
3.11.8

Continuous Acceleration Sensing
Using Optomechanical Droplets

Gordon R. M. Robb, Josh G. Walker, Gian-Luca Oppo and Thorsten Ackemann

Special Issue
Cold and Rydberg Atoms for Quantum Technologies

Edited by

Prof. Dr. José Tito Mendonça and Dr. Hugo Terças

Brief Report

https://doi.org/10.3390/atoms12030015

https://www.mdpi.com/journal/atoms
https://www.scopus.com/sourceid/21100857388
https://www.mdpi.com/journal/atoms/stats
https://www.mdpi.com/journal/atoms/special_issues/cold_rydberg_atoms
https://www.mdpi.com
https://doi.org/10.3390/atoms12030015


Citation: Robb, G.R.M.; Walker, J.G.;

Oppo, G.-L.; Ackemann, T.

Continuous Acceleration Sensing

Using Optomechanical Droplets.

Atoms 2024, 12, 15. https://

doi.org/10.3390/atoms12030015

Academic Editors: J. Tito Mendonca,

Hugo Terças and Mark Edwards

Received: 16 December 2023

Revised: 21 February 2024

Accepted: 28 February 2024

Published: 6 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atoms

Brief Report

Continuous Acceleration Sensing Using Optomechanical Droplets

Gordon R. M. Robb * , Josh G. Walker , Gian-Luca Oppo and Thorsten Ackemann

Department of Physics and Scottish Universities Physics Alliance (SUPA), University of Strathclyde,

Glasgow G4 0NG, UK

* Correspondence: g.r.m.robb@strath.ac.uk

Abstract: We show that a Bose–Einstein Condensate illuminated by a far off-resonant optical pump

field and its retroreflection from a feedback mirror can produce stable, localised structures known as

optomechanical droplets. We show that these droplets could be used to measure the acceleration of a

BEC via continuous monitoring of the position of the droplet via the optical intensity distribution.
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1. Introduction

The utility of cold atomic gases and Bose–Einstein Condensates (BECs) for applications
involving sensing of various quantities (from acceleration to electromagnetic fields) has
been recognised for many years now [1–7]. In acceleration sensing involving ultracold
atoms or BECs, many traditional measurement techniques such as time-of-flight mea-
surements are destructive, with each measurement requiring a new sample of atoms [4].
Dispersive imaging techniques which utilise the refractive properties of the atoms have
been used [8–12] to realise non-destructive imaging of BECs.

Recently, there has been interest in continuous, minimally destructive sensing of ac-
celeration via interaction of a BEC with light contained within an optical cavity [13–18].
The dynamical behaviour of the BEC under the action of an external force, e.g., gravity,
influences the dynamical behaviour of the optical field in the cavity; the BEC dynamics
can be inferred from measurement of the optical field escaping from the cavity and the
acceleration of the BEC can be calculated. This concept has been considered in several dif-
ferent configurations involving both Fabry–Perot and ring cavities where the BEC exhibits
Bloch oscillations due to its acceleration through a spatially periodic optical lattice [19]
consisting of counterpropagating cavity modes alone [13–16] or by adding an externally
applied optical lattice [17,18].

The interaction between cold atoms/BECs and light in an optical cavity has also
attracted significant interest due to the existence of self-organisation phenomena, e.g., self-
organised optical/atomic patterns [20–25]. Self-organized structures and patterns can
also be produced by the simultaneous presence of optical nonlinearity and diffraction.
These patterns have been predicted and observed in a variety of nonlinear media [26–35]
specifically including atomic vapours [26–31,36–38]. In the case of cold atoms/BECs, the
origin of optical nonlinearity is the spatial modulation of atomic density which arises
due to the mechanical effect of light, specifically optical dipole forces. Formation of a
spatially modulated atomic density and its subsequent backaction on light give rise to
an optomechanical self-structuring instability, resulting in the simultaneous, spontaneous
formation of atomic density structures and optical intensity structures. Optomechanical
self-structuring of a cold thermal gas has been studied experimentally and theoretically
in systems of counterpropagating beams [39,40] and in a single mirror feedback (SMF)
configuration [41–43]. Theoretical predictions of optomechanical self-structuring in a
BEC [44] highlighted that a significant difference with the classical, thermal gas is the
the dispersive nature of the BEC wavefunction, i.e., “quantum pressure”, which acts to
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suppress density modulations or spatial structures in the BEC. Recent work has shown
that optomechanical self-structuring in a BEC can produce spatially localised structures
termed “droplets” or “quantum droplets” [45–47] in addition to global patterns. These
droplets are self-bound structures consisting of interacting light and matter whose stability
is reliant upon the BEC quantum pressure. They display some similar characteristics to
quantum droplets in other systems such as dipolar BECs [48] and quantum liquids [49]
but also have some properties similar to those of other varieties of spatially localised
structures, e.g., spatial solitons [50]. In this paper, we study the dynamical behaviour of
these optomechanical droplets in a 1D configuration involving a single feedback mirror,
as in [45,46], and consider the effect of a uniform BEC acceleration, shown schematically in
Figure 1.

Figure 1. Schematic diagram of the single mirror feedback (SMF) configuration showing a BEC

interacting with a forward propagating optical field (F) and a retroreflected/backward propagating

optical field (B) while undergoing an acceleration (a) in the x−direction. The optical image of the BEC

is detected after transmission through the BEC, propagation in free space to a mirror of reflectivity, R,

at a distance d from the BEC, and further propagation over distance d.

2. Model

We investigate the system shown schematically in Figure 1 consisting of a BEC with
single mirror feedback (SMF). In this BEC–SMF system, coupling between atoms arises
due to their interaction with a pump optical field and its reflection from the feedback
mirror. Diffraction of the optical field as it propagates from the BEC to the mirror and
back again plays a critical role in this coupling. The interaction involves many transverse
modes and optical forces directed perpendicular to the propagation direction of the optical
fields. A significant difference between this system and other cavity systems displaying
self-organization (such as e.g., [51,52]) is that interference between the optical fields does
not play a significant role in this system, whereas in. [51,52] the dominant coupling between
atoms arises from interference between a pump field and cavity modes. We demonstrate
the existence of spatially localised states with characteristics similar to those of quan-
tum droplets observed in dipolar BECs [53,54] and the effect of uniform acceleration on
these droplets.
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The model we use to describe the BEC–SMF system was originally studied in [44]. We
consider a BEC with a negligible scattering length and describe the evolution of the BEC
wavefunction, Ψ(x, t), with the Schrödinger equation:

i
∂Ψ(x̄, t̄)

∂t̄
= −ω̄r

∂2
Ψ

∂x̄2
+

∆

4

(

|F|2 + |B|2
)

Ψ (1)

where t̄ = Γt and x̄ = qcx are dimensionless time and space variables, qc is a critical

wavenumber to be defined shortly, Γ is the decay rate of the atomic transition and ω̄r =
h̄q2

c
2mΓ

is a dimensionless recoil frequency, where m is the atomic mass. The quantities |F|2 and
|B(x, t)|2 are the atomic saturation parameters due to the forward and backward optical

fields defined as |F|2 = IF
Isat∆

2 and |B|2 = IB
Isat∆

2 , respectively. ∆ = 2δ
Γ

is a dimensionless

detuning parameter where δ = ω − ωa is the detuning between the optical field frequency,
ω, and the atomic transition frequency, ωa, and IF and IB are the intensities of the forward
(F) and backward (B) fields, respectively. Isat is the saturation intensity on resonance. It has
been assumed that the optical fields are far-detuned from atomic resonance (|∆| ≫ 1) and
that consequently |F|2, |B|2 ≪ 1 so that the atoms remain in their ground state. In addition,
any effects of gratings formed along the propagation (z) axis due to interference between
the counterpropagating optical fields are neglected.

In order to describe the evolution of the optical field in the BEC, we assume that the gas
is diffractively thin; i.e., it is sufficiently thin that diffraction can be neglected. Consequently,
the forward field transmitted through the cloud is

Ftr =
√

p0e−iχ0n(x,t) (2)

where p0 = |F(z = 0)|2 is the scaled pump intensity, χ0 = b0
2∆

is the susceptibility of the
BEC, b0 is the optical thickness of the BEC at resonance and n(x, t) = |Ψ(x, t)|2 is the local
BEC density, which for a BEC of uniform density is n(x, t) = 1.

After propagation of this transmitted forward field from the BEC to the feedback
mirror in free space, the reflected backward field, B, at the BEC completes the feedback
loop. As the field propagates a distance 2d from the BEC to the mirror and back, optical
phase modulations induced by transmission through density modulations in the BEC
are converted to optical amplitude modulations and consequently optical dipole forces.
The Fourier components of the forward and backward fields at the BEC are related by

B(q) =
√

RFtr(q)e
i

q2d
k0 (3)

where R is the mirror reflectivity, q is the transverse wavenumber and k0 = 2π
λ0

. It was
shown in [44] that this system exhibits a self-structuring instability, where the optical fields
and BEC density develop modulations with a spatial period of Λc =

2π
qc

, where the critical

wavenumber, qc, is

qc =

√

π

2

k0

d
. (4)

It can be seen from Equation (4) that Λc can be varied by changing d, the mir-
ror distance from the atomic cloud. Typical values of Λc used for thermal gases are
50–150 µm and we anticipate 5–20 µm to be suitable for a BEC experiment, corresponding
to mirror distances in the range of d ≈ 8–150 µm. As typical BEC thicknesses are in the
range of 1–10 µm, we expect from previous investigations that the “thin diffractive medium”
approximation still holds qualitatively and certainly gives a good initial indication useful
for first demonstration of the principle discussed here. Ref. [43] describes a more rigorous
theoretical model for thermal atoms, taking diffraction within the medium into account.

The origin of the instability is BEC density modulations (which create refractive index
modulations) with spatial frequency qc. These density modulations in turn produce optical
phase modulations in Ftr, which then are converted into optical intensity modulations of



Atoms 2024, 12, 15 4 of 10

the reflected field B at the BEC (see Equation (3)). These optical intensity modulations result
in dipole forces which act to reinforce the BEC density modulations, providing positive
feedback and consequently instability of the initial, homogeneous state. In order to realise
this instability, the pump intensity must exceed a threshold value, pth [44], which for q = qc

can be written as

pth =
2ωr

b0RΓ
, (5)

where ωr =
h̄q2

c
2m .

3. Existence of Optomechanical Droplets

Numerical simulations of the BEC–SMF model, Equations (1)–(3), using an initial
condition where the BEC density is initially a Gaussian function of position, i.e.,

n(x̄, t̄ = 0) = |Ψ(x̄, t̄ = 0)|2 ∝ exp

(

− x̄2

σ2
x̄

)

(6)

show that for certain BEC widths, σx̄, the BEC profile remains constant as time evolves,
as shown in Figure 2.

Figure 2. Evolution of the BEC density, |Ψ(x̄, t̄)|2, and optical intensity at the image plane,

|Ftrans(x̄, t̄)|2, calculated from the BEC–SMF model, Equations (1)–(3), using an initial condition

where the BEC density is a Gaussian function of position with width σx̄ = 0.562. Parameters used are

ω̄r = 1.14 × 10−5, b0 = 100, ∆ = −10000, R = 0.99 and p0 = 10pth = 2.28 × 10−6.

This behaviour is consistent with simulations involving integration of the BEC–SMF
model, Equations (1)–(3), in imaginary time [55], which show that the ground state of the
BEC + optical field system is a localised droplet state.

It was shown in [56] that it is possible to map the BEC–SMF model, Equations (1)–(3),
onto the quantum Hamiltonian Mean Field (quantum HMF) model, a Gross–Pitaevskii-like
equation for the BEC wavefunction, Ψ(x, t), involving a non-local potential. The quantum
HMF model is known to possess soliton solutions [57] which correspond to the localised
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optomechanical droplets which occur in the BEC–SMF simulations (Figure 2). They can be
understood as BEC gap solitons in an optical lattice which is self-generated by the BEC [57].

The width of a stable droplet can be calculated by assuming a Gaussian BEC density
profile as in Equation (6) and minimising the energy, E(σx̄), of the system, resulting in [56]

σx̄ =

(

p0

pth

)−1/4

(7)

where p0 ≫ pth has been assumed. From the parameters used for Figure 2, the pre-
dicted stable droplet width from Equation (7) is σx̄ = 0.562, which agrees well with the
value calculated from simulations shown in Figure 2, which shows that a droplet of this
width (which in the figure corresponds to a width σx/Λc = σx̄/(2π) = 0.089) is a stable,
stationary solution.

4. Continuous Acceleration Sensing Using Optomechanical Droplets

We now investigate the behaviour of these droplets under uniform acceleration. Modi-
fying the Schrödinger equation, Equation (1), to include uniform acceleration results in

i
∂Ψ(x̄, t̄)

∂t̄
= −ω̄r

∂2
Ψ

∂x̄2
+

[

∆

4

(

|F|2 + |B|2
)

− āx̄

]

Ψ (8)

where ā = ma
h̄qcΓ

is a dimensionless acceleration parameter [13–18,47]. Figure 3 shows the

evolution of the BEC density and the optical fields. Uniform acceleration of BEC can be
observed, and the optical field follows this motion, with the BEC density coinciding with
an optical intensity maximum.

Figure 3. Evolution of the BEC density, |Ψ(x̄, t̄)|2, and optical intensity at the image plane,

|Ftrans(x̄, t̄)|2, calculated from the accelerating BEC–SMF model, Equation (2), (3) and (8), show-

ing a uniformly accelerating droplet. Parameters used are identical those in Figure 2 with the

exception of the acceleration parameter, which here is ā = 1.0 × 10−5.
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Figure 3 shows that via continuous observations of the optical intensity distribution, it
is possible to infer the dynamical evolution of the BEC density.

In order to perform a quantitative calculation of the uniform acceleration experi-
enced by the BEC, we can use the fact that the position of an object undergoing uniform
acceleration is described by

x̄ = ω̄r āt̄2

so consequently
x

Λc
=

ω̄r ā

2π
(Γt)2 (9)

Figure 4 shows a plot of the position of the central peak of the optical intensity
in Figure 3 against (Γt)2. It can be seen that the graph is a straight line with gradient
1.81 × 10−11. Equation (9) implies that the gradient of this graph should be ω̄r ā

2π , so conse-

quently ā = 2π×1.81×10−11

1.14×10−5 = 1.00 × 10−5, consistent with the value of ā used to produce
Figure 3. Continuous monitoring of the position of the optical intensity maximum has
therefore been used to calculate the constant acceleration experienced by the BEC. Note that
although the examples presented here involved red-detuning (∆ < 0), the same procedure
could have been used for blue-detuning (∆ > 0). The only significant difference would be
that the BEC overlaps with an optical intensity minimum, but again from monitoring the
position of this, the BEC acceleration could be inferred.

Figure 4. Plot of position of central optical intensity maximum, x̄max, against t̄2 from Figure 3.

The example shown in Figures 3 and 4 is consistent with a Cs BEC droplet of
width ≈0.5 µm moving a distance ≈10 µm in a time ≈0.01s, with an acceleration ≈0.2 ms−2.
For accelerations much smaller than this, a limiting factor will be the heating of the BEC
due to spontaneous light scattering. This will become significant when the interaction time
becomes significantly larger than r−1

s , where rs is the rate at which photons are incoherently
scattered by the BEC. In [56], it is shown that

rs =
(1 + R)p0Γ

2

so heating will be significant when the interaction time is sufficiently long that
Γt > 2

(1+R)p0
≈ 1

p0
(if R ≈ 1). In the example shown here, Γt = 3 × 105 and 1

p0
≈ 4.4 × 105,

so heating will not have been significant. For smaller accelerations, longer interaction
times will be required in order to observe significant droplet displacement, so the effect of
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heating will be increasingly important. Conversely, larger accelerations will require shorter
interaction times and heating will become negligible.

In order to demonstrate the significance of the mirror feedback for the droplet stability,
Figure 5 shows the evolution of the system when the mirror feedback is removed, i.e., mirror
reflectivity R = 0, with all other parameters as those in Figure 3. It can be seen that in
the absence of feedback, the droplet rapidly disperses and it is not possible to determine
a well-defined trajectory from the similarly dispersing optical intensity distribution. This
demonstrates that the mirror feedback is a critically important component of this system,
which is required to maintain the soliton-like stability of the droplet and its corresponding
optical image.

Figure 5. Evolution of the BEC density, |Ψ(x̄, t̄)|2, and optical intensity at the image plane,

|Ftrans(x̄, t̄)|2, calculated from the accelerating BEC–SMF model, Equation (2), (3) and (8), with

no mirror feedback (R = 0). All other parameters are identical to those in Figure 3.

5. Conclusions

We have demonstrated that the existence of optomechanical droplets in a BEC illumi-
nated by a far off-resonant optical pump field and its retroreflection from a feedback mirror
could form the basis of a method to measure the acceleration of a BEC via continuous
monitoring of the position of thedroplet via the optical intensity distribution. This differs
from previous schemes involving acceleration sensing involving BECs in optical cavities,
where the acceleration was calculated via continuous measurements of the Bloch oscillation
frequency [13–18] from the optical intensity evolution.

It should be noted that although only the motion of single droplet structures has
been presented here, stable multi-peak droplet structures can exist [47] and display similar
behaviour under acceleration, maintaining their structure as they propagate and providing
a consistent optical intensity profile dependent on detuning.

Possible extensions of the study presented here include increasing the interaction
time by bouncing the BEC off a potential barrier and considering a spatially non-uniform
acceleration of the BEC.
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