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Longitudinal coupling impedance of a plane conducting ring
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In this paper, we propose a new method to evaluate the longitudinal coupling impedance of a charged
particle passing perpendicularly through the center of a plane conducting ring. It is shown that the
solution of the problem can be expressed as a double Neumann series, whose expansion coefficients can
be easily computed. Moreover, we show the causality of the wake potential for a particle traveling at
the speed of light.

PACS numbers: 41.75.–i, 41.20.–q, 29.27.–a
I. INTRODUCTION

In this paper, we describe a theoretical study of the ra-
diation emitted from a point charge �q� moving at constant
velocity y � bc, where c is the speed of light in vacuum,
and passing through the center of a perfectly conducting
annular ring, with inner radius r1 and outer radius r2; we
assume that the charge moves in the positive z direction,
as depicted in Fig. 1. A charge moving with uniform ve-
locity in vacuum radiates only because of inhomogeneities
existing near its path. The radiation is due to the diffrac-
tion of the field of the charge at the circular edge. The
diffraction problem is described by the field traveling with
the charge itself [1] and the reaction of the ring which has
a traveling wave behavior. Accordingly, we can represent
all the fields and/or potentials as the superposition of two
terms: a term generated by the charge in the free space
and a term due to the presence of the metallic region of
the iris, which together have to satisfy the boundary con-
ditions. The aim of this paper is the evaluation of the
longitudinal coupling impedance due to the iris, a parame-
ter determining the performance of an accelerator, defined
by [2]

Zk � 2
1
q

Z `

2`

Ez�r � 0, z; k�ejkz�b dz , (1.1)
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where Ez�r � 0, z; k� represents the longitudinal compo-
nent of the electric field in the frequency domain due to
the reaction of the ring, and k is the wave number.

Using as the unknown the Hankel transform of the
radially induced surface current density on the metallic
region

J�r� �
Z `

0
wF�w�J1�wr� dw , (1.2)

the scattered electromagnetic field can be represented by
the following integral transformations:

z

r2

r1

z = 0

v = βc

FIG. 1. (Color) The geometry of the problem.
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Hw�r, z� � 2
sgn�z�

2

Z `

0
wF�w�J1�wr� exp�2jzj

p
w2 2 k2 � dw ,

Er�r , z� �
jz0

k
≠

≠z
Hw�r , z� �

jz0

2k

Z `

0
w

p
w2 2 k2 F�w�J1�wr� exp�2jzj

p
w2 2 k2 � dw , (1.3)

Ez�r , z� � 2
jz0

kr
≠

≠r
�rHw�r , z�� �

jz0

2k
sgn�z�

Z `

0
w2F�w�J0�wr� exp�2jzj

p
w2 2 k2 � dw ,

where sgn�z� represents the signum function, z0 � 120p V is the characteristic impedance of vacuum, and the branch
cut is chosen such that sgn�k� Im�

p
w2 2 k2 � $ 0. By imposing the boundary conditions, the electromagnetic problem

can be written as the following triple system of integral equationsZ `

0
wF�w�J1�wr� dw � 0, 0 # r , r1 ,

Z `

0
wF�w�

p
w2 2 k2 J1�wr� dw � AK1�kr� , r1 , r , r2 , (1.4)

Z `

0
wF�w�J1�wr� dw � 0 , r . r2 ,
where we called

A �
jqk2

pb2g
, k �

k
bg

, g �
1p

1 2 b2
,

(1.5)

g being the so-called Lorentz factor. The first and third
equations state that there is no induced current outside the
ring, while the second equation is the boundary condition
for the radial component of the electric field on the
metallic surface. Such a set of integral equations, all
three containing the same unknown function but holding
over complementary regions, is known in literature as
triple integral equations. In this paper, our interest is
in their application to the solution of the wave equation
for diffraction problems (where the integrals are normally
singular). At this point it will not be inappropriate to
recall that a quite exhaustive survey of the historical
developments and methods of dual equations solutions in
potential theory can be found in Sneddon’s book [3], but
the generalization to the solution of triple problems has not
yet reached satisfactory levels. We already applied [4,5]
successfully some methods to the solution of dual integral
problems discussed in Sneddon’s book.

The longitudinal coupling impedance in terms of the
unknown of the problem is given by
124402-2
Zk�k� �
z0

qb

Z `

0
F�w�

w2

w2 1 k2
dw . (1.6)

The strategy of solution of triple integral equations (1.4) is
similar to the strategy which was adopted for solving dual
integral equations and it consists in finding a complete set
of functions, each satisfying the first and third equations
(1.4). In this way, the electromagnetic problem can be
reduced to the only solution of the nonhomogeneous
equation of the system.

II. SOLUTION OF THE PROBLEM

A candidate to expand the unknown spectrum F�w� is
the complete set F�w� � �w1�w�, w2�w�, . . .�T of func-
tions

wn�w� �
1
w

Jn

µ
r1 1 r2

2
w

∂
Jn

µ
r2 2 r1

2
w

∂
.

The function corresponding to n � 0 does not satisfy the
boundary condition for r . r2 and, therefore, does not
belong to this set. In fact, these functions behave [6] as
previously required; namely,
Z `

0
wwn�w�J1�wr� dw �

8><
>:

2
q

�r2 2 r2
1 � �r2

2 2 r2�

npr�r2
2 2 r2

1 �
Un21

µ
r2

1 1 r2
2 2 2r2

r2
2 2 r2

1

∂
, r1 # r # r2 ,

0, elsewhere.

(2.1)
In addition, they exhibit, according to Meixner’s condi-
tion, the correct edge behavior of the current; the func-
tions Un�x� are the Chebyshev polynomials of the second
kind. Moreover, the factor representing the edge behavior
is independent from the index n and can be factorized. At
present, this set of functions represents the best tool to ex-
pand the unknown Hankel transform of the current F�w�
according to the series

F�w� �
jq
pb

X̀
n�1

Fnwn�w� �
jq

pb
FTF�w� , (2.2)
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which is called double Neumann series, and F �
�F1, F2, . . .�T . Since the series (2.2) intrinsically satisfies
the homogeneous equations of the system (1.4), all of
the electromagnetic problem is contained in the second
equation, which becomes

jq
pb

X̀
n�1

Fn

Z `

0
w

p
w2 2 k2 wn�w�J1�wr� dw

� AK1�kr� . (2.3)

This integral equation may be solved according to the
method of Rietz-Galerkin: we project it on a complete set
of functions, in the domain �r1, r2�, getting an infinite sys-
tem of linear algebraic equations. As the basis functions
of r we use just the functions on the right-hand side of
Eq. (2.1). The projection consists of an inverse Hankel
transform. Resorting to the integral representation of the
modified Bessel function

K1�kr� �
1
k

Z `

0
J1�wr�

w2

w2 1 k2
dw , (2.4)

and to the properties of the inverse Hankel transform of
the basis functions, we get the following system of linear
algebraic equations:

AF � S , (2.5)

where the generic element of the coefficient matrix A and
the free term vector S have been defined as

Anm � Amn �
1
k

Z `

0
w

p
w2 2 k2 wn�w�wm�w� dw ,

Sm � Im

µ
1 2 a

2
kr2

∂
Km

µ
1 1 a

2
kr2

∂
.

(2.6)

where Im�?� and Km�?� are the modified Bessel functions
of order m. We note that the aspect ratio a � r1�r , 1
has been introduced and that the relevant integral,Z `

0
w

Jn�xw�Jn�yw�
w2 1 k2 dw � In�kx�Kn�ky� �x , y� ,

(2.7)

FIG. 2. Expansion coefficients as a function of the matrix
dimensions for a small value of the particle speed.
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FIG. 3. Expansion coefficients as a function of the matrix
dimensions for an intermediate value of the particle speed.

has been used to evaluate the free term of the system
(2.5). The Anm were computed numerically, adopting an
adaptive Gaussian quadrature routine.

As a preliminary conclusion, we can say that the prob-
lem of a particle passing perpendicularly through an an-
nular ring has been transformed into a system of algebraic
equations, whose coefficient matrix is symmetric.

The system (2.5) has been successfully adopted to
evaluate the expansion coefficients in a wide range of
frequencies and for various values of the particle energy.
Examples are reported in Figs. 2 –4 for different values
of the bunch velocity, from the low value bg � 0.1 up
to the relativistic value bg � 10; accordingly, the wave
numbers are varied from kr2 � 0.2 to 20. These figures
clearly indicate that matrices of only small size have to be
inverted to evaluate the expansion coefficients and that a
small number of them gives an accurate evaluation of all
the relevant electromagnetic quantities, such as the current
distribution density. This can be easily obtained by means
of the Hankel transform (1.2) and it is represented by the

FIG. 4. Expansion coefficients as a function of the matrix
dimensions for a relativistic particle.
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FIG. 5. An example of the current distribution density: (a) real part and (b) imaginary part.
following expansion:

J�r� �
2jq

p2br

q
�r2 2 r2

1 � �r2
2 2 r2�

r2
2 2 r2

1

3
X̀
n�1

Fn

n
Un21

µ
1 2 2

r2 2 r2
1

r2
2 2 r2

1

∂
. (2.8)

An example of the current density distribution is shown
in Fig. 5. It is worth noting that the current density
distribution (2.8) exhibits in its first factor the correct edge
behavior required by Meixner’s condition.

III. THE LONGITUDINAL COUPLING
IMPEDANCE

The longitudinal coupling impedance of an annular ring
can be easily evaluated by substituting the expansion (2.2)
into the definition (1.6). Using again the relevant integral
(2.7), it is not difficult to conclude that the impedance is
given by the following expansion:

Zk�k� � Rk�k� 1 jXk�k�

�
jz0

pb2

X̀
n�1

FnIn

µ
1 2 a

2
kr2

∂
Kn

µ
1 1 a

2
kr2

∂

�
jz0

pb2 STA21S . (3.1)
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For a given value of g, there always exists a frequency
above which S decays exponentially with frequency,
independently from n, provided 2n , k�r2 2 r1�.

Figures 6 and 7 represent the longitudinal coupling
impedance for a slow and a relativistic traveling particle,
respectively.

IV. THE PARTICULAR CASE b 5 1

Some remarks are necessary in the case b � 1,
namely, when the particle travels at the speed of light,
because it is the particular case in most of the accelerator
projects and for the slow decay of the impedance (Figs. 8
and 9). In this case, taking the limit

limx!0 In

µ
1 2 a

2
x

∂
Kn

µ
1 1 a

2
x

∂
�

1
2n

µ
1 2 a
1 1 a

∂n

,

(4.1)

the expansion (3.1) simplifies as

Zk�k� �
jz0

2p

X̀
n�1

Fn

n

µ
1 2 a
1 1 a

∂n

. (4.2)

In such a case, the asymptotic behavior of S with
frequency is not the same as the previous one, so that it is
FIG. 6. Normalized values of the longitudinal coupling impedance for a slow particle: (a) real part and (b) imaginary part.
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1

FIG. 7. Normalized values of the longitudinal coupling impedance for a relativistic particle: (a) real part and (b) imaginary part.
convenient to evaluate the asymptotic behavior �k ! `� of the impedance.
First, we can reduce the system (1.4) to a unique integral equation. In fact, because of the following limit,

limk!0 AK1�kr� �
jqk
pr

, (4.3)

the system can be rewritten as

Z `

0
wF�w�J1�wr� dw �

8>><
>>:

0, 0 # r , r1 ,Z `

0
wF�w�

jk 2
p

w2 2 k2

jk
J1�wr� dw 1

q
pr

, r1 , r , r2 ,

0, r . r2 .

(4.4)

Taking the inverse Hankel transform of the left-hand side of (4.4), we can easily state that the unknown F�w� satisfies
the integral equation

F�w� �
q

pw
�J0�wr1� 2 J0�wr2�� 1

Z `

0
uF�u�

jk 2
p

u2 2 k2

jk
L�w, u� du , (4.5)

where the function L�w, u� is defined as

L�w, u� �
Z r2

r1

rJ1�wr�J1�ur� dr

�
u�r2J1�wr2�J0�wr2� 2 r1J1�wr1�J0�ur1�� 2 w�r2J1�ur2�J0�wr2� 2 r1J1�ur1�J0�wr1��

w2 2 u2 . (4.6)
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FIG. 8. Normalized values of the longitudinal coupling
impedance for a particle traveling at the speed of light.
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A high frequency approximation of Eq. (4.5) can be
obtained in the limit of k going to infinity,

F�w� !
q

pw
�J0�wr1� 2 J0�wr2��, when k ! ` .

(4.7)

As a consequence, the longitudinal impedance (1.6) be-
comes

Zk�k� !
z0

q

Z `

0
F�w� dw �

z0

p
ln

µ
r2

r1

∂
� 2

z0

p
lna ,

when k ! ` . (4.8)

At this point we can state that we are now able to evaluate
the impedance in a wide range of frequencies; this fact
allows us to get an accurate estimate of the wake potential,
defined as the inverse Fourier transform of the impedance
124402-5
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FIG. 9. Normalized values of the longitudinal coupling impedance in the case a � 0.1 and b � 1: (a) real part and
(b) imaginary part.

FIG. 10. Normalized values of the wake potential: (a) in the range �2100, 100� and (b) in the range �230, 30�.
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´0Wk�t� �
1

2pz0

Z 1`

2`

Zk�k� exp�jkct� dk �
1

pz0

Z `

0
�Rk�k� cos�kct� 2 Xk�k� sin�kct�� dk . (4.9)
In a previous paper [7], we evaluated the wake of a
particle traveling through the center of a round aperture
in a perfectly conducting plane; in such a case, the wake
was not a causal function when b � 1, but the reason of
this paradox was not understood. Now we can state that
the cause was the infiniteness of the plane.

Figure 10 clearly shows that the function (4.9) is a
causal function, vanishing for t , 0, in the case of a
particle traveling at the speed of light (the arrow indicates
the presence of a pulse function); in other words, the wake
field is different from zero only when the electromagnetic
field interacts with the iris, interaction starting at t � 0.

V. CONCLUSIONS AND PERSPECTIVES

We presented a simple and refined way to evaluate the
longitudinal coupling impedance of a perfectly conducting
plane ring. The relevant electromagnetic quantities have
been expanded into a double Neumann series, and, there-
fore, a triple boundary value problem has been transformed
into a system of linear equations, able to give an accurate
solution with matrices of small dimensions. We have also
shown that the wake potential, namely the inverse trans-
form of the impedance, is a causal function if the particle
travels at the speed of light.
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