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Abstract In this paper, we investigate the time dependent
black holes in the frame of Einstein–Gauss–Bonnet theory
having two scalar fields and investigate the propagation of
the gravitational wave (GW). In the reconstructed models,
there often appear ghosts, which could be eliminated by
imposing some constraints. We investigate the behavior of
high-frequency gravitational waves by examining the effects
of varying Gauss–Bonnet coupling during their propagation.
The speed of propagation changes due to the coupling during
the black hole formation process. The propagation speed of
gravitational waves differs when they enter the black hole
compared to when they exit.

1 Introduction

Black holes reside within the rapidly growing universe.
Specifically, in our growing universe, there are no black holes
that are asymptotically flat. Therefore, it is essential to study
the physics and thermodynamics of black holes within a
growing cosmological environment. Thus, in recent years,
there has been much research on black holes that are asymp-
totic to the expanding universe, referred to as “Cosmological
Black Holes”. These black holes raise various questions as:
What effects does the cosmic expansion have on the local
physics of black holes in the entire cosmic epochs? What
impact does the universe’s content have on the black hole?
What changes should be made to the physics of black holes
in light of the expanding universe? In an expanding universe,
how should the definitions of black hole horizon, singulari-
ties, mass, and thermodynamics be altered? McVittie’s solu-
tion is one of the earlier studies that explains black holes
within the Friedmann–Robertson–Walker (FRW) universe
[1]. Subsequently, solutions such as those developed by Ein-
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stein and Strauss [2], Lemaitre–Tolman–Bondi (LTB) [3–5],
and Vaidya [6] were introduced. In this study, the significant
aspect is the reconsideration of boundaries using indigenous
ideas instead of asymptotically flat circumstances, a concept
proposed as trapping horizon by Hayward [7] and as dynam-
ical horizon [8]. In addition to the LTB metric’s dynamic
nature, the FLRW metric can be represented as a background
and is a specific instance of the LTB metric. By utilizing the
characteristics of the LTB metric, it is possible to create a
cosmological black hole [9], with both its singularity and
horizon emerging as it collapses [10]. References [11,12]
provide useful overviews of different types of horizons such
as event, Killing, apparent, trapping, isolated, and dynamical
horizons. Within modified theories like f (R), f (G), etc. it is
difficult to derive time dependent solution [13,14]. However,
for theories coupled with scalar fields it can be applicable to
derive time-dependent solution [15].

Einstein–Gauss–Bonnet (EGB) theories are significant
because they emerge as ultraviolet corrections to the min-
imally coupled scalar field theory [16]. The EGB theory is
a promising candidate for explaining the inflationary epoch
[17–73]. One of its key features is its ability to generate a
desirable blue-tilted tensor spectral index. This property is
crucial because it enables the stochastic gravitational waves
produced during an EGB inflationary era to be potentially
detected in future gravitational wave experiments. Recent
research [15] demonstrated that an arbitrary spherically sym-
metric spacetime can be constructed using Einstein’s grav-
ity coupled with two scalar fields, even when the spacetime
itself is dynamic. Research has shown that ghost degrees
of freedom can emerge in certain models. In classical the-
ory, these ghosts have kinetic energy that is unbounded from
below, and in quantum theory, they produce negative norm
states, a phenomenon also observed in quantum chromody-
namics [74]. This is significant because it conflicts with the
Copenhagen interpretation of quantum theory. The presence
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of ghost degrees of freedom poses a challenge to physical
reality. Recently, an extension of the formulation in Ref. [15]
has led to proposed models describing static wormholes [75]
and gravastars [76]. Furthermore, these models have been
investigated for the propagation of gravitational waves in
spherically symmetric spacetimes [77]. Gravastars offer an
alternative to conventional black holes and could potentially
form through Bose–Einstein condensation [78]. In previous
works [15,75], constraints were imposed on the scalar fields
to prevent the emergence of ghost degrees of freedom. The
constraints used resembled those employed in mimetic grav-
ity [79]. Consequently, the scalar fields lose their dynamical
behavior, effectively prohibiting fluctuations and preventing
the propagation of these fields. In mimetic gravity, the con-
straints employed mirror those used, causing the scalar fields
to lose their dynamic behavior. This effectively prevents fluc-
tuations and hinders the propagation of these fields. In the
context of the original mimetic gravity approach, this sce-
nario closely resembles a situation where effective dark mat-
ter emerges. Unlike standard dust, this effective dark matter
exhibits vanishing pressure, yet it remains non-dynamical
and does not undergo gravitational collapse.

In this study, we examine an extension of the model pre-
sented in [15], which involves coupling the Gauss–Bonnet
invariant with two scalar fields because of the substantial
phenomenological implications of EGB. Furthermore, the
Gauss–Bonnet term emerges as α correction from string the-
ory to Einstein’s gravity, with the parameter 1/α representing
the string tension. We designate this model, which encom-
passes both scalar fields and the Gauss–Bonnet invariant,
as EGB gravity. Moreover, we show that within the present
study it is impossible to construct a model in which the prop-
agation speed of gravitational waves coincides with that of
light in dynamical spherically symmetric spacetimes.

The arrangement of this study is as follows: in Sect. 2,
we present in a brief scenario the EGB theory coupled with
two scalar fields. In Sect. 3, we apply the field of EGB cou-
pled with two scalar fields to a time dependent spherically
symmetric spacetime and obtained a system of differential
equations. This system is in a closed form which enabled us
to derive explicitly the forms of the coefficients of the scalar
field besides the potential. In Sect. 4 we present three time
dependent black holes and derive their relevant coefficient
of scalar field as well as the potential. In Sect. 5 we discuss
the gravitational wave by present the perturbed form of EGB
theory coupled with two scalar fields. In the final section we
investigate the results contained in this study.

2 Ghost-free Einstein–Gauss–Bonnet gravity coupled
with two scalar fields

According to the study presented in [15] it is shown that any
spherically symmetric spacetime, whether dynamic or static,
can be constructed using Einstein’s gravity in conjunction
with two scalar fields. The model in [15], however, includes
ghost1 degrees of freedom. In the present study, we first
develop models without ghosts by introducing constraints via
Lagrange multiplier fields, similar to the constraints found in
the mimetic gravity theoretical framework [79]. Moreover,
to account for variations in the propagation speed of gravita-
tional waves, we incorporate the coupling of two scalar fields
with the Gauss–Bonnet topological invariant, following the
approach outlined in the references [26,27].

We start with EGB gravity coupled to two scalar fields,
denoted as ϕ and ψ . The action for this system is given by:

Sϕψ =
∫

d4x
√−g

{
R

2κ2 − 1

2
β(ϕ,ψ)∂μϕ∂μϕ

−σ(ϕ,ψ)∂μϕ∂μψ− 1

2
α(ϕ,ψ)∂μψ∂μψ − 	(ϕ,ψ)

−ζ(ϕ,ψ)G + Lmatter} . (1)

Here, 	(ϕ,ψ) represents the potential which is a function
of ϕ and ψ , and ζ(ϕ,ψ) is coupling function of the Gauss–
Bonnet which is a function of ϕ and ψ . Here G represents
Gauss–Bonnet invariant term given by

G = R2 − 4Rαβ R
αβ + Rαβρσ R

αβρσ , (2)

that is a topological density. In four dimensions Gauss–
Bonnet is a total derivative which yields the Euler number.

Varying the action of Eq. (1) regarding metric gμν , gives

0 = 1

2κ2

(
−Rμν + 1

2
gμνR

)

+ 1

2
gμν

{
−1

2
β(ϕ,ψ)∂ρϕ∂ρϕ − σ(ϕ,ψ)∂ρϕ∂ρψ

−1

2
α(ϕ,ψ)∂ρψ∂ρψ − 	(ϕ,ψ)

}

+ 1

2

{
β(ϕ,ψ)∂μϕ∂νϕ

+σ(ϕ,ψ)
(
∂μϕ∂νψ + ∂νϕ∂μψ

)+ α(ϕ,ψ)∂μψ∂νψ
}

− 2
(∇μ∇νζ(ϕ, ψ)

)
R + 2gμν

(
∇2ζ(ϕ,ψ)

)
R

+ 4
(∇ρ∇μζ(ϕ,ψ)

)
R ρ

ν + 4
(∇ρ∇νζ(ϕ, ψ)

)
R ρ

μ

− 4
(
∇2ζ(ϕ,ψ)

)
Rμν − 4gμν

(∇ρ∇σ ζ(ϕ,ψ)
)
Rρσ

1 The ghost mode has negative kinetic energy classically and generates
negative norm states as a quantum theory. Therefore the existence of
the ghost mode tells that the model is physically inconsistent.
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+ 4
(∇ρ∇σ ζ(ϕ,ψ)

)
Rμρνσ + 1

2
Tmatter μν , (3)

The field equations of the scalar fields are derived by varying
the action with respect to the scalar fields ϕ and ψ resulting
in the following expressions:

0 = 1

2
βϕ∂μϕ∂μϕ

+ β∇μ∂μϕ + βψ∂μϕ∂μψ

+
(

σψ − 1

2
αϕ

)
∂μψ∂μψ + σ∇μ∂μψ − 	ϕ − ζϕG ,

0 =
(

−1

2
βψ + σϕ

)
∂μϕ∂μϕ

+ σ∇μ∂μϕ + 1

2
αψ∂μψ∂μψ + α∇μ∂μψ

+ αϕ∂μϕ∂μψ − 	ψ − ζψG , (4)

where βϕ = ∂β(ϕ,ψ)/∂ϕ, etc. In Eq. (3), (Tmatter)μν repre-
sents the energy-momentum tensor of matter.

Considering the general spherically symmetric and time-
dependent spacetime, described by the metric,2

ds2 = −e2ν(t,r)dt2 + e2ν1(t,r)dr2

+ r2
(
dθ2 + sin2 θdφ2

)
, (5)

where ν(t, r) and ν1(t, r) are two unknown function of time
and radial coordinate. Furthermore, we use following iden-
tifications,

ϕ = t , ψ = r . (6)

This assumption does not lead to a loss of generality for the
following reason: for the spherically symmetric solutions (5)
of the theory (1), in general ϕ and ψ depend on both coor-
dinates t and r . Given a solution, the t- and r -dependence
of ϕ and ψ can be determined and ϕ and ψ are then given
by specific functions ϕ(t, r), ψ(t, r). On spacetime regions
where these relations are one-to-one, and provided that ∂μϕ

is timelike and ∂μψ is spacelike, one can invert these specific
functional forms and redefine the scalar fields to replace t and
r with new scalar fields, say, ϕ̄ and ψ̄ with ϕ(t, r) → ϕ(ϕ̄, ψ̄)

and ψ(t, r) → ψ(ϕ̄, ψ̄). We can then identify the new fields
with t and r as in (6), ϕ̄ → ϕ = t and ψ̄ → ψ = r . The
change of variables (ϕ, ψ) → (ϕ̄, ψ̄

)
can then be absorbed

into redefinitions of β, σ , α, and 	 in the action (1). There-
fore, the assumption (6) does not lead to loss of generality
[77].

For the purpose of eliminating any ghosts that could
appear we use the Lagrange multiplier fields λϕ and λψ ,

2 The justifications that metric (5) is a general one are presented in [15].

that can be added to the action (SGR)ϕψ given by Eq. (1) as
(SGR)ϕψ → (SGR)ϕψ + Sλ,

Sλ =
∫

d4x
√−g
[
λϕ

(
e−2ν(t=ϕ,r=ψ)∂μϕ∂μϕ + 1

)

+λψ

(
e−2λ(t=ϕ,r=ψ)∂μψ∂μψ − 1

)]
. (7)

Variations of Eq. (7) with respect to λϕ and λψ yield,

0 = e−2ν(t=ϕ,r=ψ)∂μϕ∂μϕ + 1 ,

0 = e−2ν1(t=ϕ,r=ψ)∂μψ∂μψ − 1 , (8)

whose solutions are consistently given by Eq. (6).
The constraints in Eq. (8) make the scalar field ϕ and ψ

non-dynamical, that is, the fluctuation of ϕ and ψ from the
background (6) do not propagate. In fact, by considering the
perturbation from of Eq. (6) we get:

ϕ = t + δϕ , ψ = r + δψ , (9)

By using Eq. (8), we find

∂t

(
e2ν(t=ϕ,r=ψ)δϕ

)
= ∂r

(
e2ν1(t=ϕ,r=ψ)δχ

)
= 0 . (10)

Eq. (10) tells that by imposing the initial condition δϕ =
0 (because ϕ corresponds to the time coordinate) and by
imposing the boundary condition δψ → 0 when r → ∞
(because ψ corresponds to the radial coordinate), we find that
both of δϕ and δψ vanish in the whole spacetime, δϕ = 0 and
δψ = 0 not only at the initial surface for δϕ and boundary
surface for δψ . This tells that bothϕ andψ are non-dynamical
or frozen degrees of freedom. References [75,76,80,81] tell
that λϕ = λψ = 0 consistently appear as a solution even in
the model with the modified action S + Sλ. This tells any
solution of Eqs. (3) and (4) which are based on the original
action (1) is a solution even for the modified model with the
action S + Sλ.

Upon modifying SGRϕψ → SGRϕψ + Sλ in (7), the equa-
tions in (3) and (4) undergo the following modifications:

0 = 1

2κ2

(
−Rμν + 1

2
gμνR

)

+ 1

2
gμν

{
−1

2
β(ϕ,ψ)∂ρϕ∂ρϕ

−σ(ϕ,ψ)∂ρϕ∂ρψ

−1

2
α(ϕ,ψ)∂ρψ∂ρψ − 	(ϕ,ψ)

}

+ 1

2

{
β(ϕ,ψ)∂μϕ∂νϕ

+σ(ϕ,ψ)
(
∂μϕ∂νψ + ∂νϕ∂μψ

)+ α(ϕ,ψ)∂μψ∂νψ
}
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− 2
(∇μ∇νζ(ϕ, ψ)

)
R + 2gμν

(
∇2ζ(ϕ,ψ)

)
R

+ 4
(∇ρ∇μζ(ϕ,ψ)

)
R ρ

ν

+ 4
(∇ρ∇νζ(ϕ, ψ)

)
R ρ

μ

− 4
(
∇2ζ(ϕ,ψ)

)
Rμν − 4gμν

(∇ρ∇σ ζ(ϕ,ψ)
)
Rρσ

+ 4
(∇ρ∇σ ζ(ϕ,ψ)

)
Rμρνσ

+ 1

2
gμν

{
λϕ

(
e−2ν(r=ψ)∂ρϕ∂ρϕ + 1

)

+λψ

(
e−2λ(r=ψ)∂ρψ∂ρψ − 1

)}

− λϕe−2ν(r=ψ)∂μϕ∂νϕ − λψe−2λ(r=ψ)∂μψ∂νψ

+ 1

2
Tmatter μν , (11)

0 = 1

2
βϕ∂μϕ∂μϕ + β∇μ∂μϕ + βψ∂μϕ∂μψ

+
(

σψ − 1

2
αϕ

)
∂μψ∂μψ + σ∇μ∂μψ − 	ϕ − ζϕG

− 2∇μ
(
λϕe−2ν(r=ψ)∂μϕ

)
,

0 =
(

−1

2
βψ + σϕ

)
∂μϕ∂μϕ

+ σ∇μ∂μϕ + 1

2
αψ∂μψ∂μψ + α∇μ∂μψ

+ αϕ∂μϕ∂μψ − 	ψ − ζψG
− 2∇μ

(
λψe−2λ(r=ψ)∂μψ

)
. (12)

Let’s examine the solutions to the equations in (3) and (4)
under the assumptions (5) and (6). Subsequently, the (t, t)
and (r, r) components in (11) yield:

0 = λϕ = λψ . (13)

The remaining components in (11) are identically satisfied.
Additionally, Eq. (12) yields

0 = ∇μ
(
λϕe−2ν(r=ψ)∂μϕ

)
= ∇μ
(
λψe−2λ(r=ψ)∂μψ

)
.

(14)

The satisfaction of Eq. (14) implies the satisfaction of
Eq. (13). Consequently, the solution to Eqs. (3) and (4) corre-
sponds to a solution of Eqs. (11) and (12) associated with the
modified action as SGRϕψ → SGRϕψ + Sλ in (7) if λϕ and λψ

are nil (13). However, it’s worth noting that for Eqs. (11) and
(12), there exists a solution where λϕ and λψ do not equal
zero.

The detailed perturbation of the field equations (11) is
given in (see for example [77,80]. Therefore in this study we
will not repeat these calculation but give the final perturbation
form which yields:

0 =
[

1

4κ2 R + 1

2

{
−1

2
∂ρϕ∂ρϕ − 	

}

−4
(∇ρ∇σ ζ

)
Rρσ
]
hμν

+
[

1

4
gμν

{−β∂τϕ∂ηϕ − σ
(
∂τϕ∂ηψ + ∂ηϕ∂τψ

)

−α∂τψ∂ηψ
}− 2gμν

(∇τ∇ηζ
)
R

− 4
(∇τ∇μξ

)
R η

ν − 4
(∇τ∇νξ

)
R η

μ + 4
(∇τ∇ηζ

)
Rμν

+ 4gμν

(∇τ∇σ ζ
)
Rησ + 4gμν

(∇ρ∇τ ζ
)
Rρη

− 4
(∇τ∇σ ζ

)
R η

μ νσ − 4
(∇ρ∇τ ζ

)
R η

μρν

}
hτη

+ 1

2

{
2δ η

μ δ ζ
ν (∇κζ ) R − 4δ η

ρ δ ζ
μ (∇κζ ) R ρ

ν

− 4δ η
ρ δ ζ

ν (∇κζ ) R ρ
μ + 4gμνδ

η
ρ δ ζ

σ (∇κζ ) Rρσ

−4gρηgσζ (∇κζ ) Rμρνσ

}
gκλ
(∇ηhζλ

+∇ζ hηλ − ∇λhηζ

)

−
{

1

4κ2 gμν − 2
(∇μ∇νζ

)+ 2gμν

(
∇2ζ
)}

Rμνhμν

+ 1

2

{(
− 1

2κ2 − 4∇2ζ

)
δτ

μδη
ν + 4
(∇ρ∇μζ

)

δη
νg

ρτ +4
(∇ρ∇νζ

)
δτ

μg
ρη − 4gμν∇τ∇ηζ

}

×
{
−∇2hτη − 2Rλ ϕ

η τhλϕ + Rϕ
τhϕη + Rϕ

τhϕη

}

+ 2
(∇ρ∇σ ζ

) {∇ν∇ρhσμ − ∇ν∇μhσρ − ∇σ ∇ρhνμ

+∇σ ∇μhνρ + hμϕR
ϕ
ρνσ − hρϕR

ϕ
μνσ

}

+ 1

2

∂Tmatter μν

∂gτη

hτη . (15)

The observation of GW170817 gives the constraint on the
propagating speed cGW of the gravitational wave as follows,

∣∣∣∣cGW
2

c2 − 1

∣∣∣∣ < 6 × 10−15 , (16)

where c denotes the speed of light. In order to investigate
if the propagating speed cGW of the gravitational wave hμν

could be different from that of the light c, we only need to
check the parts including the second derivatives of hμν ,

Iμν ≡ I (1)
μν + I (2)

μν ,

I (1)
μν ≡ 1

2

{(
− 1

2κ2 − 4∇2ζ

)
δτ

μδη
ν + 4
(∇ρ∇μξ

)
δη

νg
ρτ

+4
(∇ρ∇νξ

)
δτ

μg
ρη −4gμν∇τ∇ηζ

}
∇2hτη ,

I (2)
μν ≡ 2

(∇ρ∇σ ζ
) {∇ν∇ρhσμ − ∇ν∇μhσρ

− ∇σ ∇ρhνμ + ∇σ ∇μhνρ

}
. (17)

123



Eur. Phys. J. C          (2024) 84:1119 Page 5 of 17  1119 

Now we are ready to derive time dependent black hole in
the frame of EGB theory coupled with scalar fields.

3 Time dependent black hole

Now let us apply the line element given by Eq. (5) to the field
equations (3) and get:

t t − component : (18)

1 − 2ν′
1 (t, r) r − e2ν1(t,r)

r2e2ν1(t,r)
= −κ2

2r2e2[ν(t,r)+2ν1(t,r)][
16e2ν(t,r)

{
1 − e2ν1(t,r)

}
ξ ′′ (t, r) + 16ζ ′ (t, r) e2ν(t,r)

{
e2ν1(t,r) − 3

}
ν′

1 (t, r)

+
{

16
(
e2ν1(t,r) − 1

)
ζ̇ (t, r) ν̇1 (t, r)

+
[{

2e2ν(t,r)	 (t, r) + β (t, r) ϕ̇2 (t)
}
e2ν1(t,r)

+e2ν(t,r)ψ ′2 (r) α (t, r)
]
r2
}
e2ν1(t,r)

]
,

t r − component : (19)

2ν̇1 (t, r)

re2ν1(t,r)
= κ2

r2e4ν1(t,r)

×
[{

8 − 8e2ν1(t,r)
}

ζ̇ ′ (t, r) +
{

8e2ν1(t,r) − 24
}

ζ ′ (t, r) ν̇1 (t, r) +
{

8e2ν1(t,r) − 8
}

ζ̇ (t, r) ν′ (t, r)

+γ (t, r) ϕ̇ (t) ψ ′ (r) r2e2ν1(t,r)
]

,

r t − component = e2ν1(t,r)(t r − component) : (20)

r r − component : (21)

1 + 2ν′ (t, r) r − e2ν1(t,r)

r2e2ν1(t,r)
= κ2

2r2e2[ν(t,r)+2ν1(t,r)][
16e2ν1(t,r)

{
1 − e2ν1(t,r)

}
ξ̈ (t, r)

+16ζ ′ (t, r) e2ν(t,r)
{
e2ν1(t,r) − 3

}
ν′

1 (t, r)

+
{

16
(
e2ν1(t,r) − 1

)
ζ̇ (t, r) ν̇1 (t, r)

+
[{

β (t, r) ϕ̇2 (t) − 2e2ν(t,r)	 (t, r)
}
e2ν1(t,r)

+e2ν(t,r)ψ ′2 (r) α (t, r)
]
r2
}
e2ν1(t,r)

]
,

θ θ = φ φ − component : (22)

[
(1 + ν′ (t, r) r)(ν′ (t, r) − ν′

1 (t, r)) + ν′′ (t, r) r
]
e−2ν1(t,r) + r

[
ν̇1 (t, r) ν̇ (t, r) − ν̈1 (t, r) − ν̇2

1 (t, r)
]
e−2ν(t,r)

r

= κ2

2r

[
16
{
ν̈1 (t, r) ζ ′ (t, r) + 2ν̇1 (t, r) ζ̇ ′ (t, r) − ν′

1 (t, r) ζ̈ (t, r) − ν̇1 (t, r) [ν̇1 (t, r) + ν̇ (t, r)]} ζ ′ (t, r)

− 16ζ̇ (t, r)
{
ν̇1 (t, r) ν′ (t, r) − ν′

1 (t, r) ν̇ (t, r)
}
e−2[ν1(t,r)+ν(t,r)] − e−4ν1(t,r){

16ζ ′ (t, r) ν′′ (t, r) + 16ν′ (t, r) ×[ζ ′′ + ζ ′{ν′ (t, r) − 3ν′
1 (t, r)}]}

+ r
{
e−2ν(t,r)β (t, r) ϕ̇2(r) − e−2ν1(t,r)α (t, r) ψ ′2(r) − 2	(t, r)

} ]
(23)

The above system of differential equations can be solved
for the coefficients of the scalar fields in addition to the poten-
tial to have the form:

β(t, r) = e−4 ν1(t,r)

κ2r2

[{
8 κ2ζ ′′ (t, r) + ν′′ (t, r) r2

−8 κ2ζ ′ (t, r) ν′
1 (t, r)

+
(
r − r2ν′ (t, r)

)
ν′

1 (t, r)

+rν′ (t, r) − 1 + ν′2 (t, r) r2
}

× e2ν(t,r)+2ν1(t,r) + e2ν(t,r)+4ν1(t,r)

+
[
8κ2ζ̈ (t, r) ν′

1 (t, r) r − 8κ2ζ ′ (t, r) ν̈1 (t, r) r

−16 κ2ν̇1 (t, r) ζ̇ ′ (t, r) r
+8κ2ν̇2

1 (t, r) ζ ′ (t, r) r
+
(

8κ2ζ ′ (t, r) ν̇ (t, r) r + 8κ2ζ̇ (t, r)
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+8κ2ζ̇ (t, r) ν′ (t, r) r
)

ν̇1 (t, r)

−8κ2ζ̇ (t, r) ν̇ (t, r) ν′
1 (t, r) r

]
e2 ν1(t,r)

+
[(

8κ2ν′ (t, r) r

−8 κ2
)

ζ ′′ (t, r) + 8 κ2ζ ′ (t, r) ν′′ (t, r) r

+
((

−24 κ2ν′ (t, r) r + 24 κ2
)

ν′
1 (t, r)

+8 κ2ν′ (t, r)2 r
)

ζ ′ (t, r)
]
e2 ν(t,r)

+
[(

ν̇ (t, r) r2 − 8 κ2ζ̇ (t, r)
)

ν̇1 (t, r)

−ν̈2
1 (t, r) − ν̇2

1 (t, r) r2
]
e4 ν1(t,r)

]
,

γ (t, r) = 2e−2 ν1(t,r)

κ2r2

[{
4 κ2ζ̇ ′ (t, r)

+
(
r − 4 κ2ζ ′ (t, r)

)
ν̇1 (t, r)

−4 κ2ζ̇ (t, r) ν′ (t, r)
}
e2 ν1(t,r)

+4 κ2 (3 ζ ′ (t, r) ν̇1 (t, r)

−ζ̇ ′ (t, r) + ζ̇ (t, r) ν′ (t, r)
)]

,

α(t, r) = − e−2ν(t,r)−2ν1(t,r)

κ2r2

[{
ν′′ (t, r) r2 + ν′2 (t, r) r2

+
(

8κ2ζ ′ (t, r) − r − ν′2
1 (t, r)

)
ν′ (t, r)

−ν′
1 (t, r) r − 1

}
e2ν(t,r)+2ν1(t,r)

+e2ν(t,r)+4ν1(t,r) +
[(

8κ2ν′
1 (t, r) r + 8κ2

)
ζ̈ (t, r)

−8κ2ζ ′ (t, r) ν̈1 (t, r) r − 16κ2ν̇1 (t, r) ζ̇ ′ (t, r) r
+8κ2ζ̇ (t, r) ν̇1 (t, r) ν′ (t, r) r
+8
(
κ2ν̇ (t, r) ν̇1 (t, r) r + κ2ν̇2

1 (t, r) r
)

ζ ′ (t, r)

−8κ2ζ̇ (t, r) ν̇ (t, r)

−8κ2ζ̇ (t, r) ν̇ (t, r) ν′
1 (t, r) r

]

× e2ν1(t,r) +
[
ν̇ (t, r) ν̇1 (t, r) r2

−ν̈1 (t, r) r2 − ν̇2
1 (t, r) r2 + 8κ2ζ̇ (t, r) ν̇ (t, r)

−8κ2ζ̈ (t, r)
]
e4ν1(t,r)

+
[
8κ2ζ ′ (t, r) ν′′ (t, r) r + 8κ2ζ ′′ (t, r) ν′ (t, r) r

+8κ2ζ ′ (t, r) ν′2 (t, r) r

−24
(
κ2ν′

1 (t, r) r + κ2
)

ζ ′ (t, r) ν′ (t, r)
]
e2ν(t,r)

]
,

	(t, r) = − e−2 ν(t,r)−4 ν1(t,r)

κ2r2

[{
−4 κ2ζ ′′ (t, r)

−4 κ2 [ν′ (t, r)
−ν′

1 (t, r)
]
ζ ′ (t, r) − ν′

1 (t, r) r + 1

+rν′ (t, r)
}
e2 ν(t,r)+2 ν1(t,r)

× −e2 ν(t,r)+4 ν1(t,r) +
{
−4 κ2ζ̈ (t, r)

+
(
−4 κ2ν̇1 (t, r) + 4ν̇ (t, r) κ2

)
ζ̇ (t, r)
}
e2 ν1(t,r)

+
{

4 κ2ζ̈ (t, r) +
(
−4 ν̇ (t, r) κ2

+4 κ2ν̇1 (t, r)
)

ζ̇ (t, r)
}
e4 ν1(t,r) +

{
4 κ2ζ ′′ (t, r)

+
{

12 κ2ν′ (t, r) − 12 κ2ν′
1 (t, r)
}

ζ ′ (t, r)
}
e2 ν(t,r)

]
. (24)

4 Time dependent black hole solutions

In this section, we are going to derive the coefficients of the
scalar fields, ϕ and ψ , that are time dependent black hole.

4.1 First time dependent black hole

In this case we take the ansatzs of the BH to have the from:3.

e2ν(t,r) = e−2ν1(t,r) = 1 − 2M(t)

r
, (25)

where the Misner–Sharp–Hernandez mass M(t) is positive
and depends only on time. A negative mass, M , indicates a
violation of the energy conditions and makes apparent hori-
zons impossible. The Ricci scalar related to ansatz (25) is
given by:

R =
(

1 − 2M

r

)−1

⎡
⎢⎣2M̈

r
+
(

2Ṁ
r

)2
1 − 2M

r

⎤
⎥⎦ . (26)

Equation (26) demonstrates that when M remains constant,
R becomes zero, indicating the geometry is the same as
Schwarzschild geometry. In this scenario, there is a single
visible horizon, with a surface radius of r(t) = 2M(t).
This horizon, which is constantly changing, represents a
black hole horizon as it is a unique solution to the equation
∇αr∇αr = 0. A curvature singularity occurs when 2M = r

given that 2M̈
r

(
1 − 2M

r

)
. The value of

(
2Ṁ
r

)2
decreases sig-

nificantly asO
((

1 − 2M
r

)2)
approaches zero when 2M = r ,

which is not possible. Using Eq. (25) in Eq. (24) we present

3 In this study, we assume ν(t, r) is equal to −ν1(t, r), as seen in the
Schwarzschild. The line element in spherical spacetime is expressed
using the areal radius r with gtt grr = −1, where r serves as an affine
parameter along radial null geodesics [82]. Additionally, this spacetime
possesses unique algebraic characteristics: the Ricci tensor’s double
projection onto radial null vectors results in zero [82–84]. On the other
hand, the Ricci tensor’s restriction to the (t, r) submanifold is directly
related to the restriction of the metric gμν to this specific subspace
[82]. Several solutions in general relativity or alternative gravities are
characterized by the condition gtt grr = −1, such as vacuum solutions,
electrovacuum solutions with Maxwell or nonlinear Born–Infeld elec-
trodynamics, and the string hedgehog global monopole [82], also in
higher dimensions, as shown in [85,86].
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the coefficient of the scalar fields and the potential in the
Appendix due to its lengthy:

4.2 Second time dependent black hole

The second time dependent ansatz of the BH that we will
deal takes the form:

e2ν(t,r) = e−2ν1(t,r) =
(

1 − r0

r

) t0
t

, (27)

with r0 and t0 being positive constants. The Misner–Sharp–
Hernandez mass M(t) of the above line element takes the
form:

M(t) = r t − t0r + t0r0

2t
. (28)

Using Eq. (27) in Eq. (24) we get the coefficient of the
scalar fields and the potential in the Appendix. Equation
(28) demonstrates that only a single apparent horizon exists
at r = 2M (t, r), resulting in r = r0. Since this is a single
root, we have a black hole apparent horizon. Equation (28)
reveals that there is just a single visible horizon situated at
r = 2M (t, r), where r = r0. This horizon is both a null sur-
face and an event horizon. The Ricci curvature of Eq. (28)
has the form:

R = 2

r2

(
1 − t0

t

)
. (29)

The geometry of Eq. (29) has no spacetime singularities
except for the usual one at r = 0 and the Big Bang at t = 0.

4.3 Third time dependent black hole

The second time dependent ansatz of the BH that we will
deal takes the form:

e2ν(t,r) = e−2ν1(t,r) = 1 − r0
r

1 + tr0
r t0

, (30)

where the Misner–Sharp–Hernandez mass M(t) of the above
line element take the form:

M(t) = rr0(t0 + t)

2(r t0 + tr0)
. (31)

Equation (31) displays that the apparent horizons can be
found at r = 2M , resulting in the sole root being r = r0. This
represents a lone root and the circumference of a stationary
black hole event horizon. The mass located at this boundary
is equal to half the radius M(r0) = r0/2 and remains constant
over time. As r approaches infinity, the relationship e2ν =
e−2ν1 → 1 indicates that the geometry is flat at infinity. As t
approaches infinity while r remains constant, the metric can

be approximated by e2ν � t0 r
tr0

(
1 − r0

r

)
. Next, by defining

a new time parameter τ as dτ = dt√
t

(or τ(t) = 2
√
t ), the

metric equation can be rewritten as:

ds2 = − t0 r

r0

(
1 − r0

r

)
dτ 2 + r0τ

2

4t0 r (1 − r0/r)
dr2

+ r2
(
dϑ2 + sin2 ϑ dϕ2

)
, (32)

as the time τ (or t) increases, the radial direction expands
resembling a throat. The horizontal radius of the horizon stays

the same. The factor depending on time

(
r0

4t0 r
(
1− r0

r

) τ 2
)

affects only dr2 and not the angular component of the metric,
unlike in a FLRW universe with a central object (the metric
approaches flat instead of FLRW at infinity) [87]. The Ricci
scalar of the geometry (30) is

R = 2
(
1 + t0

t

) r0
r3(

1 + tr0
t0 r

)3
[

1 − t

t0
+ 2

(
1 − t

t0

)
tr0

t0 r
+ t2r2

0

t2
0 r

2

]
,

(33)

which is continuous at the horizon r = r0, despite the pres-
ence of singularities at r = 0, t = 0, and t → ∞. Using Eq.
(27) in Eq. (24) we we present the coefficient of the scalar
fields as well as the potential in the Appendix.

5 Gravitational wave propagation

Now, let us investigate the GW propagation. The EGB the-
ory requires that the propagation speed of gravitational waves
with a single scalar fields corresponds to the speed of light
in the FLRW metric spacetime has been studied in [52]. The
condition of propagation of gravitational waves for space-
time with two scalar field was provided in [68]. Now let us
use the condition given by Eq. (17). In our examination of the
GW propagation velocity, denoted as cGW, our focus is solely
on the terms that encompass the second-order derivatives of
the GW tensor hμν . Given the assumption of minimal inter-
action between matter and gravity, contributions from mat-
ter do not interact with the derivatives of the gravitational
wave tensor hμν . As a result, they are not present in the ten-
sor Iμν . Put simply, the existence of matter has no impact
on the GW’s propagation velocity. Importantly, the tensor
I (1)
μν does not change the GW s speed, which continues to

match that of light. In general, the tensor I (2)
μν has the poten-

tial to change the GW’s speed, deviating it from the speed
of light. In this analysis, we have omitted the disturbances
of the scalar fields ϕ and ψ , as these fluctuations can be ren-
dered nonexistent in accordance with the constraints outlined
in Eq. (8). When there are no constraints present, or if only a
single scalar field interacts with the Gauss–Bonnet invariant,
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the scalar mode perturbations become intertwined with the
scalar modes within the metric’s fluctuation. Provided that we
focus on the massless spin-two modes, representative of the
conventional GW, these modes become independent from the
scalar mode at the foremost order. When taking into account
the second-order perturbation, it’s possible for the quadratic
moment to emerge as a result of the scalar mode’s pertur-
bation. This quadratic moment acts as the origin of the GW.
Hence, the propagation characteristics of the GW may vary
between scenarios with the constraints, as specified in Eq. (8),
and those without them.

In the context of the metric outlined in Eq. (5), the sole
connection coefficients that are not zero are the following:

{t
t t
} = μ̇ ,

{r
t t
} = e−2(ν1−ν)ν′ ,

{t
t r
} = {tr t} = ν′ ,{t

r r
} = e2ν1−2μν̇1 ,

{r
t r
} = {rr t} = ν̇1 ,

{r
r r
} = ν′

1 ,
{
i
j k

}
= ¯{t

t t
}
,
{r
i j
}− e−2ν1r ḡi j ,

{
i
r j

}
=
{
i
j r

} 1

r
δi j , (34)

with
¯{i
j k

}
represents the metric connection of ḡi j , an overdot

signifies differentiation with respect to time t , and a prime
indicates differentiation with respect to radial distance r .
Using Eq. (34) we get the following formula for the Rie-
mann tensor:

Rrtrt = −e2ν1 {ν̈1 + (ν̇1 − ν̇) ν̇1} + e2ν
{
ν′′ + (ν′ − ν′

1

)
ν′} ,

Rtit j = rν′e−2ν1+2ν ḡi j ,

Rrir j = ν′
1r ḡi j , Rtir j = ν̇1r ḡi j ,

Ri jkl =
(

1 − e−2ν1
)
r2 (ḡik ḡ jl − ḡil ḡ jk

)
,

Rtt = −{ν̈1 + (ν̇1 − ν̇) ν̇1}
+ e−2ν1+2ν

{
ν′′ + (ν′ − ν′

1

)
ν′ + 2ν′

r

}
,

Rrr = e2ν1−2ν {ν̈1 + (ν̇1 − ν̇) ν̇1}
− {ν′′ + (ν′ − ν′

1

)
ν′}+ 2ν′

1

r
,

Rtr = Rrt = 2ν̇1

r
,

Ri j =
{

1 + {−1 − r
(
ν′ − ν′

1

)}
e−2ν1
}
ḡi j ,

R = 2e−2ν {ν̈1 + (ν̇1 − ν̇) ν̇1}

+ e−2ν1

{
−2ν′′ − 2

(
ν′ − ν′

1

)
ν′ − 4
(
ν′ − ν′

1

)
r

+2e2ν1 − 2

r2

}
, (35)

and

∇t∇tζ = ζ̈ − ν̇ζ̇ − e−2(ν1−ν)ν′ζ ′ ,
∇r∇rζ = ζ ′′ − e2ν1−2ν ν̇1ζ̇ − ν′

1ζ
′ ,

∇t∇rζ = ∇r∇tζ = ζ̇ ′ − ν′ζ̇ − ν̇1ζ
′ ,

∇i∇ jζ = −e−2ν1r ḡi jζ
′ ,

∇2ζ = −e−2ν
(
ζ̈ − (ν̇ − ν̇1) ζ̇

)

+ e−2ν1

(
ζ ′′ +
(

ν′ − ν′
1 − 2

r

)
ζ ′
)

, (36)

The metric tensor (ḡi j ) can be expressed as

2∑
i, j=1

ḡi j dx
i dx j = dϑ2 + sin2 ϑ, dϕ2,

where
(
x1 = ϑ, x2 = ϕ

)
, and

¯{i
j k

}
are the coordinates,

denoted by x1 = ϑ and x2 = ϕ, respectively. Additionally,
¯{i
j k

}
denotes the connection coefficients associated with the

metric tensor ḡi j . The symbols “dot” and “prime” signify the
derivatives with respect to t and r , respectively. We will pro-
ceed to analyze the GW that is propagating outwards along
the radial axis that has the form:

hi j = Re
(
e−i� t+ikr

)
h(0)
i j

r

×
(
i, j = θ, φ,

∑
i

h(0) i
i = 0

)
,

other components = 0 . (37)

We proceed with the assumption that k is sufficiently large,
which leads us to retain terms that are quadratic in relation
to k and/or � , while disregarding any terms that are linear
with respect to k or � . Then Eq. (17) with (36) gives

0 =
[
− 1

4κ2 − 2
{
−e−2ν

(
2ζ̈ − (2ν̇ − ν̇1) ζ̇

)

+e−2ν1
(
ζ ′′ + (2ν′ − ν′

1

)
ζ ′)}] e−2ν� 2

−
[
− 1

4κ2 − 2
{
−e−2ν

(
ζ̈ − (ν̇ − 2ν̇1) ζ̇

)

+e−2ν1
(
2ζ ′′ + (ν′ − 2ν′

1

)
ζ ′)}] e−2ν1k2

− 4
(
ζ̇ ′ − ν′ζ̇ − ν̇1ζ

′) e−2ν−2ν1k� . (38)

Upon assuming that ζ is sufficiently small, it is observed that,

ω

k
= e−ν1+ν

[
±
{

1 − 4κ2 (−ζ̈ + ζ̇ (ν̇1 + ν̇)
)

e−2ν

−4
{−ζ ′′ + ζ ′ (ν′

1 + ν′)} κ2e−2ν1
}
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−8e−ν1−νκ2 (ζ̇ ν′ + ζ ′ν̇1 − ζ̇ ′)] . (39)

The speed of light is determined by the equation c = e−ν1+ν .
Consequently, if{(

ζ̈ − ζ̇ (ν̇1 + ν̇)
)

e−2ν + {ζ ′′ − ζ ′ (ν′
1

+ν′)} e−2 ν1
}

± 2e−ν1−ν
(
ζ̇ ν′ + ζ ′ν̇1 − ζ̇ ′) .

Should the value be positive (negative), it indicates that the
GW travels faster/slower than the speed of light. As denoted
in Eq. (39), a positive sign is associated with the GW moving
away from the black hole, whereas a sign negative indicates
the GW moving towards the black hole. Thus, the velocity
of the GW as it moves into the black hole is characterized by

vin ≡ e−ν1+ν
[
1 − 4κ2 {−ζ̈ + ζ̇ (ν̇1 + ν̇)

}
e−2ν

−4κ2 {−ζ ′′ + ζ ′ (ν′
1 + ν′)} e−2ν1

+8e−ν1−νκ2 (ζ̇ ν′ + ζ ′ν̇1 − ζ̇ ′)] , (40)

where the velocity of GWs is identical to the speed of light,
as they propagate outward from their source

vout ≡ e−ν1+ν
[
1 − 4κ2 {−ζ̈ + ζ̇ (ν̇1 + ν̇)

}
e−2ν

− 4κ2 {−ζ ′′ + ζ ′ (ν′
1 + ν′)} e−2ν1

−8e−ν1−νκ2 (ζ̇ ν′ + ζ ′ν̇1 − ζ̇ ′)] . (41)

When ζ depends on the radial coordinate r or the scalar field
ψ and ν1 depends on the time t or the scalar field ϕ, we
encounter the following conditions: If, ζ̇ ν′ + ζ ′ν̇1 − ζ̇ ′ > 0
then vin > vout. Conversely, if ζ̇ ν′ + ζ ′ν̇1 − ζ̇ ′ < 0, we have
vin < vout. For instance, we can examine the expression for
ζ(t, r), provided in the Appendix given by Eq. (A2), and
restate it using the variables (ϕ, ψ) yields:

ζ(ϕ,ψ) = ζ0χ
2

χ2 + r0
2e

− 2ϕ
t0

. (42)

In the scenario where ζ0 and t0 are positive constants, and
under the condition specified by Eq. (42), we observe that ζ

approaches zero as either t tends toward negative infinity or
r approaches zero. This observation suggests that the speed
at which gravitational waves propagate matches that of light
either in the distant past or at the center of a black hole. An

important observation is that when |t | > 0, we have ζ̇
ζ0

> 0,

and if t < t0
2 , then ζ̈

ζ0
< 0. Conversely, when t > t0

2 , we

find ζ̈
ζ0

< 0. We observe the following properties for the

function ζ(t): i- ζ̇ ′
ζ0

> 0, is always positive ii-if t > − t0
2 ,

then ζ̇ ′
ζ0

< 0, iii-if t > t0
2 , then ζ̇ ′

ζ0
> 0, iv-if t < t0

2 ,

then ζ̇ ′
ζ0

> 0. Conversely, we discover for the first black hole
we get:

ν̇1 = Ṁ(t)

r(1 − 2M
r )

> 0 ,

ν′
1 = − M(t)

r2(1 − 2M
r )

< 0 , (43)

and for the second black hole we get:

ν̇1 = 1

2t
> 0 ,

ν′
1 = − r0

2r2(1 − r0
r )

< 0 , (44)

and finally for the third black hole we get:

ν̇1 = −r0

2r t0(1 + tr0
r t0

)
> 0 ,

ν′
1 = r0(t + t0)

2(r − r0)(r t0 + tr0)
> 0 , (45)

provided that r0 < 0.
Discussing the general choice of parameters and regions

is a complex task and not very beneficial, so we can focus on
some specific simplified cases instead.

• Initially, we examine the region near the horizon where
r0 ≈ 2M(t). Subsequently, in Eqs. (40) and (41), the
terms involving ν1 and ν may dominate. However, due
to the conditions e2ν = e−2ν1 = 0. Hence, the prevailing
terms may be expressed as:

vin ∼ vout ∼ c
[
1 − 4 κ2ζ̇ (ν̇1 + ν̇)

]
. (46)

Importantly, the distinction in velocities between inward-
propagating and outward-propagating gravitational waves
diminishes. If ζ0 < 0, we find that ζ̇ (ν̇1+ ν̇) < 0, leading
to the GW’s propagation speed exceeding that of light.
On the other hand, when ζ0 > 0, the propagation speed
diminishes, eventually falling below the speed of light.

• Additionally, we examine the region where r0 signifi-
cantly exceeds 2M(t). Subsequently, we make the fol-
lowing observations:

vin ∼ vout ∼ c
[
1 + 4κ2ζ ′′] . (47)

Once again, the disparity in speeds between inward-
propagating and outward-propagating GWs diminishes.
When ζ0 > 0, we observe ζ ′′ < 0, in the region, result-
ing in a decrease in the GW’s propagation speed, which
falls below the speed of light once again. Conversely, if
ζ0 < 0, the propagation speed exceeds the speed of light.
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In both of the aforementioned regions, the disparity between
the speeds of inward-propagating and outward-propagating
GWs can be disregarded. Consequently, a distinction may
arise in the intermediate region. Let’s highlight that in both
of the aforementioned regions, when ζ0 < 0, the gravitational
wave’s propagation speed exceeds that of light. Conversely,
if ζ0 > 0, the propagation speed falls below the speed of
light.

The discussion above indicates that the propagation speed
of gravitational waves in Einstein–Gauss–Bonnet gravity,
coupled with two scalar fields, generally differs from the
speed of light. This discrepancy suggests that black holes
predicted by this theory may be incompatible with the obser-
vations from GW170817. In other words, unless a novel sce-
nario is proposed to reconcile these differences, black holes in
this theory may not represent realistic astrophysical objects.

Now, let’s analyze the implications of a gravitational wave
propagation speed that differs from the speed of light in the
context of black hole construction. For a fixed frequency,
if the propagation speed is higher (lower) than the speed
of light, the wavelength becomes longer (shorter). While a
longer wavelength could be associated with lower frequen-
cies, which are harder to detect, it may also imply changes in
the distribution and detectability of primordial gravitational
waves depending on the energy spectrum. Thus, a higher
(lower) propagation speed might influence the characteris-
tics of the primordial gravitational wave background, though
not necessarily its abundance.

Another consideration is the interaction between different
modes of gravitational waves and the black hole horizon. In
modified gravity theories, the propagation speed of gravita-
tional waves, if different from that of light or scalar fields,
can influence the dynamics of gravity-related fluctuations.
This could affect the propagation of tensor modes and poten-
tially leave imprints on cosmological observations, such as
B-mode polarization in the Cosmic Microwave Background.

6 Conclusion

Black holes, once considered bizarre solutions to Einstein’s
equations and nowadays play a central role in astrophysics,
cosmology, and foundational physics. Recent radio images
of supermassive black holes provide valuable insights into
matter dynamics near event horizons. While deviations from
GR are possible, identifying the correct alternative theory
remains challenging. In this study, we explore the dynamical
black holes on frame of Einstein Gauss–Bonnet theory with
two scalar fields.

In this study, we provided three ansatzes to create time
dependent black holes with visible horizons that increase
in time based on the Misner-Sharp-Hernandez mass. This
horizon will appear identical to all observers associated with

a spherically symmetric foliation [88], but it will differ for
observers moving relative to the original frame in a way that
breaks this symmetry, such as by a Lorentz boost in a non-
radial direction [89,90].

Our models, when constructed, may incorporate ghosts.
The presence of ghosts can be mitigated by imposing con-
straints, akin to the mimetic constraint represented by (8).
These constraints have been applied to various spacetime sce-
narios, as demonstrated in the referenced paper by Nojiri et al.
(for example, see [75]). Evidence indicates that the conven-
tional cosmological solutions and self-gravitating entities-
such as planets, the Sun, and various types of stars-within
Einstein’s gravitational framework also qualify as solutions
in this particular model. We explored the propagation of high-
frequency gravitational waves by selecting the GB coupling
described in equation (A2). According to the research in
[52,68], the propagation speed undergoes changes due to the
coupling effect during the black hole formation process. In
general, the speed at which GWs propagate into a black hole
differs from the speed of the wave going out, although these
effects occur at next-to-leading order. Through our investi-
gation of speed expressions, we have identified conditions
under which the propagation speed remains below the speed
of light and adheres to causality.

It is essential to emphasize that the current formulation
highlights the non-dynamical nature of the scalar fields. The
scalar fields act like fluids with energy density and pressure,
although they are not actual material fluids in the conven-
tional sense: The scalar fields do not vary, so unlike regular
fluids, there is no fluctuation in sound speed. In the standard
fluid, breaking energy conditions can result in a sound speed
exceeding the speed of light, leading to potential causal-
ity violations. However, our study does not experience this
breakdown. The lack of variation shows that the solution
remains stable despite not following the energy conditions.
The restrictions utilized in this study mirror the limitation
used in the framework of mimetic gravity [79], where there
seems to be a type of effective dark matter that acts like
dust matter but lacks pressure. The active dark matter is not
tangible matter but non-physical and shows no variations in
spatial distribution. In addition, functional dark matter does
not undergo collapse because of gravity. It is intriguing that
dynamic black holes like those analyzed in this study could
offer a different option to inflation for the early Universe era.
The specifics of this early Universe black holes period will
be talked about in another place.

So far, there have not been many physically plausible solu-
tions to the field equations of different theories that directly
describe dynamic black holes; instead, naked singularities
and wormholes are more frequently observed [87,91–118].
Another issue is that certain analytical solutions become
complicated when described in terms of the surface area
radius, and at that times it is difficult to find the apparent
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horizons analytically or their expressions are not straightfor-
ward [87]. In general, it is challenging to design black holes
that depend on time, and we have deciphered the connec-
tion functions of gravity theories that have specified apparent
horizons as their solutions.

It will be useful to do such procedure for regular dynamical
black hole to see what is the effect of the GW. This will be
done elsewhere in our future study.
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Appendix A: The explicate form of the scalar fields

1. The scalar fields of the dynamical first black hole

β(t, r) =
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Ṁ (t)

+ 32

3
ξ0 (r − 2M (t))2 κ2

(
r4 + 1

2
t0

2r2 − 4M (t) t0
2r + 6M2 (t) t0

2
)
M (t)

}

×e
2 t
t0 − r2

{
3r0

2
[
(r − 2M (t)) t0

2r4

(
r3 + 16

3
κ2ξ0r − 32

3
κ2ξ0M (t)

)
M̈ (t)

+4t0
2r4
(
r3 + 8

3
κ2ξ0r − 16

3
κ2ξ0M (t)

)
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	(t, r) = 2r0
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+
(
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, (A1)

where we have assume the form the Gauss–Bonnet coupling
has the form

ξ(t, r) = ξ0r2

r2 + r0
2e

− 2t
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. (A2)

2. The scalar fields of the dynamical second black hole
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where we have used the coupling Gauss–Bonnet given by
Eq. (A2).

3. The scalar fields of the dynamical third black hole
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