(a), becomes:

H =
[1 + (ξ(1))2 + (ξ(2))2]4

16λ2 J 2 sin4(ξ(3))
Π(a)ξ

(a)
i ξ

(b)
i Π(b)

+
4λ2 sin4 ξ(3)

(
εijkξ

(1)
i ξ

(2)
j ξ

(3)
k

)2[
1 + (ξ(1))2 + (ξ(2))2

]4 + µ2V(ξ) , (14.15)

which, for a Lagrangian like the one we are considering, coincides with the

energy density of the system. In particular, for the static configuration case

to be considered in the forthcoming sections, the total energy E is:

E =

∫
d3x
{

4λ2
sin4 ξ(3)

(
εijkξ

(1)
i ξ

(2)
j ξ

(3)
k

)2[
1 + (ξ(1))2 + (ξ(2))2

]4 + µ2V(ξ)
}
. (14.16)

We have shown that the regularity of the system depends on the field con-

figurations considered. Specifically, the system is singular in regions where

the fields take their vacuum values (ξ(a) = const. such that V(ξ(3)) = 0).

This already demonstrates that, while the system may provide a good ap-

proximation to the description of static properties of nucleons and nuclei via

solitons (Skyrmions) and for the dynamics in regions with nonzero baryon

charge density (where it is regular by construction), its fully consistent appli-

cation to dynamical nuclear physics requires additional structures like, e.g.,

quantum corrections, or the inclusion of further terms in the Lagrangian.

14.4 BPS bound

The static energy functional in (14.16), or, in terms of the variables ξ and u

introduced previously,

E =

∫
d3x

[
λ2 sin4 ξ

(1 + |u|2)4
(εmnliξmunūl)

2 + µ2V(ξ)

]
(14.17)



CHAPTER 14. SYMMETRIES OF THE BPS SKYRME MODEL 219

obeys a Bogomol’nyi bound. Indeed,

E =

∫
d3x

(
λ sin2 ξ

(1 + |u|2)2
εmnliξmunūl ± µ

√
V
)2

∓
∫
d3x

2µλ sin2 ξ
√
V

(1 + |u|2)2
εmnliξmunūl

≥ ∓
∫
d3x

2µλ sin2 ξ
√
V

(1 + |u|2)2
εmnliξmunūl =

±(2λµπ2)

[
−i
π2

∫
d3x

sin2 ξ
√
V

(1 + |u|2)2
εmnlξmunūl

]
≡ 2λµπ2〈

√
V〉|B| (14.18)

where 〈
√
V〉 is the average value of

√
V on the target space S3. The corre-

sponding Bogomol’nyi (first order) equation is

λ sin2 ξ

(1 + |u|2)2
εmnliξmunūl = ∓µ

√
V . (14.19)

The static second order field equations may be derived from the squared Bo-

gomol’nyi equation by applying a gradient ∂k and by projecting onto εijk∂jξ
(a)

where ξ(a) ≡ (ξ, u, ū). We remark that a completely analogous BPS bound

can be found for the BPS baby Skyrme model in one lower dimension [163]-

[166].

Another interesting observation is that the BPS equation can be formu-

lated in the language of a non-linear generalization of the static (vacuum)

Nambu-Poisson equation. Indeed the left hand side can be recast into the

Nambu-Poisson three-bracket [167]

{
XA, XB, XC

}
= εmnl

∂XA

∂xm
∂XB

∂xn
∂XC

∂xl
(14.20)

where the target space embedding coordinates XA, A = 1, 2, 3, 4 form a three-

sphere S3 (i.e., (XA)2 = 1) and are related to the previous coordinates like

Xa = na sin ξ, a = 1, 2, 3, and X4 = cos ξ. Then, the generalized Nambu-

Poisson dynamics is given by

dXA

dt
= εABCD

{
XB, XC , XD

}
+XA

√
V(X4), (14.21)

which differs from the standard case by the additional factor
√
V in the last

term [167]. obviously, although the dynamics of the BPS Skyrme model
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is profoundly different, the BPS equation provides static solutions to this

generalized Nambu-Poisson equation. Such solutions may be interpreted as

vacuum configurations of the underlying hyper-membrane Lagrangian [170].

We remark that if one assumes from the outset that the target space variables

XA span a three-sphere, as we do in this paper, then there is no dynamics in

Eq. (14.21), i.e., dXA

dt
= 0, as follows from the fact that the r.h.s. of (14.21)

is proportional to XA in this case. This just corresponds to the well-known

result that the static vacuum equations for the hyper-membrane imply that

the brane embedding coordinates XA span a three-sphere [170]. So, our

model generalizes the static hyper-membrane action, with a correspondence

between the BPS solitons and the vacuum membrane configurations, but

with completely different dynamics.

It may be instructive to compare the BPS bound arising above with

a 1 + 1 dimensional analogue: the search for (non-trivial) static minimum

energy configurations for the Sine-Gordon model. Here, a real scalar field

ϕ is in the presence of a potential density U(ϕ) which allows for non-trivial

topology. The Lagrangian density is:

L =
1

2
(∂µϕ)2 − U(ϕ) (14.22)

U(ϕ) =
m4

λ

[
1− cos(

√
λ

m
ϕ)
]
. (14.23)

The static energy is then:

Eϕ =

∫ +∞

−∞
dx1

[1
2

(∂1ϕ)2 + U(ϕ)
]
. (14.24)

The non-negative potential has non-trivial minima for

ϕ = ϕN =
2πm√
λ
N , N ∈ Z , (14.25)

all of them having zero energy. Finite energy vacuum configurations must

tend to one of the minima when x1 → ±∞.

The topologically conserved current is jµ =
√
λ

2πm
εµν∂νϕ (µ, ν = 1, 2),

which obviously satisfies ∂ · j = 0. Its associated topological charge is quan-

tized:

Qϕ =

√
λ

2πm

∫ +∞

−∞
dx1∂1ϕ(x) = N , (14.26)
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it is a constant of motion, and it is akin to a winding number, if one interprets

ϕ as an angular variable.

Note the striking similarity with the BPS Skyrme model, when one writes

the energy as follows:

Eϕ =

∫ +∞

−∞
dx1

[1
2

(
2πm

λ
)2(j0)2 + U(ϕ)

]
. (14.27)

The static energy then also verifies a Bogomol’nyi-like bound, since:

Eϕ =

∫ +∞

−∞
dx1

[ 1√
2

dϕ(x1)

dx1

±
√
U(ϕ)

]2 ∓√2

∫ +∞

−∞
dx1

dϕ(x1)

dx1

√
U(ϕ) .

(14.28)

Thus:

Eϕ ≥ ±
√

2

∫ +∞

−∞
dx1

dϕ(x1)

dx1

√
U(ϕ)

= ±
√

2
2πm√
λ
|〈U〉| |Qϕ|

= 2
√

2π
m3

λ
|Qϕ| . (14.29)

where:

|〈U〉| =
1

ϕ1 − ϕ0

∫ ϕ1

ϕ0

dϕ
√
U(ϕ) , (14.30)

the average of
√
U(ϕ) over the fundamental region.

of course, the first order equations that result from saturating the bound

may be found by other methods; they lead to the well-known static solutions

by a single quadrature. What we learn from the comparison with this model

is that the particular form of the Lagrangian of the BPS Skyrme model in-

volving the square of the topological current, is what makes it produce quite

powerful constraints on the solution. It is interesting to note that the kinetic

term in this 1+1 dimensional example allows for two different interpreta-

tions, either as a standard kinetic term or as the topological current squared,

which is no longer true in higher dimensions. In other words, the simple

Sine-Gordon type soliton model in 1+1 dimensions allows for two different

generalizations to higher dimensions, generalizing either the standard kinetic

term or the topological current, and the model studied in the present paper

just corresponds to the second case.
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14.5 Symmetries

The Lagrangian certainly has the standard Poincaré symmetries. Besides,

the sextic term is the square of the pull back of the target space volume form

on S3,

dV = −i sin2 ξ

(1 + |u|2)2
dξdudū (14.31)

so this sextic term is invariant under target space diffeos which do not change

this form (the volume preserving diffeos (VPDs) on S3). The potential only

depends on ξ, so it is still invariant under those diffeomorphisms which do

not change ξ, i.e., under the diffeos which obey

ξ → ξ , u→ ũ(u, ū, ξ) , (1 + |ũ|2)−2dξdũd¯̃u = (1 + |u|2)−2dξudū.

The symmetries mentioned so far are symmetries of the action, i.e. Noether

symmetries.

The static energy functional has some further symmetries. Indeed, it

is invariant under volume preserving diffeos on the base space R3, as can

be seen easily. The Bogomol’nyi equation has even more symmetries as we

want to demonstrate now. For this purpose we introduce the new target

space coordinates

u = geiΦ = tan(χ/2)eiΦ, H(g) =
1

1 + g2
,

(for later convenience we also introduced χ, which together with ξ and Φ

provides the standard hyperspherical coordinates on the target S3), and

F (ξ) =
λ

µ

∫
dξ

sin2 ξ√
V(ξ)

(14.32)

and rewrite the Bogomol’nyi equation as

∇F (ξ) · ∇H(g)×∇Φ = ±1 (14.33)

or, in terms of differential forms

dFdHdφ = ±dx1dx2dx3 (14.34)
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from which it is obvious that the Bogomol’nyi equation has as its symmetries

all the VPDs both in base space and in a modified target space defined by

the volume form dFdHdΦ. The above equation implies, in fact, that all

local VPDs on base space produce local solutions of the BPS equation. The

problem is that, in general, a local solution cannot be extended to a global

one, because of the different geometry and topology of the base space and the

modified target space. The modified target space is defined by the volume

form

dFdHdΦ = −λ
µ

sin2 ξ√
V(ξ)

sinχdξdχdΦ (14.35)

and differs from the volume form on S3 by the additional factor 1/
√
V . There

does not exist a unique riemannian metric giving rise to this volume form,

but a natural choice which assumes that the S2 spanned by u (i.e., χ and Φ)

remains intact is

ds2 = dξ2 +
sin2 ξ√
V(ξ)

(dχ2 + sin2 χdΦ2). (14.36)

For V = 1 this is just the round metric on S3 in hyperspherical coordinates,

but for nontrivial potentials the resulting target space manifold is different.

Indeed, potentials which may support finite energy skyrmion solutions must

have vacua ξ = ξ0 where V(ξ0) = 0, and the above metric is singular at

the vacuum values ξ0. These singularities may either be integrable (i.e., the

function F defined in (14.32) is well-defined and finite even at vacuum values

ξ = ξ0), in which case the total volume of the modified target space is still

finite. In the opposite case, the total volume is infinite. one further conclusion

may be drawn immediately by integrating Eq. (14.34). If the total volume

of the modified target space is finite, then any skyrmion solution of the BPS

equation must have compact support (i.e., be a ”compacton”). Further, its

volume must be equal to |B| times the total volume of the modified target

space, where B is the winding number. For equivalent results for the case of

the BPS baby Skyrme model in one lower dimension, we refer to [166].

We remark that for V = sin4 ξ the metric on the target space describes in fact

a 3 dimensional cylinder with a very simple skyrmion solution (see below).
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14.6 Solutions

As already said, locally, any VPD on base space will provide a solution of

the BPS equation, but this solution will, in general, not be extendible to

a global, genuine one (i.e., a skyrmion), because of the nontrivial topology

one should have on the modified target space. A more promising strategy

is the following: start from a simple known solution which may follow from

a simple ansatz. Then one may generate new solutions by composing the

given solution with a VPD on base space R3. If the VPD is well-defined on

the whole of R3, then it will map genuine skyrmions into genuine skyrmions.

In the case of compactons, we may even relax this condition, since it is then

sufficient for the VPD on base space to be well-defined in the region of the

compacton.

To proceed, let us first find some simple solutions with the help of an

ansatz in spherical polar coordinates

ξ = ξ(r), χ = χ(θ), Φ = nϕ (14.37)

which inserted into the BPS equation yields:

−λ
µ

sin2 ξ√
V(ξ)

sinχdξdχdΦ = ∓r2 sin θdrdθdϕ , (14.38)

leading to χ = θ and

−nλ
µ

sin2 ξ√
V
dξ = ∓r2dr

or, after the coordinate transformation:

y =
µ

3
√

2λn
r3 (14.39)

to the autonomous oDE:

sin2 ξ√
2V(ξ)

ξy = −1 . (14.40)

We have chosen the sign which leads to a negative ξy, which is compatible

with the boundary conditions ξ(r = 0) = π, ξ(r = ∞) = 0 for a potential

which takes its vacuum at ξ0 = 0.
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Let us consider now the symmetries of these solutions. This issue depends

on the criterion used to characterize that symmetry. Note that a given so-

lution will not be invariant under any rotation, because it depends on the

two angular coordinates θ and ϕ. The energy density, on the other hand,

depends only on the radial coordinate r and is, therefore, spherically sym-

metric. Note, however, that there exists another symmetry criterion, often

used for solitons, whereby there is spherical symmetry when the effect of a

base space rotation on a solution can be undone by a corresponding target

space rotation. Under this criterion, only the solution with topological charge

n = 1 is spherically symmetric (i.e., all rotations can be undone). Solutions

with higher winding number n only have cylindrical symmetry, i.e., only a

rotation about the z axis ϕ→ ϕ+α can be undone by a target space rotation

(a phase transformation u→ e−inαu).

In any case, we shall call all solutions of the spherically symmetric ansatz

”spherically symmetric solutions” in what follows. We shall first review some

general properties of these spherically symmetric solutions and, in a next

step, construct solutions with lesser symmetries.

14.6.1 Solutions with spherical symmetry

Many qualitative aspects of solutions maybe easily derived from the par-

ticular form of the potential, which should be contrasted with the typical

situation in general Skyrme models, where similar results usually require a

full three-dimensional numerical simulation.

First of all, depending on the form of the potential in the vicinity of the

vacuum, one can distinguish three types of solitonic configurations: com-

pactons (where the solution approaches its vacuum value at a strictly finite

distance) and exponentially as well as power-like localized solutions. Using

the BPS equation and expanding the potential at a vacuum (e.g., at ξ = 0),

V = V0ξ
α + ..., one easily finds that for α < 6 one gets compactons. There is

also one exponentially localized solution for α = 6, while for α > 6 we find

power-like localized solitons.

Another important feature of solutions reflects the number of vacua of the po-

tential. It is easy to prove that for one-vacuum potentials the BPS solutions
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are of the nucleus type (no empty regions in the interior), while two-vacuum

potentials lead to shell-like configurations.

Let us present some particular examples. For the most elaborated family of

one vacuum potentials, the so-called old potentials

Vold =

(
Tr

(
1− U

2

))a
→ V(ξ) = (1− cos ξ)a (14.41)

(where a is a real positive parameter), we find (besides the previously known

compacton) a solution with exponential tail (a = 3) in implicit form

cos
ξ

2
+ ln tan

ξ

4
= −y

2

, and power-like localized solutions. E.g., for a = 6 we get

ξ = 2 arc cot
3

√
3
√

2y.

A family of two-vacuum potentials is given by

Vshell I =

(
Tr

(
1− U

2

)
Tr

(
1 + U

2

))a
→ V (ξ) = (1− cos2 ξ)a, (14.42)

which is the chiral counterpart of the so-called new baby potential. The

vacua exactly coincide with the boundary values for the scalar field i.e.,

ξ = 0, π. From the BPS property of the solution one can immediately see

that the energy density should have a shell structure with two zeros: one

at the center of the soliton, while the second (outer zero) can be located at

a finite distance (compact shells) or approached asymptotically at infinity.

Without losing generality (the potential is symmetric under the change of

the vacua) we assume that ξ = 0 is the outer vacuum. of course, the inner

vacuum can only be reached at a finite point as y ≥ 0. This implies that only

compact solitonic shells are acceptable. Specific examples of exact solutions

are, for a = 1

ξ =

{
f

arccos(
√

2y − 1) y ∈
[
0,
√

2
]

0 y ≥
√

2,

and for a = 2

ξ =

{
π −
√

2y y ∈
[
0, π√

2

]
0 y ≥ π√

2
.
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The latter solution is, in fact, a solution for the case when the target space

is a three-dimensional cylinder, as sin2 ξ/
√
V = const.

In order to deal with non-compact shell skyrmions, we need to modify our

potential in such a way that one vacuum (say, the inner vacuum at ξ = π) is

always approached in a compacton manner . A simple choice is

Vshell II = Tr

(
1 + U

2

)(
Tr

(
1− U

2

))a
→ V (ξ) = (1 + cos ξ)(1− cos ξ)a

(14.43)

Again, we find compact shell skyrmions a < 3

ξ =

 arccos

[
1−

(
2

3−a
2 − 3−a√

2
y
) 2

3−a
]

y ≤
√

2
3−a

0 z ≥
√

2
3−a

an exponentially localized skyrmion for a = 3

ξ = ξ = arccos
[
1− 2e−

√
2y
]
,

and shell skyrmions which extend to infinity but are localized in a power-like

manner (a > 3)

ξ = arccos

[
1−

(
2

3−a
2 +

a− 3√
2
y

) 2
3−a
]
.

14.6.2 Solutions with cylindrical symmetry

Now we assume that a spherically symmetric solution has been found, and

we want to use symmetry transformations to map them to new solutions.

In a first step we construct solutions with cylindrical symmetry, using the

ansatz (in cylindrical coordinates)

ξ = ξ(ρ, z), g = g(ρ, z), Φ = nϕ (14.44)

where ρ2 = (x1)2 + (x2)2, z = x3. The Bogomol’nyi equation for this ansatz

may be written like

dF (n)dH = ±dqdp (14.45)

where F (n) = nF and

q =
ρ2

2
, p = z
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or like the Poisson bracket

{F (n), H} ≡ ∂F (n)

∂q

∂H

∂q
− ∂F (n)

∂p

∂H

∂q
= ±1. (14.46)

Further, we know that it has the spherically symmetric solution

g = gs = tan(θ/2) =
ρ√

ρ2 + z2 + z
=

√
2q√

2q + p2 + p
≡ gs(q, p) (14.47)

and (depending on the potential)

ξ = ξs(r) = ξs(
√

2q + p2) ≡ ξs(q, p). (14.48)

As a consequence, a general solution with spherical symmetry may be written

like

ξ(q, p) = ξs(Q(q, p), P (q, p)), g(q, p) = gs(Q(q, p), P (q, p)) (14.49)

where (Q,P ) are related to (q, p) via a canonical transformation, i.e., {Q,P} =

1.

A first class of examples is given by

Q = U(q), P =
p

U ′(q)

where U ′(q) 6= 0 ∀ q must hold. Further, it should hold that limq→0 U(q)/q =

const. to have a well-behaved function near ρ = 0. Among these examples

the scale transformation Q = a2q, P = a−2p can be found, which corresponds

to the scale transformation x1 → ax1, x2 → ax2 and x3 → a−2x3. Another

class of examples is

Q =
q

U ′(p)
, P = U(p).

14.6.3 Solutions with discrete symmetries

Here, we want to construct a class of base space VPDs which transform

solutions with spherical or cylindrical symmetry into solutions which only

preserve symmetries w.r.t. to some discrete rotations about the z axis. Con-

cretely, we want to consider solutions which may be written like

ξ = ξ(ρ, z) = ξs(ρ̃, z), g = g(ρ, z) = gs(ρ̃, z), Φ = nϕ̃ (14.50)
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where ξs, gs, Φ = nϕ constitute a known solution with either spherical or

cylindrical symmetry. That is to say, we consider base space VPDs which

act nontrivially only on ρ and ϕ, where for simplicity we restrict ourselves to

the following transformations,

ρ̃ = ρ̃(ρ, ϕ), ϕ̃ = ϕ̃(ϕ). (14.51)

Using q = ρ2/2 as before, and q̃ = q̃(q, ϕ), the condition for the transforma-

tion to be a VPD simplifies to

dq̃dϕ̃ = dqdϕ. (14.52)

A class of formal solutions is given by

q̃ = (f ′)−1q

ϕ̃ = f(ϕ) (14.53)

in close analogy to the results of the last section. In order to define genuine

diffeomorphisms, however, the transformations have to obey some further

conditions. In particular, for the new coordinates q̃ and ϕ̃ to define polar

coordinates on R2 they must satisfy the boundary conditions

q̃(q = 0, ϕ) = 0, q̃(q =∞, ϕ) =∞,
ϕ̃(ϕ = 0) = 0, ϕ̃(ϕ = 2π) = 2π. (14.54)

In addition, the vector field generating the flow induced by the coordinate

transformation must be well-defined (nonzero and nonsingular) on the whole

of R2. A class of examples fulfilling all the required conditions is given by

f = ϕ+ (c/m) sinmϕ, i.e., by the class of transformations

q̃ = (1 + c cosmϕ)−1 q m ∈ N

ϕ̃ = ϕ+
c

m
sinmϕ c ∈ R, |c| < 1. (14.55)

Clearly, if a solution ξ
(a)
s (ρ, z, ϕ) is invariant under rotations about the z

axis (in the sense that its energy density is invariant under these rotations),

then the new solution ξ
(a)
s (ρ̃, z, ϕ̃) is invariant only under the discrete set of

rotations ϕ→ ϕ+ (2π/m).
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14.7 Summary

We explored in detail the symmetries of the static energy functional of the

BPSSkM, and of its related BPS equation. Then we applied these symme-

tries to the systematic construction of new solutions, starting from known

ones. This is in the spirit of the dressing methods of classical integrability

[171], which is an open problem for higher dimensional generalizations [172],

an initial motiviation of this work. Specifically, this allowed us to construct

solutions with some prescribed symmetries, what is quite relevant to the

physical problem one wants to consider. We gave concrete examples of so-

lutions with cylindrical symmetry and with symmetries w.r.t. some discrete

subgroup of the group SO(2) of rotations about the z axis. In this context, it

would be interesting to construct solutions with the symmetries of platonic

bodies or other discrete subgroups of the full rotation group SO(3) (crystallo-

graphic groups), because solitons with these symmetries frequently show up

as true minimizers of the energy in the original Skyrme model or some of its

generalizations [106], [162]. The corresponding volume-preserving diffeomor-

phisms producing solutions with these symmetries will be more complicated

than the ones constructed in the present paper, and it almost certainly will

be more difficult to find them.

This issue is under current investigation.



Chapter 15

A final summary

In this chapter we collect the main results obtained along this Ph.D. thesis:

“Non-perturbative methods in non-linear field theories and their supersym-

metric extensions”.

The first original presentation for K field theories is performed in chapter

7. We proposed a simpler supersymmetric extension of such theories. With

this extension it is easy to calculate supersymmetric charges, and therefore

all the supersymmetric algebra is found. Nevertheless, in the last section

we demonstrate that with this oversimplified scheme of supersymmetrization

the model contains ghosts.

In chapter 8 we performed another way of SUSY extension of K field

theories (of the form L =
∑

k αk(φ)Xk − V (φ)) without ghost fields. In

the bosonic sector our supersymmetric action possesses terms with higher

derivatives but also a polynomial in F (the auxiliary field) of degree N (being

N the highest degree in the derivative terms) plus the contribution of the

derivative of the superpotential. Instead of solving the algebraic equation

for F we choose to do it in the other way: We solve the superpotential in

terms of F , and the field lagrangian depends on a polynomial on F plus

derivative terms. At this point we can choose a φ-dependence for F, to have

an appropriate potential. Once we choose this dependence, the calculation of

the original superpotential is trivial. We calculate specific solutions with their

respective energy for different potentials finding, for example, compactons

(solitons with compact support), C1-kinks and C∞-kinks.

231
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For standard scalar theories the relation between central charges of the

SUSY algebra and topological charges for a soliton configuration has been

known for a long time [44]. In chapter 9, following our investigation on K

field theories, we demonstrated that all domain wall solutions which exist

for the class of theories mentioned above , are, in fact, BPS solutions and

further, these BPS solitons are invariant under part of SUSY transformations.

For kink configurations, despite of the obvious differences between K field

theories and theories with standard kinetic term, we found strong indications

that here we have the same relation between central charges and topological

charges, i.e., for a kink annihilated by one on the supercharges, the central

extension of the SUSY algebra coincides with the difference between values

of the superpotential evaluated on the asymptotic values of the kink.

In chapter 10 we continue with our characterization of K field theories.

If the generalized dynamics of such theories is taken into account, then there

exist the possibility of the so-called twin-like models, that is, pairs of models

(one standard (with ordinary kinetic term) and one K) sharing the same topo-

logical defect solutions with the same energy density. We found the algebraic

conditions that such twin theories must satisfy. In fact, this characterization

provides a method for studying K field theories in terms of the standard ones.

We demonstrated that, given a standard theory it is always possible to find a

K field theory twin. For SUSY K field theories we found that, in addition to

the equivalence between solutions and energies, the corresponding auxiliary

field coincide on-shell. We also gave the conditions which allow the existence

of twins coupled to gravity.

The problem of quantization of K field remains unsolved, and, due to

the higher degree on non-linearity on these theories, it seems to be a quite

difficult issue. In chapter 11 we solve partially this problem. We give a set of

algebraic conditions that a pair of twin-like models must satisfy, to have the

same linear fluctuation spectra. This implies (under these assumptions) that

the semiclassical quantization around the topological defect gives the same

results for the standard defect and its K field twin. The framework of SUSY

K field theories gives us the possibility of the inclusion of fermions and the

corresponding consequences of the coincidence fluctuation spectra, but this

questions remains still unsolved.
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Then we moved to a particular K field theory of special interest, the

baby Skyrme model (bSkM). In chapter 12 we proposed the first N = 1

SUSY extension of the bSkM. We analyzed different features related to the

supersymmetric structure. In particular, we demonstrate that this scheme of

supersymmetrization prohibit the BPS bSkM (consisting on quartic term plus

potential) which possesses topological solitons saturating a Bogomol’nyi type

energy bound. The possibility of SUSY extension of the BPS BSkM seems

to imply a second supersymmetry, and, in fact, in chapter 13 we proposed

another N = 1 SUSY extension which has a second hidden supersymmetry.

This extension allows the existence of the BPS bSkM. Then we constructed

explicitly an N = 2 extension. Moreover, a completely general BPS equation

(depending on the auxiliary field) for scalar models in 2 + 1 dimensions and

extended SUSY bSkM is proposed. We also calculated the N = 2 SUSY

extension for the gauged model, and again, as a consequence of the SUSY

transformations, general BPS equations for scalar coupled to abelian gauge

fields are found. The information related to the particular model is encoded

in the dependence of such equations on the auxiliary fields. The auxiliary

field F coming from the scalar multiplet defines one of the equations, and D,

the auxiliary field coming from the vector multiplet, defines the other.

Finally, in chapter 14, we analyzed another relevant example of K field

theory, a Skyrme type model in 3 + 1 dimensions, the BPS Skyrme model,

consisting of a sextic term in derivatives plus potential. The existence of in-

finitely many solutions saturating the BPS bound makes it a good candidate

to be supersymmetrized. As a first step we analyzed different solutions of the

model. We used the Volume Preserving Diffeomorphisms (VPD) symmetry

of the base space in order to generate different genuine skyrmions. We com-

posed a simple known solution with a VPD generating in this ways solutions

with different symmetries both continuous and discrete.





Chapter 16

Conclusions

In this Ph.D. thesis, we have studied different important aspects of a large

class of generalized field theories which are characterized by the presence of

higher (than just second) powers of first derivatives in the Lagrangian. These

theories are frequently called K field theories, because of the generalized

kinetic term.

Many of these theories are known to support topological soliton solutions,

where, in more than two space dimension the presence of higher kinetic terms

avoids the Derrick theorem.

Further, in some cases, these solitons saturate a topological bound and

verify first order equations.

In this context, one first natural question is whether the corresponding

K field theories allow for SUSY extension and whether BPS soliton solutions

reappear as SUSY BPS states (which are invariant under some supersymme-

tries) in the SUSY extension, as is the case for standard field theories.

One of the main results of this thesis is that this is indeed true both for

scalar field theories in d = 1 + 1 and for planar (baby) Skyrme models in

d = 2 + 1.

These results are materialized in the following publications: In [95],

SUSY extension of general K field theories in lower dimensions are described,

whereas in [96] the BPS bounds and equations and the related central charges

of the SUSY algebra are investigated. The result is that the BPS energies are

related to the central charges (the BPS solutions are the SUSY BPS states),
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the only difference being that, due to the higher degree of non-linearity, there

appear several BPS solutions (several roots of the first order equations) with

the corresponding central charges. In [99], the first N = 1 SUSY extension

of the baby Skyrme Model is presented, and consequences of this supersym-

metrization are analyzed. And finally, the N=1 gauged SUSY extension and

the N=2 gauged and ungauged SUSY extensions of the Baby Skyrme model

are presented in [100]. In this last paper, we obtain that only BPS BSkM

may be extended to N = 2 SUSY, i.e. the quadratic term (σ−model) is

”eaten” by extended SUSY.

Soliton solutions of K field theories are, in general, quite different from

the solitons of standard field theories. In some instances it happens, however,

that a K field theory has the same soliton with the same energy density as

a related standard field theory (the so-called twin models). A second major

result of this thesis is a more profound algebraic analysis of these models.

Concretely in [97] we fix the algebraic constraints that mutually twin-models

must verify and in [98] these constraints are extended to ensure even the

same fluctuation spectra between such models.

In higher-dimensional generalized field theories with their inherent high

degree of non-linearity, it is usually difficult to find explicit (especially exact)

solutions. One available method is to use symmetries of the theory for the

generation of solutions. A third relevant result of this Ph.D. thesis is the

use of symmetry transformations for the generation of solutions of arbitrary

shapes for a certain Skyrme model which supports BPS solitons and has

already found interesting applications to strong interaction physics. Con-

cretely in [101] we determine the BPS bound of the BPS Skyrme model and

exploit its symmetry under Volume Preserving Diffeomorphisms to find dif-

ferent solutions.

Briefly I repeat the potential applications of the results of this Ph.D.

thesis:

• Effective field theories at low energies (Skyrme model � QCD at low

energies)

• Applications to cosmology, e.g. inflation
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• Theories descending from higher dimensions, e.g. brane world scenario

• Supersymmetry as a fundamental tool in the analysis of solutions of

non-linear field theories





Chapter 17

Brief outlook

We have obtained several new results related to the supersymmetric exten-

sions of theories with higher derivative terms, in particular the N = 1 and

N = 2 supersymmetric extension of the planar Skyrme model, where BPS

equations and bound have been derived from the supersymmetric structure,

extension of general K field models and explicit solutions, etc. But there are

still a lot of open questions to answer, some of them are:

• In general supersymmetric K field theories, the natural question at

this point is the inclusion of fermions. Because of supersymmetry and

translational invariance one should expect the existence of fermionic

zero modes for each kink background.

• The addition of fermions would allow to study the corresponding index

theorems explicitly, equating topological charges and zero modes.

• Despite some specific examples where the explicit calculation of the su-

persymmetry algebra is possible, the study of the superalgebra struc-

ture in general K theories could be interesting, in particular, the de-

termination of central charges implied by the existence of solitons, as

a generalization of the results of Witten and Olive.

• If these theories are in fact effective theories of a more fundamental

one, one interesting issue is their quantization, even though the non-

linearity of these theories implies further complications.

239



CHAPTER 17. BRIEF OUTLOOK 240

• The extension of these results to higher dimensions. The supersym-

metric extension of Skyrme type model in d = 3 + 1 with more general

Skyrme terms and its possible applications to others fields.

• In the case of supersymmetric extensions of Skyrme type models the

inclusion of fermions could be especially relevant. For example, the

explicit calculation of the supercharges in such models allows us to

determine explicitly the central extensions of the algebra.

• The issue of twin-like models in higher dimensions (vortices, monopoles,

skymions...) and possible applications of the correspondence, e.g. try-

ing to find realistic applications of the duality in such theories.

• Finally, it would be interesting trying to understand more deeply the

issue of the Volume Preserving Diffeomorphisms group. For example,

usual integrability exists in (1 + 1) or (2 + 0) dimensions and is closely

related (but not equal) to conformal invariance with Virasoro algebra.

In higher dimensions, the conformal group is finite dimensional, which

can be another source for problems with the extension of integrability

to higher dimensions. But in higher dimensions there is a natural group

wich remains infinite dimensional, namely the VPD group. Such groups

also provide an interesting connection to Virasoro as (at least for APD

(area preserving diffeomorphisms) in S2, R2 and T) the Virasoro is a

subalgebra of the algebra of APD for these spaces. One concrete aim

is to better understand these problems and the connection between

generalized integrability and VPD.
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Resumo

A descrición da natureza pode ser afrontada dende moi diversos puntos de

vista. Dende o punto de vista da f́ısica teórica podemos dicir, ainda a risco

de ser simplistas, que a natureza pode ser clasificada nunha escala de en-

erx́ıas (ou distancias) onde a simetŕıa xoga un papel fundamental. Aśı por

exemplo a mecánica cuántica revélase máis útil para explicar fenómenos que

teñen lugar a moi pequenas distancias (ainda que existen fenómenos cuánticos

perceptibles a grandes lonxitudes), ou a relatividade xeral de Einstein para

explicar o Universo a distancias interplanetarias. Ata onde coñecemos hoxe

en d́ıa só existenten catro interacción fundamentais: interaccións forte e débil

(que xogan o seu papel máis relevante a moi pequenas distancias dentro dos

nucleos atómicos por exemplo) e as interaccións electromágnetica e gravita-

toria, éstas últimas sinxelas de observar na nosa vida diaria.

Neste proceso de śıntese que sempre caracterizou á f́ısica dúas das in-

teraccións nomeadas antes xa foron unificadas nunca única teoŕıa, a teoŕıa

electrodébil, mais os f́ısicos teóricos son conscientes hoxe en d́ıa de que a co-

existencia das teoŕıas electrodébil e forte por unha a banda (denominadas en

conxunto teoŕıas cuánticas de campos) e a Gravidade pola outra non é con-

sistente (a cuantización da Gravidade é o impedimento crucial). Aśı diferente

candidatas a teoŕıas unificadoras xurdiron nos últimos corenta anos, a máis

prometedora e á vez máis popular de todas elas é a Teoŕıa de Cordas, ainda

que podeŕıa haber outras opcións, podemos citar por exemplo a Gravidade

Cuántica de Bucles.

241
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Aśı e todo, obter resultados directamente a partir duna teoŕıa fundamen-

tal é complicado e en ocasión imposible. Hai casos nos que resulta interesante

adoptar un punto de vista diferente, a teoŕıa efectiva. Unha teoŕıa efectiva

pode ser vista coma un certo ĺımite duna teoŕıa máis fundamental, por ex-

emplo o ĺımite de baixas enerx́ıas da QCD (teoŕıa que explica as interaccións

fortes) pode ser descrito por unha teoŕıa efectiva, o modelo de Skyrme, es-

tudado amplamente neste traballo. Éste resulta máis simple que aquela e

permite obter información prácticamente imposible de obter directamente da

teoŕıa orixinal. Este é o punto de vista adoptado ó largo desta tese, o estudo

de teoŕıas efectivas que poden ter aplicación en teoŕıas máis fundamentais.

Como dixemos ó inicio, a simetŕıa xoga un papel angular na f́ısica de

hoxe en d́ıa, pero de entre todas as posibles simetŕıas hai unha que destaca

especialmente, a supersimetŕıa. Esta simetŕıa liga bosóns e fermións e dota

de certas propiedades interesantes ás teoŕıas fundamentais. Por exemplo o

modelo estándar (que describe conxuntamente as part́ıculas que coñecemos),

e dito sea de paso, a teoŕıa máis precisa que coñecemos, posúe unha grave im-

perfección, o denominado problema do axuste fino, se dotamos a este modelo

de supersimetŕıa o problema parece arranxanse. Por citar outro caso, se un

engade supersimetŕıa á teoŕıa de cordas consegue reducir as 26 dimensións nas

que orixinalmente é formula a teoŕıa a ton so 10. Ademáis, dende un punto

de vista matemático, a supersimetŕıa proporciona xeralizacións interesantes a

supervariedades ou superalxebras de Lie. Agora ben, mentres ésta sexa unha

boa candidata a simetŕıa da natureza, e forme parte de teoŕıas fundamentais,

parece lóxico que sexa herdada por teoŕıa efectivas que as describan en certo

ĺımite. Neste marco, xustificamos a meirande parte do traballo realizado

nesta tese doutoral sobre extensión supersimétricas de teoŕıas de campos.
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Contido da tese

Nesta tese tratamos as extensións supersimétricas de teoŕıas de campos

K, é decir, teoŕıas de campos con termos cinéticos superiores, prestando

unha especial atención ó modelo de Skyrme. o traballo aqúı presentado

vese reflectido nas publicacións [95], [96], [97], [98], [99], [100] e [101]. Esta

formada por dúas partes ben diferenciadas. A primeira parte está constitúıda

por: nos caṕıtulos 2 ó 6 ofrécese unha introducción a supersimetŕıa e o modelo

de Skyrme, fixando aśı mesmo a notación. A segunda céntrase no estudo das

teoŕıas K es as súas extensións supersimétricas:

No capitulo 7, presentamos os primeiros problemas que subxacen ós in-

tentos de supersimetrización das teoŕıas de campos K (que poden funcionar

coma teoŕıas efectivas en certo réxime).

Nos caṕıtulos 8 e 9 móstranse os primeiros intentos existosos da devan-

dita supersimetrización e análise de diversas propiedades. Continuando coa

análise de estas teoŕıas nos caṕıtulos 10 e 11, móstrase una correspondencia

entro ditas teorias e teoŕıas estándar que pode facilitar o seu estudo.

Os caṕıtulos 12 e 13 están xa centrados nun exemplo fundamental de

teoŕıa K, o modelo baby Skyrme. Preséntase aqúı a primeira extensión su-

persimétrica do mesmo cunha e dúas supersimetŕıas e diversas propiedades

herdadas desta estructura supersimétrica son estudadas amplamente.

No caṕıtlo 14, que constitúe case un anexo, preséntase o que podeŕıa ser

o seguinte paso no análise de teoŕıas supersimétricas tipo Skyrme, o BPS

Skyrme. Son estudadas diferentes simetŕıas e calculadas expĺıcitamente solu-

cions.
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18.1 Teoŕıas de campos K e supersimetŕıa

En xeral as teoŕıas escalares en f́ısica están caracterizadas por un Lagranxiano

da forma:

L =
1

2
∂µφ∂

µφ− V (φ) (18.1)

onde V (φ) é o potencial e 1
2
∂µφ∂µφ é o termo cinético que denominare-

mos estándar, por conter dúas derivadas (supoñemos que traballamos en

2 + 1 dimensións). Cómo supersimetrizar este tipo de modelos é coñecido.

Utilizando o formalismo supercampos, non temos máis que promocionar os

campos escalares a supercampos e as derivadas ordinarias a superdivadas. o

lagragiano supersimétrico completo virá dado por:

S =

∫
d3xd2θ

[
−1

4
DαΦDαΦ + P (Φ)

]
=

∫
d3xD2

[
−1

4
DαΦDαΦ + P (Φ)

] ∣∣∣
(18.2)

se integramos agora nas variables de Grassman:

S =

∫
d3x
[1

2
F 2 +

1

2
iψ̄/∂ψ +

1

2
∂µφ∂

µφ+
1

2
P ′′(φ)ψ̄ψ + P ′(φ)F

]
. (18.3)

F é o denominado campo auxiliar, e non é dinámico. Podemos eliminalo

coa súa ecuación de movemento, resultando:

S =

∫
d3x
[
− 1

2
(P ′(φ))2 +

1

2
iψ̄/∂ψ +

1

2
∂µφ∂

µφ+
1

2
P ′′(φ)ψ̄ψ

]
. (18.4)

se identificamos o potencial en (18.1) con correspondente en (18.4), V (φ) =
1
2
(P ′(φ))2 temos obtida a extensión supersimétrica. Ademáis é posible com-

probar que a acción fica invariante baixo as transformación de supersimetŕıa

seguintes:

δφ(x) = εαψα(x) (18.5)

δψα(x) = εβ(CαβF (x) + i∂αβφ(x)) (18.6)

δF (x) = −iεα∂βαψβ (18.7)
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Unha teoŕıa de compos K contén termos cinéticos con máis de dúas

derivadas. Éstas teoŕıas son relevantes en cosmolox́ıa e describen adecuada-

mente propiedades no periodo inflacionario. Ademáis moitos fenómenos rel-

evantes son asociados a elas, por exemplo Galileons, condensados ghost ou

inflación DBI son estudados en [135] ou en [136]. Dito isto, se resultan ser

teoŕıas efectivas dunha teoŕıa máis fundamental e asumimos que a natureza

é supersimétrica a extensión das mesmas é precisa. Sexa X = ∂µφ∂
µφ entón

centrarémonos agora en modelos da forma:

L =
∑
k

αkX
k − V (φ) (18.8)

A supersimetrización destes modelos resulta ser moito máis complexa.

Para chegar a ela, precisamos un par de pasos previos. Primeiro definimos:

(L(k,n))ψ=0 = −
(
D2[(

1

2
DαΦDαΦ)(

1

2
DβDαΦDβDαΦ)k−1(D2ΦD2Φ)n]|

)
ψ=0

= (F 2 + ∂µφ∂
µφ)kF 2n (18.9)

Agora eliximos unha combinación linear particular:

(L(k))ψ=0 ≡ (L(k,0))ψ=0 −
(
k

1

)
(L(k−1,1))ψ=0 +

(
k

2

)
(L(k−2,2))ψ=0 + . . .(18.10)

. . .+ (−1)k−1

(
k

k − 1

)
(L(1,k−1))ψ=0 = (∂µφ∂µφ)k + (−1)k−1F 2k.

Finalmente engadindo o potencial e restrinx́ındonos ó sector bosónico

chegamos a:

L(α,P )
b =

N∑
k=1

αk(L(k))ψ=0 + P ′F

=
N∑
k=1

αk[(∂
µφ∂µφ)k + (−1)k−1F 2k] + P ′(φ)F (18.11)

E unha vez eliminado o campo auxiliar recuperamos (18.8). Ainda que

a ecuación resultante é altamente non linear é posible encontrar solucións
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expĺıcitamente e calcular a súa enerx́ıa nalgúns casos, consultar [96]. É máis,

para determinadas confuguracións é posible explorar a extensión central da

álxebra supersimétrica destes modelos. Escribamos expĺıcitamente a álxebra

supersimétrica:

Q2
1 = Π0 + Z

Q2
2 = Π0 − Z

{Q1, Q2} = 2Π1 (18.12)

onde as Q′s son os xeradores da supersimetŕıa, Πν = (Π0,Π1) son os oper-

adores de enerx́ıa e momento e Z é a posible extensión central. Se tomamos

unha configuración de kink (que existen nesten modelos, ver [96]), que teña

valores asintóticos φ± pode probarse que a súa enerx́ıa ve determianda por:

Ek = P (φ+)− P (φ−) (18.13)

Agora ben, se supoñemos que este kink corresponde coa supercarga Q2

(ver [96]) sustituindo na álxebra obtemos:

Q2
2 = 0 = Ek−Z = P (φ+)−P (φ−)−Z ⇒ Z = P (φ+)−P (φ−) (18.14)

mentres que para a configuración antikink:

Z = P (φ−)− P (φ+) (18.15)

obténdose un resultado análogo ó de Witten e Olive [44] tamén nas teoŕıas

K, ligando as configuración solitónicas e as cargas centrais da superálxebra.

18.2 Modelos Xemelgos

Baixo certas condicións é posible atopar teoŕıas K cuxas solucións comparten

densidade de enerx́ıa e perfil das sas solucións. As condicións que deben

verificar son puramente alxebraicas. Se temos unha teoŕıa con termo cinético

esténdar e potencial V (φ) as condicións necesarias para que unha teoŕıa K

definida por Lk sexa xemelga dela son:
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Lk|X=−U ≡ L| = −2U (18.16)

Lk,X |X=−U ≡ L,X | = 1 (18.17)

por exemplo se tratamos coa seguinte familia de teoŕıas K:

Lk =
N∑
k=1

fk(φ)Xk − U(φ) (18.18)

tense que:

Lk,X |X=−V =
N∑
k=1

kfk(φ)(−V )k−1 ≡ 1 (18.19)

Lk|X=−V =
N∑
k=1

fk(φ)(−V )k − U(φ) = −2V (φ) (18.20)

Podemos por exemplo, fixar as funcións fk para k > 1 e determinar f1 e

U coas ecuacións anteriores. Se a estas condicións engadimos as seguintes:

Lk,XX | = 0 (18.21)

[Lk,XU + 2U(Lk,XXX − Lk,XXU)]| = 0 (18.22)

[Lk,UU + Lk,XU + 2U(Lk,XUU − Lk,XXU)]| = 0 (18.23)

e

(Lk,U + 2ULk,XU)| = −1. (18.24)

podemos asegurar a coincidencia do espectro de fluctuacións linear o que

implica que unha cuantización semiclásica no entorno dun defecto topolóxico

proporciona exactamente os mesmos resultados para unha teoŕıa estándar e

a súa correspondente K xemelga. Podemos extender directamente estes re-

sultados ás correspondentes extensións supersimtéricas, logo, esta correspon-

dencia pode ser utilizada para estudar teoŕıas K supersimétricas a través de

teoŕıas con termos cinéticos estándar.
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18.3 O baby Skyrme supersimétrico

O modelo de Skyrme pode ser visto como o ĺımite de baixas enerx́ıas e alto

número de cores da QCD, ademáis de ser un exemplo destacado de teoŕıa tipo

K. Unha versión a dimensións baixas do modelo de Skyrme, o denominado

modelo baby Skyrme está caracterizado polo seguinte lagraxiano:

L =
λ2

2
L2 +

λ4

4
L4 +

λ̃4

4
L̃4 + λ0L0 (18.25)

onde

L2 = ∂µ~φ · ∂µ~φ (18.26)

L4 = −(∂µ~φ× ∂ν~φ)2 (18.27)

L̃4 = (∂µ~φ · ∂µ~φ)2 (18.28)

e

L0 = −V (φ3) (18.29)

Este modelo formulado en 2 + 1 dimensións posúe solitóns topolóxicos e

ten a S2 como espazo rango, é similar en moitos sentidos modelo de Skyrme

orixinal, e ademáis pode servir coma modelo de xoguete para estudar proble-

mas concernentes s solitóns topolóxicos. Por suposto, ten aplicacións direc-

tas, a descrición de ferromagnetos Hall cuánticos [85] ou para estudar texturas

de spin [86] e [87]. En calqueira caso a súa supersimetrizacin (N = 1) resulta

interesante e foi realizada por primeira vez en [99]. Os detalles da super-

simetrización poden ser consultados en [99] e o resultado no sector bosónico

ten propiedades interesantes, vexamos:

(L)ψ=0 =
λ2

2
[(~F )2 + ∂µ~φ · ∂µ~φ]− λ4

4
(∂µ~φ× ∂ν~φ)2 + λ0F3P

′ + µφ(~φ2 − 1)

=
λ2

2
∂µ~φ · ∂µ~φ−

λ4

4
(∂µ~φ× ∂ν~φ)2 − λ2

0

2λ2

(1− φ2
3)P ′2 + µφ(~φ2 − 1).(18.30)

que corresponde co baby Skyrme con potencial

V (φ3) =
λ0

2λ2

(1− φ2
3)P ′2(φ3). (18.31)
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O que vemos é que, polo menos con nesta extensión non está permitido

o BPS baby Skyrme (que consiste en termo cuártico e potencial), que posúe

solucións saturando a cota BPS, pois o ĺımite λ2 → 0 que elimina o termo

cuadrático crea un potencial diverxente.

A posible supersimetrización do modelo BPS baby Skyrme (N = 1) suxire

a existencia dunha segunda supersimetŕıa oculta. O caso é que é posible

construir expĺıcitamente este modelo con N = 2 como veremos. Tomaremos

a versión CP 1:

L2 + L4 =
∂µu∂

µū

(1 + |u|2)2
+

(∂µu)2(∂ν ū)2 − (∂µu∂
µū)2

(1 + |u|2)4
. (18.32)

A supersimetrización do termo cuadrático é sinxela, basta tomar o po-

tential de kehler correspondente a CP 1:

L2 =
1

16

∫
d2θd2θ̄ ln(1 + ΦΦ†) (18.33)

onde Φ,Φ† son respectivamente campos quiral e antiquiral con super-

simetŕıa N = 2. Para o termo cuártico precisamos:

L̃4 =
1

16
DαΦDαΦD̄β̇Φ†D̄β̇Φ† (18.34)

O interesante é que o sumar as compoñentes de ambos lagranxianos a

contribución cuadrática desaparece, de tal forma que escollemos adecuada-

mente o potencial de Kähler podemos xerar un termo potencial que depende

déste, por exemplo para:

s = 1, K(Φ,Φ†) = arcsinh (
√

ΦΦ†)−
√

ΦΦ†

1 + ΦΦ†
(18.35)

s = 2, K(Φ,Φ†) =
1

1 + ΦΦ†
+ ln (1 + ΦΦ†). (18.36)

obtemos trala eliminación do campo auxiliar:
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s = 1, L1
T =

1

(1 + uū)4
[(∂µu∂µu)(∂µū∂µū)− (∂µu∂µū)2]−(18.37)

− 2µ2

(
uū

1 + uū

)
s = 2, L2

T =
1

(1 + uū)4
[(∂µu∂µu)(∂µū∂µū)− (∂µu∂µū)2]−(18.38)

− 2µ2

(
uū

1 + uū

)2

...

é dicir, que anque partiamos dun modelo con termo cuadrático, unha vez

eliminado F o que obtemos é o BPS baby Skyrme con supersimetŕıa N = 2.

Das transformación de supersimetŕıa é posible obter unha ecuación BPS xeral

que so depende do modelo particular a través da forma espećıfica do campo

auxiliar, sendo a seguinte:

FF̄ = −∂iu∂iū−
√

(∂iu∂iū)2 − (∂iu)2(∂jū)2, (18.39)

e unha vez substituido F o que obtemos é:

(∂iu∂
iū)2 − (∂iu)2(∂jū)2 = (iεjkujūk)

2 (18.40)

que constitúe exactamente a ecuación BPS do modelo BPS baby Skyrme

que foi deducida diractamente da supersimetŕıa. Resultados análogos son

obtidos se se engaden campos gauge, e de novo, somentes das transformación

de supersimetŕıa é posible deducir as ecuacións BPS do modelo. No caso

gauge:

FF̄ = −DiuDiū±
√

(DiuDiū)2 − (Diu)2(Djū)2 (18.41)

D = ±εijFij. (18.42)

onde Di é a derivada covariante, Fij a curvatura da conexión correspon-

dente, F o campo auxiliar do multiplete quiral e D o campo auxiliar do

multiplete vectorial. Remarcamos de novo, que estas ecuacións BPS son

completamente xerais para supercampos quirais N = 2 acoplados a campos
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gauge abelianos N = 2. Se temos en conta que podemos reducir dimen-

sionalmente de 3 + 1 dimensions e unha supersimetŕıa a 2 + 1 e dúas super-

simetŕıas, e plausible extender estes resultados ó espazo ordinario polo que

estes modelos con supersimetŕıa extendida e dimensións baixas se fan aplica-

bles néste. En conclusión, este nestraballo realizáronse importantes avances

cara unha mellor comprensión das extensión supersimétricas de teoŕıas de

campos con termos cinéticos non lineares e en particular das que soportan

solitóns topolóxicos.





Chapter 19

Conclusións

Nesta tese estudiamos diferentes aspectos relevantes dunha grande clase de

teoŕıas de campos xerais caracterizadas pola presenza de termos con derivadas

superiores. Estas teoŕıas son frecuentemente denominadas teoŕıas de campos

K debido ó termo cinéticos xeralizado (kinetic term).

É coñecido que moitas destas teoŕıas conteñen solucións solitónicas, de-

bido a que en dimensións maiores que un, a presenza de termos cinéticos

superiores evita a restricción que impón o teorema de Derrick. Admais en

moitos casos, estas solución satisfan ecuación de primeira orde (solucións

BPS) e saturan unha cota topolóxica.

Neste contexto, unha posible primeira pregunta natural é determinar en

que condicións é posible extender supersimétricamente e en que condición as

devanditas solucións reaparecen coma estados BPS supersimétricos (invari-

antes baixo certa supersimetŕıa) na extensión supersimétrica, como acontece

nos casos estándar.

Un dos resultados fundamentais é que isto é certo para teoŕıas K en 1 + 1

diemensións e para modelo de Skyrme planar (baby) en 2 + 1.

Estes resultados atópanse materializados nas seguintes publicacións: En

[95], a extensión supersimétrica xeral para teoŕıas K é descrita en dimensións

baixas, mentres que en [96] son investigadas as cotas e ecuacións BPS aśı

como extensión centrais da álxebra supersimétrica. o resultado é que as en-

erx́ıas BPS están relacionadas coas cargas centrais (as solucións BPS son

estados BPS supersimétricos), a única diferencia é que dado o alto grao

253
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de non linearidade xurden varias solución BPS (as ráıces da ecuación de

primeira orde) coas súas correspondentes cargas centrais. En [99] é presen-

tada a primeira extensión supersimétrica N = 1 do modelo baby Skyrme e as

consecuencias de dita supersimetrización son analizadas. Finalmente, as ex-

tensións N = 2 con e sen gauge e a N = 1 con gauge do modelo baby Skyrme

son presentadas, ver [100]. Neste último artigo obtivemos como conclusión

que somentes o BPS baby Skyrme (que consiste en termo cuártico máis po-

tencial) pode ser extendido ate N = 2, é dicir, o termo correspondente ó

modelo σ, o cuadrático, é comido pola supersimetŕıa.

As solucións solitónicas das teoŕıas de campos K, son en xeral, moi difer-

entes das correspondentes das teoŕıas estándar. Pero baixo determinadas

circunstancias acontence sen embargo que unha teoŕıa K posúe os mesmos

solitóns coa mesma densidade de enerx́ıa que as de algunha teoŕıa estándar

(por estándar facemos referencia a modelos con termos cinéticos ordinarios),

neste caso falamos de teoŕıas xemelgas. Un segundo resultado relevante desta

tese é unha análise alxebraico máis profundos destes modelos. Concretamente

en [97] fixamos as condicións alxebraicas que han de verificar dúas teoŕıas

mutuamente xemelgas e en [98] estas condición son restrinxidas para asegu-

rar que ademais de compartiren densidade de enerx́ıa e perfil da solución,

compartan o espectro de fluctuacións lineais é dicir, que no caso de cuanti-

zación semiclásica entorno a un defecto, podemos afirmar que ambalasdúas

teoŕıas proporcionaŕıan os mesmos resultados.

No eido das teoŕıas xeralizadas en dimensións altas co seu inherente alto

grao de non linearidade, é a miúdo dif́ıcil atopar expĺıcitamente solucións. Un

posible método para atopalas consiste no uso de simetŕıas da teoŕıa para xeras

solucións. Un terceiro resultado desta tese é este uso de transformacións de

simetŕıa para a xeración de solucións de formas arbitrarias para un certo tipo

de modelos de Skyrme en 3 + 1 dimensions que soporta solitóns BPS e que

xa atopou certo aplicación na f́ısica das interaccións fortes. Concretamente

en [101] somos quen de determinar a cota BPS do modelo de Skyrme BPS e

explotar a simetŕıa baixo difeomorfismos que preservan o volume para atopar

diferentes solucións.

Brevemente repetimos areas de aplicación xerais dos resultados contidos

nesta tese:
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• Teoŕıas efectivas a baixas enerx́ıas (Modelo de Skyrme� QCD a baixas

enerx́ıas)

• Aplicación á cosmolox́ıa, por exemplo no estudio do periodo infla-

cionario.

• Teoŕıas derivadas de dimensións altas, por exemplo no escenario brane

world.

• Supersimetŕıa coma unha ferramenta fundamental na análise de teoŕıas

de campos non lineais.
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