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The conditions which are imposed by mathematical axioms can in general
only within limits be fulfilled by physical objects. The integers which occur
in arithmetics may still rather well be in harmony with atomistic physics.
Points, lines, planes, etc., defined by the continuum in geometry obey how-
ever definite relations which can at best in crude approximation be identified
with measurable physical systems. This is apparent from the one to one map-
ping of sets of the continuum on subsets. One can expect from the foregoing
that any good and therefore clear physical theory involving a continuum will
lead eventually to extreme results where physics can no longer do justice to
the axioms so that no reasonable person can believe in the absurdity of its
predictions. Riemann had already recognized the problem of the continuum
in the complementarity of geometry and physics for the description of na-
ture. He devoted a section of his habilitation work to a discrete description.
One can not expect that in the sophisticated spacetime continuum of the
general theory of relativity the consequences of Riemann’s critique of such
sharply contoured geometric constructions as points, lines — and even the
light cone, will not come to the light when describing extreme physical situ-
ations. This is already known in microscopic physics where the uncertainty
relation rules out the identification of points with physical objects. The
persistence of the curse of the thirteenth fairy — (with which Schrédinger
poetically compares the continuum because it proceeded the birth of our
science) — results strangely enough from macroscopic physics. The Einstein-
Hilbert equations of general relativity predict inevitably the gravitational
collapse of a sufficiently large cloud of dust to a point, irrespective of the
nature of the short range interaction between the dust particles. The point
of view that this extreme result is a manifestation of the predicted absurdity
and has not the character of a physical law, is not shared today by many
physicists. Einstein himself and also Schrédinger did however not advocate
the last mentioned trend. This is witnessed by the article [1] which intro-
duces a modified interpretation of the field equations to abandon the domain
beyond the horizon. One sees in the apparent inevitability of gravitational
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collapse rather one of the greatest revolutions in our physical world picture.
The argument for this collapse is based on the fact that the curvature near
the formation of a horizon can remain small. The principle of equivalence
seems then to rule out any reason why physics should be different in this
domain than in others so that a given solution of the Einstein-Hilbert field
equations does apply everywhere.

The author’s counter-argument is based on macroscopic quantum ef-
fects induced by the curvature. The earliest discovered of these effects is
Schrédinger’s alarming phenomenon of elementary particle pairs created in
the time dependent metric of an expanding universe [2]. Associated with it
are the contributions of virtual elementary particle pair effects, which be-
came known as the gravitational analogues of the Uehling term of the Lamb
shift {3] and of the Casimir effect [4]. There exist other more complicated
contributions of quantized fields in classical gravitational fields, even in low
order approximations. The terms due to virtual particle contributions are in
general divergent and non-renormalizable. Every quantum field contributes
to an additional source term of the gravitational field equations. The gravi-
tational field itself has also to be considered — but we can hardly do more
than speculate about the microscopic manifestations of the gravitational
field. Solutions of the classical Einstein-Hilbert equations can not account
for the appearance of such source terms.

We summarize the conclusions we draw from the foregoing considerations:

1. The gravitational collapse of dust to a geometrical point predicted by
classical general relativity is tentatively considered as an absurdity of
the kind discussed.

2. Our knowledge about quantum effects in classical gravitational fields
excludes a rigorous macroscopic description of extreme situations in
terms of the Einstein-Hilbert equations alone. These cannot produce
the Schrodinger phenomenon and thus also not its virtual manifesta-
tions which ought to be considered before conclusions about horizon
formation are drawn.

3. We lack empirical knowledge about .the structure of the gravitational
interaction in microscopic regions and lack adequate knowledge of parti-
cle — and field theory to even estimate the magnitude of the mentioned
macroscopic quantum effects in classical gravitational fields.

4. We have no direct observational criterium to distinguish a highly col-
lapsed system from a true black hole with a horizon.

5. To avoid the fallacies cited under point 3 we search for modified macro-
scopic equations which are hoped to include the macroscopic quantum
effects in average and tend to eliminate the absurdity. These equations
must be of higher order than the second and must give a good appro-
ximation to general relativity in less extreme situations. The coupling
of matter with gravitation should contain nonminimal terms to produce
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the Schrodinger phenomenon.
What about the principle of equivalence, Einstein’s ingenious bridge between
physics and geometry? Einstein and Rosen [1] conclude with its help that
something different than the vacuum must be found (latest) at the horizon
— if the rest of physics is to remain valid. They postulate there a source in
accordance with Einsteins geometrization program. On the other hand the
ultrarelativists — those who for one or the other reason follow an orthodox
course without much consideration about results of quantum and particle
physics - they conclude from the principle of equivalence that space-time has
to be extended unaliered beyond the horizon until it ends in a singularity.
Their use of the prescribed mathematics is certainly correct — but they risk
to fall just because of this onto the mentioned absurdity. The Schrédinger
phenomenon demands modifications of the classical equations already before
and outside the horizon.

Equations with an admixture of fourth order terms, derivable from a
Lagrangian of the form: :

L = /g (R+ aR? + bRy;;x RMIF) (1)

a,b constants of dimension (length) have early been considered [2]. Their
vacuum solutions include all of those of general relativity. Other physically
significant vacuum solutions are not known. The presence of matter requires
here solutions different from general relativity but none are known either.
Other lower order effects of quantum field theory are even more difficult to
incorporate into classical equations.

The search for modified equations need not to be restricted to the pertur-
bation formalism of quantum field theory. The approach from a gauge prin-
ciple and in particular from Kaluza-Klein models appears promising. The
latter achieve a quasi-unification of general relativity in interaction with a
gauge field of vanishing rest mass in a (somewhat mutilated) metrical space
of 44+ n dimensions. The Schrédinger phenomenon, of particular interest for
a massless gauge field, does not appear in the classical theory. A nonmininal
interaction is required to obtain it classically. There are too many possibi-
lities to arrive at such equations. We shall follow one way led by an early
attempt of the author to describe the inner quantum number of spin by a
higher dimensional Kaluza-Klein generalization. The gauge group is in the
simplest case that of the tetrade rotations. The theory has the unique fea-
ture of convertability of the inner quantum number (spin) into a dynamical
variable (angular momentum) {5,6].

The theory is formulated on the ten-dimensional manifold of the anti-De
Sitter group G = S0O(3,2). The subgroup H = SO(3,1) is the gauge group.
The principal fibre bundle P(G, H, G/H, ) has the anti-De Sitter universe
with the topology of G/H as base manifold and the natural projection 7 :
G — G/H. The Cartan-Killing metric v of every semi-simple Lie group G,
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Tuv = Tr{(AdAu) Y (AdAu)}» (2)

with A,, A, left invariant vectors of &, fulfills Einstein equations,
Ruy ~ 37w (R-52) = 0. (3)

A metric ¢ = 7’ v is then defined on the base. It is in this case the anti-De
Sitter metric which fulfills:

By — g (B+1)=0 (4)

with B;; the Ricci tensor of the base space. The left invariant vectors
Ar (R = 1...10) are Killing vectors of v. We shall label henceforth in-
dices pertaining to the base space by letters A... L running from 1...4
and those pertaining to the fibre by letters M ...Q running from 5...10.
General indices R...Z run from 1...10. This rule will be applied without
further warning also to the Einstein summation convention.

We consider more general metrics v which are solutions of the Einstein
equations (3) and keep the six Killing’s vectors with unaltered commutation
relations on each fibre,

[Ap, Ag) = cpy An. (5)

The structure of the principal fibre bundle P and of the subgroup H on
the fibres thus still exists. In the space perpendicular to the Ay there exist
four orthonormal vector fields Ag with the unaltered commutation relations
of the group G-

[Ag, Am] = chiy Al (6)

only the commutation relations:

[Ag, AF] = Cp(z) AR (7)

are modified to base point dependent general structure constants.

The metric v defines a connection on P with horizontal vectors Ag per-
pendicular to the fibre. The generalized structure constants CM,, Cfy de-
termine respectively curvature and torsion two forms over the base. The
topology of the base remains that of the anti- De Sitter universe, but the
metric g = 7'y is now generalized.

The construction constitutes a generalized classical Kaluza-Klein theory
with a gauge field FM which is determined by the CIE‘;JH. The geometry on the
base is non-Riemannian. The torsion two-form is in general not vanishing.
The gauge group H is a pseudo orthogonal subgroup of GL(4,IR) which
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allows the decomposition of the connection into a Riemannian part and
contortion,

H .
K= L (i e Tl (9)
EF = 5 \'EF FE EF

with T the torsion tensor.
The components of the curvatusc tensor F of the two form FM can
likewise be decomposed:

Fagrs = Bagrs + Qae1J, (10)

Quarry = Kagry — Kaggu + Kapr KB — Kags Kgy (11)

with the Riemann tensor B and contortion K. The semicolon denoting the
Riemannian covariant derivative.

Such a decomposition cannot be achieved with the full GL(4, IR) as gauge
group. The assumptions about Riemannian curvature found in the litcrature
[7) in connection with this gauge group can thus in general not be right. See
ref. 6.

The purely vertical component of the ten-dimensional equation (3) is
eliminated with Lagrange multipliers to restrict only to such solutions for
which the natural metric on the fibres is preserved and the Planck length
(in units with A = ¢ = 1 the square root of the gravitational constant G) is
introduced on the base manifold as physical unit of length instead of that of
the radius of the universe. The theory cannot yield a relationship between
these two lengths without altering the topology of the manifolds.

The mixed horizontal-vertical components of equation (3) are

this becomes if torsion vanishes

B4yl =0 (13)

and due to the Bianchi identities:

By - By =0 (14)

related by Yang to a gauge theory of GL(4,IR) [7]. The absence of torsion
which can in this case not be separated, is not accounted for in Yang’s
paper and equation (14) alone also admit unphysical solutions. Yet the term
(12) is the Riemannian analog of Maxwell’s equations. It is supplemented in
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equation (11) by a source formed out of torsion and by the purely horizontal
cormponents of equation (3),

Bl{? - %GFAHDE FAHDL _ %5{; (B - %GFAHDJ FAHDJ 4 1) =0 (1%5)

We are inclined to relate the torsion term of equation (12) to a nonmi-
nimal interaction of torsion with elementary particle spin. Equation (13)
admits all vacuum solutions of general relativity. Equation (14) consists of
the Einstein’s term with cosmological member and the energy-momentum
tensor of the Yang-Mills field, which can be decomposed again into me-
tric curvature and torsion; it is of vanishing trace. Vanishing torsion leaves
this term bilinear in the metric curvature - apparently an additional vac-
uum energy of virtual matter fields which remains small with the curvature.
The real field part is bilinear in @ and the term linear in B and @ con-
stitutes the nonminimal interaction which can give rise to particle creation
by gravitation, the Schrédinger phenomenon, of which even the virtual part
appears. Einstein’s request for the geometric expression of the matter ten-
sor is fulfilled — yet as its vanishing trace shows, the model describes only
very special matter. The spherically symmetric vacuum solution of general
realtivity satisfies also equations (12,13,14) but other solutions of Einstein’s
theory in general do not, due to the nonlinear term.
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