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Abstract

In this article, we study the Hawking radiation of the Schwarzschild black hole within the bumblebee
gravity model (SBHBGM). Considering classical approaches involving Killing vectors and the
standard Hamilton-Jacobi method, the Hawking radiation of SBHBGM is computed. The Painlevé-
Gullstrand, ingoing Eddington-Finkelstein, and Kruskal-Szekeres coordinate systems are introduced
as alternatives to the naive coordinates, providing insights into gravitational behavior around massive
objects like black holes. We thus examine whether Hawking radiation’s temperature depends on the
chosen coordinate system or not. Incorporating the Generalized Uncertainty Principle (GUP) into the
Hamilton-Jacobi equation, a modified equation characterizing particle behavior near the event
horizon is obtained. By calculating the tunneling probability using the modified action, the GUP-
induced modifications to the emitted particle’s behavior are considered, resulting in the derivation of
the modified temperature of the SBHBGM. In conclusion, we explore the quantum-adjusted entropy
of SBHBGM and its associated temperature and assess the findings we have acquired.

1. Introduction

Hawking radiation, a groundbreaking theoretical prediction introduced by Stephen Hawking [ 1-3],
revolutionized our understanding of black holes and the fundamental interactions between gravity and
quantum mechanics [4]. This phenomenon proposes that black holes are not entirely black; they emit radiation
due to quantum effects near their event horizons, thus gradually losing mass and energy over time [5-15].
Hawking radiation challenges classical notions of black holes as inexorable gravitational sinks by highlighting
the intricate interplay between quantum physics and general relativity in extreme gravitational

environments [16].

To comprehend the implications of Hawking radiation fully and explore its various facets, a multitude of
calculation methods have been developed by physicists [ 17—22]. These methods provide distinct perspectives on
the underlying mechanisms, enabling us to decipher the enigmatic nature of black hole evaporation. In this
discourse, we delve into the concept of Hawking radiation, followed by an exploration of the diverse methods
employed to quantify and understand this phenomenon. The conventional formulation of Hawking radiation
emerges from the principles of quantum field theory in curved spacetime. This approach considers virtual
particle-antiparticle pairs [23] that momentarily appear near the event horizon. While one of these particles may
fall into the black hole, the other escapes to infinity as real Hawking radiation. The energy needed to create these
particles is borrowed from the black hole’s mass, ultimately leading to its evaporation [24-26].

Several calculation methods have been proposed to derive the properties of Hawking radiation and elucidate
its intricate details (see [22] and references therein). One notable avenue involves tortoise coordinate
transformations, as explored by Damour, Ruffini, and Sannan [27-34]. This method facilitates the analysis of
particle trajectories near the event horizon, allowing for a comprehensive understanding of how particles escape
the black hole’s gravitational grasp. Additionally, researchers such as Chandrasekhar, Bonner, and Vaidya
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demonstrated the separation of the Dirac and Maxwell equations in stationary spacetimes [35]. Such separations
help us understand quantum behavior near event horizons and contribute to our knowledge of Hawking
radiation. Another significant approach, pioneered by Parikh and Wilczek [36], interprets Hawking radiation as
aquantum tunneling process. This method, known as the null geodesic method, draws parallels with particle
tunneling through classically forbidden energy barriers. The utilization of the Hamilton-Jacobi method [37—43]
further enriches the exploration of particle tunneling and provides a distinctive perspective on the mechanisms
underlying Hawking radiation. Moreover, the advent of the GUP has spurred investigations into the effects of
quantum gravity on Hawking radiation. The incorporation of GUP into the analysis necessitates innovative
calculation techniques, as emphasized in some remarkable studies [44—50]. This avenue opens up new paths for
understanding the interplay between quantum mechanics and gravity in the context of Hawking radiation.

In this work, we consider the SBHBGM spacetime, which was derived by Casana et al [51]. The addition of
the bumblebee field complicates the equations for gravitational fields [52]. The bumblebee field affects the
geometry of spacetime, leading to deviations from the classical Schwarzschild solution. Besides, this solution
allows researchers to study how the bumblebee field modifies the physical properties around the black hole
[53—57]. We then embark on a comprehensive journey through the phenomenon of Hawking radiation and
some of its calculation methods. By examining these various approaches, we aim to deepen our grasp of the
intricate processes occurring near black hole event horizons, ultimately advancing our comprehension of the
profound interplay between quantum phenomena and the fabric of spacetime. To this end, we first compute the
Hawking radiation of SBHBGM with classical methods: methods of Killing vectors and standard (without GUP)
Hamilton-Jacobi method, respectively. When using the classical Hamilton-Jacobi method, three additional and
regular coordinate systems, the Painlevé-Gullstrand (PG), ingoing Eddington-Finkelstein (IEF), and Kruskal-
Szekeres (KS) coordinates are considered alongside the naive coordinates (see [58, 59] and references therein).
These alternative coordinate choices in general relativity provide valuable insights into the behavior of
gravitational fields, particularly around massive objects like black holes. Those regular coordinate systems are
distinct from the standard Schwarzschild coordinates and are often used to gain a clearer understanding of the
physics involved particularly near event horizons. The PG coordinates were introduced as an attempt to make
the time coordinate more physically intuitive. In the Schwarzschild metric, the time coordinate is the same as the
Schwarzschild time, which is not the ‘proper time’ experienced by an observer falling into a black hole [60]. The
PG coordinates address this issue by defining the time coordinate in such a way that it corresponds to the proper
time experienced by a freely falling observer. The IEF coordinates take into account the one-way nature of light
propagation and describe the radial position of light rays as they move toward the black hole [26, 61]. The metric
in these coordinates remains regular at the event horizon, which makes it convenient for studying the behavior
of particles and light as they cross the horizon. Devised independently by Martin Kruskal and George Szekeres
[62, 63], KS coordinate system offers a perspective that simplifies the mathematical representation of the
complex spacetime curvature near a black hole’s event horizon. By transforming the conventional
Schwarzschild coordinates, the KS coordinates unveil the intriguing properties of black hole interiors and
exteriors, allowing for a clearer understanding of phenomena like gravitational time dilation, trapped surfaces,
and the path of light. Then, we incorporate the GUP modification into the Hamilton-Jacobi equation [64],
which yields a modified equation that describes the behavior of particles near the SBHBGM’’s event horizon.
Using the modified action, we calculate the tunneling probability for particles to escape the event horizon. This
probability takes into account the GUP-induced modifications to the emitted particle’s behavior near the
horizon. Since the tunneling probability is related to the Hawking temperature and radiation spectrum of the
black hole, by considering the GUP effects, we derive the modified temperature of the SBHBGM. While the
Bekenstein-Hawking formula [26] successfully relates the entropy to the black hole’s macroscopic properties, it
does not account for quantum effects that occur near the event horizon. As black holes can emit Hawking
radiation due to quantum fluctuations, these quantum effects are expected to modify the entropy and other
thermodynamic quantities. Quantum-corrected (QC) entropy [65, 66] attempts to incorporate these quantum
corrections into the expression for entropy. Various approaches, including loop quantum gravity and string
theory, have explored these corrections [67, 68]. These modifications to the entropy formula are often subtle and
may depend on the specific quantum gravity theory being considered. The concept of quantum-corrected
entropy is not limited to black hole physics. It has broader applications in the context of the holographic
principle and the AdS/CFT correspondence [69—7 1], where it suggests a deep connection between gravitational
physics and quantum field theories. We also study the QC entropy of the SBHBGM and explore how quantum
fields near the event horizon impact the black hole’s entropy. This investigation contributes to our
understanding of the intricate connection between quantum mechanics (including the GUP) and gravitational
physics in extreme environments.

The paper is organized as follows: In section 2, we provide a brief introduction to the SBHBGM and examine
its fundamental characteristics. In section 3, we focus on calculating the classical (without considering the GUP
effects) Hawking radiation of the SBHBGM via the Hamilton-Jacobi method. We also attempt to demonstrate
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the coordinate independence of the Hawking radiation obtained through quantum tunneling by extending our
findings to regular coordinates, which are PG, IEF and KS coordinate systems. Section 4 is devoted to the GUP-
modified Hawking radiation of the SBHBHM. We analyze the QC entropy and temperature of the SBHBGM in
section 5. Finally, in section 6, we present our concluding remarks. (Throughout the paper, we use geometrized
units:c=G=h=kg=1.)

2. SBHBGM geometry and its physical features

According to extended Einstein field equations of bumblebee gravity theory [51, 72, 73], we have
1
G/u/ = R/w - ERgN,, = 87TT;:,1/ (1)

where Gy is the Newtonian constant, G, represents the Einstein tensor, while T, corresponds to the overall
energy-momentum tensor originating from both the matter sector’s contribution (Tiﬁ) and the effects of the
bumblebee field (Tfl,): T, = T% + T/ﬁ, . A reader can find the detailed derivation of the field equations and

their corresponding metric solution for the SBHBGM in [51], which serves the following spherically symmetric

vacuum solution:
ds? = —fdt> + =Zf~'dr? + r?d0? + r*sin? 0dp?, (2)
where = = 1 4 ¢ in which is the positive Lorentz symmetry-breaking parameter [51]. Metric (2) represents a
purely radial Lorentz-violating solution outside a spherical body characterizing a modified black hole solution.
The metric function (f)isgivenby f =1 — ¥ in which r;, = 2M represents the event horizon and M denotes
the mass. This solution for a black hole describes a situation where Lorentz violation occurs exclusively in the
radial direction beyond a spherical object, defining a modified black hole solution. As the parameter
Zapproaches zero, it is evident that the conventional Schwarzschild metric is regained. In the context of the
metric labeled as equation (2), the Kretschmann scalar [26] can be computed as follows:
4(12M? + 4¢Mr + £3r?)

62

K= R#V/\UR/W/\J = 3)

B
which is distinct from the Kretschmann scalar of a Schwarzschild black hole. This indicates that none of the
coordinate transformations establish a connection between metric (2) and the usual Schwarzschild black hole
metric. When ris equal to 2M, the curvature of spacetime remains finite, implying that a proper coordinate
transformation can eliminate the coordinate singularity. However, in the scenario where r equals 0, the physical
singularity cannot be eliminated. Therefore, it can be observed that the characteristics of the physical singularity
atr = 0 and the coordinate singularity at r = r;, = 2M (event horizon) of the Schwarzschild black hole remain
intact in the SBHBGM solution. On the other hand, the Hawking temperature [1] can be computed as

R

Ti=" = Ly = @)
47

1
o 8STMAVE

where k denotes the surface gravity [26]:
1
AMVE’

by which x *is the timelike Killing vector field and the prime (dash) symbol in equation (4) is used to denote the
derivative of a function with respect to its argument. As can be seen from figure 1, the non-zero Lorentz
symmetry breaking parameter ¢ has the effect of reducing the Hawking the temperature of a Schwarzschild
black hole solution.

As can be seen from figure 1, a Schwarzschild black hole with the same mass of a SBHBGM has a higher
Hawking temperature compared to that SBHBGM black hole. On the other hand, the Hawking temperature for
low-mass black holes begins to dramatically increase inversely with their mass, and as the LSB effect increases,
the temperature difference between the Schwarzschild black hole and the SBHBGM becomes more pronounced.
In supermassive black holes, this difference is so small that it is not noticeable.

K=V, x*V,x" = (5)

3. Hawking radiation of sbhbgm via hamilton-jacobi method: semi-classical approach
(without GUP)

The section focuses on elucidating the process of deriving Hawking radiation for black holes resembling the
Schwarzschild metric within the framework of bumblebee gravity, which introduces the Lorentz-violating term.
Through the utilization of the Hamilton-Jacobi method, the section outlines the step-by-step mathematical
procedure to uncover the radiation emitted by these modified black holes. To this end, let us first consider the
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Plots are governed by equation (4). Recall that £ = 0 corresponds to the pure Schwarzschild black hole.

Figure 1. Graph of Ty versus mass M. The considered Lorentz symmetry-breaking parameters Zare depicted with different colors.

Hamilton-Jacobi equation [37]:

OP \( OP
pv| 27 2:0’
. (8x”)(3x”) o

in which mand g"" are the mass of the particle and the inverse metric tensor, respectively. Besides, Pis the
classical action of a relativistic particle that satisfies the Hamilton-Jacobi equation (6). Setting [38—41]

I2 = g%(94P)* + g**(9,P)?,
which is a constant associated with the particle’s angular momenta. Thus, we get
BT .
Taking the Killing vectors of SBHBGM spacetime (2) into account, one can set
P(r,t) = —wt + W(r),

where wis the particle energy measured by an observer located at spatial infinity and W(r) is the time-

(6)

@)

®)

©

independent function, which is called Hamilton’s characteristic function. After some manipulations, one can

obtain:
Wi =+ [ ENEN
f

By the help of residue theory, the near-horizon solution yields
WE(r,) = £2irwM~E.
Using the tunneling probability (P) with the Boltzmann formula [22], we get
reut — exp(—=2ImW(ry))

7) = e——=
I exp(—2ImW—(ry,))

= exp(—SWMw\/E) = exp(%),

(10)

an

(12)
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which yields the surface temperature of the SBHBGM as follows:
. 1
SMTVE

which is nothing but the statistical Hawking temperature obtained in equation (4): Ts, = Tg.

Besides its naive coordinates, we also consider two regular coordinate systems: PG and IEF coordinates.
Detailed quantum tunneling calculations will be reevaluated using the H] method within these coordinates, and
the preservation of T invariance will be examined within each coordinate system in the following section.

TSr (13)

3.1. Hawking radiation of SBHBGM within PG coordinate system
The PG coordinate system [58] is a specific coordinate system used in the study of black hole physics, particularly
in the context of general relativity. It was introduced to provide a more intuitive and physically transparent
description of the spacetime geometry around a spherically symmetric black hole compared to the commonly
used Schwarzschild coordinates. In the Schwarzschild coordinate system, which is often used to describe the
geometry of a non-rotating (static) black hole, the coordinate singularity at the event horizon makes it difficult to
interpret the physical behavior of particles falling into the black hole. The PG coordinates were designed to
address this issue. In the PG coordinates, the metric is chosen in such a way that the radial coordinate follows the
motion of a freely-falling observer. This means that the coordinate system is adapted to an observer who is
‘riding’ along with a falling particle. As a result, the coordinate singularity at the event horizon is removed, and
the metric becomes regular at the horizon. The PG coordinates have the following properties:

Regular Horizon: The event horizon of the black hole appears as a regular surface in these coordinates,
making it easier to analyze the behavior of particles and light near the horizon.

Non-Static Behavior: Unlike the Schwarzschild coordinates, the PG coordinates exhibit non-static behavior.
This makes it easier to analyze the infall of matter into the black hole and the associated effects.

Negative Energy Particles: These coordinates can accommodate negative energy particles that move outward
from the black hole, which can provide insights into the dynamics of black hole evaporation.

In this section, we shall use the PG coordinates for the SBHBGM as a regular coordinate system in the HJ
equation and show how it gives the true Hawking temperature. Let us start with the following transformation:

dr — J=dF, (14)
o1+
dt — dr + fdr, (15)
f
jf-1-2 (16)
7
Thus, metric (2) transforms into its PG form as
ds? = —fdi* + 2,1 — f didF + di* + 72dQ2. (17)
where
dQ? = df? + sin? 0d¢?, (18)
which is the metric on a unit two-sphere S$*. Employing the Hamilton-Jacobi equation (6) with ansatz
P(7, ) = —0f + W(F) and making some straightforward calculations, one can get two near-horiozn solutions

for the Hamilton’s characteristic function W (7):
W (i) = 0, (19)
W () = +4itoMVE. (20)
Therefore, the tunneling probability of radiating particles from the black hole geometry (17) is found as;
o exp(=2ImW (7))

S JEY — @
P = exp(— 20 W) = exp(—Sﬂ'Mw\/:) exp( 7 ) (21)

Thus, one can read the black hole temperature of SBHBGM defined in PG coordinates as follows

T=— (22)
which equals to the statistical Hawking temperature (4).
3.2. Hawking radiation of sbhbgm within ief coordinate system

The IEF coordinates [74] offer a unique perspective on the geometry of spacetime surrounding a black hole,
particularly in the context of ingoing particles such as photons. These coordinates are meticulously designed to
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maintain regularity at the black hole’s event horizon, simplifying the analysis of particles as they approach this
boundary and providing insight into the behavior of matter and radiation near the event horizon.
To pass to the IEF coordinate system, let us use the following transformation [59]:

dt = dv — dr*, (23)
where vis a new null coordinate, the so-called advanced time and r* denotes the tortoise coordinate:

JEdr

dr* = . (29)

f

Thus, the SBHBGM metric (2) recasts in

ds?> = —fdv? + 2dvdr + r?dQ2. (25)
In this coordinate system, the scalar particle’s energy can be measured by an observer as E = — 0, P, due to the
Killing vector field of £ = 9, in metric (25).
P(V, T, 6) ¢) = —wv + ‘/VIEF(r) + ](xi)) (26)

in which 9;P = J;’s are constants and i = 1,2 labels the angular coordinates # and ¢, respectively. Employing the
Hamilton-Jacobi equation (6) for the metric (25), the final result for Wigr(r) can be found as

+ o = of
Wi (r) = w f ?(1 + 11— E)dr, 27)
where
T I
. _ 28
p=mot r? * r2sin20 28)

The expression for Wige(r) simplifies to the following expression in the vicinity of the event horizon:

+ =
WE(r) = w f ?(1 + 1)dr. (29)
Thus, one gets
Wigr(rn) = 0, (30)
W isp(rn) = +4inwM~Z. (31)

In the sequel, we find out the tunneling probability of the emitted quanta from the SBHBGM defined in the IEF
coordinates:

+ _
EF = M = exp(—SWMw«/E) = exp(—w). (32)
exp (W gp(rn)) Tir
Asaresult, we get
1
TIEF = T => (33)
SMmr\ =

which fully agrees with equation (4).

3.3. Hawking radiation of SBHBGM within KS coordinate system

Introduced by Martin Kruskal and George Szekeres [62, 63], KS coordinate system offers a unique perspective
for understanding the geometry and behavior of black holes, particularly those described by the family of
Schwarzschild solutions. By transforming the standard metric into a new set of coordinates, the KS coordinates
unveil the underlying structure of spacetime around a black hole, enabling insights into phenomena such as
event horizons and the nature of singularities. This coordinate system proves indispensable in simplifying the
mathematical representation of these complex gravitational systems and illuminating their intriguing
properties. In this section, we will use the Hamilton-Jacobi equation to represent how to obtain Ty through the
KS form of the SBHGBGM. To this end, let us rewrite the metric (2) in the following form:

ds? = —f(dt2 - fidrz) + r2dQ2, (34)

2

which can be transformed to

ds? = —f du dv + r? dQ?, (35)
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by the following coordinate transformations:
du = dt — dr*, dv=dr+ dr*. (36)

Recall that the definition of tortoise coordinate was given r* in equation (24), which can be written explicitly as
follows:

r¥ = \/E(r—&— rh ln(L — 1)) (37)
rh
After establishing new coordinates (U, V') that are determined by the surface gravity (5):
U= —e, V=e¢ev, (38)
one can redefine metric (34) in the KS coordinate system:
ds? = —L£dU dV + r? dQ?, (39)
in which
- 4Zrpel7)
K2UV r '

(40)

With the exception of the physical singularity r = 0, this metric is regular everywhere. Alternatively, metric (39)
can be changed into
ds* = —L(dT? — dR*» + r*dQ?, (41)

which can be made by the following transformations

«\irh
r=lwviu= e@(l - 1) sinh( ! ) (42)
2 i 2rpNE
1 =(r VEn t
R=—(V-U)= eEf(— - 1) cosh ) (43)
2 Ty 21’h E

One can observe directly from above that

ZErh
) (44)

R2_T2— eEr| T
T
which indicates that the future and past horizons are represented by R = £7 . In this case, on the other hand,
07 is not a timelike Killing vector for the metric (39). Therefore, it is advantageous to take into account the
metric’s timelike Killing vector in the following form:

Or = N('R@T + T0r), (45)

where N denotes the normalization constant. The determination of the normalization constant N is crucial in
calculating the norm of the Killing vector, which attains a negative unity value at either spatial infinity or the
position of the observer measuring the temperature of the SBHBGMM. Therefore, at spatial infinity, the
normalization constant is found to be

K. (46)

1
27‘h \/Ef oo N
Without loss of generality, one might consider the (1+1)-dimensional form of the KS metric (41) which is
ds* = —L(dT? — dR?). (47)

In this situation, the Hamilton-Jacobi method’s calculations become simpler. The above metric’s Hamilton-
Jacobi equation (6) is as follows:

—L7(01P)* — (0rP)’] + m* = 0. (48)
According to this equation, the ansatz for the P could be expressed as
P=p(y) + ] (), (49)

where y = R — 7 and p(y) is a function to be determined. To make things even simpler, we can set J (x;) = 0
and m = 0. The energy is now described as
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E = —0rP = —k(ROrP + TO0RP). (50)
Using the above equation with ansatz (49), one derives the following expression
2EnN=
p(y) = th dy. &)

The above expression has a divergence at the horizon y;, = 0, namely R = 7. Thus, it leads to a pole at the
horizon which could be overcome by doing a semi-circular contour of integration in the complex plane. The
resultis found to be

TE

Imp(y,) = 27ErVE = (52)
K

which leads to the following tunneling probability of the emitted quanta from the SBHBGM defined in the KS
coordinates (39):

Pxs = exp (—2Im p(y,) = exp (;—E) (33)
KS

which results in
1
471y, \/E ’

Equation (54) is nothing but the Hawking temperature seen in equation (4). Namely, we have impeccably
recovered the Ty in the background of the KS metric of the SBHBGM.

Txs = (54)

4. Hawking radiation of sbhbgm via hamilton-jacobi method: semi-classical approach
(with GUP)

In this section, our focus revolves around the intricate interplay between the GUP and the Hawking radiation of
the SBHBGM, employing the highly insightful Hamilton-Jacobi method. Quantum gravity theories, spanning a
spectrum of perspectives, consistently postulate the intriguing concept of a minimal length, which finds its roots
in the very fabric of the quantum realm. Within this theoretical framework, the realization of this minimal
length manifests through various avenues. Among these, a particularly noteworthy route involves the
application of the GUP.

Before we begin to achieve our objectives in this section, let us provide a brief overview of the GUP
formalism. In fact, if one checks the literature, it can be seen that a significant endeavor has been dedicated to
incorporating gravitational effects into quantum physics through the utilization of a GUP, as extensively
explored in previous works [75-89]. The GUP is expressed as follows [90]:

AxAp > %(1 + BAp?), (55)

where Bis referred to as the GUP parameter, representing a deforming parameter expected to emerge from
candidate theories of quantum gravity. In equation (55), x and p denote the position and conjugate momentum
of a particle, respectively, with their corresponding quantum observables denoted as £ and p. The term

A

AO? = (O%) — (O)isapplicable to any operator O.
Uncertainty relations are intrinsically connected to (fundamental) commutators via the following general
inequality:

AXAY > %|<[X, . (56)

For instance, equation (55) can be derived from the following commutator:
(£, p] = i(1 + Bp). (57)

By using equation (56), we can then obtain:
1 A 1 A
Axfp > (1 + B(p%) = ~[1 + B(Ap* + ()] (58)

This demonstrates that the GUP (55) holds for any quantum state, given that (?) > 0 always. For mirror-
symmetric states W, that satisfy:
<\I/msym|ﬁ|\pmsym> =0, (59)
we have Ap? = (el p?| 1ms)> and the inequality (58) coincides with the GUP (55).
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The theoretical implications of the GUP on quantum (microscopic) systems have been thoroughly explored
by various researchers, as evident in previous studies [91-94]. Additionally, several experiments have been
proposed for laboratory testing of different GUPs [95-97], and there are also ground-based and space-based
experiments that could potentially reveal GUP effects [98]. What is particularly noteworthy is that the
magnitude of such modifications can also be constrained using macroscopic test bodies through the utilization
of existing astronomical data, which are typically employed for standard tests of general relativity. For a detailed
recent review of the GUP, areader is referred to [99] and references therein.

To embark on our exploration, we commence by delving into the GUP-modified Hamilton-Jacobi equation
[64] tailored for scalar particles, as elegantly articulated below:

€%(009)(9;8) + [§™(kS)* + m?] x {1 — 283[g#(8;9)* + m?]} =0, (60)

where k, j = 1,2, 3, Bis the GUP parameter, and equation (60) yields the following expression with the use of
metric (2) and ansatzes (7) and (9):

0. (61)

In equation (61), only the leading orders of Fare considered and the higher order terms of Fare neglected since
they have negligibly low values. In the sequel, if one solves that equation for W, and W, the following
expressions are obtained around the horizon:

Wy = £2imwMVE, (62)
Wi = +4inw’MVE, (63)

which belong to
Weip = Wo + W = £2inwMVE (1 + 26w?). (64)

We calculate the tunneling probability as;

B exp(—ZImWSUp) _ exp(—47er\/§(l + 28w?)) . ( —w ) 65)
exp(—2ImW¢yp) exp (4rwM~ZE (1 + 26w?)) Tovr )
whence the GUP modified Hawking temperature of the SBHBGM can be found out to be
1
Teup = (66)

SMTVE (1 + 28w?)

The term - __ in the expression implies that as the frequency and/or increase, the modification due to GUP

+ 2[w?
becomes more prominent, leading to a reduction in the modified Hawking temperature compared to the
conventional value of Ty presented in equation (4). This alteration can be seen as an intricate consequence of the
underlying quantum gravitational effects, where the minimal length scale encoded by 3 influences the radiation

process. Below is the correlation between the conventional Hawking temperature and the modified version:
Ty

1 + 28w?

The approximated form of the expression, Ty; (1 — 28w?) + O(3?), further simplifies the relationship,

highlighting the primary influence of the GUP-induced modification. The first term Ty (1 — 23w?) denotes the

dominant effect of GUP on the modified temperature, showcasing how the presence of the minimal length scale

affects the energy emission. The additional term O(/3?) accounts for higher-order corrections stemming from
the GUP, contributing to the refinement of the temperature modification.

Toup = ~ Ty(1 — 20w?) + O(BY). (67)

5. QC Entropy of SBHBGM

A fundamental aspect of black hole thermodynamics lies in the concept of entropy, which plays a central role in
connecting the macroscopic behavior of black holes with the underlying microscopic degrees of freedom. The
QC-induced modifications give rise to a revision of the black hole entropy expression, incorporating corrections
that diverge from the traditional Bekenstein-Hawking formula [26]. The underlying physics driving these
corrections is rooted in the profound changes to the density of states for quantum states near the Planck scale,
thereby influencing the counting of microscopic configurations responsible for the black hole entropy.
Consequently, the QC-modified entropy not only offers a tantalizing link between quantum gravity phenomena
and black hole thermodynamics but also holds the potential to address long-standing issues such as the black
hole information paradox [100-102].
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In this section, we delve into the QC entropy within the framework of the SBHBGM. We begin by outlining
the fundamental principles of entropy and the first law of thermodynamics. Building upon this foundation, we
proceed to derive the QC-modified expression for the black hole entropy. Through a careful analysis of the QC-
modified entropy formula, we aim to illuminate the role of quantum gravity effects in reshaping the
thermodynamic properties of the SBHBGM and to uncover potential avenues for testing these modifications
through astrophysical observations and experimental scenarios [103].

The Bekenstein-Hawking entropy formula, a cornerstone of modern theoretical physics, provides a simple
yet powerful expression for the entropy of ablack hole, denoted as Spz:

Ag

Spr = o (68)
which recasts in the following expression for the SBHBGM:
Spy = mr = 4nM2. (69)
Let us now take a closer look at the first law of thermodynamics:
dE = TydSpn, (70)
which yields
dSpy = 8TMdM. (7D
Recalling the Hawking temperature (4), equation (70) becomes
dE = — Y grmam — M 72)

8TMAE JE

By integrating equation (72), we get

E= , (73)

which demonstrates that the total thermal energy of the black hole, E, is proportional to the inverse square root
of the quantity =, which is influenced by the bumblebee parameter #. This implies that deviations from Lorentz
invariance, introduced by the parameter =, have a direct impact on the scaling of the thermal energy with respect
to the black hole’s mass. After combining equations (69) and (73), one obtains

SBH = 47TEE2. (74)

Equation (74) highlights the LIV-modified Bekenstein-Hawking entropy Sy that accounts for the influence of
the LIV parameter ¢. The existence of = parameter in equation (74) signifies a departure from the traditional
entropy formula (Sgy; = 47E°) due to the LIV parameter, resulting in a deviation from the standard black hole
thermodynamics dictated by general relativity. In summary, the provided expressions elucidate the intricate
interplay between black hole thermodynamics, Lorentz invariance violation through the parameter ¢, and the
resulting modifications to the black hole’s thermal energy and entropy. These modifications introduce a
departure from conventional expectations, underscoring the potential influence of new physics, such as
deviations from Lorentz invariance, on the behavior of black holes and their thermodynamic attributes.

On the other hand, In the framework of string theory and loop quantum gravity, the concept of quantum
corrected entropy S emerges as a pivotal element. This quantum correction is described by the following
expression [67, 68]:

Soc = Sy + aIn(4Spn), (75)
where Sp,is the Bekenstein-Hawking entropy and « signifies a parameter linked to quantum corrections. This

expression captures the interplay between the intrinsic entropy of the black hole and quantum modifications
arising from these theories. The shift in quantum-corrected entropy is then given by:

ASQG = SQG(E — w) — SQG(E)
=472 — w)? + aln(16712(E — w)?) — 47E%E — aIn(167=ZE?). (76)
This equation portrays the change in quantum-corrected entropy due to variations in energy E and angular

frequency w, incorporating both the bumblebee factor = and the quantum correction parameter cv. Expanding
equation (76) with a Taylor series with respect to w, by keeping the leading order, yields:

ASqg =~ 7(87rEE + Z?a)w = (TL + %)w. (77)
H

This equation unveils a connection between the modified factors due to quantum corrections and the Hawking
temperature Ty, highlighting the intricate interplay between thermodynamics and quantum effects.

10



10P Publishing

Phys. Scr. 98 (2023) 125307 1 Sakalli and E Yériik

The quantum-corrected tunneling rate, denoted as I' o, is described by:
w
Too ~ ASgs = ——, (78)
TQG
whence the modified temperature Tq, at the leading order of , reads

ZOéTH)

TQG ~ TH(I — (79)
Remarkably, as the quantum correction parameter o approaches zero, T converges towards the standard
Hawking temperature Ty representing the classical regime. The expression (79) elucidates the dependence of the
modified temperature T on the bumblebee parameter #and the quantum correction parameter a,
highlighting their joint influence on the temperature deviation from the classical value Ty.

In summary, the presented equations intricately interweave the quantum-corrected entropy, modified
tunneling rates, and temperature deviations, offering a glimpse into the profound relationship between black
hole thermodynamics, quantum gravity theories, and the underlying microscopic quantum effects that
potentially reshape our understanding of these enigmatic cosmic objects.

6. Conclusion

In conclusion, the features of the SBHBGM spacetime were explored within the context of bumblebee gravity
theory. The extended Einstein field equations, incorporating the effects of the bumblebee field, were introduced.

The modified black hole solution (SBHBGM) is characterized by a radial metric function g, = T

showcased the influence of the Lorentz symmetry-breaking or the bumblebee parameter Zon the spécetime
curvature. The Kretschmann scalar (3) demonstrated the distinct nature of the metric compared to the
conventional Schwarzschild black hole.

By employing the Hamilton-Jacobi method, Hawking radiation for the SBHBGM was investigated.
Different regular coordinate systemsPG, IEF, and KS coordinateswere considered to analyze the radiation
process. In each coordinate system, the tunneling probability and temperature of the black hole were computed.
Remarkably, the Lorentz symmetry-breaking parameter ¢ influenced the Hawking temperature, with non-zero
¢ leading to a reduction in temperature compared to the Schwarzschild case. The effects of Lorentz invariance
violation were emphasized, introducing intriguing deviations from the standard Hawking temperature. Thus,
we have also demonstrated that Hawking radiation possesses an independent invariant physical property
regardless of the coordinate system.

Furthermore, the impact of the GUP was integrated into the analysis. The GUP-modified Hamilton-Jacobi
equation was employed to derive tunneling probabilities and temperatures, unveiling the intricate interaction
between the GUP, Lorentz symmetry violation, and Hawking radiation. The GUP-induced modifications were
introduced with a new parameter 3, which played a role in reducing the modified Hawking temperature. The
relationship between the conventional Hawking temperature and the GUP-modified temperature was
elucidated, offering insights into how quantum gravitational effects influence the radiation process.

Finally, the concept of QC entropy was introduced within the SBHBGM framework. The interplay between
black hole thermodynamics and quantum gravity effects, incorporating both the Lorentz symmetry-breaking
parameter £and a quantum correction parameter «, was explored. The expressions for QC entropy and
modified temperature underscored the intricate connection between quantum corrections, thermodynamic
properties, and the underlying microscopic quantum behavior. It is also worth noting that in sections 4and 5, we
discussed the Hawking radiation of SBHBGM using distinct approaches, emphasizing that the GUP and QC
methods stem from separate quantum gravity theories. Section 4 focuses on the GUP and employs the
Hamilton-Jacobi method to compute Hawking temperatures, while section 5 delves into the QC entropy of
SBHBGM within the framework of string theory and loop quantum gravity. These two distinct methods provide
complementary insights and serve as potential test beds for future observations and experiments [103, 104].
Namely, the results obtained in these two sections may shed light on complex relationships regarding black hole
thermodynamics, quantum gravity theories, and potential changes in our understanding of black holes’
behavior.

In conclusion, the investigation of the SBHBGM spacetime within the framework of bumblebee gravity,
along with the incorporation of quantum gravity effects, provided a comprehensive understanding of the
modifications introduced by Lorentz invariance violation and the GUP. These modifications have the potential
to manifest as observable deviations from classical black hole thermodynamics, offering a unique opportunity to
probe the effects of quantum gravity at astrophysical scales. In the future, this research can be extended to
investigate the behavior of rotating black holes within the bumblebee gravity theory [73, 105]. The study of
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rotating black holes introduces new complexities due to frame-dragging effects and angular momentum
considerations. The analysis could involve exploring the modifications to the metric, coordinate systems, and
thermodynamic properties induced by the presence of rotation. Moreover, the exploration of quantum-
corrected entropy and tunneling rates in the context of rotating black holes could provide valuable insights into
the impact of quantum gravity effects on these objects. All of these are within the scope of our near-future work
agenda.

Acknowledgments

We express our gratitude to the Editor and the anonymous Referees for their valuable recommendations and
feedback. I.S. would like to express his gratitude for the networking assistance provided by COST Action
CA18108, which focuses on quantum gravity phenomenology in the multi-messenger approach. We would also
like to extend our appreciation to TUBITAK, ANKOS, and SCOAP3 for their generous support.

Data availability statement

Although this work is pure theoretical, we, the authors, are open to sharing any underlying data, code, models, or
other supporting materials upon reasonable request. The data that support the findings of this study are available
upon reasonable request from the authors.

ORCID iDs

Izzet Sakalli https:/orcid.org/0000-0001-7827-9476

References

[1] Hawking S W 1974 Nature 248 301
[2] Hawking SW 1975 Commun. Math. Phys. 43 199-220
[3] Bardeen] M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161-70
[4] Bekenstein ] D 1973 Phys. Rev. D 7 233346
[5] Hawking SW 1976 Phys. Rev. D 13 191-7
[6] Hawking S W and Page D N 1983 Commun. Math. Phys. 87 577
[7] Mirekhtiary F S and Sakalli I 2019 Indian J. Phys. 94 18539
[8] SakalliIand Ovgun A 2017 EPL 118 60006
[9] SakalliIand Aslan O A 2016 Astrophys. Space Sci. 361 128
[10] Sakalliland Ovgiin A 2016 J. Astrophys. Astron. 37 21
[11] Sakalliland Ovgiin A 2016 Gen. Rel. Grav. 48 1
[12] Gursel Hand Sakalli12016 Can. J. Phys. 94 147-9
[13] Sakalliland Ovgun A 2015 EPL 11010008
[14] Wald RM 2001 Living Rev. Rel. 46
[15] Pourhassan B, Farahani H and Upadhyay S 2019 Int. J. Mod. Phys. A 34 1950158
[16] Marolf D 2009 Gen. Rel. Grav. 41 903—17
[17] Srinivasan K and Padmanabhan T 1999 Phys. Rev. D 60 024007
[18] Angheben M, Nadalini M, Vanzo L and Zerbini S 2005 J. High Energy Phys. JHEP05(2005)014
[19] Banerjee R and Majhi B R 2008 J. High Energy Phys. JHEP06(2008)095
[20] Skenderis K and Taylor M 2008 Phys. Rept. 467 117-71
[21] Bekenstein] D 1975 Phys. Rev. D 123077-85
[22] VanzoL, Acquaviva G and Criscienzo R Di2011 Class. Quant. Grav. 28 183001
[23] Manikandan S Kand Jordan AN 2017 Phys. Rev. D 96 124011
[24] Unruh W G 1976 Phys. Rev. D 14 870
[25] Unruh W G 1981 Phys. Rev. Lett. 46 1351-3
[26] Wald R M 1984 General Relativity (Chicago Univ. Pr.)
[27] Damour T and Ruffini R 1976 Phys. Rev. D 14 332—4
[28] Sannan S 1988 Gen. Rel. Grav. 20 239-46
[29] Sakalli12016 Phys. Rev. D 94 084040
[30] Lan X G, Jiang Q Q and Wei L F 2012 Eur. Phys. ]. C72 1983
[31] RenJR,MaoP]J,LiRandJiaLY 2010 Class. Quant. Grav. 27 165016
[32] Pasaoglu H and Sakalli 12009 Int. J. Theor. Phys. 48 3517-25
[33] Zhao Zand Zhu]Y 1994 Int. J. Theor. Phys. 33 2147-55
[34] Sakalliland Al-Badawi A 2009 Can. J. Phys. 87 349-52
[35] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford University Press)
[36] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 50425
[37] Kerner R and Mann R B 2008 Class. Quant. Grav. 25 095014
[38] AkhmedovE T, Akhmedova V and Singleton D 2006 Phys. Lett. B 642 124-8
[39] MajhiB R 2009 Phys. Rev. D 79 044005

12


https://orcid.org/0000-0001-7827-9476
https://orcid.org/0000-0001-7827-9476
https://orcid.org/0000-0001-7827-9476
https://orcid.org/0000-0001-7827-9476
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/s12648-019-01617-1
https://doi.org/10.1007/s12648-019-01617-1
https://doi.org/10.1007/s12648-019-01617-1
https://doi.org/10.1209/0295-5075/118/60006
https://doi.org/10.1007/s10509-016-2714-3
https://doi.org/10.1007/s12036-016-9397-6
https://doi.org/10.1007/s10714-015-1997-y
https://doi.org/10.1139/cjp-2015-0495
https://doi.org/10.1139/cjp-2015-0495
https://doi.org/10.1139/cjp-2015-0495
https://doi.org/10.1209/0295-5075/110/10008
https://doi.org/10.12942/lrr-2001-6
https://doi.org/10.1142/S0217751X19501586
https://doi.org/10.1007/s10714-008-0749-7
https://doi.org/10.1007/s10714-008-0749-7
https://doi.org/10.1007/s10714-008-0749-7
https://doi.org/10.1103/PhysRevD.60.024007
https://doi.org/10.1088/1126-6708/2005/05/014
https://doi.org/10.1088/1126-6708/2008/06/095
https://doi.org/10.1016/j.physrep.2008.08.001
https://doi.org/10.1016/j.physrep.2008.08.001
https://doi.org/10.1016/j.physrep.2008.08.001
https://doi.org/10.1103/PhysRevD.12.3077
https://doi.org/10.1103/PhysRevD.12.3077
https://doi.org/10.1103/PhysRevD.12.3077
https://doi.org/10.1088/0264-9381/28/18/183001
https://doi.org/10.1103/PhysRevD.96.124011
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevD.14.332
https://doi.org/10.1103/PhysRevD.14.332
https://doi.org/10.1103/PhysRevD.14.332
https://doi.org/10.1007/BF00759183
https://doi.org/10.1007/BF00759183
https://doi.org/10.1007/BF00759183
https://doi.org/10.1103/PhysRevD.94.084040
https://doi.org/10.1140/epjc/s10052-012-1983-4
https://doi.org/10.1088/0264-9381/27/16/165016
https://doi.org/10.1007/s10773-009-0156-1
https://doi.org/10.1007/s10773-009-0156-1
https://doi.org/10.1007/s10773-009-0156-1
https://doi.org/10.1007/BF00675798
https://doi.org/10.1007/BF00675798
https://doi.org/10.1007/BF00675798
https://doi.org/10.1139/P09-024
https://doi.org/10.1139/P09-024
https://doi.org/10.1139/P09-024
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1088/0264-9381/25/9/095014
https://doi.org/10.1016/j.physletb.2006.09.028
https://doi.org/10.1016/j.physletb.2006.09.028
https://doi.org/10.1016/j.physletb.2006.09.028
https://doi.org/10.1103/PhysRevD.79.044005

10P Publishing

Phys. Scr. 98 (2023) 125307

[40] Di Criscienzo R, Nadalini M, Vanzo L, Zerbini S and Zoccatelli G 2007 Phys. Lett. B657 10711

[41] Sakallil and Ovgun A 2015 Astrophys. Space Sci. 359 32
[42] Sakalliland Ovgun A 2015 Eur. Phys. J. Plus130 110
[43] Sakallil, Ovgun A and Mirekhtiary SF 2014 Int. J. Geom. Meth. Mod. Phys. 11 1450074
[44] KanziSand Sakalli 12019 Nucl. Phys. B946 114703
[45] Dernek M, Tekincay C, Gecim G, Kucukakca Y and Sucu'Y 2023 Eur. Phys. J. Plus 138 369
[46] OngY C2023 Eur. Phys. ]. C 83209
[47] Cimidiker I, Dabrowski M P and Gohar H 2023 Class. Quant. Grav. 40 145001
[48] CarrB] 2022 Front. Astron. Space Sci. 9 1008221
[49] Sakalliiand Kanzi$ 2022 Annals Phys. 439 168803
[50] Erdem S and Sakalli 12023 Phys. Scr. 98 105201
[51] CasanaR, Cavalcante A, Poulis F P and Santos E B 2018 Phys. Rev. D 97 104001
[52] DingC, Liu C, Casana R and Cavalcante A 2020 Eur. Phys. ]. C80 178
[53] IzmailovR N and Nandi K K 2022 Class. Quant. Grav. 39 215006
[54] Mangut M, Giirsel H, Kanzi S and Sakall1 12023 Universe9 225
[55] MaiZF, XuR, Liang D and Shao L2023 Phys. Rev. D 108 024004
[56] Uniyal A, Kanzi S and Sakalli 12023 Eur. Phys. ]. C83 668
[57] Ovgiin A, Jusufi K and Sakalli I 2018 Annals Phys. 399 193-203
[58] Philipp D and Perlick V 2015 Int. ]. Mod. Phys. D 24 1542006
[59] Mirekhtiary S Fand Sakalli 12014 Commun. Theor. Phys. 61 558—64
[60] KanaiY, Siino M and Hosoya A 2011 Prog. Theor. Phys. 125 1053—65
[61] Friedman J LarXiv:2308.09826
[62] Kruskal M D 1960 Phys. Rev. 119 1743-5
[63] Szekeres G 1960 Publ. Math. Debrecen 7 285-301
[64] FengZW,LiHL,ZuX Tand Yang S Z2016 Eur. Phys.]. C76 212
[65] Nouicer K2007 Phys. Lett. B 646 6371
[66] Sen A 2013 J. High Energy Phys. JHEP04 156
[67] Rovelli C 1996 Phys. Rev. Lett. 77 3288-91
[68] Sakallil, Halilsoy M and Pasaoglu H 2011 Int. J. Theor. Phys. 50 321224
[69] Rivelles V O arXiv:hep-th/9912139
[70] Hubeny V E, Rangamani M and Takayanagi T 2007 J. High Energy Phys. JHEP07(2007)062
[71] DongX 2014 J. High Energy Phys. JHEP01(2014)044
[72] Ovgiin A, Jusufi K and Sakalli 12019 Phys. Rev. D 99 024042
[73] Kanzi S and Sakalli 12022 Eur. Phys.].C8293
[74] Abdolrahimi$, Page D N and Tzounis C 2019 Phys. Rev. D 100 124038
[75] Snyder H S 1947 Phys. Rev. 71 38
[76] Yang CN 1947 Phys. Rev. 72 874
[77] Mead C A 1964 Phys. Rev. B 135 849
[78] Karolyhazy F 1966 Nuovo Cim. A 42 390
[79] AmatiD, Ciafaloni M and Veneziano G 1987 Phys. Lett. B197 81
[80] GrossDJand Mende P F 1987 Phys. Lett. B197 129
[81] AmatiD, Ciafaloni M and Veneziano G 1989 Phys. Lett. B216 41
[82] Maggiore M 1993 Phys. Lett. B 304 65
[83] KempfA, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108
[84] Scardigli F 1999 Phys. Lett. B 452 39
[85] Adler RJand Santiago D11999 Mod. Phys. Lett. A14 1371
[86] Capozziello S, Lambiase G and Scarpetta G 2000 Int. J. Theor. Phys. 39 15
[87] Scardigli F and Casadio R 2003 Class. Quant. Grav. 20 3915
[88] Bosso P arXiv:2005.12258
[89] Bosso P and Obregén O 2020 Class. Quant. Grav. 37 045003
[90] Casadio R and Scardigli F 2020 Phys. Lett. B 807 135558
[91] BrauF 1999 J. Phys. A327691
[92] DasSand Vagenas E C2008 Phys. Rev. Lett. 101 221301
[93] AliAF, DasSand Vagenas E C2011 Phys. Rev. D 84 044013
[94] Pedram P, Nozari K and Taheri S H 2011 J. High Energy Phys. JHEP03(2011)093
[95] Pikovskil, Vanner M R, Aspelmeyer M, Kim M S and Brukner C 2012 Nature Phys. 8 393
[96] Marin F etal 2013 Nature Phys. 971
[97] Bawaj M etal 2015 Nature Commun. 6 7503
[98] Tino GM etal2019 Eur. Phys. J. D73 228
[99] Bosso P, Luciano G G, Petruzziello L and Wagner F 2023 Class. Quant. Grav. 40 195014
[100] Mathur S D 2009 Class. Quant. Grav. 26 224001
[101] Lunin O and Mathur S D 2002 Nucl. Phys. B 623 342-94
[102] Harlow D 2016 Rev. Mod. Phys. 88 015002
[103] Buoninfante L, Lambiase G, Luciano G G and Petruzziello L 2020 Eur. Phys. J. C 80 853
[104] Pachot A and Wojnar A arXiv:2307.03520
[105] LiuW, FangX, Jing J and Wang] 2023 Eur. Phys. J. C 83 83

I Sakalli and E Yoriik

13


https://doi.org/10.1016/j.physletb.2007.10.005
https://doi.org/10.1016/j.physletb.2007.10.005
https://doi.org/10.1016/j.physletb.2007.10.005
https://doi.org/10.1007/s10509-015-2482-5
https://doi.org/10.1140/epjp/i2015-15110-9
https://doi.org/10.1142/S0219887814500741
https://doi.org/10.1016/j.nuclphysb.2019.114703
https://doi.org/10.1140/epjp/s13360-023-03983-6
https://doi.org/10.1140/epjc/s10052-023-11360-x
https://doi.org/10.1088/1361-6382/acdb40
https://doi.org/10.1016/j.aop.2022.168803
https://doi.org/10.1088/1402-4896/acdb04
https://doi.org/10.1103/PhysRevD.97.104001
https://doi.org/10.1140/epjc/s10052-020-7743-y
https://doi.org/10.1088/1361-6382/ac8fda
https://doi.org/10.3390/universe9050225
https://doi.org/10.1103/PhysRevD.108.024004
https://doi.org/10.1140/epjc/s10052-023-11846-8
https://doi.org/10.1016/j.aop.2018.10.012
https://doi.org/10.1016/j.aop.2018.10.012
https://doi.org/10.1016/j.aop.2018.10.012
https://doi.org/10.1142/S0218271815420067
https://doi.org/10.1088/0253-6102/61/5/03
https://doi.org/10.1088/0253-6102/61/5/03
https://doi.org/10.1088/0253-6102/61/5/03
https://doi.org/10.1143/PTP.125.1053
https://doi.org/10.1143/PTP.125.1053
https://doi.org/10.1143/PTP.125.1053
http://arxiv.org/abs/2308.09826
https://doi.org/10.1103/PhysRev.119.1743
https://doi.org/10.1103/PhysRev.119.1743
https://doi.org/10.1103/PhysRev.119.1743
https://doi.org/10.5486/PMD.1960.7.1-4.26
https://doi.org/10.5486/PMD.1960.7.1-4.26
https://doi.org/10.5486/PMD.1960.7.1-4.26
https://doi.org/10.1140/epjc/s10052-016-4057-1
https://doi.org/10.1016/j.physletb.2006.12.072
https://doi.org/10.1016/j.physletb.2006.12.072
https://doi.org/10.1016/j.physletb.2006.12.072
https://doi.org/10.1007/JHEP11(2013)029
https://doi.org/10.1103/PhysRevLett.77.3288
https://doi.org/10.1103/PhysRevLett.77.3288
https://doi.org/10.1103/PhysRevLett.77.3288
https://doi.org/10.1007/s10773-011-0824-9
https://doi.org/10.1007/s10773-011-0824-9
https://doi.org/10.1007/s10773-011-0824-9
http://arxiv.org/abs/hep-th/9912139
https://doi.org/10.1088/1126-6708/2007/07/062
https://doi.org/10.1007/JHEP01(2014)044
https://doi.org/10.1103/PhysRevD.99.024042
https://doi.org/10.1140/epjc/s10052-022-10044-2
https://doi.org/10.1103/PhysRev.71.38
https://doi.org/10.1103/PhysRev.72.874
https://doi.org/10.1103/PhysRev.135.B849
https://doi.org/10.1007/BF02717926
https://doi.org/10.1016/0370-2693(87)90346-7
https://doi.org/10.1016/0370-2693(87)90355-8
https://doi.org/10.1016/0370-2693(89)91366-X
https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1103/PhysRevD.52.1108
https://doi.org/10.1016/S0370-2693(99)00167-7
https://doi.org/10.1142/S0217732399001462
https://doi.org/10.1023/A:1003634814685
https://doi.org/10.1088/0264-9381/20/18/305
http://arxiv.org/abs/2005.12258
https://doi.org/10.1088/1361-6382/ab6038
https://doi.org/10.1016/j.physletb.2020.135558
https://doi.org/10.1088/0305-4470/32/44/308
https://doi.org/10.1103/PhysRevLett.101.221301
https://doi.org/10.1103/PhysRevD.84.044013
https://doi.org/10.1007/JHEP03(2011)093
https://doi.org/10.1038/nphys2262
https://doi.org/10.1038/nphys2503
https://doi.org/10.1038/ncomms8503
https://doi.org/10.1140/epjd/e2019-100324-6
https://doi.org/10.1088/1361-6382/acf021
https://doi.org/10.1088/0264-9381/26/22/224001
https://doi.org/10.1016/S0550-3213(01)00620-4
https://doi.org/10.1016/S0550-3213(01)00620-4
https://doi.org/10.1016/S0550-3213(01)00620-4
https://doi.org/10.1103/RevModPhys.88.015002
https://doi.org/10.1140/epjc/s10052-020-08436-3
http://arxiv.org/abs/2307.03520
https://doi.org/10.1140/epjc/s10052-023-11231-5

	1. Introduction
	2. SBHBGM geometry and its physical features
	3. Hawking radiation of sbhbgm via hamilton-jacobi method: semi-classical approach (without GUP)
	3.1. Hawking radiation of SBHBGM within PG coordinate system
	3.2. Hawking radiation of sbhbgm within ief coordinate system
	3.3. Hawking radiation of SBHBGM within KS coordinate system

	4. Hawking radiation of sbhbgm via hamilton-jacobi method: semi-classical approach (with GUP)
	5. QC Entropy of SBHBGM
	6. Conclusion
	Acknowledgments
	Data availability statement
	References



