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Abstract
In this article, we study theHawking radiation of the Schwarzschild black hole within the bumblebee
gravitymodel (SBHBGM). Considering classical approaches involvingKilling vectors and the
standardHamilton-Jacobimethod, theHawking radiation of SBHBGM is computed. The Painlevé-
Gullstrand, ingoing Eddington-Finkelstein, andKruskal-Szekeres coordinate systems are introduced
as alternatives to the naive coordinates, providing insights into gravitational behavior aroundmassive
objects like black holes.We thus examinewhetherHawking radiation’s temperature depends on the
chosen coordinate systemor not. Incorporating theGeneralizedUncertainty Principle (GUP) into the
Hamilton-Jacobi equation, amodified equation characterizing particle behavior near the event
horizon is obtained. By calculating the tunneling probability using themodified action, theGUP-
inducedmodifications to the emitted particle’s behavior are considered, resulting in the derivation of
themodified temperature of the SBHBGM. In conclusion, we explore the quantum-adjusted entropy
of SBHBGMand its associated temperature and assess the findings we have acquired.

1. Introduction

Hawking radiation, a groundbreaking theoretical prediction introduced by StephenHawking [1–3],
revolutionized our understanding of black holes and the fundamental interactions between gravity and
quantummechanics [4]. This phenomenon proposes that black holes are not entirely black; they emit radiation
due to quantum effects near their event horizons, thus gradually losingmass and energy over time [5–15].
Hawking radiation challenges classical notions of black holes as inexorable gravitational sinks by highlighting
the intricate interplay between quantumphysics and general relativity in extreme gravitational
environments [16].

To comprehend the implications ofHawking radiation fully and explore its various facets, amultitude of
calculationmethods have been developed by physicists [17–22]. Thesemethods provide distinct perspectives on
the underlyingmechanisms, enabling us to decipher the enigmatic nature of black hole evaporation. In this
discourse, we delve into the concept ofHawking radiation, followed by an exploration of the diversemethods
employed to quantify and understand this phenomenon. The conventional formulation ofHawking radiation
emerges from the principles of quantum field theory in curved spacetime. This approach considers virtual
particle-antiparticle pairs [23] thatmomentarily appear near the event horizon.While one of these particlesmay
fall into the black hole, the other escapes to infinity as realHawking radiation. The energy needed to create these
particles is borrowed from the black hole’smass, ultimately leading to its evaporation [24–26].

Several calculationmethods have been proposed to derive the properties ofHawking radiation and elucidate
its intricate details (see [22] and references therein). One notable avenue involves tortoise coordinate
transformations, as explored byDamour, Ruffini, and Sannan [27–34]. Thismethod facilitates the analysis of
particle trajectories near the event horizon, allowing for a comprehensive understanding of howparticles escape
the black hole’s gravitational grasp. Additionally, researchers such asChandrasekhar, Bonner, andVaidya
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demonstrated the separation of theDirac andMaxwell equations in stationary spacetimes [35]. Such separations
help us understand quantumbehavior near event horizons and contribute to our knowledge ofHawking
radiation. Another significant approach, pioneered by Parikh andWilczek [36], interpretsHawking radiation as
a quantum tunneling process. Thismethod, known as the null geodesicmethod, draws parallels with particle
tunneling through classically forbidden energy barriers. The utilization of theHamilton-Jacobimethod [37–43]
further enriches the exploration of particle tunneling and provides a distinctive perspective on themechanisms
underlyingHawking radiation.Moreover, the advent of theGUPhas spurred investigations into the effects of
quantumgravity onHawking radiation. The incorporation ofGUP into the analysis necessitates innovative
calculation techniques, as emphasized in some remarkable studies [44–50]. This avenue opens up newpaths for
understanding the interplay between quantummechanics and gravity in the context ofHawking radiation.

In this work, we consider the SBHBGMspacetime, whichwas derived byCasana et al [51]. The addition of
the bumblebeefield complicates the equations for gravitational fields [52]. The bumblebeefield affects the
geometry of spacetime, leading to deviations from the classical Schwarzschild solution. Besides, this solution
allows researchers to study how the bumblebee fieldmodifies the physical properties around the black hole
[53–57].We then embark on a comprehensive journey through the phenomenon ofHawking radiation and
some of its calculationmethods. By examining these various approaches, we aim to deepen our grasp of the
intricate processes occurring near black hole event horizons, ultimately advancing our comprehension of the
profound interplay between quantumphenomena and the fabric of spacetime. To this end, wefirst compute the
Hawking radiation of SBHBGMwith classicalmethods:methods of Killing vectors and standard (withoutGUP)
Hamilton-Jacobimethod, respectively.When using the classical Hamilton-Jacobimethod, three additional and
regular coordinate systems, the Painlevé-Gullstrand (PG), ingoing Eddington-Finkelstein (IEF), andKruskal-
Szekeres (KS) coordinates are considered alongside the naive coordinates (see [58, 59] and references therein).
These alternative coordinate choices in general relativity provide valuable insights into the behavior of
gravitational fields, particularly aroundmassive objects like black holes. Those regular coordinate systems are
distinct from the standard Schwarzschild coordinates and are often used to gain a clearer understanding of the
physics involved particularly near event horizons. The PG coordinates were introduced as an attempt tomake
the time coordinatemore physically intuitive. In the Schwarzschildmetric, the time coordinate is the same as the
Schwarzschild time, which is not the ‘proper time’ experienced by an observer falling into a black hole [60]. The
PG coordinates address this issue by defining the time coordinate in such away that it corresponds to the proper
time experienced by a freely falling observer. The IEF coordinates take into account the one-way nature of light
propagation and describe the radial position of light rays as theymove toward the black hole [26, 61]. Themetric
in these coordinates remains regular at the event horizon, whichmakes it convenient for studying the behavior
of particles and light as they cross the horizon. Devised independently byMartin Kruskal andGeorge Szekeres
[62, 63], KS coordinate systemoffers a perspective that simplifies themathematical representation of the
complex spacetime curvature near a black hole’s event horizon. By transforming the conventional
Schwarzschild coordinates, the KS coordinates unveil the intriguing properties of black hole interiors and
exteriors, allowing for a clearer understanding of phenomena like gravitational time dilation, trapped surfaces,
and the path of light. Then, we incorporate theGUPmodification into theHamilton-Jacobi equation [64],
which yields amodified equation that describes the behavior of particles near the SBHBGM’s event horizon.
Using themodified action, we calculate the tunneling probability for particles to escape the event horizon. This
probability takes into account theGUP-inducedmodifications to the emitted particle’s behavior near the
horizon. Since the tunneling probability is related to theHawking temperature and radiation spectrumof the
black hole, by considering theGUP effects, we derive themodified temperature of the SBHBGM.While the
Bekenstein-Hawking formula [26] successfully relates the entropy to the black hole’smacroscopic properties, it
does not account for quantum effects that occur near the event horizon. As black holes can emitHawking
radiation due to quantum fluctuations, these quantum effects are expected tomodify the entropy and other
thermodynamic quantities. Quantum-corrected (QC) entropy [65, 66] attempts to incorporate these quantum
corrections into the expression for entropy. Various approaches, including loop quantumgravity and string
theory, have explored these corrections [67, 68]. Thesemodifications to the entropy formula are often subtle and
may depend on the specific quantumgravity theory being considered. The concept of quantum-corrected
entropy is not limited to black hole physics. It has broader applications in the context of the holographic
principle and the AdS/CFT correspondence [69–71], where it suggests a deep connection between gravitational
physics and quantumfield theories.We also study theQC entropy of the SBHBGMand explore howquantum
fields near the event horizon impact the black hole’s entropy. This investigation contributes to our
understanding of the intricate connection between quantummechanics (including theGUP) and gravitational
physics in extreme environments.

The paper is organized as follows: In section 2, we provide a brief introduction to the SBHBGMand examine
its fundamental characteristics. In section 3, we focus on calculating the classical (without considering theGUP
effects)Hawking radiation of the SBHBGMvia theHamilton-Jacobimethod.We also attempt to demonstrate
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the coordinate independence of theHawking radiation obtained through quantum tunneling by extending our
findings to regular coordinates, which are PG, IEF andKS coordinate systems. Section 4 is devoted to theGUP-
modifiedHawking radiation of the SBHBHM.We analyze theQC entropy and temperature of the SBHBGM in
section 5. Finally, in section 6, we present our concluding remarks. (Throughout the paper, we use geometrized
units: c=G= ÿ= kB= 1.)

2. SBHBGMgeometry and its physical features

According to extended Einstein field equations of bumblebee gravity theory [51, 72, 73], we have

G R Rg T
1

2
8 1( )p= - =mn mn mn mn

whereGN is theNewtonian constant,Gμν represents the Einstein tensor, whileTμν corresponds to the overall
energy-momentum tensor originating fromboth thematter sector’s contribution (TM

mn) and the effects of the
bumblebeefield (TB

mn):T T TBM= +mn mn mn . A reader can find the detailed derivation of the field equations and
their correspondingmetric solution for the SBHBGM in [51], which serves the following spherically symmetric
vacuum solution:

ds fdt f dr r d r dsin , 22 2 1 2 2 2 2 2 2 ( )q q f= - + X + +-

whereΞ= 1+ ℓ inwhichℓis the positive Lorentz symmetry-breaking parameter [51].Metric (2) represents a
purely radial Lorentz-violating solution outside a spherical body characterizing amodified black hole solution.
Themetric function ( f ) is given by f 1 M

r

2= - inwhich rh= 2M represents the event horizon andM denotes
themass. This solution for a black hole describes a situationwhere Lorentz violation occurs exclusively in the
radial direction beyond a spherical object, defining amodified black hole solution. As the parameter
ℓapproaches zero, it is evident that the conventional Schwarzschildmetric is regained. In the context of the
metric labeled as equation (2), the Kretschmann scalar [26] can be computed as follows:

R R
M Mr r

r

4 12 4
, 3

2 2 2

6 2

ℓ ℓ( ) ( )= =
+ +

X
mnls

mnls

which is distinct from theKretschmann scalar of a Schwarzschild black hole. This indicates that none of the
coordinate transformations establish a connection betweenmetric (2) and the usual Schwarzschild black hole
metric.When r is equal to 2M, the curvature of spacetime remainsfinite, implying that a proper coordinate
transformation can eliminate the coordinate singularity. However, in the scenariowhere r equals 0, the physical
singularity cannot be eliminated. Therefore, it can be observed that the characteristics of the physical singularity
at r= 0 and the coordinate singularity at r= rh= 2M (event horizon) of the Schwarzschild black hole remain
intact in the SBHBGMsolution. On the other hand, theHawking temperature [1] can be computed as

T f r
M2

1

4

1

8
, 4H h( ) ( )k

p p p
= = ¢ =

X

whereκ denotes the surface gravity [26]:

M

1

4
, 5( )k c c=   =

X
m

m
n

n

bywhichχμ is the timelike Killing vector field and the prime (dash) symbol in equation (4) is used to denote the
derivative of a functionwith respect to its argument. As can be seen from figure 1, the non-zero Lorentz
symmetry breaking parameterℓ has the effect of reducing theHawking the temperature of a Schwarzschild
black hole solution.

As can be seen from figure 1, a Schwarzschild black holewith the samemass of a SBHBGMhas a higher
Hawking temperature compared to that SBHBGMblack hole. On the other hand, theHawking temperature for
low-mass black holes begins to dramatically increase inversely with theirmass, and as the LSB effect increases,
the temperature difference between the Schwarzschild black hole and the SBHBGMbecomesmore pronounced.
In supermassive black holes, this difference is so small that it is not noticeable.

3.Hawking radiation of sbhbgmvia hamilton-jacobimethod: semi-classical approach
(withoutGUP)

The section focuses on elucidating the process of derivingHawking radiation for black holes resembling the
Schwarzschildmetric within the framework of bumblebee gravity, which introduces the Lorentz-violating term.
Through the utilization of theHamilton-Jacobimethod, the section outlines the step-by-stepmathematical
procedure to uncover the radiation emitted by thesemodified black holes. To this end, let usfirst consider the
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Hamilton-Jacobi equation [37] :

g
P

x

P

x
m 0, 62⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( )¶
¶

¶
¶

+ =mn
m n

inwhichm and gμ ν are themass of the particle and the inversemetric tensor, respectively. Besides, P is the
classical action of a relativistic particle that satisfies theHamilton-Jacobi equation (6). Setting [38–41]

L g P g P , 72 2 2( ) ( ) ( )= ¶ + ¶qq
q

ff
f

which is a constant associatedwith the particle’s angularmomenta. Thus, we get

f

P

t

f P

r
L m

1
0. 8

2 2
2 2⎛

⎝
⎞
⎠

⎛
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+
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Taking theKilling vectors of SBHBGMspacetime (2) into account, one can set

P r t t W r, , 9( ) ( ) ( )w= - +

whereω is the particle energymeasured by an observer located at spatial infinity andW(r) is the time-
independent function, which is calledHamilton’s characteristic function. After somemanipulations, one can
obtain:

W r
f

dr. 10( ) ( )ò
w

= 
X

By the help of residue theory, the near-horizon solution yields

W r i M2 . 11h( ) ( )pw=  X

Using the tunneling probability ()with the Boltzmann formula [22], we get

ImW r

ImW r
M

T

exp 2

exp 2
exp 8 exp , 12

out

in

h

h

⎛
⎝

⎞
⎠

( ( ))
( ( ))

( ) ( )p w
w

=
G
G

==
-
-

= - X =
-+

-


Figure 1.Graph ofTH versusmassM. The considered Lorentz symmetry-breaking parametersℓare depictedwith different colors.
Plots are governed by equation (4). Recall thatℓ = 0 corresponds to the pure Schwarzschild black hole.
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which yields the surface temperature of the SBHBGMas follows:

T
M

1

8
, 13Sr ( )

p
=

X

which is nothing but the statisticalHawking temperature obtained in equation (4):TSr= TH.
Besides its naive coordinates, we also consider two regular coordinate systems: PG and IEF coordinates.

Detailed quantum tunneling calculations will be reevaluated using theHJmethodwithin these coordinates, and
the preservation ofTH invariance will be examinedwithin each coordinate system in the following section.

3.1.Hawking radiation of SBHBGMwithin PG coordinate system
The PG coordinate system [58] is a specific coordinate systemused in the study of black hole physics, particularly
in the context of general relativity. It was introduced to provide amore intuitive and physically transparent
description of the spacetime geometry around a spherically symmetric black hole compared to the commonly
used Schwarzschild coordinates. In the Schwarzschild coordinate system,which is often used to describe the
geometry of a non-rotating (static) black hole, the coordinate singularity at the event horizonmakes it difficult to
interpret the physical behavior of particles falling into the black hole. The PG coordinates were designed to
address this issue. In the PG coordinates, themetric is chosen in such away that the radial coordinate follows the
motion of a freely-falling observer. Thismeans that the coordinate system is adapted to an observer who is
‘riding’ alongwith a falling particle. As a result, the coordinate singularity at the event horizon is removed, and
themetric becomes regular at the horizon. The PG coordinates have the following properties:

RegularHorizon: The event horizon of the black hole appears as a regular surface in these coordinates,
making it easier to analyze the behavior of particles and light near the horizon.

Non-Static Behavior: Unlike the Schwarzschild coordinates, the PG coordinates exhibit non-static behavior.
Thismakes it easier to analyze the infall ofmatter into the black hole and the associated effects.

Negative Energy Particles: These coordinates can accommodate negative energy particles thatmove outward
from the black hole, which can provide insights into the dynamics of black hole evaporation.

In this section, we shall use the PG coordinates for the SBHBGMas a regular coordinate system in theHJ
equation and showhow it gives the trueHawking temperature. Let us start with the following transformation:

dr dr , 14˜ ( ) X

dt dt
f

f
dr

1
, 15˜ ( ) +

+

f
M

r
1

2
. 16˜

˜
( )= -

Thus,metric (2) transforms into its PG form as

ds f dt f dtdr dr r d2 1 . 172 2 2 2 2˜ ˜ ˜ ˜ ˜ ˜ ˜ ( )= - + - + + W

where

d d dsin , 182 2 2 2 ( )q q fW = +

which is themetric on a unit two-sphere S2. Employing theHamilton-Jacobi equation (6)with ansatz
P r t t W r,(˜ ˜) ˜ ˜ ˜ (˜)w= - + andmaking some straightforward calculations, one can get two near-horiozn solutions
for theHamilton’s characteristic functionW r˜ (˜):

W r 0, 19h˜ (˜ ) ( )=-

W r i M4 . 20h˜ (˜ ) ˜ ( )pw= + X+

Therefore, the tunneling probability of radiating particles from the black hole geometry (17) is found as;

ImW r

ImW r
M

T

exp 2

exp 2
exp 8 exp . 21h

h

⎛
⎝

⎞
⎠

˜ ( ˜ (˜ ))
( ˜ (˜ ))

( ˜ ) ˜
˜ ( )p w
w

=
-
-

= - X =
-+

-

Thus, one can read the black hole temperature of SBHBGMdefined in PG coordinates as follows

T
M

1

8
, 22˜ ( )

p
=

X

which equals to the statisticalHawking temperature (4).

3.2.Hawking radiation of sbhbgmwithin ief coordinate system
The IEF coordinates [74] offer a unique perspective on the geometry of spacetime surrounding a black hole,
particularly in the context of ingoing particles such as photons. These coordinates aremeticulously designed to
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maintain regularity at the black hole’s event horizon, simplifying the analysis of particles as they approach this
boundary and providing insight into the behavior ofmatter and radiation near the event horizon.

To pass to the IEF coordinate system, let us use the following transformation [59]:

dt d dr , 23( )n= - *

where ν is a newnull coordinate, the so-called advanced time and r* denotes the tortoise coordinate:

dr
dr

f
. 24( )=

X*

Thus, the SBHBGMmetric (2) recasts in

ds fd d dr r d2 . 252 2 2 2 ( )n n= - + + W

In this coordinate system, the scalar particle’s energy can bemeasured by an observer asE=−∂vP, due to the
Killing vector field of ξμ= ∂v inmetric (25).

P r W r J x, , , , 26IEF
i( ) ( ) ( ) ( )n q f wn= - + +

inwhich∂iP= Jiʼs are constants and i= 1,2 labels the angular coordinates θ andf, respectively. Employing the
Hamilton-Jacobi equation (6) for themetric (25), thefinal result forWIEF(r) can be found as

W r
f

f
dr1 1 , 27IEF 2⎜ ⎟

⎛

⎝

⎞

⎠
( ) ( )òw

r
w

=
X

 -

where

m
J

r

J

r sin
. 282

2

2

2

2 2
( )r

q
= + +q f

The expression forWIEF(r) simplifies to the following expression in the vicinity of the event horizon:

W r
f

dr1 1 . 29IEF( ) ( ) ( )òw=
X



Thus, one gets

W r 0, 30IEF h( ) ( )=-

W r i M4 . 31IEF h( ) ( )pw= + X+

In the sequel, we find out the tunneling probability of the emitted quanta from the SBHBGMdefined in the IEF
coordinates:

W r

W r
M exp

T

exp

exp
exp 8 . 32IEF

IEF h

IEF h IEF

⎜ ⎟
⎛
⎝

⎞
⎠

( ( ))
( ( ))

( ) ( )p w
w

= = - X =
-+

-

As a result, we get

T
M

1

8
, 33IEF ( )

p
=

X

which fully agrees with equation (4).

3.3.Hawking radiation of SBHBGMwithinKS coordinate system
Introduced byMartin Kruskal andGeorge Szekeres [62, 63], KS coordinate systemoffers a unique perspective
for understanding the geometry and behavior of black holes, particularly those described by the family of
Schwarzschild solutions. By transforming the standardmetric into a new set of coordinates, the KS coordinates
unveil the underlying structure of spacetime around a black hole, enabling insights into phenomena such as
event horizons and the nature of singularities. This coordinate systemproves indispensable in simplifying the
mathematical representation of these complex gravitational systems and illuminating their intriguing
properties. In this section, wewill use theHamilton-Jacobi equation to represent how to obtainTH through the
KS formof the SBHGBGM.To this end, let us rewrite themetric (2) in the following form:

ds f dt
f

dr r d , 342 2
2

2 2 2
⎜ ⎟
⎛
⎝

⎞
⎠

( )= - -
X

+ W

which can be transformed to

ds f u v rd d d , 352 2 2 ( )= - + W
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by the following coordinate transformations:

u t r v t rd d d , d d d . 36( )= - = +* *

Recall that the definition of tortoise coordinate was given r* in equation (24), which can bewritten explicitly as
follows:

r r rh
r

rh
ln 1 . 37⎛

⎝
⎛
⎝

⎞
⎠

⎞
⎠

( )= X + -*

After establishing new coordinates (U,V ) that are determined by the surface gravity (5):

U Ve , e , 38u v ( )= - =k k-

one can redefinemetric (34) in theKS coordinate system:

ds U V rd d d , 392 2 2 ( )= - + W

inwhich

f

UV

r

r

e4
. 40h

2

3 r
rh( )

( )
k

= - =
X -



With the exception of the physical singularity r= 0, thismetric is regular everywhere. Alternatively,metric (39)
can be changed into

ds rd d d , 412 2 2 2 2( ) ( )= - - + W  

which can bemade by the following transformations

V U
r

r

t

r
e

1

2
1 sinh

2
, 42r

h

r

h

h

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )= + = -
X

X
X



V U
r

r

t

r
e

1

2
1 cosh

2
. 43r

h

r

h

h

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )= - = -
X

X
X



One can observe directly from above that

r

r
e 1 44r

h

r
2 2 2

2 h

⎜ ⎟
⎛
⎝

⎞
⎠

( )- = -X
X

 

which indicates that the future and past horizons are represented by =   . In this case, on the other hand,
¶ is not a timelike Killing vector for themetric (39). Therefore, it is advantageous to take into account the
metric’s timelike Killing vector in the following form:

, 45T ( ) ( )¶ = ¶ + ¶   

where  denotes the normalization constant. The determination of the normalization constant  is crucial in
calculating the normof theKilling vector, which attains a negative unity value at either spatial infinity or the
position of the observermeasuring the temperature of the SBHBGMM.Therefore, at spatial infinity, the
normalization constant is found to be

r f

1

2
. 46

h r

( )k=
X

=
=¥



Without loss of generality, onemight consider the (1+1)-dimensional formof theKSmetric (41)which is

ds d d . 472 2 2( ) ( )= - -  

In this situation, theHamilton-Jacobimethod’s calculations become simpler. The abovemetric’sHamilton-
Jacobi equation (6) is as follows:

P P m 0. 481 2 2 2[( ) ( ) ] ( )- ¶ - ¶ + =-  

According to this equation, the ansatz for theP could be expressed as

P y J x , 49i( ) ( ) ( )r= +

where y = -  and ρ(y) is a function to be determined. Tomake things even simpler, we can set J x 0i( ) =
andm= 0. The energy is nowdescribed as
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E P P P . 50T ( ) ( )k= -¶ = - ¶ + ¶  

Using the above equationwith ansatz (49), one derives the following expression

y
Er

y
y

2
d . 51h( ) ( )òr =

X

The above expression has a divergence at the horizon yh= 0, namely =  . Thus, it leads to a pole at the
horizonwhich could be overcome by doing a semi-circular contour of integration in the complex plane. The
result is found to be

y Er
E

Im 2 . 52h h( ) ( )r p
p
k

= X =

which leads to the following tunneling probability of the emitted quanta from the SBHBGMdefined in theKS
coordinates (39):

y
E

T
exp 2 Im exp , 53KS h

KS

⎜ ⎟
⎛
⎝

⎞
⎠

( ( )) ( )r= - =
-



which results in

T
r

1

4
. 54KS

h

( )
p

=
X

Equation (54) is nothing but theHawking temperature seen in equation (4). Namely, we have impeccably
recovered theTH in the background of theKSmetric of the SBHBGM.

4.Hawking radiation of sbhbgmvia hamilton-jacobimethod: semi-classical approach
(withGUP)

In this section, our focus revolves around the intricate interplay between theGUP and theHawking radiation of
the SBHBGM, employing the highly insightfulHamilton-Jacobimethod.Quantum gravity theories, spanning a
spectrumof perspectives, consistently postulate the intriguing concept of aminimal length, which finds its roots
in the very fabric of the quantum realm.Within this theoretical framework, the realization of thisminimal
lengthmanifests through various avenues. Among these, a particularly noteworthy route involves the
application of theGUP.

Beforewe begin to achieve our objectives in this section, let us provide a brief overview of theGUP
formalism. In fact, if one checks the literature, it can be seen that a significant endeavor has been dedicated to
incorporating gravitational effects into quantumphysics through the utilization of aGUP, as extensively
explored in previous works [75–89]. TheGUP is expressed as follows [90]:

x p p
1

2
1 , 552( ) ( )bD D + D

whereβ is referred to as theGUPparameter, representing a deforming parameter expected to emerge from
candidate theories of quantum gravity. In equation (55), x and p denote the position and conjugatemomentum
of a particle, respectively, with their corresponding quantumobservables denoted as x̂ and p̂. The term

O O O2 2 2ˆ ˆD º á ñ - á ñ is applicable to any operator Ô.
Uncertainty relations are intrinsically connected to (fundamental) commutators via the following general

inequality:

X Y X Y
1

2
, . 56∣ [ ˆ ˆ ] ∣ ( )D D á ñ

For instance, equation (55) can be derived from the following commutator:

x p i p, 1 . 572[ ˆ ˆ ] ( ˆ ) ( )b= +

By using equation (56), we can then obtain:

x p p p p
1

2
1

1

2
1 . 582 2 2( ˆ ) [ ( ˆ )] ( )b bD D + á ñ = + D + á ñ

This demonstrates that theGUP (55) holds for any quantum state, given that p 02ˆá ñ  always. Formirror-
symmetric statesΨmsym that satisfy:

p 0, 59msym msym∣ ˆ∣ ( )áY Y ñ =

wehave p p2
ms

2
ms∣ ˆ ∣y yD = á ñ, and the inequality (58) coincides with theGUP (55).
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The theoretical implications of theGUPon quantum (microscopic) systems have been thoroughly explored
by various researchers, as evident in previous studies [91–94]. Additionally, several experiments have been
proposed for laboratory testing of different GUPs [95–97], and there are also ground-based and space-based
experiments that could potentially reveal GUP effects [98].What is particularly noteworthy is that the
magnitude of suchmodifications can also be constrained usingmacroscopic test bodies through the utilization
of existing astronomical data, which are typically employed for standard tests of general relativity. For a detailed
recent review of theGUP, a reader is referred to [99] and references therein.

To embark on our exploration, we commence by delving into theGUP-modifiedHamilton-Jacobi equation
[64] tailored for scalar particles, as elegantly articulated below:

g S S g S m g S m1 2 0, 60j
j

kk
k

jj
j

0
0

2 2 2 2( )( ) [ ( ) ] { [ ( ) ]} ( )b¶ ¶ + ¶ + ´ - ¶ + =

where k, j= 1, 2, 3,β is theGUPparameter, and equation (60) yields the following expressionwith the use of
metric (2) and ansatzes (7) and (9):

f d W f L m d W
L m m

fL

f

2 4 4 1
2 0. 61r r

2 4

2

2 2 2
2 2 2 2

2 2( ) ( )( ) ( ) ( )b b b
b

w
-

X
-

+ -
X

- + + +
- +

=

In equation (61), only the leading orders ofβ are considered and the higher order terms ofβ are neglected since
they have negligibly low values. In the sequel, if one solves that equation forW0 andW1, the following
expressions are obtained around the horizon:

W i M2 , 620 ( )pw=  X

W i M4 , 631
3 ( )pw=  X

which belong to

W W W i M2 1 2 . 64GUP 0 1
2( ) ( )b pw bw= + =  X +

Wecalculate the tunneling probability as;

ImW

ImW

M

M T

exp 2

exp 2

exp 4 1 2

exp 4 1 2
exp , 65GUP

GUP GUP

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

( ( ))
( ( ))

( )pw bw
pw bw

w
=

-
-

=
- X +

X +
=

-+

-

whence theGUPmodifiedHawking temperature of the SBHBGMcan be found out to be

T
M

1

8 1 2
. 66GUP 2( )

( )
p bw

=
X +

The term 1

1 2 2bw+
in the expression implies that as the frequency and/orβ increase, themodification due toGUP

becomesmore prominent, leading to a reduction in themodifiedHawking temperature compared to the
conventional value ofTH presented in equation (4). This alteration can be seen as an intricate consequence of the
underlying quantumgravitational effects, where theminimal length scale encoded byβ influences the radiation
process. Below is the correlation between the conventionalHawking temperature and themodified version:

T
T

T
1 2

1 2 . 67GUP
H

H2
2 2( ) ( ) ( )

bw
bw b=

+
» - + 

The approximated formof the expression,T 1 2H
2 2( ) ( )bw b- +  , further simplifies the relationship,

highlighting the primary influence of theGUP-inducedmodification. Thefirst termT 1 2H
2( )bw- denotes the

dominant effect of GUPon themodified temperature, showcasing how the presence of theminimal length scale
affects the energy emission. The additional term 2( )b accounts for higher-order corrections stemming from
theGUP, contributing to the refinement of the temperaturemodification.

5.QCEntropy of SBHBGM

A fundamental aspect of black hole thermodynamics lies in the concept of entropy, which plays a central role in
connecting themacroscopic behavior of black holes with the underlyingmicroscopic degrees of freedom. The
QC-inducedmodifications give rise to a revision of the black hole entropy expression, incorporating corrections
that diverge from the traditional Bekenstein-Hawking formula [26]. The underlying physics driving these
corrections is rooted in the profound changes to the density of states for quantum states near the Planck scale,
thereby influencing the counting ofmicroscopic configurations responsible for the black hole entropy.
Consequently, theQC-modified entropy not only offers a tantalizing link between quantumgravity phenomena
and black hole thermodynamics but also holds the potential to address long-standing issues such as the black
hole information paradox [100–102].
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In this section, we delve into theQC entropywithin the framework of the SBHBGM.Webegin by outlining
the fundamental principles of entropy and the first law of thermodynamics. Building upon this foundation, we
proceed to derive theQC-modified expression for the black hole entropy. Through a careful analysis of theQC-
modified entropy formula, we aim to illuminate the role of quantumgravity effects in reshaping the
thermodynamic properties of the SBHBGMand to uncover potential avenues for testing thesemodifications
through astrophysical observations and experimental scenarios [103].

The Bekenstein-Hawking entropy formula, a cornerstone ofmodern theoretical physics, provides a simple
yet powerful expression for the entropy of a black hole, denoted as SBH:

S
A

4
, 68BH

H ( )=

which recasts in the following expression for the SBHBGM:

S r M4 . 69BH H
2 2 ( )p p= =

Let us now take a closer look at thefirst law of thermodynamics:

dE T dS , 70H BH ( )=

which yields

dS MdM8 . 71BH ( )p=

Recalling theHawking temperature (4), equation (70) becomes

dE
M

MdM
dM1

8
8 . 72( )

p
p=

X
=

X

By integrating equation (72), we get

E
M

, 73( )=
X

which demonstrates that the total thermal energy of the black hole,E, is proportional to the inverse square root
of the quantityΞ, which is influenced by the bumblebee parameterℓ. This implies that deviations fromLorentz
invariance, introduced by the parameterΞ, have a direct impact on the scaling of the thermal energywith respect
to the black hole’smass. After combining equations (69) and (73), one obtains

S E4 . 74BH
2 ( )p= X

Equation (74) highlights the LIV-modified Bekenstein-Hawking entropy SBH that accounts for the influence of
the LIV parameterℓ. The existence ofΞ parameter in equation (74) signifies a departure from the traditional
entropy formula (SBH= 4πE2) due to the LIV parameter, resulting in a deviation from the standard black hole
thermodynamics dictated by general relativity. In summary, the provided expressions elucidate the intricate
interplay between black hole thermodynamics, Lorentz invariance violation through the parameterℓ, and the
resultingmodifications to the black hole’s thermal energy and entropy. Thesemodifications introduce a
departure from conventional expectations, underscoring the potential influence of newphysics, such as
deviations fromLorentz invariance, on the behavior of black holes and their thermodynamic attributes.

On the other hand, In the framework of string theory and loop quantum gravity, the concept of quantum
corrected entropy SQG emerges as a pivotal element. This quantum correction is described by the following
expression [67, 68]:

S S Sln 4 , 75QG BH BH( ) ( )a= +

where SBH is the Bekenstein-Hawking entropy andα signifies a parameter linked to quantum corrections. This
expression captures the interplay between the intrinsic entropy of the black hole and quantummodifications
arising from these theories. The shift in quantum-corrected entropy is then given by:

S S E S E

E E E E4 ln 16 4 ln 16 . 76

QG QG QG

2 2 2 2

( ) ( )
( ) ( ( ) ) ( ) ( )

w
p w a p w p a p

D = - -

= X - + X - - X - X

This equation portrays the change in quantum-corrected entropy due to variations in energy E and angular
frequencyω, incorporating both the bumblebee factorΞ and the quantum correction parameterα. Expanding
equation (76)with a Taylor series with respect toω, by keeping the leading order, yields:

S E
E T E

8
2 1 2

. 77QG
H

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )p
a

w
a

wD » - X + = - +

This equation unveils a connection between themodified factors due to quantum corrections and theHawking
temperatureTH, highlighting the intricate interplay between thermodynamics and quantum effects.
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The quantum-corrected tunneling rate, denoted asΓQG, is described by:

S
T

, 78QG QG
QG

( )w
G ~ D = -

whence themodified temperatureTQG, at the leading order ofα, reads

T T
T

E
1

2
. 79QG H

H⎛
⎝

⎞
⎠

( )a
» -

Remarkably, as the quantum correction parameterα approaches zero,TQG converges towards the standard
Hawking temperatureTH representing the classical regime. The expression (79) elucidates the dependence of the
modified temperatureTQG on the bumblebee parameterℓand the quantum correction parameterα,
highlighting their joint influence on the temperature deviation from the classical valueTH.

In summary, the presented equations intricately interweave the quantum-corrected entropy,modified
tunneling rates, and temperature deviations, offering a glimpse into the profound relationship between black
hole thermodynamics, quantumgravity theories, and the underlyingmicroscopic quantum effects that
potentially reshape our understanding of these enigmatic cosmic objects.

6. Conclusion

In conclusion, the features of the SBHBGMspacetimewere exploredwithin the context of bumblebee gravity
theory. The extended Einsteinfield equations, incorporating the effects of the bumblebee field, were introduced.

Themodified black hole solution (SBHBGM) is characterized by a radialmetric function grr 1 M

r

2= X

-
,

showcased the influence of the Lorentz symmetry-breaking or the bumblebee parameterℓon the spacetime
curvature. TheKretschmann scalar (3) demonstrated the distinct nature of themetric compared to the
conventional Schwarzschild black hole.

By employing theHamilton-Jacobimethod,Hawking radiation for the SBHBGMwas investigated.
Different regular coordinate systemsPG, IEF, andKS coordinateswere considered to analyze the radiation
process. In each coordinate system, the tunneling probability and temperature of the black hole were computed.
Remarkably, the Lorentz symmetry-breaking parameterℓ influenced theHawking temperature, with non-zero
ℓ leading to a reduction in temperature compared to the Schwarzschild case. The effects of Lorentz invariance
violationwere emphasized, introducing intriguing deviations from the standardHawking temperature. Thus,
we have also demonstrated thatHawking radiation possesses an independent invariant physical property
regardless of the coordinate system.

Furthermore, the impact of theGUPwas integrated into the analysis. TheGUP-modifiedHamilton-Jacobi
equationwas employed to derive tunneling probabilities and temperatures, unveiling the intricate interaction
between theGUP, Lorentz symmetry violation, andHawking radiation. TheGUP-inducedmodificationswere
introducedwith a newparameterβ, which played a role in reducing themodifiedHawking temperature. The
relationship between the conventionalHawking temperature and theGUP-modified temperaturewas
elucidated, offering insights into how quantumgravitational effects influence the radiation process.

Finally, the concept ofQC entropywas introducedwithin the SBHBGM framework. The interplay between
black hole thermodynamics and quantumgravity effects, incorporating both the Lorentz symmetry-breaking
parameterℓand a quantum correction parameterα, was explored. The expressions forQC entropy and
modified temperature underscored the intricate connection between quantum corrections, thermodynamic
properties, and the underlyingmicroscopic quantumbehavior. It is alsoworth noting that in sections 4and 5, we
discussed theHawking radiation of SBHBGMusing distinct approaches, emphasizing that theGUP andQC
methods stem from separate quantum gravity theories. Section 4 focuses on theGUP and employs the
Hamilton-Jacobimethod to computeHawking temperatures, while section 5 delves into theQC entropy of
SBHBGMwithin the framework of string theory and loop quantumgravity. These two distinctmethods provide
complementary insights and serve as potential test beds for future observations and experiments [103, 104].
Namely, the results obtained in these two sectionsmay shed light on complex relationships regarding black hole
thermodynamics, quantum gravity theories, and potential changes in our understanding of black holes’
behavior.

In conclusion, the investigation of the SBHBGMspacetimewithin the framework of bumblebee gravity,
alongwith the incorporation of quantumgravity effects, provided a comprehensive understanding of the
modifications introduced by Lorentz invariance violation and theGUP. Thesemodifications have the potential
tomanifest as observable deviations from classical black hole thermodynamics, offering a unique opportunity to
probe the effects of quantumgravity at astrophysical scales. In the future, this research can be extended to
investigate the behavior of rotating black holes within the bumblebee gravity theory [73, 105]. The study of
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rotating black holes introduces new complexities due to frame-dragging effects and angularmomentum
considerations. The analysis could involve exploring themodifications to themetric, coordinate systems, and
thermodynamic properties induced by the presence of rotation.Moreover, the exploration of quantum-
corrected entropy and tunneling rates in the context of rotating black holes could provide valuable insights into
the impact of quantumgravity effects on these objects. All of these arewithin the scope of our near-future work
agenda.

Acknowledgments

Weexpress our gratitude to the Editor and the anonymous Referees for their valuable recommendations and
feedback. İ.S. would like to express his gratitude for the networking assistance provided byCOSTAction
CA18108, which focuses on quantum gravity phenomenology in themulti-messenger approach.Wewould also
like to extend our appreciation to TÜBİTAK,ANKOS, and SCOAP3 for their generous support.

Data availability statement

Although this work is pure theoretical, we, the authors, are open to sharing any underlying data, code,models, or
other supportingmaterials upon reasonable request. The data that support the findings of this study are available
upon reasonable request from the authors.

ORCID iDs

İzzet Sakallı https://orcid.org/0000-0001-7827-9476

References

[1] Hawking SW1974Nature 248 30–1
[2] Hawking SW1975Commun.Math. Phys. 43 199–220
[3] Bardeen JM,Carter B andHawking SW1973Commun.Math. Phys. 31 161–70
[4] Bekenstein JD 1973Phys. Rev.D 7 2333–46
[5] Hawking SW1976Phys. Rev.D 13 191–7
[6] Hawking SWandPageDN1983Commun.Math. Phys. 87 577
[7] Mirekhtiary F S and Sakalli I 2019 Indian J. Phys. 94 1853–9
[8] Sakalli I andOvgunA2017EPL 118 60006
[9] Sakalli I andAslanOA2016Astrophys. Space Sci. 361 128
[10] Sakalli I andÖvgünA 2016 J. Astrophys. Astron. 37 21
[11] Sakalli I andÖvgünA 2016Gen. Rel. Grav. 48 1
[12] GurselH and Sakalli I 2016Can. J. Phys. 94 147–9
[13] Sakalli I andOvgunA 2015EPL 110 10008
[14] WaldRM2001 Living Rev. Rel. 4 6
[15] Pourhassan B, FarahaniH andUpadhyay S 2019 Int. J.Mod. Phys.A 34 1950158
[16] Marolf D 2009Gen. Rel. Grav. 41 903–17
[17] SrinivasanK and PadmanabhanT 1999Phys. Rev.D 60 024007
[18] AnghebenM,NadaliniM,Vanzo L andZerbini S 2005 J. High Energy Phys. JHEP05(2005)014
[19] Banerjee R andMajhi B R 2008 J. High Energy Phys. JHEP06(2008)095
[20] Skenderis K andTaylorM2008Phys. Rept. 467 117–71
[21] Bekenstein JD 1975Phys. Rev.D 12 3077–85
[22] Vanzo L, AcquavivaG andCriscienzo RDi 2011Class. Quant. Grav. 28 183001
[23] Manikandan SK and JordanAN2017Phys. Rev.D 96 124011
[24] UnruhWG1976Phys. Rev.D 14 870
[25] UnruhWG1981Phys. Rev. Lett. 46 1351–3
[26] WaldRM1984General Relativity (ChicagoUniv. Pr.)
[27] Damour T andRuffini R 1976Phys. Rev.D 14 332–4
[28] Sannan S 1988Gen. Rel. Grav. 20 239–46
[29] Sakalli I 2016Phys. Rev.D 94 084040
[30] LanXG, JiangQQandWei L F 2012Eur. Phys. J.C 72 1983
[31] Ren J R,Mao P J, Li R and Jia L Y 2010Class. Quant. Grav. 27 165016
[32] PasaogluH and Sakalli I 2009 Int. J. Theor. Phys. 48 3517–25
[33] ZhaoZ andZhu J Y 1994 Int. J. Theor. Phys. 33 2147–55
[34] Sakalli I andAl-Badawi A 2009Can. J. Phys. 87 349–52
[35] Chandrasekhar S 1983TheMathematical Theory of BlackHoles (OxfordUniversity Press)
[36] ParikhMKandWilczek F 2000Phys. Rev. Lett. 85 5042–5
[37] Kerner R andMannRB2008Class. Quant. Grav. 25 095014
[38] Akhmedov ET, AkhmedovaV and SingletonD2006Phys. Lett.B 642 124–8
[39] Majhi BR 2009Phys. Rev.D 79 044005

12

Phys. Scr. 98 (2023) 125307 İ Sakallı and EYörük

https://orcid.org/0000-0001-7827-9476
https://orcid.org/0000-0001-7827-9476
https://orcid.org/0000-0001-7827-9476
https://orcid.org/0000-0001-7827-9476
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/s12648-019-01617-1
https://doi.org/10.1007/s12648-019-01617-1
https://doi.org/10.1007/s12648-019-01617-1
https://doi.org/10.1209/0295-5075/118/60006
https://doi.org/10.1007/s10509-016-2714-3
https://doi.org/10.1007/s12036-016-9397-6
https://doi.org/10.1007/s10714-015-1997-y
https://doi.org/10.1139/cjp-2015-0495
https://doi.org/10.1139/cjp-2015-0495
https://doi.org/10.1139/cjp-2015-0495
https://doi.org/10.1209/0295-5075/110/10008
https://doi.org/10.12942/lrr-2001-6
https://doi.org/10.1142/S0217751X19501586
https://doi.org/10.1007/s10714-008-0749-7
https://doi.org/10.1007/s10714-008-0749-7
https://doi.org/10.1007/s10714-008-0749-7
https://doi.org/10.1103/PhysRevD.60.024007
https://doi.org/10.1088/1126-6708/2005/05/014
https://doi.org/10.1088/1126-6708/2008/06/095
https://doi.org/10.1016/j.physrep.2008.08.001
https://doi.org/10.1016/j.physrep.2008.08.001
https://doi.org/10.1016/j.physrep.2008.08.001
https://doi.org/10.1103/PhysRevD.12.3077
https://doi.org/10.1103/PhysRevD.12.3077
https://doi.org/10.1103/PhysRevD.12.3077
https://doi.org/10.1088/0264-9381/28/18/183001
https://doi.org/10.1103/PhysRevD.96.124011
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevD.14.332
https://doi.org/10.1103/PhysRevD.14.332
https://doi.org/10.1103/PhysRevD.14.332
https://doi.org/10.1007/BF00759183
https://doi.org/10.1007/BF00759183
https://doi.org/10.1007/BF00759183
https://doi.org/10.1103/PhysRevD.94.084040
https://doi.org/10.1140/epjc/s10052-012-1983-4
https://doi.org/10.1088/0264-9381/27/16/165016
https://doi.org/10.1007/s10773-009-0156-1
https://doi.org/10.1007/s10773-009-0156-1
https://doi.org/10.1007/s10773-009-0156-1
https://doi.org/10.1007/BF00675798
https://doi.org/10.1007/BF00675798
https://doi.org/10.1007/BF00675798
https://doi.org/10.1139/P09-024
https://doi.org/10.1139/P09-024
https://doi.org/10.1139/P09-024
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1088/0264-9381/25/9/095014
https://doi.org/10.1016/j.physletb.2006.09.028
https://doi.org/10.1016/j.physletb.2006.09.028
https://doi.org/10.1016/j.physletb.2006.09.028
https://doi.org/10.1103/PhysRevD.79.044005


[40] DiCriscienzo R,NadaliniM,Vanzo L, Zerbini S andZoccatelli G 2007Phys. Lett.B 657 107–11
[41] Sakalli I andOvgunA 2015Astrophys. Space Sci. 359 32
[42] Sakalli I andOvgunA 2015Eur. Phys. J. Plus 130 110
[43] Sakalli I, OvgunA andMirekhtiary S F 2014 Int. J. Geom.Meth.Mod. Phys. 11 1450074
[44] Kanzi S and Sakallı İ 2019Nucl. Phys.B 946 114703
[45] DernekM, TekincayC, GecimG,Kucukakca Y and SucuY 2023Eur. Phys. J. Plus 138 369
[46] OngYC2023Eur. Phys. J.C 83 209
[47] Cimidiker I, DabrowskiMP andGoharH 2023Class. Quant. Grav. 40 145001
[48] Carr B J 2022 Front. Astron. Space Sci. 9 1008221
[49] Sakallı İ andKanzi S 2022Annals Phys. 439 168803
[50] ErdemS and Sakallı İ 2023Phys. Scr. 98 105201
[51] Casana R, Cavalcante A, Poulis F P and Santos E B 2018Phys. Rev.D 97 104001
[52] DingC, LiuC, Casana R andCavalcante A 2020Eur. Phys. J.C 80 178
[53] Izmailov RNandNandi KK 2022Class. Quant. Grav. 39 215006
[54] MangutM,GürselH, Kanzi S and Sakallı İ 2023Universe 9 225
[55] Mai Z F, XuR, LiangD and Shao L 2023Phys. Rev.D 108 024004
[56] Uniyal A, Kanzi S and Sakallı İ 2023Eur. Phys. J.C 83 668
[57] OvgünA, JusufiKand Sakalli I 2018Annals Phys. 399 193–203
[58] PhilippD and PerlickV 2015 Int. J.Mod. Phys.D 24 1542006
[59] Mirekhtiary S F and Sakalli I 2014Commun. Theor. Phys. 61 558–64
[60] Kanai Y, SiinoMandHosoyaA 2011Prog. Theor. Phys. 125 1053–65
[61] Friedman J L arXiv:2308.09826
[62] KruskalMD1960Phys. Rev. 119 1743–5
[63] Szekeres G 1960Publ.Math. Debrecen 7 285–301
[64] Feng ZW, LiH L, ZuXT andYang S Z 2016Eur. Phys. J.C 76 212
[65] Nouicer K 2007Phys. Lett.B 646 63–71
[66] SenA 2013 J. High Energy Phys. JHEP04 156
[67] Rovelli C 1996Phys. Rev. Lett. 77 3288–91
[68] Sakalli I, HalilsoyMandPasaogluH2011 Int. J. Theor. Phys. 50 3212–24
[69] Rivelles VOarXiv:hep-th/9912139
[70] HubenyVE, RangamaniM andTakayanagi T 2007 J. High Energy Phys. JHEP07(2007)062
[71] DongX 2014 J. High Energy Phys. JHEP01(2014)044
[72] ÖvgünA, JusufiKand Sakallı İ 2019Phys. Rev.D 99 024042
[73] Kanzi S and Sakallı İ 2022Eur. Phys. J.C 82 93
[74] Abdolrahimi S, PageDNandTzounis C 2019Phys. Rev.D 100 124038
[75] SnyderH S 1947Phys. Rev. 71 38
[76] YangCN1947Phys. Rev. 72 874
[77] MeadCA1964Phys. Rev.B 135 849
[78] Karolyhazy F 1966Nuovo Cim.A 42 390
[79] Amati D, CiafaloniM andVenezianoG 1987Phys. Lett.B 197 81
[80] GrossD J andMende P F 1987Phys. Lett.B 197 129
[81] Amati D, CiafaloniM andVenezianoG 1989Phys. Lett.B 216 41
[82] MaggioreM1993Phys. Lett.B 304 65
[83] KempfA,ManganoG andMannRB1995Phys. Rev.D 52 1108
[84] Scardigli F 1999Phys. Lett.B 452 39
[85] Adler R J and SantiagoD I 1999Mod. Phys. Lett.A 14 1371
[86] Capozziello S, Lambiase G and Scarpetta G 2000 Int. J. Theor. Phys. 39 15
[87] Scardigli F andCasadio R 2003Class. Quant. Grav. 20 3915
[88] Bosso P arXiv:2005.12258
[89] Bosso P andObregónO2020Class. Quant. Grav. 37 045003
[90] Casadio R and Scardigli F 2020Phys. Lett.B 807 135558
[91] Brau F 1999 J. Phys.A 32 7691
[92] Das S andVagenas EC2008Phys. Rev. Lett. 101 221301
[93] Ali A F,Das S andVagenas EC 2011Phys. Rev.D 84 044013
[94] PedramP,Nozari K andTaheri SH2011 J. High Energy Phys. JHEP03(2011)093
[95] Pikovski I, VannerMR, AspelmeyerM,KimMS andBrukner C 2012Nature Phys. 8 393
[96] Marin F et al 2013Nature Phys. 9 71
[97] BawajM et al 2015Nature Commun. 6 7503
[98] TinoGM et al 2019Eur. Phys. J.D 73 228
[99] Bosso P, LucianoGG, Petruzziello L andWagner F 2023Class. Quant. Grav. 40 195014
[100] Mathur SD2009Class. Quant. Grav. 26 224001
[101] LuninO andMathur SD 2002Nucl. Phys.B 623 342–94
[102] HarlowD2016Rev.Mod. Phys. 88 015002
[103] Buoninfante L, LambiaseG, LucianoGG and Petruzziello L 2020Eur. Phys. J.C 80 853
[104] PachołA andWojnar A arXiv:2307.03520
[105] LiuW, FangX, Jing J andWang J 2023Eur. Phys. J.C 83 83

13

Phys. Scr. 98 (2023) 125307 İ Sakallı and EYörük

https://doi.org/10.1016/j.physletb.2007.10.005
https://doi.org/10.1016/j.physletb.2007.10.005
https://doi.org/10.1016/j.physletb.2007.10.005
https://doi.org/10.1007/s10509-015-2482-5
https://doi.org/10.1140/epjp/i2015-15110-9
https://doi.org/10.1142/S0219887814500741
https://doi.org/10.1016/j.nuclphysb.2019.114703
https://doi.org/10.1140/epjp/s13360-023-03983-6
https://doi.org/10.1140/epjc/s10052-023-11360-x
https://doi.org/10.1088/1361-6382/acdb40
https://doi.org/10.1016/j.aop.2022.168803
https://doi.org/10.1088/1402-4896/acdb04
https://doi.org/10.1103/PhysRevD.97.104001
https://doi.org/10.1140/epjc/s10052-020-7743-y
https://doi.org/10.1088/1361-6382/ac8fda
https://doi.org/10.3390/universe9050225
https://doi.org/10.1103/PhysRevD.108.024004
https://doi.org/10.1140/epjc/s10052-023-11846-8
https://doi.org/10.1016/j.aop.2018.10.012
https://doi.org/10.1016/j.aop.2018.10.012
https://doi.org/10.1016/j.aop.2018.10.012
https://doi.org/10.1142/S0218271815420067
https://doi.org/10.1088/0253-6102/61/5/03
https://doi.org/10.1088/0253-6102/61/5/03
https://doi.org/10.1088/0253-6102/61/5/03
https://doi.org/10.1143/PTP.125.1053
https://doi.org/10.1143/PTP.125.1053
https://doi.org/10.1143/PTP.125.1053
http://arxiv.org/abs/2308.09826
https://doi.org/10.1103/PhysRev.119.1743
https://doi.org/10.1103/PhysRev.119.1743
https://doi.org/10.1103/PhysRev.119.1743
https://doi.org/10.5486/PMD.1960.7.1-4.26
https://doi.org/10.5486/PMD.1960.7.1-4.26
https://doi.org/10.5486/PMD.1960.7.1-4.26
https://doi.org/10.1140/epjc/s10052-016-4057-1
https://doi.org/10.1016/j.physletb.2006.12.072
https://doi.org/10.1016/j.physletb.2006.12.072
https://doi.org/10.1016/j.physletb.2006.12.072
https://doi.org/10.1007/JHEP11(2013)029
https://doi.org/10.1103/PhysRevLett.77.3288
https://doi.org/10.1103/PhysRevLett.77.3288
https://doi.org/10.1103/PhysRevLett.77.3288
https://doi.org/10.1007/s10773-011-0824-9
https://doi.org/10.1007/s10773-011-0824-9
https://doi.org/10.1007/s10773-011-0824-9
http://arxiv.org/abs/hep-th/9912139
https://doi.org/10.1088/1126-6708/2007/07/062
https://doi.org/10.1007/JHEP01(2014)044
https://doi.org/10.1103/PhysRevD.99.024042
https://doi.org/10.1140/epjc/s10052-022-10044-2
https://doi.org/10.1103/PhysRev.71.38
https://doi.org/10.1103/PhysRev.72.874
https://doi.org/10.1103/PhysRev.135.B849
https://doi.org/10.1007/BF02717926
https://doi.org/10.1016/0370-2693(87)90346-7
https://doi.org/10.1016/0370-2693(87)90355-8
https://doi.org/10.1016/0370-2693(89)91366-X
https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1103/PhysRevD.52.1108
https://doi.org/10.1016/S0370-2693(99)00167-7
https://doi.org/10.1142/S0217732399001462
https://doi.org/10.1023/A:1003634814685
https://doi.org/10.1088/0264-9381/20/18/305
http://arxiv.org/abs/2005.12258
https://doi.org/10.1088/1361-6382/ab6038
https://doi.org/10.1016/j.physletb.2020.135558
https://doi.org/10.1088/0305-4470/32/44/308
https://doi.org/10.1103/PhysRevLett.101.221301
https://doi.org/10.1103/PhysRevD.84.044013
https://doi.org/10.1007/JHEP03(2011)093
https://doi.org/10.1038/nphys2262
https://doi.org/10.1038/nphys2503
https://doi.org/10.1038/ncomms8503
https://doi.org/10.1140/epjd/e2019-100324-6
https://doi.org/10.1088/1361-6382/acf021
https://doi.org/10.1088/0264-9381/26/22/224001
https://doi.org/10.1016/S0550-3213(01)00620-4
https://doi.org/10.1016/S0550-3213(01)00620-4
https://doi.org/10.1016/S0550-3213(01)00620-4
https://doi.org/10.1103/RevModPhys.88.015002
https://doi.org/10.1140/epjc/s10052-020-08436-3
http://arxiv.org/abs/2307.03520
https://doi.org/10.1140/epjc/s10052-023-11231-5

	1. Introduction
	2. SBHBGM geometry and its physical features
	3. Hawking radiation of sbhbgm via hamilton-jacobi method: semi-classical approach (without GUP)
	3.1. Hawking radiation of SBHBGM within PG coordinate system
	3.2. Hawking radiation of sbhbgm within ief coordinate system
	3.3. Hawking radiation of SBHBGM within KS coordinate system

	4. Hawking radiation of sbhbgm via hamilton-jacobi method: semi-classical approach (with GUP)
	5. QC Entropy of SBHBGM
	6. Conclusion
	Acknowledgments
	Data availability statement
	References



