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Towards synthetic magnetic turbulence with coherent structures
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Abstract – Synthetic turbulence is a relevant tool to study complex astrophysical and space
plasma environments inaccessible by direct simulation. However, conventional models lack in-
termittent coherent structures, which are essential in realistic turbulence. We present a novel
method featuring coherent structures, conditional structure function scaling and fieldline curva-
ture statistics comparable to magnetohydrodynamic turbulence. Enhanced transport of charged
particles is investigated as well. This method presents significant progress towards physically
faithful synthetic turbulence.
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Introduction. – Turbulence plays a key role in astro-
physical and space plasma environments [1–6]. However,
due to the high computational cost of direct approaches,
the effect of turbulence in such environments is difficult
to study. This obstacle is often mitigated by splitting the
magnetic field in a large-scale coherent component with
an analytic description and a small-scale turbulent com-
ponent, modelled as a Gaussian random field (e.g., [7,8]).
Such Gaussian random fields can be easily synthesized as
a superposition of plane waves with random phases and
a prescribed energy spectrum. The transport of energetic
charged particles through such fields has been extensively
studied (e.g., [9–13]).

However, Gaussian random fields can only provide
a low-order approximation of magnetic turbulence,
neglecting any structure beyond two-point correlations
captured by the energy spectrum. They do not exhibit
intermittency as observed in first-principles turbulence
(e.g., [14–17]). Intermittency was studied in the context
of hydrodynamic synthetic turbulence models already
by Juneja et al. [18], and its impact on charged particle
transport more recently by Pucci et al. [19] and Shukurov
et al. [20], finding faster diffusion in structured magnetic
fields.

Until today, there have been several models for synthetic
hydrodynamical and magnetohydrodynamical (MHD)

(a)E-mail: jeremiah.luebke@rub.de (corresponding author)

turbulence published, such as the p-model on a discrete
three-dimensional wavelet space by Malara et al. [21], the
minimal multiscale Lagrangian map by Rosales and Mene-
veau [22], which was applied to MHD turbulence by Subedi
et al. [23], a stochastic integral based on the lognormal-
model including asymmetric velocity increment statistics
by Pereira et al. [24], and its application to MHD turbu-
lence by Durrive et al. [25]. All of these models produce
three-dimensional, divergence-free vector fields with in-
termittent statistics, but without coherent geometric fea-
tures. Recently, Durrive et al. [26] presented a model
which embeds Archimedean spirals into a random log-
normal vector field. The continuous wavelet cascade by
Muzy [27] addresses broken stationarity of discrete wavelet
cascades. Related works were recently published by Li
et al. [28] and Robitaille et al. [29].

Standard tools of validating synthetic models are the
energy spectrum and statistics of field increments. Taken
without further decomposition, these quantities provide a
global picture of the vector field, hiding the intricate lo-
cal geometry of magnetic turbulence (see also [30,31]). A
useful quantity in this regard is the fieldline curvature,
which has recently been shown by Kempski et al. [32] and
Lemoine [33] to play a key role in the transport of charged
particles in magnetic turbulence. Fieldline curvature has
previously been discussed in the context of turbulent dy-
namos [34], as well as hydrodynamic [35–37] and magne-
tohydrodynamic turbulence [38,39].
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In this letter we present progress towards a model
for synthetic magnetic turbulence featuring intermittent
coherent structures. We implement the model as a fast
algorithm, which produces a random three-dimensional
divergence-free vector field, resembling a turbulent mag-
netic field b(x) (see footnote 1). The model is a com-
bination of a continuous cascade [27] and the minimal
multiscale Lagrangian map [22,23]. Additionally, we pro-
pose a set of quantities to assess the physical fidelity of
synthetic turbulence models, consisting of the energy spec-
trum, conditional structure function scaling, the fieldline
curvature distribution and running diffusion coefficients
of charged test particles. Based on these quantities, we
compare the proposed synthetic turbulence model with an
incompressible resistive MHD turbulence simulation and
an intermittent synthetic turbulence model without co-
herent structures. We also consider the phase-randomized
counterparts of the three turbulence models to account for
differences in the energy spectra. We conclude by explain-
ing the shape of the MHD fieldline curvature distribution
by means of a weighted sum of Gaussian components.

Methods. – We start by extending the continuous cas-
cade in wavelet space [27] to three-dimensional divergence-
free vector fields. The continuous cascade at scale l and
position x is represented by a log-infinitely divisible pro-
cess eωl(x), which gives the scale- and position-dependent
intensity of a vector field v(x). This field is obtained by a
vector-valued wavelet transform of lHeωl over the inertial
range scales lmin < l < l0 as

v(x) = ∇×A

∫ l0

lmin

lH−d−1
(
eωlRl ∗ lψlẑ

)
(x)dl. (1)

The slope of the energy spectrum is given by −2H − 1,
torodial wavelets ∇ × (lψl(x)ẑ) with ψ(k) = −k2e−k2

and ψl(x) = ψ(x/l) ensure the zero-divergence condi-
tion ∇ · v = 0, a random rotation field Rl(x) with cor-
relation length l ensures proper isotropization of these
wavelets, and the numerically determined constant A
normalizes the field to 〈v2〉 = 1. Further, the curl
can be moved in front of the spatial convolution opera-
tor (f ∗∇× g)(x) = ∇×

∫
R3 f(y)g(x−y)dy and the scale

integral
∫
· · · dl, thus allowing us to express the field in

terms of a vector potential v = ∇× a.

The infinitely divisible process ωl(x) is defined on cone-
like subsets of the position-scale half-space R

d × R>0

equipped with the measure l−d−1dxdl and has a cumulant
generating function φ(q). Thus, the moments of the inten-
sity process can be computed as 〈eqωl〉 = (l0/l)

cdφ(q) ∀q ∈
N, where cd = 2−dπd/2/Γ(d/2 + 1) comes from the scale-
space cone volume. We consider a Gaussian distribution
with φ(q) = μ/2(p2 − p) with intermittency parameter μ,

1The code is publicly available at https://github.com/

jerluebke/synth-mag-turb and archived at doi:10.5281/zenodo.
10515965. A pseudocode listing is provided as supplementary mate-
rial Supplementarymaterial.pdf.

in which case eωl corresponds to the Gaussian multiplica-
tive chaos employed in [24] and related works.
As shown below, the vector field given by eq. (1) exhibits

(isotropic) anomalous scaling, but lacks coherent features,
so we introduce advective structures by adapting the min-
imal multiscale Lagrangian map (MMLM) for MHD [23]
to our framework. In short, the MMLM procedure consid-
ers only the advective part of the magnetic-field evolution
equation, i.e., (∂t + u · ∇)b = 0, which can be solved at
time τ with the Lagrangian ansatz b(xτ , τ) = b(x0, 0) and
the linearized solution xτ = x0 + τu(x0, 0). Usually, two
initially Gaussian random vector fields representing u(x)
and b(x) are deformed on successively finer scales li by
applying the linearized Lagrangian solution with τ ∝ li to
the underlying regular grid, as described in the references.
In our framework, we generate two independent ran-

dom fields according to eq. (1), which are represented as
vector potentials and represent the velocity field u(x) =
∇ × au(x) and the magnetic field b(x) = ∇ × ab(x).
When generating u(x) scale-by-scale, we make use of
the discretization of the scale integral in eq. (1) as a

sum
∫ l0
lmin

· · · dl ≈
∑lmin

li=l0
· · ·Δl, which goes from large to

small scales. Specifically, we accumulate the deformations
of the grid x by the intermediate results uli = ∇ × auli
over all scales li. We then interpolate the random mag-
netic vector potential ab(x) at the final deformed grid.
Note that this interpolation is not done intertwined with
the scale-by-scale generation of ab(x), but only once at the
end of the procedure. Thus, we are solving the advection
equation for the magnetic vector potential

(∂t + u · ∇)ablmin
= 0, (2)

which is exact in two dimensions making this approach
especially suitable for strong guide field situations [40].
Herein lies the key difference with the previous MMLM
procedure, which applied the interpolation directly to the
field b(x) in a scale-by-scale fashion. It should further be
noted, that the curl of the intermediate results uli = ∇×
auli is computed on a uniform grid, so while uli serves as an
indicator for the grid deformation, it is not affected by it.
The deformation timescale τ = c li/max(‖uli‖) is nor-

malized to the maximal value of the current velocity mag-
nitude and governed by the constant c. This constant is
a free parameter, which must be chosen carefully, as it
should be large enough for coherent structures to emerge,
but not too large to avoid decorrelation. For higher val-
ues of c, energy accumulates on smaller scales, which
is corrected by reweighting ablmin

(x) after interpolation

with kδ/2, where δ is the deviation of the energy spectrum
scaling from the expected −5/3 scaling. Additionally, we
mimic the effect of dissipation by applying a low-pass fil-
ter exp(−k2/2k20) controlled by the artificial dissipation
wave number k0.

For comparison, we perform a direct numerical sim-
ulation of incompressible resistive MHD turbulence
in a three-dimensional periodic box with resolution
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Fig. 1: Slice plots of magnetic-field strength b/brms and logarithm of fieldline curvature κ/κpeak for three models of magnetic
turbulence —magnetohydrodynamics (MHD), continuous cascade (CC) and Lagrangian mapping (LM). Energy spectra of the
models are plotted in the rightmost panel and compared with a −5/3 scaling. The dissipation wave number of the MHD
simulation kη is indicated on the abscissa. The fieldline curvature is defined as κ = ‖b̂ · ∇b̂‖, with b̂ = b/‖b‖, and normalized
by the most frequent value κpeak.

N3 = 10243, no background field and equal diffusivity and
resistivity ν = η = 1.2 × 10−3 [41]. We obtain Taylor-
scale Reynolds numbers Rλ = 439 for the velocity field
and Rλ,m = 94 for the magnetic field. The velocity is
driven on Fourier modes 1 ≤ k ≤ 3 with the random
forcing proposed in [42], which exhibits very low mean
cross-helicity and low noise in the time evolution of tur-
bulence bulk quantities. For this purpose we employed
the pseudo-spectral code SpecDyn, which was developed
in the context of magnetic dynamo action and is tailored
for use on modern HPC systems [43,44].

Results. – We generate sample fields of the continuous
cascade process (CC) given by eq. (1) and its minimal mul-
tiscale Lagrangian mapping extension (LM) corresponding
to eq. (2) on a three-dimensional periodic grid with res-
olution N3 = 10243. The parameters of both processes
are H = 1/3, l0 = 0.5 and lmin ≈ 1.5dx. The intermit-
tency parameter of the CC process is μ = 0.4, and the
additional parameters of the LM process are μ = 0.1, c =
0.2, δ = −0.45, and k0 = 256.

For visual inspection, slices of field strength and field-
line curvature are plotted in fig. 1, together with a plot
of the radially averaged energy spectra. MHD turbulence
is characterized by elongated and intricately intertwined
coherent structures, while the CC field consists of inco-
herent intermittent “clouds” of large field strength values.
The LM field exhibits thin and intense coherent struc-
tures, which are more spatially isolated. The CC spectrum
matches the expected −5/3 scaling well, the LM spectrum
exhibits a bottleneck effect at high wave numbers, and the
MHD spectrum is affected by strong resistivity. The bot-
tleneck effect of the LM spectrum is due to the simple ad-
vective nature of the Lagrangian mapping, which causes
accumulation of energy on small scales. This is counter-
acted by reweighting the vector potential with kδ/2 and ap-
plying artificial dissipation, however, when balancing the
relevant parameters c, δ and k0, a residual bottleneck ef-
fect remains. In order to take potential influences of these
different spectra into account, the analysis of curvature

and particle transport is also performed with the respec-
tive phase-randomized fields.

We employ conditional structure functions [45] to study
intermittency with respect to the local structure of the
field. See also [46] for a discussion of local anisotropy
statistics. Given a displacement vector d at a point X, we
consider increments δb⊥ = b⊥(X+d)−b⊥(X) perpendic-
ular to the local mean field blocal = (b(X+d)+b(X))/2.
Averages over these increments are taken conditionally on
the direction of d in an instantaneous local basis given
by b̂local, the normal direction of the fluctuations δb̂⊥,N

with δb⊥,N = δb⊥ − (δb⊥ · b̂local

)
b̂local and the binormal

direction b̂local × δb̂⊥,N . Based on this, the scaling ex-

ponents of the conditional averages 〈‖δb⊥‖p| d̂ 〉 ∝ dζp are
denoted as ζp,‖, ζp,δb̂ or ζp,⊥ depending on d being aligned

with b̂local, δb̂⊥,N or b̂local × δb̂⊥,N .

Figure 2 shows the normalized scaling exponents ζp/ζ3
as well as the raw values of ζ3 for the three models and the
three directions. The further ζp/ζ3 deviates from the lin-
ear case, the more intermittent is the process, and smaller
values of ζ3 correspond to a rougher process. In the MHD
case, the field is the most smooth and non-intermittent
parallel to the local mean-field direction b̂local, while it is
equally intermittent in the direction of fluctuations δb̂⊥,N

and the binormal direction b̂local × δb̂⊥,N , and being
the most rough in the binormal direction. In contrast
to this, the CC field shows no significant difference be-
tween the three directions, which are all equally rough
and intermittent, which is expected from the lack of
coherent structures. Lastly, the LM field exhibits again
directional dependency, with the parallel direction b̂local

being the most non-intermittent and the binormal direc-
tion b̂local× δb̂⊥,N being the most intermittent. However,

the field is in the fluctuation direction δb̂⊥,N less inter-
mittent compared to the MHD case.

While the conditional structure functions provide an
extensive statistical picture of magnetic turbulence, ad-
ditional geometric insight can be gained from the fieldline

43001-p3
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Fig. 2: Scaling exponents of conditional structure functions
of the magnetic field 〈(δb⊥)p| d̂ 〉 ∝ dζp for the MHD, CC
and LM case. The averages of the increments δb⊥ are condi-
tional on the displacement vector d being aligned with the local
mean field blocal (‖), the normal fluctuation direction δb̂⊥,N ⊥
b̂local (δb̂), or with the binormal direction δb̂⊥,N × b̂local (⊥).
The scaling exponents are normalized as ζp/ζ3 and the raw
values of ζ3 are shown in the top panels.

Fig. 3: Compensated distributions of fieldline curva-
ture κ p(κ/κpeak) for the MHD, CC and LM case, as well as
their respective random-phase cases (dotted lines). The low-
curvature κ1 scaling, the MHD κ−2.5 scaling and the Gaus-
sian κ−4 scaling are indicated for comparison. The inset shows
the respective values of κpeak.

curvature

κ = ‖b̂ · ∇b̂‖ = ‖b̂× (b · ∇b)‖/‖b‖2. (3)

Figure 3 shows the distributions p(κ) for the three cases
and their random-phase counterparts. The MHD case,
in agreement with the literature [38,39], behaves asymp-
totically as p(κ) ∼

κ→∞
κ−2.5. Note, as shown by [38],

the scaling becomes κ−2 in 2D turbulence, while simi-
lar values are expected for general collisionless plasmas.
The CC case agrees, apart from being slightly wider, with
the Gaussian random-phase fields, which scale distinctly
as p(κ) ∼

κ→∞
κ−4. Finally, the LM case appears as an

intermediate case between the previous two cases; its dis-
tribution function p(κ) is slightly more narrow than the
MHD case and around the slightly right-shifted peak, p(κ)

Fig. 4: Modelling of the compensated MHD fieldline curva-
ture distribution κ p(κ) as a weighted sum of shifted Gaus-
sian fieldline curvature distributions. The Gaussian fields have
power-law spectra S(k) ∼ k−s, where the spectral slope s
determines the value of the most dominant curvature κpeak.
The weights (not shown) scale analogously to the compensated
high-curvature tail with κ−1.5.

faintly resembles the κ−2.5 scaling, before adjusting to the
Gaussian κ−4 scaling.

The extended flat tail for large κ in the MHD case
is caused by a significant amount of intermittent sharp
fieldline bends scattered throughout the domain (see
also [32,33]) and the low value of κpeak comes from co-
herent structures extended on scales comparable to the
box size. In contrast to this, fieldline bends in Gaussian
fields are distributed in a self-similar way in the domain,
thus leading to a much stepper decay of the distribution.

Since the random-phase fields are Gaussian random
variables, we expect a universal normalized fieldline cur-
vature distribution p(κ/κpeak), which is independent of
the energy spectrum. This behaviour is observed in nu-
merical experiments and also indicated by [38]. How-
ever, κpeak does depend on the energy spectrum, e.g., via
the slope s in case of a power-law spectrum ∼ k−s. Flatter
spectra implicate more energy on small scales, resulting
in more contributions from high curvatures and conse-
quently larger κpeak. This connection is illustrated in
fig. 4, where pMHD(κ) is modeled as a weighted sum of
Gaussian components, similar to the description of the
turbulent velocity increment distribution function as a
Gaussian scale mixture [47,48].

In addition to the insight into the structure of the fields
gained by the previous steps, we also study the trans-
port of charged particles by numerically solving test par-
ticle trajectories X(t) according to the Newton-Lorentz
equation

Ẍ(t) = l0/rg Ẋ(t)× b
(
X(t)

)
(4)

with a Boris integrator [49] and trilinear interpolation [50].
The magnetic field is normalized to 〈b2〉 = 1 and the
particles are parameterized by their normalized gyro ra-
dius rg/l0 = γmcv0/qb0l0, where l0 denotes the outer
scale, b0 denotes the root mean square strength of the mag-
netic field, and v0, γ = 1/

√
1− v2/c2, m and q denotes

43001-p4
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Fig. 5: (a) Diffusion coefficients for gyro radii rg/l0 =
0.001, · · · , 0.25 for the MHD, CC and LM case, as well as their
respective random-phase cases (dotted lines). High- and low-
energy predictions from quasilinear theory are given for com-
parison. The dissipative length scale lη and the gyro radius
of the example in the lower panel are indicated on the ab-
scissa. (b) Running diffusion coefficients of particles with gyro
radius rg/l0 = 0.0039 as an example to illustrate the temporal
evolution of the transport.

the particle’s velocity magnitude, Lorentz factor, mass and
charge.

We record mean squared displacements 〈ΔX2(t)〉 =
〈‖X(t) − X(0)‖2〉 and diffusion coefficients D(rg) =
limt→∞ 〈ΔX2(t)〉/t, once the trajectories have reached
diffusive behaviour. The diffusion coefficients obtained
from the three models are plotted in fig. 5(a), and com-
pared with their random-phase counterparts and quasi-
linear predictions [10]. Figure 5(b) shows the exemplary
time evolution of 〈ΔX2(t)〉 at rg/l0 = 0.0039, consisting
of an initial super-diffusive phase and short sub-diffusive
phase, before arriving at stable diffusive behaviour. Parti-
cles have the largest diffusion coefficients in MHD turbu-
lence on all scales, which stands in striking difference to
the random-phase MHD field, where we find the smallest
diffusion coefficients. This behaviour can be explained by
the strong deviation of the MHD energy spectrum at high
wave numbers from the−5/3 spectral slope, and highlights
impressively the effectiveness of coherent structures in re-
gard to charged particle transport. The CC case achieves
only a very minor increase compared to the random-phase
case, and while the LM case performs better, it is still
outperformed by MHD.

Conclusion. – We have presented a novel algorithm
for synthetic magnetic turbulence based on a combi-
nation of the continuous cascade model, generalized to
three-dimensional divergence-free vector fields, and the
minimal multiscale Lagrangian map. The most important

differences to previous works on the MMLM procedure
are the explicit cascade structure of the underlying noise,
primarily working with the vector potential, and inter-
polating from deformed to uniform grid once at the end
of the procedure instead of interpolating at each scale.
These changes considerably strengthen the emergent ad-
vective structures. We compare this algorithm with an
incompressible resistive MHD turbulence simulation and
the pure three-dimensional continuous cascade model,
which is intermittent but lacks coherent structures. This
comparison is done by means of visual inspection, the
energy spectrum, conditional structure function scaling,
the fieldline curvature distribution and running diffusion
coefficients of charged test particles.
We observe that our algorithm produces turbulence ex-

hibiting pronounced coherent structures, albeit not as
densely and intricately organized as MHD coherent struc-
tures. This is accompanied by non-trivial conditional
structure function scaling, revealing local anisotropy,
i.e., relatively low roughness (ζLM3,‖ > ζLM3,⊥) and weak
intermittency parallel to the local mean magnetic field,
and strong intermittency in the perpendicular direction in
agreement with MHD turbulence. However, when directly
compared to the MHD case, the field in the parallel direc-
tion is clearly rougher (ζLM3,‖ < ζMHD

3,‖ ), and the fluctuation
direction is not as intermittent as required. Further, the
fieldline curvature distribution resembles the MHD case at
small and intermediate curvatures, but exhibits Gaussian
scaling at large curvatures. Finally, while charged particle
transport is enhanced, it remains outpaced by the MHD
case, as expected due to the simpler geometry and smaller
length scales of the synthetic coherent structures.
In conclusion, our algorithm presents significant

progress towards simulating realistic turbulence. The re-
maining issues are clearly identified and will guide further
improvements in designing synthetic turbulence models.
For instance, a feedback mechanism during the algorithm
would be highly relevant, which acts on the velocity field u
and takes the current state of the deformed grid and the
advected magnetic field b into account. An approach
based on the Elsässer formulation of the MHD equations
appears promising as well. Alternatively, one could aim to
design a synthetic scalar curvature field, instead of a full
vector field, and make use of recent results linking fieldline
curvature and charged particle transport [32,33]. Such an
approach could build on the description of the non-trivial
MHD fieldline curvature distribution as a weighted sum of
Gaussian components, as presented in this letter.
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