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Abstract

The Standard Model of particle physics describes nature in a very elegant and accurate
way, but still there are some open questions such as the hierarchy problem and the flavor
problem. One of the most promising candidates for physics beyond the Standard model
is the Randall Sundrum model, which addresses many of these questions and predicts
Kaluza Klein excitations. Incorporating the Standard model and extending it with an
extra dimension, the Randall Sundrum model is a very elegant and natural way for a
resolution of the Standard model shortcomings, because it explains both the hierarchy
problem and the flavor hierarchies by localization of the Standard model fields along the
extra dimension.
The aim of this thesis is to test the Randall Sundrum model’s validity via Higgs physics,
and flavor physics. First, the loop–induced decay of the Higgs boson into two photons is
investigated. We show that this decay is sensitive to new physics. New particles beyond
the Standard model appear in the loop and lead to contributions to this decay. Thus, the
5D propagators are derived for the calculation of the loop–induced decay of the Higgs
boson into two photons. It is found that the amplitude of the diagram with fermion
propagators depends on the Higgs–localisation in the Randall Sundrum model.
The Randall Sundrum model is extended by a gauge–singlet 5D scalar particle and its
couplings to fermions give rise to flavor changing neutral currents. This was inspired by
the 2015 measurements at ATLAS and CMS, which suggested an excess in the diphoton
channel. Although this particular excess turned out to be a statistical fluctuation, the
general appearance of a new flavor changing neutral current inducing scalar particle is
intriguing. Following this hypothesis, the Randall Sundrum model is extended based on
a former work, in which the contributions of the couplings of fermions to flavor–changing
gauge bosons and their role in rare Standard model decays were investigated. The focus
in this thesis is on neutral meson mixing. It turns out that there is a relative deviation
to the Standard model values of O

(
10−5

)
in case of ∆mBd , of O

(
10−8

)
in case of ∆mBs ,

of O
(
10−4

)
in case of ∆mK , and of O

(
10−14

)
in case of Br (b→ sµ+µ−).

Possible contributions to the electric dipole moment of the neutron and deuteron are
studied, as well. In case of the neutron electric dipole moment, a relative deviation
of the Standard model values of O

(
10−3

)
is found. While the deuteron electric dipole

moment is in the Standard model calculated to be 2.8·10−31e cm, contributions to the
deuteron electric dipole moment in the Randall Sundrum are predicted to be up to 105

times larger than the Standard model value of the calculation.
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Zusammenfassung

Das Standard Modell der Teilchenphysik beschreibt die Natur in einer eleganten und
sehr genauen Art und Weise. Allerdings gibt es immer noch offene Fragestellungen, wie
z.B. das Hierarchieproblem. Einer der vielversprechendsten Kandidaten für ein neues
Physikmodell ist das Randall Sundrum Modell, das sich mit vielen dieser offenen Fra-
gen beschäftigt und neue Teilchen vorhergesagt. Dafür wird das Standard Modell wird
mit einer Extradimension erweitert. In dieser eleganten und natürlichen Weise erklärt
das Randall Sundrum Modell sowohl das Hierarchieproblem als auch das Flavor Hierar-
chieproblem durch eine Lokalisierung der Teilchen entlang der Extradimension.
Das Ziel dieser Dissertation ist ein Gültigkeitstest des Randall Sundrum Modell mit
einem Higgszerfall und der Flavorphysik. Zuerst wird im Randall Sundrum Modell im
der loop–induzierte Zerfall des Higgsbosons in zwei Photonen betrachtet. Wir zeigen,
dass dieser Zerfall sensitiv auf Beiträge neuer Physik ist. Neue Teilchen außerhalb des
Standard Modell erscheinen im Loop der Diagramme und geben Beiträge zum Zerfall.
Für diesen loop–induzierten Zerfall werden die 5D Propagatoren hergeleitet. Die Am-
plituden von Diagrammen mit Fermionpropagatoren hängen von der Higgslokalisation
im Randall Sundrum Modell ab.
Die Gültigkeit des Randall Sundrum Modells wird untersucht nach einer Erweiterung
mit einem skalaren 5D Teilchen, dessen Kopplungen an Fermionen Flavorveränderungen
verursacht. Diese Hypothese geht auf eine vermeintliche Struktur im Diphotonkanal der
in 2015 genommenen Daten von ATLAS und CMS zurück. Diese Erweiterung durch ein
skalares Teilchens ist sehr interessant, obwohl es sich bei der vermeintlichen Struktur in
den Daten für eine statistische Fluktuation handelte. Auf dieser Hypothese aufbauend
wurde das Randall Sundrum Modell erweitert, eine frühere Arbeit dieser Arbeitsgruppe
wiederholt worden. Die damalige Arbeit untersuchte Beiträge von Kopplungen zwis-
chen Fermionen und geladenen sowie ungeladenen Eichbosonen zu seltenen Standard
Modell Zerfällen. Die vorliegende Dissertation befasst sich mit neutralen Mesonmis-
chungen. Die relative Abweichung zu den SM Werten beträgt O

(
10−5

)
im Fall von

∆mBd , O
(
10−8

)
im Fall von ∆mBs , O

(
10−4

)
im Fall von ∆mK und O

(
10−14

)
im

Fall von Br (b→ sµ+µ−). Darüber hinaus werden Beiträge dieser Kopplung sowohl zum
elektrischen Dipolmoment des Neutrons als auch zum elektrischen Dipolmoment des
Deuterons untersucht. Im Fall des elektrischen Dipolmoments des Neutrons wurde eine
relative Abweichung zum Standard Modell Wert von O

(
10−3

)
gefunden, während im

Fall des elektrischen Dipolmoments des Deuterons eine relative Abweichung zum Wert
der Standard Modell Rechnung um einen Faktor bis zu 105 gefunden worden ist.
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Preface

The first chapter of this thesis is dedicated to the Standard Model, the theory in particle
physics that combines three of the four fundamental forces. These forces are the electro-
magnetic force, the weak force and the strong force. Until today, the SM is successfully
proven by experiments. After the discovery of the Higgs boson in 2014 at the LHC
by ATLAS and CMS, the Standard Model of particle physics (SM) is considered to be
complete. This thesis adopts the SM as the foundation of the theory that is examined.
The SM is assumed to be valid up to the electroweak scale, which is in the range of the
vacuum expectation value of the Higgs field. So far, physics experiments could not find
any hint for physics beyond the electroweak scale. In the age of the LHC, it is nowadays
possible to probe physics up to a higher energy range. At the electroweak scale, gravi-
tational forces are treated as small perturbations that can be neglected. The closer one
comes in range of the Planck scale, the perturbative approach will break down, because
then the growth of the effective coupling of the graviton is proportional to E/MPl. The
electroweak scale is much smaller than the Planck scale MPl =

√
~c/G ≈ 1.22·109 GeV1.

For the correct description of elementary particles, gravitational forces are not negligi-
ble anymore at the Planck scale. The huge energy gap between the electroweak scale
and the Planck scale lead physicists to find an explanation for this phenomenon and
other phenomena that exist in nature, but can not described by the SM. This search
lead to the development of theories that are referred to as beyond the SM (BSM) mod-
els, in which the SM is a low energy description for a more fundamental theory. One
of these BSM is the Randall Sundrum (RS) model that explains the difference of the
fermion masses (hierarchy problem), and quark mixings. It also offers an explanation
for the suppression of flavor changing neutral currents. The main characteristic of the
RS model is the extension of the SM by a warped extra–dimension. The incorporation
of the SM into the RS model is shown in Ch. 2, in which both similarities and differences
of the RS model compared to the SM are highlighted. The particles in the RS model
are excitations of the SM particles and are referred to as Kaluza Klein (KK) particles.
These particles were not yet detected at the LHC, because they might be too heavy to
be produced at the LHC or because they might not exist. Furthermore, the RS model
permits a variable imbedding of the Higgs boson that is discussed in Sec. 2.2. Besides the
exact implementing of the SM into the RS model, which is referred to as the minimal
RS model that incorporates the SM gauge group into the bulk, there is also another
setup of this model with an enlarged gauge group. The latter setup is referred to as
the custodial RS model and is discussed in Sec. 2.5, because the corrections to the T
parameter become finite. The RS model can be also probed via indirect measurements
of rare decays at the LHC or deviations from the expected SM value.
The RS model is then probed in Ch. 4–Ch. 5. The decay of a Higgs boson into two

1Natural units, i.e. ~ = c = 1 are used in this thesis, except for the comparison of contributions to the
neutron EDM and deuteron EDM in Ch. 5. In the equation appear the reduced Planck constant ~,
the speed of light c and the gravitational constant G.
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photons via a fermion loop is investigated in Ch. 4. In both the fermion loop of the
triangle diagram and the gauge boson loop diagrams that describe the decay of a Higgs
boson into two photons could be virtual RS fermions as well as virtual RS gauge bosons
that could give sizable contributions. These contributions should not deviate compared
to the SM value for the scattering amplitude of this process. A possible deviation and
its meaning for the validity of the RS model is then discussed in Sec. 4.6. The probe of
the validity of the RS model via the decay h → γγ is done with the help of the prop-
agators in the 5D picture for the corresponding particles derived in Ch. 3. The boson
propagators originally have been derived in [106]. In 2016, there was a discussion of a
possible diphoton excess in LHC data [211, 212]. This excess could not be confirmed in
subsequent analyses with higher statistics, but it rose the question of new scalar particles
that can not only probe the SM, but the RS model and other BSM. If deviations from
the SM predictions for the values are there, the largest deviations are expected in flavor
observables. This possibility of an additional scalar that has no analogue in the SM, i.e.
it is considered as a pure BSM particle, and its impact to the current measurements is
investigated in Ch. 5. This scalar is allowed to induce a flavor change. The results of this
investigation are compared with the present experimental bounds. As a possible BSM
particle, the contributions stemming from the scalar have to fit into the current values
of the experimental data.
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1 Introduction

1.1 Standard Model of particle physics (SM)

A mathematical description for three of the four fundamental forces that are the electro-
magnetic force, the weak force and the strong force is provided by the Standard model
of particle physics (SM). A brief explanation of the SM as the mathematical description
of particle physics is provided in Sec. 1.1, followed by the treatment of the SM as an
effective field theory in Sec. 1.2. The hierarchy problem that is a question, which the SM
is unable to address, is investigated in greater detail in Sec. 1.3.1. This discussion leads
then to a solution that is found in theories that are referred to as beyond the SM (BSM)
models.
Based on books and articles [1–6] and theses in this group [127–130], a review of the
discrepancies of the SM is given as well as a suggestion of their resolution is offered,
leading to the motivation of the model used throughout this thesis. Established in the
early 1960s by Glashow, Weinberg and Salam [7–9], the SM offers the best explanation
of today’s physics, although it only explains a part that does not include gravity. The
SM describes all experimentally found particles and with the Higgs discovery [10, 11] the
last missing particle to complete the SM was found. As the SM forms the basis of the
BSM model discussed in this thesis, a brief overview is given and details are discussed in
Ch. 2, in which the differences between the SM and the developments in the RS model
are discussed and compared. The SM unifies the electromagnetic and the weak inter-
action as was shown by Glashow, Weinberg, and Salam [7–9]. Renormalizability of the
theory was proven by ’t Hooft and Veltman [12] shortly after the discovery of the J/Ψ
particle [13, 14] and the charm quark via the GIM mechanism [15].
QCD is the theory of strong interactions [16]. Quarks are the matter fields of QCD as
a quantum theory [1–6]. Gross, Wilczek and Politzer showed that non–abelian gauge
theories posses asymptotic freedom, which means that the quarks decouple for very
large energies [18–20] and confinement are the two most important properties of QCD.
The concept of confinement means the yet unproven hypothesis that an observation of
free quarks is not possible [6, 21–24]. With these foundations the SM became a very
well–proven theory with the discoveries of the weak gauge bosons [25–27], the top quark
[28, 29] and the Higgs boson [10, 11]. The gauge group of the SM reads

GSM = SU (3)c × SU (2)L × U (1)Y . (1.1)

Here, the group SU (3)c represents the strong interaction and describing QCD, whereas
the SU (2)L × U (1)Y describes the weak interaction. Furthermore, Y is the hyper-
charge that relates the electric charge with the third component of the isospin. The SM
Lagrangian has the following contributions.

LSM = LGauge + LFermion + LHiggs + LYukawa

+ LFadeev−Popov + LGauge−Fixing.
(1.2)
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The first part, LGauge, describes the forces acting between the particles that are mediated
via so–called gauge bosons. In analogy to the electromagnetic field strength tensor,
LGauge takes the form of

LGauge = −1

4
GaµνG

a,µν − 1

4
W i
µνW

i,µν − 1

4
BµνB

µν (1.3)

and contains the field strength tensor of the SU (3) color, Gaµν = ∂µG
a
ν − ∂νG

a
µ +

gsf
abcGbµG

c
ν . The SU (3) is the gauge group of QCD [30]. The gauge bosons called

gluons and can couple to each other through the SU (3) structure constant fabc with
the coupling strength gs. Furthermore, LGauge contains the field strength tensors of

the SU (2)L , W
i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW k

ν and the field strength tensor Bµν =
∂µBν − ∂νBµ for the U (1) group. Proper quantization is ensured by both the gauge-
fixing term LGauge−Fixing [31–33] as well as the Fadeev-Popov term LFadeev−Popov [34],
respectively, that are not discussed in further detail as both terms are not relevant for
this thesis.
The term LFermion describes the so–called fermions, which are spin 1/2 fields. So far,
the SM looks like a chiral theory with the projection operators PL,R = 1

2 (1∓ γ5) that
project out left–handed and right–handed components. With the help of these operators,
the handedness of fermions can be distinguished and consequently, fermions transform
according to their handedness under the SM gauge group Eq. (1.1) differently. Left–
handed fields transform under the SU (2)L group as doublets QiL, while right–handed
fields uR, dR, eR transform as singlets under SU (2)L, where u denotes up–type quarks,
d denotes down–type quarks and e denotes leptons. Neutrinos are charged under the
SM gauge group. The fermions in general are collected in the kinetic term of the SM
Lagrangian,

LFermion = Q̄iLi /DQ
i
L + L̄iLi /DL

i
L + ūiRi /Du

i
R + d̄iRi /Dd

i
R + ēiRi /De

i
R (1.4)

with /D = γµDµ and the covariant derivative

Dµ = ∂µ − igsGaµ
ta

2
− igW i

µ

σi

2
− ig′BµY, (1.5)

including the gauge couplings gs, g and g′ of the gauge groups SU (3)c, SU (2)L and
U (1)Y as well as the Pauli matrices σi, the generators of the SU (2)L, the hypercharge
Y and the generators of SU (3)c, the Gell–Mann matrices ta.
Up to this point, all fields are massless as the SM does not contain an explicit mass term,
because its existence would lead to a violation of gauge invariance. The introduction of
masses is provided by the so–called Higgs mechanism [35–38] that spontaneously breaks
symmetry leaving the SM Lagrangian LSM invariant. The electroweak gauge group is
broken down to U (1)EM, which means the symmetry SU (2)L × U (1)Y → U (1)EM is
broken at the electroweak scale. This is similar to the symmetry breaking in QCD and
in solid state physics, which leads to a preferred orientation to the spin. Historically,
the Higgs mechanism was introduced for the latter. Therefore, the scalar doublet

Φ (x) =

(
−iϕ+ (x)

1√
2

[v + h (x) + iϕ3 (x)]

)
(1.6)
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is introduced and transforms as
(
1, 2, 1

2

)
under the SM gauge group. This can be seen

in the Higgs Lagrangian

LHiggs = (DµΦ)† (DνΦ) + µ2Φ†Φ− λ
(

Φ†Φ
)2
. (1.7)

The stability of the electroweak vacuum requires a lower bound manifesting in λ > 0 as
well as a squared positive mass µ2 > 0. With these conditions, the ground state 〈0|Φ2|0〉
breaks electroweak symmetry via SU (2)L × U (1)Y → U (1)EM. The field Φ can be
parametrized via Eq. (1.6) with a vacuum expectation value (VEV) 〈0|Φ2|0〉 = v2 = µ2/2
that minimizes the potential. Furthermore, three Goldstone bosons ϕ± and ϕ3 are
generated via symmetry breaking. These are the longitudinal degrees of freedom of
the massive gauge bosons and the Higgs field h, together with its corresponding mass
mh =

√
2λv [39]. The mass terms of the gauge bosons stem from the kinetic part of the

Higgs Lagrangian, whereas the mass terms for fermions are obtained from the Yukawa
part of Eq. (1.9)

LYukawa = −Q̄iLΦY ij
d d

j
R − Q̄

i
Liσ

2Φ†Y ij
u u

j
R − L̄

i
LΦY ij

e e
j
R + h.c.. (1.8)

The Yukawa matrices Yu,d,e are 3×3 matrices in the generation space and are in general
non–diagonal in the interaction basis. The Yukawa interactions are diagonalized via bi–
unitary transformations of the mass eigenstates that are given by diag (mu,mc,mt) =
v√
2
U †uYuWu, for which Uu and Wu are matrices that diagonalize Y . Fermion mass eigen-

states are then expressed via fL → UffL and fR →WffR, and f = u, d, e.
It should be noted that interactions of both leptons and quarks with neutral gauge
bosons are invariant at tree–level, because flavor changing neutral currents (FCNCs)
are forbidden at this level. Interactions of fermions and W± bosons are given via
g/
√

2ūLγ
µW+

µ VCKMdL+ h.c. in the mass eigenstate basis with the CKM matrix [40, 41]

VCKM = U †uUd. The CKM matrix is unitary and contains rotation angles as well as one
weak phase that is responsible for CP violation.

1.1.1 Flavor symmetry and custodial symmetry

If the Yukawa interaction is ignored, the SM is invariant under a U (3)QL × U (3)uR ×
U (3)dR ×U (3)LL ×U (3)eR symmetry containing 45 generators in the fundamental rep-
resentation. After including the Yukawa interaction, the symmetry group breaks down
to U (1)B × U (1)Le × U (1)Lµ × U (1)Lτ . B represents the Baryon number conserva-
tion and Le,µ,τ denotes the Lepton number conservation. As quantum numbers, only
the difference B − L is conserved [45–47], because neutrino oscillations occur [48]. One
should note that these numbers are not imposed in the SM and therefore this symmetry
is considered as an accidental symmetry following from the particle content of the SM,
the gauge principle, and the renormalization condition. With the introduction of the
Yukawa interaction there are 4 generators less, and 45− 4 = 41 generators of the broken
theory remain. These generators as well as the resulting symmetry transformations are
used to obtain 13 physical parameters from the 54 − 41 real parameters of the Yukawa
matrices Yu, Yd and Ye in the SM, which are 6 quark masses, 3 lepton masses, 3 mixing
angles, and 1 CP violating phase [43, 44].
Another interesting point of the SM in the limit of a vanishing electroweak coupling
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g′ → 0, is that the Higgs Lagrangian Eq. (1.7) is invariant under a global SO (4) sym-
metry. This symmetry is isomorph to a SU (2)L×SU (2)R symmetry, in which SU (2)L
represents the global gauge symmetry. The VEV breaks SU (2)L × SU (2)R down to a
SU (2)L+R symmetry and the gauge bosons transform as a triplet under the SU (2)L+R

symmetry with equal masses, i.e.mW = mZ . Furthermore, in this limit, the ρ-parameter

ρ =
m2
W

m2
Zc

2
θW

= 1 contains the cosine of the Weinberg angle defined by the ratio of the

masses of the electroweak gauge bosons c2
θW

=
m2
W

m2
Z

. The ρ-parameter receives only small

radiative corrections in the limit g′ → 0. In possible scenarios for physics beyond the SM
this relation has to be fulfilled [49, 50]. Hence, the SM and its possible extension contains
a custodial mechanism [51] to protect the ρ parameter. The electroweak T parameter
measures deviations from the ρ parameter in the SM [52, 53] and will be discussed in
Sec. 2.6.

1.2 Standard model of particle physics as an effective field
theory

Another consideration of the SM is its as a low–energy description, i.e. as an effective
field theory (EFT), of a more fundamental theory. In this approach, the SM Lagrangian
is expanded in terms of higher dimensional operators that are both Lorentz invariant and
gauge-invariant. This approach is satisfied if there exists a huge energy gap between the
electroweak scale and the new physics scale. The new physics scale is defined as the scale
where non–SM particles occur and interact with the SM particles. This assumption is
experimentally justified as there does not exist any hint at the LHC for particles heavier
than the top quark. Consequently the non-existence of new particles can be interpreted
as the existence of a huge energy gap between the electroweak scale and the new physics
scale. The energy gap can be described by the cutoff scale Λ that can be considered of
an order similar to the Planck scale in the case of the SM.
From the point of view that there exists a huge gap between the energy scales, the SM is
regarded as an effective field theory (EFT), which is described by the Wilson coefficients

C(0,2), C
(i)
(4,5,6..) containing the physics content and the operators Q(i)

(4,5,6,...). Here, the
subscripts indicate the dimension. Furthermore, the Wilson coefficients are scaled by
the cutoff energy Λ with respect to the dimensionality of the operators Q(i), yielding the
overall dimension four effective SM Lagrangian

LEff = C0Λ4 + C2Λ2Φ†Φ +
∑
i

C(i)
4 O

(i)
4 +

∑
i

C(i)
5

Λ
O(i)

5 +
∑
i

C(i)
6

Λ2
O(i)

6 + ... (1.9)

In general, the operators O(i)
n ∼ (E/Λ)n−4 appearing in Eq. (1.9) depend on the energy

scale E � Λ of the process and can be divided into three parts: the so–called relevant
operators are expressed through a dimension dependence n < 4, while operators with a
dimension n = 4 are called marginal, and the others are referred to as irrelevant. The
division in three parts can be thought of the operator’s relevance for the theory’s low–
energy description, because relevant operators are in general forbidden by a symmetry,
marginal operators contain the renormalizable description, and irrelevant operators con-
tain information about the fundamental theory [1]. The renormalizable SM Lagrangian
LSM contains both the Higgs operator, indicated by the term which is proportional to
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the Wilson coefficient C2 as well as all other marginal operators of Eq. (1.9). After in-
tegrating out the heavy particles of the more fundamental theory and the additional
degrees of freedom, the Wilson coefficients of relevant operators contain contributions
of the underlying theory. In total, there are 59 dimension–six operators which preserve
both baryon and lepton number conservation and that carry a flavor structure [54], al-
though there are also other classifications, e.g. [55]. Only one dimension–five operator
exists that is referred to as the Weinberg operator. The Weinberg operator gives rise to
Majorana mass terms for the left-handed neutrinos after electroweak symmetry breaking
(EWSB) [56].
A closer look to Eq. (1.9) reveals some interesting facts: the first term contributes to
the energy density of the vacuum of space, which is another description of dark energy
[57–59], in form of the cosmological constant. About 68.5% of the energy in the available
universe is dark energy [60]. Following this fact, the bound on the Wilson coefficient C0

results in C0 ∼
(
10−12 GeV

)4
/Λ4. If the scale Λ is about the same scale as the Planck

scale, the Wilson coefficient C0 ∼ 10−120 creates difficulties with a cosmological constant.
The Higgs mechanism would then be coupled to gravity. This would contribute to the
cosmological constant and its value would be extremely large in contrast to experiments
[3]. The only relevant term in the SM Lagrangian is the second term that contains the
Wilson coefficient C2. As described in Sec. 1.1, the gauge groups SU (2)L × U (1)Y are
broken at the electroweak scale, so C2 should be proportional to M2

EW/Λ
2. This means,

in the limit Λ ∼MPl the so–called hierarchy problem emerges why quarks have different
masses. This is discussed in further detail in the next section Sec. 1.3.1. Although the
SM offers a very good explanation of particle physics, it offers neither a description of
gravity nor cosmology. Furthermore, there are more detailed problems such as the flavor
puzzle and others, which will not be further discussed in this thesis. The interested
reader is referred to [61–69].
Embedding the SM into an underlying BSM theory means also that the SM gauge group
Eq. (1.1) has to be embedded in the gauge group of the BSM theory. Some groups were
considered in the past, which meet these requirements, e.g. SU (5) and others, see [70].
Consequently, the quantum numbers of the particles might change, as well, depending
on the underlying gauge group, for instance for a protection of a possible proton decay
[71].

1.3 Challenges for the SM

1.3.1 Hierarchy problem

The Higgs mass operator in Eq. (1.9), O2 = Φ†Φ is the only relevant operator as described
before (dim O2 = 4). Using the effective field theory approach, the Wilson coefficient is
expressed via the dimensionless Wilson coefficient c2 = µ2/Λ2, where Λ is the energy
scale, in which the SM remains valid. Assuming the validity of the SM until the Planck
scale, i.e. Λ ∼ MPl, the Wilson coefficient gets very small c2 ∼ 10−34 � O (1) if
µ ∼ 100GeV is considered to be the electroweak scale. A natural value of c2 would be
1 from the EFT point of view, because the Higgs mass operator is not protected by
a symmetry. This difference in the expectation of the Wilson coefficient is considered
unnatural, but it is not a physical criterion for any inconsistency of the SM. Furthermore,
the meaning of natural might be somewhat misleading as there are various definitions
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of naturalness, c.f. [72–74]. On the one hand a hierarchy in the bare parameters in the
Lagrangian is allowed, and on the other hand it is demanded that radiative corrections
of those bare parameters are not much larger compared to them. This is referred to as
technical naturalness [75]. Therefore, radiative corrections to the Higgs mass operator
can be an example for a one loop diagram with virtual top quarks in the loop. Such
a diagram gets UV divergent if the virtual top quarks are exchanged. After the Wick
rotation, the momenta are now in the euclidean space, and a regularization with a cutoff
Λ is performed. The corresponding corrections read

δm2
h =

3N2
c

4π2
y2
t

[
−Λ2

3
+m2

t

(
ln

(
Λ2

m2
t

− 2

3

))
+O

(
1

Λ2

)]
, (1.10)

with the Yukawa coupling yt and the number of colors Nc. There is a quadratic depen-
dence on the cutoff Λ as seen in Eq. (1.10). If the cutoff Λ is proportional to the Planck
scale, the counter terms have to be tuned in a very delicate way removing the divergences
at the electroweak scale. This phenomenon is referred to as the fine–tuning problem of
the Higgs mass. Another important point is that the Higgs mass is renormalized ad-
ditively in contrast to the multiplicative renormalization of the other SM particles. As
a consequence, the quantum corrections are uncorrelated to the bare Higgs mass that
is the non–renormalized Higgs mass and the quantum correction can be numerically
larger than expected. The additive renormalization terms originate from a non–existing
symmetry enhancement in the limit of a vanishing Higgs mass that would violate the
criterion for technical naturalness. Then, the SM Lagrangian can be regarded as classi-
cally conformal, because the Higgs mass term in Eq. (1.9) vanishes. Assuming implicitly
a connection of the cutoff scale Λ of an underlying UV theory with its corresponding
mass scale which breaks the conformal symmetry explicitly, the technical naturalness
would still be violated. Despite the Higgs mass corrections, the other SM particles are
renormalized multiplicatively as they are protected by either the chiral symmetry or the
gauge symmetry. This stems from the fact that the fermion spins in the chiral limit
transform independently from each other. Hence, the chiral symmetry implies a loga-

rithmic dependence of the radiative corrections, i.e.mf ∼ mf ln
(

Λ2/m2
f

)
.

Nota bene: Here, the natural logarithm of a variable x based on the Euler number e is
denoted by ln (x) in order to avoid any confusion with log (x) that is more conveniently
used in the English literature with the same meaning.
Changing the renormalization scheme does not remove the additive corrections to the
Higgs mass. Considering the case of the fundamental UV theory with its mass scale M ,
particles could interact with the Higgs. Without the introduction of additional symme-
tries, the resulting radiative corrections would be quadratically sensitive to the new mass
scale. For large new particle masses, this would be a reintroduction of the fine–tuning
problem of the Higgs mass.
Another point concerns the criticality of the Higgs sector of the electroweak vacuum
stability and the symmetry breaking in the SM. Assuming the validity of the SM up to

the Planck scale, leads to an effective potential Veff (h) = 1
4λ

(n)
eff (h). The parameter λeff

is the effective quartic running coupling at the energy scale µ. This effective coupling
is numerically close to λ (µ) resulting from the one obtained via renormalization group
(RG)–running [77]. At one loop level and ignoring the gauge couplings, the running for
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the quartic coupling in the MS [78] scheme leads to

dλ (µ)

d ln (µ2)
=

1

(4π)2

[
−3y4

t + 6y2
t λ+ 12λ2 + ...

]
, (1.11)

with the running couplings λ at the energy scale µ indicated on the left hand side of the
equation. The first term dominates and leads to negative values with growing energy and
the vacuum stability of the SM requires a positive value for λ (MPl) [76]. With today’s
SM input parameters, the metastable and long-living electroweak vacuum stability is
just achieved with fixed gauge couplings. The electroweak vacuum is metastable if the
probability of quantum tunnel effects out of the electroweak vacuum is sufficiently small
so that the lifetime of the SM vacuum is longer than the age of the universe. Smaller
values for both yt (MPl) and λ (MPl) would either lead to an unstable electroweak vacuum
with a lifetime smaller than the age of the universe or to no EWSB below the Planck
scale. An upper bound on the mass parameter µ (MPl) of the quadratic Higgs term can
be the condition for a minimal potential including the logarithmic running of λ (MPl)[76].
Here, µ2 is considered as the parameter determining the size of the transition between
the symmetric phase

(
µ2 > 0

)
and the broken phase

(
µ2 < 0

)
[79]. Furthermore, µ2 is in

the range of
(
−M2

Pl,M
2
Pl

)
. The interpretation of the hierarchy problem is that the value

of running of µ2 (MPl) ≈ (140.3 GeV)2 is close to µ = 0 compared to the Planck scale
[76]. The boundary between the symmetric phase and the broken phase is described
by µ = 0. Under the assumption that the SM is valid up to the Planck scale, the two
parameters λ (MPl) and µ (MPl) are in between these phases. The two most important
explanations are

1. The appearance of the near criticality could stem from a broken symmetry. This
means that the Higgs can be regarded as a pseudo Nambu Goldstone Boson
(PNGB) of a theory of strong interactions, where both µ2 and λ2 vanish at tree
level. Loop–suppressed radiative corrections could then trigger a potential leading
to negative values for λ at the Planck scale [80–90].

2. In the case of a zero Higgs mass, the SM can be regarded as a conformal theory
and contains dimensionful couplings. Radiative corrections to the Higgs potential
trigger EWSB and the approximate conformal symmetry leads to a stabilization
of the Higgs mass at the electroweak scale [91]. The crucial point is the question
of the origin of a conformal SM through gravity as the SM is not conformally
invariant at all due to the existence of the dimensionful Planck scale.

1.4 Extra–dimensional theories

We have now established the reasons, why the SM as an EFT is a solid foundation for
more general theories. The EFT approach of the SM is valid up to the electroweak scale
with the inherent cutoff ΛUV. Furthermore, the power law dependence highlights the
challenge of the incalculability of certain observables, because the divergences cannot
be treated in the same way as in the SM. The reason is that the effects of higher–
dimensional operators in both extra–dimensional theories and all non–renormalizable
theories, respectively, scale after the application of the renormalization procedure with
(E/ΛUV)n, where E denotes the energy scale for a given process. At energies around ΛUV
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there are two main reasons for which the contribution of higher dimensional operators
become relevant. The first reason is that the higher–dimensional operators contribute
to tree–level processes, and contributions from loop–level processes can be of the same
order of magnitude as tree–level processes [113].
One possibility for embedding the SM into a more fundamental theory is a generic theory
with at least one extra dimension. Originally, this scenario was developed in the early
20th century by Kaluza, Klein and Nordstrom [92–94]. After a gap of almost 80 years the
model was re–discovered and further developed [95–100]. In the following, some short
remarks about the challenges of the SM as an EFT for extra–dimensional models are
given and we will review two of them. More detailed and further literature can be found
in [101, 102]. The fundamental idea is a compact extra dimension in which the particles
or the forces propagate. In case of considering particles along the extra dimension, the
particles show excitations. These excitations are referred to as Kaluza Klein (KK) exci-
tations and will be explained in greater detail in Ch. 2. An imagination of this behavior
could be a string of a violin where the SM particle is the empty string of the violin.
Playing a note that is a higher harmonic excitation on the string leads to its excitations.
The different notes on this string represent the different particles excitations.
A careful treatment of observables is necessary if they are sensitive or close to ΛUV.
Extra–dimensional models posses an intrinsic UV cutoff. In this case other higher–
dimensional operators have to be considered whose coefficients have to determined by
experiment. In the case of the Randall Sundrum (RS) model that is explained in the
following chapter, there is only a contribution of the KK modes, which are below the
cutoff. This is an important fact considering loop–induced processes, because otherwise
the sum over the infinite excitations does not commute and the amplitude of the con-
sidered process diverges.
The idea of extra dimensions can be also applied to the hierarchy problem, because such
theories postulate particles close to the TeV scale. If these particles are experimentally
found, they could be a hint that a given cutoff is close to this scale, because then the
observables would be close to the theory’s intrinsic UV cutoff. As a consequence, the
hierarchy problem brings the electroweak scale and the TeV scale closer together. Fur-
thermore, the hierarchy of the electroweak scale and the cutoff of the extra dimensional
theory has to be understood.

1.4.1 Flat extra dimensions

Flat extra dimensions were introduced in the model of [96] in 1998, which offers an
explanation to the hierarchy problem. Although in general this setup is possible with
n additional extra dimensions, the explanation is restricted to one additional extra di-
mension for the sake of clarity. With the help of a flat extra dimension, gravity can
be introduced [96]. The existence of (an) additional compactified spatial extra dimen-
sion(s) as long as gravity propagates along the extra dimension is a possible explanation
for the deviation of the 1/r–behavior of Newton’s potential. The additional space time
is compactified on a manifold. The SM is confined on a 3 brane that is a sub–manifold
with the dimensions of the SM. In this model, only one particle, the graviton, possesses
excitations, which are referred to as KK excitations that are explained in further detail
in Ch. 2. The d–dimensional Planck scale Md sets the theory’s cutoff, at which gravity
is realistically described up to either the electroweak scale Md ∼MEW or up to a higher
(TeV) range. Then, the solution of the hierarchy problem is that quantum corrections to
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the Higgs mass mh possess a cutoff at this scale. At the same time, higher dimensional
operators are not suppressed, which leads to flavor changing neutral currents. While the
concept of flat extra dimensions does not address the flavor problem, this is achieved
by moving the fermions into the bulk of the extra dimension that is the space between
the two branes. If the fermions are moved into the bulk of the extra dimension, they
also obtain KK excitations. A suppression of the fermion overlap profiles on the brane
may lead to a suppression of the couplings, c.f. [97]. Theories, in which this procedure
appears are also known as split fermion theories [97].

1.4.2 Universal extra dimensions

If fermions are confined along the flat space time and the space time is included into
n additional dimensions, then the concept of universal extra dimensions (UED) [103]
emerges. As the concept of UED has to be in agreement with electroweak precision
data, the radius r has to fulfill r ∼ 1

TeV setting the fundamental cutoff to M5 ∼ 1015 GeV
[104]. At tree–level, there is only a production of higher KK states via pair production in
contrast to the case at one loop–level where a single KK particle production is possible.
The reason for this is the so–called KK parity following from the invariance of the 5D
theory that is now a projection of the extra dimension onto 4 dimensions, which is
described by the transformation Φ→ (−1)n Φn of the field Φ and the extra–dimensional
coordinate φ. The KK parity is an exact symmetry that assures a loop suppression
of a single KK mode in the case of an even number of KK modes. Finally, the KK
parity is responsible for stable KK particles [112, 113]. On one hand, the KK photon
is the lightest KK particle, which is also an ideal dark matter candidate, because it it
offers an explanation for relic abundance [114]. On the other hand, the KK gluon is the
most massive particle [119]. Relic abundance is the amount of - in this case - KK dark
matter particles that are still present. The amount of these particles decreased after
a temperature transition due to the expansion of the universe to those that are colder
than needed to produce these particles in chemical equilibrium [117]. An upper bound
of the KK photon mass of 1.6 TeV is proposed by the WMAP collaboration [115, 116]
whereas the authors of [117] come to a 900 GeV bound.This would be in agreement with
FCNC bounds [118].
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2 Extra dimensions

The idea of an extra–dimensional field theory was developed by Kaluza, Klein and
Nordstrom [92–94] about hundred years ago. Kaluza and Klein laid the foundation to
the ideas of a realization of an extra dimension with the aim to find a combination
of gravity and electromagnetism. At this time, the two forces have been the only two
known forces. They considered a tiny and compact extra dimension as there was no hint
for an extra dimension with large size at this time. After this, the theory was forgotten
over almost 100 years, BSM physicists such as Arkani-Hamed, Randall and Sundrum,
adopted their foundations in order to resolve the SM’s discrepancies.
In this chapter, these ideas are summarized based on [95, 97–102, 120–125] as well as
various other reviews, Diploma and PhD theses written in this group [126–131] and
books [3]. This builds the framework of the calculations in this thesis.
The setup that is first presented after the general introduction in Sec. 2 is the minimal
RS model. The word minimal refers to the fact that the SM gauge group, Eq. (1.1), is
incorporated as a bulk symmetry. In this setup, the differences between the SM and the
RS model are highlighted by discussing the particle content. In Sec. 2.5 the so–called
custodial RS model with its enlarged bulk gauge group is considered. A comparison of
the differences between the minimal RS model and the custodial RS model highlights the
differences between these two setups. Here, the SM gauge group is enlarged by a PLR
symmetry that yields a protection of too large corrections to the electroweak precision
parameters. Another advantage of the custodial RS model is that KK particles might
be in reach for a detection at the LHC. First, the general idea to put the SM into a five–
dimensional slice of Anti de Sitter space AdS5 that motivates the Randall Sundrum (RS)
model [98, 99], as well as all other warped extra–dimensional theories. These theories
are referred to as RS models if they contain only one extra dimension. The RS model is
introduced as the underlying model of this thesis.
The extra dimension is considered to be a S1/Z2 orbifold that is considered as a circle
with a so–called compactification radius rc and with a parametrization φ ∈ [−π, π]. The
points on the circle are related to each other via a Z2 symmetry transformation

(xµ, φ)↔ (xµ,−φ) . (2.1)

This is a two–dimensional projection such as the shadow of a building on the ground and
the orbifolding procedure is depicted in Fig. 2.1. For a 5D field Φ, the requirement has
to be fulfilled that the transformation mentioned in Eq. (2.1) result in the same function

Φ (x, φ)
Z2→ ±Φ (x, φ) , (2.2)

which may differ by their eigenvalues +1(−1) that are referred to as Z2–even (Z2–odd).
As an asset, the S1 symmetry leads to periodic boundary conditions (BC)

Φ (x,−π) = Φ (x, π) . (2.3)
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Figure 2.1: The Z2 symmetry transformation that happens during the procedure of orb-
ifolding. At the beginning, the S1/Z2 orbifold that represents the extra
dimension is a circle. Then, the coordinates φ = −π and φ = π are identified
to each other via Eq. (2.1) and a half–circle emerges. After the symmetry
transformation that is a two–dimensional projection, the fixed points at the
circle are related to each other. Taken from [132].

Both the requirement of the transformation behavior of the 5D field Φ and the S1

symmetry, respectively, lead to vanishing Z2–odd functions at the orbifold fixed points
φ = ±π. The orbifold fixed points are three sub–manifolds with one time dimension and
three spatial dimensions. The region between the branes is the so–called bulk. In other
words, the low–energy spectrum of Φ depends on the Z2 parity and is mediated via the
BCs, which are in general

Φ (x, φ)
∣∣∣
φ=±π

= 0, (2.4)

∂φΦ (x, φ)
∣∣∣
φ=±π

= 0. (2.5)

They are known as Dirichlet BCs Eq. (2.4) and Neumann BCs, Eq. (2.5). On the one
hand, Dirichlet BCs are applied to Z2–odd functions to remove those functions in the
spectrum. On the other hand, Neumann BCs add solutions to the spectrum if the fields
obey Z2–even parity. The orbifold construction visible in the BCs can be used to remove
unwanted degrees of freedom from the theory’s low energy spectrum.
In the 90s, Lisa Randall and Raman Sundrum proposed a model based on a non–flat 4D
Minkowski spacetime [98, 99] in contrast to flat extra dimensions [95, 97, 100]. Their
advantage is a so–called warped extra dimension, which addresses the hierarchy problem
with the introduction of a non–flat Minkowski metric

ds2 = GMNdxMdxN = e−2σ(φ)ηµνdxµdxν − r2
cdφ

2 (2.6)

and a description of the extra dimension as a S1/Z2 orbifold. This leads to two fixed
points at φ = 0 and φ = π that are referred to as the Planck brane at φ = 0 and the IR
brane, respectively, the TeV brane, at φ = π.
Originally, Randall and Sundrum introduced a compactification radius rc in the order
of the Planck length lPl. Consequently, the origin of the hierarchy stems from a choice
of a negative cosmological constant.
The so–called warp factor

e−2σ(φ) (2.7)

in Eq. (2.6) describes the curvature of the 5D metric and relates both energy units and
length units along the extra dimension. Furthermore, the warp factor is also one of
the main ingredients to the solution of the hierarchy problem. In the case of so–called
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flat extra dimensions, the exponent of the warp factor is 0. With the help of the 4D
Minkowski metric ηµν , the determinant’s representation of the 5D metric GMN reads

GMN =

(
ηµνe

−2σ(φ) 0

0 1

)
=

(
ηµν ĀM

ĀMT ḡ55

)
. (2.8)

It is included in the flat description of the 5D Einstein Hilbert action

S =

∫
dx5

(
−1

2
M3

5

√
GR5[G]

)
, (2.9)

in which R5 is the 5D Ricci scalar and M5 is 5D Planck mass. The scalar ḡ55 from
the 4D point of view, which acquires a VEV measuring the size of the extra dimension
is called Radion. The 5D Einstein equations, which are obtained using the variational
principle on Eq. (2.9) lead to

k =

√
−Λ5

24M3
5

, σ (φ) = krπ, (2.10)

where k is the curvature due to its relation to the 5D Ricci scalar R5 = 24k2. This
follows the convention of the Anti de Sitter space time that is used in this thesis and
results at the same time in a negative cosmological constant.
The warp factor can be used for a determination of the reduced 4D Planck mass MPl =
(M3

5 /k)
(
1− e−2kπr

)
. The reduced Planck mass MPl depends only very weak on the

warp factor, because otherwise the hierarchy problem could not be solved. Furthermore,
M5 is assumed to be of the same size of the curvature k. In combination with the last
argument and the latter equation, M5 is assumed to be of order of the Planck size.
The volume of the extra dimension is approximately L ≈ kπ and is stabilized by the
Goldberger Wise mechanism [105].
RS models are regarded as EFTs, because they have negative mass dimensions in their
coupling. They posses an inherent position–dependent UV cutoff [98]

ΛUV (φ) ≈MPle
−krπ (2.11)

that is expressed via the reduced Planck mass [106–110]. This means that the position–
dependent cutoff has an impact on quantum gravity on energy scales that are above
the Planck scale. As a consequence, RS models do not offer a description of quan-
tum gravity. The cosmological constant problem remains unsolved, because there is no
answer provided for the fact that contributions from energy densities cancel with the
cosmological constant. Furthermore, if Feynman diagrams are calculated, each vertex
depends on the position φ and at the same time on ΛUV (φ). Thus, the euclidean loop–
momentum possesses an upper bound at pE = min (ΛUV (φ1) ,ΛUV (φ2)) = ΛTeV due to
the position–dependent 4D cutoff. The values for the position–dependent cutoff ΛUV (t)
vary between MPle

−krπ and the fundamental Planck scale, because φ is integrated along
the extra dimension.
For the later phenomenological discussion, a switch to dimensionless variables is more
convenient. This change is provided by introducing

t = Mkk
e2σ(φ)

k
(2.12)
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with the KK scale
Mkk = ε k. (2.13)

Nota bene: the variable t does not correspond to the time.
With the change of the notation, Eq.(2.6) now reads

ds2 =
(ε
t

)2 (
ηµνdxµdxν −M−2

kk dt2
)
. (2.14)

As a next step, a general overview of the properties for general bulk fields is given and is
based on [111, 113]. The SM particles including the Higgs boson were originally confined
to the UV brane. Furthermore, the SM gauge group is extended into the bulk of the
extra dimension and the action for a general 5D field AM (xµ, t) results in

S5D = Sgauge + Smatter + SYukawa. (2.15)

Writing explicitly the variation of Eq. (2.15):

δS5D =

∫
d4x

2πrc
L

∫ 1

ε

dt

t
δAM (DAM ) +

∫
d4xδAM (BAM )

∣∣∣∣∣
t=ε,1

= 0 (2.16)

that includes the differential operators D and B and leads to the equation of motion
(EOM) for an arbitrary 5D Lorentz vector AM (x, t)(

−t∂t
1

t
∂t +

c2
A

t2

)
AM (t) = x2

MAM (t) (2.17)

that are obtained from the term proportional to DAM in Eq. (2.16). Furthermore, the
EOM are distinct depending on the particle’s spin. The bulk field AM in Eq. (2.23)
consists of both a vector field and a scalar field, respectively, because the vector repre-
sentation of the 5D Lorentz group is decomposed into both a four dimensional Lorentz
vector and a Lorentz scalar AM (xµ, t) = (Aµ (xµ, t) , A5 (xµ, t)), respectively.
The second term of Eq. (2.16) yields the BCs of the field AM at both branes, because the
boundary term is evaluated at the fixed points 1 and ε of the orbifold. The BCs intro-
duced in both Eq. (2.4) and Eq. (2.5) determine the mass spectrum of the KK resonance.
The lightest resonance is associated with the SM particle. The vector component of the
5D Lorentz scalar obeys Neumann BCs on both branes, which means that the SM fields
are the massless zero modes of the theory. The energy eigenfunctions of the bulk fields
are the KK modes as well as the energy eigenvalues are the mass terms. Neumann BCs
are chosen in analogy to a Schrödinger particle in a box potential well, where a solution
for zero energy requires the same BCs on both ends of the box. This choice is intuitive
from the point of view that the SM consists of left–handed doublets, which are embed-
ded in the context of the RS model. The scalar components of the fields have Dirichlet
BCs on both branes, in contrast to the vector components. This is motivated by the
requirement that the underlying theory is 5D Lorentz invariant. Other combinations
of BCs on the branes exist and lead to a different physical interpretation for a particle
with its given spin. The introduction of a regularized δ function δη (t− 1) is necessary,
because otherwise discontinuities arise, e.g. in the fermion case that will be discussed
in Sec. 2.4. Otherwise the BCs would have to be modified. This modification of the BCs
can be avoided if the delta function is properly regularized. With the use of a regularized
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Figure 2.2: The blue colored rectangular box that is denoted in the text by δη (t− 1),
Eq. (2.18), with a height 1/η and a width η. The extra dimension is divided
into two parts by δη (t− 1). These two parts are referred to as bulk and
sliver. This choice is, e.g. important for the derivation of the fermion
propagator, because the solutions have to be obtained in the two parts of the
extra dimension separately and then have to be matched at t = 1− η.

profile it is then possible to shift the profile by an infinitesimal width η into the bulk,
i.e. [1− η, 1]. In the limit of η → 0, the results are independent of the regularized delta
function. A regulator η is introduced and the procedure can be regarded as a box with
a height 1

η and a width η, illustrated in Fig. 2.2. Now, the rectangular regularization
reads

δη (t− 1) =
1

η
θ (t− 1 + η) , ∀ η � 1 (2.18)

and contains the Heavyside step function θ that divides the extra dimension into two
parts. One part is referred to as the bulk, i.e. t < 1−η and the other part is the so–called
sliver, i.e. t > 1−η. The discontinuities that would appear when fermions are considered
are thus avoided. At the same time, the Z2 parity assignments are ensured to leave the
Lagrangian hermitian and avoid boundary terms. Another asset of the introduction of
this regularization procedure is the smooth transition between the brane Higgs and the
bulk Higgs. Furthermore, the partial derivative ∂t is odd under the Z2 symmetry, which
is relevant for the transformation

AM → AM + ∂µαµ + ∂tαt. (2.19)

An integration over the fifth dimension results in a 4D effective theory that contains
both SM particles as well as massive KK modes. This is referred to as the Kaluza Klein
(KK)–decomposed theory. Equation (2.23) suggests a separation of variables in the KK
decomposition of the bulk field

AM (xµ, t) =

(
Aµ (xµ, t)

A5 (xµ, t)

)
=

1
√
rc

∑
n

(
A

(n)
µ (xµ)χ(n),A (t)

MkkA
(n)
5 (xµ) ∂tχ

(n),A (t)

)
. (2.20)

As a next step, the profile functions χ (t) depending on the location of the extra di-
mension have to be normalized. The orthonormality condition [120, 122, 123] reads

2π

L

∫ 1

ε

dt

t
χn (t)χm (t) = δnm. (2.21)

At the zero mode level, additional degrees of freedom (dof) are not available, but the
number of dofs are doubled if higher KK levels are considered. Choosing Neumann BCs
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on both branes, χ(n),A (t) = 1 is a valid choice even in the massless case. The derivative

∂tχ
(n),A (t) = χ

(n),A
5 (t) = 0 shows that there is no longitudinal polarization for a zero

mode and is massless. The zero mode profile is flat and connected with gauge invariance
as well as the universality of the gauge interactions. If the zero mode profile would not
be flat, the couplings would not be as simple as they are, but would allow the adjustment
of gauge couplings in an arbitrary way.
S5D in Eq. (2.15) contains the gauge part, the Yukawa part, and the matter part, which
consist of different sub–parts. For instance, the gauge sector of the 5D actions contains
the following parts

Sgauge =

∫
d4x

2πrc
L

∫ 1

ε

dt

t

√
|G| (L+ LGF + LMass + LHiggs + LFP) (2.22)

After an integration by parts that includes an arbitrary bulk field AM (x, t), the first
three parts of Eq. (2.22) read more explicitly

Sgauge 3
∫

d4x
2πrc
L

∫ 1

ε

dt

t
(L+ LGF + LMass) (2.23)

=

∫
d4x

2πrc
L

∫ 1

ε

dt

t

rc
2

[
Aν

(
∂2ηµν −

(
1− 1

ξ

)
∂ν∂µ − ∂t +

(ε
t

)2
M2
A

)
Aµ(

ε

trc

)2
(
A5

(
−
(
ε

trc

)2

∂2 +
ξ

r4
c

(ε
t

)2
∂2
t

(ε
t

)2
−
(
ε

trc

)4

r2
cM

2
A

)
A5

]
The setup of the RS model used in this thesis consists of a Higgs boson confined on
the brane and the matter sector containing both bosons and fermions localized in the
bulk. It is important for the discussion of the decay h → γγ. The discussion includes
the derivation of the boson profiles, which is also necessary for the consideration of the
propagators in Ch. 3. After the introduction of the profiles of bosons the fermion sector
is derived. The fermion sector is important for both the h → γγ decay and for the
investigation of the Wilson coefficient for of a four fermion operator. The four fermion
operator contains a scalar connection to the fermions by a possible extra-dimensional
scalar S that could act as a fermion localizer field. For the latter investigation, it is
necessary to consider the fermion profile function in the so–called zero mode approxi-
mation (ZMA). Leading contributions in the full theory stem from tree–level diagrams
with external fermions and an arbitrary scalar S that propagates between the vertices.
The setup of the model used in this thesis is displayed in Fig. 2.3.

2.1 Boson interaction in the minimal RS model

The gauge sector of the RS model is highlighted in the following, because it is necessary
for the decay h→ γγ.
After electroweak symmetry breaking (EWSB), the RS gauge bosons are defined analo-
gously to the SM gauge bosons

W±M =
1√
2

(
W 1
M ∓ iW 2

M

)
,

ZM =
1√

g2
5 + g

′2
5

(
g5W

3
M − g

′
5BM

)
, (2.24)

18



SU(3)C × U(1)EMSU(3)C × SU(2)L × U(1)Y

UV brane IR brane

ε t 1

S1/Z2

Figure 2.3: Illustration of the minimal RS model considered in this thesis. The elec-
troweak symmetry is broken on the IR brane by the IR localized Higgs. The
SM gauge group is placed in the bulk, as well as all SM particles except for
the Higgs boson. The gray shaded area denotes the warp factor that affects
all dimensionful parameters. Taken from [127] and also appears in [128, 129].

AM =
1√

g2
5 + g

′2
5

(
g
′
5W

3
M + g5BM

)

with the exception of both the dimensionful 5D gauge couplings of SU (2)L , g5 and of
U (1)Y , g

′
5, which are commonly defined in a way to look like SM couplings. The reason

for this exception is that the strength of the weak coupling constant is determined by
the coupling of the profile functions of the light fermions to the non–flat profile functions
of the gauge bosons. As the profile function of the gauge bosons coupling to both the
electric coupling constant e5 and strong coupling constant gs5 is flat, an identification
to the SM value is possible via [122, 123]

e =
e5√
2πr

gs =
gs5√
2πr

. (2.25)

Furthermore, the gauge boson profile functions are defined as bulk fields. Contrary to
the definition of gauge bosons field as bulk fields, a confinement of the gauge boson
fields to the IR brane would lead to a localization dependence of the gauge couplings
as well as to a non–diagonal coupling for both their excitations and their zero mode.
As a consequence, a discrepancy with both the diagonal coupling of the gluon and the
diagonal coupling of the photon would exist, respectively. The gauge bosons have a mass
in the order of the electroweak scale and their corresponding zero modes are given by
the SM gauge bosons. This setup is realized in a scenario that consists of bulk fields
transforming as an arbitrary 5D Lorentz vector AM (x, t).
The Lagrangian of the gauge part of the action Eq. (2.22) reads

Lgauge = GKMGLN
(
−1

4
GiKLG

i
MN −

1

4
W b
KLW

b
MN −

1

4
BKLBMN

)
, (2.26)

in which the superscripts of the field strength tensors denote i = 1, ..., 8 for the SU (3)c
generators and b = 1, 2, 3 for the for the SU (2)L generators, respectively. Just as in the
SM, the gauge fixing term of Eq.(2.51) has to be added to the matter part and to the
gauge part of the Lagrangian. As quadratic couplings of gauge bosons are more relevant
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for this thesis, only they are quoted, but the result of terms containing trilinear or even
quartic gauge boson terms can be obtained analogously [120]. The action then reads

Sgauge,bil 3
∫

d4x
2πr

L

∫ 1

ε

dt

t{
− 1

4
FµνF

µν − 1

2ξ
(∂µAµ)2 +

1

2

(
∂µA5∂

µA5 +M2
kk∂tAµ∂tA

µ
)

− 1

4
ZµνZ

µν − 1

2ξ
(∂µZµ)2 +

1

2

(
∂µZ5∂

µZ5 +M2
kk∂tZµ∂tZ

µ
)

− 1

2
W+
µνW

−µν − 1

ξ

(
∂µW+

µ

) (
∂νW

−
ν

)
+
(
∂µW

+
5 ∂

µW−5 +M2
kk∂tW

+
µ ∂tW

−µ)
+
k

2
δ (t− 1)

(
1

2
(∂µh∂

µh− λv2h2 + ∂µϕ
+∂µϕ− +

1

2
∂µϕ

3∂µϕ3 +
M2

Z

2
ZµZ

µ

+M2
WW

+
µ W

−µ

)
− ξ

2

(
Mkkt∂t

1

t
A5

)2

− ξ

2

(
δ (t− 1) kM2

Zϕ
3 + 2Mkkt∂t

1

t
Z5

)2

− ξ

4

(
δ (t− 1) kM2

Wϕ
+ +Mkkt∂t

1

t
W+

5

)(
δ (t− 1) kM2

Wϕ
− +Mkkt∂t

1

t
W−5

)
(2.27)

The KK decomposition of the gauge fields has an additional t dependence of the form

Xµ (x, t) =
1√
r

∑
n

X(n)
µ (x)χXn (t) , (2.28)

X5 (x, t) =
Mkk√
r

∑
n

aXn ϕ
(n)
X (x) ∂tχ

X
n (t) , X = W,A,Z. (2.29)

In Equation (2.28), the expression of the profile functions χX (t) are obtained via the
relation χX (t) = aXn ∂tχ

X (t) that includes an a priori parameter aX . These parameters
are determined in the next step after the insertion of the KK modes, c.f. Eq.(2.28). Given
these considerations, the fifth dimension can be integrated out now and the Fourier
coefficients aXn can be fixed. The vector components of the KK modes in Eq. (2.28)
absorb the KK modes of the scalar KK modes X5 and become massive. The profile

functions X
(n)
µ (x) denote the KK excitation of the gauge bosons and mX

n denotes their

mass. The profile functions ϕ
(n)
A (x) are the admixture of the KK modes with the profile

functions of the Goldstone bosons ϕ±,3 (x) that are derived by an expansion in the mass
eigenstates, reading [120]

ϕ± (x) =
∑
m

bmϕ
(m)
W (x) , m̃W =

v

2

√
g5

2πr
, (2.30)

ϕ3 (x) =
∑
n

amϕ
(n)
Z (x) , m̃Z =

v

2

√
g5 + g′5

2πr
. (2.31)

Using the Fourier coefficients aXn , bXn , and the orthonormality condition of the pro-
file functions Eq. (2.21), the KK decomposition Eq. (2.28) is inserted into the action
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Eq. (2.27). Integrating out the fifth dimension results in

Sgauge,bil 3
∫

d4x

{
− 1

4
F (n)
µν F

(n)µν− 1

2ξ

(
∂µA(n)

µ

)2
+

(
m

(n)
A

)2

2
A(n)
µ A(n)µ

− 1

4
Z(n)
µν Z

(n)µν − 1

2ξ

(
∂µZ(n)

µ

)2
+

(
m

(n)
Z

)2

2
Z(n)
µ Z(n)µ − 1

2
W+(n)
µν W−(n)µν

− 1

ξ

(
∂µW+(n)

µ

)(
∂νW

−(n)
ν

)
+

(
m

(n)
W

)2

2
W+(n)
µ W−µ(n) +

1

2
∂µϕ

+(n)
W ∂µϕ

−(n)
W

− ξ
(
m

(n)
W

)2
ϕ

+(n)
W ϕ

−(n)
W +

1

2
∂µϕ

(n)
Z ∂µϕ

(n)
Z −

ξ
(
m

(n)
Z

)2

2
ϕ

(n)
Z ϕ

(n)
Z

+
1

2
∂µϕ

(n)
A ∂µϕ

(n)
A −

ξ
(
m

(n)
A

)2

2
ϕ

(n)
A ϕ

(n)
A

}
+

∫
d4x

(
1

2
∂µh∂

µh− λv2h2

)
(2.32)

After a comparison of coefficients, the Fourier coefficients aXn and bXn read [120]

aXn = − 1

mX
n

, bXn = −m̃
X

mX
n

√
2πχXn (1) . (2.33)

The action describes the gauge bosons with an infinite tower of KK modes and masses
mX
n . The masses of the corresponding Goldstone bosons

√
ξmX

n and the zero modes
are associated to the SM Goldstone bosons. In principle mixing effects can occur be-
tween both physical zero modes and their excitations. Such a mixing results in different
couplings of the gauge boson zero modes to the fermions. After inserting the KK decom-
position Eq. (2.28) in the 5D action Eq. (2.26), the profile functions of the gauge bosons
become [120](

t∂t
1

t
∂t + x2

Xnχ
X
n (t)− cA

)
χXn (t) = 0, cA = δη (t− 1)

Lm̃2
X

2M2
kk

, (2.34)

with x2
Xn

= m2
X/Mkk. The δ function stems from the Higgs Lagrangian and implies that

two regions exist, which are divided by the regulator η via t < 1− η and t > 1− η. The
Neumann BC in the UV is applied in the first region and results in an expression for the
profile function

χXn (t)=Nn

√
L/πt (Y0 (xnε) J1 (xnt)− J0 (xnε)Y1 (xnt)) (2.35)

with the normalization constant Nn. The procedure is repeated in the region t > 1− η
and the IR BC ∂tχ

X
n (t) |t=1− = 0 leads to

χXn (t)=Nn

√
L/πt

(
K0

(
η−1/2Sn

)
I1

(
η−1/2Snt

)
+ I0

(
η−1/2Sn

)
K1

(
η−1/2Snt

))
(2.36)

with coefficients Nn and Sn =
(
Lm̃2

X/2M
2
kk − ηx2

Xn

)1/2
. The two coefficients are deter-

mined by the continuity equation at t = 1− η as well as with the help of the orthonor-
mality condition Eq. (2.21) and lead to a solution for finite values of η. An analytical
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solution is found in the region η � 1 via an integration of Eq. (2.34) in the interval
[1− η, 1]. In the limit η → 0, the Z2–odd profile functions show a discontinuity at t = 1.
This means that the profile functions of the W and Z boson are not smoothly differ-
entiable, whereas the profile functions for the photon and the gluon are continuous at
t = 1. The IR boundary condition then reads

∂tχ
X (t)

∣∣∣
t=1−

= lim
η→0+

∂tχ
X
n (t) (t− η) = −

Lm̃2
X

M2
kk

χX
(
1−
)
. (2.37)

The exact results of the boson profile functions are

χXn (t) = Nn

√
L

π
tc+ (t) (2.38)

with the normalization constant

N−2
n =

[
c+ (1)

]2
+
[
c−
(
1−
)]2 − 2

xn
c+ (1) c−

(
1−
)
− ε2

[
c+ (ε)

]2
(2.39)

and the linear combination of the Bessel functions

c± (t) = Y0 (xnε) J1/0 (xnt)− J0 (xnε)Y1/0 (xnt) . (2.40)

Later, the zero mode profile needs to be expanded in v2/M2
kk in the following way

χA,G0 (t) =
1√
2π
, (2.41)

χW,Z0 (t) =
1√
2π

[
1−

m2
W,Z

2M2
kk

(
t2
(
L− 1

2
+ ln t

)
− 1

2
+

1

2L

)
+O

(
v4/M4

kk

)]
. (2.42)

The expression for the zero mode profiles are exact in the case of the photon and the
gluon. The contributions proportional to v2/M2

kk stem from the IR localized Higgs term,
which is contained in cA [120]. Gauge invariance is broken at the massive KK level,
because the fifth mode acts as a Goldstone boson that is absorbed and consequently
leads to a mass term of the KK modes and a massive physical KK spectrum. As a
consequence, the KK mass spectrum only consists of massive spin 1 particles that contain
a non–trivial profile function and lead to non–trivial couplings.
The masses of the KK modes also are the zeros of the Bessel functions that result
from the differential equation Eq. (2.34). The KK masses are approximately given by
mXn+1 ≈ mXn + nπMkk and result in an equidistant spacing. The physical W and Z
boson masses are expanded in v2/M2

kk

m2
W,Z = m̃2

W,Z

[
1−

m̃2
W,Z

2M2
kk

(
L− 1 +

1

2L

)
+O

(
v4/M4

kk

)]
(2.43)

with m̃W,Z defined in Eq. (2.30) [120].

2.2 Localization of the Higgs sector in Randall Sundrum
models and solution of the hierarchy problem

In the RS model, the localization of the Higgs boson is not fixed a priori, because
both the brane–localized Higgs boson as well as the bulk–localized Higgs boson solve
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the hierarchy problem [98] if both are defined close enough to the IR brane. For this
thesis, the setup of the RS model with a focus of a brane–localized Higgs is considered
in more detail in Sec. 2.2.2 that is based on [98, 120, 121]. The different situation of a
Higgs that propagates in a narrow area in the bulk (narrow bulk Higgs) is explained and
investigated in Sec. 2.2.3. This also offers an implementation of another scalar boson
S without an SM analogue that is also considered in this thesis with an introduction
based on [133, 134]. A relation between both the brane–localized Higgs scenario and the
narrow bulk–localized Higgs scenario is established and discussed also in several theses
[128–131]. As mentioned, both brane–localized Higgs and bulk–localized Higgs solve the
hierarchy problem as long as both are localized sufficiently close to the IR brane, which
is explained in the following [86, 98, 120, 121, 133, 135–138]. After this explanation
and before the implementation of a scalar boson S is introduced, the meaning of the
general statement “close to the IR brane” is investigated for both cases starting with
the brane–localized Higgs sector.

2.2.1 Solution to the hierarchy problem

In [98], the hierarchy problem is addressed in the context of warped extra dimensions.
Furthermore, [98] assumes that the fundamental parameters of the RS model are of the
order of the Planck mass MPl ∼ M5 ∼ k ∼ r−1. The argumentation is as follows: we
use the more illustrative φ notation, in which the Higgs field Φ in the 5D Higgs action,
c.f. Eq. (2.22), becomes

SHiggs =

∫
d4x

π∫
−π

dφ
√
|G|δ (|φ| − π)

[
Gµν (DµΦ)† (DνΦ)− λ5

2

(
Φ†Φ− v2

5

2

)2
]
.

(2.44)
This action is for a Higgs field localized at the IR brane. In Equation (2.44), λ5 denotes
the quartic coupling and is assumed to be of the order of O (1) and the 5 dimensional
Higgs VEV v5 is in the order of the Planck scale MPl. Furthermore, the normalized
kinetic term in Eq. (2.44) is shifted by the redefinition of the Higgs field Φ → ekrπΦ.
The Higgs VEV is shifted by the same amount:

SHiggs =

∫
d4x

[
ηµν (DµΦ)† (DνΦ)− λ5

2

(
Φ†Φ− e−2krπ v

2
5

2

)2
]
. (2.45)

Now, the connection between the 4–dimensional effective Higgs VEV v4 and the 5 di-
mensional Higgs VEV v5 is given by v4 = e−krπv5, in which the exponential factor is the
warp factor, as given in Eq. (2.7) and is evaluated on the IR brane φ = ±π. The tree
level Higgs mass is given by

mh = e−krπmh,5 = e−krπ
√

2λ5v5. (2.46)

Although the dimensionful parameters of the RS model are of O (MPl), the Higgs lo-
calized at the IR brane leads to a position dependence of the dimensionful variables,
which are also of the order of the electroweak scale O (MEW) at the TeV brane. In [98],
all SM particles were confined on the IR brane, which leads to FCNCs. Proton decay
became possible as well as the cutoff scale would not be large enough for a suppression
of higher–dimensional operators. It turned out that Eq. (2.44) requires only the Higgs
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confined on the IR brane, because the compactification radius rc enters only in the Higgs
Lagrangian [98]. Moving the gauge boson fields away from the brane and into the bulk
[122] and considering bulk fermions [125, 139], as well, SM discrepancies could be re-
solved that occur if they are confined on the IR brane. The next step is to solve the
hierarchy problem with a Higgs that is confined on the IR brane.

2.2.2 Brane–localized Higgs

The 5D Higgs Lagrangian from Eq. (2.22) for a brane–localized Higgs is given in t nota-
tion by

LHiggs =

1∫
ε

dt

t
δη (t− 1)

√
|G|

[
Gµν (DµΦ)† (DνΦ) + µ2Φ†Φ− λ

(
Φ†Φ

)2
]

(2.47)

with the covariant derivative

Dµ = ∂M −
ig5

2
√

2

(
σ+W+

M + σ−W−M
)
− ig5

2cθW
ZM

(
σ3 − 2Qs2

θW

)
− ie5AM (2.48)

acting on the Higgs field

Φh (x, t) =
1

ε

(
−iϕ+ (x)

1√
2

[v + h (x) + iϕ3 (x)]

)
(2.49)

and leads to

DµΦh (x, t) =
1√
2

(
−i
√

2
(
∂µϕ

+ (x) +MWW
+
µ

)
∂µh+ i

(
∂µϕ

3 +MZZµ
) )

. (2.50)

The couplings gs,5, g5, e5, and g′5 have mass dimension -1/2.. The gauge fixing term reads
in the case for a brane–localized Higgs

LGF =− 1

2ξ

(
∂µAµ − ξ

[
Mkkt∂t

1

t
A5

])2

− 1

2ξ

(
∂µZµ −

ξ

2

[
δ (t− 1) kMZϕ

3 + 2Mkkt∂t
1

t
Z5

])2

− 1

2ξ

(
∂µW+

µ −
ξ

2

[
δ (t− 1) kMWϕ

+ + 2Mkkt∂t
1

t
W+

5

])
×
(
∂µW−µ −

ξ

2

[
δ (t− 1) kMWϕ

− + 2Mkkt∂t
1

t
W−5

])
. (2.51)

This gauge fixing term implies that the couplings from the vector component have to be
adjusted if the result should remain 4D Lorentz invariant. Then, there exists no other
excitation of the Higgs boson, and there are only zero modes for the Goldstone bosons
ϕA with mass dimension [ϕA] = 1. The terms containing a squared delta function in
Eq. (2.51) cancel out after the KK decomposition. Besides this procedure, there is also
the possibility to introduce a separate brane gauge fixing term. Then, the EOM for a
vector boson in Eq. (2.17) changes to

c2
A → L

g2
5v

2

4rM2
kk

(
δ
(
t− 1−

)
+ δ

(
t+ ε+

))
. (2.52)
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A non–zero width of the Higgs profile function is assumed, which is described by a delta
function on the IR brane δ (t− 1). This can be considered as a limiting procedure of an
infinitesimal shift of the Higgs profile function into the bulk, which reads

δ
(
t− 1−

)
= lim

η→0
δ (t− 1 + η) . (2.53)

Such an approach is satisfied as long as the Higgs profile function has no impact on
observables or the profile function of the Higgs boson is not resolved by other modes.
The two mentioned conditions confine the maximum of the Higgs profile function width
η to

η � v |Yq|
ΛTeV

. (2.54)

In this relation, Yq reflects the scale of the dimensionless 5D Yukawa coupling. In this
limit, the width of the Higgs profile function is resolved by other fermion modes of the
theory. An equivalent explanation is the dominance of the Yukawa term compared to
the mass term that follows from η � |Yq| and leads to modified BCs at t = 1−, as well.
The limit of η corresponds to the theory’s inherent UV cutoff ΛTeV. Ideally, all results
are considered in the limit η → 0. However, this is not possible every time: As long
as the condition Eq. (2.54) is fulfilled, the Higgs localization can still be regarded as a
brane Higgs.
Following this discussion, the case of a so–called bulk–localized Higgs is given, whenever
the condition in Eq. (2.54) is not fulfilled anymore.

2.2.3 Narrow bulk–localized Higgs

Considering the bulk Higgs, there are a few more remarks to make. The spontaneous
symmetry breaking (SSB) now happens in the bulk, which leads to an introduction of
Goldstone bosons ϕA in the gauge fixing term of Eq. (2.23). Now there exists a linear
combination of the fields A5 (xµ, t) and ϕA, which is absorbed by the KK modes of
Aµ (xµ, t). The other combinations remain and as a consequence, an additional tower of
pseudo scalar bosons appears in the gauge fixing term. In case of a bulk Higgs, η lies in
the interval

v |Yq|
ΛTeV

� η � v |Yq|
Mkk

. (2.55)

In the limit η → 0, a model independent solution can be derived under the following

circumstances. Within the region
v|Yq |
ΛTeV

> η, the Higgs profile function is completely
resolved by both the fermion and gauge boson modes and leads to competing contribu-
tions to the amplitude of the processes under investigation.
An arbitrary scalar boson S is considered with almost the same properties as the bulk
Higgs analogously to the bulk–localized Higgs boson. The Lagrangian of a bulk–localized
Higgs boson is given by

Lh/S (x, t) =

∫ 1

ε
dt

2πr

Lt

√
|G|

[
GMNDMΦ† (x, t)DNΦ (x, t)− µ2 |Φ (x, t)|2

− Mkk

2
VUV (Φ) δ (t− ε)− k

2
VIR (Φ) δ (t− 1)

]
,

(2.56)
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with the bulk mass µ and a scalar doublet field Φ with mass dimension 3/2. The
Lagrangian of a bulk scalar is different compared to the brane–localized Higgs boson,
because additional brane terms appear. In Equation (2.56), the terms VUV = MUV |Φ|2
and VIR = −MIR |Φ|2 + λIR |Φ|4 indicate the potentials in the UV and IR regions,
respectively, and define the BCs of the scalar fields. Furthermore, they may induce

EWSB at the same time. The mass dimensions of the terms of the potential are
[
MUV

]
=[

MIR

]
= 1 and

[
λIR

]
= −2. They are rescaled to the dimensionless quantities

mIR =
MIR

2k
, mUV =

MUV

2k
, λIR =

λIRk

4r
. (2.57)

The mass terms MIR,MUV and λIR scale with terms proportional to MPl. Equation
(2.56) is valid for any scalar boson and therefore also applies to the scalar S. The
difference between the scalar S and the bulk–localized Higgs boson is that the scalar S
is a gauge singlet

ΦS (t) =
1√
2

(
vs (t) + s (x, t)

)
(2.58)

with a scalar VEV vs (t) and s (x, t), being the profile function of the scalar. In contrast,
the Higgs field is a doublet

Φh (x, t) =
1

ε
√
r

(
−iϕ+ (x, t)

1√
2

[vh (t) + h (x, t) + iϕ3 (x, t)]

)
. (2.59)

Here, vh (t) denotes the Higgs VEV, h (x, t) the corresponding physical Higgs field af-
ter a rotation into the mass basis, whereas ϕ+ (x, t) and ϕ3 (x, t) denote the Goldstone
bosons. Now, all 5D fields and the VEV in the Higgs doublet Φh (x, t) also possess a
position in the extra dimension, indicated by the letter t. Furthermore, this advantage
allows a decomposition into KK modes, but as a consequence the profiles now mix with
KK modes of other extra–dimensional particles [140]. Further, the additional scalars

φ±(n) (x, t) and φ
(m)
Z (x, t) do not possess a zero mode. In Ch.4, the Higgs decay into

two photons and the charged scalars are discussed. Their analysis follows analogously
to the one of both the Higgs boson and the scalar boson S.
After an integration by parts, the corresponding Lagrangian Lh/S to the action in
Eq.(2.56) reads

Lbulkh/S =
2π

L

∫ 1

ε

dt

t

[
1

2
∂µh (x, t) ∂µh (x, t) +

M2
kk

2

[
v (t) + 2h (x, t)

t

(
t2∂2t + t∂t − β2

) v (t)

t

+
h (x, t)

t

(
t2∂2t + t∂t − β2

) h (x, t)

t

]]

− πM2
kk

L

[ [
v (t) + 2h (x, t)

t2
∂t [tv (t)] +

h (x, t)

t2
∂t [th (x, t)]

]1
t=ε

+
mUV

ε2
[v (ε) + h (x, ε)]

2 −mIR [v (1) + h (x, 1)]
2

+
λ

M2
kk

[v (1) + h (x, 1)]
4

]
,

(2.60)

and includes the bulk localization parameter β =
√

4 + µ2/k2. For clarity, only the Higgs
field h (x, t) is written, but the Lagrangian also holds if the Higgs would be a general
scalar S. The BCs are obtained by an integration of Eq.(2.60) over an infinitesimal
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interval around the branes. With the further restriction that both quadratic and linear
terms vanish on the branes, the BCs are

∂t [tv (t)]|t=ε+ =mUVv (ε) , ∂t [tv (t)]|t=1− =mIRv (1)− 2λIR
M2

kk

v3 (1), (2.61)

∂t [th (t)]|t=ε+ =mUVh (x, ε) , ∂t [th (t)]|t=1− =mIRh (x, 1)− 6λIR
M2

kk

v2 (1)h (x, 1) . (2.62)

Such a restriction is necessary for a description of the Higgs field h (x, t) in the desired
way, but for an arbitrary scalar S, these restrictions do not necessarily apply and are sub-
ject to further specifications. Nevertheless, Eq.(2.62) can be recovered for an arbitrary
scalar S if both quadratic and quartic terms on the branes are allowed. Throughout
this thesis, the same BCs for both the Higgs boson and the arbitrary scalar boson S are
used.
In order to obtain the profile function for an arbitrary scalar field, the scalar field is
decomposed by

s (x, t) =
∞∑
n

χnS (t) sn (x) . (2.63)

For the zero mode of a bulk Higgs and after applying the BC, the EOM of a bulk scalar
is obtained from the Lagrangian, Eq. (2.60):

(
t2∂2

t + t∂t + t2x2
n − β2

) χ(n)
S (t)

t
= 0 (2.64)

with xn = msc/Mkk. A general solution of the EOM in Eq. (2.64) is

S
(
p2; t, t′

)
= Nnt

[
Jβ (xnt)− rnJ−β (xnt)

]
(2.65)

with the normalization constant Nn and Jβ (xnt) denoting a Bessel function. The mass
for the SM Higgs boson is derived via the application of appropriate BCs

xnJβ+1 (xnt)

Jβ (xnt)
= 2 (mIR − 2− β) = δ (2.66)

and as a consequence, the Higgs mass should be of O (Mkk), which is not the case and
referred to as little hierarchy problem. A realistic expression for the mass is obtained via
δ � 1. After that, an expansion in δ is possible that results in the expression for the
bulk Higgs mass

x2
0 =

m2
h

M2
kk

= 4 (1 + β) δ

[
1− δ

2 + β
+

2δ2

(2 + β)2 (3 + β) + ...

]
(2.67)

and the profile function for the bulk Higgs

χh0 (t) =

√
L

π
(1 + β)t1+β

[
1− x20

4

(
t2

1 + β
− 1

2 + β

)
+ ...

]
. (2.68)

In the case of an arbitrary bulk scalar with no SM equivalent, Eq. (2.68) differs by an
interchange of

x2
0 ↔ x2

1 =
m2

sc

M2
kk

≈ 4 (1 + β) [1− ξ (1 + β)]

1− ξ (3 + β)
(2.69)

27



and the lightest mode results in the case of the singlet scalar S in

χS (t) =

√
L (1 + β)

π
t1+β

[
1− x2

1

4

(
t2

1 + β
− 1

2 + β

)
+ ...

]
,

χS (t)
β→∞

=

√
L (1 + β)

π

1

2 + β
δ (t− 1) .

(2.70)

Here it is clearly visible that the profile function of χS (t) approaches a localization near
the IR brane in the case of β →∞, as the delta function δ (t− 1) appears in Eq. (2.70).
If β = O (1), the profile lies wide along the extra dimension [141].
The differential equation for the profile function of the 5D Higgs–VEV v (t) is

[
t2∂2

t + t∂t − β2
] v (t)

t
= 0. (2.71)

The latter equation is obtained with the application of the principle of variation on
the action, Eq.(2.56), that ensures that tadpole terms vanish. The Lagrangian Lbulkh/S of

Eq.(2.60) now reads

LBulk
h/S (x) =

2π

L

∫ 1

ε

d

t

[
1

2
∂µh (x, t) ∂µh (x, t) +

M2
kk

2

h (x, t)

t

(
t2∂2

t + t∂t − β2
) h (x, t)

t

]
− π
L
λ
[
−v4 (1) + 4v (1)h3 (x, 1) + h4 (x, 1)

]
. (2.72)

The general solution of Eq.(2.71) with the BCs Eq.(2.61) is

v (t) = Nv

(
t1+β − rv t1−β

)
, (2.73)

with the normalization

Nv =
M2

kk

2λ

(mIR − 2− β)− rv (mIR − 2 + β)

(1− rv)3 (2.74)

and the radius

rv = ε2β
2 + β −mUV

2− β −mUV
. (2.75)

If the 5D scalar field obeys the Breitenlohner-Freedman bound µ2 ≥ −4k2 [142], β is
assumed to be a real positive number. The assumption of β being a real positive number
follows from the observation that the energy–momentum flux in a pure Anti–de–Sitter
space in the limit r → ∞ vanishes at the bound, i.e. without an IR brane. The
prevention of the little hierarchy problem is realized by the scaling dimension (2 + β)

and the relation of the source to the operator via Λ1−β
UV Φ0O. Here, Φ0 denotes the scalar

and O denotes the operator [133, 143, 144]. At the same time, the lower bound is set
to β ≥ 1 by these requirements. With this bound, the contribution of rv ∝ ε2β remains
insignificant as long as t is sufficiently close to the UV brane, which means t ∼ ε. The
upper bound on β is set by the fact that the Higgs VEV is a positive real number

v (t) = v (1) t1+β with v (1) = Mkk

√
mIR − 2− β

2λ
, (2.76)
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and keeping in mind that λ is positive for the reason of a stable vacuum.Although there
is an expression for v (1), the expression depends on input parameters of the theory. A
more intuitive way is an expression by a relation of the two VEVs, which is derived next
with the help of the gauge boson profile functions.
In order to obtain a relation from the 4D Higgs VEV to the 5D Higgs VEV profile, the
next step is to consider the mass terms of the W and Z boson in the action

S
(5)
GBmasses =

∫
d4x

2π

L

∫ 1

ε

dt

t

v (t)
2

4

[
g25W

+
µ (x, t)W−µ(x, t)+

g25 + g′25
2

Zµ(x, t)Zµ(x, t)

]
. (2.77)

Next, the KK decomposition is inserted that relates v4 to the 5D Higgs VEV:

v2
4 ≡

2π

L

∫ 1

ε

dt

t
v2 (t)

(
χW0 (t) 2π

)2
=
N2
v

k

[
1− ε2(1+β)

2 (1 + β)
+ r2

v

2 (2− β) (1− ε)− ε2(1−β)

2 (1− β)

]

=
π

L

v2 (1)

1 + β
.

(2.78)

Up to an expansion in O
(

v2

M2
kk

)
, v4 is identical to the SM Higgs VEV. The exact deriva-

tion is challenging as it requires the knowledge of the profile function χWbulk (t) of the
W boson that cannot be obtained in a closed form. However, it can be obtained by an

expansion of the EOM, Eq.(2.17), with c2
A →

g25v(1)2

4rM2
kk

. As one is too involved with the

derivation of the profile function, an expansion fits the purpose better. Thus, the Higgs
VEV becomes

v (t) = v4

√
L

π
(1 + β)t1+β. (2.79)

As one can see, both VEV profile, Eq. (2.79), and the bulk Higgs zero mode profile,
Eq. (2.68), coincide for β →∞

δ1/β
v (t− 1) = (2 + β) t1+β, (2.80)

δ
1/β
h (t− 1) = (2 + β) t1+β

[
1− x2

0

4 (1 + β)

(
t2 − 2 + β

4 + β

)
+ ...

]
. (2.81)

This leads to the profile function of both the bulk Higgs VEV and the bulk Higgs profile

v (t) = v4

√
L

π

√
(1 + β)

2 + β
δ1/β
v (t− 1), (2.82)

χ0 (t) =

√
L

π

√
(1 + β)

2 + β

[
1 +

x2
0β

4 (1 + β) (2 + β) (4 + β)
+ ...

]
δ

1/β
h (t− 1) (2.83)

with the regulator 1/β and η that is the regulator for the brane–localized Higgs scenario.
These considerations are also necessary for bulk fermions that are discussed now.

2.3 Yukawa interactions in the RS model

The matter sector of the 5D action Eq. (2.15) consists of the kinetic terms of the fermions
and the Yukawa action SYuk. These parts are investigated in the following, because they
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are necessary to understand the derivation of both the profile functions of the fermions
and their propagator. Starting with the Yukawa sector, the derivation of the fermion
profile functions follows immediately. The matter part of Eq. (2.15) reads

LYuk =−
∫ 1

ε

dt

t

Mkk

2
δη (t− 1)

[
QL (x, t) Φ (x)Y 5D

d dR (x, t)

+QR (x, t) Φ (x)Y 5D
d dL (x, t) + εabQa,L (x, t) Φ†b (x)Y 5D

u uR (x, t)

+ εabQa,R (x, t) Φ†b (x)Y 5D
u uL (x, t) + h.c. (2.84)

The 5D Yukawa matrices are defined via

Y =
k

2
Y 5D, (2.85)

and lead to the mass dimension of
[
Y 5D

]
= −1 and the two–dimensional Levi Civita

symbol ε = iσ2 also appears with ε12 = 1. Compared to the SM Yukawa matrices,
these Yukawa matrices are assumed to be anarchical, which means that there is no
hierarchical structure as it is the case for SM Yukawa matrices. The upper bound of
the absolute value of the Yukawa matrices y? is 3 in both Ch.4 and Ch.5, in which the
phenomenology of both h → γγ and the coupling for an arbitrary bulk scalar S are
discussed. This value corresponds to the perturbativity bound, which is explained in
Sec. 2.3.1. For the phenomenological analysis also other values for the Yukawa matrices
are discussed, via y? = 0.5, 1, 1.5, 2, 2.5.
The Yukawa couplings are described by

Lbulk
Y =−

∫ 1

ε

dt
∑
q=u,d

v (t)+
∑
nhn (x)χnh (t)√

2
QL (x, t)

1√
r

(
0 Y

(5D)
b,q

Y
(5D)†
b,q 0

)
QR (x, t)+h.c. (2.86)

for a bulk localized Higgs boson. The requirement of β =
√

4 + µ2

k2
in O (1) leads to the

modification of the Yukawa matrix for the bulk Higgs case to

Yq ≡
k

2
Y 5
q =

√
k (1 + β)

2 + β
Y 5,bulk
q , (2.87)

which is bound from above by y?. In the limit β � 1 which also means that η → 0,
the profile functions Eq. (2.82) become IR localized. Then, the dimensionless Yukawa

matrices are related via Yq ∼
√

(k/β)Y 5,bulk
q and are interpreted as quantities that

relate an observed mass to a mixing angle following the relation from [120]. Then, the
relation

δ
1/β
h (t− 1)

δ
1/β
v (t− 1)

= 1 +O
(

m2
h

β2M2
kk

)
(2.88)

shows that the delta functions are equal at O
(

m2
h

β2M2
kk

)
and the Yukawa coupling for a

brane–localized Higgs boson is recovered. One additional note is that for a very large β
a double hierarchy in the following relation exists:

1

r
� k � µ ≈ mIR

2
, (2.89)

which can be achieved if k is chosen to be smaller than the Planck scale. In the above
Eq. (2.86), both QR (x, t) and QL (x, t) denote the fermion profile functions, whose prop-
erties are now being investigated.
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2.3.1 Perturbativity bounds on the Yukawa couplings

A perturbative treatment of the Yukawa interaction in the RS model that is under
consideration requires here an upper bound to the 5D Yukawa couplings [134, 145]. In
the so–called näıve dimensional analysis (NDA) approach, it is visible that the Yukawa
interactions at 1–loop get corrections from a brane–localized Higgs sector and might
exhibit quadratic divergences, resulting from [113]

cg

(∣∣Y 5D
q

∣∣
√

2

)2
l4
l5
M2

Pl =
cg |Yq|2

18π4

(
ΛTeV

Mkk

)2

< 1. (2.90)

The scale for the dimensionful Yukawa matrices is defined by
|Y 5D
q |
k , and l4 = 16π2, l5 =

24π3 denote the phase space factors for the 4D and the 5D case, respectively. The
scale ΛTeV = MPlε denotes the IR cutoff whereas M2

Pl denotes the UV cutoff. The
quantity Mkk is defined as Mkk = kε. As the last ingredient for Eq. (2.90), cg defines the
multiplicity of the fermion generation. In the present discussion, cg is defined as

cg = 2Ng − 1 (2.91)

for Ng fermion generation(s), which is related via〈 (
YqY

†
q Yq

)
ij

〉
= (2Ng − 1) |Yq|2 (Yq)ij . (2.92)

The latter equation is meant to be an expectation value for both complex and anarchic
5D Yukawa matrices. In the KK picture, Eq. (2.90) is expressed via the KK modes.
There is a contribution of the quadratic cutoff that stems from the double sum of the
NKK states below the cutoff value ΛTeV [145], which yields

cg

(∣∣Y 5D
q

∣∣
√

2

)2
N2

KK

l4
≈ cg |Yq|2

32π4

(
ΛTeV

Mkk

)2

< 1 (2.93)

with

|Yq|2 = 〈|Yq|2ij〉 =
y2
∗
2
. (2.94)

Depending on the choice of formulae, it is possible to derive two similar upper bounds
for y2

?. Using Eq. (2.90), the upper bound becomes

y∗ ≤ ymax =
6π2

√
cg

Mkk

ΛTeV
. (2.95)

While for Eq. (2.93) the upper bound for y2
∗ becomes

y∗ ≤ ymax =
8π2

√
cg

Mkk

ΛTeV
. (2.96)

If the scale of ΛTeV ∼ 10Mkk is considered, the upper bounds become ymax ≈ 2.6 and
ymax ≈ 3.5, which justifies an assumption of ymax = 3 in both the phenomenological
analyses and use in the literature,e.g. [120, 121, 131, 179, 194]. Usually the values for
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ymax are derived without a dependence of Ng. In the case of a bulk Higgs model,
Eq. (2.93) turns into

cg

(∣∣Y 5D
q

∣∣
√

2

)2
1

l5
MPl =

cg |Yq|2

48π3

(2 + β)2

1 + β

Mkk

ΛTeV
(2.97)

that shifts y∗ to

y∗ ≤ ymax =
√

96π3/cg

√
1 + β

2 + β

√
Mkk/ΛTeV. (2.98)

This includes β ∼ 1/η that sets the Higgs profile width. For a broad Higgs with β → 0,
the value for ymax takes 3.9, which is also weakened by

√
Mkk/ΛTeV. In the case of a

narrow bulk Higgs with η = 1/β, Eq. (2.98) simplifies to

ymax =
√

96π3/cg
√
ηMkk/ΛTeV ≈ 7.7

√
η (2.99)

that can be used if η > Mkk/ΛTeV ≈ 0.1. For a smaller value of η, the bound of ymax

corresponds to the brane Higgs [129, 130].

2.4 Fermion profile functions

A bulk fermion is a four component Dirac spinor in the 5D representation of the Lorentz
group, because the bulk fermion has to fulfill the 5D Clifford algebra{

ΓM ,ΓN

}
= 2ηMN . (2.100)

Five gamma matrices are required and the relation

ΓM = (γµ, iγ5) (2.101)

follows from the anticommutation relation. The choice of ΓM makes a construction of
projection operators challenging. The construction of the orbifold resolves this discrep-
ancy via a projection of a different choice of BCs. As a consequence, a 5D fermion is
decomposed into two Weyl representations.
Confining the fermions along the extra dimension leads to a suppression of higher–
dimensional operators, because the overlap integrals of their wave function determine
the size of the coupling [125, 139]. These characteristics offer an explanation for the
definition of the boson profiles along the extra dimension. Otherwise, the bulk–localized
gauge sector would be localization–independent. This would lead to non–diagonal gauge
couplings for the KK excitations and to problems if couplings between a photon and a
gluon are considered. The 5D fermion Lagrangian

LFerm =

1∫
ε

dt

t

√
|G|

∑
Q=U ,D

Q̄ (x, t)

[
i/∂ −Mkkγ5∂t −

Mkk

t

(
cQ 0

0 −cq

)]
Q (x, t) (2.102)

includes the so–called bulk mass parameters cQ,q that indicate the position along the
extra dimension. They are 3× 3 diagonal matrices in generation space and a basis may
be chosen in which the bulk mass parameters are diagonal. The bulk mass parameter
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of the SU (2)L doublets is cQ, while cq is the bulk mass parameter of the singlet under
SU (2)L [120]. There are also SU (2)L doublets with the left–handed and right–handed
fields of the six component vectors Q (x, t) = QL (x, t) +QR (x, t) as well as the singlets
uL (x, t), and dL (x, t) under SU (2)L that are four component Dirac spinors [125, 139].
Left–handed quark fields are chosen to have Z2–even parity whereas the right–handed
quark field is described by a Z2–odd component and the six component vector

QA (xµ, t) =

√
2πr

Lε

(
QA (xµ, t)

qA (xµ, t)

)
. (2.103)

Either the up–type quark or the down–type quark under consideration is represented
by (Q, Q, q) = (U , U, u) , (D, D, d) and the subscript A = L,R refers to the chirality of
the profile under consideration. One asset of this compact notation is that the factors
appearing in the integrals are absorbed into Eq. (2.103). Furthermore, QA (xµ, t) is the
abbreviation of

QL,R (x, t) =
∑
n

Q
(n)
L,R (t) q

(n)
L,R (x) . (2.104)

The wave functions of both left–handed and right–handed components of the nth KK

eigenstates are q
(n)
L,R (xu). With the insertion of the KK decomposition, Eq. (2.104) be-

comes

Q(n)
L (t) =

√
2π

Lε

(
CQn (t) aQn

Sqn (t) aqn

)
, Q(n)

R (t) =

√
2π

Lε

(
SQn (t) aQn

Cqn (t) aqn

)
. (2.105)

Some comments on Eq. (2.105) are necessary. The even (odd) quark profile function are
CQ,q (SQ,q), which corresponds to NN (DD) BCs. Furthermore, both CQ,q and SQ,q are
3× 3 matrices in generation space and the SU (2)L symmetry implies that the doublet
quark fields have the same profile functions for both the up–type quark sector and the
down–type quark sector. Another advantage lies in the fact of the freedom to choose the
functions in such a way that the resulting profile functions are both real and diagonal.
As a consequence, the aQ,q–vectors in Eq. (2.105) are then imaginary. The aQ,q–vectors
contain the description of flavor mixing of the 5D interaction to the 4D eigenstates,
which are generated by the Yukawa interaction on the IR brane. If there is no Yukawa
interaction, i.e. v → 0, this corresponds to the case of the absence of flavor mixing and
the aQ,q vectors then become unit vectors [120].
The EOM of the fermion profiles are obtained in the same way as in the gauge boson
case, i.e. matching the 5D action onto the 4D canonical term

S4D =
∑
q=u,d

∑
n

∫
d4x

[
q̄(n) (x) i/∂q(n) (x)−mnq̄

(n) (x) q(n) (x)
]

(2.106)

after the insertion of the KK decomposition of Eq. (2.105) and Eq. (2.104) into Eq. (2.102)
with the orthonormality relation

2π

Lε

∫ 1

ε
dt
{
a(Q,q)†
m C(Q,q)

m (t)C(Q,q)
n (t)a(Q,q)

n

+ a(q,Q)†
m S(q,Q)

m (t)S(q,Q)
n (t)a(q,Q)

n

}
= δmn. (2.107)
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Then, the EOM read

∂tQ(n)
L (t) = −xqnQR (t) +Mq (t)Q(n)

L (t) , (2.108)

∂tQ(n)
R (t) = xqnQL (t)−Mq (t)Q(n)

R (t) . (2.109)

In Eq. (2.108), xn = mqn/Mkk denotes the normalized bulk mass of the fermions to the
KK scale and M is a 6× 6 t–dependent mass matrix

Mq (t)=
1

t

(
cQ 0

0 −cq

)
+

v√
2Mkk

δη (t− 1)

(
0 Yq

Y †q 0

)
+O

(
Mkk

v |Yq|

)
, q = u, d (2.110)

that contains the bulk mass parameters cQ,q = ±MQ,q/k and the regularized delta
function δη (t− 1). A näıve treatment of the delta function in Eq. (3.56) would lead to
an ill–defined definition [151] of the upper component of Eq. (2.108),(

∂t +
1

t
cQ

)
SQn (t) aQn = xqnC

Q
n (t) aQn −

v√
2Mkk

δη (t− 1)YqC
q
n (t) aqn, (2.111)

because the right–hand side of Eq. (2.111) would lead to 0 at the IR brane, as the delta
function is 0 at t = 1 after an integration around an infinitesimal interval of t = 1. As a
consequence, SQn (1) would not be zero, but both the BC and the Z2–odd profile function
dictate SQn (1) = 0. Treating the Yukawa matrices as a small perturbation, the resulting
solution is valid up to O

(
v2/M2

kk

)
. Solving then the free EOM leads to the BCs(

0 1
)
Q(n)
L (t) = 0,

(
1 0

)
Q(n)
R (t) = 0, ∀t ∈ [ε, 1] . (2.112)

This is a standard operation, c.f. [120, 139, 146–149]. After a rotation into the mass
basis, the Yukawa interactions are already contained and regularized. The solution of
this discrepancy is a shift of the delta function into the bulk by a small amount that leads
to a discontinuity of the Z2–odd fermion profile functions at t = 1 − η using Eq. (2.53)
[150]. In this case, a delta function is used that is assumed as a box of a width η and
a height 1/η, c.f. Eq. (2.18). In the following, solutions containing an exact dependence
of the Yukawa matrices are derived, c.f. [120, 121, 139, 151, 152]. The infinitesimal
small regulator η divides the extra dimension into two parts,i.e. t ∈ [ε, 1 − η) and a
part t ∈ (1 − η, 1, ]. First, the second region is investigated, as here the desired mixed
BCs can be obtained. After the derivation of the modified BCs, the quark profiles can
be derived and the final IR BCs can be obtained in the brane–localized Higgs scenario
via a limiting procedure, where η → 0. In the region t > 1 − η, the delta function is
approximated as 1/η in the generalized mass matrix Eq. (3.56), and the EOM result in
the second order differential equation[

∂2
t −

1

η2

(
X2
q − η2x2

qn 0

0 X̄2
q − η2x2

qn

)]
Q(n)
A (t) = 0, A = L,R (2.113)

with the hermitian 3× 3 matrices

Xq =
v√

2Mkk

√
YqY

†
q , X̄q =

v√
2Mkk

√
Y †q Yq, (2.114)
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where the square root has to be interpreted as an expansion. The general solution of
Eq. (2.113) is given by

S (t) = sinh

(
Sq

1− t
η

)
, C (t) = cosh

(
Sq

1− t
η

)
, Sq ≡

√
X2
q − η2x2

qn (2.115)

as well as their corresponding conjugate expressions S̄ (t) and C̄ (t). After the application
of the Neumann (Dirichlet) BCs of the Z2–even (odd) profile functions, the quark profiles
on the IR brane result in

Q(n)
L (t) =

 C(t)
C(1η) 0

0 S̄(t)
S(1η)

Q(n)
L (1η) , Q(n)

R (t) =

 S(t)
S(1η) 0

0 C̄(t)
C(1η)

Q(n)
R (1η) (2.116)

with 1η = 1−η and the coefficients Q(n)
L,R (1η) that depend on the continuity conditions at

t = 1−η. As
v|Yq |
ΛTeV

� η is already assumed, the KK mass is replaced by the corresponding
KK fermion mass, Mkk → mqn that allows to consider the mass terms to be negligible,
which leads to Sq → Xq. After the insertion of Eq. (2.116) into the first order differential
equation, the modified BCs read in the limit η → 0(

vỸ †q√
2Mkk

1
)
Q(n)
L

(
1−
)

= 0,
(

1 − vỸq√
2Mkk

)
Q(n)
R

(
1−
)

= 0. (2.117)

The limiting procedure is necessary due to the discontinuity of the Z2–odd profile ap-

pearing in the upper (lower) component of Q(n)
L (t)

(
Q(n)
R (t)

)
. In addition, Eq. (2.117)

serves as a crosscheck during the derivation of the fermion propagator in the brane–
localized Higgs scenario in Sec. 2.2.2. Another quantity introduced in Eq. (2.117) is the
so–called modified Yukawa matrix

Ỹq =
tanh (Xq)

Xq
Yq (2.118)

that differs by factors of v2/M2
kk compared to the original Yukawa matrix Yq. An exact

solution in the limit η → 0 is obtained with the help of the EOM Eq. (2.108) and the
modified BCs:

Q(n)
L (t) =

√
2t

(
Nn (cQ) f+

n (t, cQ) aQn

−Nn (cq) f
−
n (t, cq) a

q
n

)
, (2.119)

Q(n)
R (t) =

√
2t

(
Nn (cQ) f−n (t, cQ) aQn

Nn (cq) f
+
n (t, cq) a

q
n

)
, (2.120)

in which the functions

f± (t, cQ,q) = J− 1
2
−c (xnε) J∓ 1

2
+c (xnt)± J 1

2
+c (xnε) J± 1

2
−c (xnt) (2.121)

are product of Bessel functions. For non–integer values of cQ,q the orthonormality con-
dition requires a normalization

2

∫ 1

ε
dt t =

1

N 2
n (cQ,q)

±
f+
n (1, cQ,q) f

−
n (1−, cQ,q)

xn
(2.122)

35



including the value of N−2

N−2
n (cQ,q)=

[
f+
n (1, cQ,q)

]2[
f−n (1, cQ,q)

]2− 2cQ,q
xn

f+
n (1, cQ,q)f

−
n (1, cQ,q)−ε

[
f+
n (ε, cQ,q)

]2
.

(2.123)
Solutions for CQ,qn (t) and SQ,qn (t) are obtained with the help of Eq. (2.121) and Eq. (2.123),
leading to

CQ,qn (t) = Nn (cQ,q)

√
Lεt

π
f+
n (t, cQ,q) , (2.124)

SQ,qn (t) = ±Nn (cQ,q)

√
Lεt

π
f−n (t, cQ,q) . (2.125)

Performing an expansion in the limit xn � 1, in which the masses are assumed to be
much smaller compared to the KK scale, Eq. (2.124) results in the ZMA

CQ,qn (t) ≈ F (cQ,q) t
cQ,q âQ,qn , (2.126)

SQ,qn (t) ≈ xnF (cQ,q)
t1+cQ,q − ε1+2cQ,q t−cQ,q

1 + 2cQ,q
âQ,qn (2.127)

that contains the localization zero mode profile function

F (cQ,q) ≡
√

1 + 2cQ,q
1− ε1+2cQ,q

, (2.128)

which determines the localization in the IR of the C–profile in Eq. (2.126). In the case of
the S-profile in Eq. (2.127), this is the inverse function approaching from the left to 1−.
Eq. (2.128) can also be divided into two ranges by the values of the bulk mass parameters

F (c) =

{
−
√
−1− 2c ε−c−1/2, −3/2 < c < −1/2

√
1 + 2c, −1/2 < c < 1/2

(2.129)

The sign of the bulk mass parameters depends on their localization and reflects at the
same time the chirality of the fermions. If cQ,q < −1/2 the fermion is UV localized,
otherwise it is localized in the IR. It is remarkable that the sensitivity of the F–profiles
depends exponentially on O (1) variations of the bulk mass parameters, which are used
for the generation of large fermion hierarchies. With the insertion of Eq. (2.126) and
Eq. (2.127) into Eq. (2.117), an expression for both the zeroth order masses is obtained
that are the eigenvalues. The âQ,qn vectors are the eigenvectors of(

mqn,01−
v2

2
Y eff
q

(
Y eff
q

)†)
âQn = 0,

(
mqn,01−

v2

2

(
Y eff
q

)†
Y eff
q

)
âqn = 0. (2.130)

Equation (2.130) includes the effective Yukawa matrix

Y eff
q = F (cQ) ỸqF (cq) . (2.131)

Now it is possible to derive an analytical expression for the quark masses

mqi ≈
v√
2
|Yq|

∣∣F (cQi)∣∣ ∣∣F (cqi)∣∣ , (2.132)
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(a) (b)

Figure 2.4: A qualitative display of the RS GIM mechanism. The dashed line repre-
sents a t2 behavior and the solid lines display the fermion profiles along the
extra dimension. Fermions that are considered to be localized towards the
UV brane are assumed to be lighter and show a small overlap with the IR
brane compared to fermion profile functions that are localized towards the
IR brane, c.f. Fig. 2.4a. The colored blue area in Fig. 2.4a and Fig. 2.4b gets
larger if the fermion profile functions are localized in the same region. Fur-
thermore, the size of FCNC that results from the coupling of the overlap
integrals is sketched by the blue colored area. At the same time the overlap
determines the size of the 4D Yukawa coupling that generates the fermion
masses. This illustration is based on [127, 129, 130].

in which the bulk mass parameter cQ,q determine the size of the overlap of the profile
functions. The generation of realistic mass hierarchies requires the bulk mass parameters
to be in the interval of cQ,q ∈ (−1, 1). The light quark masses have a profile function near
the UV brane, which is indicated by the values of cQ,q < −1/2, while the overlap profile
function of the heavy fermions are localized towards the IR brane [120]. This leads to
a FCNC suppression if fermions couple to gauge bosons. FCNCs are in the RS model
possible at tree–level that is in contrast to the SM. If light fermions are involved, the
size of the coupling will be small due to the value of the bulk mass parameter. Another
benefit is that only terms with a positive exponent of t or t′ is present. As a consequence,
the whole tower of the massive KK modes is either localized on or near the IR brane, or
is delocalized [120, 130]. This effect is referred to as the RS–GIM mechanism [153–155]
and is depicted in Fig. 2.4. The solid lines in Fig. 2.4 display the fermion profile functions
along the extra dimension qualitatively whereas the dashed line displays a t2 behavior
as an illustration. The RS GIM mechanism is discussed in more detail in Ch. 5 as this
mechanism is explained in the context of a tree–level diagram with two external fermions
that couple to a scalar boson. As already mentioned, mass hierarchies are generated
using the bulk–mass parameters. Not only the localization of the fermions along the
extra dimension is important for a suppression of contributions of higher–dimensional
operators, but also their suppression that stems from the position–dependent cutoff. The
latter suppression also depends on the localization of both fermions and bosons in the
bulk. FCNCs can already arise at tree–level, because the couplings of KK fermions to
massive (gauge) bosons are in general not diagonal. The suppression by the masses of
the fermions are proportional to the zero mode profile as shown in Eq. (2.132) and are
proportional to

m2
f

M2
kk

≈ 1

16π

m2
f

m2
W

, (2.133)

if Mkk is associated with 4πmW . This is suppression is of the same order as in the SM.
Suppressions that stem from first or second fermion generations are stronger compared
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to the suppressions that stem from the third fermion generation. As a consequence, the
latter case can lead to sizable contributions if third generation fermions are involved in
diagrams.
The absolute values of all fundamental parameters of the fermion sector in the RS
model are of O (1), which are the Yukawa matrix Yq on the one hand as well as the
bulk–mass parameter cQ,q on the other hand. Small changes in the values of cQ,q may
lead to a different localization of the fermion profiles along the extra dimension resulting
in a different overlap with the IR brane. Exactly this overlap determines the size of
the effective 4D Yukawa couplings that are responsible for the generation of the quark
masses.

2.5 Custodial RS model

The custodial RS model bases on [124, 156, 157]. Here, the probability to detect lightest
KK resonances is higher compared to the minimal RS model [87, 158–160]. In addition,
the difference between the minimal RS model and the custodial RS model lies in the
enlarged bulk gauge symmetry

SU (3)C × SU (2)L × SU (2)R × U (1)X × PLR (2.134)

that is enforced to protect both ρ parameter via the symmetry breaking of the SU (2)L×
SU (2)R → SU (2)V at the IR brane that also generates at the same time EWSB [124].
The PLR symmetry in Eq. (2.134) interchanges the SU (2)L group with the SU (2)R
group, and leads to a protection of the Zb̄b couplings for both flavor changing coun-
terparts [161] and too large corrections [157]. Generally speaking, the PLR interchange
symmetry is imposed for both a charge conjugation and a space reflection at the La-
grangian level [3]. On the UV brane, the breakdown of SU (2)R×U (1)X → U (1)Y leads
to a generation of the SM gauge group via both the interaction of the UV brane and
the IR brane, respectively. In the following section, technical details and notations are
based on [121, 162].

2.5.1 Gauge sector in the custodial RS model

In the custodial RS model, the action of the gauge sector S(CRS)
gauge reads

S(CRS)
gauge =

1∫
ε

dt

t
(LL,R,X + LHiggs + LGF ) , (2.135)

in which the Higgs Lagrangian of Eq. (2.135) reads explicitly

LHiggs =

1∫
ε

dt

t

√
|G|δη (t− 1)

(
1

2
Tr
[
(DµΦ)†DµΦ

]
− V (Φ)

)
. (2.136)

with V (Φ) = −µΦ†Φ + Φ†Φ2. The Higgs field is a bi–doublet (2, 2)0

Φ (x) =
1

ε
√

2

(
v + h (x)− iφ3 (x) −i

√
2φ+ (x)

−i
√

2φ− (x) v + h (x) + iφ3 (x)

)
, (2.137)
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with the scalar fields φ± =
(
φ1 ∓ φ2

)
/
√

2. The variable v denotes the Higgs VEV in the
custodial RS model. The Higgs field acts under the representation SU (2)L × SU (2)R
and has a neutral charge under U (1)X . The proper implementation of the SU (2)L ×
SU (2)R → SU (2)V symmetry breaking requires the covariant derivative in Eq. (2.136)
to be written asDµΦ = ∂µ−igL,5LiµT iLΦ+igR,5ΦRiµT

i
R, in which T i denote the generators

σi/2 and gL/R,5 denotes the 5D gauge coupling [121]. Furthermore, it follows that

gL,5 = gR,5 and cθW = 1√
2

= sθW because of the PLR symmetry in Eq. (2.134).

In the gauge Lagrangian

LL,R,X =

(
−1

4
LaKML

a
LN −

1

4
RaKMR

a
LN −

1

4
Xa
KMX

a
LN

)
, (2.138)

the 5D gauge boson fields act under SU (2)L/R and U (1)X . They are abbreviated with

LiM , R
i
M , i = 1, 2, 3, and XM . All vector components of the gauge fields are even under

a Z2–parity. This reflects the compatibility of the current observations while the fifth
component is odd under a Z2–parity. The kinetic term of the scalar bi–doublet is kept
due to a rotation of the fields in the basis of both the fields ÃiM and V i

M [163](
ÃiM
V i
M

)
=

(
cos (θW ) − sin (θW )

sin (θW ) cos (θW )

)(
LiM
RiM

)
≡ RθW

(
LiM
RiM

)
. (2.139)

The Higgs VEV in the custodial model 〈φ〉, denoted by V , generates the mass term

M2
ÃM

=
g2L,5+g2R,5

4 for the fields ÃiM , while the fields V i
M remain massless. The coupling

of both ÃiM and V i
M is read off after the shift v2 → (v + h)2. Introducing the fields [121](

Z ′M
BM

)
=

1√
g2
R,5 + g2

X,5

(
gR,5 −gX,5
gX,5 gR,5

)(
R3
M

XM

)
(2.140)

with an appropriate choice of the BC, the breaking of the extended electroweak gauge
group on the UV brane into the SM group SU (2)R × U (1)X → U (1)Y is achieved.

Dirichlet BCs are chosen for the fields Z ′µ and R1,3
µ . The U (1)X gauge coupling in

Eq. (2.140) is gX andBµ denotes the U (1)X gauge field in Eq. (2.140). The corresponding
particles to the SM neutral particles are defined via [121](

ZM

AM

)
=

1√
g2
L,5 + g2

Y,5

(
gL,5 −gY,5
gY,5 gL,5

)(
L3
M

YM

)
, gY,5 ≡

gX,5gR,5√
g2
R,5 + g2

X,5

. (2.141)

The electroweak mixing angle is defined as sθW = gY,5/(g
2
L,5+g

2
Y,5)1/2 and the 5D electro-

magnetic gauge coupling is defined as e5 = gL,5sθW in the same way as in the minimal
RS model if the replacements gL,5 → g5 and gY → g′5 are performed. In the custo-
dial RS model, there exist two bases. One is the so-called UV basis in which the fields
L/R∓µ = L/R1

µ∓L/R2
µ, AM , ZM and Z ′M are defined. Except for Z ′M and R∓M the vector

component of them obeys Neumann BCs at the UV brane, whereas all other fields obey
Dirichlet BCs. The vector components of the photon obeys Neumann BCs, whereas its
scalar component obeys Dirichlet BCs. The BCs for all other fields are in general more
challenging to derive. A solution to this challenge offers the so–called IR basis, where
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the fields Z̃M and ZHM are related to those in the UV basis (ZM and Z ′M ) via(
Z̃M

ZHM

)
=

(
cos (θZ) − sin (θZ)

sin (θZ) cos (θZ)

)(
ZM

Z ′M

)
≡ RθZ

(
ZM

Z ′M

)
(2.142)

with a rotation matrix RT
θZ

and via the mixing angle sin (θZ) = g2
R,5/((g

2
R,5+g

2
L,5)(g2

R,5+

g2
X,5))1/2 [121]. Now, the choice of either the UV basis or the IR basis is possible via

the rotation matrices RθW/Z . With these rotation matrices, the vector bosons ~W± and

~ZM

~W± ≡

(
Ã±M
V ±M

)
= RθW

(
L±M
R±M

)
, ~ZM ≡

(
Z̃M

ZHM

)
= RθZ

(
ZM

Z ′M

)
(2.143)

read in the KK decomposition

~Bµ (x, t) =
RθB√
r

∞∑
n=0

~χBn (t)B(n)
µ (x) , (2.144)

~B5 (x, t) =
RθB√
r

∞∑
n=0

−kt
mBn

ϕ
(n)
B (x) ∂t~χ

B
n (t)B(n)

µ (x) , (2.145)

B = W±, Z (2.146)

including the Z2–even profile function

~χBn (t) =

(
~χB,+n (t) 0

0 ~χB,−n (t)

)
. (2.147)

The upper (lower) component of Eq. (2.147) is the so–called untwisted (twisted) profile
function. Light zero modes result from the application of Neumann BCs in the UV
on untwisted even profile functions, whereas the twisted even profile functions are not
smooth on the orbifold fixed point and obey Dirichlet BCs. The KK decompositions
for both the photon and the gluon are the same as in the minimal RS model [121].
Expanded in the mass eigenbasis, the KK decomposition of the four NGBs and their
corresponding mass terms are

ϕB (x) =
∑
n

m̃B

mBn

√
2πP+R

T
θB
~χBn (1)ϕ

(n)
B (x) , (2.148)

m̃W =
gL,5√
2πr

v

2
, m̃Z =

√
g2
L,5 + g2

Y,5

2πr

v

2
. (2.149)

This is done in analogy to Eq. (2.30). The matrix P+ in Eq. (2.148) denotes the projec-
tion operator of the upper component. The masses in Eq. (2.149) denote an expansion
in v2/M2

kk of both the W and Z boson mass as in the minimal RS model. With the
insertion of Eq. (2.144)–Eq. (2.149) into the action, Eq. (2.135), the differential equation
is
(
t∂tt

−1∂t + x2
Bn

)
~χBn (t) = 0 [121] which will be discussed in further detail in Sec. 3.1,

because this differential equation is needed for the derivation of the gauge boson propa-
gator and leads to the IR BCs

(P+∂t + P−) ~χBn (t)

∣∣∣∣∣
t=ε+

= 0,

(
1 +

Lm̃2
W

c2
θW
M2

kk

P+

)
RθB∂t~χ

B
n (t)

∣∣∣∣∣
t=1−

= 0. (2.150)
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With the application of the IR BCs and with the masses defined in Eq. (2.149), the
expressions for both W and Z boson masses are obtained in a leading order expansion
v2/M2

kk to

m2
W = m̃2

W

[
1−

m̃2
W

2M2
kk

(
L

c2
θW

− 1 +
1

2L

)
+O

(
v4/M4

kk

)]
, (2.151)

m2
Z = m̃2

Z

[
1−

m̃2
W

2M2
kk

(
L

c2
θW

−1 +
1

2L

)
+

m̃2
Z

2M2
kk

(
1− 1

2L

)
+O

(
v4/M4

kk

)]
, (2.152)

in which the term containing the leading order correction in Eq. (2.152) stems from the
enlarged PLR gauge symmetry and is proportional to the W boson mass. The zero mode
profiles read expanded to the same order [121]

~χW0 (t) =
1√
2π

1− m2
W

2M2
kk

[
t2
(
L− 1

2 + ln t
)
− 1

2 + 1
2L

]
sin(θW )
cos(θW )

Lm2
W

2M2
kk
t2

 , (2.153)

~χZ0 (t) =
1√
2π

1− m2
Z

2M2
kk

[
t2
(
L− 1

2 + ln t
)
− 1

2 + 1
2L

]
sin(θZ) cos(θZ)

cos2(θW )

Lm2
W

2M2
kk
t2

 , (2.154)

in which the upper component of the profile functions in Eq. (2.153) reflect the untwisted
component, while the lower twisted component is suppressed by a factor of v2/M2

kk.

2.5.2 Fermion sector in the custodial RS model

Due to the enlarged bulk gauge symmetry singlets, the quark representation in the
custodial RS model contains bi–doublets and triplets under the SU (2) groups. It is
possible to embed the quark representation into SO (5) multiplets. This appears in
gauge Higgs unification models [87, 160, 164], which is convenient. The PLR symmetry
is introduced for the avoidance of both large corrections to the coupling of the Zb̄b
vertex [157] and for the prevention of large flavor changing counterparts [161]. Starting
with this, it is deduced that the left–handed bottom quark has to be embedded into the
SU (2)L × SU (2)R group with its isospin quantum number T 3 = −T 3

R = −1
2 . With this

choice, all other quantum numbers of the remaining fields are fixed. As a consequence,
the right–handed quarks have to be embedded into a SU (2)R triplet that results into a
U (1)X invariant Yukawa interaction. Quark fields with an even Z2 parity are defined as

QL =

 u
(+)

L, 2
3

λ
(−)

L, 5
3

d
(+)

L,− 1
3

u
′(+)

R, 2
3


2
3

, uc(+) =
(
u
c(+)

R, 2
3

)
2
3

, (2.155)

and

TR = T1R ⊗ T2R =


Λ
′(−)

R, 5
3

U
′(−)

R, 2
3

D
′(−)

R,− 1
3


2
3

⊗
(
D
′(+)

R,− 1
3

U
(−)

R, 2
3

Λ
(−)

R, 5
3

)
2
3

, (2.156)
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in which QL acts as a bi–doublet under SU (2)L × SU (2)R and TR transforms as a
(3, 1) ⊗ (1, 3) representation. The fields with odd–parity represent the fields with op-
posite handedness. The profile functions of the Z2–even fields to the Z2–odd fields are
connected via the field equations. In Eq. (2.155)–Eq. (2.156), both inner and outer sub-
scripts denote the charge under U (1)EM and under U (1)Y , connected via Y = −T 3

R+QX
and Q = T 3

L + Y . The superscripts “(+)” and “(−)” specify the type of BC at the UV
brane. The superscript “(+)” refers to mixed BCs. This results into light zero modes
that can be identified with SM quarks and denote an application of Dirichlet BC on the
Z2–odd profiles. In contrast to the generation of light zero modes, profile functions with
the superscript “(−)” refer to the new heavy, exotic fermion states that do not have a
SM counterpart. This is achieved via the application of Dirichlet BC on the Z2–even
profiles. The other UV BC are of the mixed type.
The requirement that the quark mixing in the full anarchic flavor approach in a warped
extra dimensions has to be embedded consistently into the theory and leads to the
same SU (2)L×SU (2)R representation for all quark generations available in this model,
playing at the same time a vital role in the suppression of flavor changing left–handed
couplings to the Z boson [121, 161]. In total, there are 15 different quark states in the
up–type quark sector as well as 9 different quark states in the down–type quark sector.
In each sector, the application of the BCs lead to 3 light states that are identified as the
SM quarks, which are accompanied by a tower of 15 + 9 additional KK modes. The new
heavy exotic fermion states contribute with a tower of 9 KK excitations per KK level
and with an electric charge of 5/3. Following again the notation of [121], the fields are
collected in vectors with the same electric charge, i.e. 2/3,-1/3 and 5/3,

~U =

(
u

u′

)
, ~u =

u
c

U ′

U

 , ~D = d, ~d =

(
D

D′

)
, ~Λ = ~λ, ~λ =

(
Λ′

Λ

)
. (2.157)

The fields are collected to their corresponding chirality, i.e.
(
~UA, ~uA,

)T
,
(
~DA, ~dA,

)T
and

(
~ΛA, ~λA,

)T
into both 15 + 9 component vectors, which then result in the form

Q = U ,D,Λ and lead to a slightly modified fermion action

LFerm =

1∫
ε

dt

t

√
|G|

∑
Q=U ,D,Λ

Q̄ (x, t)

[
i/∂−Mkkγ5∂t−

Mkk

t

(
c ~Q 0

0 −c~q

)]
Q (x, t) (2.158)

compared to the one in the minimal RS model in Eq. (2.102). Furthermore, Eq. (2.158)
contains the bulk mass parameters

c~U = diag
(
cQ, cQ

)
, c ~D = −cQ, c~Λ = cQ, (2.159)

c~u = diag
(
cuc , cτ1 , cτ2

)
, c~d = diag

(
cτ2 , cτ1

)
, c~λ = diag

(
cτ1 , cτ2

)
, (2.160)

which are now 3×3 diagonal matrices in generation space. As it is visible in Eq. (2.159)–
Eq. (2.160), the bulk mass parameters of the fields ~U, ~D and ~Λ consist of the bulk mass
matrix cQ already present in the minimal RS model. In contrast to this, the bulk

mass matrices for ~u, ~d and ~λ consist of three mass matrices cuc , cτ1 and cτ2 . Two mass
matrices appear already in the minimal RS model, i.e. cu ≡ cuc and cd ≡ cτ2 , reducing
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the parameter space to only one new mass matrix cτ1 . The new bulk mass matrix cτ1
is connected to the PLR symmetry and mixes with the left–handed zero modes. This
requires the action to be invariant under an exchange of D′ and D. The PLR symmetry
is enlarged to the quark sector and one of its assets is cτ1 = cτ2 . This reduces again
the parameter space of the bulk mass matrices and leads to an equivalent parameter
space as in the minimal RS model [121]. In the custodial model, the Yukawa Lagrangian
without the consideration of NGBs of Eq. (2.137) reads

LYuk = −
∑

~q=~u,~d,~λ

1∫
ε

dt δη (t− 1)
v + h (x)√

2
Q̄L (x, t)

(
0 Y~q

Y †~q 0

)
QR (x, t) + h.c. (2.161)

with the same Yukawa matrices Yq as in the minimal RS model, as they are connected
via

Y~u =

(
Yu

1√
2
Yd

1√
2
Yd

Yu − 1√
2
Yd − 1√

2
Yd

)
, Y~d =

(
Yd Yd

)
= Y~λ. (2.162)

After the introduction of the extended symmetry, the custodial RS model contains the
same parameters as in the minimal RS model, although the custodial RS model has a
richer structure compared to the minimal RS model. With the application of the same

KK decomposition as in the minimal RS model, the fermion profile functions Q(n)
L,R (x, t)

with (Q, Q, q) = (U , U, u) , (D, D, d) now become

Q(n)
L (t) =

√
2π

Lε

(
CQn (t)~aQn

Sqn (t)~aqn

)
, Q(n)

R (t) =

√
2π

Lε

(
SQn (t)~aQn

Cqn (t)~aqn

)
. (2.163)

Here, the first three excitations denote the SM quarks, whereas the other modes, espe-
cially the modes n = 4, ..., 18 denote the new quark modes of the first level. In the case
of the λ-type quarks, there would be only 9. Furthermore, CAn (t) and SAn (t) are defined
as in Eq. (2.124) and the aAn vectors are defined in an analogous way as in the minimal
RS model, c.f. [121].

2.6 Electroweak precision observables

The Peskin–Takeuchi parameters S,T and U [52, 53] measure deviations to the SM via
quantifying new physics. They are zero in the SM. New physics contributes to the
electroweak gauge boson propagators.
One possibility to define S,T, and U is in terms of the Fermi constant GF , the Z boson
mass mZ , the sine of the weak mixing angle sin (θW ), and α. In the following, the
parametrization via the self energy functions of the gauge boson propagators derived in
Ch. 3 is applied.
The self–energy of a vector boson (V V ) ΣV V

(
p2
)

is the sum of all 1–particle–irreducible
diagrams.
In general, the Ward identities read [165]

pµpν∆µν
W (p)− 2mW pµ∆µν

WϕW
+m2

W∆µν
ϕW

= −i, (2.164)

pµpν∆µν
Z (p)− 2mZpµ∆µν

ZϕZ
+m2

Z∆µν
ϕZ

= −i, (2.165)
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pµpν∆µν
γ (p) = −i, (2.166)

pµpν∆µν
Zγ (p) + imZpµ∆µν

Zγ = 0, (2.167)

but we will restrict us to the unitary gauge, in which the contribution of the Goldstone
bosons vanishes. Then, the second and third term of Eq. (2.164) and Eq. (2.165) vanish.
The propagator ∆µν

αβ

(
p2
)

is then decomposed into is transverse (T) components and in
its longitudinal (L) components

∆µν
αβ

(
p2
)

=

(
−gµν +

pµpν

p2

)
∆αβ,T

(
p2
)
− pµpν

p2
∆αβ,L

(
p2
)

(2.168)

∆µ
αβ (p) = ipµ∆αβ

(
p2
)

=
ipµ

p2 −m2
α

Σαβ

(
p2
) i

p2 −m2
β

(2.169)

∆ (p) =
i

p2 −m2 + Σ (p2)
, (2.170)

∆αβ,T,L (p) =
i

p2 −m2
α

Σαβ,T,L

(
p2
) i

p2 −m2
β

. (2.171)

Then, the self–energy reads

Σµν
(
p2
)

=
(
p2gµν − pµpν

)
Σ
(
p2
)
, (2.172)

and the vacuum polarization functions result in [2]

ΠV V

(
p2
)

=
ΣV V

(
p2
)

p2 −m2
V V

. (2.173)

S,T, and U read in the definition of the vacuum polarization functions [52, 53]

αS = 4e2
[
Π′ZZ (0)−Π′Zγ (0)

]
, (2.174)

αT =
e2

s2
θW
c2
θW
m2
Z

[ΠWW (0)−ΠZZ (0)] , (2.175)

αU = 4e2
[
Π′WW (0)−Π′ZZ (0)

]
, (2.176)

with [52, 53]

ΣWW

(
p2
)

=
e2

s2
θW

ΠWW

(
p2
)
, (2.177)

ΣZZ

(
p2
)

=
e2

c2
θW
s2
θW

(
ΠZZ

(
p2
)
− 2s2

θW
ΠZγ

(
p2
)

+ s4
θW

Πγγ

(
p2
))
, (2.178)

ΠXY

(
p2
)
≈ ΠXY (0) + p2Π′XY (0) , (2.179)

with XY = WW,ZZ,Zγ, γγ. In the case of XY = Zγ, γγ, the vacuum polarization
function at zero momentum transfer ΠXY (0) vanishes in Eq. (2.179) due to the Ward
identities.
The current values for S,T, and U are

Sexp. = 0.07± 0.08, Texp. = 0.10± 0.08, Uexp. = 0. (2.180)
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The experimental values of the PDG [6] differ by a small amount to the values obtained
by the analysis of the authors of [166].
In the case of the RS model, the assumption that the new physics scale is much larger
than the gauge boson masses is justified, because the LHC did not yet find any heavy new
particles so far. As a consequence, a possible shift in the S,T, and U parameters is a result
from contributions that stem from particles in the RS model. Furthermore, corrections
to gauge bosons stemming from fermions are chiral suppressed. The derivation starts
with the definition of the self–energy function in Eq. (3.28). The self–energy function is
shown in terms of the W boson, but it is the same in the case of the Z boson, except
for the change m̃2

W → m̃2
Z in b1 in Eq. (3.19) and of course, in the expansion for the

propagator in Eq. (3.27). Following [53], the self energy functions are defined in the RS
model as

ΣRS
WW

(
p2
)
≈ m̃2

W

4

v2
ΠWW

(
p2
)
, (2.181)

ΣRS
ZZ

(
p2
)
≈ m̃2

Z

4

v2

(
ΠZZ

(
p2
)
− 2s2

θW
ΠZγ

(
p2
))

(2.182)

with ΠXY , XY = WW,ZZ,Zγ, γγ defined in Eq. (2.179). The polarization functions
read in the minimal RS model

ΠWW (0) =
m̃2
WL

2M2
kk

, (2.183)

ΠZZ (0) =
m̃2
ZL

2M2
kk

, (2.184)

Π′WW (0) = − 1

2M2
kk

, (2.185)

Π′ZZ (0) = − 1

2M2
kk

, (2.186)

Π′Zγ =
1

2LM2
kk

. (2.187)

With equations Eq. (2.183)–Eq. (2.187), the electroweak precision parameters are derived
in the minimal RS model by an insertion into Eq. (2.174)–Eq. (2.176) and using 4πα = e2.
They read in Eq. (2.192) S and Tmin. In the custodial RS model, the vacuum polarization
functions read

ΠWW (0) =
m̃2
WL

2M2
kkc

2
θW

, (2.188)

ΠZZ (0) =
m̃2
WL

2M2
kkc

2
θW

−
m̃2
ZL

2M2
kk

(
1− 1

2L

)
, (2.189)

Π′WW/ZZ (0) = − 1

2M2
kk

, (2.190)

Π′Zγ (0) =
1

2LM2
kk

. (2.191)

The S and T parameter are obtained in the custodial RS model by an insertion of
Eq. (2.188)–Eq. (2.191) into Eq. (2.174)–Eq. (2.176) and using 4πα = e2. The expression
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for the S parameter remains unchanged in both models. The resulting expressions for
the S,T, and U parameters in the minimal and custodial RS model are then given by

S =
2πv2

M2
kk

(
1− 1

L

)
, U = 0, (2.192)

Tmin. =
πv2L

2c2
θW
M2

kk

, Tcust. = − πv2

2c2
θW
M2

kk

(
L− 1

2L

)
. (2.193)

The expression for T differs in the custodial RS model compared to the minimal RS
model due to the enlarged gauge symmetry. There is a large contribution to the S pa-
rameter visible in Eq. (2.192) if the fermions are localized in the UV as in holographic
Higgs–less models [167], while the opposite is true if the fermions are localized in the
IR yielding a large negative contribution [168]. So the S parameter is sensitive to the
fermion localization [169]. A fact that is not visible in Eq. (2.192) as there have been
only universal corrections taken into account.
The T parameter shows an enhancement by the volume factor L in the minimal model
and is therefore larger compared to the näıve dimensional analysis. In the custodial
model the T parameter is protected by the global SU (2)L × SU (2)R symmetry in con-
trast to the minimal model. The SU (2)R symmetry is absent in the minimal RS model
as there is only the SM gauge group in the bulk. Thus, the T parameter is enhanced.
An other way to lower the values of T is the consideration of a minimal RS model with
a small volume L. Those models are referred to as little RS models based on little Higgs
models [170]. The challenge in these models is that the hierarchy problem is shifted to
an intermediate scale ΛUV = eL TeV that would lower the scale for the UV completion,
as well. Furthermore, the lowering of the scale of the UV completion also affects CP
violation and especially εK [171].
In the bulk–localized Higgs model, the self–energy function for the vector bosons V V ,
ΣV V,bulk

(
p2
)
, is derived in the same way as in the brane–localized Higgs scenario and

turns into

ΣV V,bulk

(
p2
)

=
m̃4
W

2M2
kk

−

[
L

2 (1 + β)2

(2 + β) (3 + 2β)
− (1 + β) (3 + β)

(2 + β)2

p2

m̃2
W

+
1

2L

p4

m̃4
W

]
.

(2.194)

Proceeding analogously to the brane–localized case, the electroweak S,T, and U param-
eters become in the bulk–localized Higgs scenario

S =
2πv2

M2
kk

(
1− 1

(2 + β)2 −
1

2L

)
, U = 0, (2.195)

T =
πv2

2c2
θW
M2

kk

2L (1 + β)2

(2 + β) (3 + 2β)
. (2.196)

This result coincides with the findings of [140, 172]. In the limit β →∞ the expressions
for the electroweak parameters in Eq. (2.192) for the brane–localized Higgs scenario are
recovered. The results for S and T are plotted in both custodial RS model and in the
minimal RS model in the ST plane in Fig. 2.5. The blue ellipses show the values for
the SM electroweak parameter obtained by an analysis published in [6]. In the minimal
RS model, the T parameter for the brane–localized Higgs scenario (dark blue) and the
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Figure 2.5: The T and S parameters of both brane–localized Higgs scenario and bulk–
localized Higgs scenario with β = 1 in the minimal RS model in the S,T plane
of the SM values are shown in Fig. 2.5a. The dark blue (lavender blue) line
connects values for the T parameter in the brane–localized (bulk–localized)
Higgs scenario for different KK masses for a better visualization. The specific
values for the T parameter in the RS model are displayed as diamonds. The
blue ellipses in Fig. 2.5a and Fig. 2.5b correspond to 99%, 95%, and 68% CL.
The values for the S and T parameters of the SM have been obtained by
electroweak precision tests [6]. For values lager than Mkk ≥ 3 TeV, the S
and T parameters in the brane–localized Higgs scenario are in agreement
with the current data. In the minimal model with a bulk–localized Higgs
scenario and β = 1, values for S and T parameters with Mkk ≥ 5 TeV are in
agreement with the current data. Then, Fig. 2.5c shows a comparison of the
values for different M2

kk and their model–dependent behavior. In Fig. 2.5b
the behavior of the T parameter in the custodial RS model is shown with a
brane–localized Higgs.

bulk–localized Higgs scenario (lavender blue) with β = 1 are included in Fig. 2.5a. The
values for the S and T parameters in the brane–localized Higgs scenario are for values
of Mkk ≥ 3 TeV in agreement with the current data, while the S and T parameters
in the bulk–localized Higgs scenario are in agreement with the current data for values
of Mkk ≥ 5 TeV. A comparison of both scenarios gets clearer by showing a smaller
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region in Fig. 2.5a, in which the results of the T parameter in the different model setups
is plotted against the belonging S parameter. In this picture it is visible that the T
parameter is closer to zero in the bulk–localized Higgs scenario (lavender blue) than in
the brane–localized Higgs scenario (dark blue).

2.7 RS Parameter space and experimental survey

The RS model has more fundamental parameters compared to the 19 input parameters
in the SM that consists of 9 moduli, 6 quark masses, 3 mixing angles of the CKM matrix
and a CP violating phase. The number of parameters in both the minimal RS model
and the custodial RS model are the same. In particular, the RS model contains the
bulk mass parameters cQ,q (3× 3 hermitian matrices), 27 additional parameters as well
as 18 moduli and 9 complex phases in the custodial model with the additional PLR
symmetry. Furthermore, 36 parameters enter in the electroweak sector via Yu and Yd.
In the quark sector of the RS model, the global symmetry U (3)Q×U (3)u×U (3)d shows
27 parameters and is broken by U (1)B. In total, there remain 27 parameters and 10
phases [153].
Experimental values for the quark masses and the Wolfenstein parameter [6] fix 10
parameters of the RS model. Other parameters could be fixed via experimental searches.
The RS model postulates heavy resonances of the SM particles and particles, which are
not present in the SM. Their masses lie in the TeV range. As a consequence, there is a
chance for their detection. A possible pure RS particle is outside of the reach of the LHC

due to its mass. Bounds on the mass of the KK gluon Mg(1) and the KK graviton h
(1)
µν

are derived, e.g. from the invariant mass spectrum from the tt̄ production. The current
values at

√
s = 8 TeV are

Mg(1)

∣∣∣
ATLAS

≥ 2.2 TeV [174], Mg(1)

∣∣∣
CMS

≥ 2.8 TeV [175, 176] (2.197)

Mg(1)

∣∣∣
PDG

≥ 2.5 TeV [6] (2.198)

at 95% CL with an integrated luminosity of 20.3 fb−1 (ATLAS) [174] and 19.7 fb−1

(CMS) [175]. The advantage of a choice of a KK gluon is that the gluon profile func-
tion is flat and is therefore independent of the localization of the scalar sector in RS
models. Furthermore, the gluon profile function is also unaffected by the electroweak
gauge group in the bulk of the extra dimension. The coupling of the KK gluon in the

RS model to quarks is given by cgqq̄ ≈
(

1/
√
L
)
gs, and the coupling of the KK gluon

to left–handed quarks is dominated by the top quark coupling, i.e. cgtL t̄L ≈ −gs. The

coupling to right–handed top quarks is cgtR t̄R ≈ −
√
Lgs, where gs denotes the QCD cou-

pling constant. A more precise estimation can only be given via a detailed knowledge
of the particular overlap integrals of the first KK gluon mode to the overlap integrals of
the quarks under consideration. The knowledge of this expression depends on the setup
of the RS model under consideration and the results of the analyses should be read care-
fully as the specific values depend on a specific choice and therefore may be misleading.
Another interesting channel for its investigation would be a diphoton resonance with a
signal rate (σ · Br)

(
pp→ h(1) → γγ

)
besides the mentioned production channel for the

KK gluon. The signal rate would depend on both the KK graviton mass mh(1) and the
ratio k/M̄Pl = MPl/

√
8πMkk/ΛTeV. The ratio includes the reduced Planck mass M̄Pl
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and sets the interaction strength of the coupling of the graviton to either two gluons or

2 photons. This results in L (x) 3 0.054 · 1/mh(1)k/M̄Plh
(1)
µν (x)Tµν (x) [177] with the 4D

energy momentum tensor Tµν of the gluon.
Alternatively, couplings of KK excitations of the other vector bosons, i.e. Z,W± to
fermions, could be also measured and some prospects are published in [178]. This
turns out to be challenging, because their corresponding production and decay chan-
nels strongly depend on the fermion localization given via the 5D Yukawa matrices and
the 5D bulk mass parameters. Numerical simulations that are presented in Ch. 4 are
done using the bounds on the KK gluon masses to test the validity of the RS model.
Model–independent bounds are the Peskin Takeuchi parameter S, T and U [52, 53].

2.8 Generation of the RS data sets

Based on the program derived in [120, 179] and its numerical implementation in Mathe-
matica [180, 181], the data sets for the phenomenology part of this thesis were generated.
In the following, a summary of the procedure is given.
First, the anarchic Yukawa matrices are implemented and filled with a complex number
derived on a computer time based random number generator to check the consistency
with the observables. The elements of the Yukawa matrices are constrained via∣∣∣(Yq)ij∣∣∣ ≤ y? (2.199)

for different values of y?. An upper limit on y? ≤ ymax is only necessary if the per-
turbativity for the Yukawa sector is required, where y? ≤ ymax ≈ 3 is a suitable value,
c.f. Sec. 2.3.1 and [145]. In the current analyses, the values for y? ∈ [0.5, 3] are used. The
obtained parameters of the Yukawa matrices are flat distributed in the complex plane.
Even Yu33 shows a small deviation due to either the contribution of the top mass mt or
if Yu33 ≥ 1/2.
In leading order v2/M2

kk the ZMA can be applied to express the Wolfenstein parameter.
ρ̄ and η̄ can be solely expressed via the entries of the Yukawa matrices (Yq)ij and the
corresponding minors Mij of (Yq)ij [182]

ρ̄− iη̄ =
(Yd)33 (Mu)31 − (Yd)23 (Mu)21 + (Yd)13 (Mu)11

(Yd)33 (Mu)11

[
(Yd)23
(Yd)33

− (Yu)23
(Yu)33

] [
(Md)21
(Md)11

− (Mu)21
(Mu)11

] (2.200)

Additionally, the F profiles F (cu3 ) ∈ [0, 3] are generated with cu3 ∈ [−1/2, 1] as the
right–handed top is required to have an O (1) overlap with the IR brane and the other
limit is set by the fact that the 5D bulk mass does not exceed the curvature k. Now, as
well as with the Wolfenstein parameters A and λ, all parameters are derived to express
the remaining F profiles [120, 182]

|F (cQ1
)| =

√
2mt

v

(
|(Yu)33|

∣∣∣∣ (Yd)23(Yd)33
−

(Yu)23
(Yu)33

∣∣∣∣ ∣∣∣∣ (Md)21
(Md)11

−
(Mu)21
(Mu)11

∣∣∣∣)−1 λ3A

|F (cu3
)|
, (2.201)

|F (cQ2
)| =

√
2mt

v

(
|(Yu)33|

∣∣∣∣ (Yd)23(Yd)33
−

(Yu)23
(Yu)33

∣∣∣∣)−1 λ2A

|F (cu3
)|
, (2.202)

|F (cQ2
)| =

√
2mt

v

1

|(Yu)33| |F (cu3
)|
, (2.203)
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|F (cu1
)| = mu

mt

|(Yu)33| |(Mu)11|
detYu

∣∣∣∣ (Yd)23(Yd)33
−

(Yu)23
(Yu)33

∣∣∣∣ ∣∣∣∣ (Md)21
(Md)11

−
(Mu)21
(Mu)11

∣∣∣∣ |F (cu3)|
λ3A

, (2.204)

|F (cu2)| = mc

mt

|(Yu)33|
2

|(Mu)11|

∣∣∣∣ (Yd)23(Yd)33
−

(Yu)23
(Yu)33

∣∣∣∣ |F (cu3)|
λ2A

, (2.205)

|F (cd1)| = md

mt

|(Yu)33| |(Md)11|
detYd

∣∣∣∣ (Yd)23(Yd)33
−

(Yu)23
(Yu)33

∣∣∣∣ ∣∣∣∣ (Md)21
(Md)11

−
(Mu)21
(Mu)11

∣∣∣∣ |F (cu3
)|

λ3A
, (2.206)

|F (cd2)| = ms

mt

|(Yu)33| |(Yd)33|
|(Md)11|

∣∣∣∣ (Yd)23(Yd)33
−

(Yu)23
(Yu)33

∣∣∣∣ |F (cu3
)|

λ2A
, (2.207)

|F (cd3)| = mb

mt

|(Yu)33|
|(Yd)33|

|F (cu3)| . (2.208)

The fraction of the profiles scale with

|F (cQ1)|
|F (cQ2)|

∼ λ
|F (cQ2)|
|F (cQ3)|

∼ λ2,
|F (cQ1)|
|F (cQ3)|

∼ λ3 (2.209)

The input masses are obtained in the M̄S scheme evaluated at µ = 1 TeV [6]

mu = (1.0± 0.7) MeV, mc = (500± 25) MeV, mt = (141± 5) GeV, (2.210)

md = (2.2± 0.5) MeV, ms = (43± 5) MeV, mb = (2.31± 0.03) GeV, (2.211)

λ = 0.22548+0.00068
−0.00034, η̄ = 0.343+.0.0011

−0.0012 , ρ̄ = 0.145+0.013
−0.007, A = 0.8100.018

−0.024 (2.212)

and the values for the Wolfenstein parameters from [183]. These result in the parameter
x = {mu,md,ms,mc,mb,mt, A, λ, ρ, η} in the RS model which is valid up to v2/M2

kk.
The parameter x now has to fulfill a χ2 test. With

χ2 =

(
xexp (n)− xth (n)

σexp (n)

)2

, (2.213)

the value for the parameter xexp (n) is accepted if χ2/dof > 68% [184].
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3 Propagators in the warped extra
dimension

The 5D propagators for bosons and fermions are derived in this chapter, because they
are important for the calculation of the loop–induced process h → γγ that is discussed
in Ch. 4. The calculation of the 5D propagators is done in the framework of warped
extra dimensions. The 5D propagators are functions that depend on the coordinates
in the extra dimension, e.g. t and t′, and on the 4–momentum pµ. This dependence
is referred to as the mixed–momentum position representation, because the coordinates
in the extra dimension lie in the position space [106, 185–188]. With the use of the
AdS/CFT correspondence [189–191], the two point function of the 5D propagator is
expressed in the KK decomposition as an infinite sum over all KK modes and their
profile functions χn (t) , χn (t′) [192]

D
(
t, t′; p2

)
≈
∞∑
n=0

χn (t)χn (t′)

p2 −m2
n

. (3.1)

There are some advantages of the 5D descriptions that should be mentioned. The 5D
propagator contains all KK modes, c.f. Eq. (3.1), by encoding the full 5D theory. This
also includes the expression for the 5D propagator that is valid to all orders in an ex-
pansion in powers of O

(
v2/M2

kk

)
. Furthermore, one finds a closed analytic expression

for amplitudes of loop–induced processes with the help of the 5D propagator. Thus, it is
possible to check the full structure of the warped 5D propagators. This would not have
been possible if only a part of the KK modes had been considered in the KK–decomposed
theory. An example for this is the investigation of the fermion contributions in the decay
h→ γγ that are discussed in Ch. 4.
In this chapter, the 5D propagator for bosons is derived in Sec. 3.1 based on our publica-
tion [193]. The section starts with the derivation for arbitrary scalar fields in Sec. 3.1.1
and is followed by the derivation of the vector boson propagator in Sec. 3.1.1 for both the
minimal and the custodial RS model with a brane–localized Higgs boson and a narrow
bulk–localized Higgs boson. The propagators of both vector bosons and scalar bosons
are necessary for the investigation of the decay h → γγ. In Sec. 3.2 the fermion propa-
gator is derived in both the minimal and the custodial RS model with a brane localized
Higgs boson and a narrow bulk localized Higgs boson, in analogy to the derivation of the
vector boson propagator. This section is based on our publication [131] and in [128–130],
the fermion propagator is derived in the corresponding theses in more detail.

3.1 Boson propagators

3.1.1 Derivation of both vector boson and scalar boson propagator

The derivation of the gauge boson propagator is needed for the decay h → γγ. The
propagator of the W boson is derived now, valid for both massive and massless vector
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bosons. Parts of this section are based on [193]. The derivation is valid for the case of
the Z boson, however, small modifications due to both the different coupling and the
different mass have to be considered. In the case of both the photon and the gluon, some
other adjustments have to be made which are mentioned in the text below. Originally,
the propagator was also derived in [126, 106, 188, 168]. The achievement of [193] is a
closed expression for the brane–localized Higgs model, the custodial RS model, as well as
for the bulk–localized Higgs model. The boson propagator for the bulk–localized Higgs
model is needed, because the decay h→ γγ is also studied for a narrow bulk Higgs model
as explained in Sec.2.2.3. In this case, there are contributions from diagrams containing
a W propagator with a narrow bulk–localized Higgs boson.
Beginning with the derivation of the gauge boson propagator in the brane localized
Higgs model, the study of the propagator in the narrow bulk localized Higgs model
follows analogously. As a conclusion of the whole derivation in both models, it is shown
that both results coincide under given circumstances.
For an arbitrary Rξ gauge in the minimal RS model for a brane–localized Higgs boson,
the general 5D action reads [106]

SGauge =
1

2

∫
d4x

2πr

L

1∫
ε

dt

t
BM (x, t)KMN

B,ξ BN (x, t) (3.2)

In Eq. (3.2) only terms bilinear in the fields occur with

KMN
B,ξ =

((
∂2−M2

kkt∂t
1
t ∂t
)
ηµν−

(
1− 1

ε

)
∂µ∂ν 0

0 −∂2 1
t2 + ξM2

kkt∂tt∂t
1
t2

)
, (3.3)

which contains differential operators. The off–diagonal elements of Eq. (3.3) vanish
with an appropriate choice of the gauge-fixing, c.f. [120, 106]. As a consequence, both
scalar components and vector components of the 5D propagator decouple. Rescaling the
propagator BM with 1√

r
yields the consistent mass dimension of [BM ] = 3/2. After the

application of the rescaling with the factor 1√
r
, it turns out that the propagator can be

written as a sum of infinitely many KK modes including the zero mode. The differential
equations then read, after a Fourier transformation of the non–compact directions[ (

p̂2 + t∂t
1

t
∂t

)
ηµν −

(
1− 1

ε

)
p̂µp̂ν

]
Dξ
B,νρ

(
t, t′; p

)
= − Lt′

2πM2
kk

δµρ δ
(
t− t′

)
, (3.4)[

p̂2 + ξt∂tt∂t
1

t2

]
Dξ
B,55

(
t, t′; p

)
=

Lt′3

2πε2M2
kk

δ
(
t− t′

)
, (3.5)

in which Eq. (3.4) is the differential equation for the vector component. The differential
equation of the scalar component of the propagator is given by Eq. (3.5). The vector
component can be obtained via

Dξ
B,νρ

(
t, t′; p

)
= AξB

(
t, t′;−p2

) pνpµ
p2

+BB
(
t, t′;−p2

)(
ηνρ −

pνpµ
p2

)
, (3.6)

in which Lorentz invariance was used to obtain the two separate scalar functionsAξB
(
t, t′;−p2

)
and BB

(
t, t′;−p2

)
. If Eq. (3.6) is inserted into Eq. (3.4), this relates AξB

(
t, t′;−p2

)
to
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BB
(
t, t′;−p2

)
and one will yield two partial differential equations(
p̂2

ξ
+ t∂t

1

t
∂t

)
AξB

(
t, t′;−p2

)
=

(
p̂2 + t∂t

1

t
∂t

)
BB

(
t, t′;−p2

)
, (3.7)(

p̂2 + t∂t
1

t
∂t

)
BB

(
t, t′;−p2

)
= − Lt′

2πM2
kk

δ
(
t− t′

)
. (3.8)

It is sufficient to obtain an expression for BB
(
t, t′;−p2

)
, because AξB

(
t, t′;−p2

)
and

BB
(
t, t′;−p2

)
are related via Eq. (3.7). The insertion of the KK decomposition of the

field BM (x, t), which is defined in the first line of Eq. (2.28), into the action Eq. (3.2)
yields an expression for BB

(
t, t′;−p2

)
BB

(
t, t′;−p2

)
=

∞∑
n=0

χBn (t)χBn (t′)

m2
Bn
− p2

. (3.9)

Now, the propagator function is related to the KK decomposition. A parametrization
with Dξ

B,55 (t, t′; p) = −1
ξBB,55 (t, t′;−p/ξ) yields the 5th scalar component of Eq. (3.9)

BB,55

(
t, t′;−p2

)
=
∞∑
n=0

k2tt′

m2
Bn

∂tχ
B
n (t) ∂t′χ

B
n (t′)

m2
Bn
− p2

(3.10)

with the curvature k. Eq. (3.10) can be re–expressed via Eq. (3.9)

BB,55

(
t, t′;−p2

)
=
k2tt′

p2
∂t∂t′

[
BB

(
t, t′; 0

)
−BB

(
t, t′;−p2

)]
. (3.11)

If an expression for the vector component is known, only the knowledge of Eq. (3.9)
will be necessary for the whole derivation. Proceeding to obtain an expression for
BB

(
t, t′;−p2

)
, Eq. (3.8) can be re–expressed via a second order partial differential equa-

tion which has to be solved, leading to

(
t2p̂2 − t2∂2

t + t∂t − 1
) BB (t, t′;−p2

)
t

= − Lt′

2πM2
kk

δ
(
t− t′

)
. (3.12)

This requires a distinction between t > t′ and t < t′ and this yields 4 coefficients
C<1 , C

>
1 , C

<
2 , C

>
2 with

t< = min
(
t, t′
)

(3.13)

and

t> = max
(
t, t′
)

(3.14)

Then it is possible to determine the 4 coefficients C<1 , C
>
1 , C

<
2 , C

>
2 . One coefficient is

obtained via the continuity of the solution at t = t′

BB
(
t, t′;−p2

) ∣∣t=t′+0

t=t′−0
= 0 (3.15)

and a second coefficient is obtained via the so–called jump condition

∂tBB
(
t, t′;−p2

) ∣∣t=t′−0

t=t′+0
= − Lt′

2πMkk
(3.16)
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that is obtained after an integration of Eq. (3.12) over an infinitesimal interval. The last
two coefficients in

BB
(
t, t′;−p2

)
=

Ltt′

4M2
kk

[C>1 J1 (p̂t>)+C>2 Y1 (p̂t>)] [C<1 J1 (p̂t<)+C<2 Y1 (p̂t<)]

C>1 C
<
2 − C<1 C>2

(3.17)

are determined via the BCs bε and b1 on both the UV brane and IR brane(
∂t −

bε
ε

)
BB

(
t, t′;−p2

) ∣∣∣
t=ε+

= 0, (∂t − b1)BB
(
t, t′;−p2

) ∣∣∣
t=1−

= 0. (3.18)

In case of massive vector bosons B = W,Z, b1 contains the leading order mass term
defined in Eq. (2.30) and results in

b1

∣∣∣
B boson

= −
Lm̃2

B

M2
kk

, (3.19)

whereas bε is consequently set to zero. Furthermore, Eq. (3.17) can be used to derive the
propagator for a general gauge boson, c.f. [126, 106, 168]. For a W boson, the coefficients
C<1 , C

>
1 , C

<
2 , C

>
2 are

C>1 (p̂) = −p̂Y0 (p̂) + b1Y1 (p̂) , C<1 (p̂) = −p̂εY0 (p̂ε) + bεY1 (p̂ε) , (3.20)

C>2 (p̂) = p̂J0 (p̂)− b1J1 (p̂) , C<2 (p̂) = p̂εJ0 (p̂ε)− bεJ1 (p̂ε) . (3.21)

Inserting the coefficients of Eq. (3.20) into Eq. (3.17), Eq. (3.17) results in

BB
(
t, t′;−p2

)
=

Ltt′

4M2
kk

[p̂D10 (t>, 1)− b1D11 (t>, 1)]D10 (t<, ε)

p̂D00 (1, ε)− b1D10 (1, ε)
(3.22)

with the abbreviation for time like momenta p2 > 0, p̂2 = p2/M2
kk

Dij

(
t, t′
)

= Ji (p̂t)Yj
(
p̂t′
)
− Yi (p̂t) Jj

(
p̂t′
)
. (3.23)

The solution for the propagator is needed for time like momenta after the Wick rotation
with Euclidean momenta p2

E = −p2 > 0, p̂E ≡ p2
E/M

2
kk, and is given by

BB
(
t, t′; p2

E

)
=

Ltt′

2πM2
kk

[p̂ED10 (t>, 1) + b1D11 (t>, 1)]D10 (t<, ε)

p̂ED00 (1, ε)− b1D10 (1, ε)
. (3.24)

Due to the change of the argument in both Bessel functions Ji (p̂t) and Yi (p̂t), Dij (t, t′)
results in

Dij

(
t, t′
)

= Ii (p̂Et)Kj

(
p̂Et
′)− (−1)i+jKi (p̂Et) Ij

(
p̂Et
′) . (3.25)

As a next step, the self–energy function Σ
(
p2
)

for the boson propagator is derived.
Knowing, that the mass of the propagator is the residue of the propagator [195], the
self–energy function Σ

(
p2
)

and the wave–function renormalization is derived, because
around p2 = m2

Bn

1

2π

−1(
p2 − m̃2

Bn

)
[1 + Π (t, t′; p2)] + Σ (p2) + i0

=
1

2π

Z2 (t, t′)

p2 −m2
Bn

+ i0
. (3.26)
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Furthermore, the expression for the boson propagator expanded in v2/M2
kk is needed

that keeps both p2 and m2
W fixed in Eq. (3.24) and results in the case of the W boson

propagator in

BW
(
t, t′;−p2

)
=

1

2π

−1(
p2 − m̃2

W

)
[1 + Π (t, t′; p2) + Σ (p2)] + i0

(3.27)

with the self–energy function Σ
(
p2
)

with the t–dependent part Π
(
t, t′; p2

)
Σ
(
p2
)

=
m̃4
W

2M2
kk

(
L− p2

m̃2
W

+
1

2L

p4

m̃4
W

)
, (3.28)

Π
(
t, t′; p2

)
=

m̃2
W

2M2
kk

{
Lt2> +

p2

m̃2
W

[
Lt2< − t2

(
1

2
− ln t

)
− t′2

(
1

2
− ln t′

)]}
. (3.29)

The results are valid at O
(
v4/M4

kk

)
. The zero in the propagator Eq. (3.27) is determined

via m2
W = m̃2

W − Σ
(
m2
W

)
that is the physical W boson mass of the ground state.

With the same strategy, the exact expression for the zero mode profile function χW0 (t)
defined in Eq. (2.42) can be derived at v2/M2

kk via the residue of the propagator that is
determined via

BW
(
t, t′;−p2

)
=

1

2π

Z2 (t, t′)

p2 −m2
Wn

+ i0
,

Z2

(
t, t′
)

= 2πχW0 (t)χW0
(
t′
)

= 1−Π
(
t, t′;m2

W

)
− ∂Σ

(
p2
)
/∂p2

∣∣
p2=m2

W
. (3.30)

For time like momenta p2 ≥ v2, at leading order O
(
v2/M2

kk

)
. The expansion of the

propagator is then given by

BW
(
t, t′;−p2

)
=

1

2π

[
c1 (t, t′)

m2
W − p2

+
c2 (t, t′)

2M2
kk

]
+O

(
v4

M4
kk

)
(3.31)

with

c1

(
t, t′
)

= 2πχW0 (t)χW0
(
t′
)
, (3.32)

c2

(
t, t′
)

= Lt2< +
1

2L
+ t2

(
ln t− 1

2

)
+ t′2

(
ln t′ − 1

2

)
. (3.33)

The expansion allows a distinction in which both the contributions stemming from the
KK modes and the zero modes can be separated. Furthermore, Eq. (3.31) is a more lucid
expression compared to the full result in Eq. (3.24).

3.1.1.1 The vector boson propagator in the custodial model

As a next step, the W boson propagator is derived in the custodial RS model with a
brane–localized Higgs model. In [193], a closed and exact expression for the W boson
propagator is derived in the custodial model described in Sec. 2.5 for both the brane–
localized Higgs scenario and the narrow bulk localized Higgs scenario.
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In the UV basis, the differential equation of the gauge boson propagator is the same as
in the minimal RS model

(P+∂t + P−)BUV
W

(
t, t′;−p2

) ∣∣∣∣∣
t=ε

= 0, (3.34)

(
∂t − b1RT

θW
P+RθW

)
BUV
W

(
t, t′;−p2

) ∣∣∣∣∣
t=1−

= 0, b1 = −
Lm̃2

W

c2
θW
M2

kk

, (3.35)

in which the BCs are changed due to the enlarged gauge symmetry. The first equation,
Eq. (3.34), results from the field A±M with A = L,R. The general solution for the

propagator in the UV basis BUV
W

(
t, t′;−p2

)
reads

BUV
W

(
t, t′;−p2

)
=

Ltt′

4M2
kk

1

[p̂D00 (1, ε)− b1D10 (1, ε)]D01 (1, ε)− b1
4s2θW
π2p̂2ε{[

[p̂D10 (t>, 1)− b1D11 (t>, 1)]D01 (1, ε)− b1
2s2θW
πp̂

D11 (t>, ε)

]
D10 (t<, ε)P+[

[p̂D00 (1, ε)− b1D10 (1, ε)]D10 (t>, 1) + b1
2s2θW
πp̂

D10 (t>, ε)

]
D11 (t<, ε)P−

− b1
2sθW cθW

πp̂
[D10 (t, ε)D11 (t′, ε)P12 +D11 (t, ε)D10 (t′, ε)P21]

}
(3.36)

and is valid at O
(
v2/M2

kk

)
. The expressions Dij (t, t′) are already known from Eq. (3.23)

and the 2× 2 matrices P12,21 denote the entry of 1on the place indicated by their sub-
script. The expansion of the Bessel functions in Dij (t, t′) can be used for a simplification
via p̂εDn1 (t, t′) = − 2

πJn (p̂ε) valid at O
(
ε2
)

for n = 0, 1. As a consequence, the param-
eter 1

ε in the denominator of Eq. (3.36) cancels. Considering Eq. (3.36) in the limit for
vanishing sθW , the term proportional to P+ coincides with the result for the boson prop-
agator obtained in the minimal RS model. An expansion of Eq. (3.36) in O

(
v2/M2

kk

)
for general p2 ≤ v2,

2πBUV
W

(
t, t′;−p2

)
=

 c1(t,t′)
m2
W−p2

+ c2(t,t′)
2M2

kk

Lm2
W tan(θW )

2M2
kk(m

2
W−p2)

t′ 2

Lm2
W tan(θW )

2M2
kk(m

2
W−p2)

t2
Lt2<

2M2
kk

 (3.37)

is obtained, in which the expression for c2 (t, t′) corresponds to Eq. (3.33) obtained in
the minimal RS model and c1 (t, t′) corresponds to Eq. (3.32). In the case of p2 = 0, the
propagator corresponds to Eq. (54) from [121].

3.1.2 The vector boson propagator in the bulk Higgs model

3.1.2.1 The vector boson propagator in the bulk Higgs model in the minimal RS
model

Now, the expression for the W boson propagator that is needed for the investigation in
Ch. 4 is derived in the narrow bulk Higgs model. The gauge boson action remains almost
the same as in Eq. (3.2) with the difference that an additional bulk mass for the bulk
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field is needed. The procedure to obtain the expression for the second order differential
equation follows in the same way as for the brane–localized Higgs, reading

(
t2p̂2 − t2∂2

t + t∂t − c2
A (t)− 1

) BB (t, t′;−p2
)

t
= − Lt′,2

2πM2
kk

δ
(
t− t′

)
(3.38)

with the t dependent bulk mass present in the coefficient

c2
A (t) =

2πm̃2
W

M2
kk

t2v2 (t)

v2
=
Lm̃2

W

M2
kk

(1 + β)t4+2β. (3.39)

This is different for the brane–localized Higgs scenario due to the additional term in the
5D action, and v2 = v2

4 and m̃w = vg5/
(
2
√

2πr
)
. A solution in leading order O

(
v2/M2

kk

)
is obtained justifying the expansion in ε̂ which counts the order proportional to v2/M2

kk

BW
(
t, t′;−p2

)
= B0

(
t, t′;−p2

)
+ ε̂B1

(
t, t′;−p2

)
+ ε̂2B2

(
t, t′;−p2

)
+O

(
ε3
)
. (3.40)

The insertion of Eq. (3.40) into Eq. (3.38) and the powers of O
(
v2/M2

kk

)
results in three

differential equations

t∂t
1

t
∂tB0

(
t, t′;−p2

)
= 0, (3.41)

t∂t
1

t
∂tB1

(
t, t′;−p2

)
+

(
p̂2 −

c2
A (t)

t2

)
B0

(
t, t′;−p2

)
= − Lt′

2πM2
kk

δ
(
t− t′

)
, (3.42)

t∂t
1

t
∂tB2

(
t, t′;−p2

)
+

(
p̂2 −

c2
A (t)

t2

)
B1

(
t, t′;−p2

)
= 0. (3.43)

For every Bi
(
t, t′;−p2

)
, i = 0, 1, 2, the procedure of the application of both the Neu-

mann BC and the continuity condition at t = t′ on the propagator has to be done.
Both B0

(
t, t′;−p2

)
and B2

(
t, t′;−p2

)
are continuous at t = t′. The application of the

continuity condition to Eq. (3.41) results in

B0

(
t, t′;−p2

)
= C

(
t′
)
, (3.44)

that suggests a t′ dependence. After applying both the jump condition and the BCs to
Eq. (3.42) leads to the result that C (t′) is a constant. A solution for B1

(
t, t′;−p2

)
can

be obtained via the same procedure applied to Eq. (3.43). With respect to
∣∣p2
∣∣ ≤ v2

at leading order O
(
v2/M2

kk

)
, the expression for the propagator BW

(
t, t′;−p2

)
can be

obtained with the insertion of

c1

(
t, t′
)

= 1 +
m2
W

2M2
kk

[
L
(
t4+2β + t′ 4+2β

)
2 + β

+
(1 + β)(3 + β)

(2 + β)2 − 1

L

− t2
(
L− 1

2
+ ln (t)

)
− t′2

(
L+ ln

(
t′
)
− 1

2

)]
(3.45)

into Eq. (3.31). For β →∞, Eq. (3.45) is identical to Eq. (3.32) recovering the expression
for the brane localized Higgs scenario.
For p2 = 0 we find the solution

BW
(
t, t′; 0

)
= − Lαtt′

4M2
kk sin (πα)

D1 (t>, 1)D1 (t<, ε)

D2 (1, ε)
(3.46)
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with α ≡ 1/ (2 + β) and

D1

(
t, t′
)

= Ĩα (t) Ĩ1−α
(
t′
)
− Ĩ−α (t) Ĩα−1

(
t′
)
, (3.47)

D2

(
t, t′
)

= Ĩα−1 (t) Ĩ1−α
(
t′
)
− Ĩ1−α (t) Ĩα−1

(
t′
)

(3.48)

including

Ĩα (t) ≡
(

2Lm̃2
W

M2
kk

1 + β

2 + β
t2+β

)
. (3.49)

The expansion to O
(
v2/M2

kk

)
yields

BW
(
t, t′; 0

)
=

1

2πm̃2
W

+
L

4πM2
kk

[
2(1 + β)2

(2 + β)(3 + β)
+
t4+2βt′ 4+2β

2 + β
− t2>

]
. (3.50)

In the case of β →∞ or α→ 0, the result of the expansion in the brane–localized Higgs
scenario is recovered.

3.1.2.2 The vector boson propagator in the bulk Higgs model in the custodial RS
model

The W boson propagator in the custodial model with a narrow bulk localized Higgs is
derived in the IR basis with the differential equation(

t2p̂2 − t2∂2
t + t∂t −

c2
A (t)

c2
θW

P+ − 1

)
BIR
W

(
t, t′;−p2

)
t

= − Lt′ 2

2πM2
kk

δ
(
t− t′

)
(3.51)

that decouples for cW (t) = cA (t) as defined in Eq. (3.39). The BCs

(P+∂t + P−)RT
θW
BIR
W

(
t, t′;−p2

) ∣∣∣∣∣
t=ε

= 0, ∂tB
IR
W

(
t, t′;−p2

) ∣∣∣∣∣
t=1−

= 0 (3.52)

contain the rotation matrix RT
θW

that rotates the fields in the IR basis. Both the
continuity equations and jump conditions are applied in the same way as in the minimal
RS model receiving for p2 = 0

BIR
W

(
t, t′; 0

)
=

L

4πM2
kk

{
− παtt′

sin (α)

D1 (t, ε)D1 (t′, ε)

D2 (1, ε)
P++

[
t2<−ε2−

2 tan (θW )

cW (1) εβ
D1 (ε, 1)

D2 (ε, 1)

]
P−

+
2 tan (θW )

cW (1) ε1+β

[
tD1 (t, 1)

D2 (1, ε)
P12+

t′D1 (t′, 1)

D2 (1, ε)
P12

]
(3.53)

with α = 1/ (2 + β), cW (1) = m̃W
mW

√
2L (1 + β) and D1,2 (t, t′) defined in Eq. (3.47). As

in the case for the brane localized Higgs scenario, the expression proportional to P+

coincides with the result in the minimal model. After a Taylor expansion in O
(
v2/M2

kk

)
of Eq. (3.53) as well as a rotation into the UV basis, Eq. (3.53) now results in

BUV
W (t, t′; 0)=

P+

2πm̃2
W

+
L

4πM2
kk

[ (
2 (1 + β)

2

c2θW (2 + β)(3 + 2β)
+
t4+2β + t′ 4+2β

2 + β
− t2>

)
P+

+ tan(θW )

(
t′ 2
(

1− t′ 2+2β

2 + β

)
P12+t2

(
1− t2+2β

2 + β

)
P21

)
+t2<P−

]
(3.54)

that coincides with the result obtained in the custodial RS model in the brane localized
Higgs scenario in the limit β →∞.
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3.2 Fermion propagator

The derivation of the fermion propagator in both the minimal and the custodial RS
model for both the brane and the narrow bulk Higgs scenario is needed for computing
the contributions to the the decay amplitude h→ γγ. Originally the fermion propagator
in the RS model has been calculated in [185, 186] for one fermion generation. The results
of [185, 186] have been extended in [188]. The authors of [188] derived the result for
three fermion generations, without the Yukawa interactions on the IR brane. As a
consequence, the results of [188] are only valid at zeroth order v2/M2

kk. As a next step,
[126, 194] included the Yukawa interactions on the IR brane for three generations in the
case of a brane–localized Higgs in the limit η → 0 of the width of the regularized delta
function δη (t− 1).
The analysis presented here based on [131] is summarized. An alternative derivation
without using the regularized δ function is mentioned in the text at the important
steps. Only in the brane–localized Higgs scenario this alternative is valid and marks
a crosscheck to the derivation presented in the following. Furthermore, the analysis
presented here is also valid in the case for the custodial RS model. Therefore, the shifts

(q,Q) →
(
~q, ~Q

)
=
(
~u, ~U

)
,
(
~d, ~D

)
,
(
~λ, ~Λ

)
have to be performed. Whenever functions

are explained in more detail, the contributions from the additional fermion fields in the
custodial model are presented.
As in the case of the bosons, the starting point for the analysis is the 5D fermion action
that contains terms bilinear in the quark fields

SFerm =
∑
Q=U ,D

∫
d4x

1∫
ε

dtQ̄L (x, t)
[
/∂ −MKK γ5 ∂t −MKKM~q (t)

]
QR (x, t) (3.55)

with the spinor fields Q. The fermion action also contains the generalized mass matrix
Mq, which reads

Mq (t) =
1

t

(
cQ 0

0 −cq

)
+

v√
2Mkk

δη (t− 1)

(
0 Yq

Y †q 0

)
, (3.56)

and contains the bulk mass parameter cQ,q as well as the regularized delta function
δη (t− 1) that is defined in Eq. (2.18). As mentioned above, in both Eq. (3.55) and
Eq. (3.56) fields have to be added in the case of the custodial RS model. The partial
differential equation Eq. (3.57) is obtained from Eq. (3.55) and reads[

/p−MKK γ5 ∂t −MKKMq (t)
]
Sq
(
t, t′; p2

)
= δ

(
t− t′

)
. (3.57)

In Eq. (3.57), Sq
(
t, t′; p2

)
denotes the fermion propagator

iS~q
(
t, t′; p

)
=

∫
d4x eip·x 〈0|T (QL (x, t) +QR (x, t))

(
QL (t, 0) +QR (t, 0)

)
|0〉

=
[
∆q
LL(t, t′;−p2)/p+ ∆q

RL(t, t′;−p2)
]
PR + (L↔ R), (3.58)

with the time ordering T and ∆q
AB

(
t, t′;−p2

)
with A,B = R,L denotes the 5D fermion

propagator that is a 15 × 15 matrix for the up–type quarks and a 9 × 9 matrix for
both down–type quarks as well as for the λ–type quarks in the custodial RS model and
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includes the multiplicity of the generations. The KK decomposition of the propagator
functions with the KK–decomposed fermions in Eq. (3.58) read

∆q
AA(t, t′;−p2) =

∑
n

1

p2 −m2
n

Q(n)
A (t)Q(n)†

A

(
t′
)
,

∆q
BA(t, t′;−p2) =

∑
n

mqn

p2 −m2
qn

Q(n)
B (t)Q(n)†

A

(
t′
)
, A,B = R,L (3.59)

in which the subscripts denote the handedness of the fermion fields that are outgoing and
incoming. In the case of ∆u

RL(t, t′;−p2), uR denotes the right–handed outgoing fermion
field, which is odd under the Z2 parity and requires Dirichlet BC at the UV brane. It
is also part of the SU (2)L × SU (2)R bi–doublet. In contrast to uR, the incoming left–
handed field is even under the Z2 parity and transforms as a triplet under SU (2)L ×
SU (2)R. Using the KK representation of the fermion fields, the EOM, Eq. (2.108), as
well as the orthonormality condition, Eq. (2.107), the propagator functions of Eq. (3.59)
have been proven to be consistent [131]. The first–order differential equations

p2∆q
AA

(
t, t′;−p2

)
−MkkD~q±∆q

BA

(
t, t′;−p2

)
= δ

(
t− t′

)
, (3.60)

∆q
BA

(
t, t′;−p2

)
−MkkD~q∓∆q

AA

(
t, t′;−p2

)
= 0. (3.61)

with D~q± = ±∂t +Mq are obtained via an insertion of Eq. (3.58) in Eq. (3.55). Further-
more, Eq. (3.60) is decoupled into the second–order differential equations(

p̂2 −Dq+D
q
−
)

∆q
LL

(
t, t′;−p2

)
= M−2

kk δ
(
t− t′

)
, (3.62)(

p̂2 −Dq−D
q
+

)
∆q
RR

(
t, t′;−p2

)
= M−2

kk δ
(
t− t′

)
, (3.63)(

p̂2 −Dq−D
q
+

)
∆q
RL

(
t, t′;−p2

)
= M−1

kk D
q
−δ
(
t− t′

)
, (3.64)(

p̂2 −Dq+D
q
−
)

∆q
LR

(
t, t′;−p2

)
= M−1

kk D
q
+δ
(
t− t′

)
(3.65)

with p̂ = p2/Mkk, i.e. the momentum normalized to Mkk. The continuity equations

∆q
AA

(
t′ + 0, t′;−p2

)
−∆q

AA

(
t′ − 0, t′;−p2

)
= 0, A = L,R (3.66)

∆q
RL

(
t′ + 0, t′;−p2

)
−∆q

RL

(
t′ − 0, t′;−p2

)
= −M−1

kk , (3.67)

∆q
LR

(
t′ + 0, t′;−p2

)
−∆q

LR

(
t′ − 0, t′;−p2

)
= M−1

kk (3.68)

are obtained after the integration of Eq. (3.62) over an infinitesimal interval t ∈ [t′ − 0, t′ + 0].
Here, Eq. (3.66) does not show a discontinuity at t = t′ in contrast to both Eq. (3.67)
and Eq. (3.68). If the derivative of Eq. (3.66) is considered, the discontinuity will appear
for Eq. (3.66). Before the solutions of the fermion propagator are obtained, the imple-
mentation of the BCs on both branes have to be considered. On the IR brane, they
read

diag
(
0 1

)
∆q
LA

(
1, t′;−p2

)
= 0 = diag

(
1 0

)
∆q
RA

(
1, t′;−p2

)
, A = L,R (3.69)

with zero entries and the rank of the unit matrices that correspond to the structure of
the propagator function. In the case of the alternative derivation in the brane Higgs
case, in which the Yukawa matrices are implemented via the IR BCs, the IR BCs read
in contrast to Eq. (3.69)(

v√
2Mkk

Ỹ †q 1
)

∆q
LL

(
1−, t′;−p2

)
=0=

(
1 − v√

2Mkk
Ỹq
)

∆q
LA

(
1, t′
)

∆q
RL

(
1−, t′,−p2

)
(3.70)
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However, the BC on the UV brane can not be written as general as in Eq. (3.69), because
they differ for each quark type. In the custodial RS model, the additional BCs for the
~λ–type quarks are

diag
(
0, 1, 1, 0, 0

)
∆~u
LA

(
ε, t′;−p2

)
=0=diag

(
1, 0, 0, 1, 1

)
∆~u
RA

(
ε, t′;−p2

)
,

(3.71)

diag
(
0, 1, 0

)
∆
~d
LA

(
ε, t′;−p2

)
=0=diag

(
1, 0, 1

)
∆
~d
RA

(
ε, t′;−p2

)
, (3.72)

diag
(
1, 0, 0

)
∆
~λ
LA

(
ε, t′;−p2

)
=0=diag

(
0, 1, 1

)
∆
~d
RA

(
ε, t′;−p2

)
. (3.73)

Now, all ingredients are available for the derivation of the propagator functions ∆q
LA (t, t′)

with A = L,R. After the derivation of the propagator functions ∆q
LL (t, t′) and ∆q

RL (t, t′)
are considered. The translation, which is necessary to obtain the results of both ∆q

LR (t, t′)
and ∆q

LL (t, t′) is given afterward. The presence of the regulator η divides the whole bulk
into two regions. While one region is described by t < 1− η, which is referred to as the
bulk, the other region t > 1−η is referred to as the sliver. For every region, the solution
of both ∆q

LL (t, t′) and ∆q
RL (t, t′) are obtained in the euclidean momentum space with

the general ansatz af (pE), in which a is a coefficient that depends on the region as well
as a (well–behaved) function f (p̂E) for every entry in ∆q

LL (t, t′) and ∆q
RL (t, t′). An

additional case study with respect to t< = t < t′ and t> = t > t′ has to be done, before
applying the jump condition, the BCs, and the continuity equations. The propagator
functions will depend in total on 8 matrix valued functions Ki (t′) appearing in the bulk,
whereas Ci (t′), with i = 1, ..., 4 that appear in the sliver are to be determined with
the matching condition at t = 1 − η. Once they are fixed, the propagator solution is
obtained.

3.2.0.3 Solution of the propagator functions in the region t < 1− η

In the limit t < 1− η, the delta function plays no role, because the Yukawa matrices in
the generalized mass matrix Eq. (3.56) do not appear. As a consequence, the solution
of both ∆q

LL (t, t′) and ∆q
RL (t, t′) is given via the Bessel functions

√
tI(−)α (p̂E , t) with

α being a non–integer value and depending on the bulk mass parameter. In the case of
α ∈ N, a solution can be obtained via a limiting procedure. Thus, the solutions for t<
with the UV BCs are given by

∆q<
LL

(
t, t′; p2

E

)
=
√
t

(
DQ

1 (p̂E , t) 0

0 Dq
2 (p̂E , t)

)(
K1 (t′) K2 (t′)

K3 (t′) K4 (t′)

)
, (3.74)

∆A<
RL

(
t, t′; p2

E

)
= −MkkpE

√
t

(
DQ

1 (p̂E , t) 0

0 Dq
2 (p̂E , t)

)(
K1 (t′) K2 (t′)

K3 (t′) K4 (t′)

)
, (3.75)

whereas Eq. (3.75) is obtained via the insertion of Eq. (3.74) into Eq. (3.60), in which
Ki (t′) , i = 1, ..., 4 are matrix–valued functions with the appropriate rank. The functions
DA

1,2 (p̂E , t) depend on A = ~Q, ~q,Q, q and (p̂E , t) is the short hand notation for (p̂E , t, ε).

DA
i (p̂E , t, ε) are 3 × 3 matrices in generation space and are given in the custodial RS

model by

D
~U
1,2 (p̂E , t) = diag

(
DQ

1,2 (p̂E , t) , D
Q
3,4 (p̂E , t)

)
, (3.76)
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D~u
1,2 (p̂E , t) = diag

(
Duc

1,2 (p̂E , t) , D
τ1
3,4 (p̂E , t) , D

τ2
3,4 (p̂E , t)

)
, (3.77)

D
~D
1,2 (p̂E , t) = DQ

1,2 (p̂E , t) , (3.78)

D
~d
1,2 (p̂E , t) = diag

(
Dτ2

1,2 (p̂E , t) , D
τ1
3,4 (p̂E , t)

)
, (3.79)

D
~Λ
1,2 (p̂E , t) = DQ

3,4 (p̂E , t) , (3.80)

D
~λ
1,2 (p̂E , t) = diag

(
Dτ1

3,4 (p̂E , t) , D
τ2
3,4 (p̂E , t)

)
, (3.81)

(3.82)

with

DA
1,2

(
p̂E , t, t

′) = I−cA− 1
2

(
p̂E , t

′) IcA∓ 1
2

(p̂E , t)− IcA+ 1
2

(
p̂E , t

′) I−cA± 1
2

(p̂E , t) , (3.83)

DA
3,4

(
p̂E , t, t

′) = I−cA+ 1
2

(
p̂E , t

′) IcA∓ 1
2

(p̂E , t)− IcA− 1
2

(
p̂E , t

′) I−cA± 1
2

(p̂E , t) . (3.84)

The antisymmetry leads to DA
2,3 (p̂E , t, t) = 0 = DA

2,3 (p̂E , t, ε). The procedure is repeated
for the case t> and results in

∆A>
LL

(
t, t′; p2

E

)
= ∆A<

LL

(
t, t′; p2

E

)
+

√
tt′

pEMkk1η

(
−LQ3 (p̂E , t, t

′) 0

0 Lq2 (p̂E , t, t
′)

)
, (3.85)

∆A>
RL

(
t, t′; p2

E

)
= ∆A<

RL

(
t, t′; p2

E

)
+

√
tt′

Mkk1η

(
LQ4 (p̂E , t, t

′) 0

0 −Lq1 (p̂E , t, t
′)

)
, (3.86)

with LAi (p̂E , t, t
′) =

πpE1η
2 cos(cAπ)D

A
i (p̂E , t, t

′) and 1η = 1 − η. In conclusion, the equa-

tions Eq. (3.74), Eq. (3.75), Eq. (3.85) and Eq. (3.86) depend on the matrix functions
K (t′) , i = 1, ..., 4.

3.2.0.4 Solution of the propagator functions in the region t > (1− η)

There is no exact solution of a general choice of η in the region t > (1− η), in which
the Yukawa matrices are relevant. In the case of η � 1, the contribution is enhanced
proportional to a factor of η−1 and dominates over the term that contains the bulk mass
parameter. Terms proportional η � v |Yq| /Mkk are suppressed and this inequality is at
the same time an upper bound for the regulator η and the definition of the narrow bulk
Higgs scenario that is described in Sec. 2.2.3. The solutions read in the case of t>:

∆A>
LL

(
t, t′; p2

E

)
=

(
C† (t) 0

0 S̄† (t)

)(
C1 (t′) C2 (t′)

C3 (t′) C4 (t′)

)
, (3.87)

∆A>
RL

(
t, t′; p2

E

)
=
Mkk

η

(
S†qS† (t) v√

2Mkk
YqS̄† (t)

v√
2Mkk

Y †q C† (t) S†q C̄† (t)

)(
C1 (t′) C2 (t′)

C3 (t′) C4 (t′)

)
(3.88)

that contain the 3× 3 matrices

S =
√
X2
q + η2p2

E , Xq =
v√

2Mkk

√
YqY

†
q , (3.89)

S̄ =
√
X̄2
q + η2p2

E , X̄q =
v√

2Mkk

√
Y †q Yq, (3.90)
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and the trigonometric functions

S (t) = sinh

(
Sq

1− t
η

)
, C (t) = cosh

(
Sq

1− t
η

)
. (3.91)

In the case of t<, the jump conditions should be taken into account. Then, the following
expressions for the propagators are obtained:

∆A<
LL

(
t, t′; p2

E

)
=∆A>

LL

(
t, t′; p2

E

)
+

η

M2
kk

S†(1−t′+t)S†q
0

0 S̄†(1−t′+t)
S̄†q

 , (3.92)

∆A<
RL

(
t, t′; p2

E

)
=∆A>

RL

(
t, t′; p2

E

)
+

1

Mkk

 C† (1− t′ + t) v√
2Mkk

Yq
S̄†(1−t′+t)

S̄†q
v√

2Mkk
Y †q
S†(1−t′+t)

S†q
C̄† (1− t′ + t)

 (3.93)

Now, all functions are derived that are needed for an exact solution of the propagator
functions in both regions t< and t>, respectively, in order to determine the 8 matrix
functions Ki (t′) and Ci (t′), i = 1, ..., 4.

3.2.0.5 Matching at t = (1− η) and results

The requirement of the continuity at t = 1− η implies a specification of t′< = t′ < 1− η
and t′> = t′ > 1 − η. Continuous solutions for the coefficients in the region t′< are
obtained by using the equation

∆A<
BL

(
1− η − 0, t′; p2

E

)
= ∆A>

BL

(
1− η + 0, t′; p2

E

)
, B = L,R, (3.94)

where both Eq. (3.74) and Eq. (3.87) are used in the case of ∆A
LL

(
t, t′; p2

E

)
as well as

Eq. (3.75) and Eq. (3.88) are used in the case of ∆A
RL

(
t, t′; p2

E

)
. As a consequence, the

matrix valued functions Ki (t′) and Ci (t′), i = 1, ..., 4 are determined unambiguously for
t′ ∈ [ε, 1]. In the brane localized Higgs scenario where t, t′ [ε, 1− η], the components for
∆q
LL

(
t, t′; p2

E

)
read

∆q
LL

(
t, t′;−p2

) ∣∣∣
11

= −
√
t t′

pEMkk

[
DQ

1 (pEt)

DQ
1 (pE)

RQ
1

1 + Zq

DQ
1 (pEt

′)

DQ
1 (pE)

− DQ
1 (pEt<)

DQ
1 (pE)

LQ3 (pE , pE t>)

]
(3.95)

∆q
LL

(
t, t′;−p2

) ∣∣∣
12

=

√
t t′

pEMkk

DQ
1 (pEt)

DQ
1 (pE)

RQ
1

1 + Zq
ρỸq

Dq
2 (pEt

′)

Dq
2 (pE)

(3.96)

∆q
LL

(
t, t′;−p2

) ∣∣∣
21

=

√
t t′

pEMkk

Dq
2 (pEt

′)

Dq
2 (pE)

ρỸ †q RQ
1

1 + Zq

DQ
1 (pEt)

DQ
1 (pE)

(3.97)

∆q
LL

(
t, t′;−p2

) ∣∣∣
22

= −
√
t t′

pEMkk

[
Dq

2 (pEt
′)

Dq
2 (pE)

ρỸ †q RQ
1

1 + Zq
ρỸq

Dq
2 (pEt

′)

Dq
2 (pE)

+
Dq

2 (pEt<)

Dq
2 (pE)

Lq2 (pE , pE t>)

]
(3.98)

and the components for ∆q
RL

(
t, t′; p2

E

)
read

∆q,11
RL =

−
√
tt′

Mkk


DQ2 (p̂E ,t)

DQ2 (p̂E ,1)

Zq
1+Zq

DQ1 (p̂E ,t
′)

DQ1 (p̂E ,1)
+

DQ2 (p̂E ,t)

DQ2 (p̂E ,1)
LQ4 (p̂E , t

′, ε) , t < t′,

DQ2 (p̂E ,t)

DQ2 (p̂E ,1)

Zq
1+Zq

DQ1 (p̂E ,t
′)

DQ2 (p̂E ,1)
+

DQ1 (p̂E ,t
′)

DQ1 (p̂E ,1)
RQL

Q
4 (p̂E , 1, t) , t′ > t
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∆q,12
RL =

−
√
tt′

Mkk

DQ
2 (p̂E , t)

DQ
2 (p̂E , 1)

1

1 + Zq

v√
2MkkỸq

Dq
2 (p̂E , t

′)

Dq
2 (p̂E , 1)

(3.99)

∆q,21
RL =

−
√
tt′

Mkk

Dq
1 (p̂E , t)

Dq
1 (p̂E , 1)

√
2Mkk

vỸq

Zq
1 + Zq

DQ
1 (p̂E , t

′)

DQ
1 (p̂E , 1)

(3.100)

∆q,22
RL =

√
tt′

Mkk


Dq1(p̂E ,t)

Dq1(p̂E ,1)
1
Ỹq

Zq
1+Zq

Ỹq
Dq2(p̂E ,t

′)

Dq2(p̂E ,1)
+

Dq1(p̂E ,t)

Dq1(p̂E ,1)
RqL

q
2 (p̂E , 1, t

′) t < t′,

Dq1(p̂E ,t)

Dq1(p̂E ,1)
1
Ỹq

Zq
1+Zq

Ỹq
Dq2(p̂E ,t

′)

Dq2(p̂E ,1)
+

Dq2(p̂E ,t
′)

Dq2(p̂E ,1)
Lq4 (p̂E , 1, t) , t′ > t

,

with the substitutions

1η → 1, Sq → Xq, S̄q → X̄q, Z
η,i
q → Zq, N

η,i → 1 + Zq (3.101)

whereas in the case of a narrow bulk localized Higgs in which t, t′ ∈ [1− η, 1], the
components for ∆q

RL

(
t, t′; p2

E

)
read

∆q,11
RL = − 1

Mkk

[
S (t)

S (1η)

(
Zη,1q + ηp̂E

tanhSq
Sq

RQ

)
1

Nη,1
q

C (t′)

C (1η)

− C (t+ η) C (t′)

C (1η)
+ θ

(
t− t′

)
C
(
1 + t− t′

) ]

∆q,12
RL = − 1

Mkk

[
S (t)

S (1η)

1−Nη,2
q

Nη,2
q

vỸq√
2Mkk

S̄ (t′)

S̄ (1η)
+
S (t>) C (t< + η)

S (1η)

vỸq√
2Mkk

(3.102)

∆q,21
RL = − 1

Mkk

[
C̄ (t)

√
2Mkk

C̄ (1η) vỸq

X2
q

S2
q

Zη,1q

Nη,1
q

C (t)

C (1η)
−
√

2Mkk

vỸq

X2
q

S2
q

C (t>)S (t< + η)

C (1η) cothSq

]
(3.103)

∆q,22
RL = − 1

Mkk

[
C̄ (t)

C̄ (1η)

1

Ỹq

[
1−Nη,2

q + ηp̂E
tanhSq
Sq

RQ

]
Ỹq

Nη,1
q

S̄ (t′)

S̄ (1η)

+
S̄ (t+ η) S̄ (t′)

C̄ (1η)
+ θ

(
t− t′

)
C
(
1 + t− t′

) ]

In Eq. (3.99), the arguments
(
t, t′; p2

E

)
that appear in the propagator have been omitted

as well as the arguments of both Zη,i
(
p2
E

)
and Nη,i

(
p2
E

)
. The results obtained for both

∆A
LL

(
t, t′; p2

E

)
and ∆A

RL

(
t, t′; p2

E

)
are extended to ∆A

RR

(
t, t′; p2

E

)
and ∆A

LR

(
t, t′; p2

E

)
via

DA
1,2

(
p̂E , t, t

′)→ DA
2,1

(
p̂E , t, t

′) , S (t)↔ C (t) , (3.104)

LA2,3 (p̂E , 1η, t)→ −LA3,2 (p̂E , 1η, t) , LA1,4 (p̂E , 1η, t)→ −LA4,1 (p̂E , 1η, t) , (3.105)

RQ,q (p̂E) =
DQ,q

1 (p̂E , 1η)

DQ,q
2 (p̂E , 1η)

, Yq → −Yq, Ỹq =
tanhSq
Sq

Yq, (3.106)

Zη,1q

(
p2
E

)
=

v2

2M2
kk

S2
q

X2
q

ỸqRq (p̂E) Ỹ †q RQ (p̂E) , (3.107)

Zη,2q

(
p2
E

)
=

v2

2M2
kk

ỸqRq (p̂E) Ỹ †q
S2
q

X2
q

RQ (p̂E) , (3.108)

Nη,1
q

(
p2
E

)
=1+Zη,1q

(
p2
E

)
+ηp̂E

[
cothSq

RQ (p̂E)Sq
Zη,1q

(
p2
E

)
+

tanhSq
Sq

Rq (p̂E)

]
, (3.109)
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Nη,2
q

(
p2
E

)
=1+Zη,2q

(
p2
E

)
+ηp̂E

[
Zη,2q

(
p2
E

) cothSq
RQ (p̂E)Sq

+
tanhSq
Sq

Rq (p̂E)

]
, (3.110)

Zη,iq
(
p2
E

)
→ RQ (p̂E)

1

Zη,iq
(
p2
E

) 1

RQ (p̂E)
, (3.111)

1

Nη,1
q

(
p2
E

) → RQ (p̂E)Zη,1q

(
p2
E

) 1

Nη,1
q

(
p2
E

) 1

RQ (p̂E)
, (3.112)

1

Nη,2
q

(
p2
E

) → RQ (p̂E)
1

Nη,1
q

(
p2
E

)Zη,2q

(
p2
E

) 1

RQ (p̂E)
(3.113)

with an overall minus sign in the case of ∆A
LR

(
t, t′; p2

E

)
. Furthermore, the propaga-

tor functions ∆A
RL

(
t, t′; p2

E

)
and ∆A

RL

(
t, t′; p2

E

)
are connected to each other via both

a complex conjugation as well as an interchange of t ↔ t′. The propagator function
∆A
LL

(
t, t′; p2

E

)
gets the same result with its hermitian conjugate ∆A

RR

(
t, t′; p2

E

)
if t↔ t′

are interchanged. This can be proven via the KK representation of the 5D fermion
propagator in Eq. (3.59).
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4 Loop–induced Higgs decay into two
photons h → γγ in the RS model

The decay h → γγ was studied originally by [196] in the middle of the 70s. Another
consideration of this decay was done by [197]. The authors of [197] considered the
h→ γγ decay with a Higgs mass mh in both Feynman t’Hooft gauge and in non–linear
gauges. For small masses, the results of [196, 197] agree.
In this Chapter, the publication [193] is discussed at greater detail as the author of
this thesis is one of the authors of this publication. The calculation has been done by
every author of [193] independently, and led to several diploma theses, master theses,
and PhD theses [129, 130, 198, 199]. Furthermore, the calculation served the co–authors
as a crosscheck of both their and the other authors’ calculations, respectively. The
calculation for an arbitrary Rξ gauge has been done by J. Hahn in [198]. The aim of
this investigation of the h → γγ decay in RS models was a determination of possible
effects from the KK modes that could give sizable contributions to the SM value. If
these deviations from the SM value had existed, they could have given a hint for new
physics.

4.1 Introduction and first steps

The decay h→ γγ has been studied originally by various authors [121, 200–203] in the
context of extra dimensions/ The proof of the gauge invariance of h→ γγ that has been
done in the SM [204]. The authors of [121, 200–202] highlighted different points and
their work led to discussions, which the following analysis addresses. The analysis in
[202] was the first calculation that considered the impact of the full KK tower of W
bosons in the decay h → γγ. In [121], the calculation of both the contribution of Z2–
even and Z2–odd fermions as well as the impact of the corresponding Yukawa couplings
to h→ γγ were addressed. The results of [121] suggested an enhancement of the decay
rate Γ (h→ γγ) compared to the SM, because of the contributions of the fermion KK
tower, whereas the authors of [200] came to the opposite conclusion. It turned out that
the discrepancies in the results of [121, 200] occurred due to the Higgs localization in
the RS model, because [121] considered the scenario with a brane–localized Higgs and
[200] investigated the h → γγ decay in the narrow bulk Higgs scenario. The two Higgs
scenarios mentioned are described in Sec.2.2.
As a next step, the gauge boson contributions to the h → γγ decay are discussed and
the scalar components are investigated in more detail, because their profile functions
show the same discontinuity behavior as both the Z2–even and Z2–odd fermion profile
functions at the IR brane. At the best knowledge of the authors of [193], a formula has
not been published before. The two main goals were to show the gauge independence
of the decay amplitude in the RS model and the independence of the Higgs localization.
The gauge independence is shown and explained in Sec. 4.3 and the results of [121] are
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confirmed if the the result is expanded at O
(
v2/M2

kk

)
. This was done to distinguish the

W bosons and their KK tower. Applied in the framework of the custodial model, the
analysis yielded an exact expression for the h → γγ decay, as well and the result has
been expanded. This leads to a confirmation of the results obtained in [200].
The investigation of both fermion contributions and boson contribution is motivated by
the fact that all particles that couple to both the Higgs and the photon have to be taken
into account for the consideration of the virtual particles that run in the loop. Fermion
contributions are considered in Sec. 4.5, because they couple in Eq. (2.86) to the Higgs
via the Yukawa couplings and the kinetic term in Eq. (2.44) to the photon. The W
boson is another particle that also couples to both the Higgs boson and the photon via
the kinetic term in Eq. (2.44).

4.2 Details of the calculation of the amplitude

The following steps are necessary to achieve a complete description of the h → γγ
amplitude from a pure 5D perspective. The goal is to express the amplitude using both
the 5D boson and fermion propagators. Then, the KK decomposition is inserted into the
propagator. The exact formula that is going to be derived describes the overlap integrals
of the Higgs boson with the transverse polarization of the W boson. It includes the exact
dependence of the Higgs mass. As a preparation, the gauge independence of the h→ γγ
decay is investigated in Sec. 4.3. As a next step, the contributions of the vector bosons
are investigated using the KK decomposition showing that the whole tower of the KK
excitations is gauge independent. The decay is further investigated in the unitary gauge,
as there is only one contribution containing the vector bosons which can be expressed
via the gauge boson propagator. Before the investigation is continued in the custodial
RS model, the decay in the RS minimal model is discussed.
In unitary gauge, the diagrams Fig. 4.1a–Fig. 4.1c of Fig. 4.1 contribute to the calculation
of the h→ γγ amplitude. The amplitude itself is considered in an effective field theory
expansion that contains the following Wilson coefficients

A (h→ γγ) = C1γ
α

6πv
〈γγ
∣∣ FµνFµν∣∣0〉 − C5γ

α

4πv
〈γγ
∣∣ FµνF̃µν∣∣0〉, (4.1)

where the Wilson coefficient C1γ corresponds to the CP even term of the effective La-
grangian

Leff 3 C1γvhFµνF
µν + C5γvhFµνF̃

µν = LCPeven + LCPodd (4.2)

and C5γ corresponds to the CP odd term of Eq. (4.2). Each of the two Wilson coefficients
in Eq. (4.1) involve contributions from fermions. Furthermore, they include contributions
from the W boson, ghosts, and Goldstone bosons and read

Ci,γ = CWi,γ + Cqi,γ + C li,γ ∀i = 1, 5. (4.3)

4.3 Gauge independence of the h→ γγ amplitude

The gauge independence of the h→ γγ amplitude in arbitrary Rξ gauge was proven in
[204]. It was shown by [204] that it is possible to perform the calculation in the unitary
gauge consistently. For the consideration of the ξ independence in the RS model, it is
suitable to consider the KK decomposed theory in a first step, because both the Feynman
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Figure 4.1: Diagrams contributing in the Rξ gauge to the decay h→ γγ. The momenta
and extra–dimensional coordinates of the diagrams Fig. 4.1b–Fig. 4.1k are
labeled in the same way as Fig. 4.1a.

rules in the KK decomposed theory and the structure of the Feynman propagator follow
analogously to the SM case. As a consequence, the amplitude of the contributions of the
bosons in the KK decomposed theory in the RS model

AWRS (h→ γγ) =
m̃2
W

v

∞∑
n=0

2π
[
χWn (1)

]2 [ vSM

m2
W

AWSM (h→ γγ)

]
mW→m

(n)
W

(4.4)

differs only in small substitutions compared to the SM expression that stem from the
requirements of the RS model, which are explained in the following. The Feynman rules
in the KK decomposed theory can be found in Sec. A.1.
Three main facts are discussed in further details below and are elaborated by considering
the analogy between the SM model and the RS model in its KK decomposed theory:
The fact that the couplings of the KK modes to external photons (i.e. one or more, c.f.
Fig. 4.1j) are solely diagonal after the integration of the extra dimensional coordinate
1∫
ε

dt 2π
L

dt
t . An additional comparison of coefficients leads to the relation e = e5/

√
2πr

and furthermore to an analogous form of the Feynman rules in the RS model compared
to the Feynman rules in the SM. In the case of a mass dependent vertex, i.e. a coupling

including W±,(n) or ϕ
±,(n)
W particles to the photon, the mass shift mW → m

(n)
W has to be

made.
This has the consequence that only one KK particle runs in the loop of all 1–loop
diagrams that contribute to h→ γγ. Thus, only diagonal couplings of the Higgs profile
to the KK profiles are required.
The last statement leads to the result that the couplings of the Higgs to the KK profiles
have the same structure as in the SM, but differ by an overall factor

v

2

g2
5

2πr
2π
[
χWn (1)

]2
=

2m̃2
W

v
2π
[
χWn (1)

]2
(4.5)
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compared to the SM expression. The SM expression gmW = 2m2
W /vSM in which vSM

denotes the SM VEV that is defined by vSM =
(√

2GF
)− 1

2 via the Fermi constant is
replaced by Eq. (4.5). As already mentioned, the W mass has to be replaced by its
corresponding expression for the Feynman rule in the KK picture whenever a W mass
appears that enters through a scalar NGB ϕ±,(n) or a W boson at the corresponding
vertex. The Feynman rule for the diagram Fig. 4.1j results after the integration of the
vertex in

2ie2ηµν

 M2
kk

mn
Wm

m
W

2π

L

1∫
ε

dt

t

[
∂tχ

W
m (t)

] [
∂tχ

W
n (t)

]
+

2πm̃2
W

mn
Wm

m
W

χWn (1)χWm (1)

 . (4.6)

The first term of Eq. (4.6) originates from the W5W5AµA
µ term of the Yang-Mills action

of the W boson and its corresponding KK decomposition, whereas the second term of
Eq. (4.6) stems from the kinetic term of the Higgs doublet with its KK decomposition,
to be more precise from ϕ−ϕ+AµA

µ. Thus, the boundary terms cancel the contribution
of the term stemming from the ϕ−ϕ+AµA

µ part after an integration by parts of the first
term and after the application of the EOM, Eq. (4.6) now reads

2ie2ηµν

mn
W

mm
W

2π

L

1∫
ε

dt

t
χWn (t)χWm (t)

 . (4.7)

The SM expression for Eq. (4.7) is 2ie2ηµν . The similarity of Eq. (4.7) compared to the
SM expression for the vertex is apparently after the application of the orthonormality
condition Eq. (2.21). The gauge invariance of the full amplitude AWRS (h→ γγ) to the
decay h → γγ is fulfilled for each KK mode in the RS model as long as the amplitude
remains gauge invariant in the SM. In the RS model, the 5D gauge invariance is a conse-
quence of the convergent sum over all KK modes that can be traced back to Eq. (3.9). In
the SM, the gauge invariance is shown via a separation of the gauge boson propagator
in the Rξ gauge:

i

p2 −m2
W

(
(1− ξ) pµpν

p2 − ξm2
W

− ηµν
)

=
i

p2 −m2
W

(
pµpν

m2
W

− ηµν
)
− i

p2 −m2
W

pµpν

ξm2
W

. (4.8)

Here, in the term i
p2−m2

W

(
pµpν

m2
W
− ηµν

)
denotes the propagator in unitary gauge and the

ξ dependent part i
p2−ξm2

W

pµpν

m2
W

has the same structure as both the scalar propagator and

the ghost propagator, respectively. Marciano et al. showed in [204] that the ξ–dependent
contributions of Eq. (4.8) cancel after some transformations of the contributions of the
ξ–dependent expressions. As a consequence, only the diagrams in Fig. 4.1b and Fig. 4.1c
remain, which contains the W boson propagator in the unitary gauge. The fermion
contributions are ξ independent and the diagram in Fig. 4.1a remains, as well.
In the RS model, the calculation is performed in the unitary gauge after the confirmation
of the gauge invariance of the amplitude in the RS model by a comparison to the results
obtained in [204].

4.4 Contributions of boson diagrams to the h→ γγ amplitude

Besides the fermion contributions, diagrams that contain vector bosons are considered,
as well. Only the diagrams Fig. 4.1b–Fig. 4.1c of Fig. 4.1 contribute in the unitary gauge
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and lead to the following amplitude

iA (h→ γγ) = −2m̃2
W

v
2πe2ε∗µ (k1) ε∗ν (k2) ηαβ

∫
ddp

(2π)
d

1∫
ε

dt δη (t− 1)
2π

L

1∫
ε

dt1
t1[

2π

L

1∫
ε

dt2
t2

2V γµλρνδDξ→∞
W,αγ (t, t1, p+ k1)Dξ→∞

W,λρ (t1, t2, p)D
ξ→∞
W,δβ (t2, t, p− k2)

(
2ηγδηµν − ηδνηγµ − ηνγηµδ

)
Dξ→∞
W,αγ (t, t1, p+ k1)Dξ→∞

W,βδ (t1, t, p− k2)

]
(4.9)

with V γµλρνδ = V γµλ (p+ k1,−k1,−p)V ρνδ (p,−k2, k2 + p) that is the abbreviation for
the triple gauge coupling V µνρ (k, p, q) = ηµν (k − p)ρ + ηνρ (p− q)µ + ηρµ (q − k)ν .
The main interest is the expression in Eq. (4.9), in which the Feynman parameter integral
and the 5D propagator of the gauge boson appear. Before the amplitude is expressed with
the help of the 5D gauge boson propagator, the 5D boson propagator is re–expressed by
an insertion of the KK decomposition similar to the result obtained in Eq. (3.9). It turns
out that only one mode runs in the loop in the KK–decomposed theory. Writing the 5D
boson propagator in its KK–decomposed equivalent is the same trick as the introduction
of the Feynman parametrization. With the application of the KK decomposition, it
is possible to simplify the expression using the orthonormality relation in Eq. (2.21),
which eliminates an extra–dimensional coordinate. This procedure is repeated in the
case of the decay amplitude for h→ γγ, because the amplitude depends on three extra–
dimensional coordinates t, t1, t2, and two external photons. This leads to a dependence
on only one extra–dimensional coordinate t. The possibility to apply the orthonormality
relation in Eq. (2.21) is a direct consequence of the diagonality of the photon vertex.
As a next step, the expression in the KK decomposition is rewritten in the 5D picture
and results in the expression of the 5D boson propagator. As a consequence, the KK
decomposition does not appear anymore. This is shown in the following with the Wilson
coefficients for the boson contribution. A further simplification is done via the Passarino
Veltman reduction [205, 206] that simplifies the expression to scalar integrals after the
deduction of the Dirac structure in Eq. (4.9). Summing the contributions of all diagrams
and setting the regulator ε̂ = 0 leads to the boson contribution of the Wilson coefficient
CW1γ with its full expression in the KK decomposition

CW1γ =−3πm̃2
W

1∫
ε

dt δh (t− 1)

∞∑
n=0

[
χWn (t)

]2 1

mn,2
W

+6

1∫
0

dx

1−x∫
0

dy
1− 2xy

mn,2
W − xym2

h − i0


CW5γ =0.

(4.10)

Furthermore, the simplification of the latter equations is possible by an insertion of the
5D propagator into Eq. (4.10)

CW1γ = −3πm̃2
W

TW (0) + 6

1∫
0

dx

1−x∫
0

dy (1− 2xy)TW
(
−xym2

h

) (4.11)

that includes

TW
(
−p2

)
=

1∫
ε

dt δη (t− 1)BW
(
t, t;−p2 − i0

)
= BW

(
1, 1;−p2 − i0

)
+O (η) . (4.12)
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The expression TW
(
−p2

)
is the overlap integral of the Higgs profile function and includes

the transverse component of the W boson propagator that is now evaluated at t = 1 =
t′. This is also true in the case for time–like momenta, i.e. p̂ ≡ p/Mkk + i0. As a
consequence, the exact result of the Wilson coefficient CW1γ depends on both the Higgs
profile function and the W boson propagator. After the Wick rotation, the denominator
of Eq. (4.10) is expressed by

(
p2
E +m2

W − xym2
h

)−3
, for which ∂2

p2E
TW

(
p2
E − xym2

h

)
is an

equivalent expression. The existence of the integral requires that the functions TW
(
p2
E

)
and pE∂pETW

(
p2
E

)
have to vanish for large p2

E . Thus, TW
(
p2
E

)
results in an expression

valid at O
(
v2/M2

kk

)
TW
(
−p2

)
=

1

2πm̃2
W

[
1+

p̂M2
kk

Lm̃2
W

J0 (p̂)Y0 (p̂ε̂)−Y0 (p̂) J0 (p̂ε̂)

J1 (p̂)Y0 (p̂ε̂)−Y1 (p̂) J0 (p̂ε̂)

]−1

≡ 1

2πm̃2
W

T̂W
(
−p2

)
. (4.13)

Using an expansion of the Bessel functions for small arguments, Eq. (4.13) can be further
simplified to T̂ (0) = 1. A closed analytic expression for the Wilson coefficient CW1γ in
Eq. (4.10) is derived in the minimal RS model with a brane–localized Higgs using the
function T̂W

(
−p2

)
. Keeping the leading order contribution to the physical W boson

mass, m̃W , mW cancels the first term in Eq. (4.10). With these simplifications, CW1γ now
results in

CW1γ = −3

2

1 + 6

1∫
0

dx

1−x∫
0

dy (1− 2xy) T̂W
(
−xym2

h

) . (4.14)

In the case of a consideration of the propagator function in regions of space like momenta
pE �Mkk, TW

(
p2
E

)
shows a power–law dependence via

TW
(
p2
E

)
=

L

2πMkk

1

pE
+O

(
p−2
E

)
. (4.15)

If large euclidean momenta in the region p2
E = −p2 → ∞ are considered, both con-

tributions TW
(
p2
E

)
and pE∂pETW

(
p2
E

)
vanish and the conditions for an integration of

Eq. (4.10) are fulfilled.
Besides the contributions to CW1γ , there are contributions that stem from the narrow bulk

Higgs. For a general bulk Higgs field χhn (t), Eq. (4.11) is still fulfilled using the results
of [140] if the corresponding Higgs boson propagator is derived. The regularized delta
function in Eq. (4.12) is replaced by

δh (t− 1)→ 2π

Lt

v (t)

v
χhn (t) = 2 (1 + β) t1+2β + ..., (4.16)

with v (t) being the profile function of the Higgs VEV that has been derived in Eq. (2.79)
in Sec. 2.2. Considering β � 1, the function leads to a regularized delta function of width
η/(2β). The Higgs profile function contains a tower of scalar KK excitations that are
considered to be physical, because the Higgs profile function χhn (t) is not localized on
the IR brane any more and gets a small width in a region where η � v |Yq| /η � ΛTeV.
These excitations originate from the ϕ± scalar in the Higgs doublet in Eq. (2.59). As
the authors of [200] deduced in a clear way, these additional scalar field excitations are
expressed via a superposition of both W±φ and ϕ±. Furthermore, the authors of [200]
summarized these contributions in

Cφ1γ =
1

8

∞∑
n=1

vg
(n,n)
φφ

(m2
n)2 Aφ

(
τφn

)
, Cφ5γ = 0 (4.17)
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with
Aφ (τ) = [3τf (τ)− 1] (4.18)

that includes the function

f (τ) = arctan2

(
1√
τ − 1

)
and τφn = 4

(
mφ

(n)

)2
/m2

h (4.19)

and contributes to the full amplitude. The couplings g
(n,n)
φφ scale with 1/η in the case

of an extremely narrow bulk Higgs profile. As a consequence, the particle masses scale
with Mkk/η. The decoupling appears in the limit η → 0, because Cφ1γ = O (η). The

coefficient Cφ1γ is 1 in the limit for large values of τ .

4.4.0.6 Contributions to the Wilson coefficients CW1γ and Cφ1γ

The contributions to the Wilson coefficients CW1γ and Cφ1γ are in general separated into

two parts. In the case of CW1γ , the function TW
(
−p2

)
defined in Eq. (4.13) is an expression

of the W boson propagator that contains SM particles visible in its zero mode and RS
particles, which are described by a tower of KK excitations. The investigation of the
contribution of both SM part and the KK tower is achieved via an application of the
Taylor expansion at O

(
v2/M2

kk

)
, because the SM momenta are of the same order of the

Higgs bosons mass mh, i.e. |p2| + O
(
m2
h

)
, which is far below the KK scale Mkk. In

leading order O
(
v2/M2

kk

)
, Eq. (4.13) results in

T̂W
(
−p2

)
=

m2
W

m2
W − p2 − i0

(
1−

m2
W

2M2
kk

(
L

c2
θW

−1+
1

2L

))
+
m2
W

2M2
kk

(
L

c2
θW

−1+
1

2L

)
. (4.20)

Here, the value c2
θW

= 1 differs from the custodial RS model, which is discussed in the
following section and m̃W is replaced by the physical W boson mass mW defined in
Eq. (2.43). After the integration of the Feynman parameter, Eq. (4.10) results in

CW1γ = −21

4
[κWAW (τW ) + νW ] +O

(
v4

M4
kk

)
, CW5γ = 0 (4.21)

with AW (τ) = [2 + 3τ + 3τ (2− τ) f (τ)] /7, τW = 4 (mW )2 /m2
h, in which the function

f (τ) is 1 in the limit τ → ∞ [209]. The contribution of the SM W boson in Eq. (4.21)
is given by kW . This contribution contains a modified coupling to the Higgs field by a
factor of vSM/v that stems from Eq. (4.1) and νW contains the contribution that stems
from the KK tower of the W bosons. Both κW and νW read

κW |braneHiggs =

(
1−

m2
W

2M2
kk

(
L

c2
θW

− 1 +
1

2L

))
,

νW |braneHiggs =
m2
W

2M2
kk

(
L

c2
θW

− 1 +
1

2L

)
.

(4.22)

Only in leading order and if the limit τ →∞ is considered, νW = (1 = κW ) cancels the
contributions to Eq. (4.21) that stem from the RS model and the result for CW1γ is the

same as obtained in [202]. κW = m̃2
W 2π

[
χW0 (1)

]2
/m2

W coincides with Eq. (4.5), as well.
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In the case of the consideration of a narrow bulk Higgs, Eq. (4.22) changes due to the
dependence on the width of the Higgs profile η = 1/ (2β)� 1 to

κW |bulkHiggs = κW |braneHiggs +
3Lm2

W

2M2
kk

η +O
(
η2
)
,

νW |bulkHiggs = νW |braneHiggs −
Lm2

W

M2
kk

η +O
(
η2
)
.

(4.23)

Both Eq. (4.23) and Eq. (4.22) become equivalent to each other in the case of the decay
h → γγ, i.e. the narrow–bulk Higgs scenario transits to the brane–localized Higgs
scenario. Of course, Eq. (4.12) only holds in the case for the narrow–bulk Higgs scenario
if both the profile function of the Higgs and the gauge boson propagator are replaced by
their equivalent expressions, see Eq. (2.81) and Eq. (3.40).
In the following, the investigation of boson contributions to the Wilson coefficients CW1γ
and Cφ1γ of the decay h → γγ in the minimal RS model is extended to the custodial
RS model. Whenever possible, as much as necessary, as less as possible changes to the
procedure how the Wilson coefficients in the minimal RS model case were made.

4.4.1 Contributions of CW
1γ and Cφ

1γ in the custodial RS model

The Feynman rules are obtained in a similar way to the Feynman rules in the minimal
RS model and given in Sec. A.1. The couplings of the W± bosons to the photon γ
do not change at all, because the orthonormality condition still holds. The validity of
the orthonormality condition is basis–independent, as the rotation matrix RθW is not
included in the orthonormality condition. The derivation of the Higgs coupling to the
W± is more challenging as the Higgs profile couples on the IR brane to the basis fields

Ã±µ with a coupling strength proportional to
(
g2
L,5 + g2

R,5

)
, cf. Sec. 2.1. This is resolved

using the projection operator P+ by a rotation into the IR basis with an additional
factor 1/c2

θW
. Compared to the SM, the coefficient of all diagonal KK modes that couple

to the Higgs boson is now

2m̃2
W

c2
θW
v

2π~χWn (1)TRT
θW

P+RθW ~χ
W
n (1) =

2m̃2
W

c2
θW
v

2π~χWn (1)TDθW~χ
W
n (1) . (4.24)

Compared to the minimal RS model, see Eq. (4.5), this coefficient has an additional
contribution of DθW = RT

θW
P+RθW . Analogous to the expression of the amplitude in

Eq. (4.4) in the minimal RS model, the h→ γγ amplitude in the custodial model reads

A (h→ γγ)
∣∣
cust

=
m̃2
W

c2
θW
v

∞∑
n=0

2π~χWn (1)TDθW~χ
W
n (1)

[
vSM

m2
W

AWSM (h→ γγ)

]
mW→m

(n)
W

. (4.25)

The integral of the Wilson coefficient CW1γ in Eq. (4.14) remains valid if the expression

for T
(
−p2

)
in Eq. (4.12) is replaced by

T
(
−p2

)
= Tr

[
DθW

c2
θW

BUV
(
1, 1;−p2 − i0

)]
. (4.26)

This equation includes the expression for the boson propagator in the UV basis defined in
Eq. (3.36). After an expansion of Eq. (4.26) atO

(
v2/M2

kk

)
with

∣∣p2
∣∣ ofO

(
m2
h

)
, Eq. (4.20)
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is obtained. Compared to the expression in the minimal RS model, there is a difference
by a factor 1/c2

θW
in the term containing the L–enhanced correction that affects the

contributions to both the W boson and the KK tower. Compared to the custodial RS
model and its PLR–symmetry, this enhancement results in a factor 2. Inserting c2

θW
= 1

2
in both νW and κW in Eq. (4.22), the results obtained in [121] are comparable. The
results of the authors of [121] are not equal to those obtained in [193]. The authors of
[121] connected the Wilson coefficient C1γ to vhFµνF

µν in contrast to [193] in Eq. (4.1).
This results in the relation [121]

κ′W = κW
v2

SM

v2
. (4.27)

4.5 Contributions of fermion diagrams to the h→ γγ amplitude

The amplitude for the fermion contribution in Fig. 4.1a reads

iAferm (h→ γγ) =
∑

q=u,d,e

∫
ddp

(2π)d

1∫
ε

d t1

1∫
ε

d t2δ
η
h (t− 1) Tr

[
1√
2

(
0 Yq

Y †q 0

)

Sq (t, t2; p− k2) /ε (k2)Sq (t2, t1; p) /ε (k1)Sq (t1, t; p+ k1)

]
(4.28)

with an integration over the extra dimensional coordinate t1 and t2 at each vertex.
The Yukawa interaction between the Higgs boson profile to both up–type quarks and
down–type quarks is derived from the Yukawa Lagrangian

Lhqq (x) = −
∑
q=u,d

1∫
ε

d δηh (t− 1)h (x) Q̄L (x, t)
1√
2

(
0 Yq

Y †q 0

)
QR (x, t) + h.c.

= −
∑
q=u,d

∑
n,m

gqmnh (x) q̄
(m)
L (x) q

(n)
R (x) + h.c. (4.29)

with

gqmn =
1√
2

1∫
ε

dt δη (t− 1)U†,(m)
L (t)

(
0 Yu

Y †u 0

)
U (n)
R (t)

=

√
2π

Lε

1∫
ε

dt δη (t− 1)
[
aU,†m CQm (t)YuC

u
n (t) aun + au,†m Sum (t)Y †uS

Q
n (t) aUn

]
.

(4.30)

For the evaluation of the results, the introduction of two regulators is mandatory. The
first regulator is introduced, because the fermion profiles are discontinuous at the IR
brane and the overlap integrals to the Higgs profile are not well–defined, c.f. Eq. (2.53).
As a consequence, a finite width η has to be assigned to the Higgs profile [207] that leads
to the expression δηh (t− 1), because the regularized delta function assigns a unit width
in the interval t ∈ [1− η, 1] to the Higgs profile. Many of the results are independent
of the explicit shape η of the Higgs profile.
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As in the SM, the second regulator is a UV consistent regulator N [194], which is
introduced in order to obtain a UV consistent result. As a bonus, the UV regulator
regulates the superficial divergent KK modes in the 5D theory [194]. Then, the relevant
sum reads

lim
N→∞
η→0

∑
q=u,d

3+6N∑
n=4

vgqmn
mqn

(
µ

mqn

)4−d
, (4.31)

for which n = 4 denotes the lightest KK excitation.
The expressions for the Wilson coefficients are derived when the amplitude in Eq. (4.28)
is matched with the expression of the amplitude in the effective theory Eq. (4.1). The
fermion contribution to h→ γγ is similar to the gluon fusion process considered in [128–
131] except for a few coefficients and results in the following expressions for the fermion
contribution to the Wilson coefficients:

Cq1γ = 3Nc

∑
q=u,d,e

Q2
q

1∫
0

dx

1−x∫
0

dy(1− 4xy)
[
T q+
(
−xym2

h

)
− T q+

(
Λ2

TeV

)]
, (4.32)

Cq5γ = 2Nc

∑
q=u,d,e

Q2
q

1∫
0

dx

1−x∫
0

dy
[
T q−
(
−xym2

h

)
− T q−

(
Λ2

TeV

)]
. (4.33)

In the quark case, the number of colors Nc = 3 and the respective charges for either
up–type quarks Qu = 2/3 or for down–type quarks Qd = −1/3 have to be inserted in
Eq. (4.32). If lepton contributions are considered, their contribution will be obtained
for Nc = 1 and for Qe = −1 in Eq. (4.32). In the calculation of Eq. (4.32), the fermion
masses mqn are kept. Although it is a good approximation if the masses of the particle
in the loop m2

qn � m2
n/4 are neglected, the Higgs mass has to be kept for a valid result,

which is satisfied for the KK modes, for the light SM particles, and even in the case of
the top quark. In the 5D framework, there is no difference between zero modes and the
KK modes anymore. As a consequence, the Higgs mass is kept if the SM contributions
are implemented properly. As in the boson case, the expression T q±

(
−p2

)
denotes the

linear combination of the overlap profile functions of the Higgs boson profile to the
chirality–odd profile function, which is defined as

T q±
(
p2E
)

=−
∑
q=u,d

v√
2

1∫
ε

dtδηh (t− 1)Tr

[(
0 Yq

Y †q 0

)
∆q
RL

(
t, t′; p2E

)
±∆q

LR

(
t, t′; p2E

)
2

]
. (4.34)

The expression T q±
(
p2
E

)
consists of the mixed chirality components of the 5D propagator

∆q
RL

(
t, t′; p2

E

)
=
[
∆q
LR

(
t′, t; p2

E

)]†
that is valid for large space–like momenta. Their exact

expressions are required in a region t, t′ > η and given in [128–131]. For an arbitrary
Higgs profile along the extra dimension, Eq. (4.34) and Eq. (4.32) are still valid. As
a bonus, Eq. (4.32) are used for the derivation of the effective couplings, if the mixed
chirality components of the 5D fermion propagator are derived. The case of a brane–
localized Higgs is recovered for the regulator in the limit η → 0.
The exact results for the Wilson coefficients in Eq. (4.32) is expanded via a Taylor series
at O

(
v4/M4

kk

)
and with the negligence of chirality–odd terms at O

(
v2/M2

kk

)
, Eq. (4.32)

turns into

Cq1γ≈

1− v2

3M2
kk

Re

(
YuY

†
uYu

)
33

(Yu)33

NcQ
2
uAq (τt)+NcQ

2
dAq (τb)
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+Nc

∑
q=u,d

Q2
qRe Trg (X0) , (4.35)

Cq5γ ≈ −
v2

3M2
kk

Im


(
YuY

†
uYu

)
33

(Yu)33

NcQ
2
uBq (τt) +Nc

∑
q=u,d

Q2
qIm Trg (X0) (4.36)

with [208, 209]

Aq (τ) =
3τ

2

[
1 + (1− τ) arctan2

(
1√
τ − 1

)]
, (4.37)

Bq (τ) = τ arctan2

(
1√
τ − 1

)
, (4.38)

τi = 4m2
qi/m

2
h − i0. (4.39)

For light SM quarks, an analytical continuation for τ < 1, see Eq. (4.39), has to be
performed. This was already taken into account via the term −i0 in Eq. (4.39). Fur-
thermore, the analytical continuation in f (τ) has to be applied. In the limit τ → ∞,
both Eq. (4.37) and Eq. (4.38) become 1. A distinction between the SM contribution and
the contribution that stems from the RS model is now possible by adding the Wilson
coefficients Cq1γ and Cq5γ in Eq. (4.35) to

Cq1γ + Cq5γ ≈ Q
2
eTr [g (Xe)] (4.40)

with the hermitian matrix

Xf =
v√

2Mkk

√
YfY

†
f , f = u, d, e (4.41)

that includes the dimensionless Yukawa matrices Yf . As the Bessel functions in Eq. (4.34)
are momentum–dependent, the matrix Xf is derived via an expansion of the Bessel
functions for both large momenta and small momenta. The trace over the matrix–
valued function g (Xe) leads to Ce5γ = 0 and the remaining contribution to Cq5γ stems
from the top quark, which is the first contribution of the right hand side of Eq. (4.35).
The matrix valued function g (Xf ) is sensitive to the Higgs localization. The values
differ at a first glance from each other, because

g (Xf ) |braneHiggs = −Xq tanh (Xq)

cosh (2Xq)
≈ −X2

q , (4.42)

g (Xf ) |bulkHiggs = Xq tanh (Xq) ≈ X2
q . (4.43)

Here, Eq. (4.42) corresponds to the result obtained in [194] and Eq. (4.43) corresponds to
the result derived in [200] at O

(
v2/M2

kk

)
. The difference between the results of Eq. (4.42)

and Eq. (4.43) stems from the subtraction of large euclidean momenta in T q+
(
−p2

)
in

Eq. (4.32). In the brane Higgs scenario, the function T q+
(
Λ2

TeV

)
= Tr [Xq tanh (Xq)]

arrives at a plateau in contrast to the narrow bulk Higgs scenario, in which the function
T q+
(
Λ2

TeV

)
∝ 1

p2E
vanishes for large euclidean momenta p2

E = −p2 � (v/η)2. Now it is

clear that the difference of Eq. (4.42) and Eq. (4.43) is traced back to the heavy KK modes
of the fermion masses that are proportional to the inverse Higgs width ∆h = v/η and
that contribute unsuppressed. This term originates for the subtraction of large euclidean
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momenta in Cq5γ in Eq. (4.32), which is only relevant for T q+
(
−p2

)
. As a consequence, the

brane Higgs from [194] corresponds to a special case of the narrow bulk Higgs scenario.
In the case of two different Yukawa matrices Y S

f and Y C
f belonging to the Z2–odd

and Z2–even fields, the expression for g (Xf ) is no longer hermitian, but the function

g
(
Y C
f , Y

S
f

)
is given by g

(
Y C
f , Y

S
f

)
≈ − v2

M2
kk
Y C
f Y

C†
f at leading order expansion. The

exact function reads

g
(
Ỹq, Ỹ

†
q

) ∣∣∣typeII

branehiggs
= − 2Xq

sinh (Xq)

2M2
kkỸqỸ

†
q

1 + v2

M2
kk
ỸqỸ

†
q

= − v2

2M2
kk

Y C
f Y

C†
f (4.44)

and its trace delivers a real negative number. At leading order, there is no difference
with the result in Eq. (4.42) in the brane Higgs model for Y C

f = Y S
f . The numerical

difference appears in the distribution of the parameter points. This latter case is not
considered in the phenomenological analysis. As a next step, the fermion contributions
for the h→ γγ decay are investigated, which enter the custodial RS model.

4.5.1 Fermion contributions in the custodial RS model

In the custodial RS model, an enlarged bulk symmetry is considered that leads to a
suppression of the large corrections to the electroweak precision observables. Analogue
to the minimal RS, the fermion contributions in the custodial RS are the same 3 × 3
matrices that differ in their coefficients and show the embedding of the different fermion
generations under the enlarged bulk gauge group. The generalization of the quark con-
tributions

Lhqq (x)=−
∑

q=u,d,λ

1∫
ε

d δηh (t− 1)h (x) Q̄L (x, t)
1√
2

(
0 Y~q

Y †~q 0

)
QR (x, t)+ h.c. (4.45)

needs some further explanations. Here, QL,R (x, t) does not only contain the left–handed
fields or right–handed fields of the up–sector or the down–sector, but contains also
contributions of the exotic particle sector. The Yukawa interactions have the same
structure as in the minimal model. The only visible difference is in the UV BCs of the
propagator, which is explicit with the addition of the superscripts (+) and (−) that lead

to R+
A (pE) =

DA1 (pE ,1)

DA2 (pE ,1)
and to R−A (pE) =

DA3 (pE ,1)

DA4 (pE ,1)
, with DA

i (pE , 1) , i = 1, 2, 3. The

index A = Q, uc, τ1, τ2 is used in the same way as introduced in Eq. (2.159),Eq. (2.160).
The results for the Wilson coefficients remain the same with respect to the extended
flavor content. The squared Yukawa matrices in Xq are now given by the 6× 6 matrices

YuY
†
u = V

(
2YdY

†
d 0

0 2YuY
†
u

)
V †, V =

1√
2

(
−1 1

1 1

)
= V †. (4.46)

Hence, the sum over the traces becomes∑
q=u,d,λ

Trg (Xq) = Trg
(√

2Xu

)
+ 3Trg

(√
2Xq

)
(4.47)

with the 3 × 3 matrices Xq as in the minimal RS model. The first term of the Taylor
expansion of g (Xq) is X2

q with an additional factor
√

2 in the quark contributions for
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the custodial RS model. The result of the expansion is 2 times larger with respect
to the minimal RS model. With the electroweak charge of the λ–particles, the quark
contribution results in a factor 13 that originates from the higher multiplicity of the KK
quark modes.
In the custodial RS model, the modified Yukawa matrices are given by
Ỹq =

[
tanh

(√
2Xq

)
/
(√

2Xq

)]
Yq. With all modifications, the expressions for the Wilson

coefficients become

Cq1γ ≈

1− 2v2

3M2
kk

Re

(
YuY

†
uYu

)
33

(Yu)33

NcQ
2
uAq (τt) +NcQ

2
dAq (τb)

+NcQ
2
uReTrg

(√
2Xu

)
+Nc

(
Q2
u +Q2

d +Q2
λ

)
ReTr g

(√
2Xd

)
, (4.48)

Cq5γ ≈ −
2v2

3M2
kk

Im


(
YuY

†
uYu

)
33

(Yu)33

NcQ
2
uBq (τt)

+NcQ
2
uImTrg

(√
2Xu

)
+Nc

(
Q2
u +Q2

d +Q2
λ

)
ImTr g

(√
2Xd

)
. (4.49)

4.5.1.1 Charged lepton contribution in the custodial RS model

The charged lepton contributions to the decay h → γγ can be implemented in two
possible ways that depend on the embedding of the lepton fields in the extended gauge
symmetry of the custodial RS model. One way is to choose the lepton multiplets in the
same way as the quark multiplets, i.e.

ξ1L =

(
ν

(+)
L,0 ψ

(−)
L,1

e
(+)
L,−1 ν

′(−)
L,0

)
0

, ξ2R =
(
ν
c(+)
R,0

)
0
, (4.50)

ξ3R = T3R ⊗ T4R =


Ψ
′(−)
R,1

N
′(−)
R,0

E
′(−)
R,−1


0

⊗
(
E

(+)
R,−1 N

(−)
R,0 Ψ

(−)
R,0

)
0
. (4.51)

In the neutrino sector, 15 different leptonic states exist and 9 different states exist in
the charged lepton sector. The BCs lead to 3 light modes in every sector that are
associated with the SM neutrinos and the charged SM leptons, respectively. These
modes are accompanied by 15 and 9 groups in the corresponding sectors. Additionally,
a KK tower with charge Qψ = 1 exists that contains the exotic leptons including 9
KK level/excitation. The gauge–invariant Yukawa interaction is written in the same
way to the quark Yukawa interaction. Furthermore, the Yukawa matrices Yν and Ye
are considered to be 3 × 3 matrices with an anarchic structure that lead to the SM
lepton masses if they are connected to fermion profiles on the IR brane. The resulting
contributions have the same structure as those in the Wilson coefficients Cq1γ and Cq5γ in

Eq. (4.48). The lepton masses are proportional to m2
l /m

2
h. Together with the following

replacements

Yu → Yν , Qu → Qν = 0, (4.52)

Yd → Ye, Qd → Qe = −1, (4.53)
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Nc → 1, Qλ → Qψ = 1, (4.54)

the Wilson coefficients C l1γ + iC l5γ change to

C l1γ + iC l5γ ≈
(
Q2
e +Q2

ψ

)
Trg

(√
2Xe

)
. (4.55)

Then, the lepton contribution to the Wilson coefficients turns out to be 4 times larger
compared to the minimal RS model. There is no zero mode.
Another embedding of the charged lepton sector in the extended gauge symmetry follows
more analogously to the minimal RS model. Both left–handed neutrino and left–handed
electron are cast into an SU (2)L doublet, and the right–handed electron are put together
with the new exotic particle NR in the SU (2)R doublet. The lepton fields with Z2–even
(odd) parity transform as (2,1) and (1,2):

LL =

(
ν

(+)
L,0

e
(+)
L,−1

)
− 1

2

, LR =

(
e
c(+)
R,−1

N
(−)
R,0

)
− 1

2

(4.56)

The BCs are chosen in a way that the zero modes correspond to the SM leptons without
the right–handed neutrino. Thus, the Yukawa interaction is given by

LYuk = −
1∫
ε

dt

t

Mkk

2
δη (t− 1)

2

k
(Ye)ij

(
L̄iLΦεLc,jR + L̄iRΦεLc,jL

)
+ h.c. (4.57)

with ε = iσ2. At this order, the SM neutrinos remain massless as EWSB generates
a mass term for the zero modes of the charged leptons. The masses are explained by
higher dimensional operators. The additional lepton field is the right–handed neutrino
that is charged under SU (2)R and does not affect the h→ γγ decay amplitude, because
it is considered to be uncharged. Then, the lepton contribution remains the same as in
the minimal RS model.

4.6 Phenomenological implications

The ratio Rγγ is the signal strength of the decay γγ and is defined as the production
mechanism of a Higgs bosons and its decay into two photons in the RS model divided
by the SM expression. That means, any deviation from 1 of this ratio is an implication
for New physics. The function reads

Rγγ =
(σ · BR) (pp→ h→ γγ)RS

(σ · BR) (pp→ h→ γγ)SM

[(
|κg|2+|κg5 |

2
)
fGF +

(
|κγ |2

)
fGF +κ2

vfV BF

]
κ2
vκh

(4.58)

with the quantities κi. The Wilson Coefficients Ci enter κi and are normalized in the
RS model to their respective SM value Ci,SM. Explicitly,

κi =
C1i

C1i,SM
, κi,5 =

3

2

C5i

C5i,SM
,

C1i,SM =
4

3
− 21

4
AW (τW ) ≈ −4.9.

(4.59)
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In general, new physics can enter in the production processes via contributions to the
gluon fusion process, via contributions to the vector boson fusion process or via con-
tributions to the h → γγ cross section. The possible contributions to the gluon fusion
process have been discussed earlier in [128, 131] and now we will concentrate on the
possible contributions to the h→ γγ decay rate.
In the minimal RS model, κγ becomes

κγ

∣∣∣
min
≈ 1− v2

2M2
kk

[
1

Cγ,SM

(
±8

3
N2
g +

16

9
Ng −

8

9

)
〈|Yij |2〉

+
Lm2

W

Cγ,SMv2

(
23

4
+AWh (τW )

)] (4.60)

and in the custodial RS model

κγ

∣∣∣
cust
≈ 1− v2

2M2
kk

[
1

Cγ,SM

(
±71

3
N2
g +

32

9
Ng −

16

9

)
〈|Yij |2〉

+
Lm2

W

c2
θW
Cγ,SMv2

(
23

4
+AWh (τW )

)]
.

with

Cγ,SM = Nc

[
Q2
uAq (τt) +Q2

dAq (τb)
]
− 21

4
AW (τW ) . (4.61)

In Eq. (4.58), the ratio of the Wilson coefficients of the gluons, via κg is obtained in a
similar way. The Wilson Coefficients C1,g and C5,g are obtained via the replacements
Qu,d → 1, Ql → 0, Nc → 1 in Eq. (4.35), whereas the SM coefficient Cg,SM has the
following structure: Cg,SM = Aq (τt) + Aq (τb). The shift of the Higgs VEV in the RS
model κv = v

vSM
= 1 +Lm2

W /(4c
2
θW
M2

kk) is normalized to its SM value. The relation for

the Weinberg angle c2
θW

becomes 1 in the minimal RS model and 1/2 in the custodial

RS model. Furthermore, the relation for the Higgs particle is κh = κvΓ
RS
h /ΓSM

h .
As a next step, the Rγγ amplitude is investigated using the procedure that was described
in Sec. 2.8. 5000 data points have been generated for each Yukawa matrix with an
absolute value of y∗ = 0.5, 1.5, 3. The value of y∗ = 3 corresponds to the limit in which a
perturbative treatment of the Yukawa matrices is satisfied according to Sec. 2.3.1. The
obtained value has to fulfill the condition

∣∣ (Y )ij
∣∣ ≤ y∗ ≈ O (1) or the value is rejected

during the scan of the amplitude. For a large amount of random numbers, the central
limit theorem can be applied and leads to an average〈 (

YuY
†
uYu

)
33

(Yu)33

〉
= (2Ng − 1)

y∗
2
, 〈|Yij |2〉 = Ng

y∗
2
. (4.62)

The latter expectation values highlight the insensitivity of the fermion profiles to the en-
tries of the Yukawa matrices, because only the number of fermion generations Ng occurs.
In addition, flavor changing corrections are affected by Eq. (4.62). The scan is performed
assuming the current numerical values for both quarks and leptons and for values of the
CKM matrix in the quark sector. For y∗ = 1, the average value of Eq. (4.62) is 2.5
if anarchic Yukawa matrices are considered. With the insertion of the correct values
for the quark sector, y∗ turns out to be 2.7, while for the lepton sector y∗ is 2.2. The

81



consideration of the neutrino sector is omitted in the following as it is irrelevant for the
discussion. Furthermore, the neutrino sector requires a model–dependent specification
of the neutrino sector or the PMNS matrix. Focusing on the gauge sector, there is an
analogy to Eq. (4.62) that results in a proportionality of Mkk/y∗.
In the minimal RS model, the largest corrections stem from fermion loop contributions
for Yukawa couplings around y∗ = 2, which are sufficiently large. In contrast to the
contributions to the gluon fusion process [128, 131], the h→ γγ decay rate shows a sup-
pression (an enhancement) in the brane (bulk)–localized Higgs scenario. Regarding the
SM contributions, the dominant contribution to the h→ γγ decay rate stems from dia-
grams containing W boson loops, which contribute in the opposite direction. Expanding
Eq. (4.58) to v2/M2

kk and assuming AW (τW ) ≈ 1.19, Aq (τt) ≈ 1, and Aq (τb) ≈ 0, the
expression in the minimal RS model is found:

Rγγ

∣∣∣
min
≈ 1 +

v2

2M2
kk

[ (
fGF −

4

3 |Cγ,SM|

)(
∓18− 10

3

)
y2
∗

−
(
fV BF −

21

4 |Cγ,SM|

(
1 +

4

21
AW (τW )

))
2m2

W

v2

(
L− 1 +

1

2L

)
(4.63)

−
Lm2

W

v2
+ 0.57

10

3
y2
∗ + 0.22

2m2
W

v2

(
L− 1 +

1

2L

)
− 0.09

(
∓18− 10

3

)
y2
∗

]

≈ 1− v2

2M2
kk

[
(±9.7− 0.1) y2

∗ + 4.1
]
.

In the custodial RS model, the same expression is now:

Rγγ

∣∣∣
cust
≈ 1 +

v2

2M2
kk

[
∓
(

72fGF −
213

|Cγ,SM|

)
y2
∗ −

20

3

(
fGF −

4

3 |Cγ,SM|

)
y2
∗

−
(
fV BF +

21 [AW (τW )− 1]

4 |Cγ,SM|

)
2m2

W

v2

(
2L− 1 +

1

2L

)
−

2Lm2
W

v2
(4.64)

+ 0.57
20

3
y2
∗ + 0.22

2m2
W

v2

(
2L− 1 +

1

2L

)
− 0.09

(
∓72− 20

3

)
y2
∗

]

≈ 1− v2

2M2
kk

[
(±15.0− 0.2) y2

∗ + 8.3
]
.

In Eq. (4.63) and in Eq. (4.64), the second term contributes to the gluon fusion process
indicated by fGF . The dominance of the production process of the Higgs via gluon fu-
sion is emphasized by the dependence on the value of the Yukawa matrix y∗. Indicated
by fV BF , another Higgs production mechanism contributes, which is the vector boson
fusion that is visible in the third term of Eq. (4.63) and the second term in Eq. (4.64).

Considering the behavior of light gluon masses M
(n)
g in the brane–localized Higgs sce-

nario, it turns out that this particular scenario is bound from below by fV BF . Terms
stemming from the gluon fusion production cross section are canceled with the SM am-

plitude at around M
(1)
g ≈ 3.5 TeV. The amplitude is non–zero due to the contribution

from the value of the vector boson fusion cross section. The terms from the gluon fusion
contain also a correction to the h → γγ decay rate via 1/Cγ,SM and Cγ,SM, as defined
in Eq. (4.61). The third line of both Eq. (4.63) and Eq. (4.64) contains corrections to
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(a) (b)

(c) (d)

Figure 4.2: Rth
γγ is plotted against the RS gluon mass M

(1)
g . The scattered data points

are obtained using the program described in Sec. 2.8. The blue, green and
red dashed points correspond to the maximum values of y∗ = 0.5, 1.5, 3. The
yellow band denotes the combined signal strength Rexp

γγ with twice the error
of the combined ATLAS and CMS experiment [210]. The first row shows the
distribution of Rth

γγ in the minimal RS model. In Fig. 4.2a the distribution

of Rth
γγ is shown for the brane–localized Higgs scenario, and Fig. 4.2b shows

the distribution of Rth
γγ in the bulk–localized Higgs scenario.The second row

shows the distribution of Rth
γγ in the custodial RS model. As in the case for

the minimal RS model, the right figure Fig. 4.2c corresponds to the brane–
localized Higgs scenario and the left figure Fig. 4.2d shows the distribution
of Rth

γγ in the bulk–localized Higgs scenario. The detailed values for Rexp
γγ of

the different experiments as well as the combined value of Rexp
γγ can be found

in Tab. 4.1, as well.
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the Higgs particle width. The two possibilities for signs in Eq. (4.63) and Eq. (4.64), are
related to the brane (bulk)–localized Higgs scenario. The upper (lower) sign denotes the
brane (bulk)–localized Higgs scenario.
Focusing only on the custodial model, the minimal lepton sector of Eq. (4.56) is consid-
ered in Eq. (4.64). For the extended lepton sector in Eq. (4.50), the factor 213 in the
third term of Eq. (4.64) is changed to 240. In the last line of Eq. (4.64), the value ±15.0
changes to ±9.5. The linearized case of the equation leads to a slight difference between
the expression in the custodial RS model and the expression in the minimal RS model.

In Fig. 4.2, the Rγγ is plotted against the gluon mass M
(1)
g .

The signal strength Rγγ is plotted against the lowest gluon mass M
(1)
g in units of TeV in

Fig. 4.2 for three different absolute values of y∗ to see the possibility for the existence of
a possible signal of the h→ γγ from the RS model in the current experimental datasets.
The yellow band denotes the measured region of the combined measurements of the
h → γγ decay in the SM by the experiments ATLAS and CMS including the errors
twice. In the brane–localized Higgs scenario in the custodial RS model, the data points
are similarly distributed as in the minimal RS model, although new physics effects are
larger due to the enlarged particle content as can be seen in Fig. 4.2c. The enlarged par-
ticle content gives rise to a different behavior of the curves in the narrow–bulk localized
model. This can bee seen by a comparison of Fig. 4.2b and Fig. 4.2d. It is also visible
that less data points in the custodial RS model are compatible with the experimental
data as in the case for the minimal RS models, because the scattered data points lie in
the yellow band. The solid lines in Fig. 4.2a–Fig. 4.2d represent the fit curves to the data
that are used to determine the intersection points with the yellow experimental band.
The fit functions in the minimal RS model follow a polynomial function proportional to
inverse powers of x. In the case of the custodial model, this function is modified by a
factor of tanh

(
x−1

)
. These functions have been fitted to the right hand side and the

parameter space was extrapolated that can be seen in the fit function for the custodial
model with a bulk–localized Higgs in Fig. 4.2d for y∗ = 3. This fit method was applied,
because the data points are due to the absolute values in Eq. (4.64) either positive or
zero. If there would have been negative values for the signal strength, the fit function
could have been better estimated in the case of a bulk–localized Higgs in the custodial
RS model for y∗ = 3. The exact functions can be found in Sec. A.2.4. The exclusion

show the possibility to detect the gluon mass M
(1)
g within the σ regions of the signal

strength Rγγ . Therefore, the σ is the deviation of the ratio of the binned theoretical
values of Rth

γγ to the measured signal strength Rexp
γγ . Therefore, the parameter values are

obtained in terms of 1, 2, 3− σ
(
Rth,i
γγ /R

exp
γγ

)
, for which Rth

γγ/R
exp
γγ deviate by 1

σ
(
Rth,i
γγ /R

exp
γγ

)
=
Rth,i
γγ

Rexp
γγ

√√√√√σ
(
Rth,i
γγ

)2

Rth
γγ

+
σ
(
Rth,i
γγ

)2

Rexp
γγ

. (4.65)

The experimental value Rexp
γγ is given in Tab. 4.1 and for each data point Rth

γγ a Gaussian
standard deviation is assumed. The data points are sorted into bins, in order to minimize
correlation effects and the errors of the experimental signal strength Rexp

γγ are averaged.
With these results it is visible in the exclusion plots that the experimental lower bounds
on Mg(n) [174–176] coincide with the results obtained here.
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Figure 4.3: In the exclusion plots for the lowest gluon mass Mg(1) in the different setups of

the RS model, y∗ is plotted against the gluon mass M
(1)
g . The different blue

colors correspond to the 1, 2, 3−σ region. The darkest color corresponds to
99% CL , whereas the lightest color corresponds to an exclusion of 68% CL.
The lower experimental bound for the gluon mass Mg(1) from [174] is always

fulfilled. Fig. 4.3a shows the excluded values of the RS signal strength Rth
γγ

in the minimal RS model with a brane–localized Higgs, whereas Fig. 4.3b
shows the same situation in the minimal RS model with a bulk–localized
Higgs. In case of the exclusion of the signal strength Rth

γγ in the custodial
RS model, the brane–localized Higgs scenario is displayed in Fig. 4.3c and
Fig. 4.3d displays the excluded regions in the bulk–localized Higgs scenario.
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values for the signal strength Rγγ

combined ATLAS CMS

Rγγ 1.14+0.19
−0.18 1.14+0.27

−0.25 1.11+0.25
−0.23

Table 4.1: The values for the signal strength Rγγ from ATLAS and CMS and a combi-
nation of both values, published in [210].

From the contribution of the two production mechanisms, i.e. the gluon fusion and the
vector boson fusion, only the contribution of the vector boson fusion remains explaining

the minimal values of Rγγ . For even smaller values of M
(n)
g , Rγγ grows and exceeds 1.

These values are experimentally excluded.
In a nutshell, correction that stems from the fermions are large. Nonetheless, corrections
stemming from the gluon fusion process exist and lead to cancellations.
In the bulk–localized Higgs scenario, the linearized approximation of both Eq. (4.63)
and Eq. (4.64) breaks down for large values of y∗. Negative contributions to the h→ γγ
decay are significant, such that positive values to the gluon fusion production rate are
compensated. For small KK gluon masses, such contributions are dominant and lead to

values for Rγγ below 1. For gluon masses M
(n)
g ≈ 5 TeV, Rγγ vanishes completely.

Concluding, the cancellations that contribute to Rγγ seem to be independent in the case
of the brane–localized Higgs scenario, while a careful treatment of the cancellations that
contribute to Rγγ is necessary considering the bulk–localized Higgs scenario. In the
latter case, a reliable estimation seems rather unlikely without knowing the exact model
setup.
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5 Flavor physics with an arbitrary bulk
scalar S in the RS model

5.1 Motivation, setup and model description

During the data taking period in 2015, ATLAS [211] and CMS [212] observed an excess in
the diphoton spectrum around 750 GeV (ATLAS) and 760 GeV (CMS) at

√
s = 13 TeV.

Although this excess rose a discussion for the investigation of a possible BSM particle and
its implementation in the various models, the signal was not confirmed after subsequent
analyses with higher statistics. If the excess had been traced back to the existence of a
new particle that decays into two photons, its spin could not be 1 following the Landau–
Yang theorem [213, 214]. Applying this theorem, the new particle’s spin could be 0.
Then, the particle could be produced via gluon fusion and decayed into two photons
via a virtual fermion loop. Assuming this to be true, the new scalar particle has to
fulfill several tests. The existence of a new scalar particle is then excluded if changes in
the SM values appear. The investigation of a pure BSM scalar in the context of extra–
dimensions is not new as explained in Sec. 5.3.1, but its possible contribution to CP
violating observables and decays was not investigated before in the context of warped
extra–dimensions. As a consequence, the possibility of the existence of a general bulk
scalar S as the lightest resonance of a bulk scalar S in the RS model is investigated in this
chapter. This scalar particle is considered to be a singlet under the bulk gauge group of
the RS model. In 2013, it was argued by the authors of [215] that a new scalar particle is
rather likely to be a singlet under SU (2). If not, the new scalar field belongs to a larger
multiplet and the masses of its multiplet partners would be almost equal to the new
scalar particle S [215]. Scalar multiplets are already discussed in the context of different
models, e.g. in 2HDM [216]. In the framework of the RS model, there is a possibility
of embedding a scalar that is a singlet under the entire gauge group. After the setup of
the framework based on [141] and the investigation of the off–diagonal couplings of the
scalar in Sec. 5.2 extending the work of [141], it is investigated if the contributions of this
scalar particle are in conflict with the current measurements. Therefore, former work of
this working group [179] is re–investigated in Sec. 5.6. Then, a possible contribution to
electric dipole moments (EDMs) of the neutron and the deuteron is discussed in Sec. 5.7,
based on [309].
The scalar boson S couples to the the matter fields by the term∫ 1

ε
d

2π

Lt
r
ε4

t4

[gMN

2
(∂MS) (∂NS)− µ2

2
S2 −

∑
f

(
f̄Mff + Sf̄Gff

) ]
(5.1)

of the action, in which
∑
f

denotes the sum over all fermion states. The hermitian

matrices Mf and Gf denote the bulk matrix Mf and the coupling Gf . In the following
it is assumed that the mass matrices are connected to the coupling by Mf = ωGf with
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the VEV ω of the scalar field S. Furthermore, Mf is assumed to be diagonal, as we will
work in the bulk–mass basis [141]. An effective theory approach justifies to integrate out
the tower of KK fermions during the investigation of the bulk scalar S (x, t). At the same
time the mass of the new resonance S (x, t) is assumed to be higher than the electroweak
scale. As a consequence, the effective Lagrangian is written in the symmetric phase, i.e.
v=0 that reads

Leff =
α

4π
cggSG

a
µνG

µν,a +
α

4πs2
θW

cWWSW
a
µνW

µν,a +
α

4πc2
θW

cBBSB
a
µνB

µν,a

+
(
SQ̄LΛuΦ̃uR + SQ̄LΛdΦdR + SL̄LΛeΦeR + h.c.

)
.

(5.2)

Leff contains the field strength tensors Gaµν ,W
a
µν , B

a
µν of SU (3)c , SU (2)L, U (1)Y and

the scalar Higgs doublet Φ. In the last line of Eq. (5.2) the description of the couplings to
quarks that are investigated in the following. The scalar field S (x, t) itself is considered
to be a Z2–odd field, because only then couplings to the scalar part of the Lagrangian
density in Eq. (5.2) to the vector–like 5D fermions are allowed. These couplings from
S (x, t) to SM fermions appear at tree–level and are induced after EWSB in the same
way as of [141, 131].
The term of the effective Lagrangian using the zero mode profile functions atO

(
m2
h/M

2
kk

)
is given by

Lferm = −
∞∑

n,m=0

S (x) q̄
(m)
L (x) q

(n)
R (x) (2 + β)

1∫
0

dt t1+β

×

[
xnâ

(cQ)†
m F (cQ) tcQgQF (cQ)

t1+cQ − ε−1+2cQt−cQ

1 + 2cQ
â
(cQ)
n

+ xmâ
(cq)†
n F (cq) t

cqgcqF (cq)
t1+cq − ε−1+2cq t−cq

1 + 2cq
â

(cq)
m

]
+ h.c.

(5.3)

and contains the fermion mass xn = mn/Mkk. n=1,2,3 labels the lowest lying KK modes.
As the scalar singlet S only couples either to both singlets or to doublets, the integrand
contains both Z2–even and Z2–odd profile functions Eq. (2.126) and Eq. (2.127). The
fermion profile functions result from a mixing of the zero mode of the Z2–odd profile
function with their KK excitations via EWSB. The overlap integrals scale with the
involved fermion masses xn,m. The three–dimensional âQ,q vectors describe the mixing
in flavor space and are normalized to unity [120].

5.2 Wilson coefficients and Fermion interactions to S

Couplings from the scalar boson S to fermions are parametrized in Eq. (5.3) by the
matrix Gf . The fermion profile functions are parametrized via the bulk mass parameters
cQ,qi = ±M/k already introduced in Sec. 2.4 and in [120]. Their sign depends on the
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Figure 5.1: Tree–level process of a fermion exchange mediated by a bulk scalar S. Fig-
ure Fig. 5.1a and Fig. 5.1b describe the process in the full theory, whereas
Fig. 5.1c describes the same process in the effective theory, in which the mo-
mentum p is considered to very much smaller than the KK mass Mkk.

fermion profiles Z2 symmetry transformation behavior. The scalar boson S couples via

gQ,q = ±
√
k (1 + β)

(2 + β)ω
Gf

= ±
√
k (1 + β)

(2 + β)

cQ,q1 0 0

0 cQ,q2 0

0 0 cQ,q3

 (5.4)

including the VEV ω of the scalar particle to fermions that is analogous to the Yukawa
couplings already defined in the context of RS models containing a bulk Higgs while β
ensures a well–defined behavior in the limit β →∞ on the IR brane [131, 140, 141, 207].
Furthermore, it is assumed that the top Yukawa matrix has the dominant effect. This
results from a hierarchical structure of the Yukawa matrices. The most important process
for the investigation of the behavior of the couplings derived so far is the four fermion
exchange displayed in Fig. 5.1. In the description of the four fermion interaction the
exchange by a virtual KK boson has to be taken into account. Figure 5.1a describes the
tree–level process in the full theory by a an s–channel diagram, while Fig. 5.1c describes
the same diagram in the effective theory. The Wilson coefficients are obtained, if the
diagram in Fig. 5.1c is identified with Fig. 5.1a. There is a combinatorial factor of 1/2
compared to the t channel diagram in Fig. 5.1b. The operators have the dimension
eight. The huge mass difference between the fermions and the scalar boson S has the
advantage of an identification of the operator product expansion in the effective theory.
The procedure is justified as the typical energy regime for flavor physics is at low energies.
The importance of the four fermion exchange is the view from the effective theory in
which the propagator of the scalar particle is expanded around small momenta p�Mkk.
In the effective theory approach, the Wilson coefficients arise as follows:

Heff =
∑
i

CiOi (5.5)

For the consideration of the processes in Fig. 5.1c, the following operators are important:

Õ2 = (s̄LdR) (s̄LdR) , O2 = (s̄RdL) (s̄RdL) ,
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O4 = (s̄LdR) (s̄RdL) . (5.6)

In the case of Fig. 5.1, the general Wilson coefficient Ci of the four quark operator of the
coupling of a scalar boson S to a SU (2)L singlet is defined as the overlap integral cijkl
of

Heff 3
3∑

i,j,k,l,=1

cijkl (q̄i,1,Rqj,2,L) (q̄l,1,Rql,2,L)

=
1

m2
sc

Λ∗q̄iqlΛ
∗
q̄kqj

(q̄i,1,Lqj,2,R) (q̄l,1,Lqk,2,R)

+
1

m2
sc

Λq̄iqjΛq̄kql (q̄i,1,Rqj,2,L) (q̄l,1,Rqk,2,L)

+
1

2m2
sc

Λq̄iqjΛ
∗
q̄kql

(q̄i,1,Lqj,2,R) (q̄l,2,Rqk,1,L) (5.7)

with

cijkl ∼ Λij (t) Λkl
(
t′
)

=

1∫
0

dtt1+β

1∫
0

dt′t′,1+β (2 + β)2

[
xiâ

(cQ)†
j F (cQ) tcQgQF (cQ)

t1+cQ − ε−1+2cQt−cQ

1 + 2cQ
â
(cQ)
i

+ xj â
(cq)†
i F (cq) t

cqgqF (cq)
t1+cq − ε−1+2cq t−cq

1 + 2cq
a

(cq)
j

]

×

[
xkâ

(cQ)†
l F (cQ) t′,cQgQF (cQ)

t′,1+cQ − ε−1+2cQt′,−cQ

1 + 2cQ
â
(cQ)
k

+ xlâ
(cq)†
k F (cq) t

′,cqgqF (cq)
t′,1+cq − ε−1+2cq t′,−cq

1 + 2cq
a

(cq)
l

]
(5.8)

and contains the coupling Λij (t) of the scalar S to fermions. The coupling Λij is a 3× 3
matrix and differs from the CKM matrix in its phenomenological interpretation. While
the CKM matrix describes charged transitions with different charges, the matrix Λij
describes transitions, in which the charge remains the same. Before going into more detail
of the calculation, some remarks about the flavor suppression mechanism are necessary.
The coupling of the scalar particle S consists always of an S (t) profile function and a
C (t) profile function (Eq. (2.124)) of the 5D fermion (Eq. (2.105)), because the scalar
particle couples only to doublets or singlets. The localization in the extra dimension of
the overlap profile function of the fermions depends on the bulk–localization parameter
cQ/q. In Eq. (5.8) appear at each vertex and for either singlet fermion profile function

or doublet fermion profile function three combinations: t, tcQ/q and t2cQ/q . The first one,
i.e. contributions that are proportional to t do not induce a flavor change, whereas the
other two do so. The factors tcQ/q and t2cQ/q are only large and peaked towards the
IR brane in case of the top quark. Considering light fermions, it turns out that the
overlap between the profile functions of the fermion and the scalar bosons S are small,
because the bulk–localization parameter is cQ/q ≤ −1/2 and the profile function of the
scalar boson S is peaked due to the delta function towards the IR, as well. The coupling
Eq. (5.8) scales in leading order in F

(
cQ,qi

)
F
(
cQ,qi

)
in the ZMA, in which Eq. (5.8) is
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written. If the scalar S was a gauge boson, the situation would be similar. Differences
occur in the scaling of the localization parameter in the coupling, because in this case,
the transitions would be proportional to tcQi+cqi [145, 153, 154, 161, 179, 271, 272]. The
difference to the vector boson coupling to the fermions is the suppression by a factor
of 1/M4

kk considering a tree–level diagram. The coupling is suppressed by a factor of
1/Mkk that stems from the fermion mass at each vertex and the squared mass that stems
from the propagator. Furthermore, the mass mS is much larger than any other vector
boson mass. This causes also a larger suppression. Considering the couplings of vector
bosons to fermions, the inverse mass term is involved in couplings, in which doublets of
right–handed fermions, or singlets of left–handed fermions are considered.
In the second row of Eq. (5.8), the coupling of the doublets is shown, whereas in the third
line the coupling of the scalar particle to the singlet fermions is shown. The fourth and
the fifth line describe the same coupling at t′. After integrating out the fifth dimension,
the former t–dependent Λij now reads

Λij = xi
F
(
cQj
)
F (cQi)

(1 + 2cQi)
â
(cQ)†
j gcQ â

(cQ)
i

(
1

3 + cQi + cQj + β
− ε1+2cQi

2 + cQj − cQi + β

)
+xj

F (cqi)F
(
cqj
)(

1 + 2cqj
) â

(cq)†
i gcq â

(cq)
j

(
1

3 + cqi + cqj + β
− ε1+2cqj

2 + cqi − cqj + β

)
. (5.9)

The coupling that depends on t′ is obtained in the same way. With the insertion of the
ZMA of the squared fermion mass Eq. (2.133) as well as replacing contributions of O

(
ε2
)

with Eq. (2.129), the term proportional to 1/
(
3 + cqi + cqj + β

)
in Eq. (5.9) is negligible

compared to the rest. Thus, the Wilson coefficients of the operators of Eq. (5.6) read

C2 =
1

m2
sc

Λ∗ilΛ
∗
kj

=
(2 + β)2

m2
scM

2
kk

[(
mfiF

(
cQj
)
F (cQi) g

∗
cQij

Iij
(
cQj , cQi

)
+mfjF

(
cqj
)
F (cqi) g

∗
cqij

Iij
(
cqj , cqi

) )(
mfkF (cQl)F (cQk) g∗cQkl

Ikl (cQk , cQl)

+mflF (cql)F (cqk) g∗cqIkl (cql , cqk)
) ]

, (5.10)

C̃2 =
1

m2
sc

ΛikΛjl

=
(2 + β)2

m2
scM

2
kk

[ (
mfiF (cQi) gcQIij

(
cQi , cQj

)
+mfjF (cqi)F

(
cqj
)
gcqij Iij

(
cqi , cqj

) )(
mfkF (cqk)F (cql) gcQkl Ikl (cQk , cQl)

+mflF (cql)F (cqk) gcqkl Ikl (cql , cqk)
) ]

(5.11)

C4 =
1

2m2
sc

ΛijΛ
∗
kl
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=
(2 + β)2

2m2
scM

2
kk

[(
mfiF

(
cQj
)
F (cQi) gcQij Iij

(
cQj , cQi

)
+mfjF (cqi)F

(
cqj
)
gcqij Iij

(
cqi , cqj

) )(
mflF (cQl)F (cQk) g∗cQkl

Ikl (cQk , cQl)

+mfkF (cql)F (cqk) g∗cqkl
Ikl (cql , cqk)

) ]
(5.12)

with

Iij

(
cQ/qi , cQ/qj

)
=

(
− 1

2 + cQ/qi − cQ/qj + β

)
. (5.13)

In the following phenomenological section, contributions of the flavor–changing neu-
tral scalar S are estimated and compared to SM flavor observables in meson mixing in
Sec. 5.4. Contributions of the flavor–changing scalar to the bounds on the neutron EDM
and deuteron EDM are discussed in Sec. 5.7, as well. For these reasons, values for the
coupling Eq. (5.9) Λij (t) have had to be obtained. This has been done using the cQ/qi pa-
rameters that have been obtained by the generation of the RS data point sets in Sec. 2.8
and are inserted into Eq. (5.9). The mass of the flavor–violating neutral scalar S is consid-
ered to be 750 GeV. The quark masses have been obtained by the RG running down to the

scale of the top mass. In case of the B0–B
0

mixing the masses have been obtained at the

B scale, and for the K0–K
0

mixing the masses have been obtained at the K scale. There-
fore, the matrix Λij contains values in the real part of its off–diagonal entries of O

(
10−6

)
,

whereas the diagonal elements are larger. The imaginary part of the off–diagonal matri-
ces is much smaller than the real part. The largest value is always Λ33 that is of order 1.
Another approach to evaluate the couplings Λij (t) is done with the ZMA and rewriting
the quark masses by xi,j = mfi,j/Mkk = vF

(
cQi,j

)
y∗F

(
cqi,j

)
/(
√

2Mkk) multiplied by a
random number that is of order 1, because the other quantities in Eq. (5.9) are of order
one. This assumption justifies to consider only diagonal entries in the matrix Eq. (5.4).
Thus, the coupling Λi,j (Eq. (5.9)) reads to leading order

Λij =
vy∗√
2Mkk

F (cQi)F
(
cqj
)
. (5.14)

5.3 Discussion and comparison to scalars in RS models

In the following, there is a short discussion, whether there are similarities between the
scalar S under investigation and the most important scalar particles that appear in the
context of warped extra dimensions.
In the literature, scalars in the RS model have been discussed before. If the scalar S
acquired a VEV that generates fermion masses, S would create a mechanism that is
responsible for the localization of the fermions along the extra dimension [125, 139, 141].
As a consequence, the scalar could also act as a localizer field, which was first introduced
in split fermion theories [100, 141]. This possibility is discussed in greater detail below in
Sec. 5.3.1. A possible new scalar S could exist in the context of flat extra dimensions, as
well. Although no solution to the hierarchy problem as described in Sec. 2.2.1 exists, this
model has a lot of similarities in calculations with models that contain a warped extra
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dimension [217]. In [218], the scalar S couples to SM particles only via loops containing
vector–like fermions. Leaving the possibility of generating flavor hierarchies via an extra–
dimensional mechanism, the SM leptons are the only particles, which are in the bulk
of the extra dimension in order to achieve the correct size of the couplings [219, 220].
Furthermore, this ansatz requires more than one extra dimension for the achievement of
the size of the couplings [141]. The explanation that the scalar S could be a spin 2 KK
graviton seems challenging, because the predictions of the 13 TeV dilepton data from
CMS [221] seem to be in conflict with this hypothesis as they reject some parameter
space [141, 222–224].

5.3.1 Localizer field

Arkani-Hamed and Schmaltz introduced a localizer field being a scalar [97] in the context
of flat extra dimensions based on [95]. Besides the RS models [98, 99], also [95] is
a milestone in the development of extra dimensional approaches. Arkani-Hamed and
Schmaltz proposed that the KK excitations of the SM fermion fields live on a wall with
a given volume L in the extra dimension, whereas gravity, the SM fields including the
Higgs boson field propagate along the extra dimension. The KK excitations of the
SM fermion fields are localized at a fixed point on the extra dimension and their wave
functions are described by Gaussian distributions. Because of the overlap of the wave
functions, the Yukawa couplings are suppressed exponentially as the wave function has
the shape of a Gaussian distribution. The difference to the case of the warped extra
dimensional models is that the exponential suppression does not stem from the metric,
but from the profile of the fermionic wave function. Nevertheless, the prediction of non–
universal couplings from the fermions to a scalar is model–independent and depends only
on the localization in the wall. This localization breaks translational invariance leading
to a local modification of the VEV in the extra dimension by the scalar. The VEV
therefore has its origin imposed by a Z2 symmetric potential [97] and could be linear,
if the corresponding scalar mass mφ is zero. This means that the quartic interactions
do not exist or the VEV an almost linear realization, if mφ 6= 0. Considering the Z2

symmetry, a so–called ’odd mass term’

Lodd = mΨε (t) ψ̄ψ (5.15)

has to be introduced for each fermion stemming from a second scalar field which is odd
under the Z2 symmetry and which shifts the localization of the fermions away from
the orbifold fixed points [100]. The localization of the Higgs field can be either on the
boundary or in the bulk, where the VEV is in both scenarios confined to one orbifold
fixed point. The localization of the Higgs on one of the boundary leads to EWSB which
only occurs at this point in the extra dimension. Localizing the Higgs in the bulk leads
to two more sub scenarios. If the Higgs mass would be positive, a belonging bulk VEV
would not exist, but a separate negative mass term would exist on the boundary which
leads to EWSB at this point. The other possibility is that the Higgs field is not the only
scalar bulk field. The bulk Higgs field is coupled to more bulk fields which acquire a
t-dependent VEV and trigger EWSB in the region near of t. A further fine–tuning would
be required as well, because then mφ � v follows for both boundary and bulk masses.
The localizer field would have a small overlap with both the doublets and singlets of
the first two generations, resulting in weaker interaction with the Higgs due to their
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exponentially suppressed overlap functions. The opposite case is valid for the fermions
of the third generation, where the coupling to the localizer field φ is weaker, resulting in
a strong coupling to the Higgs [100].

5.3.2 Radion

As mentioned in Ch. 2 Sec. 2 the Radion is the VEV of the fifth component of the
Minkowski metric in Eq. (2.8). Here is the main difference that the arbitrary scalar
boson S stems from another part of the Lagrangian density. Furthermore, the Radion
can be considered as fluctuation, as well [225]. There can be significant contributions to
FCNCs if the Radion is considered as the lightest new resonance in the RS model [226].
If it exists, its mass would be of order the Higgs mass if the Goldberger-Wise potential
is tuned but its mass would be rather of O (TeV) in a general RS setup, although its
couplings to fermions would be chiral suppressed, as well [226].
The authors of [232, 233] discussed a RS model, in which the SM fields are confined
on the TeV brane. In this setup, the Higgs–Radion coupling is introduced by SSB on
the brane that involves a stabilizing scalar field [232, 233]. This mixing is result from
merging the stabilization mechanism of the size of the extra dimension together with
SSB on the TeV brane [233]. The new state of 750 GeV is then regarded as a Radion–
dominated state, but its production section is significantly smaller than in the original
reports if ATLAS and CMS [232].

5.3.3 Bulk Higgs

As mentioned before in Sec. 2.2.3, the scalar S under consideration differs from a bulk
Higgs only in the non–existence of a zero mode, and that is considered to be as a gauge
singlet scalar. Possible flavor–changing couplings of the bulk Higgs have been studied
before in e.g. [207, 227]. The contributions are larger compared to the case of a gauge–
singlet scalar S that has no zero mode.

5.3.4 Scalar as a DM particle

The scalar particle S under investigation does not correspond to any of the other cases.
This scalar can be regarded as a possible Dark Matter candidate and its possible im-
plementation is discussed following [112]. Mirroring the IR brane and requiring the KK
parity in the warped extra–dimensional scenario requires a light KK particle that is
electric neutral, weakly interacting, and its profile function should peak towards the IR
brane. As a consequence, the fermion profile functions to which this scalar couples have
to due to the Z2–parity conservation an odd profile function and are peaked towards
the IR brane. Then, the Lagrangian density in Eq. (5.2) has to be modified by adding
negative coupling terms of the S to fermions [112]. The scalar that is investigated in
this chapter fulfills all these properties, but the framework is different. In the publica-
tion [228], a Z2–odd scalar particle, which is in [228] called ”dark–Higgs” χ as a dark
matter candidate in the framework of [112] is discussed. The authors of [228] calculated
the annihilation cross–section and the relic abundance and found that the abundance is
Ωχh < 10−4 if the electroweak precision bounds are fulfilled. The contribution that the
authors found to the annihilation cross–section is classified into two main parts. The
main contribution to the annihilation cross–section stems from contact interactions of
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the dark Higgs to the W and Z boson. Contributions of the other final states, in which
both Higgs bosons and top quarks are involved, are small [228]. In the past, another
sector in which a singlet scalar as a dark matter candidate has been proposed as twin
Higgs models [229]. The scalar is also compatible with electroweak precision tests. A
750 GeV scalar would then decay into two photons. Because of this reason, only an an-
nihilation of this DM candidate into SM particles is possible [230, 231]. The authors of
[234] discussed the Higgs–Radion mixing in context of a possible dark matter candidate
mφ = 750� mh GeV. They found that the cross–section depends strongly on the local-
ization of the gauge fields in the extra–dimension and assumed a custodial symmetry.
The Radion couplings to γγ, Zγ are not suppressed in contrast to the couplings of the
Radion to other particles. If the fields of the other particles are allowed to propagate
into the bulk of the extra–dimension, except for tL,R and bL that are localized on the
IR brane, the cross–section is higher than whether the gauge bosons are confined on the
TeV brane [234]. In the context of UED with two universal extra dimensions, a neutral
scalar particle has been studied as a possible DM candidate [235]. The interaction of
the dark matter candidate BH that is a scalar with the SM Higgs fields is induced by
electroweak mixing and results in the additional term

L = −g2
Y /8BHBHh (h+ 2v) . (5.16)

The authors of [236] mentioned that the first excitation of the Higgs particle, that has
a mass range between 1 and 4 TeV, as a dark matter candidate is hard to find due
to the Yukawa coupling that is small for fermions. Furthermore, an annihilation into
pairs of ff̄ is helicity suppressed. The authors of [237] estimated that the mass for
the lightest KK particle as a dark matter candidate that is a scalar particle is in the
range between 1 TeV and 2.4 TeV. Other dark matter candidates as scalar particles have
been discussed in the overview [238]. In general, the possibility of gauge bosons as dark
matter candidate in the context of UED and their estimation of a detection is discussed,
as well. See, for example [239–242].

5.4 Meson mixing including a general bulk scalar S

In principle FCNCs occur at tree–level in new–physics models that might lead to cor-
rections to SM couplings. For instance, very strong bounds on new physics models
originate from measurements from both CP violation as well as from flavor physics cf.
[3, 264, 265, 281–284]. The consideration of meson mixing is of particular interest for the
investigation of such FCNCs as flavor–changing couplings in meson mixing occur in new
physics model in tree–level diagrams that are displayed in Fig. 5.1.A general introduction
to meson physics can be found in reviews e.g. [3]. Before the derivation of the Wilson
coefficients and the matrix elements is explained, in which the new physics contribution
is contained, the meson mixing is investigated in more detail.

5.4.1 Overview of Meson mixing in the SM

In the SM there exist only four mesons, which are both flavor eigenstates and share the
same flavor content and mix with their antiparticle. These hadrons are the K,B and D
meson and their particle content is

B0
s ∼ bs B

0
s ∼ bs, (5.17)
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B0
d ∼ bd B

0
s ∼ bd, (5.18)

K0
s ∼ sd K

0
s ∼ sd, (5.19)

D0 ∼ cu D
0 ∼ cu. (5.20)

These meson states are eigenstates under the strong and the electromagnetic interactions.
Furthermore, the mesons can be either produced by the strong interaction in pp collisions
of by the electromagnetic interaction by e+e− collisions. The production mechanisms
are flavor conserving [243]. If the weak interaction is neglected, the eigenstates of the
mesons will have the same mass eigenstates for both meson and anti–meson, resulting in
the same mass. Because of the weak interaction, the degeneration mentioned does not
exist and as a consequence there is a difference in both the mass and the lifetime of both
meson M and anti–meson M distinguishable [244]. These differences are expressed by
a linear combination of the mass eigenstates of both M and anti–meson M

|ML〉 = q|M〉+ p|M〉, (5.21)

|MH〉 = q|M〉 − p|M〉, (5.22)

with the normalization condition |q|2+|p|2 = 1 and the subscripts H,L refer to the heavy
and light mass eigenstate. Further there exist oscillations between M and M evolving
for times t� 1/ΛQCD. The evolution of the initial (anti)meson yields a superposition to
its anti–meson (meson).The long duration of the oscillations indicated as t � 1/ΛQCD,
because this time evolution allows an description by an effective Hamiltonian H which is
only complete, if the Hilbert space spanned by M and M is complete. The application
of a Schrödinger equation leads to

∂

∂t

(
M

M

)
= H

(
M

M

)
. (5.23)

The decay into the different final states is described by the non–hermitian part of the
2× 2 matrix H

H = M − i

2
Γ (5.24)(

H11 H12

H21 H22

)
=

(
M11 M12

M∗12 M22

)
− i

2

(
Γ11 Γ12

Γ∗12 Γ22

)
, (5.25)

where M describes the mass matrix and Γ denotes the decay matrix, which are both her-
mitian. The diagonal elements of Eq. (5.25) describe flavor conserving decays, whereas
the off diagonal elements of Eq. (5.25) describe the flavor exchange mediated by virtual
W bosons in box diagrams [243]. The detailed form of the off diagonal elements follows
from CPT conservation [245]. The corresponding eigenvalues of Eq. (5.24) result in

ω = H11 ±
√
H∗12H12 (5.26)

The ratio of the complex quantities q and p appearing in Eq. (5.21) is given by(
q

p

)2

=
M∗12 − i

2Γ∗12

M12 − i
2Γ12

. (5.27)
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Eq. (5.27) becomes important when discussing asymmetries in CP violation for in Sec. B.1.
Both mass difference and difference of the width of the mass eigenstates can be expressed
by

∆m = mH −mL = 2Re
√
H∗12H12 (5.28)

∆Γ = ΓH − ΓL = −4Im
√
H∗12H12. (5.29)

The presence of the eigenvalues Eq. (5.26) in Eqs. (5.28),(5.29) connect the off–diagonal

elements to the mass eigenstates. The case of K0−K0
mixing is different, because there

is a huge difference in their lifetime and both ∆m and ∆Γ are expressed by the shorter
and longer lived particle, denoted by L and S, respectively.
The dimensionless quantities described by the ratios involving the difference of the mass
width ∆m and the decay rate ∆Γ and the total decay rate Γ

x =
∆m

Γ
, y =

∆Γ

Γ
(5.30)

give a hint of the amount of mixing. If |x| =∞, the mixing is at its maximum, because
1

∆m �
1
Γ . As a consequence, the initial (anti)meson oscillates to its anti–meson (meson)

and back results in an equal amount of both meson and anti–meson, respectively. The
mixing of the mesons is at its maximum, as well, if |y| = 1 indicating that the two
eigenstates ML and MH are decayed. Assuming CP conservation, the total decay of ML

and MH , respectively, is equal to the same amount of both mesons and anti–mesons,
i.e.M = M [243, 246]. Because of the different values in the parameters, e.g., ∆mM and
∆Γ, the behavior of the oscillations of the meson systems is different [247, 248, 127].
The study of meson mixing is that the mixings belong to the FCNCs, because the quarks
share the same electric charge. FCNCs appear at loop–level, because they are absent at
tree level and as a consequence, they are sensitive to new physics and especially sensitive
to CP violation.
There exist three systems, the B0–B

0
system, the Kaon system K0–K

0
and the D system

D0–D
0
. In the B0–B

0
system, diagrams with an internal top quark dominate compared

to the contribution from other diagrams with lights quarks, as the result is proportional

to the internal quark mass. In the case of both K0–K
0

and D0–D
0

this assumption is
crucial, as these mixings are suppressed by the CKM matrix elements containing the top
quark. Another possibility is that they are suppressed with the heaviest quark [244].

5.5 Derivation of the Wilson coefficients and matrix elements
for meson mixing

Before the Wilson coefficients are derived, the matrix elements that contribute to meson
mixing are discussed, the general expression for the matrix elements is discussed. The
matrix elements of meson mixing consist of the box diagrams shown in Fig. 5.2. The new
physics contributions enters by the additional diagram Fig. 5.1. Contributions to meson–
mixing of the SM graphs and the NP contributions. The SM contribution is described
by the two box diagrams in Fig. 5.2a and Fig. 5.2b, whereas the NP enters at tree–level
and is described by Fig. 5.2c. The flavor of inner quark and its respective anti–quark in
both diagrams Fig. 5.2a and Fig. 5.2b is independent from the meson under consideration

and can be u, c, t or ū, c̄, t̄. In case of K0–K
0
, q̄1 = s̄,q1 = s,q̄2 = d̄,q2 = d. In case of
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W−
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0
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q2

q̄1

q1

q̄2

SM0

M
0

(c)

Figure 5.2: Contributions to meson–mixing of the SM graphs and the NP contributions.
The SM contribution is described by the two box diagrams in Fig. 5.2a and
Fig. 5.2b, whereas the NP enters at tree–level and is described by Fig. 5.2c.
The flavor of inner quark and its respective anti–quark in both diagrams
Fig. 5.2a and Fig. 5.2b is independent from the meson under consideration

and can be u, c, t or ū, c̄, t̄. In case of K0–K
0
, q̄1 = s̄,q1 = s,q̄2 = d̄,q2 = d.

In case of B0
d,s–B

0
d,s mixing q̄1 = b̄, q1 = b, q̄2 = d̄, s̄, q2 = d, s. The particle

content of the D0–D
0

meson mixing is q̄1 = ū, q1 = u q̄2 = c̄, q2 = c.

B0
d,s–B

0
d,s meson mixing is the particle content q̄1 = b̄, q1 = b, q̄2 = d̄, s̄, q2 = d, s. The

particle content of the D0–D
0

meson mixing is q̄1 = ū, q1 = u q̄2 = c̄, q2 = c. The
general expression for the evolution of the matrix elements of meson mixing from the
high scale Λ down to the lower scale µ is [249]

〈M |Heff |M〉i =

5∑
j=i

5∑
r=i

(
b
(r,i)
j +

(
αs (Λ)

αs (mt)

)
c

(r,i)
j

)(
αs (Λ)

αs (mt)

)aj
Ci (Λ) 〈M |Oi|M〉.

(5.31)
The evolution from the higher scale Λ on the right hand side down to the lower scale
on the left hand side of Eq. (5.31) is obtained by the so–called magic numbers aj , bj , cj .
The general derivation of the magic numbers is mentioned in Sec. 5.7, when the evolution
matrix is discussed. The magic numbers have been obtained using the RI–MOM scheme
in the Landau gauge [249]. The Wilson coefficients C2,4 (Λ) are obtained at the higher
scale Λ. At the high scale, the corresponding operators are considered. There is a possi-
bility that the operators of the matrix elements mix with the other higher–dimensional
operators due to the anomalous dimension matrix and as a consequence, in the magic
numbers due to the renormalization procedure. As a consequence, all operators have to
be taken into account, because the operators can induce a mixing to all other operators.
The hadronic matrix elements on the right–hand side of the renormalized operators and
are given by [334]

〈M |O1 (µ) |M〉 =
1

3
mMf

2
MB1 (µ) , (5.32)

〈M |O2 (µ) |M〉 = − 5

24

(
mM

mMqi
(µ) +mMqj

(µ)

)2

mMf
2
MB2 (µ) , (5.33)

〈M |O3 (µ) |M〉 =
1

24

(
mM

mMqi
(µ) +mMqj

(µ)

)2

mMf
2
MB3 (µ) , (5.34)

〈M |O4 (µ) |M〉 =
1

4

(
mM

mMqi
(µ) +mMqj

(µ)

)2

mMf
2
MB4 (µ) , (5.35)
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〈M |O5 (µ) |M〉 =
1

5

(
mM

mMqi
(µ) +mMqj

(µ)

)2

mMf
2
MB5 (µ) . (5.36)

The operators that appear in Eq. (5.32)–Eq. (5.36) read [249]

O1 =
(
q̄αi,Lγ

µqαj,L
) (
q̄βi,Rγ

µqβj,R

)
, (5.37)

O2 =
(
q̄αi,Rq

α
j,L

) (
q̄βi,Rq

β
j,L

)
, (5.38)

O3 =
(
q̄αi,Rq

β
j,L

)(
q̄βi,Rq

α
j,L

)
, (5.39)

O4 =
(
q̄αi,Rq

α
j,L

) (
q̄βi,Lq

β
j,R

)
, (5.40)

O5 =
(
q̄αi,Rq

β
j,L

)(
q̄βi,Lq

α
j,R

)
, (5.41)

and the corresponding operator Õ is derived by the interchange of L↔ R. The matrix
elements in Eq. (5.32)–Eq. (5.36) have the following structure: they contain the mass of
the meson mM under consideration and, the respective decay constant fM that is a mea-
sure of the probability of the distance between the quarks in the meson. This assumption
is only true for point–like interactions, which is the case for the the weak interaction.
Furthermore, all effects that stem from strong interactions are parametrized in fM [251].
The so–called bag parameter Bi (µ) parametrizes deviations from the vacuum insertion
approximation [127]. The vacuum insertion approximation splits the matrix element of
a quartic operator into two matrix elements of two operators that are bilinear in the
quark fields. Only the vacuum state is inserted, which is a appropriate approximation
[250]. The remaining coefficient in Eq. (5.32)–Eq. (5.36) normalizes the bag parameter
[251, 252].
The quark masses appear in Eq. (5.32)–Eq. (5.36) via a perturbation of higher orders
and in an energy dependence of the effective quark masses. The running quark masses
obey the RGE equation

d

d ln(µ)
mq (µ) = γm (µ)mq (µ)

= mq (µ)

(
αs (µ)

αs (µ0)

)− γm0
2β0

, (5.42)

as well. In Eq. (5.42), the parameter µ0 denotes the scale to which the masses are evolved
down. In this thesis, the two–loop result [253]

mq(µ) =

(
αs (µ)

αs (µ0)

)− γm0
2β0

(
1− (αs (µ)− αs (µ0)) (β0γ

m
1 − γm0 β1)

(4π)
(
2β2

0

) )
(5.43)

with the one–loop coefficients and the coefficients of the beta function

γm0 = −6CF , (5.44)

γm1 = −3C2
F −

97

3
CFCA +

20

3
CAnfTF − 4CFnfTF , (5.45)

β0 =
11

3
CA −

4

3
nfTF , (5.46)
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β1 =
34

3
C2
A −

20

3
CAnfTF − 4CFnfTF , (5.47)

from [254–256] is used to obtain the values of the running quark masses. For SU (3)c,
the factors CF , CA, TF have the values

CA = 3, CF =
4

3
, TF =

1

2
. (5.48)

Equation (5.31) holds for both B0–B
0
, and D0–D

0
mixing and is used therefore. In the

case of K0–K
0

mixing, the form of Eq. (5.31) changes to

〈K|Heff |K〉i =

5∑
j=i

5∑
r=i

(
b
(r,i)
j + η c

(r,i)
j

)
ηajCi (Λ)Rr〈K|O1|K〉, (5.49)

with η =
(
αs(Λ)
αs(mt)

)
. The difference to Eq. (5.31) is the evolution of the matrix element.

Here, only the first hadronic matrix element

Rr〈K|Osd1 |K〉 (5.50)

is considered. Therefore, the rescaling parameters Ri are introduced that express with
the matrix element 〈K|O1|K〉 the remaining matrix elements in Eq. (5.33)–Eq. (5.36).
The effective Hamiltonian for meson mixingHeff is obtained by integrating out the scalar
boson S and reads

Heff = C2

(
qi,Rqj,L

) (
qi,Rqi,L

)
+ C̃2

(
qi,Lqj,R

) (
qi,Lqj,R

)
+ C4

(
qj,Rqi,L

) (
qi,Lqj,R

)
(5.51)

with the Wilson coefficients

C2 = −

(
Λ∗ij

)2

m2
sc

, C̃2 = −(Λji)
2

m2
sc

(5.52)

C4 = −
ΛijΛ

∗
ji

2m2
sc

, (5.53)

in which i and j denote the flavor of the corresponding meson. Using the leading order
term of the coupling Λij it is possible with help of Eq. (2.132) to see that the Wilson
coefficient C4 is proportional to the contributing quark masses. The estimates for C2 and
C̃2 read

C2 =
v2y∗F (cQi)F

(
cqj
)

M2
kkm

2
sc

∝ λ”M”
mMqj

M2
kkm

2
sc

(5.54)

C̃2 =
v2y∗F (cQi)F

(
cqj
)

M2
kkm

2
sc

∝
mMqj

λ”M”M2
kkm

2
sc

. (5.55)

The exponent ”M” of λ that occurs in the last two equations depends due to Eq. (2.209)

on the meson mixing under consideration. While for K0–K
0

mixing ”M” is 1, there is

a factor of λ3 in case of B0
d–B

0
d mixing, and a factor of λ2 in the case of B0

s–B
0
s mixing.

The mass difference of the meson system is expressed by the real part of the absolute

value of the matrix element Eq. (5.31) in case of B0–B
0

and D0–D
0

mixing, whereas in

case of K0–K
0

mixing the real part of the absolute value of the matrix element Eq. (5.49)
is used.
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Figure 5.3: Contributions of the scalar S that induces FCNCs to ∆mD. These contribu-
tions are plotted in MeV against the Mkk mass in TeV. The corresponding
Feynman diagrams that contribute are depicted in the first line. The first and
the second diagram contribute in the SM, whereas the third diagram displays
the new physics contribution. The contributions of a scalar S that induces
FCNCs to ∆mD deviate from the SM value of ∆mD = (5.26) ·10−12 MeV [6]

by a factor of O
(
10−2

)
. The two diagrams that contribution to the D0–D

0

mixing in the SM are depicted in Fig. 5.3a and Fig. 5.3b, whereas the new
physics enter through the tree–level diagram in Fig. 5.3c.

5.5.1 D0–D
0

system

The D0–D
0

system is of particular interest as it is the only system containing up–type

quarks in contrast to both B0–B
0

system and K0–K
0

system, which consist of only

down–type quark mixings. The D0–D
0

system consists only of up–type quarks the quark
in the loop is due to the W boson a down type quark. Those loops are suppressed by the
bottom quark as the CKM elements are small. Additionally the masses of the internal
particles can often be neglected. The long distance effects make predictions in the D0–

D
0

mixing challenging to calculate. The short distant contributions are suppressed by
two reasons: One reason is that contributions proportional to the inverse of the W
boson mass are suppressed by the GIM mechanism and the contributions proportional
to the inverse of the charm mass mc are suppressed due to a contribution of the external
momentum of the charm quark [257, 243]. The short distance contributions contain an
equal amount of both box diagrams and penguin diagrams, as well.

In the D0–D
0

system CP violation not has been found since its discovery in 2007 [258–
260] and confirmation [258, 261, 262]. The non–observation of CP violation is due to
the fact that the decay width is much larger than the difference of the mass width

∆mD leading to a challenging observation of the mixing between the D0 and D
0

mesons
[245, 258]. If CP violation is observed then this could be realized in different way,

e.g. that the D0–D
0

mixing happens at tree–level leading to a FCNC coupling at the Z
boson to vector–like singlet up–type quarks. Another realization would be multi–Higgs
doublet models with both neutral or charged Higgs bosons which do not have to be
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necessarily flavor conserving [230, 243, 258, 263]. The mass difference ∆mD is defined
as

∆mD = 2
∣∣〈D0|H∆S=1

eff |D̄0〉
∣∣, (5.56)

measured to be as
∆mD = (5.26) · 10−12 MeV. (5.57)

The contributions of the scalar particle S that induces FCNCs to ∆mD are displayed
in MeV against the KK mass Mkk in TeV in Fig. 5.3. The contributions deviate by a
relative factor of O

(
10−5

)
to the SM value Eq. (5.57). The contributions consist of the

Feynman diagrams in Fig. 5.3a and Fig. 5.3b that are the SM contribution. In Fig. 5.3c
the Feynman diagram of the new physics contribution is shown.

5.6 Meson mixing and rare decays

5.6.1 B0–B
0

system

In the B0–B
0

system there exist two different mixings, i.e. the B0
d–B

0
d and the B0

s–

B
0
s mixing [258]. The mixing in the B0

s–B
0
s system was discovered in 2006 [264] and

confirmed by measurements of the LHCb collaboration [265, 266]. Furthermore, this
mixing appears in the decays B0

s → J/ψK+K− [267] and B0
s → D−s µX [268], as well.

The measurements of the mixing in the system offered a validation of the unitarity
triangle and gave information about CP–violating asymmetries [3]. The mixing that is
generated by the weak interaction takes place in lowest order as in the Kaon system and
is mediated by an internal W boson and up–type quarks in the loop. The long–distance
interaction effects can be ignored due to the large B meson mass, which is out of the

range of hadronic resonances. Further, the mixing B0
s–B

0
sis very interesting as it is a

∆F = 2 flavor transition that could be sensitive to new physics, because no quarks from
the first generation are involved.
The mass difference of the BX system are related to Eq. (5.31) via

∆mBq = 2
∣∣〈B0|H∆S=1,2

eff |B0〉
∣∣ (5.58)

with the normalization

CBqe
2iφBq =

〈B0|H∆S=1,2
eff |B0〉

〈B0|H∆S=1,2
eff,SM |B0〉

, CBq =
∆mBq(

∆mBq

)
SM

. (5.59)

CBq is considered to be a measure for the mass difference of ∆mBq compared to the SM
value, whereas the weak phase φBq is a measure for the time–dependent asymmetry in
the decay B → ψφ. This phase is present in the SM [127, 6]. The current values for the
world averages of ∆mBd and ∆mBs are [6, 258]

∆mBd = (3.333 ± 0.013) 10−10 MeV, (5.60)

∆mBs = (1.1688 ± 0.0014) 10−8 MeV. (5.61)

The contribution of the flavor–changing scalar particle S to the mass differences from
neutral meson mixing ∆mBd and ∆mBs are considered in Fig. 5.4. Both SM contri-
butions that enter by the box diagrams in Fig. 5.4a and Fig. 5.4b and the new physics
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Figure 5.4: The first line shows with the two diagrams depicted in Fig. 5.4a and Fig. 5.4b
the SM contribution to the neutral meson mixing, whereas Fig. 5.4c shows
the tree–level contribution form a scalar particle. In Fig. 5.4d and Fig. 5.4e,
the contributions of the scalar particle S to the mass differences ∆mBd and
∆mBs of B meson mixing are plotted in Fig. 5.4d and Fig. 5.4e in MeV against
the KK mass in TeV. The predictions for ∆mBd differ by a factor of 10−5

compared to the SM value, which is ∆mBd = (3.333 ± 0.013) 10−10 MeV [6].
The contributions of a scalar particle S to the mass difference in neutral Bs
mixing is smaller by a factor of 10−8 compared to the experimental value,
which is shown in Eq. (5.61). The masses of the corresponding B mesons are
Bd = 5279.63± 0.15 MeV and Bs = 5366.89± 0.19 MeV [6].

contribution is depicted in Fig. 5.4c. They are plotted in MeV against the KK mass in
TeV. The contributions of the scalar particle S to the mass differences are smaller by a
factor of 10−5 to the measured value of ∆mBd . The contributions are also smaller by a
factor of 10−8 compared to the experimental value of ∆mBs . The experimental values
for ∆mBd and ∆mBs are shown in Eq. (5.60) and Eq. (5.61).
If φBq not equal to zero, the time–dependent asymmetry measures the new physics
contribution

2ϕBq = arg
(
〈B0|H∆S=1,2

eff |B0〉
)

(5.62)

=
∣∣βBq ∣∣− φBq , (5.63)

and not only βBq that defines the phase difference, which leads to the B0–B
0

mixing.
In case of a vanishing phase and its experimental value is [6, 258]

βBd = arg

(
−
VcdV

∗
cb

VtdV
∗
tb

)
, (5.64)

βBs = 0.0376 ± 0.0012. (5.65)
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Figure 5.5: The contribution of a scalar S that induces FCNCs to the asymmetries
∆ΓBq/ΓBq , q=d,s. The contribution of the prediction of the phase Sψφ plot-
ted against the prediction of ∆Γs/Γs in Fig. 5.5a. The predictions differ by a
relative factor of O

(
10−25

)
compared to the SM value of ∆Γs/Γs = 0.12943

[6]. In case of the predicted contributions to ∆Γd/Γd, the values deviate by a
relative factor of O

(
10−22

)
compared to the SM value of ∆Γd/Γd = 0.13072

[6]. ∆Γd/Γd is plotted against SψKs in Fig. 5.5b.

Furthermore, the CP asymmetries and the width differences of the semi–leptonic decays
result in [127, 161, 269, 270]

∆ΓBq
ΓBq

=−
(

∆mBq

ΓBq ,exp

)[
Re

(
Γ
Bq
12

M
Bq
12

)
SM

cos
(
2φBq

)
CBq

−Im

(
Γ
Bq
12

M
Bq
12

)
SM

sin
(
2φBq

)
CBq

]
(5.66)

ASL,Bq =Im

(
Γ
Bq
12

M
Bq
12

)
SM

cos
(
2φBq

)
CBq

−Re

(
Γ
Bq
12

M
Bq
12

)
SM

sin
(
2φBq

)
CBq

(5.67)

with q = s, d, Im

(
Γ
Bq
12

M
Bq
12

)
SM

= ∆ΓBq

∆MBq
tan

(
φBq

)
, Re

(
Γ
Bq
12

M
Bq
12

)
SM

=
∆ΓBq
∆MBq

[258]. With the

angle ϕBq (Eq. (5.62)) and βBq it is possible to obtain a value for the phase φBq . The
width differences are then compared to [161, 270, 272]

SψKs = sin (2βBd + 2φBd) , (5.68)

Sψφ = sin (2 |βBs | − 2φBs) . (5.69)

The contributions of a scalar S that induces FCNCs to the width differences ∆ΓBq/ΓBq ,
q=d,s are shown in Fig. 5.5. The width difference ∆Γs/Γs is plotted against the phase
difference Sψφ in Fig. 5.5a and the values differ by O

(
10−25

)
relative to the SM value of

∆Γs/Γs = 0.12943 [6]. The phase difference SψKs that is defined in Eq. (5.68) is plotted
against the width difference ∆Γd/Γd in Fig. 5.5b. The predicted contributions to the
width difference ∆Γd/Γd is smaller compared to the SM value of ∆Γd/Γd = 0.13072 [6]
by a factor of O

(
10−22

)
. Another possibility to study CP–violating effects to NP is

the decay from B mesons into a pair of leptons that is now investigated, because here
the Wilson coefficients Eq. (5.10)–Eq. (5.12) are sensitive to fermion interactions. The
fermion masses contribute at both vertices. Furthermore, decays into pairs of leptons
are particularly interesting, because if the lepton mass vanishes in the BSM, it will also
vanish in the SM.
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5.6.2 b→ sµ+µ−

The decay of a B meson into two leptons is a test of the flavor change between the gener-
ations ∆F = 2 observables that are sensitive on the position of the quark profile function
along the extra dimension. CP violation in the B0 meson system was detected in 2001
[273]. Their branching ratio is very well determined by experiment. The experimental
result of the LHCb collaboration for RK = 0.745+0.090

−0.074(stat) ± 0.036(syst) is in a 2.6 σ
tension with the SM [274, 275]. The decay b → Xsµ

+µ− delivers a two–side bound on
the branching ratio, because its limit is close to the SM expectation and is a stringent
bound on NP models that reach into the parameter space of BSM theories [127]. The
contribution of the scalar particle to the branching ratios

Br (Bd → µµ) = (1.8± 3.1) · 10−10, (5.70)

Br (Bs → µµ) =
(
2.4+0.9
−0.7

)
· 10−9 (5.71)

is smaller by a factor of 10−31 in case of the branching ratio of the decay Br (Bd → µµ),
while the contribution of a flavor–changing particle S is smaller by a factor of 10−32 in the
case of the branching ratio of the decay Br (Bd → µµ) compared to their experimental
value. The contributions induced by a scalar S that induces FCNCs are shown as a
comparison in Fig. 5.6.
The authors of [215] performed an analysis if there exist a flavor change that is induced
by new heavy scalar particles at tree–level. They investigated four general scenarios.
Furthermore, they assumed the flavor–changing coupling as a complex number that is
bounded from above by the ∆F = 2 transition. The authors argued that a contribution
from a heavy scalar particle S would not interfere with the SM contribution, towards to
the case if a pseudo–scalar particle is investigated [215]. The same result is found for
this case.
The effective Hamiltonian for the SM contribution of the decay b→ ql+l− with q = s, d
reads

Heff =
4G2

F√
2

α

4π
VtbV

∗
tsC10O10 (5.72)

The Wilson coefficient C10 in Eq. (5.72) describes the contributions from the SM that
conserves the lepton flavor and reads [278, 279]

C10 =
1

s2
θW

(
x

4

[
x/2− 3

(x− 1)
+

3x/2 + 1

(x− 1)2 ln (x)

]
− 1

4

[
x

(x− 1)
+

x

(x− 1)2 ln (x)

])
, (5.73)

with x = mt/mW and the operator reads O10 = (s̄Lγ
µbR)

(
l̄γµγ5l

)
. The first term in

Eq. (5.73) stems from the diagram, in which a Z boson couples to the lepton pair and the
second term stems from contributions from the W box graph [279]. These contribution
are depicted in Fig. 5.6a and Fig. 5.6b, while the new physics contribution enters at
tree–level and is depicted in Fig. 5.6c. If the branching ratio of the three diagrams is
calculated, it turns out that there is no interference between the new physics contribution
and the SM contribution. This is due to the fact that there is no axial coupling in the
lepton sector, as it would be the case in theories with axion–like particles. The branching
ratio reads (for q = d, s)

Br
(
b→ qµ+µ−

)
=
G2
F

16π

(α
π

)2
m2
Bqf

2
Bq |V

∗
tsVtb|

2 |C10|2m2
µ

√
1−

4m2
µ

m2
Bq
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Figure 5.6: Contributions of a scalar S that induces FCNCs to the branching ratios
of the decays Br (Bq → µµ) with q = d, s are plotted against each other.
The contribution of this scalar particle to the branching ratio Br (Bd → µµ)
is smaller by a factor of 10−16 compared to the experimental value, which
is Br (Bd → µµ) = (1.8± 3.1) · 10−10 [6]. The contribution of this scalar
particle to the branching ratio Br (Bs → µµ)

(
2.4+0.9
−0.7

)
·10−9 [6] is by a factor

of 10−14 smaller. The contribution is obtained using Eq. (5.74). In Fig. 5.6a
and Fig. 5.6b the SM contribution is depicted, while in Fig. 5.6c the new
physics enters with a tree–level diagram.

+
1

32π

mBqf
2
Bq

(mb +ms)
2

(
m2
Bq

m2
Bq
−m2

sc

)2

Λ2
µµ|Λbs−Λ∗sb|

2

(
1−

4m2
µ

m2
Bq

)3/2

(5.74)

and the second line is identified with the new physics contribution. There is a contribu-
tion of a dimension 8 operator that is mainly responsible for the suppression. Considering
only this part of the branching ratio yields values that are of O

(
10−23

)
. Therefore, only

this contribution is shown in Fig. 5.6, because the SM contribution is of O
(
10−7

)
. The

Feynman diagrams of the SM contribution are depicted in Fig. 5.6a and Fig. 5.6b.

5.6.3 K0–K
0

system

K0–K
0

mixing puts the most stringent constraints for new physics manifesting in flavor
changing decays at tree level. CP violation was discovered and investigated in the neutral
Kaon system putting even stronger bounds to new physics [3]. In the SM effective theory,

K0–K
0

mixing is mediated via the ∆S = 2 four quark operator O1 = (sγµd) (sγµd).
Furthermore, the observables ∆mK and εK are defined as

εK =
kεe

iϕε

√
2∆mexp

K

Im〈K0|H∆S=1
eff |K̄0〉, ∆mK = 2

∣∣Re〈K0|H∆S=1
eff |K̄0〉

∣∣ (5.75)

and depend on the long–distance contribution κε. The long–distance contribution makes
due to the experimental precision an exact theoretical estimation impossible. The best
way to resolve this discrepancy is a division into a short–range and a long–range con-
tribution and a comparison of the short–distance contributions with the experimental
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Figure 5.7: The first line contains the Feynman diagrams that contribute to neutral Kaon
mixing. The first two diagrams describe the SM contribution, whereas the
third diagram describes the new physics contribution. The contribution of
the scalar S that induces FCNCs to ∆mK and εK are depicted in Fig. 5.7d
and Fig. 5.7e in the second line. The mass difference in the neutral Kaon
mixing ∆mK is plotted in MeV against the KK mass dependence Mkk in
TeV in Fig. 5.7d. The experimental value for ∆mK is (3.484± 0.006) · 10−12

MeV [6]. The values for the contribution of the scalar S to ∆mK differ by
10−4 compared to the experimental values. The contribution of the scalar S
to the absolute value of εK is plotted against Mkk in TeV in Fig. 5.7e. The
values for the contribution of the scalar S to |εK | differ by a factor of 10−3

compared to the SM value of εK , which is (2.228± 0.011) 10−3 [6].

results. Therefore it seems to be useful quoting both an upper limit and a lower limit
that might explain discrepancies stemming from the experiment [127, 280]. The contri-
butions are given by the Wilson coefficient in Eq. (5.31) and the RG running is given by
Eq. (5.31) with the left–hand side of Ci (2GeV) that are the energy scale of both initial
and final states of the Kaon. Both quantities ∆mK in MeV and εK are plotted in Fig. 5.7
against the KK mass in TeV. The predicted contribution to the mass difference in the
neutral Kaon mixing ∆mK is for a scalar S that induces FCNCs of orders of magni-
tude smaller compared to the experimental value that is (3.484± 0.006) ·10−12 MeV [6].
This can be seen in Fig. 5.7d. Furthermore, the contribution of a scalar S that induces
FCNCs to ∆mK does not depend on the KK mass, because the points are distributed
equally in Fig. 5.7d. The same behavior of the distribution of the simulated points is
shown, whether the contribution of the scalar S that induces FCNCs to the absolute
value of εK is considered. This contribution is smaller by a factor of 10−3 compared
to the experimental value of εK , which is (2.228± 0.011) 10−3 [6]. This contribution is
plotted against the KK mass in TeV. The contributions of the scalar S to ∆mK and εK
have been calculated with Eq. (5.75). The corresponding Feynman diagrams of the SM
model are depicted in Fig. 5.7a and Fig. 5.7b, whereas the new physics contribution in
depicted in Fig. 5.7c.
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5.7 Impact on electric dipole moments including a general bulk
scalar S

Another diagnostic investigation is the comparison of the (chromo) electric dipole mo-
ment ([C]EDM) of the neutron including the Yukawa matrices. The investigation of
EDMs of elementary systems may lead to a violation of time reversal if the experimental
value of the EDM is unequal to zero. The vector of the EDM should be parallel to
the particle spin that has an opposite symmetry. If the CPT symmetry is conserved, a
violation of the T symmetry leads to CP violation, as well. Therefore, a non–zero value
for EDMs is a sign for T violation [299, 300]. The measurement of the EDM is a com-
plementary approach to search for New physics compared to the direct searches at the
LHC, because the EDM is an indirect probe of NP [311]. The electric dipole moment is
derived and the 5D matrices that induce a flavor–change are applied. Both CEDM and
EDM impose bounds for new physics models from flavor–changing couplings stemming
from direct measurements of tree–level decays, as well as indirect bounds stemming from
the precision observables if they receive corrections from the couplings under considera-
tion [3, 301]. The dominant BSM contribution to the neutron EDM stems from FCNC
interactions to the scalar under consideration [301]. Usually, these couplings would be
e.g. the coupling of the top quark to the Higgs boson and another quark [3, 301–309].
In the context of warped extra dimensions, the EDM of the neutron sets a lower bound
to the KK mass around 10 TeV which is a very tough constraint [153, 154]. A detailed
discussion on the impact of EDMs in various BSM scenarios is found e.g. in [310, 311]
and a review of EDM of light nuclei is found e.g. in [312]. In the following, the results
of the FCNC fermion coupling Λij that has been derived in Sec. 5.2 with an arbitrary
flavor–changing scalar S are compared to the recent measurements and the method fol-
lows [309].
The electric dipole moment is defined as

HEDM = −~df · ~E (5.76)

leading to the Lagrangian of a spin 1/2 field

LEDM = −1

2
df ψ̄fσ

µνγ5ψfFµν (5.77)

with ΓµQ
(
q2
)

=

[
iσµνγ5

2m qνg2

(
q2
) ]

. An expression for ~df is obtained using

~df = −qeg2 (0)

2mf
~σ

= −qeg2 (0)

2mf

~S (5.78)

For the quarks, the Lagrangian of the chromo–electric dipole moment is defined in the
same way to Eq. (5.77) [3]

LCEDM = − i
2
dcr q̄fσ

µνγ5λ
i

2
qrG

i
µν (5.79)
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Figure 5.8: Schematic drawing of one–loop and two–loop diagrams that contribute to
the CEDM and the Weinberg operator. On the right hand side, Fig. 5.8a
shows the contribution to the CEDM. The flavor change that is induced by
the flavor–violating scalar S v ia the matrix Λ is marked with the dark dots.

For this analysis, both the top quark as well as the Higgs have been integrated out at
O (mt), resulting in the effective Lagrangian

Leff 3 −dq (µt)
i

2
q̄fσ

µνγ5qFµν − d̃q (µt)
igs (µt)

2
q̄fσ

µνγ5qG
a
µν

− w (µt)
1

3
fabcGaµσG

b,σ
ν G̃c,µν

(5.80)

with q = u, d, and the dual field strength tensor of QCD G̃c,µν = 1
2ε
µναβGaαβ with the

Levi–Civita tensor ε0123 = 1 containing the FCNC couplings under consideration [309].

5.7.0.1 Charm–top couplings

The dominant contribution to the CEDM stems from the penguin diagram in Fig. 5.8a
at the scale µc and reads [313, 314]

d̃c (µt) =
1

32π2

mt

m2
s

f1 (xt,sc) Im (ΛtcΛct) (5.81)

including

f1 (x1,2) =
x1,2 − 3

(x1,2 − 1)2 +
2

(x1,2 − 1)3 ln (x1,2) , x1,2 =
m2

1

m2
2

, (5.82)

which is equivalent in the limit xt,sc → 0 and a charge replacement with the result
obtained in [301, 308]. The dipole transition is provided via the enhancement of the top
quark in Eq. (5.81).
The matching condition w (µt) for the Weinberg operator is only obtained via a two loop
calculation of the diagram displayed in Fig. 5.8 and reads [309, 314–316]

w (µt) =
g3
s (µt)

(32π2)2

1

m2
sc

f2 (xt,sc) Im (ΛtcΛct) (5.83)

with

f2 (x1,2) = −
x2

1,2 − 5x1,2 − 2

3 (x1,2 − 1)3 +
2x1,2

(x1,2 − 1)4 x1,2 =
m2

1

m2
2

. (5.84)
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The Weinberg operator w (µt) mixes under renormalization with both the quark EDM
and CEDM, but not vice verse. Furthermore, the Weinberg operator w (µt) receives
corrections from the CEDM at every heavy quark threshold reading at one loop level if
the charm quark is integrated out [313, 319, 320]

δw (µc) =
g3
s (µc)

(32π2)2

d̃c (µc)

mc
. (5.85)

The shift δw (µc) as well as the RG evolution to the hadronic scale cause non–vanishing
contributions of the top–quark and the down–quark that are considered, as well. In the
discussion, the contributions from the Weinberg operator are negligible and set to zero.

5.7.0.2 Top–up couplings

The calculation of the up–quark EDM du (µt) is obtained via the diagram Fig. 5.8a in
Fig. 5.8 via a replacement of the gluon by a photon. The calculation of both EDM and
CEDM are easier as only the scalar boson S has to be integrated out. The result reads
[301, 308, 309, 313, 314]

du (µt) =
Que

32π2

mt

m2
sc

f1 (xt,sc) Im (YtuYut) (5.86)

with the electric charge Qu of the up quark as well as f1 defined in Eq. (5.82). Analo-
gously to Eq. (5.81), the results for the CEDM d̃u (µt) and for the contribution of the
Weinberg operator w (µt) are obtained. The only replacement which has to be done
compared to Eq. (5.81) in order to obtain the expression for d̃u (µt) is the change of
Λct → Λut and Λtc → Λtu, respectively.
The evolution of the EDM and the CEDM of the higher scale µt = 163.3 GeV down
to the lower scale µc is achieved by the evolution matrix U (µ,Λ), which obeys the
renormalization group equation [253]

d

d ln(µ)
U (µ) = γT (g) (αs)U (µ,m)

= Tgexp

(∫ g(µ)

g(m)
dg′

γT (g′)

β (g′)

)
, (5.87)

with Tg being an ordering operator acting on the functions exp
(∫ g(µ)

g(m) dg′ γ
T (g′)
β(g′)

)
. Tg

achieves an ordering of the increasing coupling constants from the left to the right. This
is not necessarily guaranteed as the anomalous dimension matrices do not commute.
In leading logarithmic approximation, the evolution matrix U (µ,Λ) is given by

U (µ,Λ) = V

(
αs (Λ)

αs (µ)

) ~γ0

2β0

V −1, (5.88)

where V is a matrix that diagonalizes γ0T . The vector ~γ0 in Eq. (5.88) contains the
diagonal elements of the diagonal matrix [253]

γ0
D = V −1γ0T V. (5.89)
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At the same time, the magic numbers ai that are mentioned in Sec. 5.5 are obtained with
the same equation using [317]

U (µ,Λ) = V

(
αs (Λ)

αs (µ)

)ai
V −1 (5.90)

and

γ0
D =

(
V −1γ0T V

)
ij

= 2β0aiδij . (5.91)

Performing an evolution from a higher scale leads to a negligible contribution [318].
Equipped with the necessary formulae, the neutron EDM results in [321, 322]

dn
e

= (1.0± 0.5)

{
1.4

[
dd (µt)

e
− 0.25

du (µt)

e

]
+ 1.1

[
d̃d (µt) + 0.5 d̃u (µt)

] }
+ (22± 10) · 10−3GeVw (µt) ,

(5.92)

in which dd (µt) and d̃d (µt) are analogously defined as The present bound is obtained
by ILL and reads [323] ∣∣∣∣dne

∣∣∣∣ < 2.9 · 10−26 cm. (5.93)

Other experiments as the nEDM and n2EDM experiment is expected to measure the
neutron EDM in the near future [324]. After the nEDM experiment moderates spallation
neutrons through heavy water, the measurement is re–executed using solid D2 crystals
[324, 311]. The SNS nEDM collaboration [325] will measure the neutron EDM using a
4He moderator for the ultra–cold neutrons. They will also use 4He to sustain a high
electric field as a high voltage insulator [325, 326, 311]. Furthermore, polarized 3He
is used, because of its magnetic characteristics. It will be used for three tasks: to be
a co–magnetometer, measuring the magnetic field, and as a superconducting magnetic
shield [326, 311]. For the deuteron EDM, the following formula is obtained [309]∣∣∣∣dDe

∣∣∣∣ = (0.5± 0.3)

[
dd (µt)

e
+
du (µt)

e

]
+
[

5+11
−3 + (0.6± 0.3)

] (
d̃d (µt)− d̃u (µt)

)
− (0.2± 0.1)

(
d̃d (µt) + d̃u (µt)

)
+ (22± 10) · 10−3GeVw (µt) ,

(5.94)

a present experimental limit does not yet exist at the moment. The deuteron EDM is
expected to be measured in the future by the JEDI collaboration [327–329] and to a sen-
sitivity to around O

(
10−29

)
by the Storage Ring Electric Dipole Moment collaboration

[331, 332]. While a in recent SM calculation it was shown that the EDM of the deuteron
is 2.8·10−31 e cm [333], the prediction for the RS model differs by a factor of O

(
105
)

from this value.
The contributions from a flavor–changing scalar particle to the neutron EDM and

deuteron EDM are plotted against the KK gluon mass M
(1)
g in Fig. 5.9. In case of

the contributions of a flavor–changing scalar to the neutron EDM, there is a relative
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Figure 5.9: Contributions of the scalar S that induces FCNCs to the EDM of the neu-

tron and the deuteron are plotted against the gluon mass M
(1)
g in TeV. The

contributions of the flavor–changing scalar S to the neutron are displayed
in Fig. 5.9a and are not yet detectable. The contributions to the deuteron,
however, are in reach if the desired precision of [331, 332] is available. The
limit of 3 · 10−29 e cm is displayed as dashed line in Fig. 5.9b.

deviation of O
(
10−3

)
to the upper limit of Eq. (5.93) [323]. The obtained values from

the contribution of the flavor–changing scalar particle have a relative deviation to the
upper bound of the neutron EDM in the Storage ring EDM collaboration’s prediction.
The theoretical prediction of the contribution of a flavor–changing scalar particle to the
upper bound of the deuteron EDM deviates relatively by a factor of O

(
102
)

to the
desired sensitivity of O

(
10−29

)
. For y∗ = 0.5, 78.4% of the generated data points are

in agreement with the upper bound of the prediction, for y∗ = 1.5 are 88.5% of the
generated points are in agreement with the predicted sensitivity of the Storage Ring
EDM collaboration. As a consequence, the hypothesis of extending the scalar sector of
the RS model by a flavor–changing scalar with a mass of 750 GeV will be tested in the
near future. This is displayed in Fig. 5.9b. The dashed line in Fig. 5.9b corresponds to
the predicted sensitivity of the Storage Ring Electric Dipole Moment collaboration.
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Conclusion

The SM is a well–proven and consistent model. However, the SM is unable to address
yet open questions. This issue and the fact, that the LHC did not yet find any hint
for new physics suggest a new physics model that is of order a higher energy scale, in
which the SM is incorporated and regarded as an effective field theory. As an underlying
theory, the Randall Sundrum model is considered in this thesis. The Randall Sundrum
model extends the SM by one spatial extra–dimension that is curved. The particle fields
propagate in the bulk of the extra dimension, except for the Higgs boson. Confining the
Higgs boson on the IR brane leads to a geometrical solution of the hierarchy problem.
In this thesis, the Higgs is considered both on the IR brane or close to the IR brane.
It was shown earlier in [128, 131] that a smooth interpolation between the Higgs local-
izations does not exist. This observation that affects amplitudes, in which fermions are
involved. This has been confirmed in Ch. 4, in which the impact of RS particles to the
loop–induced Higgs decay into two photons were studied. The different localizations of
the Higgs field are referred to as the brane–localized Higgs scenario, in which the Higgs
field is confined on the IR brane. The other localization is referred to as the narrow–bulk
localized Higgs scenario, in which the Higgs field is moved by a small amount into the
bulk of the extra dimension. The two scenarios are identified by the width η of the
Higgs field, and by the UV cutoff ΛTeV of the theory. This turns into η � v |Yq| /ΛTeV

in case of the brane–localized Higgs scenario and by v |Yq| /ΛTeV � η � v |Yq| /Mkk in
case of the narrow–bulk localized Higgs scenario. The diagrams that contribute to the
h→ γγ decay are calculated using the 5D propagators derived in Ch. 3. They are valid
to all orders in v2/M2

kk and deliver an analytical closed expression. Furthermore, the KK
description is avoided, in which the particles are considered as excitations with infinite
sums. The amplitudes for the 5D contributions to the h→ γγ decay were calculated in
the unitary gauge, because the full amplitude is gauge–independent. The full 5D am-
plitude contains expressions in terms of the 5D fermion propagator and of the W boson
propagator. In the custodial RS model exists a larger contribution of the 5D fermion
propagator that stems from the additional fermion fields in the loop–amplitude of the
h→ γγ decay in the custodial RS model.
The impact on several flavor observables has been investigated if the scalar sector of the
RS model is extended by a neutral heavy flavor–violating scalar that is a singlet under
the RS gauge group. It turned out that there is a relative deviation to the SM values of
O
(
10−5

)
in case of ∆mBd , O

(
10−8

)
in case of ∆mBs , O

(
10−4

)
in case of ∆mK , and

of O
(
10−2

)
in case of ∆mD. A future detection of these contributions and therefore

accepting or rejecting this hypothesis of the extended scalar sector is also the relative
deviation to the upper bounds of the neutron EDM and the deuteron EDM in the SM.
In case of the neutron EDM, the contributions are smaller by a factor up to O

(
10−3

)
,

while in the case of the deuteron EDM the contributions are of the same and larger by
a factor of O

(
102
)

compared to the estimates of the future sensitivity of the Storage
Ring EDM collaboration [331]. As a consequence, the hypothesis of an extended scalar
sector in the RS model with a scalar that has mass of 750 GeV will be tested in the near
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future.
It has been shown in this thesis that it is possible to extend the scalar sector of the RS
model. The predictions are not in conflict with current measurements. In the case of the
contributions of a flavor–changing neutral scalar S to the deuteron EDM, the extension
will be tested soon. If there exists a scalar particle, the contributions of this particle
might be less, because the Wilson coefficients contribute with the inverse mass. Despite
this fact, the coupling of the flavor–changing particle to fermions does not contain any
term that depends explicitly on the mass of the scalar particle. The 750 GeV mass for
the flavor–changing scalar particle therefore is considered as a possible upper bound.
Summarizing, the RS model is still a possible extension of the SM, because the predic-
tions of the branching ratio of the decay h→ γγ does not show a large deviation relative
to the SM values

114



A Appendix Ch.4

A.1 Feynman rules of the decay h→ γγ in the 4D effective
theory

A{φ±(n)(pφ)h(ph)W
∓(m)
ν } =

m̃2
W

vmW
n

2πχWm (1)χWn (1) (pφ − ph)ν , (A.1)

A{W
±(n)
µ hW

∓(m)
ν } =

2im̃2
W

v
2πχWm (1)χWn (1) ηµν , (A.2)

A{φ±(n)hφ∓(m)} = −
im2

h

v

m̃2
W

mW
mm

W
n

2πχWm (1)χWn (1) , (A.3)

A{A0
µφ
±(n)W

∓(m)
ν } = ±emW

n ηµνδmn, (A.4)

A{A0
µφ
±(n)(p+)φ∓(m)(p−)} = ±ie (p+ − p−)µ δnm, (A.5)

A{hA0
µφ
±(n)W

∓(m)
ν } = ±e

m̃2
W

vmW
n

2πχWm (1)χWn (1) , (A.6)

A{c
±(n)
µ hc

∓(m)
ν } =

−ξ2im̃2
W

v
2πχWm (1)χWn (1) , (A.7)

A{c
±(n)
µ A0c

∓(m)
ν } = ±iepµδnm, (A.8)

A{A0
µA

0
νφ
±(n)φ∓(m)} = ±2ie2ηµνδmn, (A.9)

(A.10)

A{W
±(m)
µ A

(0)
ν A

(0)
σ W

∓(n)
ρ } =

− [2ηρσηµν − ησµηρν − ηνσηρµ] ie2δnm, (A.11)

A{W
±,(n)
β (p)A

(0)
α (q)W

∓,(k)
γ (k)} =

ie5

[
ηαβ (q − p)γ + ηβγ (p− k)α + ηγα (k − q)β

]
δnk, (A.12)

(A.13)

A.2 Fit parameter

A.2.1 Brane, minimal RS model

fy∗=0.5 (x) = 1 +
0.340696

x2
− 4.15709sech(2/x)tanh(1/x)

x
, (A.14)

fy∗=1.5 (x) = 1 +
11.2073

x2
− 12.822tanh(1/x)

x
, (A.15)
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fy∗=3 (x) = 1 +
200.865

x2.01
− 212.376tanh(1/x)

x
. (A.16)

(A.17)

A.2.2 Bulk, minimal RS model

fy∗=0.5 (x) = 1 +
11.242

x2
− 11.2645tanh(1/x)

x
, (A.18)

fy∗=1.5 (x) = 1 +
61.6812

x2
−−51.8533tanh(1/x)

x
, (A.19)

fy∗=3 (x) =

(
− 1992.72 +

1.26353 · 1012

x13
− 3.85012 · 1012

x12
+

5.2912 · 1012

x11

− 4.33594 · 1012

x10
+

2.36041 · 1012

x9
− 9.00335 · 1011

x8

+
2.47362 · 1011

x7
− 4.95673 · 1010

x6
+

7.25573 · 109

x5

− 7.69668 · 108

x4
+

5.80747 · 107

x3

− 3.01545 · 106

x2
+

101733.

x

)
tanh

(
1

x

)
+ 18.1152. (A.20)

A.2.3 Brane, custodial RS model

fy∗=0.5 (x) = 1 +
14.6376

x2
−

17.6243 tanh
(

1
x

)
x

, (A.21)

fy∗=1.5 (x) = 1 +
738.951

x4
− 2172.44

x2
+

2159.75 tanh
(

1
x

)
x

, (A.22)

fy∗=3 (x) = 1 +
66098.7

x4
− 198423.

x2
+

198378. tanh
(

1
x

)
x

. (A.23)

A.2.4 Bulk, custodial RS model

fy∗=0.5 (x) = 1− 22.3381

x2
+

21.6553 tanh
(

1
x

)
x

, (A.24)

fy∗=1.5 (x) = 1 +
4008.12

x2
−

4087.17 tanh
(

1
x

)
x

, (A.25)

fy∗=3 (x) = 1 +
95347.9

x2
−

95943.9 tanh
(

1
x

)
x

. (A.26)

116



B Appendix Ch. 5

B.1 CP violation

As a lot of investigated observables discussed in this thesis are sensitive to CP violation
and a summary of CP violation in the literature is given, mainly based on [243]. The
milestones in the derivation of CP violation are marked, as well.
CP violation is the combination of the charge conjugation C and the parity P which
interchanges the handedness of the particles. The charge conjugation C interchanges
the quantum numbers of the particle. The physical meaning of this interchange is that
particles are interchanged with their own antiparticles and vice verse. CP symmetry is
only violated by the weak interaction which also breaks C and P separately. Therefore,
CP is not an exact symmetry. In general, C and P are violated separately, but not CP
[341, 342].
CP is violated in both K0 and B meson decays. There exist CP violating decays
which related to meson mixing and decays where the CP violation originates from decay
amplitudes. The first experimental evidence of CP violation was found in the neutral
Kaon decay K0 → 2π by Christenson et al. [281, 282].
Further, CP violation is important for cosmology as an explanation for the inequivalent
amount of both matter an antimatter, known as baryogenesis. The assumption is that
in the beginning of the universe both antimatter and matter existed in the same amount
while CP violation exists [343].
In the SM, CP violation happens in the mass basis via a complex phase in the 3 × 3
matrix assigning the couplings of the W to quarks. There exist three definitions of CP
violation which can be later summarized into direct and indirect CP violation:

1. The decay amplitude Af for a decay of both a meson M into a (multi-particle)
final state f and its CP conjugate amplitude Āf̄ read

Af = 〈f |H|M〉 Āf̄ = 〈f̄ |H|M̄〉. (B.1)

In Eq. (B.1) the bars indicate the CP conjugate of the quantities. Further, H
denotes the weak Hamiltonian, M

(
M̄
)

the (CP conjugate of the )meson and
f
(
f̄
)

denotes the (CP conjugated) final state f under consideration. If there is
no CP violation in the amplitudes, the absolute value of the ratio

∣∣Āf̄/Af ∣∣ = 1,
otherwise ∣∣Āf̄/Af ∣∣ 6= 1 (B.2)

indicates that there is CP violation. The detection of CP violation in charged
decays is measured via the asymmetry∣∣Āf̄−/Af+∣∣2 − 1∣∣Āf̄−/Af+∣∣2 + 1

(B.3)
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2. In the case of both semileptonic decays of mesons, M → lX and in neutral meson
mixing, CP violation can be measured of the asymmetry of the time dependent
rates

ASL =
1− |q/p|4

1 + |q/p|4
(B.4)

3. The third case occurring CP violation is in an interference of a decay without
mixing an a decay stemming from a meson mixing. The decay product is a CP
eigenstate. With the definition

λf =
q

p

Āf
Af

, (B.5)

the imaginary part of Eq. (B.5) is the only hint of CP violation, if the final state
f is a CP eigenstate. Furthermore, if the additional condition ĀfCP = AfCP is
fulfilled, then the source of CP violation can be found only in the asymmetry of
the decays mentioned above.

In general there exist two phases which are CP violating. These phases are the so-called
weak phase and strong phase. The words weak and strong may be misleading, as they
are not related to the weak and strong interaction.
The weak phase originates from the complex couplings in the Lagrangian and the am-
plitudes Af and Āf̄ should have opposite signs. The difference of the phases in the
amplitudes is convention independent. Further, the weak phase φ manifests itself in the
couplings of the W boson. On the contrary, should have Af and Āf̄ the same sign as
the strong phase δ stems from a CP invariant interaction. A possibility to exhibit the
strong phase is the final state interaction of on-shell particles. The other possibility for
the existence of the strong phase an even product with more than four γ matrices in
combination with γ5 as in

γνγµγσγργ5 = −iενµσρ (B.6)

The amplitudes in Eq. (B.1) can be rewritten in terms of the weak phase φ and the
strong phase δ with some parameters ai leading to

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2) (B.7)

Āf̄ = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2) (B.8)

and the neutral mesons An explanation of the direct CP violation via φ as only reason
is not possible, because in this case the strong phase δ and the parameters ai contribute,
as well. Both the difference of the strong phases as the fraction of the quantities ai
depend on hadronic parameters which are not easy to calculate, but can be determined
by experiment. The case of direct CP violation corresponds to 1.
The so-called indirect CP violation appears, if only the weak phase of the investigated
mesons φM 6= 0, but both ai and the strong phase δ are vanishing. Then, the asymmetry
in Eq. (B.4) can be rewritten in terms of the decay rate and the matrix element

ASL = −
∣∣∣∣ Γ12

M12

∣∣∣∣ sin (φM − φΓ) . (B.9)

The challenge is the extraction of φM − φΓ in Eq. (B.9), as the ratio Γ12
M12

depends on
long distance physics contributions.
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Summarizing, CP violation happens both direct and indirect as CP violation is an
explanation of the baryon asymmetry in the universe which is assumed to originated
from an equal distributed matter-antimatter state [343]. At the same time the Sakharov
conditions are fulfilled in the SM [343, 45–47].

B.2 Input parameter for Sec. 5.4

B.2.1 B0–B
0

mixing
The bag parameters are taken from [249] and the magic numbers are taken from [334]
that read

ai = (0.286,−0.692, 0.787,−1.143, 0.143)

b
(1,1)
i = (0.865, 0., 0., 0., 0.) c

(1,1)
i = (−0.017, 0., 0., 0., 0.)

b
(2,2)
i = (0., 1.879, 0.012, 0., 0.) c

(2,2)
i = (0.,−0.18,−0.003, 0., 0)

b
(2,3)
i = (0.,−0.493, 0.18, 0., 0.) c

(2,3)
i = (0.,−0.014, 0.008, 0., 0.)

b
(3,2)
i = (0.,−0.044, 0.035, 0., 0.) c

(3,2)
i = (0., 0.005,−0.012, 0., 0.)

b
(3,3)
i = (0., 0.011, 0.54, 0.) c

(3,3)
i = (0., 0., 0.028, 0., 0.)

b
(4,4)
i = (0., 0., 0., 2.87, 0.) c

(4,4)
i = (0., 0., 0.,−0.48, 0.005)

b
(4,5)
i = (0., 0., 0., 0.961,−0.22) c

(4,5)
i = (0., 0., 0.,−0.25,−0.006)

b
(5,4)
i = (0., 0., 0., 0.09, 0.) c

(5,4)
i = (0., 0., 0.,−0.013,−0.016)

b
(5,5)
i = (0., 0., 0., 0.029, 0.863) c

(5,5)
i = (0., 0., 0.,−0.007, 0.019)

Bi = (0.88, 0.82, 1.02, 1.15, 1.99) (B.10)

The masses have been evaluated at the bottom mass.

B.2.2 D0–D
0

mixing
The bag parameter for D0−D̄0 mixing are from [335] and the masses have been evaluated
at 3 GeV.

ai = (0.286,−0.692, 0.787,−1.143, 0.143)

b
(1,1)
i = (0.837, 0., 0., 0., 0.) c

(1,1)
i = (−0.016, 0., 0., 0., 0.)

b
(2,2)
i = (0., 2.163, 0.012, 0., 0.) c

(2,2)
i = (0.,−0.20,−0.002, 0., 0)

b
(2,3)
i = (0.,−0.567, 0.176, 0., 0.) c

(2,3)
i = (0.,−0.016, 0.006, 0., 0.)

b
(3,2)
i = (0.,−0.032, 0.031, 0., 0.) c

(3,2)
i = (0., 0.004,−0.010, 0., 0.)

b
(3,3)
i = (0., 0.008, 0.474, 0.) c

(3,3)
i = (0., 0., 0.025, 0., 0.)

b
(4,4)
i = (0., 0., 0., 3.63, 0.) c

(4,4)
i = (0., 0., 0.,−0.56, 0.006)

b
(4,5)
i = (0., 0., 0., 1.21,−0.19) c

(4,5)
i = (0., 0., 0.,−0.29,−0.006)

b
(5,4)
i = (0., 0., 0., 0.14, 0.) c

(5,4)
i = (0., 0., 0.,−0.019,−0.016)

b
(5,5)
i = (0., 0., 0., 0.045, 0.839) c

(5,5)
i = (0., 0., 0.,−0.009, 0.018)

Bi = (0.75, 0.66, 0.96, 0.91, 1.10) (B.11)
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B.2.3 K0–K
0

mixing
With the application of Eq. (5.49) as well as the following magic numbers from [336]:

ai = (0.29,−0.69, 0.79,−1.1, 0.14)

b
(1,1)
i = (0.82, 0., 0., 0., 0.) c

(1,1)
i = (−0.016, 0., 0., 0., 0.)

b
(2,2)
i = (0., 2.4, 0.011, 0., 0.) c

(2,2)
i = (0.,−0.23,−0.002, 0., 0)

b
(2,3)
i = (0.,−0.63, 0.17, 0., 0.) c

(2,3)
i = (0.,−0.018, 0.0049, 0., 0.)

b
(3,2)
i = (0.,−0.019, 0.028, 0., 0.) c

(3,2)
i = (0., 0.0028,−0.0093, 0., 0.)

b
(3,3)
i = (0., 0.0049, 0.43, 0.) c

(3,3)
i = (0., 0.00021, 0.023, 0., 0.)

b
(4,4)
i = (0., 0., 0., 4.4, 0.) c

(4,4)
i = (0., 0., 0.,−0.68, 0.0055)

b
(4,5)
i = (0., 0., 0., 1.5,−0.17) c

(4,5)
i = (0., 0., 0.,−0.35,−0.0062)

b
(5,4)
i = (0., 0., 0., 0.18, 0.) c

(5,4)
i = (0., 0., 0.,−0.026,−0.016)

b
(5,5)
i = (0., 0., 0., 0.061, 0.82) c

(5,5)
i = (0., 0., 0.,−0.013, 0.018)

Bi = (0.6, 0.66, 1.05, 1.03, 0.73)

Ri = (1,−12.9, 3.98, 20.8, 5.2) (B.12)

have been used to obtain the mixing down to µ = 2GeV.

Input parameter for Meson mixing

Parameter Value Reference

ϕε 43.51
◦

[6]
κε 0.94± 0.02 [337, 338]
fBd (186± 11) · 10−3 GeV [339]
fD 201± · 10−3 GeV [249]
fK 156.2·10−3 GeV [340]
mB (5279.63± 0.15) · 10−3 GeV [6]
mD (1864.83± 0.005) · 10−3 GeV [6]
mK (497.611± 0.013) · 10−3 GeV [6]
∆mexp

K (3.484± 0.006) · 10−15 GeV [6]
msc 750 GeV [211, 212]
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Input parameter for the Bs/d Meson decay

Parameter Value Reference

GF 1.166 · 10−5 GeV−2 [6]
α (mZ) 1/127.9 [6]
s2
θW

0.231 [6]

fBs (222± 11) · 10−3 GeV [339]
mBs (5366.89± 0.16) · 10−3 GeV [6]
mµ (105.6583745± 0.0000024) · 10−3 GeV [6]
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(2016) doi:10.1016/j.physrep.2016.06.001 [arXiv:1603.04993 [hep-ph]].

[279] B. Grinstein, M. J. Savage and M. B. Wise, Nucl. Phys. B 319, 271 (1989).
doi:10.1016/0550-3213(89)90078-3

[280] M. Blanke, arXiv:1704.03753 [hep-ph].

139



[281] J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, “Evidence
for the 2 pi Decay of the k(2)0 Meson,” Phys. Rev. Lett. 13, 138 (1964).
doi:10.1103/PhysRevLett.13.138

[282] J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, “Regeneration of K-10
Mesons and the K-10- K-20 Mass Difference,” Phys. Rev. 140, B74 (1965).

[283] M. Moulson [NA62-KLEVER Project Collaboration], J. Phys. Conf. Ser. 800, no.
1, 012037 (2017) doi:10.1088/1742-6596/800/1/012037 [arXiv:1611.04864 [hep-ex]].
[284]

[284] F. Newson et al., arXiv:1411.0109 [hep-ex].

[285] G. Buchalla, “Kaon and charm physics: Theory,” hep-ph/0103166.
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