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ABSTRACT

A recently developed three-dimensional version of the quasistatic code LCODE has a novel feature that enables high-accuracy simulations of
the long-term evolution of waves in plasma wakefield accelerators. Equations of plasma particle motion are modified to suppress clustering
and numerical heating of macroparticles, which otherwise occur because the Debye length is not resolved by the numerical grid. The previ-
ously observed effects of premature wake chaotization and wavebreaking disappear with the modified equations.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0251688

I. INTRODUCTION

Plasma is now being actively studied as a medium capable of
accelerating particles to high energies at short distances. Among vari-
ous plasma-based acceleration techniques, wakefield acceleration1–3

provides the highest particle energies4,5 because the accelerating wave
is produced by an object (called a driver) traveling at approximately
the speed of light, allowing in-phase acceleration over long distances.

The temporal and spatial scales of accelerating structures and
accelerated beams in plasmas are typically very small, tens of femtosec-
onds and micrometers. Processes at these scales are difficult to charac-
terize experimentally with high resolution,6 so numerical simulations
always play a key role in this field.1,7 However, direct modeling of
plasma wakefield acceleration based on first-principles equations is
often too computationally intensive8,9 due to the huge scale difference
between structures to be resolved and propagation distances.10 For this
reason, various simplified models are widely used,7 one of which is the
so-called quasistatic approximation (QSA)11,12 implemented in several
codes.13–24

The QSA is based on the change of variables from time t and lon-
gitudinal coordinate z to

s ¼ z; n ¼ z � ct; (1)

where c is the speed of light. Most features simulated in the context of
plasma wakefield acceleration have a typical 45-degree-elongated

shape on the ðz; ctÞ plane (Fig. 1). The substitution (1) allows to shear
the simulation grid as shown in Fig. 1, make a long grid step in s, and
thereby increase the computation speed compared to the particle-in-
cell (PIC) method.25 The speed gain is roughly the ratio of the two
scales of quantities’ variation, along the line n ¼ const and along the
line t ¼ const, and can exceed four orders of magnitude for high
energy beams.26

The simulation domain in QSA moves at the speed of light, so
nothing can propagate forward in it. The beams (laser or particle
driver and accelerated particles) move backwards slowly in the
domain, while the plasma particles pass the domain at approximately
the speed of light. Therefore, it is convenient to treat beams and
plasma differently. For the particle beams, n is a space-like variable,
and locations ~r ¼ ðx; y; nÞ and momenta ~p ¼ ðpx; py; pzÞ of beam
particles are calculated as functions of s. Advancing s is done similarly
to advancing time in PIC codes. Laser drivers, if any, are treated simi-
larly to particle beams in the sense that the laser field (characterized by
the envelope12) is computed in the three-dimensional (3D) space
ðx; y; nÞ and advanced in s as if s is the propagation time. For the
plasma particles, n is a time-like variable, and two-dimensional (2D)
coordinates r? ¼ ðx; yÞ and 3Dmomenta~p are calculated as functions
of n at each s (we highlight 2D vectors in bold). Advancing n is similar
to advancing time in PIC codes. It is additionally assumed that fields
and parameters of plasma particles depend on s only through beam
properties, which is justified if the beam changes slowly compared to
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the timescale of plasma oscillations, and the longitudinal variation
scale of the unperturbed plasma density is much longer than the
plasma wavelength.25

Since plasma particles in QSA are characterized by only two spa-
tial coordinates, their physical meaning is different from that in PIC
codes. In PIC codes, a plasma macroparticle is a bunch of real particles.
In the QSA model, a plasma “macroparticle” is an infinitely long
“string” composed of real particles that enter the simulation domain at
different times but at the same transverse coordinate and with the
same initial momentum (Fig. 2). Calculating the plasma response
involves figuring out how these “strings” pass through the simulation
domain. Particle trajectories are built up layer by layer, starting from
the front boundary, simultaneously with calculating the fields on these
layers. To stay within the familiar terminology, we will retain the term
“macroparticle” (or simply “particle”) to refer to “strings” of particles
in the QSAmodel.

The QSA is efficient in simulating the long-term evolution of
plasma wakefields at some fixed value of z.27,28 Unlike the PIC model,

in QSA it is possible to follow the temporal evolution of the plasma at
only one value of z (Fig. 1), since the behavior of nearby plasma layers
is assumed to be the same but shifted in time. However, the duration
of reliably simulated wakefield evolution may be limited by the
unphysical interaction of closely spaced plasma particles.

The incorrect force between closely spaced particles is a long-
known effect in PIC simulations,29 and it is also present in QSA,
despite the 2D nature of the particles. As two particles of the same
charge approach a distance shorter than the grid step, the repulsion
force between them decreases, while the force between real point-like
particles should tend to infinity (Fig. 3). This can be imagined as if
there is an additional short-range force between the real particles.
Since wakefield behavior is determined mainly by the motion and
interaction of electrons, this additional force is attractive for them and
leads to the clustering of electrons, plasma heating, and eventually to
incorrect results. The recommended ways to overcome the problem
(to resolve the Debye length or increase the plasma temperature30) do
not work for plasma wakefield acceleration, because the initial temper-
ature of plasma electrons is very low (typically 5 eV31) and it is impor-
tant to keep it low to correctly simulate the long-term evolution of the
wave. The Debye length for this temperature is 300 times smaller than
the minimum scale usually resolved by plasma solvers, the plasma skin
depth c=xp, where xp is the plasma frequency. Therefore, the required
reduction of the grid step is too drastic to be a practical solution.
Another approach is to introduce a short-range force for particles that
are separated by less than some cutoff radius.30 In this case, it is neces-
sary to generate an additional “chaining mesh” and linked lists, which
significantly increases the numerical cost.

In this paper, we suggest a method called “declustering” to sup-
press particle clustering by modifying the particle interaction law at
close distances. Particle clustering can be seen most easily in electron
density maps, where it appears as small-scale noise, so we call plasma
perturbations caused by clustering “noise perturbations.” The declus-
tering smooths the density profiles and greatly extends the accuracy of
long-term simulations.

In Sec. II, we describe a newly developed 3D version of the quasi-
static code LCODE, in which the declustering is implemented. In
Sec. III, we show what the plasma response looks like in the presence
of particle clustering. Then, in Sec. IV, we detail the declustering and

FIG. 2. Quasistatic simulation domain and a plasma “macroparticle” (shown in red).

FIG. 3. The interaction force F vs distance l between two electron “strings” in reality
and in 3D LCODE simulations with some transverse grid step h, if the line between
electrons is parallel or at the angle of 45

�
to the grid.

FIG. 1. Objects simulated in the context of plasma wakefield acceleration (1–3) and
computational grids used for simulations of beam dynamics (4, 5) and wave evolu-
tion (6, 7) in PIC (4, 6) and QSA (5, 7) codes. The inset schematically shows driver,
witness, and plasma wave with the same coloring.
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show how it improves the simulations. Section V is devoted to an older
version of declustering that was implemented in the 2D version of
LCODE. Being less efficient than the new one, it nevertheless has
proved very useful in simulating long plasma wakes. Section VI
presents two examples in which the declustering qualitatively changes
the simulation results. Section VII summarizes the main messages of
this work.

II. LCODE

We illustrate the problem of particle clustering and solutions to
this problem with quasistatic code LCODE. Its 2D version has been in
use for almost 30 years and is well documented.15,16,32,33 Its 3D version
was developed recently, so we describe its most essential physical parts
(solvers) here. Other features of the 3D code (Python implementation,
parallelization, laser solver) that are not relevant to this study will be
described elsewhere.

In this section, we use dimensionless variables. The times are nor-
malized to x�1

p , where the plasma frequency xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=m

p
, and

n0, e, and m are unperturbed plasma density, elementary charge, and
electron mass, respectively. The electric and magnetic fields ~E and ~B
are normalized to E0 ¼ mcxp=e, the current density~j and charge den-
sity q are normalized to en0c and en0, respectively, and the lengths are
normalized to k�1

p � c=xp.

A. Plasma solver

The plasma solver is the essence of the code. There is no single
recipe for it, and different QSA codes use different ways of solving the
equations. The plasma solver consists of three main parts: solving
equations for electromagnetic fields, moving the plasma particles, and
depositing the charge and current of the particles onto the grid.

We start with Maxwell equations

rot~E ¼ � @~B
@t

; rot~B ¼~j þ @~E
@t

; div~E ¼ q; div~B ¼ 0: (2)

Combining these equations and following the standard QSA (assum-
ing that fields, charges, and currents depend on r? and n but not on s)
lead to six Poisson equations for the fields

r2
?Ex ¼

@q
@x

� @jx
@n

; r2
?Ey ¼

@q
@y

� @jy
@n

; (3)

r2
?Bx ¼

@jy
@n

� @jz
@y

; r2
?By ¼ @jz

@x
� @jx

@n
; (4)

r2
?Ez ¼

@jx
@x

þ @jy
@y

; r2
?Bz ¼ @jx

@y
� @jy

@x
; (5)

wherer2
? ¼ @2

x þ @2
y .

We assume perfectly conducting boundaries at jxj ¼ xm
and jyj ¼ xm. The plasma particles move in a narrower area jxj < xr ,
jyj < xr and elastically reflect from its boundaries. This trick (as if the
walls are “painted” with dielectric) simplifies the boundary conditions.
The difference xm � xr is always chosen to be larger than half the par-
ticle size, so the currents and charges turn to zero at the boundaries,
and the boundary conditions are

jxj ¼ xm : Bx ¼ Ey ¼ Ez ¼ 0;
@Ex
@x

¼ @By

@x
¼ @Bz

@x
¼ 0; (6)

jyj ¼ ym : By ¼ Ex ¼ Ez ¼ 0;
@Ey
@y

¼ @Bx

@y
¼ @Bz

@y
¼ 0: (7)

Thus, we solve the Dirichlet boundary value problem for Ez , the
Neumann problem for Bz , and the mixed boundary value problems
for the other field components.

To achieve numerical stability of the solver, we modify Eqs. (3)
and (4) by subtracting the field component with some coefficient l:

ðr2
? � lÞEx ¼ @q

@x
� @jx

@n
� l~Ex; (8)

ðr2
? � lÞEy ¼ @q

@y
� @jy

@n
� l~Ey; (9)

ðr2
? � lÞBx ¼

@jy
@n

� @jz
@y

� l~Bx; (10)

ðr2
? � lÞBy ¼ @jz

@x
� @jx

@n
� l~By: (11)

The fields marked with tildes are some predictions for the correspond-
ing fields. The best performance of the solver (stability and highest
accuracy) is achieved for l � 1þ h, where h is a transverse grid step.
Knowing all right-hand sides, we solve Eqs. (5)–(11) on the grid using
Discrete Cosine and Sine Transformations (DCT and DST) of the first
type.

We use the fields obtained from solving Eqs. (5)–(11) to push the
plasma and beam particles. For the plasma particles, the dimensionless
equations of motion in the QSA framework have the form

dr?
dn

¼ � v?
1� vz

;
d~p
dn

¼ � Q
1� vz

~Ep þ~v �~Bp

� �
; (12)

where~v ¼~p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ~p2

q
, Q, andM are the velocity, charge, and mass

of the particle, respectively,~Ep and~Bp are the fields interpolated from
the grid to the particle location. QSA codes implement different strate-
gies for pushing plasma particles;19 we use a custom-made second-
order scheme described later.

The current density~j and charge density q in the field equations
are the sums of the plasma and beam (index b) contributions, where
the plasma contribution is the sum of the electron (index e) and ion
(index i) components:

~j ¼~jb þ~je þ~ji; q ¼ qb þ qe þ qi: (13)

Due to their larger mass, ions move slower than electrons, and their
current density is usually much lower. Therefore, in some cases,
including those presented in this work, the ion motion can be
neglected by putting~ji ¼ 0 and not evolving qi.

The current and charge densities are calculated by gathering the
contributions of nearby particles at each grid point using a procedure
called deposition.7 In contrast to PIC codes, the weight of plasma par-
ticles in QSA is additionally divided by ð1� vzÞ during the deposition.
Both field interpolation and deposition use a fourth-order weight func-
tion as it provides better numerical stability.34 After obtaining~j and q,
calculating their derivatives with respect to x and y is straightforward.
The derivatives with respect to n require currents and charges at two
consecutive slices and need a special predictor-corrector loop.

The loop realizes a transition from plasma slice number i to slice
number iþ 1 in the direction of decreasing n. All fields and particle
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parameters at slice number i (denoted by the corresponding super-
script) are known. The loop consists of the following sequential steps:

1. Propagate the plasma particles from slice i to slice iþ 1 as if
there are no fields:

riþ1
? ¼ ri? þ vi?

1� viz
Dn; (14)

where Dn is the positive longitudinal grid step. This allows us to
estimate the transverse positions of the particles at half-step
iþ 1=2,

riþ1=2
? ¼ riþ1

? þ ri?
2

; (15)

and interpolate the fields of slice i to these positions by weighted
summing of several grid values.7,30 We denote these fields ~E

i
p

and~B
i
p.

2. Push the particles from slice i to slice iþ 1 according to Eq.
(12), using the fields obtained at the previous step. For this, we
predict the particle momentum at the half-step (denoted by the
superscript “a”):

~pa ¼~pi þ Q
1� viz

~E
i
p þ~vi �~B

i
p

� �Dn
2
; (16)

correct the momentum (denoted by the superscript “b”):

~pb ¼~pi þ Q
1� vaz

~E
i
p þ~va �~B

i
p

� �Dn
2
; (17)

move the plasma particle:

riþ1
? ¼ ri? þ vb?

1� vbz
Dn; (18)

and, finally, calculate the particle momentum at the new slice:

~piþ1 ¼ 2~pb �~pi: (19)

3. Calculate the charge and current densities at slice iþ 1, and
half-sum the values at slices i and iþ 1 to get the densities at
half-step iþ 1=2.

4. Calculate the fields ~E
iþ1=2

and ~B
iþ1=2

from Eqs. (5)–(11). The
derivatives with respect to x and y in the right-hand sides of
Eqs. (5) and (8)–(11) are taken of~j

iþ1=2
and qiþ1=2. The deriva-

tives with respect to n use currents and charges at slices i and
iþ 1. The tilde-marked field predictions are taken from the
known slice i.

5. Having newer riþ1
? from Eq. (18), update riþ1=2

? using Eq. (15).
6. Push particles from slice i to slice iþ 1 again. This step is simi-

lar to step 2, but we use the fields~E
iþ1=2

and~B
iþ1=2

interpolated
to the updated riþ1=2

? instead of~E
i
p and~B

i
p.

7. Repeat step 3.
8. Repeat step 4 using earlier obtained values of ~E

iþ1=2
and ~B

iþ1=2

as the tilde-marked field predictions. This yields updated ~E
iþ1=2

and~B
iþ1=2

.
9. Calculate the final fields at slice iþ 1:

~E
iþ1 ¼ 2~E

iþ1=2 �~E
i
; ~B

iþ1 ¼ 2~B
iþ1=2 �~B

i
: (20)

10. Repeat steps 5 and 6 to obtain the final particle states at slice
iþ 1.

11. Calculate the final charge and current densities at slice iþ 1.

After the loop is completed, we perform declustering, discussed
in Sec. IV, using the final particle states at slice iþ 1.

B. Beam solver

The beam solver is responsible for beam initialization, beam
charge and current deposition, and pushing beam particles using the
fields computed by the plasma solver.

The beam can be represented differently. One way is to directly
specify~jb and qb and keep them unchanged. This mode is convenient
if one wants to find the plasma response to an unchanging beam and
eliminate any shot noise that may appear otherwise. We use this mode
in Secs. III–V and VIB. Another way, the beam representation as a
particle ensemble, is necessary to simulate the beam evolution. The
particles can have different or equal charges and masses and can be ini-
tially arranged in an ordered or random manner. In Sec. VIA, we use
equal particles and randomly arrange them in both the transverse and
longitudinal directions according to the given distribution.

Unlike plasma particles, beam particles have a certain longitudi-
nal coordinate n, so they are also characterized by some longitudinal
weight function. Here, we choose linear interpolation in the longitudi-
nal direction and the same fourth-order transverse weight function
that we use for plasma particles. In contrast to the deposition in the
plasma solver, there is no extra denominator ð1� vzÞ in the beam par-
ticle contributions.

The equations of motion of the beam particles are similar to those
used in PIC codes:7

dr?
ds

¼ v?;
dn
ds

¼ vz � 1;
d~p
ds

¼ Q ~Ep þ~v �~Bp

� �
: (21)

We use the Higuera–Cary approach35,36 for integrating these equations
by an explicit leapfrog method. This approach has advantages over the
other two popular methods: it preserves the phase-space volume as the
Boris scheme37 and preserves ~E �~B drift velocity as the Vay
scheme.38

By default, the integration step for Eq. (21) equals the periodicity
of field update Ds. We need to resolve betatron oscillations of the
beam particles, so the required step scales proportionally to the square
root of the particle energy. If some particles have much lower energy
than others (e.g., a newly injected witness in the presence of a high-
energy driver), then Ds is determined by the lowest energy. This slows
down simulations. In some cases, we can solve this problem with indi-
vidual substepping for beam particles as follows: If the particle energy
is less than some threshold value, we break the step Ds into several
smaller ones. However, since individual substepping does not affect
the fields, this technique only makes sense if the substepped particles
have a negligible effect on the fields (e.g., there is no beam loading).

C. Energy flows

The plasma wakefield acceleration is essentially the energy trans-
fer from the driver to the witness. This process is most visible in the
co-moving simulation window39 because the beams in it move slowly.
The energy flows backward in n from the driver, which is the energy
source, to the witness, which is the energy sink. Unused energy leaves
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the window through the rear boundary. Transverse boundaries that
elastically reflect the particles do not affect the energy flux, but can do
so under other reflection conditions. The energy flux integrated across
the simulation window must be conserved between and behind the
beams, and this is a convenient accuracy diagnostic of the plasma
solver.

The dimensionless integral energy flux takes the form39–41

WðnÞ ¼
ð

E2 þ B2

2
� ½~E �~B�z

� �
dSþWpðnÞ; (22)

WpðnÞ ¼
X
j

ðcj � 1Þð1� vjzÞMj; (23)

whereMj,~v j, and cj are mass, velocity, and relativistic factor of plasma
particles, respectively, the integration is performed over the transverse
cross-section located at some n, and the summation is over all plasma
particles intersecting this cross section. The value of W=c at the corre-
sponding n represents either the energy released by the driver or the
energy remaining behind the witness per unit length of the plasma.
The natural unit for the fluxes is

W0 ¼ m2c5

4pe2
� 2c

J
m
: (24)

We can also introduce the energy flux related to the kinetic energy of
plasma components considered as fluids:

Wf ðnÞ ¼
ð
dS

X
a

naMaðca � 1Þð1� vazÞ; (25)

where na, Ma,~va, and ca are, respectively, the density, particle mass,
velocity, and relativistic factor of the plasma component a. In a cold
plasma, the flux Wf equals Wp. However, if some plasma component
has a nonzero temperature or multiple flows develop because of wave
breaking or for other reasons, the difference

DW ¼ Wp �Wf (26)

appears. Thus, a nonzero DW indicates that there are plasma particles
of the same sort located at the same point, which have different
velocities.

III. CLUSTERING OF MACROPARTICLES

Let us illustrate the consequences of incorrect interparticle force
by the following example.42 A short non-evolving positively charged
beam of density

nb ¼
nb0 e�r2=ð2r2r Þ

2
1� cos

2pn
L

� �� �
; �L < n < 0;

0; otherwise;

8><
>: (27)

with

nb0 ¼ 0:1n0; rr ¼ k�1
p ; L ¼ 2

ffiffiffiffiffi
2p

p

kp
; (28)

propagates in a uniform cold plasma of density n0. The beam excites a
wakefield in a nearly linear regime. The longitudinal electric field Ez of
the wave maintains its amplitude for more than 500 periods at about
0:07E0 (Fig. 4). The wave period on the axis is approximately

1:000 53 � 2px�1
p . Although the code outputs all quantities as func-

tions of n, we treat them as functions of time t to emphasize that the
long-term evolution of the wave is tracked at a fixed point (s ¼ z ¼ 0,
for definiteness).

Unless otherwise specified, we use the following parameters for
3D simulations: grid steps h ¼ Dn ¼ 0:05k�1

p , number of electrons
per cell N ¼ 4 equals the number of immobile ions per cell. The par-
ticles are distributed regularly, the initial positions of electrons and
ions coincide. Transverse dimensions of the simulation window are
25k�1

p � 25k�1
p . This grid is too coarse to simulate wakefield evolution

over hundreds of periods43 [see also Fig. 7(a)], but is convenient for
demonstrating the problem and its solution. We also present results of
high-resolution simulations with h ¼ 0:01k�1

p , Dn ¼ 0:005k�1
p and

the same other run parameters. The high-resolution results are in good
agreement with those of other codes,42 proving reliability of the 3D
LCODE.

Plasma electrons, while oscillating in the plasma wave, group
together into clusters spaced two grid steps apart (Fig. 5). The charac-
teristic clustering time depends on the wave amplitude, the higher the
amplitude, the shorter the time. The electrons do not remain in the
clusters, but continue moving relative to each other due to transverse
momentum acquired during the clustering. The clustering process
starts as an instability and at the developed stage leads to energy trans-
fer from coherent plasma oscillations to the thermal motion of plasma
electrons.

The clusters make the plasma density distribution “noisy”
(Fig. 6). However, when averaged over multiple cells, the density
becomes regular and smooth, so the clustering itself has no direct effect
on the wakefield [Fig. 7(a)], which is determined by structures of larger
size (of order k�1

p ). The clustering also has little effect on the total
plasma energy [Fig. 7(b), note the scale of energy variation]. The nega-
tive consequences of clustering are rapid plasma heating at the expense
of wave dissipation, an increase in the effective “size” of macroparticles
(clusters instead of individual particles), and appearance of short-
range fields that can affect the emittance of accelerated beams.44

To fix the problem, it is necessary to detect clustering as early as
possible. For this purpose, we consider displacements of particles rela-
tive to their initial positions r0?

d ¼ r? � r0?: (29)

The displacement is usually dominated by the particle motion in the
plasma wave [Fig. 8(a)]. Next, we introduce displacement inhomoge-
neities with respect to neighboring particles:

FIG. 4. Solution to the test problem (27) obtained from high-resolution 2D LCODE
simulations with Dn ¼ h ¼ 0:0025k�1

p and 10 plasma electrons per cell: electric
field EzðtÞ and beam density nbðtÞ at the point r ¼ z ¼ 0.
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gi;j ¼ di;j �
diþ1;j þ di�1;j þ di;jþ1 þ di;j�1

4
; (30)

where the subscripts i, j denote the ordinal numbers of particles in the
directions x and y; we write these subscripts only when the formulas
contain quantities referring to different particles. The displacement
inhomogeneities are much smaller than the displacements themselves,
but they are also often dominated by the plasma wave [Fig. 8(b)]. To
extract the noise component of the displacement, we average g over
some area covering several particles and subtract this average:

D ¼ g� hgi; (31)

where angle brackets denote averaging. This procedure allows us to
detect the noise at the earliest stages of its growth [Fig. 8(c)], typically
at amplitudes less than 10�4h, as can be seen from the time depen-
dence of Dmax

x , the maximum of Dx over all particles (Fig. 9).
If no special measures are taken, the noise displacements grow

exponentially. The growth rate is independent of grid size and number
of electrons per cell N (Fig. 9) and weakly dependent on the wave
amplitude (Fig. 10). However, the larger the wave amplitude, the
higher the initial level of the instability, and the faster the noise grows
to a high level.

FIG. 5. Change in time of the relative position of individual plasma electrons. The
distances xe and ye are measured from the center of mass of the electrons shown,
thus, eliminating the oscillations of these electrons as a whole in the plasma wave.
The zero point of this figure is initially at x ¼ 0:6k�1

p , y ¼ 0:5k�1
p . Red dots are the

initial electron locations, black dots are electron locations at xpt ¼ 678, and lines
are electron trajectories up to time xpt ¼ 750.

FIG. 6. Raw (left) and averaged (right) distributions of the electron density perturba-
tion dne at different times after beam passage.

FIG. 8. (a) Displacement dx of plasma electrons in units of grid size h, (b) corre-
sponding displacement inhomogeneity gx and its average hgxi, and (c) the noise
part of the displacement Dx along the line y0 ¼ 0:5k�1

p at xpt ¼ 300.

FIG. 7. The temporal evolution of (a) electric field amplitude Ezm on the axis and (b)
total energy flux W with the declustering on (solid lines) and off (dotted lines). Lines
for the high-resolution simulations coincide.
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IV. DECLUSTERING

Having determined the noise displacement of plasma particles,
we can influence it by modifying the equations of particle motion. We
add an extra transverse momentum to each plasma electron at each
step in n:

Dpi;j ¼ �KDn Fi;jDi;j �
Fiþ1;jDiþ1;j þ Fi�1;jDi�1;j

4

�

� Fi;jþ1Di;jþ1 þ Fi;j�1Di;j�1

4

�
� jDnFi;j½Di;j �Dprev

i;j �; (32)

where

Fi;j ¼
1� jDi;jj2=D2

0; jDi;jj < D0;

0; otherwise;

(
(33)

Dprev
i;j is the noise displacement at the previous step in n, and K, j, and

D0 are adjustable parameters.
The coefficient K characterizes the restoring force. If a particle is

displaced in some direction relative to where it should be in large-scale
perturbations, this force pushes it back. We assume that the restoring
force is exerted by nearby particles, so a counterforce must act on

them to fulfill Newton’s third law. The fractional terms in Eq. (32) are
responsible for the counterforce.

The restoring force alone cannot suppress the noise. Since it is
nondissipative, it forces noise perturbations to propagate as a wave
with some group velocity. Therefore, we introduce a damping term
(second term) into Eq. (32) and control the damping with the coeffi-
cient j.

The third coefficient D0 limits the declustering range. It smoothly
reduces the force to zero if the displacement is large enough. The
motion of plasma particles in the wake can be accompanied by strong
inhomogeneities in interparticle distances, for example, at wave break-
ing. The declustering should have minimal effect on these perturba-
tions. Real and nonphysical inhomogeneities can be distinguished
by the growth law. The physical (or real) inhomogeneities, if any,
quickly grow to large values regardless of declustering, while the
clustering stays at very low level for some time and can be filtered
out. To get a sense of the scales, let us estimate the displacements
caused by a single plasma electron if its charge is not balanced by
an ion. If there are N electrons per cell, then the linear charge density
of one (macro)electron is

k ¼ en0h2

N
: (34)

This “electron string” pushes nearby plasma electrons in different
directions by a transverse electric field of the scale

Ek 	 2k
h

	 2en0h
N

; (35)

causing oscillations with plasma frequency xp and amplitude

dk 	 eEk
mx2

p

	 h
2pN

: (36)

These oscillations driven by individual electrons can be seen on elec-
tron density maps in some regimes (e.g., in Fig. 18 of Sec. VI B).
Displacement inhomogeneities Dk caused by a single wandering mac-
roparticle are of the same order:

Dk=h 	 1
2pN

� 10�2: (37)

This displacement is large enough that we can choose a value of
D0 
 Dk such that it is 1–2 orders of magnitude greater than the
noise detection level (D0 	 10�3h, Fig. 9). In this way, we can sup-
press the noise without affecting the physical processes in the wave,
even if these processes involve a single plasma electron.

The optimal values of coefficients K and j depend on the prob-
lem being solved. The coefficients must obey

K þ j <
h2

Dn2N
: (38)

Otherwise, neighboring particles start to oscillate in antiphase at the
Nyquist frequency with exponentially growing amplitude, and the
declustering becomes unstable (Fig. 11). Typically, the optimal values
are the smallest values sufficient to suppress clustering. Experience is
gradually being gained to automatically select the coefficients in the
code as best as possible.

FIG. 9. Temporal growth of the maximum noise displacements Dmax
x at different grid

steps with the declustering on (dotted lines) and off (solid lines). The legend shows
run parameters in format kpDn=kph=N.

FIG. 10. Temporal growth of the maximum noise displacements Dmax
x for different

wave amplitudes controlled by varying the driver density nb0 in formula (27). The
legend shows the ratio nb0=n0. Faster displacement growth for large nb0=n0 is due
to wavebreaking.
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V. DECLUSTERING IN TWO-DIMENSIONAL GEOMETRY

The declustering implemented in 2D version of LCODE is less
efficient than the one described above because it damps only one insta-
bility mode. However, it allowed simulations of long plasma wakes
(more than 100 periods26,42,45,46) so it deserves to be described. The
formulas given below refer to the axisymmetric case, their modification
for the plane case is straightforward.

Suppose that the plasma electron density ne has a short-scale
modulation

dn ¼ �Aj cosðkhdrÞ; kh ¼ p=h; (39)

where dr is the distance to the grid node with number j. We can find
the modulation amplitude Aj in the vicinity of this node from the den-
sity in neighboring nodes:

Aj � ðne;jþ1 þ ne;j�1 � 2ne;jÞ=4: (40)

There should appear a radial electric field Er , which is determined by
the Poisson equation

1
r
@

@r
rEr ¼ 4p eni � ene þ qbð Þ � @Ez

@n
; (41)

directed so as to reduce the density perturbations. Suppose that the
longitudinal electric field Ez , the beam charge density qb, and the ion
density ni have no short-scale modulation. Then, the short-scale com-
ponent of the field, dEr , is determined only by the modulation of the
electron density:

1
r
@

@r
rdEr ¼ 4peAj cosðkhdrÞ: (42)

Let us solve this equation using complex amplitudes:

dn ¼ Re ðAje
ikhdrÞ; dEr ¼ Re ðBje

ikhdrÞ; (43)

Bj

r
þ ikhBj ¼ 4peAj; (44)

Bj ¼
4peAj

ikh þ 1=r
¼ 4peAjh

ipþ 1=j
¼ 4peAjh

p2 þ 1=j2
1
j
� ip

� �
: (45)

Returning to the real values, we obtain

dEr ¼ 4p2eAjh

p2 þ 1=j2
sinðkhdrÞ þ 4peAjh

jp2 þ 1=j
cosðkhdrÞ: (46)

The force ð�edErÞ caused by this short-scale component of the field is
added to other forces acting on individual electrons at each step in n.
The value of Aj is taken at the grid node closest to the electron.

The above algorithm delays noise growth and associated unphysi-
cal effects by suppressing the fastest growing mode of the instability
(Fig. 12). However, it cannot completely remove the noise because per-
turbations with smaller wave numbers continue to grow.

VI. EXAMPLES WHEN DECLUSTERING IS NECESSARY
A. Beam self-modulation

This example shows how the clustering adds a chaotic compo-
nent to the transverse wakefield. The effect disappears with decluster-
ing turned on.

Consider the test problem used in Ref. 47 to illustrate self-
modulation of a long particle beam. A positron beam initially (at
z ¼ 0) has a relativistic factor cb ¼ 1000, an angular spread of
2� 10�4, and a density

nb ¼ nb0 e�r2=ð2r2r Þ; n < 0;

0; n � 0;

(
(47)

with

nb0 ¼ 4� 10�3n0; rr ¼ 0:5k�1
p : (48)

FIG. 11. Stability region on the plane of declustering parameters j and K, repre-
sented as the maximum of Dmax

x over the simulation time up to 3000x�1
p . The white

star shows the working point (K ¼ 0:01, j ¼ 0:005) used in the illustrative exam-
ples of Sec. III.

FIG. 12. Plasma response to the beam (27) calculated with the axisymmetric code:
Fragments of electron density maps with the declustering off (upper halves) and on
(lower halves) at different delays after beam passage.
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The beam propagates in a cold, radially uniform plasma whose density
n depends on z [Fig. 13(a)]:

n
n0

¼
1; kpz � 200;
1þ 1:7� 10�4ðkpz � 200Þ; 200 < kpz < 700;
1:085; kpz � 700:

8<
: (49)

The beam undergoes self-modulation initiated by the steep leading
edge, splits into short microbunches spaced approximately one plasma
period apart (Fig. 14), and continues to propagate in a bunched state
with no field degradation [Fig. 13(b)] due to the increase in plasma
density experienced during the self-modulation.

In simulations of this test problem, h ¼ Dn ¼ 0:02k�1
p ,

Ds ¼ 50k�1
p , N ¼ 1, transverse dimensions of the simulation window

are 5k�1
p � 5k�1

p , and Nb ¼ 1:6� 107 macroparticles are used for the

beam. In variants with declustering, K ¼ 0:003, j ¼ 0:001, and deac-
tivation of declustering is disabled (D0 is large) because no wavebreak-
ing is expected.

Without the declustering, small-scale density perturbations occur
in the plasma and the plasma electrons heat up. The perturbations
have a non-zero group velocity and propagate transversely beyond the
beam area [Fig. 15(a)]. The clustering does not affect the wakefield
amplitude [the solid and dashed lines in Fig. 13(b) coincide] but intro-
duces a chaotic perturbation to the transverse wakefield (Fig. 16).
Perturbations of this kind can lead to unphysical growth of the acceler-
ated beam emittance44 and must be avoided in accurate simulations.
With the declustering, the density profile is smooth, the density pertur-
bations remain within the beam area [Fig. 15(b)], and the transverse
electric field is also smooth (Fig. 16).

Clean simulations of self-modulation provide insight into the
cause of slow long-wavelength transverse oscillations of microbunches.
These oscillations are sometimes evident in simulations,48 and even
visible in experiments.49 They are also present in our simulations:
Fig. 14(a) shows the microbunches at the moment of almost maximum
deflection. To visualize the oscillations better, we plot the average
transverse coordinates of individual microbunches, �x and �y , as func-
tions of distance traveled (Fig. 17). Only beam particles with radial

FIG. 13. Self-modulation test problem: (a) plasma density n and (b) maximum
excited wakefield Ezm vs propagation distance z. The legend indicates whether the
beam particles are initially distributed symmetrically or randomly in space, and
whether the declustering is on or off.

FIG. 14. Self-modulation test problem: (a) Beam portrait (beam density nbðx; y; nÞ
integrated over coordinate y) at z ¼ 2000k�1

p for the case of random initial distribu-
tion of beam particles and the declustering enabled; (b) the on-axis electric field Ez
excited by this beam.

FIG. 15. Perturbations of the plasma electron density dne caused by a self-
modulating beam (27) at x ¼ 0, z ¼ 1000k�1

p with the declustering off (a) and on
(b). The beam macroparticles are initially randomly distributed in space. The thin
vertical lines mark the cross-section where the Ey field is shown in Fig. 16.

FIG. 16. The transverse electric field Ey along the line x ¼ 0, n ¼ �150k�1
p at

z ¼ 1000k�1
p with the declustering off and on.
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position jr?j < k�1
p are taken into account when calculating the aver-

age coordinates to avoid the influence of defocused particles. In some
variants, beam particles initially have a symmetric distribution either
in the whole beam or only in the first microbunch (at kpn > �2p);
this means that each beam particle has three counterparts mirrored
with respect to the planes x ¼ 0, y ¼ 0, and the axis x ¼ y ¼ 0.

Several observations follow from the obtained dependencies.
First, transverse deviations increase along the bunch train, but reach
saturation at some point. This is seen in Fig. 17(a), where the devia-
tions at kpz 	 2000 increase monotonically over the first 20 micro-
bunches and then saturate [Fig. 14(a)]. Therefore, long-wavelength
hosing is an instability in the sense that it amplifies the deviations
along the bunch train: later microbunches are displaced in the same
direction as earlier microbunches, but to a greater extent.

Second, the growth time of the instability and the period of trans-
verse oscillations are comparable to the inverse betatron frequency

sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cb=nb0

p
	 700x�1

p (50)

of the original (unmodulated) beam and, hence, to the growth times of
the usual self-modulation50,51 or hosing.52,53 The deviations reach a
maximum at the time of full bunching (in our case at kpz 	 2000).

Therefore, the leading part of the beam plays a dominant role in long-
wavelength hosing, since the trailing part experiences a much stronger
focusing force (when the wave is resonantly driven by many micro-
bunches) and has much shorter characteristic times of transverse
dynamics.

Third, due to stronger focusing, the trailing microbunches
quickly get out of resonance with the driving force oscillating at the
frequency of the leading microbunches and copy their deviation with-
out amplification of the amplitude [Fig. 14(a)]. Therefore, the hosing
amplitude after the first maxima does not grow further with propaga-
tion distance and even slowly decreases (Fig. 17, all variants).

Fourth, the long-wavelength hosing does not depend on declus-
tering, and therefore, cannot be a consequence of incorrectly simulated
plasma response, as follows from the coincidence of the solid and dot-
ted lines in Fig. 17(b).

Fifth, the hosing amplitude increases with decreasing number of
beam macroparticles used in simulations [Fig. 17(c)]. If the particles in
the first microbunch are distributed symmetrically, the amplitude of
oscillations is much lower. If the particles are distributed symmetrically
in the whole beam, no hosing develops, the microbunches propagate
strictly along the axis, and the excited wakefield is slightly larger than
for random distribution and hosing [Fig. 13(b)].

Therefore, the long-wavelength hosing is a consequence of asym-
metry in the front part of the beam. This asymmetry arises in simula-
tions due to the random positioning of beam macroparticles. In real
experiments, the long-wavelength hosing may be weaker because of
much larger number of particles in the beam, or stronger if the beam
has initial asymmetry.

B. Transverse wavebreaking

Transverse wavebreaking is an event in which the trajectories of
plasma electrons, initially at different radii, intersect, causing one or
both electrons to drop out of collective motion in the wave (Fig. 18).
Transverse wavebreaking plays an important role in the plasma wake-
field acceleration because it can lead to electron trapping and accelera-
tion by the plasma wave,54 wave dissipation,40 appearance of radially

FIG. 17. Deviation of microbunches from the axis: (a) deviations �x of each odd
microbunch (thin lines) and of the last (25th) microbunch (thick line) for random ini-
tial distribution of beam particles and declustering enabled, (b) deviations �x and �y
of the last microbunch with the declustering on (solid lines) and off (dotted lines), (c)
deviations �x (solid lines) and �y (dashed lines) of the last microbunch for variants
with Nb randomly distributed macroparticles in the beam, with reduced (Nb=4) num-
ber of beam macroparticles, and with symmetric distribution of macroparticles in the
first microbunch.

FIG. 18. Electron density perturbation dne at xpt ¼ 78 (soon after the wavebreak-
ing) in 3D simulations with kph ¼ 0:03. Red dots are individual electrons (macro-
particles), weakly colored tails behind them are their wakefields.
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ejected electrons55–58 and even field growth.59 Numerical codes should
be able to predict where and when the wavebreaking happens.

As expected, transverse wavebreaking is sensitive to plasma elec-
tron clustering. Let us illustrate this with the example (27) but with
nb0 ¼ 2n0. In the selected variant, when the wave is driven by a short
bunch, the wavebreaking occurs solely due to wave nonlinearity. There
is no ion motion40,60–63 or long beam58,64 that could enhance wave-
front distortion, so the wavebreaking position is particularly sensitive
to simulation conditions. In 3D simulations of this section, h ¼ Dn,
there is 1 electron and 1 immobile ion per cell, transverse dimensions
of the simulation window are 16k�1

p � 16k�1
p , K ¼ 0:3, j ¼ 0:1, and

D0 ¼ 10�3. As a reference to compare with, we take a high-resolution
2D run with h ¼ Dn ¼ 0:0025k�1

p , 10 electrons per cell, and decluster-
ing turned on (Fig. 19).

The question arises, however, how to determine the precise
moment of wavebreaking. Intersection of trajectories is an impractical
criterion because even in the axisymmetric geometry, trajectories can
intersect due to the noise we are studying. In 3D geometry, it is not at
all clear which trajectories to compare, since the electrons are not
ordered by radial position, but distributed over the ðx; yÞ plane. In the
reference 2D run, we find the wavebreaking point either by extrapolat-
ing the trajectories of radially runaway electrons (Fig. 19) or by mea-
suring the non-hydrodynamic contribution to the energy flux DW40

and requiring DW > 0:002W0 (Fig. 20); both methods give the same
value. In 3D runs, we use the criterion Dmax

x > 0:02k�1
p . When the

wave breaks, the displacement inhomogeneity (31) of some particles

increases abruptly (Fig. 20), which makes it possible to localize the
wavebreaking in time and space.

The wavebreaking moment twb observed in simulations depends
on the grid steps h and Dn (Figs. 20 and 21). The wave breaks earlier
with larger steps. As the grid step decreases, the wavebreaking time
approaches that observed in the reference run, but only when the
declustering is enabled. If not, then the noise provokes earlier wave-
breaking for any resolution. Therefore, simulations performed without
declustering can potentially overestimate many important physical
effects associated with wavebreaking.

VII. SUMMARY

Simulations of plasma wakefield acceleration are challenging for
many reasons, one of which is that the wave scale (	 c=xp) is much
larger than the Debye length. Attempting to resolve both would make
simulations prohibitively expensive. Therefore, grid steps far exceeding
the Debye length are used, which compromises the accuracy of PIC
simulations. While this inconsistency does not notably impact short-
term processes spanning several wave periods, long-term simulations
lead to clustering and unphysical heating of plasma electrons.

The latter undesirable effects can be avoided by slightly modifying
the law of plasma particle motion, which is implemented in the newly
developed 3D version of LCODE. The new feature enables much
cleaner simulations of long-term wave evolution. In particular, when
the numerical heating of plasma electrons is suppressed, the wake cha-
otization and premature transverse wavebreaking of a moderately non-
linear plasma wave disappear.
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FIG. 19. Wavebreaking in the reference 2D run: electron density map with trajecto-
ries of radially escaping electrons highlighted and extrapolated by a dashed line.

FIG. 20. Maximum noise displacement Dmax
x ðtÞ in 3D simulations with different res-

olutions and with the declustering on (solid lines) and off (dotted lines). Grid steps h
and Dn in units of k�1

p are given in legend. The black dashed line shows the nonhy-
drodinamic part of the energy flux DWðtÞ in the reference 2D run. The first cross-
ings of the horizontal black line are considered the moments of wavebreaking.

FIG. 21. Dependence of the wavebreaking time twb on the grid step h with the
declustering on and off. The star shows the wavebreaking time in the reference 2D
run.
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