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Hugenholtz-Van Hove Theorem for Multi-Component
Fermi Systems with Multi-body Forces
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Introduction

The Hugenholtz-Van Hove(HVH) theorem
[1] deals with the single-particle properties of
an interacting infinite Fermi system at abso-
lute zero of temperature relating three funda-
mental physical quantities namely, the average
energy per fermion E/A, the pressure of the
system and the Fermi energy ey as

E d(E/A) OF
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where p and ) are respectively the number
density and volume of the system. Hugenholtz

and Van Hove also showed (g—g) = €y. lead-
Q

ing to the theorem

-

The second term being the pressure of the sys-
tem would vanish for a saturating system at
ground state i.e. at equilibrium resulting in
the Eq. E/A = ¢y. This is a rare theorem in
many-body Physics, which has been rigorously
shown[l] to be true by its original authors
Hugenholtz and Van Hove by taking all orders
of perturbation in the frame-work of time-
independent perturbation theory[1-5]. How-
ever it should be mentioned here that prior
to this rigorous proof Bethe[6] had also visu-
alized the theorem under HF approximation.
It is valid for any interacting infinite Fermi
system and thereby applicable to liquid >He
and in particular to nuclear matter. With its
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help Hugenholtz and Van Hove could find[1]
internal inconsistencies in the early nuclear
matter calculations of Brueckner [7]. Apart
from its utility otherwise, Hugenholtz and Van
Hove while proving the theorem have clearly
brought out the physical meaning associated
with the single particle states of an interacting
many-fermion system.

The theorem has been recently extended [8]
to asymmetric nuclear matter, which was then
used for constructing a successful mass model
well-known in the literature as the infinite nu-
clear matter (INM) model of atomic nuclei[9-
12]. However the question of its validity in
the presence of multi-body interaction terms
remains unanswered. Similarly its extension
to multi-component Fermi systems would be
extremely useful.

HVH Theorem with Multi-body Forces

For this we follow Bethe[6] in adopting
HF approximation. Taking the effective in-
teraction for a many-body system to in-
clude all possible multi-body interaction terms
Go,G3,Gy,...,G, etc., the single-particle en-
ergy ¢; and the total energy E of the system
under HF approximations are
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where | i >,| j > etc. represent the occupied
single particle states and < i.n | Gy, | i.n >
denote the antisymmetric many-body matrix
elements with the multi-body interaction G,.
For an infinite Fermi system, the above Egs.
can be further simplified as
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The total energy E/A being a function of ky,
its derivative with respect to ks at constant
can be easily obtained for all the multi-body
interaction terms thereby leading to the HVH
theorem (Eq. 2).

Extension to Multi-Component Fermi
Systems

Consider the system to consist of n types
of fermions, the number of each type being
N;,i = 1,2,..n, such that the total number
N is equal to N1 + N2 + ... + N,,. Defining
the fractional composition f; of a given type
of fermions i by f; = N;/N,i = 1,2..n. Then
the system will have n Fermi energies given by

OF
e{z( ) ,i=1,.n.
ON; Q,N1,..Ni—1,Nit1,..Np,
(7)

As the total energy E being a function of
Ny, Na, .., N, or alternatively N, f1, fa,..fn, it

follows that
oBY _ (0B oN,
ON J \aM QN2 Ns ON A
) (),
ON, Q,N1,N3s.. ON f2
=Y € (8)

Using Eq. (1), we arrive at the most general-
ized form of HVH theorem as

E OB/ g,
Z‘Fl) ap —;sza (9)

which for ground state reduces to

E n ;
- = €; f7
o

It is needless to mention the utility of such
a generalized HVH theorem that can be ap-
plied to any multi-component Fermi system.
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