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1. INTRODUCTION

Over the last decade remarkable progress has been made in understanding the
strong, weak and electromagnetic interactions. The most successful theory we
have is quantum electrodynamics, a theory for electromagnetism. It has been
tested to great accuracy. For example the prediction for the magnetic moment
of the electron is 1.0011596553 in natural units and experiment gives a value of
1.0011596524, both with uncertainties * 0.0000000030. Quantum electrodynamics
is a gauge field theory and may be derived from the requirement that electric
charge is locally conserved.

It now seems likely that the theories for the strong and the weak forces
may also be gauge field theories derived from the requirement of local invariances
under new symmetries. For the strong interactions the symmetry group is SU(3)
acting in the colour quantum number of quarks.. For the weak and electromagnetic
interactions the symmetry group is that introduced by Glashow, Salam and Weinberg
namely SU(2)xU(1) which contains charge conservation. Together the gauge
tield theory built on the symmetry SU(3)xSU(2)xU(1) has come to be known as the
"standard" model and its predictions are entirely consistent with all experimental
data.

If the strong, weak and electromagnetic interactions are separately
described by gauge field theories, it is natural to ask whether they are all
related. In grand unified theories (GUT) this idea is (realised by)
embedding SU(3)xSU(2)xU(1) in a semisimple group G (e.g., SU(5)) with a single
coupling constant TR The strong, weak and electromagnetic interactions are
then seen to be different facets of the same fundamental interaction based on a
field theory with local gauge invariance under G. The group G is spontaneously
broken at a scale MX to SU(3)xSU(2)xU(1) and the strong weak and electromagnetic
couplings are related to Y by radiative corrections. Remarkable the predictions
for these couplings agree with experiment provided the scale MX is very large
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(= 10'° Gev in SU(5)); the reason such a large scale arises is that the radiative
corrections needed to get agreement depend only logarithmically on MX' However
a large mass scale turns out to be essential for in SU(5), and in most GUTs, the
new gauge bosons mediate novel processes, in particular proton decay. To avoid

violating the current Tower bound on the proton lifetime of 0(1030 years) the

mass MX of these new gauge bosons must be > 0(10]5 GeV).

The appearance of such a large scale gives rise to a serious problem for GUTs,
the 'hierarchy" problem. In these theories the natural size for the weak inter-
action breaking scale Mw is O(MX) yet the actual value needed for Mw/MX is 0(10']3).
To achieve this parameters in the theory must be tuned to an accuracy of one part
in 1013, and no one has given a reason why this should be so within the framework
of SU(5). Recently there has been much interest in a generalisation of GUTs which
avoids this problem through the introduction of a new symmetry, supersymmetry,which
guarantees that Mw should be small. Grand unified theories with supersymmetry,
SUSY-GUTs, have been constructed and provide the first self-consistent GUTs. A
particularly interesting feature of these models is that they require a new set
of states, supersymmetric partners of the observed states, which must be
relatively Tight (O(Mw)) and should be observable with the new machines such as
LEP.

In these lectures I will discuss the status of GUTs and SUSY-GUTs. In
section 2 the successes and failures of the standard model are reviewed. Section
3 introduces GUTs and discusses the minimal SU(5) version. Section 4 discusses
the classic predictions of SU(5) and gives a critique of its achievements.

Finally section 5 and 6 discuss supersymmetric grand unification in the globally
supersymmetric case (SUSY GUTs) and in the locally supersymmetric case (SUGRA
GUTs).

2. SUCCESSES AND FAILURES OF THE STANDARD MODEL
2.1. The standard model

Building on the local gauge principle, gauge thecries for the weak, electro-
magnetic and strong interactions have been constructed. QCD, the thecry for the
strong interactions is based on the gauge group SU{3), which transforms the
colour quantum number carried by all strongly interacting particles. The
Glashow, Salam and Weinberg model of the weak and electromagnetic interactions
is based on the gauge group SU(2)xU(1) which transform weak isospin and hypercharge.
Together the SU(3)CxSU(2)xU(1) model, or (3,2,1) model, provides a potentially
complete description of the strong, weak and electromagnetic interactions. It
already has much experimental evidence in favour of it, as discussed in Professor

Okun‘s Tectures.
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The structure of the model is given by the Lagrangian density

+L

L3,2,1) ™ Lkin * Yyuk * Lscatar,

where the kinetic term Ly ;., describes the kinetic energy of the gauge and matter
fields and through the local gauge principle the coupling of the gauge bosons.
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where %— and %— represent the generators of SU(3) and SU(2) respectively,

and the kinetic terms for the gauge bosons involve the gluon field strength

A a _ a abc ,b ,c ~
Flo = %ﬁv auﬁj + g5f Au Al s a=1...8

and the W and B field strengths
wWoosawd Jawd o+ g dkmbm
uv nv vy 2 nv

=3B - 38, . (2.2)

Fermions appear to be grouped in three families (the e, u and T families)
with SU(3)xSU(2) content

(3,2) + 2(3,1) + (1,2) + (1,1) (2.4)

as shown in Fig.2.1
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LYuk describes the coupling of matter fermions to scalars in the theory. It
is needed to introduce masses tc the quarks and leptons, for the gauge interactions
of Lgjn preserve the chirality of quarks and leptons, while mass terms mix chirality.
For the minimal (3,2,1) model it is possible to give quarks and leptons mass with

a single doublet ¢.

0 +
AT ¢ " - ¢ "
Fruk S quark§ il 58l N Up +cyp (U5 kR
generations j,k - ¢o
+
4353500 i 2.5
* 1ept%ns dij(vi’zi)L(¢0) ij + h.c. (2.5)

generations i

When ¢° develops a vacuum expectation value (vev), <¢>, the terms in LYuk

generate quark and lepton masses. “Ii’ d% and 2; are mixtures of mass eigenstates
ujs di and Ei. In terms of these eigenstates the neutral currents all remain

diagonal but the charged currents coupled to the W bosons, in eq. (2.1), may be

written
9 ooz oA 4 -
L = —= (u, c, t)y" (1-yg)U[s]) W, + h.c. (2.6)
c.c. 22 5 b A
where the Kobayashi-Maskawa mixing matrix U may be written in the form
G 51€3 $1%3
U= =S¢ c]c2c3-szs3e16 c]c253+32c3eié
$98; ~c152c3—c253e16 —c]szs3+c2c3e]6 5

(2.7)

where c; = cos 85 55 = sin 8; and 05 and § are arbitrary.
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Finally there is the lagrangian density describing the interaction of scalar
fields to trigger spontaneous symmetry breakdown

_ __1,2 41 2,2
Lscatar = V(#) = - 22 lo™ + 2 "ol (2.8)
giving
2
<2 = i
2)2 (2.9)

After spontaneous symmetry breakdown, wt and z acquire masses while the
u U
photon field AI remains massless

Yo *i
Al = Bucosew + wus1new R

1
3
R ed (2.10)
ZU Bus1n Bw + N“coseN ,
where
g
tan 8,, = —l N
W
92
9192
C (q2salr1/2
(9]+92)/
My = 37.3 Gev
sinew
MZ = Mw/cos By
2 2
M =2 . .
p = 2 (2.11)
The neutral current coupling is given by
7 _ 5. .2 i
JU = ?"LYU(T3 - Q sin ew)wL
+ Tyly (-q sine 2.12
S¥RY W (2.12)

and T3 is the third component of weak isospin (T3 =t EJ.
L
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2.2. Successes of the standard model

The theory described above with the multiplet structure summarized in fig.2.1.
has an impressive 1ist of successes.

(1) It is renormalisable and perturbatively unitary. As a result the
theory may be used beyond the tree level to predict to arbitrary accuracy (limited
by the endurance of the calculator and the convergence of the perturbation series)
all but a finite number of quantities - those quantities being the fundamental
parameters of the theory which require renormalisation. The perturbative
unitarity of the theory means that an amplitude calculated at a given order in
perturbation theory has good high energy behaviour and does not violate unitarity
bounds. That this is so is highly nontrivial for it comes about as a result
of cancellation of graphs which separately are much larger than the final
amplitude. For example in vV - whw” good high energy behaviour is arranged
by a cancellation with s channel Z exchange, see Fig.2.2(a)
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Fig.2.2:Graphs contributing to £F-W'W".

Each term separately grows like s in cross section but there is a
cancellation because their contributions are proportional to (LaLb)
b

ij
(L La)ij - if abcLCij’ and this term vanishes in gauge theories because the LS
form a Lie algebra with structure functions f. However there is still a
residue violation of unitarity like 5 which is only cancelled by the scalar
(Higgs) exchange of Fig.2.2(b).

Obviously this cancellation will not occur until energies above the Higgs
mass, and if unitarity is not to be violated this imposes the condition on the
Higgs mass my

< 1 Tev . (2.13)

mH’\}

O0f course if this condition is not satisfied unitarity does not break down,

but it is achieved only through higher order perturbative terms becoming large,
i.e., the alternative is a breakdown of perturbation theory.
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(2) The strong interactions (QCD plus quark mass terms) automatically
conserve P, C, and strangeness. There is an approximate chiral symmetry
which may be realised nonlinearly. This can only occur in a theory with strong
forces mediated by vector gluons, an interaction which preserves the fermion
chirality. The theory is asymptotically free allowing for explanation of the
observed near scaling in large momentum reactions.

(3) The low-energy weak interactions are well described by the currents
following from eqs. (2.1) and (2.6) with a single parameter ew relating charged
and neutral current phenomena

. 2 - +
sin e(Mw) © 0.215 T 0.015 (2.14)
(Here sinzais corrected for the predicted radiative corrections of the
model).

The recent discovery of the W is consistent with the (radiatively
corrected) predictions

My =831 7T Gey

-3.8
W . 93.9 725 ey (2.15)
i 2.2

2.3. Limitations of the standard model

Although the standard model has many impressive successes it falls short
of a complete theory of the strong electromagnetic and weak interactions for
several reasons.

(1) There are too many parameters (mainly connected with the Higgs
sector) needed to describe the standard model. The model of eqs. (2.1)-(2.7)
has seventeen, six quarks and three lepton masses, 3 mixing angles and a phase
parameterising CP violation, three gauge couplings and two boson mass scales MN
and M¢. There is a further parameter 6 which describes potential strong
violation of CP which, it has been realised, must be included due to the
anomaly in the axial vector current. There must be added to the (3,2,1)
Lagrangian a term

S (2.16)

L = ——
] ] )
where 32"2 0wy "2
pavoo 1 wvptgd (2.17)
a 2 pT
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This term violates CP and in order to be consistent with experiment eOCD
must be less than 10-9. It is possible to modify the standard model By
adding a further Higgs doublet to replace the ¢* term in eq. (2.5) which
generates up quark masses. Then one may show eQCD is zero automatically,
but the model then predicts a light pseudogoldstone state, the axion, which has
not been found experimentally.

(2) There is no reason why the matter multiplet structure chosen for the
standard model in Fig.2.1 should be as it is. Also there is no understanding of
the family replication.

(3) Charge quantisation is not explained as Y in eq. (2.3) is arbitrary.
The relation of quark to lepton charges is also not understood. Also we do
not understand why the charged weak interactions should be left handed for both
quarks and leptons.

(4) There is no explanation of even the gross features of the mass
spectrum.  Why are quarks and leptons much lighter than the W and Z?  Why
are families different in mass, and what relates quark and lepton masses?
Neutrinos are massless because one excludes right handed neutrinos, but why
are neutrinos different in this respect?

For many people these limitations suggest that the (3,2,1) model is only
a step towards a more fundamental theory and that at best it is an effective
theory valid up to a scale MX at which the underlying theory that will
answer the above questions appears.

There are two main possibilities for this underlying theory, if it exists.
The first is that some or all of the fields of the standard model may be
composite and there is some more fundamental level of structure. The second
is that the fields of the standard model are themselves fundamental, but they
are related by further symmetries, broken at the scale MX. The Tlatter approach
leads to grand unified theories (GUTs) and to supersymmetric theories (SUSY-GUTs),
and are the subject of these lectures. In GUTs the additional symmetries are
gauge symmetries based on larger Lie algebra than SU(3)xSU(2)xU(1) which may
relate particles of the same spin. In the ideal GUT all the fundamental fields
of a given spin will belong to a single irreducible representation of a gauge
group G and hence their interactions will also be related by the (gcauge)
transformations of G.  In SUSY-GUTs the additional symmetry is based on graded
Lie algebra which may relate particles of different spin and ideally may relate
all matter particles and all interactions to the fundamental gauge bosons and
gauge interactions. How far along this road it is possible to proceed we will
discuss in the following sections.

3. SU(5) - THE PROTOTYPE GUT

We turn now to the construction of a complete Grand Unified theory (GUT for
short). Our approach is to apply the rules used in the building of the
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standard SU(3)xSU(2)xU(1) gauge model, but this time for a simple group G with
a unique coupling constant g. The steps in this program are

(i) Choose a suitable gauge group G. This, through the requirement of
local gauge invariance, specifies the spin one gauge bosons in the model.

(ii) Choose the fermion representations so that the standard SU(3)xSU(2)xU(1)
low energy structure emerges. The coupling of these fermions to the gauge
bosons is now specified by local gauge invariance.

(iii) Choose scalar representations and scalar couplings to give a
phenomenologically acceptable pattern of symmetry breaking of G down to
SU(3)xSU(2)xU(1).

(iv) Specify the Yukawa couplings in the theory, ensuring that an
acceptable pattern of fermion masses results after spontaneous breakdown.

Applying these rules to the simplest possible model gives the minimal
SU(5) theory originally proposed by Georgi and Glashow. In this chapter we
will study this model in detail because it contains much of the structure
found in a general GUT, and because its phenomenological implications have been
extensively studied. Indeed it is only in the minimal model that such
predictions may be made precise and though there is no 3 priori reason why the
simplest model should be realistic the success of the very simple SU(3)xSU(2)xU(1)
structure in describing lTow energy phenomena is an encouragement to study its
minimal Grand Unified extensions.

3.1. The choice of the gauge group G

The standard model SU(3)xSU(2)xU(1) has four diagonal generators
corresponding to T3 and Ycof colour, T3 of weak isospin and Y, and the observed
states carry definite values of these quantum numbers. Any group G
SU(3)xSU(2)xU(1) must be large enough to contain these four diagonal generators,
i.e., it must be at least rank 4. We know that there are only a finite number of
groups with the minimal rank 4 which is either simple or is the product of
identical simple factors and SU(5) is the only rank 4 group which contains
SU(3)xSU(2)xU(1) and can accommodate the spectrum of Fig.2.1.

3.2. The generators and gauge bosons of SU(5)

SU(5) is defined by its fundamental representation, which is the group
of 5x5 complex unitary matrices with determinant one. There are 25 independent
real 5x5 matrices, i.e., 50 independent complex matrices U. The unitary condition
UU*=1 and the unimodular condition det U = 1 give 25 + 1 constraints leaving
the 24 independent matrices defining SU(5). U may be written in the form

24 4
U=-exp(-iZ BL), (3.1)
j=1
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where the 24 generators Li are Hermitian (ensuring UU+=1) and traceless

(ensuring det U=1).

The transformation of an arbitrary representation of

SU(5) may be described in terms of L' and it is useful at this stage to choose

a convenient basis for L allowing us to identify the 24 associated vector bosons,

vff]"-”, of SU(5).

We choose the 5x5 matrices L such that the colour group

SU(3) acts on the first three rows and columns, while the SU(2) group operates

on the last two rows and columns.
of SU(5).

Tr‘[La, Lb] - 2520

we have

0 0
00t , ..
0 0}; (generators
00
0

This gives the SU(3)xSU(2) subgroup structure
Thus, for generators normalised such that

(3.2)

=1...8

of SU(3)) ,

where A2 are the usual Gell-Mann Zweig matrices acting on the colour indices.

va=1..8
u

Here g, , are the non diagonal Pauli

Wt of the standard model.

In addition to the two diagonal generators L3 and L

are the gauge bosons of SU(5) which are to be identified with the gluons.

(charged
generators

of SU(2)). (3-4)

Lovstivioy are the

V2

spin matrices. Then

8 of the colour group

SU(3) there are two further diagonal generators of SU(5) which may conveniently

be chosen as proporticnal to the third component of weak isospin and the weak

hypercharge
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Vl1and Vlz are the weak gauge bosons Na and Bu respectively. Finally there

are the twelve additional Hermitian generators of SU(5) which do not
correspond to any of the generators of SU(3)xSU(2)xU(1). These are represented
by the matrices L13 ...L]8 and L]8...L24,where

B 1 0] - -0
0 0 0 0 0
L13 - 0 0 , L14 - 0 0
1 00 0 0
0 00
i oo 1 @
- ~ - -
0 1 0 -i
0 0 0 0 0 0
L9 o o %= 0 0
0 0O 0 0 O
0 : 0
J 00 | | i 0 0 J
and the others are obtained by putting 1 and *i in the same pattern.  The
associated vector bosons V3=]3"']8 and Vi=]9"'24 are the twelve new gauge

bosons needed in SU(5). They are called X and Y bosons.

In order to calculate the SU(5) gauge invariant interaction we will find
it useful to define the 5x5 matrix Vu by

2
-1
1, -1 % aa, .
Zv“ 2 §=1V“L (3.7)
In terms of the vector bosons introduced above we have
- -—
= -1
6l- &8 6 6 X! Y
V30
62 - B ¢ X2 v
1 2 /30
‘ ' 3 3.8
63 63 63- B X3 Y (3.8)
V = 3 /30
i
3
W 3B +
X X X W2,38
! 2 3 /2 /30
3
Y Y, Yy Wo- W, 38
- /30 /30

we have suppressed the vector indices for clarity.
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i 21[1 2.y - 3 1 i 2 Yo
eq. . = = o d B
The G are the gluons of eq (2.1) G2(601) = 5 (A, + W7 )ete wu,wu an

are the gauge bosons of SU(2)xU(1), again appearing in eq. (2.1). The new gauge

bosons X:; i =1,2,3 transform as colour antitriplets and carry charge +§.

The new gauge bosons yi; i=1,2,3 also transform as colour
u
antitriplets and have charge + %, They, together with their antiparticles X;
and YL make up the 12 new gauge bosons of SU(5).

Now the gauge invariant kinetic energy term generalising eq. (2.1) is

21 acuv
Lgin = 2 Fuv o (3.9)
. uv
=3 Tr(FU\)F )s
where
i_ i_ig i k _(,a
(Fui = 3,005 = 2 V)] - (uv). (3.10)

3.3. The choice of fermion representations

As discussed in the appendix,we may choose to write the fermions f in terms
of either their left and right handed components fL and fR, or in terms of states

of a definite helicity f, and ff (or fR and f;). Here fC is the charge
conjugate spinor € =cf . In constructing a GUT the fermions in a

representation of the grand unified group G are all of a single helicity and for

this reason it is useful to work in the basis with fermions of definite helicity.
The simplest representation of SU(5) is the five dimensional fundamental

one w5, which may be represented by the column matrix

1
2
). (3.11)
a
5

<
[E,)
(
[-TH - S - VI - TR -1

The covariant derivative of Vg is easily written down using the matrix
representations derived above

S5

(op5)" = [o,8) - 2 8 v (3.12)
a=1

sl -9 1,3
[ausJ s (vu)J] vl
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Remembering that the SU(2) generators operate only on rows 4 and 5 we see
that ay, 3y and aj are unaffected by the operation of the generators of SU(2)
and are thus singlets under SU(2). However from the definition of the generators
L2 given in eq.(3.3) we see that a,, ap and a3 form an SU(3) triplet. Similarly
we easily see that the last two entries ay and ag are SU(3) singlets and SU(2)
doublets. Putting this together we have the result.

= (3,1) + (1,2) under SU(3)xSU(2). (3.13)

If we now refer to the Fig.(2. 1), we see that, for the first family, the (3.1)
can only be identified with quarks q', either dR or uR while the (1,2) must be
identified with the ( )L doublet. Using our freedom to rewrite left handed
states in terms of the1r right handed charge conjugate states we have

o 0 o
W N

Vg = . (3.14)

®a

(o]

The final identification of the quark states follows from the fact that if
SU(2)xU(1) is embedded in SU(5) the photon, which is a combination of the gauge
bosons of SU(2)xU(1), is a gauge boson of SU(5) and thus the charge operator
Q must be identified with one of the traceless generators of SU(5). For the
multiplet be the traceless condition requires

Q) =30, +Q  +Q =0 (3.15)
e \Y)

Here we have written the charge of the quarks q; as Qq. It is the same for
each a3 since they form a colour triplet and the charge operates commutes with
SU(3)C. Then

e, (3.16)
where e is the charge on the electron. Thus the quarks q; must be identified

with the down quarks di s giving finally
R

Vg = a7 = (3,1) + (1,2) of SU(3)xSU(2). (3.17)
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We may now uniquely identify the charge operator

0

1
3

L“+%§ L2 (3.18)

this being the only combination of generators of SU(5) which can give the charges
for the particle assignments in ws.

The coupling of the gauge bosons to the 5 of fermions is given by the gauge
invariant kinetic energy term

5 _ = M i
LKin = 1W5iY (DUW5)
i .
105 ¥(3,%5 - i ()3 (3.19)

Already some of the beautiful features of SU(5) are evident. The charge
is quantised as expected but as a bonus we find the prediction that quarks must
carry third integral charges because quarks come in 3 colours (giving the factor
3 on evaluating the trace in eq. (3.15)).Moreover we found that the right handed
SU(2) doublets of leptons must be partnered by a right handed SU(2) singlet of
quarks (if we had tried to build g using a left handed SU(2) doublet of leptons
the charge condition eq{3.15) would have been impossible to satisfy with
triplets of quarks). This means SU(5) predicts that right handed quarks are
SU(2) singlets in accord with experiment.

What about the assignment of the remaining quarks and leptons of the
standard model shown in Fig.(2.1). We may build further representations of SU(5)
by taking products of the fundamental 5. The simplest possibility is to take
the product of two 5s. This gives

5x5=10 + 15. (3.20)
The 10 is the antisymmetric product w1J,where xW - 7%— alad - ada 3 i, =1...5
.. (3.21)
and a' aJ are components of the two 5s in eq(3.14). We have just seen for

i,j =1,2,3, a' and a% transform as (3,1) under SU(3)xSU(2) and thus this
product contains the product of two (3,1) representations. The antisymmetric
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product of two SU(3) triplets is a 3(3 x 3 = 6 + 3).  Thus X1J,i,j =1,2,3
transforms as (5;1) and must be identified with the l1eft handed uE quarks.

This may be written as

c 1 id. s .
U, =-—g, .. aa’; i, j, k =1,2,3 (3.22)
kL /2 kij
and so multiplying by ek1 3" and using the properties of the totally antisymmetric
matrix 19K we find
IR (3.23)

L
XJ4(XJS) represents a colour triplet which has the third component of
weak isospin 3(-1), being the product of (3,1) x (1,2) representations. Thus
we identify

xi4 - 1, 2, 3, (3.24)

(s 3
x35 (dj)L; j=1,2, 3.

Finally w45 is clearly a singlet under SU(3)xSU(2) because it is the
antisymmetric product of two SU(3) singlets, SU(2) doublets. It thus neatly

accommodates the last remaining state of the lowest family namely the e+L.
Putting all this together in matrix notation by the ten dimensional
.. i_ 1y
representation is (X;n) 1 = — X

c (4 1 1

0 us -uy u d
[¢ (o 2 2

-ug 0 U u d
X]O -1 ut -u]C 0 o3 ¢
" ? 2 3 + (3.25)
u u u 0 e
a' 2 @ et o
| b

= (3,2) + (3,1) + (1,1) of SU(3)xSU(2).

It is now straightforward to write the gauge invariant kinetic energy term for
the 10 dimensional representation

10 . i ik
L - T M T vy xdn -

kin T 1 Kok Y (38 WZ9(v)5) o (3.26)
By construction of the SU(3)xSU(2)xU(1) properties of the fermions in ws

and X]O are in accord with the standard assignments of Fig.2.1. It is a remarkable
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fact that a single family fits neatly into the fifteen states available in the
5 + 10 representations.

Finally the two remaining families of Fig.2.1 are assigned to two copies
of 5 + 10 representations.

3. 4. Fermion interactions in SU(5)

Having assigned the fermions to multiplets of SU(5) the couplings of the
gauge bosons are defined as in eqs. (3.19 and 3.22). By construction the gauge
couplings of the SU(3)xSU(2)xU(1) bosons are as given in eq.(2.1).

The coupling of the neutral fields Nu and Bu to matter is determined in
general by the covariant derivative

PR P B B 12
Du = Bu 1g(qu + BuT ) (3.27)

where T]] and T]Z are the representations of the generators L]] and L]2 for
the matter representation. (As in eq.(3.19) for Yg or eq-(3.26) for X]O)'

We may, using eq.(2.10), rewrite this in terms of the photon Au and the neutral
weak boson Zu'

B . . 1 12
Du = BU-1g»[(s1n6wT + cosf, T )Au

+ (cosewT]] -sinewT]Z)AJ

. (3.28)
=3 - 1[eQAu + 90,2,
the charge operator is defined by eq.(3.18)
1 .M 5 12
= T H= L%y, 3.9
Q Vi ( 3 ) ( )
Using this in €Q.(3.24) gives
tan,, =/§; singy, =’/§ (3.0
and
g_ 2
5 = xg e. (3.3)

Such a prediction for sinzew is expected since it is (cf.eq.(2.11)) related
to 9, and 9, and in SU(5) these are both related to the single coupling g.
However the value is clearly inconsistent with the experimental result. This
appeared disastrous for the SU(5) model until Georgi, Quinn and Weinberg realised
that this prediction applies at a scale My at which SU(5) is a good symmetry and
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that it must be corrected when comparing with (tP ?1030yrs) imposes a stringent
1imit on the mass of the baryon number violating X and Y bosons. As we will
discuss a proton lifetime of 1030 years corresponds to an X or Y boson mass

of 0(1015 GeV). Thus SU(5) Grand Unification requires the appearance of a scale
for new physics ]0]3 times that of the W and Z bosons responsible for the weak
interactions. In the next section we will discuss how this may come about as a
result of spontaneous symmetry breakdown.

3.5. Spontaneous symmetry breakdown of SU(5)

In order to achieve a phenomenologically acceptable model it is necessary
to break SU(5) in two stages

My My
SU5)> " SU(3)xSU(2)xU(1)+ " SU(3)xu(1) - (3.32

Other possible breaking sequences are possible, for example SU(5) could
first break to SU(4)xU(1), but this does not happen for the simplest choices of
scalar potentials.

With this pattern of symmetry breaking at the first stage the X and Y bosons
receive a mass of order My leaving the other twelve gauge fields of SU(3)xSU(2)x
U(1) massless. The second stage gives mass of order Mw to the W= and Z bosons.

The first stage of breaking is achieved through an adjoint (24) of scalars &, -
The coupling of gauge fields to & is given via the kinetic Lagrangian
28

1.
Lgin = F

: (0,2) ; (0,2, » (3.33)

a=

where the covariant derivative is

a a
Dr=pc%+ig [Va L, ;] ;0L oz Z L e (3.36)
1 1 WP
Z _ + piie

and Lyin = Tr BD“z) D “] . (3.39)

We may now easily discuss what happens when i develops a vacuum expectation

value. Through the kinetic energy term Lkin

matrix for the vector fields of the form

and using eq«(3.11) we find a mass

Lotrr [v y] 2 (3.36)
-l yayls by
m abVLV

where <> denotes the vacuum expectation value of &.

If, as a result of & acquiring a vev, the X and Y bosons are to receive
a mass while the remaining bosons remain massless the form of <Z> is restricted
to be diagonal
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=1

<> = v -y e (3.37)

o o o o
o o o = o
o o —~ o o
orviwo o o

NvNiwo o o ol

- —

Because <Z> is chosen to be proportional to the unit matrix in the subspace
of SU(3) (row and columns 1 to 3) and in the subspace of SU(2) (row and columns
4 and 5), it is clear that the only non-zero commutators of L% with <z> are

for La:]3"'24, and hence only X and Y get masses.

Using eq-(3.36) we immediately find
2 2 25 2.2
my = my =g 9V (3.3)
The second step in building the scalar sector is to construct a potential

for £ which leads to the desired vev. This should be the most general form of
scalar couplings of dimension <4 consistent with gauge invariance and, possibly,
invariance under additional discrete symmetries. A1l such terms are needed to
build a renormalisable theory. The possible gauge invariant quantities involving
the £ field are easily formed by taking the trace of powers of . Hence

LB = e () = -lTrEd) + % a[Tr(Zz)] z, % bTr(s%).  (3.39)

In this equation we have dropped a possible cubic term by imposing a
discrete symmetry under £ +<.  This simplifies the potential and the subsequent
analysis for minima, but is not essential in constructing a suitable potential.

V(z) has a unique minimum with = = <Z> of eq.(3.37) provided b>o0,
pz > 0anda> (- é)b. Assuming this to be true v is found solving the equation
2 _ 15 .2 .17 2,
ut o= av +E bv (3.40)

Thus the introduction of an adjoint representation £ allows us to break
SU(5) to SU(3)xSU(2)xU(1) as desired. The second stage of breaking, the
electroweak breaking of the standard model requires the introduction of a Higgs
field with components transforming as a doublet under weak SU(2). The simplest
possibility is to introduce a 5 of Higgs H.  From our discussion of section
(3.3) we know H has the form

H o= n3 = (3,1) + (1,2) of SU(3)xSU(2). (341)
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We now, introduce the potential
V(H):-JZvZH2+%>\(H 82 .32 5 50. (3.42)

This drives a vacuum expectation value for H5 which, for the moment, we
assume to be along the neutral direction

5

< (H)?>=<-h">=v_ > (3.43

-}

where

(3.44)
This will induce the desired pattern of SU(2)xU(1) breaking with
(3. 45)

There are, however, two problems with th1s potential. The first is that,
to Of O), the colour triplet of Higgs fields h' rema\ps massless. It is obvious
that ¥(H) can only give masses O(Mw) to h' and to 0(— 9 )
these fields are not '"eaten" by the Y1 gauge bos&%s. However, these
triplet Higgs fields have baryon number viéﬁations couplings to quarks and leptons

and will mediate proton decay far too fast.
The second problem is that we have not allowed cross terms coupling the H

and ¢ fields. Even if we try to omit such terms they will be induced by

radiative corrections, which, moreover, are divergent. Thus without the cross
terms in the original Lagrangian to act as counter terms the theory has unregulated

divergences and is nonrenormalisable. If we add all gauge invariant cross terms
of dimensions <4 to avoid this we find a potential

V(EH) = a W Tr(z?) + dmlH. (3.46)

Actually these terms give a mass to the triplet Higgs fields
m.=-Esv2 (347)

which is O(Mi) and consequently reduces Higgs mediated proton decay to an acceptable
level. Thus the terms of eq.( 3.46) solve both of the problems discussed above.

Now egs.(3.40) and (3.44) which determine v and v, are modified by the new terms

of eq.(3.46). They become

2 _ % _2 7.2 2 .9 2
wes av® + 2 bv® + avo + 3 Rv 0 ’ (3.48)

2 _ 1,2 2 9 2
= —avT o+ 15avT + (£ - 3€)pY
Y 5 0 (2 )8
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Note that for B-ve (as required by eq.(3.47)) the potential now favours a
vacuum expectation value for H along the 4,5 directions rather than along the
1, 2, 3 direction. This is as desired and the resulting vacuum expectation
value may be rotated into the 5 direction as in .eq.(3.43),

However a new problem arises because of the cross terms in eq.(3.46).
When £ acquires its large vacuum expectation value of order V these terms
generate contributions to the mass of the doublet fields in H5 of order V.

In order that the net doublet mass is of order vos with ;Qard a.,10-12, so that
the vacuum expectation value of h° can also be of order Vo» tﬁere must be a

delicate cancellation between the various mass terms. Thus ineq(3.48) we need
¥ - (150 8) v2 = 3 avh = 010782 (349)

Even if this cancellation could be arranged at tree level, radiative
corrections discussed above 2 will re-introduce the problem
generating a mass for Hg of order%%ﬂv; the relation eq.(3.49) must be valid with
the renormalised (running) parameters v, o, B, and v evaluated at a scale
corresponding to the minimum of the potential. The difficulty in explaining the
origin of this delicate and unnatural cancellation is known as the hierarchy
problem. We will return to a fuller discussion of it later.

If we accept this cancellation the terms of :eq{340), (3.42) and (346 )

provide a completely acceptable potential which generates the desired pattern of
symmetry breakdown of eq.(3.32).

3.6. Fermion masses in SU(5)

The left handed fermions in SU(5) transform as 5 + 10. As discussed in
the appendix , fermion masses involve the product of two left handed fermion
fields, so the representation content of these masses is obtained from the
product (5 + 10) x (5 x 10). We have

5x10=5+145
10 x 10 =5 + 45 + 50
and
5

S x5 =70+ 15. (3.50)

A mass term in the Lagrangian must be gauge invariant so clearly, as in the
standard model, there can be no bare fermion masses for there is no singlet
component in these products. Masses will only arise via spontaneous breaking
through gauge invariant couplings of these fermion products to Higgs scalars, and
the form of these masses will depend on which scalars are present. Let us first
discuss the pattern of masses in the minimal model with only the 5 and 24 of Higgs
scalars needed in section 5.5 to break SU(5) to SU(}ka(])em. None of the
products include a 24 so the adjoint Eg does not couple to fermions. As a result
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the scale for fermion masses is O(Mw) through their coupling to H and not O(MX)
which would be quite unacceptable. The possible Yukawa couplings to H are

- (I D aBg+_ 1 TR~y _v&,&
L (wRi)u Miafe 7 Spyadls My gH * hec (3.8

Here i and j are generation indices and a,B,y,8, are SU(5) indices. When H develops
a vacuum expectation value as in eq{3.41) it will generate down quark and charged
masses through the term proportional to MD and up quark masses through the term
proportional to MU.

We may assume MD has been diagonalised by unitary rotations in flavour space
of the fermion fields

V] —r[U Y/ H > U]"X . (3.52)
R; HER R; XLi PARN Lj
Then we obtain the masses
D
my=m, = M]]voa

D
m_ =m - M22V0
(3.53)

§

D
my = m. = M3qvg0

These predictions must be corrected by radiative corrections and we discuss
these in the next section. Up quark masses come from the term involving MU, but
because there are right handed neutrinos, and hence no neutrino masses, there are
no further relations between quark and lepton masses.

3.7. Mixing Angles in SU(5)
The general structure of the fermion mass terms found above is

- d -+
Lp = UM’y - M - eRMeet +h.c., (354)

where for the general Higgs structure the mass matrices Mu, Md and M® are arbitrary
Nngg matrices. For the minimal Higgs structure zith gust a 5 and 24 (or indeed
for an arbitrary number of 5) we saw above that M~ = M~ and also, since X occurs
twice in eq{3.51koupled by the totally antisymmetric tensor, MY is symmetric in
generation space My = muT,

As in the standard SU(3)xSU(2)xU(1) model, when these mass matrices are
diagonalised and the theory is expressed in terms of mass eigenstates mixing angles

and phases appear in the interactions. It is clearly important to establish
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whether the mixing angles relevant to proton decay are related to the Kobayashi-
Maskawa angles in the standard model.

We first form diagonal masses MDd, MDe and MDU by unitary matrices UdL, Ud
UeL, UeR and UuL respectively where

d iy d
p = UG (3.55)

R?
M

The mass eigenstates d L,R? eL R and uT R are given in terms of the current
eigenstates by

d vd d™ o etc. (3.56)

LR~ L R"L,R

To exhibit the effects of these rotations on the interactions in the theory
it is convenient to introduce a shorthand notation for the fermion representations
in which the colour index is suppressed. Thus for the first family

(3.57)

Here the SU(2) doublet partners are grouped in a submatrix while the singlets
occur on their own. The X and Y bosons couple fermions in different submatrices.

The rotation of eg(3.56) now, for example, transform Ug s the 5 representation
of the first family, as follows 1

d T
“*51 = e = Ug am (3.58)
Va R Ve R,

where now é" and d" are column vectors in generation space with the charged
antileptons and down quarks as elements respectively. For massless neutrinos we
may redefine the neutrino fields Ge = UEGE etc.so that

v ug "
vs = Uy " (3.59)
-Ug R,
-t
We are free to pick a basis USWS in which éT are diagonal and define new

unitary matrices Ad UR Ug so that the representations involving mass eigenstates

may be written



5: & (3.60)

and similarly in a basis in which dL are diagonal
i

C
Jboalt AT d"

(3.61)
10 : AY M ACe

Now for the Tow energy SU(3)xSU(2)xU(1) structure only the entries involving
doublet states are relevant since the neutral currents are unaffected by this
rotation and the charged currents involve only the doublet states. Thus
from eqgs(3.60) and (3.61) we see that only AE is involved for the weak currents
connecting the U s dL doublet fields.

In diagonalising the mass matrix eq(3.48) there is an arbitrariness
corresponding to W KwL . wR~»K*wR,where K is a diagonal matrix

eia] 0
K = ‘ AL . (3.62)
oy
N
0 e Ny

Thus by using this freedom for the u and dL quarks we can always rewrite

AY in the form
L AU * U

L"KdLALKut (3.63)

We now choose Kd and Ku such that we remove the phases from the first row
and column of AE L

id
e n 0
i¢
K: = e 12 .
L 1¢
0 e TNg (3. 64)
¢
e n 0
i
Ku - e 21 .
L 1dNga
0 e 9



The resulting matrix is in the form of the standard Kobayashi Maskawa matrix
of eq(2.7 )

*

KgAKy = Yk (3. 69
and so finally the representations have the form
Ay " T CEA Uyggt" &
5 & 10
Uy R umu"‘ ALéé
& (3-66)

with new unitary matrices AE+and Ag+and Ag. Clearly now the standard model
SU(3)xSU(2)xU(1) charged and neutral gauge interaction of section (2) are
recovered. However the new interactions of the X and Y bosons involve the new
matrices Aﬁf A;+ and Ag. One could even choose them so that, for example, the u
and d quarks occur in multiplets only containing the T lepton. In this case
proton decay could not occur at tree level since the proton is too light to decay
toaT. )

In the case of the minimal modg], however, we have the constraints on the
- M, e+

mass matrix M3 which imply U8 o = U = 1 (in the basis of eq(3.60). Also

MY = MUT implies it can be diagonalised by a unitary transformation. Thus
*
oY =yt up to the phase ambiguity discussed above, i.e., AY = Akt
L R R L up
So in this case the SU(5) multiplets are
m * c m
d UKMK uLum UKMU dy
5 &m 10 |
A U" : J(3.67)
d" L

In this case the interactions of the X and Y bosons with fermions are
described in terms of the Kobayashi-Maskawa matrix plus the (N_-1) phases, extra
sources of CP violation observable only in nucleon decay processes. Note
that in this case we do not have the freedom to rotate away proton decay.

4.  THE CLASSIC PREDICTIONS OF GRAND UNIFIED THEORIES

In this chapter we discuss the prediction of grand unified theories for
gauge couplings, quarks and lepton (including neutrino) masses and proton decay.
We will concentrate on the predictions of the minimal 'SU(S) model since these
have been most fully worked out. Many of the qualitative features remain the
same in most Grand Unified theories,
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4.1. Gauge couplings

In the previous sectiog we derived the relations
.2 _3_ 9
sin == . (4.1)
W 8
91497

I

In addition we have a relation for the strong and weak couplings 93 and 9,

939, =9 (4.2)

These results are phenomenologically unacceptable, the strong coupling 93 being
much bigger than the weak coupling constant 9, and sinzew = g. It was the
realisation however of Georgi, Quinn and Weinberg that the above predictions apply
at a scale O(MX) at which SU(5) is a good symmetry, and that in comparing with
experiment it is necessary to include radiative corrections to continue the
coupling and masses to a scale O(1 GeV) at which laboratory measurements are

made. That this is a possibility follows from the calculation of these radiative
corrections which gives for the evaluation of the effect couplings of the
SU(3)xSU(2)xU(1) model below MX‘ We know that the renormalised couplings depend
on the energy scale E at which they are measured through calculable radiative
corrections

M
1 1 X
=Ll (ang-33) I 4
ag(E) %gu
.2 M
SR (R B | (4NG-224%) N2y v (4.3)
L
o,(E)  ®Im el
2 M
1 X
J =1§' 257%_1 21 ‘g (4NG+.[3U)1n(r) .
ap(E) “1m %6y
9
where NG is the numberzof generations, oy = ,l,, and 4Gy is related to the single
4

; =g
SU(5) coupling Yoy T T

We see that the couplings of SU(3) and SU(2) decrease with increasing energy
(corresponding to the asymptotic freedom of nonabelian gauge groups) wnile the
U(1) coupling increases. Moreover the negative coefficients of the log term of
eq(4.3) is larger for SU(3) than SU(2) so thaf Gy falls faster than oy The
result is sketched in Fig. 4.1 and shows that even though oy is initially larger
than oy and o it will eventually become equal to them at some large scale MX‘
Eqs{4.3) contain one unknown parameter MX which may be determined in terms of
a3 and oy, via a combination or these three equations. Then it may be used to

make a prediction for the third coupling (or more conveniently sinzow),

M,
s . 3 =3§11] n_X. 2

Segn () Saz(u) 30 u

M
»osinda ) =3 (1 -3 U—X). (4.4)
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1 102 105 Q(Gev)
Fig 4.1. Behaviour of the (3,2,1) couplings with energy.

These lead to
M, = 1 exp 30 3 _ 3
X 207 50Lem 1) 50L3hi)
2 x 100 Gev
. 2
and sin~ 8(u) = 0.21.

The reason such a large scale emerges fo]]owaxfrom the fact that the
evolution of eq{4.3) is only logarithmic so that — is exponentially related to
the coupling constant differences. This is a re%arkab]e result for, as we saw
in section (3.4) it is also crucial that this scale should be large to inhibit
proton decay mediated by X and Y bosons. The agreement of sinzew(u) with
experiment is also impressive, particularly as the initial value -of 3 was in
clear disagreement. These two facts, more than any others, encourage us to
believe that GUTs have something to do with reality.

A more careful analysis, including threshold effects and higher order

corrections gives for 50MeV < Aﬂg <500 MeV (4.5)
M, = 3.6{%33 x 10" Gev for M, = 20 Gev
2, +0.016
and sin"6, = 0.206_0.004 (4.6)

4.2, Quark and lepton masses
In minimal SU(5) we derived the relations

Mg=Mg 5 M=, 3 mp=m .

As was the case for gauge couplings the masses require renormalisation and
the mass relations apply for masses defined at scales > MX where SU(5) is a good
symmetry and SU(5) symmetry breaking effects can be neglected. As was the case
for couplings radiative corrections cause the masses to "run" as the scale at
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which they are measured changes. Graphs giving these corrections are shown in

Fig.4.2. Computing these

Fig.4.2. Radiative corrections to quark and lepton masses. The cross
denotes a quark or lepton mass and the curly 1line denotes a gluon.

4 3
gives [mb(uz)] :[mb(M)Z())][%(uz)] :fjgﬂq[a](f)]?ﬁq’
mt(uz) mt(MX2 oc3(M)2() oh‘(Mi)J (4.7

where nq is the number of quarks with mass < UZ. Using this formula, and the
value of m, we can predict the b quark mass. This is "measured" in e'e”
annihilation as one half the T mass (bb bound state) and it is reasonable to
interpret this value for m, as mb(EO) where E0 = Zmb(EO) =M. From eq(4.7 )
with six quark flavours

m, = 5-5.5Gev for 50 ¢ AMS < 500 MeV . (4.8)
Including threshold and higher order effects this estimate can be refined and
it is found
m'b = 5.3 Gev for nq =6 for AﬂS’ = 300 MeV
5.8 Gev ng = 8 (4.9)
6.9 Gev = .
nq 10

The experimental value is 5.5Gev remarkably close to the prediction for six
quark flavours. Indeed the flavour dependence is so strong that we may argue that
minimal SU(5) is consistent with the b quark mass for not more than three families.

The prediction for the strange quark mass is

m = 500 MeV for ”q = 6.

The experimental determination of mg varies between 150 MeV (from sum rule
estimates) to 300 MeV (from bag model estimates). These are substantially lower
than the SU(5) prediction.

E*en worse are the predictions for my. For convenience ye quote this as the

ratio ﬁg which is not renormalised substantially relative to ﬁg . Thus the
u
minimal SU(5) prediction is
m m
d__e_ 1.
F el v (4.10)
S u m

This is to be compared with the value obtained from current algebra ﬁﬂ = %I .
s

While the discrepancy for the strange %uark might be ascribed to uncertainties in
its measurement, the discrepancy with ﬁﬂ seems impossible to accept.
3
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One possible explanation of this discrepancy that grand unified structure
at a scale above MX may give small additional contributions to fermion masses.
Since the d quark is very light (= 10 Mev) it will be the most significantly
affected by small corrections and this could account for the bad prediction eq(4.10.
A second possibility, is to extend the minimal Higgs structure to include
a 45 dimensional representation. In this case, however, the mixing angles
relevant to proton decay do not reduce to the Kobayashi-Maskawa angles
as in eq.(3.67).

4.3, Nucleon decay in SU(5)

One of the features we noted above was the fact that the X and Y gauge bosons
did not conserve B and L separately but only the combination (B-L). Guts seek to
combine quarks and leptons in a single multiplet and so it is a general property of
them that there will be gauge interactions coupling leptons and quarks. This

does not mean that baryon number is violated. For example in eq(4.1) the terms

coupling X and Y to the 5 all have B = -4%, L = -1, so if this was the only fermion
representation one could ascribe these quantum numbers to the X and Y fields and B
and L would separately be conserved. It is the combination of this plus the
coupling to the 10, with quarks and antiquarks in the same representation, that
means B and L are separately violated for the terms involving ;‘E;pu have

B = % , L =0 and no choice of B and L for X and Y will conserve B or L.

In the "age of the gauge". where all (continuous) symmetries are expected to
be gauge symmetries, one expects the only conserved numbers to correspond to
massless gauge fields. Apart from the photon, gluons and the graviton we know of
no massless fields so it seems reasonable to expect there are no new absolutely
conserved quantities such as B or L. In SU(5), B and L are violated, but at a
very slow rate because of the large scale of breaking. What about the residual
(B-L) symmetry? In SU(5) this is an accidental global symmetry (it is easy to
check that it is preserved by the Yukawa couplings of €q{3.51). However further
Yukawa couplings involving new Higgs representation will violate it at a rate
depending on the mass of these new scalar states. Alternatively, following our
principle that all symmetries should be gauge symmetries one may enlarge the gauge
group to include the (B-L) generator. Then (B-L) will be violated at a rate
depending on the mass of new gauge boson.

In the minimal SU(5) scheme the X and Y interactions violate baryon number,

In terms of mass eigenstates of eq(3.61) in the minimal model these are

%2 i‘“[aR v eE +d
a

Mot g
v'e, +€ , uCy , u B
o L "TaBy L Ky UL]

(4.11)

+g gal_ nC = g+ .+ =Cyy+ BB
7 { o VRV e 6y U KUy ] ]* h.c.
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At Tow energies (<< MX) exchange of these bosons gives an effective 4-Fermi
interaction.

As we observed in section (3.ﬂ in the minimally coupled theory there is no
freedom to inhibit proton decay by choosing mixing angles so that it couples only
to heavy leptons. Keeping only the large Cabibbo mixing between the first two
generators eq{4.11) becomes

gL = e i?[sijkﬁliLYuujL){ [(”wszec)ét

8My

M
. > s 41 (4.12)
+ s*inec COSGCU c] YudiL +[ (1 + sin ec)uL + s1neC coseceL]Y SiL

=+ U -+ u _ = C Ced
+epY diR + ugy SiR‘ [eijkukLvu(dchoseC+sJLs1necﬁ

-C _u -C _u

VeRrY diR+vaY SiR]] + h.c.
This gives quantitative predictions for relative decay rates
+ sinzec coszec
T(N+u"+ non-strange) _

4.13
F(N+e++ non-strange) (1+c0529c)2+1 ( )
.2 2
r(Nse*+ strange) _ sin6.cos B,
F(N»u++ strange) (1+sin28c)2+1
These predictions are specific to the minimal SU(5) scheme. If, we include the

45 couplings the mixing angles involved in proton decay are no longer just those
of the Kobayashi-Maskawa matrix and the pattern of proton decay is dependent on
unknown parameters.

4.4, Proton lifetime

We now try to estimate the proton lifetime following from the Lagrangian

of eq(4.12). Gluon corrections to the Born diagram give rise to terms involving
MX n
[,S]og(ﬂf)] These potentially large terms may conveniently be summed by the

usual operator renormalisation group techniques. The terms of eq4.12 give rise
to the combination 2 O] + 02 where the operators D] 2 are (neglecting mixing angles)

- aS ot
Op = LegzuURLy,, Us0) &) vid; ),
(4.14)
=C H
= (es:, 05 ot V7Y
02 = ezt (ujep + dy "ep) " dip
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The advantage in defining O] and 02 lies in the fact that they do not mix
through the logarithmic corrections we are seeking to include. The anomalous
dimensions in leading order of O] and O2 coming from gluon exchange

give rise to the enhancement factors

as(l Gev) 2 i
A3=[;¥WU»~] ETEN (4.15)

Similarly one may compute the enhancement due to Nt, Z and y give

[l](Mw)] i g:g%wa— for 0

oy (My) 27  (My) !
A =[a‘zﬂ‘7‘] g6~ x
2(My " 33 (4.16)
[a1( W ]— 6+20N
a](MX) g for 02-

These gauge boson corrections sum the large logs coming from perturbative
corrections to the fundamental processes, In addition one must
estimate non-perturbative effects in going from the quark fields of eq@.14 )

to the proton, i.e., we must compute the hadronic matric elements of the operators
0] and 02. There are two contributions that have been estimated in several ways
to be of comparable magnitude (cf.Fig4 3).

é
P —_—— q
P n-—er{ p —> —
— —_— ¢
q Meson
Meson
Fig.4.3. Operator matrix elements.
The first involves a spectator quark. The second involves the meson

emission first followed by the 3 quark overlap probability at the origin. A
variety of estimate have been made giving the range

30 My g

t = (0.1 to 5) x 107 yrs(————-7 s} * (4.17)
psn 5 x 10'%Gev

where a factor of 3} to 4 has been included from eqs(4.16).

MX as we discussed in the previous section depends almost linearly on

M giving for a range (150 to 500) MeV for '

m = (1 to6) x 101 Gev (4.18)

and

_ 14027 3 e
tp,n T 105" to 1077 yrs
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The estimates of operator matrix elements also predict the decay modes expected.
The favoured mode is p+e+n° and, with the range of Aﬁg used above

Lpre™0) = 4.5 x 102 Tyrs (4.19)

Baryon number violating neutron decay is also generated and using isospin,
reactions gives

Hietn) = ()fpetr®) = 2.2 x 107 s, (4.20)
For comparison the most recent results on experimental T1imits on nroton and neutron
TP, n*en »2.103] yrs. It can be seen that these limits are already

inconsistent with the minimal SU(5) values quoted above.

4.5. Neutrino masses

In the Appendix we discuss the possible Lorentz invariant forms for fermion
masses. The most familiar one is the Dirac mass term involving the terms
m(@LwR+®R¢L) and in the SU(5) model, as constructed up to now, it is absent
for neutrino simply because there is no right handed neutrino state Vg- However
there is another possible mass term, the Majorana mass which is of the
form m(wLTC¢L). This term violates any symmetry under which thas non-trivial
transformation properties and cannot, for example, give mass to a charged particle
if charge conservation is a good symmetry. However neutrinos occupy a unique
place in Grand Unified theories for they are the only fermions in the theory
which carry neither charge nor colour. It is therefore quite possible that they
should have a Majorana mass for while this will violate lepton number, we expect
this to be violated at some level.

In the standard SU(3)xSU(2)xU(1) model Majorana masses did not arise because
the combination V[CLVL transforms under SU(2) as an 1 =1, Iy = 1 object and
there are no I = 1 Higgs fields which could, on spontaneous symmetry breakdown,
generate such a mass term. Equivalently no neutrino mass terms arise because
we know lepton number is conserved in the standard model (essentially through the
absence of such terms). In minimal SU(5) there are I = 1 Higgs fields in the
adjoint representation but these are not coupled to fermions so again there is no
Majorana mass for the neutrinos. It is also forbidden by the exact (B-L)
symmetry of SU(5). Thus both in the standard model and in minimal SU(5)
there is no neutrino mass term either of the Dirac or Majorana type.

This is not an entirely convincing result for the absence of VR is put in
by hand (nothing prevents us from adding an SU(5) singlet). Indeed in most
generalisations of SU(5) such fields appear. If it is included SU(5) does not
prevent a Dirac mass term GL“R arising from a gauge invariant coupling of the 5
of fermions to the 5 of Higgs, A and the singlet YR field.  The natural scale
for such a term would be of the order of a quark or lepton mass term quite
unacceptably large compared with the experimental 1imits on neutrino masses.
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Moreover, as we have already stressed, it seems likely that the (B-L)
will be broken at some level so we should expect higher order corrections tc
generate a term of the form v[CvLHOHO in which the I = } Higgs fields combire to
supply the I = 1 Higgs component needed to generate a Majorana mass. One of
the most elegant results of Grand Unification is the observation of Gell-Marn,
Ramond and Slansky that even if we include these terms we can understand why
neutrinos are light and different from other fermions. Let us see how this
works .

If we allow both v and VR fields the mass matrix involving both Dirac and
Majorana masses is of the form

i My v

(vL, vR) m, my GR , (4.21)
where, for notational convenience, we have denoted a Majorana mass term by
my v . As we have already discussed it is reasonable to choose m, = O(mq) on
purely dimensional grounds. m coming for example from a (HO\JL)2 term will
be of order Vg/Mx' where My, is the scale associated with (B-L) violation
(MX‘ >My).

Finally what is the expected size of ma? Since vp is an SU(5) singlet there
is no symmetry reason forbidding a VRVg Mass term. It is likely therefore that
this term will be of magnitude O(MX). Putting all this together we need to
diagonalise a mass matrix of the form

",
~ m V)
(v %) i Tt (4.22)
mq My VR

The mass eigenstates are v+ ey and VR + ey where ¢ = mé/M2 with

X
2
masses -H— respectively. Due to the enormous mass ”X particular to GUTs
the neutriéo mass is expected to be very small 0(10_ -10 eV).

4.6. SU(5) - A critique

In section 1 we motivated the need for GUTs by listing many unsatisfactory
features of the standard model. Let us take a look at how well SU(5) answers
these criticisms.

(1) By fitting a family into a 5 + 10 the multiplet structure has

simplified and the LH structure of quarks and leptons is better. However

there is no explanation of the family structure and there is no connection
between the vector, fermion and scalar representations. Although anomalies
cancel between the 5 and 10 it is unclear why this happens.

(2) Charge is quantised and the third integral nature of quark charges is
explained - a remarkable result. The gauge couplings are all related and
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the prediction for sinzew is in good agreement with experiment. The value for
MX is such that proton decay should be seen soon.

(3) The situation with Yukawa couplings is not so good. There are three
mass predictions which have varying success. There is no prediction for the
Kobayashi Maskawa angles and there are (Ng-l) additional phases which
contribute in proton decay. Similarly there is no improvement in the scalar
potential where more couplings are needed in SU(5) than in the standard model.

(4) The appearance of a large mass scale is a mixed blessing. It explains
why the proton should decay slowly and why neutrinos should have a low mass,
but there is no explanation of why this mass should be so much greater than
the weak interaction breaking scale. Indeed to accommodate these two scales
it is necessary to fine tune parameters in the scale potential to one part
in 10]3. Also even though MX is approaching the

Planck mass gravitational corrections have been ignored.

It is clear that SU(5) is not the final theory. However many of its
properties are so pretty that many of us would be very unhappy to give them up.
The GUT addict sees SU(5) as the first approximation and hopes that the missing
elements will be supplied by more complete theory. What could this theory be?

5. SUPERSYMMETRY

5.1.  Why supersymmetry?

Grand Unified theories are based on Lie groups which assign particles of
a given spin to vrepresentations of the aroup. However they do
not connect particles of different spin and so the unification achieved is not
complete. In particular there is no understanding of the large number of
Yukawa and scalar interactions, only the vector interactions are unique following
from the local gauge principle.

An obvious generalisation of Grand Unified theories is to build a symmetry
relating different spins. If this is done it may be possible to connect the
representations and interactions of scalars and fermions to that of the gauge
bosons . In this chapter we will introduce a symmetry called supersymmetry
that can do this, and discuss how supersymmetry may be used for unification.

Early attempts to combine local symmetries with internal symmetries in a
non-trivial way suggested this was impossible. The reason is easy to understand
at the heuristic level and we will briefly sketch the problem following the
approach of Coleman and Mandula. They point out that to construct a scattering
amplitude it is necessary to satisfy the constraints of the local symmetry
group. In, say, a two to two scattering of spinless particles there are four

momenta (see Fig. 5.1 ). Energy momentum b b
Fig 5.1. Kinematics of 2 - 2 scattering. i:::(:::::>::ii

: k
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conservation reduces theseto three independent momentum vectors piu. The
scattering amplitude must be a Lorentz scalar and so may depend only on the
independent Lorentz scalar quantities constructed from piu' Apart from the
particle masses piup].U there are three invariants that may be formed from three

vectors, usually chosen as

s = (p1+p2)2
t = (py-pp)° (5.1)
u = (pz‘p3)2

However the conditionm42= p4up4U relates these invariants

s+t+u = my+m

% §+m§+m§. (5.2)

Thus the scattering amplitude may be described by two invariants, the total
centre of mass energy vs, and the centre of mass scattering angle 6. The
requirement of Lorentz invariance has limited the number of independent
variables. If one imposes additional conservation laws they will further limit
the variables allowing only a discrete set of scattering angles. Since the
amplitude is analytic in the scattering angle the only solution is the trivial
one with vanishing amplitude everywhere. For example if there is a conserved

tensor QaB’ traceless and symmetric then for a one particle state

2

<p[Qa6|p> = papB - %—gaBm . (5.3)

Applied to the two to two process with equal masses gives

P1aP1y * P2gP2y = P3gP3y * PagPqy- (5.4)

This is satisfied only when § = 0.

Coleman and Mandula proved in general that in a theory with nonzero
scattering amplitudes in 4 dimensions the only possible conserved quantities that
transform as tensors under the Lorentz group are the generators of the Poincaré
group Pu and Muv and Lorentz invariant quantum numbers Qi’ the charges of the
internal symmetries.

However the Coleman-Mandula theorem does not forbid conserved charges
transforming as spinors under the Lorentz group and it is this possibility that
is exploited in supersymmetry. It will prove to be most convenient to work
with two-component Weyl spinors as introduced in the Appendix . Let us start
with the simplest such spinor charges Qa,-ﬁg transforming as (0,%) and (},0)
respectively, under the spinor group SL(2,C). These Qs satisfy anticommutation
relations and, being spin 3, their anticommutators can be a spin 1 vector.
However if the Qs are conserved charges, as we would like, their anticommutator
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must be too. The Coleman-Mandula theorem permits a vector conserved quantity
provided it is formed from the generators of the Lorentz group. Consider the
vector operator Pu' To appear on the right hand side of the anticommutator the
Lorentz index must be contracted with y" (it has both vector and spinor indices
as required). In the Weyl basis vV is off diagonal

0 o

ol - (5.5)
o¥ 0

and so the allowed anticommutator relations are

Q> QB)= Qs Qé} =0 (5.6)
BEPY

{0y QB} N 20&8 Pu

[Qa, Pu]= [Qd, PU] - 0.

This is the simplest supersymmetry algebra. In writing eq{5.6) we set
the commutator of Qa-with Pu to zero because we have introduced no conserved
spinor charge Qau, Qa with vector and spinor indices and components of spin
up to %. In fact the Coleman-Mandula theorem suggests it is not possible to
introduce such a charge for their anticommutators would have spins up to e and
the Coleman-Mandula theorem does not permit conservation of a spin 3 operator
in an interacting theory. One may try to generalise the algebra of eq(5 ¢)
by adding terms proportional to o““MuV but this too is not possible for one can
show that such terms do not satisfy the Jacobi identity and the algebra does not
close. As we will discuss in the next section it is possible to build a
finite set of different supersymmetries involving N spinoral charges (N g 8),
the so-called N extended supersymmetries. The remarkable thing is that these,
together with the usual space-time and internal symmetries, are the only possible
symmetries of a physically reasonable theory. For this reason alone it is
worthwhile exploring the implications of supersymmetry.

5.2. Representations of supersymmetry

In the last section we introduced supersymmetry, generated by the charces

Qa and 5& satisfying the anticommutation, and commutation relations of eq(5.6).

Such a structure generalises the concept of a Lie Algebra and is known as a
Graded Lie Algebra. In this section we will construct its representations.
Since the Qa, Qé

produce a fermion and vice versa.

are spinors we expect that operating on boson fields they will

Q B> = IF>

Qu > = Ig> -~
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As a first step in constructing representations let us consider the massless

case. In this case Pm is light-1ike (PmPm = 0) and we can choose PU of the form
(1, 0, 0,1).  The supersymmetry algebra in this case is

{Q'I, 6]} = ]

{QZ’ 02} = 0 (5.7)

{0y, Q) = {0y Q4 = O
{Qi’ Q'I} = {G, Q

Let us start with a massless state IA> of a given helicity A satisfying
the constraint that

Q= Qb = 0. (5.8)

Note that it is always possible to construct such a state since if, for
example, 6]|A> is non-null then choose it as the initial state. By the
anticommutation relations eq(s5.6)» Qq[A'> = 0. Starting with [X> there is
only one non-null state that can be formed, namely Q]|A> . The other possible
states such as 02|A>, Q]Q2|A> etc.all have zero norm, e.¢., by eq.(5.6) we have

A0, 1A> =A|Qy0, 2> = 0. (5.9)

Thus the massless representations of the supersymmetry algebra consists of two
states of helicity x» and A+}. A parity operator can be defined
by the transformation properties of the spinorial charge Qa under space reflection

(Q)p = (°D- (5.10)

If parity is included the representations consist of helicities ), +(a+}).

Simple examples of massless supersymmetric multiplets are "chiral"
supermultiplets withA = 0, and describing particles of helicities (0, +1),
"vector" supermultiplets withA = 3} and helicity content (+}i, +1) which may be
used to partner a vector boson with a fermion, and the "graviton" supermultiplet
with 3 = 1 and helicities (: % , + 2) which can contain the graviton responsible
for the gravitational force.

It is possible to generalise the supersymmetry algebra by adding a flavour

i to the supersymmetry generators Ql+ Q&’l---N_
Now the algebra is
ooy -l o) -
{Qa’ QB) = {Qa, QB} 0]
0 o) = 270k, P (5.11)

[Q(i’ Pu] =[6;’ Pu]= 0.



The massless representations of this algebra may be constructed in an
analogous way to that obtained above. Starting with the state | A\> annihilated
by 0;27”'N the non-null states are easily constructed. For example with
N = 2 we find the states

>
O} | 2>, 0§|A> (5.12)
(PN

A1l other states vanish by the anticommutation relations eq(5.6). Thus a
N = 2 supenadtiplet may be built, starting with » = 0, from one (complex)
scalar state, two fermion states A = }, and one vector statex = 1.

This could be used to accommodate the vector bosons. N = 2 matter
supermultiplets may similarly be constructed starting with a right handed
fermion, A = -}, two (complex) scalars and a left handed fermion, X = +i.

The appearance of mirror fermion states giving left and right handed fermion
partners is characteristic of all N > 1 supersymmetries and is the main reason
such theories have been 1ittle used for phenomenology for, as we saw in Fig.2.1,
the known fermions do not have mirror partners. However it is
conceivable that such partners exist and current experiment only requires that
they be heavier than about 20 GeV.

For higher N the multiplets contain more states formed by building from
the lowest non-null state. In Table 5.1 we list the number of these states
of a given spin, including the charge conjugate states.

Table 5.1. Particle content of extended supergravity theories

Particle content

Theory Spin=0 Spin=

o

Spin=1 Spin=3 Spin=2

N=1 1 1
N=2 1 2. 1
N=3 1 3 3 1
N=4 2 4 6 4 1
N=5 10 1 10 5 1
N=6 30 26 16 6 ]
N=7 70 56 28 7 1
N=8 70 56 28 8 1

We see that there is an intimate reTationship between the helicity and the
multiplicity of the states, giving rise to the hope that these theories may
provide the basis for the ultimate unification of local and internal symmetries.
Moreover the class of these N extended supergravity theories, is very small for
they terminate at N = 8 if we require that spins no greater than two should be
present. 1t appears that this is a necessary condition as theories with N > 8
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suffer from defects such as the appearance of ghost states (negative norm states)
which make them unacceptable,

Unfortunately, even though the theories for large N appear to possess a
large number of states, they are insufficient to accommodate the states neecled
for the standard model. To see this note from Table 5.1 that there are
IN(N-1) vector fields in a supermultiplet. These vectors form an adjoint
representation of O(N) and if the symmetry is made local they will be the gauge
bosons of the theory. Consider the largest N possible, N = 8. Its internal
symmetry group 0(8) contains SU(3)xU(1)xU(1) but not SU(3)xSU(2)xU(1).  Thus
even the largest theory cannot accommodate the Wi bosons. A check of the fermion
spectrum shows there are also missing fermions, for example, there is no room
for the 1 of the y.

It seems therefore that these theories cannot be used to generalise the
standard model in a simple way. Two possible ways out of this impasse have been
explored. The first is that the extended supersymmetry is a symmetry relevant
at a more fundamental level, and that the w’ and the u,T, etc.,are composite states.
This idea has received some support from the fact that the N = 8 theory has
global symmetries larger than the 0(8) symmetry of the fundamental vector fields.
If these global symmetries should through the dynamics of the theory be realised
locally, there will be additional gauge bosons which arise as bound states of the
fundamental fields in the theory. At present we are unable to solve the theory
in the non-perturbative way necessary to show if this idea works, but simpler
models with global symmetries have been shown to behave in this manner.

The second possibility is to give up the hope that the extended supersymmetry
models should contain the spectrum of observed states in a single representation
and to build models based on the direct product structure G x [Ndextended
supersymmetry]. At first sight this appears to lose many of the potential
benefits of the supersymmetry, and indeed in this type of theory there still
remain many arbitrary parameters. However such models can solve the hierarchy
problem common to all Grand Unified Theories, and for this reason they have been
extensively studied. If such a model proves realistic it does not mean we have to
give up the idea of ultimately unifying interactions in a unique extended

supergravity theory; it is bossib]e such models result as the low energy
effective Lagrangians of the underlying extended supergravity theory.

6. SUPERSYMMETRIC MODELS

6.1. A supersymmetric version of the standard model-multiplet structure

The simplest supersymmetric model which can be constructed is the direct
product of the internal symmetry group with a (N=1) supersymmetry group.
The basic building blocks for such a model are the massless supersymmetry
multiplets either chiral or vector supermultiplets as shown in Table 6.1
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We will first construct a supersymmetric version of the standard SU(3)xSU(2)
xU(T) model with the particle content of Fig.2.1. One of the reasons for
studying supersymmetry is the hope that the complicated multiplet structure
shown there will be simplified by assigning fermion and boson states to the
same supermu]tiﬁ]et.

Table 6.1 . Fundamental supermultiplets in N=1 supersymmetry

Name Particle Content

] 2 component (left handed) Weyl fermion

Chiral,¢
¢ 2 real scalar fields A;B(¢ = A+B)

v 2 component vector
Vector, v
A 2 component (left handed Weyl fermion

However this proves to be impossible for the simple N=1 supersymmetric models.
We know vector bosons belong to the adjoint representation of the gauge group
while, as can be seen from Fig.2.1, the known fermions belong to fundamental
representations of SU(3)xSU(2)xU(1) (cf eq(2.4)). Therefore when we assign

the gauge bosons of the standard model to a vector multiplet v?ltransforming as
the adjoint we cannot identify the fermions 22 in that supermultiplet with the
known fermions because the A2 are in the same SU(3)xSU(2)xU(T1) representation
as their vector boson partners. These new states are called "gauginos", see
Table 6.2.

We still have the problem of assigning the fermions to supermultiplets. If
we want to build a renormalisable theory all vector fields in our theory must be
gauge vector fields. Thus, without enlarging the gauge groups, the fermions
cannot be assigned to vector supermultiplets and must belong to chiral super-
multiplets. Once again we are forced to double the number of states introducing
(complex) scalar fields to partner the known fermions in chiral supermultiplets.
These fields are in the same SU(3)xSU(2)xU(1) representations as their fermion
brothers. They are known as squarks (for scalar quarks) and sleptons, see
Table 6.2.

Finally we must assign the Higgs scalars of Fig.2.1 to chiral super-
multiplets. Our original hope in constructing a supersymmetric theory was that
the Higgs sector would be simplified by assigning the Higgs scalars to the same
supermultiplets as the known fermions. An obvious possibility is to assign the
Higgs SU(2) doublet to partner a lepton doublet. However this is not possible
for such an assignment if supersymmetry does not give an acceptable pattern of
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fermion masses.  The reason is that supersymmetry restricts the possible forms
of Yukawa couplings and (with the above assignment) the couplings necessary to
give down quarks and charge leptons a mass (eq(2.5)) are not present. To see
this we need to know the allowed form of the Yukawa couplings and the scalar
couplings which, through supersymmetry, are related to them. This is most
simply expressed by describing these couplings in terms of a superpotential

P. P is a gauge invariant function of dimension < 3 constructed from the

chiral superfields of the model (but not their complex conjugates). Then fhe
Yukawa and scalar couplings are given in terms of P by

2

Yukawa = % j R wiwj , (6.1)
3049,
scalar = T 22| T = Tgle (6.2)
3(1)]~

Here y,¢ refer to the (LH) fermion and scalar components of the chiral super-
multiplets respectively and the sums over i,j run over all the chiral super-
multiplets. The Fi are the auxiliary fields.

To reproduce eq(2s) for the Yukawa couplings needed to give all charged
fermions a mass we need a superpotential of the form

() . (q) (d) (u)og (q) (u)
Po=omiy ™ Wijafea¥y MY atheYy (6.3)
(M
+ ?ze,uﬂmiwi,a“%w i’

where H]a and HZa are chiral supermultiplets transforming as doublets under
SU(2) but with U(1) charge +3i respectively so that their charge states are

H

1

>a { respectively. i and j are family indices andm(d 13
H

1

are the mass matrices for the up and down quark masses. The lepton doublets,
w(})s, have the correct charges to be identified with H In the non-super-

L]
symmetric standard model HZB =€ H+\ but in the supersymmetr1c case the rules

for writing B state tﬁ;t P can only be formed using products of (left
handed) chiral supermultiplets and not their (right handed chiral) conjugates.
Thus in eq( 6.3) H2 must be identified with a completely new chiral supermultiplet.
In addition more states are needed for H2 contains new, charged, Weyl fermions and
we must add further charged fermions allowing the construction of Dirac masses

for them to ensure the final theory has no massless charged states (remember that
we cannot give charged fermions a Majorana mass without violating charge
conjugation - see  Appendix . The simplest solution is to introduce another
new SU(2) doublet chiral superfield which is usually identified with HB'
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In constructing simple grand unified generalisations of the standard model this,
in fact, is the only possibility for if HB is identified with a lepton doublet
proton decay proceeds too fast,

Thus the final multiplet structure for a supersymmetric version of the
standard model includes two new chiral supermultiplets whose scalar partners are
to be identified with the Higgs scalars need to break the SU(3)xSU(2)xU(1) to
SU(3)xU(1)em and to give all charged fermions a mass. The full multiplet
structure is given in Table 6.2.

Although the SU(3)xSU(2)xU(1)x [y=1 supersymmetry] structure fails to
simplify the multiplet structure of the original model (indeed it more than
doubles the spectrum!) it does have a redeeming property that has caused it to be
studied intensively recently as a possible theory for the strong, weak and
electromagnetic interactions relevant at relatively low energy scales - it
solves the hierarchy problem. In the next section we will construct the
Lagrangian for this theory and show how this solution is achieved.

6.2. The SU(3)xSU(2)xU(1) supersymmetric Lagrangian

Once the transformation properties of the supermultiplets under the gauge
group are specified and the superpotential is given the Lagrangian density may
be immediately constructed using the results of section (6.1). As usual we

write the Lagrangian as the sum of the two parts

L =1L (6.4)

kin ¥ LInt'
Lkin is the supersymmetric form of the locally gauge invariant kinetic energy.
The requirements of local gauge invariance uniquely specify how the gauge fields
couple and the requirements of supersymmetry relate these gauge field couplings
to gaugino couplings

=] Y s my 3
Lin 7 - zTr{N Nuv} iTr{xo D2}

T Wl % -m
+j AijD AJ + 1j Omm i wj
] (6.5)
L (A.Tai .-AfTaw.)Aa
ECF TP B B R
2 + 2
+ L Loaten, .
a % 3 J
In this the trace implies a sum over all the gauge indices a of SU(3)xSU(2)x
U(1) and the sum over j is over all the chiral superfields of Table 6.2.
Dm are the usual gauge covariant derivatives. For convenience we split L in

up into the usual (non-supersymmetric) kinetic energy term Liin , a term L Yuk
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Table 6.2. Multiplet structure for the minimal
supersymmetric SU(3)xSU(2)xU(1) theory

Vector Supermultiplets Spin J
y ga=1...8 Gluons 1
G §a:]"‘8 Gluinos 3
.
W, Z W,Z bosons 1
W
Wtz Winos, Zino 1
A Photon 1
M
Y ~
A Photino 3
Fhira] Supermultiplets Spin J
Q.9 Quarks 3
5 S~
q°"q
qL’qR Scalar quarks 0
L0 Leptons 1
o257 -
4o tp Scalar leptons 0
ﬁ1,~2 Fermionic Higgs 1
SST
H],H2 Higgs doublets 0

describing the new Yukawa interactions induced by the supersymmetric form of the
gauge interactions and LD the scalar interactions obtained
by eliminating the D auxiliary fields and commonly called the "D" term.

L

-] U EPENPN ",
Kin =7 Tr{ W wuv} 1Tr{AoDm A}

(6.6)
5 My * .7 = -m
+ F AijD Aj + 1j mejc wj‘

Apart from the terms of the standard model this gives the following Higgsino
leptonic couplings (quark couplings are omitted for their SU(2)xU(1) couplings
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are identical to the corresponding leptonic couplings and the gluino couplings
are easily generated).

L'yin = (e/cos¢w)v} Bu(ﬁ“;“ﬁ“ + ﬁm 5Uﬁw
h ’;I;Z- auHJZ-_ﬁZOGLqZO
-0 G- & e+ 2 8,0%,)
#(e/sine )W 125 . (ﬁ]+é“ﬁ1o+n:20;“ ﬁz_)
+( —ﬁ@‘ﬁ; + ﬁoc;“ﬁ_)
+dy 5 Ve_ 4} hoc. (6.7)

] -

+ (e/sinew)wf1 5 -(Hy, My, - Hat M,

mtrd !
+ Hpgo iy Ho o™y )
+(W,oM, - W o)

G _ . ‘/é * ~ H*'B-’
LYuk = (e/cosew) 1-—z-{ H1+BOH] +Hy H10

K H* EH'-I
HZOBOHZO 2- "o 2-
- % -g ~k ~k o
- oV - e Be+2e Be }+hoc

. . * -~
+ (e/singy (i{ Hy W Hy + Hy W Hy,

k - * o~

* HyH g+ Hy W Hy (6.8)
—_ o~ ok~

+v We_ +8_ W+ h.c.

* v o~ * rv o~

. i
(e/sinBy) o5 {Hy W Hy, - Hy W Hy
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The Yukawa couplings may be read immediately from the superpotential using
the form of eq(6.1). They are of the form given in the standard model, but,
with H1 coupling to the right handed up quarks and H, coupling to the right handed
down quarks and leptons. The scalar interactions of Hy and Hp follow from P using
eq.(6.2).
. The two-component interactions used here are simply related to the more
familiar four component form by noting, in the Weyl basis, that

5
Moy = vt (5

where X and ¢ are 2 component Weyl spinors related (see Appendix) to the
usual four component Dirac spinors Aandy by

" A
any, any

We may also write this vertex in the form

TMy =Tyt (115 ) g (6.9)
where
vo= G o= (VL (6.10)

For scalar couplings Xy = YA so

Mo =R = TR - (6.11)

6.3. A SUSY-GUT Supersymmetric SU(5)

We are now in a position to construct the minimal (N=1) supersymmetric
extension of SU(5). The first step is to assign SU(5) multiplets to super-
symmetric multiplets. The gauge fields must be assigned to an adjoint (Z24)
vector supermultiplet with gaugino partners also in the adjoint representation.
The quarks and Tleptons are assigned to (left handed) chiral supermultiplets
transforming as NGx(S + 10) under SU(3). In order to give them mass it is
necessary to choose a supermultiplet of the form

- - (d)
Pg = - /My

M

where Hl and H, are (1eft handed) chiral superfields transforming as 5 and 5

a B _ T(u) _alydp
ViXeeha - i XiaeXjyatar (6.12)

respectively under SU(5). The normalisation is chosen so that the x fermion
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kinetic term is correctly normalised, i.e., X15 = v-%d]L, etc., as in section (3.3).
As we discussed in section (&.!) it is necessary that H] and H, be distinct chiral
supermultiplets, and not hermitian conjugates for the rules of section (6.1)

do not allow us to build the superpotential with a chiral superfield and its
conjugate. It is also impossible to identify ﬁ transforming as a 5 with one of

the 55 introduced to describe the quark and lepton sector. The reason is that

the colour triplet components of H2 mediate proton decay (see section (%.2))

and must have very large mass (;.0(1010 Gev) if the proton is not to decay too
quickly. If we identify the doublet components of H2 with the sneutrinos,
selectron members of a 5 then the triplet components will be partners of the
down antiquarks. Since, as discussed below, supermultiplets splitting in a

gauge nonsinglet representative is < 0(] Tev2

g ) the triplet components will
mediate proton decay far too fast (cf of section (?2)). Consequently we must
choose new chiral supermultiplets H and H transforming as a 5 and 5 to
accommodate the Higgs scalars. We must also ensure that the H and H split

10

so that their triplet components are heavy (g 10 “Gev) while leaving the

doublets light < 0(1TeV).

It is necessary to add an adjoint chiral supermultiplet, £, to accommodate
the adjoint of Higgs scalars necessary to break SU(5) to SU(3)xSU(2)xU(T1).

The final multiplet choice for our SU(5)x N=1 supersymmetry model is
given in Table 6.3.

Table 6.3.  Chiral supermultiplets used in SU(5) SUSY GUT

RoTe Notation T SU(5) Representation Content
Matter | ugx . Ny x (5 +10)
H HY (5 + 5)
i - -
Higgs z 24
The interaction Lagrangian is given by eqs (6.1) and (6.2) where the

superpotential is as chosen in eq (6.12). To this must be added a superpotential
which will give the scalar components of the adjoint chiral supermultiplet a
vacuum expectation value to break SU{5) to SU(3)xSU(2)xU(1), and also the
underlying supersymmetry to give the new supersymmetric states a mass. Obviously
supersymmetry must be broken for we have not seen, for example, a scalar electron
(selectron) degenerate with the electron. If the selectron has a mass » 15 GeV
it would have escaped detection so far).
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There is considerable ambiguity in these symmetry breaking me-
chanisms and we will not describe them here. Instead we will treat
the masses of the new states as arbitrary up to the constraints im-
posed by the requirement that supersymmetry should solve the hierar-
chy problem. This requires the new gauge nonsinglet supersymmetric
partners should have a mass<0 (1 TeVv). We also assume H? and Hg
acquire vevS vq and vy, breaking SU(2)xU(1) to U(1)en-

6.4 The hierarchy problem

In SU(5) we met the problem that the Higgs scalar mass is
naturally close to MX’ but it must be < 0(1Tev) in order to generate
electroweak breaking. Although this can be arranged at tree level
through the unnatural cancellation of eq(3.49) a large mass for the
doublets reappears in higher order through radiative corrections
involving superheavy virtual states as in Fig.6.1(a). Calculation
of these graphs gives for the effective Higgs doublet mass at
laboratory energiesu

M2 = MM+ Do M (6.13)
1

)
1

where 4 and oy are the coefficients and couplings resulting from
the graphs in Fig.6.1(a). Thus the natural scale for Mz(u)

X Z
+ A S . S B R H
u W i H'l ./ H

AR i b H (by 7
Fig 6.1. Graphs contributing to the Higgs scalar mass.

is O(Qi Mi). In supersymmetry however there are additional contrib-
utions coming from the gauginos and Higginos as in Fig.6.1(b) with
couplings related to those in Fig. 6.1a . Due to the - sign coming
from a fermion loop these graphs cancel exactly the contribution of
eq(6.13). Of course supersymmetry must be broken leaving a residual
contribution Mz(u) = MZ(MX) + % iy AME (6.14)

where AmE is the mass splitting between supersymmetric partners.

Since Mzgp)$ 0(1Tev), this mass splitting should be bounded by

2
2 0(0Tev)?) |
AML < ——&;—— (6.15)
This constraint has important phenomenological implications for it

means the new supersymmetric states cannot have mass much different
from their conventional partners and the 1ight states of Table 6.2
should be produced at energies accessible in the laboratory.

112



It is for this reason that the hierarchy problem has been stressed so much.
The standard SU(3)xSU(2)xU(1) model is unnatural at scales much larger than
1 Tev and any resolution of this requires new physics at these scales; in this
case the new supersymmetric states.

7. PHENOMENOLOGY OF SUPERSYMMETRY
7.1. Mass and coupling constant renormalisation

Because a SUSY-GUT involves new light supersymmetric particles it is
necessary to compute the values for the grand unification mass and sinzew.
The initial ratios of the couplings and hence sinzew are unchanged in going to
a SUSY-GUT because we still have the same assignment of states to a GUT
representation. However the radiative corrections will differ for now we must
include loops containing the new states, the gauginos, the squarks,etc. It is
easy to compute the expected size of the corrections at one loop assuming all
heavy particles have a mass~ My. The SU(3)xSU(2)xU(1) effective couplings
depend on MX via

NOE +l—b.1n(&) s i=1, 2 3. (7.1)
i i 6m i > = )
Then
. 5 8 , -1,1 8 1
My =1 exp [Em(byt xby - 3b3) (”—(‘yuem A A 1
5
{by-by) O 1)
sing, = § + 2200 (1%%7). (7.2)

8
(by 300~ 303)

The values of b; are easily calculated using their definitions in eq{7.1) .
The results for the standard model of section (6) are b3 = 27—4NG, b2 = 18-4NG,
bO = -4NG giving, for a value of A = 150 Mev, sinzew = 0.23 and MX = 4x1016 Gev.
(For comparison the SU(5)bi were by = 33-4NG, b, = 22-4NG, b0 = -4NG). The
result for MX is about 20 times the SU(5) value. The reason for this is
principally due to the decrease in b3 compared to the SU(5) value which comes
about mainly because the supersymmetric theory requires an SU(3) adjoint of
fermions, the gluinos. Due to their large charge they contribute significantly
to the B function and because they are fermions they contribute a negative amount
to 83 making the theory less asymptotically free. The value of MX is, very
roughly, the scale at which ) equals ay (cf.Fig.4.1). Since 83 is reduced,
a, varies more slowly; and thus it takes longer for this equality to be achieved.
hHence MX is increased. This can be compensated by speeding up the rate
of evolution of<§ so the value of MX depends on the number of 1light Higgs
particles included. For example adding the 1ight Higgs SU(2) singlets to
mimic a lepton family brings MX back to the usual SU(5) value and lowers
sin29w by 0.015.
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Including the two loop corrections gives the best values for sin Oy
and MX in the minimal supersymmetric extension of SU(5) for AﬁS = 160 Mev.

M, = 7.7x1"

X Gev,

2 (7.3)
sin By = 0.236.

. One might think that such a large value for MX will render proton
decay unobservable but, due to the presence of the new diagram mediating
proton decay in Fig, 7.1 , this is not necessarily so (see next section).

The renormalisation of quark and lepton masses is also sensitive to
the change in the unification scale. It also requires evaluation of an
additional contribution to the anomalous dimension coming from gaugino
contributions to the wave function renormalisation. These give

oq(u) 4879
my) = me) [—] 7
az(My) (7.4)

which when compared to the SU(5) predictions of eq.(4.7) gives (keeping

the dominant SU(3) corrections only)
u3(u) )
my (w) my, (1) (M) Susy (7.5)
o) - ey mipinal .
3™ minimat su(s)]j

In evaluating this equation there are two competing corrections. Since
a3(u)(§USﬂ varies more slowly than as(u)(minima1 SU(Si)we expect

a smaller enhancement of My« On the other hand the additional contribution
to the anomalous dimension in supersymmetry enhances the change in L
Together, remarkably, the change in the SU (5) prediction is very small,
less than 10%.

7.2. Nucleon decay in the minimal SU(5) SUSY-GUT

The fact that MX is approximately 20 times the value obtained in

conventional SU(5) at first sight suggests proton decay will be so slow

as to be invisible. However this is not the case for the minimal super-
symmetric SU(5) theory for there are new contributions to proton decay coming
from the graph of Fig.7.1(a) involving squarks and sieptons.The reason these
contributions dominate is because the dominant contribution comes from a

Born graph with a superhgavy fermion exchanged and not, as was the case in
ordinary SU(5), through a boson exchange. The fermion propagator has the

form (p+m)/(p +m2) and the dominant term comes from the piece proportional
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to m in the numerator. As a result this contribution is proportional

to % and not % 2 in amplitude. In Fig.7.1 we show the relevant graph
in tﬁe minimal éode] where the term proportional to m is shown as a mass
insertion. In Fig.7.1 we show that this contribution comes from the
exchange of the coloured fermions in the Higgs multiplets, with the mass
insertion connecting H1 and H2 . Because the Higgs couple preferentially
to heavy states the dominant decay modes are (depending on the mixing angle
of the top quark) either to (Cu + strange) or (GU + strange). Charged
lepton decay modes are suppressed

=& )¢ =100 (7.6)

B(u*+ strange) m

- .2
B(\)U strange) m.sin"6 \2

Non-strange modes are suppressed too, but by a smaller factor

u or Tnon-strange) ) :
= 0(sin®6 ) 0 0(—) (7.7)

strange) 10

U oor T

The expected rate for p -+ QVK* is (using SU(6) for the spin-flavour wave
functions), 2

m_m_M 2
4(-< s p )2 07,2

b0 A -1 (7.8)
2/2v,

I' =

sinte _(1.39 x 1077) y
vl
oM,

where b° is determined by the loop integral in Fig.7.1(b) which thro' wino
exchange turns squarks and sleptons into quarks and leptons

2 2
b0 - (Zzsjg ) [f(ma’ mg My ) v f(ma’ my, Mg 7. (7.9)
where
Fmymy ma) = L -»mg In{ i ) - (] )]'
W23 e nd) [(m%-mg) o (nnl)  mb
(7.10)

Here my is the Wino Majorana mass (it also has a Dirac mass Mw), and

MHX is the Higgs triplet mass. 1y s unknown. In some models there
is a symmetry which ensures myo= 0, but in this case the gluinos and

the photino are massless which may already be ruled out. In supergravity
models the gauginos can acquire a mass at tree level and for them the
natural magnitude for my s >O(Mw). In eq(#8), A is the enhancement
factor coming from summing the large logarithmic corrections from gauge
loop corrections
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o ag(1Gev) 5y agm) oop ag(my)
AT R L= VU

( 0L3(mt) ) 2/7 (013(Mw) 4/3(“2(Mw) -3 @}(Mw))-]_.
oz (M) ag(M)" o M)T Mg (M)’ 66

(7.11)

A is =15 with the parameters chosen as in section (4.1). For

MH = MX and Tp > 103] years consistency with eq(7.8) requires that
X

DY %-x 10-8gev™! (7.12)
b0 is given in eq(7.9) and for ma , My >> my means
T"iz < 10 %ev 7! (7.13)
m
q

with the natural choice for m; = O(MH)’ > 1031 years implies the

limit
mq > 3 Tev (7.]4)
The current experimental 1imit on p > v K* or n - KO is Tp> 0.6x103]

years.

7.3. The spectrum of new states

The most direct test of supersymmetry is to observe directly one of
the many new states predicted by the theory. In section (6.1) we introduced
the multiplets needed to build the basic (SU(3)xSU(2)xU(1))x(N=1 supersymnetry)
model. The various Grand Unified versions of the theory all have this low
energy structure, with the possible addition of a 1light singlet field. In

fact most of the supersymmetric models that have been considered, whether
global or local, have the same low energy spectrum. What differs between
various models is the pattern of masses. In most models there is a
multiplicative R parity conserved, where R is + 1 for conventional hadrons

and -1 for the new supersymmetric states. Thus these states may only be
produced in pairs and once produced a new supersymmetric state will ultimately
decay into the lightest such state. Their decay patterns will thus depend
sensitively on the identity of the lightest state. In this section we will
try to discuss the possible mass spectra and characteristic signals for the
new states for a general class of possible model.

The states of Table 6.2 in addition to the usual ones of the standard
model, nave squarks and sleptons, the scalar supersymmetric partners of
quarks and Teptons, gauginos, the fermion partners of the gauge bosons and
Higgsinos,the fermion partners of the Higgs scalars.Also there is non-minimal
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Higgs structure so there will be,after spontaneous symmetry breakdown,two
residual charged Higgs and three neutral Higgs scalars. In addition models
of spontaneously broken global supersymmetry necessarily have a massless
fermion, the goldstine, arising from the analogous mechanism to the Goldstone
theorem for breaking ordinary continuous symmetries.

Its coupling eq tg other fields is determined by the breaking scale
of supersymmetry ASUSY

e - 18 n?
9, L (7.15)
SUSY
where
2 _ 2 . 2
am® = (scalar mass)” - (fermion mass)

and the - and + refers to LH or RH fermions respectively.
If the global supersymmetry is made local then the golstino becomes
the + %.components of the spin %— gravitino, which develons a mass;
2

A
SUSY
M3/y = =

(7.16)
M Planck

The squarks and sleptons

Squarks and sleptons have the same quantum numbers as their fermion
partners.  Their SU(2)xU(1) interactions both with the gauge bosons and
gauginos are given explicitly in egs(6.7) and (6.8), and the SU(3)C
interactions are straightforward generalisations of this.

The most direct way to look for these new scalar states is to pair

produce them via their electromagnetic interaction.  They have been

looked for in the process ete” » aa or 11.  Each real scalar has one degree
of freedom compared to the four for a Dirac spinor so the result of this
calculation is that a charged (complex) scalar state contributes 1} that of
its fermion partner. The sleptons are expected to decay via

1% +1, (7.17

where X may be the photino, gravitino or higgsino.  Thus the general

process is
efe” > 11" (7.18
SN+ 2%
The current experimental bound on this process places a lower limit on the

slepton mass of about 13 Gev if the state % is massless or nearly so.

The squarks decay via

g+% + q (7.19
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where X will be predominantly a gluino if it is light, otherwise a photino,
gravitino or higgsino. In the former case the gluino will subsequently
decay to a gluon plus a photino, gravitino or higgsino. Because this
process is not so clear the bounds obtained for the squark mass are not so
stringent, m_ >10 Gev.

There are many other processes sensitive to squarks that have been
investigated for any process involving quarks will have its analogue
involving squarks. For example in deep inelastic scattering squarks and
gluinos will be produced by a virtual photon or W boson if kinematically
possible. Estimates of this process show that the squark contribution to
electroproduction will be 16% of the total cross section at very high
momentum transfers. Another potentially interesting process is
W+ 8J, Z-»>86. MWewill not attempt a review of these various predictions
here but refer the interested reader to the reviews in the Bibliography.

What is the expectation for squark and slepton masses? One principal
motivation for supersymmetry was as a solution to the hierarchy problem
which basically is that the natural mass scale for scalar states is that of
the heaviest state in the theory. Supersymmetry provides a reason why there
should be Tight scalar states but once supersymmetry is broken the natural
scale for the mass of the scalars is as large as possible,i.e.,of the order of
the supersymmetry breaking scale. (.1 Tev) In models with a large scale
of supersymmetry breaking gravity couples universally to all scalars and gives
them a tree level mass of 0(m3/2 s 1 Tev). Radiative corrections from gauge
couplings increase this mass so squarks are heavier than sleptons. Models
with a Tower scale of supersymmetry breaking rely on gauge and Yukawa
couplings to transfer the symmetry breaking to the light sector. In this
case to the squarks are usually heavier as they couple via the strong
interactions. The sleptons can be quite light. Models with a low scale
of supersymmetry breaking may induce only small radiative masses for squarks
and sleptons, but in the minimal model the mass spectrum is unacceptable
and requires additional Abelian factors in the gauge group.

Gauginos and Higgsinos

The new J=} fermion states in the theory are the gauge bosons partners,
the gauginos and the fermion partners of the Higgs scalars, the Higgsinos.
These are expected to contain the lightest new supersymmetric states, but
different models have different states as the lightest ones.

The charged states are ﬁ:, ﬁ?L’ w[, ﬁEL' They will mix with the most
general form of the mass matrix

WL M, 9vo W
1 . (7.20)
9V € o) L
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M2 is a Majorana gaugino mass which may be anything in the range

<0(1 Tev). ¢ is a Higgsino mass which in many models is expected
to be very small. The mass matrix is diagonalised with mass eigenstates
xt
1,2

- . ~.

X; = W coso, - H{ sing

;; = W sin 6, + H; coso,

~a ~a o .

X = W ocoso_ - Hysing_ (7.21)

M7 sino_ + Hy cose_

>
N
13

In the limit Mz, e 20, then 8, =0,8_= ? and the mass. e1genstates are
Dirac fermions ] ie they are the states (w s H2 ) and
(ﬁ_. ﬁ? ) with masses g,v, and g,v; respectively. .

; ln the limit M2 1arge,g2 0, the mass eigenstates are (w*, ﬁ_) and
(Hys HT) with masses M,, 92Mv1v2 respectively.
2

In both cases and for most ranges of parameters we have a new charged

fermion ¥t with mass My £<my
The neutral sector is even more complicated for there are four neutral

supersymmetric fermions which can mix. This mass matrix is
“3 70 0 7,0 . vt
(W7, BY, Hy, Hy) M, 0 9y 9, W \
2 2
5% IV V2 0
0 3 Q?M2 — — B
-gov g.v -
A 0 oW
2 2
g,v gqv: i —
M M 0 HO
2 2 N
o (7.22
Again this must be diagonalized. In the limit Mz,n» 0
the mass eigenstates are
73 <0 2
. 9N +g,8 & 9,
e P L 2 B o A
2 i +
¢+ g 5179
N 9,8 - g + (g +g3)° (g‘+92>
A 5 Mg = my0 N
1 > £ Z
2(9]+92) -
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<o VHO 4w HO v, v,
S = 21 172 B mzo = 172 )
— el
\Y Vv

where ~0 70

qo 2t v (7.23)

B v
and v = p
ving -

In the Timit M2 large,c small ~i° and $° are mass eigenstates together with
ﬁi and 8°.

In general the two lightest neutral fermions are lighter than the
lightest charged fermion.

Thus the expectation is that there should be new fermion states
ft;io,i/o with mass less, and often much less than the W boson. This leads
to interesting new decay possibilities for the W boson which may be used to
look for these states

Wt =X %
L* X0+ (ev wv v or qq) (7.24)

wt-»Xf+Xo
O+ (Vvo,e" 27 or gg)

X0+ (ev,uv,Tv or qq) -

The rate for these events depends on the unknown parameters in the mass
matrices eq.(7.20) and (7.22). For a large range of these parameters the
rate is close to that for W- e$ decays.
These events have characteristic patterns and can be distinguished
from heavy lepton production by forward backward asymmetry measurement.
Similarly there are new decay modes for the Z, eg

z—=X0%°
‘ L»X + Vv,z 2~ orqq) (7.25)
+ vv,l L~ or qq

We do not have time to discuss in full these and other possible signals for
these new fermonic states. They should be readily produced and observed
once the threshold for their production is passed and the 1iklihood is that
this threshold should be less than Mw.

Higgs scalars

Although Higgs scalars are also expected in non-supersymmetric models,
as we saw in section (6.1), supersymmetry requires at least two doublets of
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Higgs scalars. As a result there should be, after spontaneous symmetry
breakdown, two residual charged Higgs and three neutral Higgs scalars, a
much richer structure than in the standard model. These are given in
Table 7.1 with their expected masses and characteristic couplings.

Note there is expected a very light neutral pseudoscalar Higgs, a,coupling
more to charge - %—quarks. As shown in Table 7.1 a is made up of the
"uneaten" pseudoscalar components ™ and Ny of H] and Ho.

Table 7.1. Higgs scalar states. A 1is a Yukawa coupling expected to be much
smaller than ;-

scalar state Mass Characteristics
(v]Hg +v2H?)/v .. 4A2v§ +... I1=1/2,mainly coupled to
charge - 1/3 quarks
(v1H$-v2Hg)/v (1/2)(gg+g%)v2+... 1=1/2, mainly coupled to
charge + 2/3 quarks
az(n1v2—n2v])/v few Gev? pseudoscalar coupling,larger
for charge-1/3 quarks
(v]Hé—vzH])/v (1/2)92v2+... conventional charged Higgs
2 boson
1 N Hy / ‘
q L '
H, Hy - , H
! : g !
- : ) o~ ) 1
9 ) 19
' " o~
; ; q Iws q
a
(a) (b)
Fig,7.1.

(a) Leading baryon number graph in minimal supersymmetric SU(5)
(b) Gaugino exchange leading to baryon number four fermion operator
from the Born graph of Fig.7.1(a).

Appendix

Fermions in Grand Unified Theories are most conveniently described in
terms of helicity states.Under the Lorentz group ¢ transform as

vsu o=e g, (A1)
where

w = ot = %[Yu, vl (A2)

TN
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Since Opv commutes with Ys this transformation does not mix states of
different helicity. Define left (right) handed helicity state WL(R)

o =3y (A3)
g 3(14vg)y -
Then wL(R) transform independently under a Lorentz transformation.
It is most convenient when dealing with helicity states to use the
chiral (Weyl) representation for y matrices

0 -I 0 o 1o
] S0 %) ] (hd)
o (-I o)’x’(-qo) Ts 01>'

where are the 2x2 Pauli matrices, - They obey
fypv =29, (A5)

Now ut and Up are two component spinors corresponding to the upper two and
lower two indices of the Dirac spinory (= ($ )). These are Weyl spinors

and we will find them useful in building unified theories. For rotations

in this representation eq (A1) gives

-0
12"(1)
SL(R) =e . (A6)
Boosts in this basis are
+ 9pv
-7
SL(R) = e . (A7)

Charge conjugation

*
Under a Lorentz transformation the combination 02 %_ transforms as

2 * 2.7
oL SLJ

) x 22

*

L

2 *
= SR a qJL 3 (A8)
where the star denotes complex conjugation and we have used the property of

Pauli matrices
2 2 RE (A9)

to show L 2 *
ol SLOZ = e2 F.@-id) = Sp - (A10)
Eq. (A8) shows thatozwt transforms as (0,%), i.e., as a right handed spinor.

Similarly ozw* transforms as (}.0)as a left handed spinor under the Lorentz
group SL(2,6

Thus when writing the states in our theory we may use the left and right
handed components of a massive fermion or we may use the above transformations
to express all components as left handed or right handed. This we will find
useful in constructing Grand Unified Theories. We will adopt the usual notation
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c 2. %
= g All)
U Zw R, (
\UR = Gwl—r
where wc is the charge conjugate spinor and eq.(Al1) defines the operation of
charge conjugation.

Fermion Masses

It is now easy to build invariants using these representations of the
Lorentz group. For example if XL and wL are two spinors transforming as
3,0) then under a Lorentz transformation the quantity YLTO Y is invariant

T2 T2
x o v xS Tef sy

2. T 2
=X, 00 0TS 95 (A.12)

T 2
=L 9 o

where we have used eq.(A.10) and the hermiticity of the Pauli ratrices. With

o . . . * . 13
X =02 bR this invariant is 1(02 R )To2 W= _WWRTWL )
In4 component notation this is the familiar Dirac mass term
+
WR W WL WR w Y w =z w U (R.14)

However ec.(A.12) shows us there is a further possibility for a mass term for
if XL = W ve have the Lorentz invariant quantity.wLTczwL = wLC wt(A.]S)

This is known as a Majorana mass term. It is not invariant under an
U(1) transformation ¢ » e1“mL and so any quantum number carried by y
such as charge, lepton number, is broken if %L has a Majorana mass.
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