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ABSTRACT

Continuous nanohertz gravitational waves from individual supermassive black hole binaries may be detectable with pulsar timing
arrays. A novel search strategy is developed, wherein intrinsic achromatic spin wandering is tracked simultaneously with the
modulation induced by a single gravitational wave source in the pulse times of arrival. A two-step inference procedure is applied
within a state-space framework, such that the modulation is tracked with a Kalman filter, which then provides a likelihood for
nested sampling. The procedure estimates the static parameters in the problem, such as the sky position of the source, without
fitting for ensemble-averaged statistics such as the power spectral density of the timing noise, and therefore complements
traditional parameter estimation methods. It also returns the Bayes factor relating a model with a single gravitational wave
source to one without, complementing traditional detection methods. It is shown via astrophysically representative software
injections in Gaussian measurement noise that the procedure distinguishes a gravitational wave from pure noise down to a
characteristic wave strain of hy ~ 2 x 107!, Full posterior distributions of model parameters are recovered and tested for
accuracy. There is a bias of & 0.3 rad in the marginalized one-dimensional posterior for the orbital inclination ¢, introduced by

dropping the so-called pulsar terms. Smaller biases < 10 per cent are also observed in other static parameters.

Key words: gravitational waves —pulsars: general.

1 INTRODUCTION

The inspiral of supermassive black hole binaries (SMBHBs; Ra-
jagopal & Romani 1995; Jafte & Backer 2003; Wyithe & Loeb 2003;
Sesana 2013; McWilliams, Ostriker & Pretorius 2014; Ravi et al.
2015; Burke-Spolaor et al. 2019; Sykes et al. 2022) is predicted to
emit nanohertz (nHz) gravitational waves (GWs). Other GW sources
in this low-frequency regime include cosmic strings (e.g. Sanidas,
Battye & Stappers 2012) and cosmological phase transitions (e.g.
Xue etal. 2021). The detection of nHz GWs has inspired the develop-
ment of new observational methods, since it is impractical to engineer
terrestrial interferometric detectors with sufficiently long baselines.
The foremost method is timing an ensemble of pulsars, that is, a
pulsar timing array (PTA; Tiburzi 2018; Verbiest, Ostowski & Burke-
Spolaor 2021). A nHz GW influences the trajectory and frequency
of individual radio pulses, leaving a characteristic impression on the
pulse times of arrival (TOAs) measured at the Earth. By measuring
TOAs from multiple pulsars simultaneously one can effectively
construct a detector with a baseline on the scale of parsecs. Multiple
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PTA detectors have been built over the last few decades, including
the North American Nanohertz Observatory for Gravitational Waves
(NANOGrav, Agazie et al. 2023b), the Parkes Pulsar Timing Array
(PPTA, Zic et al. 2023), and the European Pulsar Timing Array
(EPTA, Antoniadis et al. 2023b). These individual efforts have joined
in international collaboration, under the umbrella of the International
Pulsar Timing Array (IPTA, Perera et al. 2019), along with a number
of newer PTAs such as the Indian Pulsar Timing Array Project
(InPTA, Tarafdar et al. 2022), MeerTime (Bailes et al. 2020; Spiewak
et al. 2022), and the Chinese PTA (CPTA, Hobbs et al. 2019).

The incoherent superposition of multiple SMBHB sources leads to
astochastic GW background at nHz frequencies (Allen 1997; Sesana,
Vecchio & Colacino 2008; Christensen 2019; Renzini et al. 2022).
Previous efforts have mainly focused on detecting the stochastic
background by measuring the cross-correlation between the timing
residuals from pairs of pulsars as a function of the angular separation
between the pulsars — the Hellings—Downs curve (Hellings &
Downs 1983). After multiple non-detections (Lentati et al. 2015;
Arzoumanian et al. 2018b; Antoniadis et al. 2022) consilient evidence
for the GW background was presented by NANOGrav (Agazie et al.
2023a), EPTA/InPTA (Antoniadis et al. 2023a), PPTA (Reardon et al.
2023), and the CPTA (Xu et al. 2023).
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Individual SMBHBs that are sufficiently massive and nearby
may be resolvable with PTAs, allowing the early stages of their
evolution and coalescence to be investigated (Sesana & Vecchio
2010; Yardley et al. 2010; Babak & Sesana 2012; Ellis 2013;
Zhu et al. 2015a, 2016). Indeed, the stochastic GW background
itself may be dominated by a few individual binary sources (Ravi
et al. 2012). Individual SMBHBs are continuous wave sources; they
generate persistent, quasi-monochromatic modulations of a known
form in pulsar timing residuals. Consequently, they are detected
more efficiently by either a frequentist matched filter, for example,
the F-statistic (Lee et al. 2011; Ellis, Siemens & Creighton 2012;
Zhu et al. 2014), or else Bayesian inference (Ellis & Cornish 2016;
Arzoumanian et al. 2020a), rather than by cross-correlating pulsar
pairs. However, PTA observational campaigns to detect individual
sources have been unsuccessful so far (Jenet et al. 2004; Zhu et al.
2014; Babak et al. 2016; Arzoumanian et al. 2023). Inconclusive
evidence at low significance was presented recently by the EPTA for
an individual source at 4-5 nHz (Antoniadis et al. 2023c).

Intrinsic pulsar timing noise — that is, random, unmodelled, red-
spectrum TOA fluctuations due to irregularities in the rotation of the
star — has been identified as a key factor limiting the sensitivity
of PTAs to GW signals (Shannon & Cordes 2010; Lasky et al.
2015; Caballero et al. 2016; Goncharov et al. 2021). This timing
noise has multiple theorized causes including free precession (Stairs,
Lyne & Shemar 2000; Kerr et al. 2015), microglitches (D’ Alessandro
et al. 1995; Melatos, Peralta & Wyithe 2008; Espinoza et al. 2021),
asteroid encounters (Brook et al. 2013; Shannon et al. 2013), glitch
recovery (Johnston & Galloway 1999; Hobbs, Lyne & Kramer 2010),
fluctuations in internal and external stochastic torques (Cordes &
Greenstein 1981; Urama, Link & Weisberg 2006; Meyers, Melatos &
O’Neill 2021a; Meyers et al. 2021b; Antonelli, Basu & Haskell
2023), variations in the coupling between the stellar crust and
core (Jones 1990; Meyers et al. 2021b; Melatos et al. 2023),
magnetospheric state switching (Kramer et al. 2006; Lyne et al.
2010; Stairs et al. 2019), and superfluid turbulence (Greenstein 1970;
Peralta et al. 2006; Melatos & Link 2014). In order to mitigate the
impact of timing noise, PTAs are typically composed of millisecond
pulsars (MSPs), which are relatively stable rotators. However, timing
noise in MSPs may be a latent phenomenon that will increasingly
assert itself as longer stretches of more sensitive data are analysed in
the quest to detect nHz GWs (Shannon & Cordes 2010). In modern
Bayesian PTA searches, the power spectral density of the red intrinsic
timing noise is modelled (usually as a broken or unbroken power law)
and estimated, in an effort to distinguish it from the noise induced
by a stochastic GW background (whose spectrum is also red). In
addition to the red timing noise there are secondary, white noise
sources to consider such as phase jitter noise and radiometer noise
(Cordes & Shannon 2010; Lam et al. 2019; Parthasarathy et al. 2021).

In this work, we present an alternative and complementary ap-
proach to PTA data analysis for individual, quasi-monochromatic,
SMBHB sources which self-consistently tracks the intrinsic timing
noise in PTA pulsars and disentangles it from GW-induced TOA
modulations. The new approach differs from existing approaches
in one key respect: it infers the GW parameters conditional on
the unique, time-ordered realization of the noisy TOAs observed,
instead of fitting for the ensemble-averaged statistics of the TOA
noise process, for example, the amplitude and exponent of its power
spectral density. Stated another way, existing approaches seek to
detect a GW signal by marginalizing over the ensemble of possible
noise realizations summarized by the power spectral density, whereas
the new approach delivers the most likely set of GW parameters
consistent with the actual, observed noise realization. The new and
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existing approaches are therefore complementary. In particular, we
formulate PTA analysis as a state-space problem and demonstrate
how to optimally estimate the state-space evolution using a Kalman
filter, a tried-and-tested tool (Kalman 1960; Meyers et al. 2021b;
Melatos et al. 2023). We combine the Kalman tracking of the pulsars’
intrinsic rotational states with a Bayesian nested sampler (Skilling
2006; Ashton et al. 2022) to estimate the static GW parameters and
calculate the marginal likelihood (i.e. the model evidence) for model
selection. The adaptive bias of the Kalman filter tracks timing noise
more effectively than alternative techniques such as least-squares
estimators.

The paper is organized as follows. In Section 2, we present the
state-space model for the rotational states of an array of pulsars falling
freely in the curved space—time of a single-source GW. In Section 3,
we develop a Kalman filter to track the state evolution and deploy
the Kalman filter in conjunction with nested sampling to estimate the
GW and other system parameters, along with the model evidence.
In Section 4, we describe how we create synthetic validation data
to test the method. In Section 5, we test the method on synthetic
data for a single representative GW source. In Section 6, we extend
the tests to cover an astrophysically relevant domain of SMBHB
source parameters. In Section 7, we quantify the bias in the parameter
estimates. In Section 8, we review the computational cost of the
method. Conclusions are drawn in Section 9. The data are formulated
as pulse frequency time-series with Gaussian measurement noise as
a proof of principle and to maintain consistency with previous work
(Meyers et al. 2021a, b). It will be necessary to modify the method
to accept pulse TOAs instead of a pulse frequency time-series when
analysing real, astronomical data, a subtle generalization which is
deferred to future work. Throughout the paper we adopt natural
units, with c = G = h = 1, and metric signature (—, +, +, +).

2 STATE-SPACE FORMULATION

We formulate the PTA analysis as a state-space problem, in which
the intrinsic rotational state of each pulsar evolves according to a
stochastic differential equation and is related to the observed pulse
sequence via a measurement equation. In this work, we take the
intrinsic state variable to be the nth pulsar’s spin frequency fp(”)(t),
as measured in the local, freely falling rest frame of the pulsar’s centre
of mass. A phenomenological model for the evolution of frf”)(t) is
presented in Section 2.1. We take the measurement variable to be
the radio pulse frequency measured by an observer at Earth, £(¢).
The measurement equation relating £ (¢) to fp(")(t) is presented in
Section 2.2. The superscript 1 < n < N indexes the nth pulsar in the
array. The subtle problem of generalizing the measurement variable
to pulse TOAs is postponed to future work, as noted in Introduction.

2.1 Spin evolution

A predictive, first-principles theory of timing noise does not exist at
present; there are several plausible physical mechanisms, referenced
in Introduction. We therefore rely on an idealized phenomenological
model to capture the main qualitative features of a typical PTA
pulsar’s observed spin evolution, that is, random, mean-reverting,
small-amplitude excursions around a smooth, secular trend. In the
model, fp(’”(t) evolves according to the sum of a deterministic and a
stochastic torques. The deterministic torque is attributed to magnetic
dipole braking, with braking index n., = 3 for the sake of definite-
ness (Goldreich & Julian 1969). Most PTAs involve MSPs, for which
the quadratic correction due to ney, in f;”)(t) is negligible over the
observation time Typs ~ 10 yr, and the deterministic evolution £%(z)
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can be approximated accurately by
a0 = fon) + fiaorn M

where an overdot denotes a derivative with respect to 7, and f,
labels the time of the first TOA. The stochastic torque is assumed
to be a zero-mean, white noise process. Specifically, the frequency
evolves according to an Ornstein—Uhlenbeck process, described by
a Langevin equation with a time-dependent drift term (Vargas &
Melatos 2023),

d f(n)

T}; =y = FRO1+ fR @) +E7@) . @

In equation (2), £ is the solution of the electromagnetic spin-down
equation given by equation (1), £ is the spin derivative, y™ is
a damping constant whose reciprocal specifies the mean-reversion
time-scale, and £%(r) is a white noise stochastic process which

satisfies

(") =0, 3)
(EDE W) = (0P, — 1) “

In equation (4) [0™]? is the variance of £ and parametrizes
the amplitude of the noise. Combined with the mean reversion it
gives characteristic root mean square fluctuations & o™ /[y ™]!/2
in f{"(t) (Gardiner 2009). It is important to note that white noise
fluctuations in &(¢) translate into red noise fluctuations in the
rotational phase ¢(t) = f,? dt’ f,(¢') after being filtered by the terms

involving d/dt and y in equation (2), consistent with the observed
power spectral density of typical MSPs in the nHz band relevant to
PTA experiments.

Equations (1)—(4) represent a phenomenological model, which
aims to reproduce qualitatively the typical timing behaviour observed
in PTAs, viz. a mean-reverting random walk about a secular spin-
down trend (Agazie et al. 2023b; Antoniadis et al. 2023b; Zic et al.
2023). Equations (1)—-(4) are not derived from first principles by
applying a microphysical theory. As a first pass, they also exclude
certain phenomenological elements, which are likely to be present
in reality, for example, the classic, two-component, crust-superfluid
structure inferred from post-glitch recoveries (Baym et al. 1969;
van Eysden & Melatos 2010; Giigercinoglu & Alpar 2017; Meyers
et al. 2021a, b). An approach akin to equations (1)—(4) has been
followed successfully in other timing analyses in the context of
anomalous braking indices (Vargas & Melatos 2023) and hidden
Markov model glitch searches (Melatos et al. 2020; Lower et al.
2021; Dunn et al. 2022, 2023). However, equations (1)—(4) involve
significant idealizations, which must be recognized at the outset
(Meyers et al. 2021a, b; Vargas & Melatos 2023). First, the white
noise driver &£ (¢) in equation (2) is not differentiable, which makes the
formal interpretation of d* f,/d¢> ambiguous, even though d* f,, /d¢*
is not used in the PTA analysis proposed in this paper. Second,
the white spectrum assumed for £(#) may or may not be suitable
for MSPs in PTAs. It is challenging observationally to infer the
spectrum of £(¢) from the observed spectrum of the phase residuals,
because the inference is conditional on the (unknown) dynamical
model governing d f,/dz. For small-amplitude fluctuations sampled
relatively often, as in MSPs in PTAs, it is likely that £(¢) is white to a
good approximation over the inter-TOA intervals and generates red
phase residuals as observed, but caution is warranted nevertheless.
Third, the Brownian increment d B(t) = &(¢)dt does not include non-
Gaussian excursions such as Lévy flights (Sornette 2004), which
have not been ruled out by pulsar timing experiments to date.
The above three idealizations are supplemented by other, physical
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approximations noted above, for example, neglecting n.,, in equation
(1) and differential rotation between the crust and superfluid in
equation (2).

2.2 Modulation of pulsar frequency by a GW

In the presence of a GW, the pulse frequency measured by an
observer in the local rest frame of the neutron star’s centre of mass is
different from that measured by an observer on Earth. Specifically,
the pulse frequency at the Earth is modulated harmonically at the GW
frequency. We derive the non-linear measurement equation relating
Sm(®) to fy(¢) in this section. The measurement equation is a key
input into the Kalman filter in Section 3.1

2.2.1 Plane GW perturbation

We consider a gravitational plane wave from a single, distant
SMBHB. The GW perturbs the background Minkowski metric 7,,
as

8uv = Nuv + h/l_]) s (5)

where the metric perturbation /4, has zero temporal components
hoy = h,o = 0. Forelliptically polarized GWs emitted by a SMBHB,
the spatial metric components are (Maggiore 2018)

hij(t, x) = Hl_(/_"')ei[Q(x.n—t)+d>0] + Hi(j_x)ei[Q(x.n—t)+d>0+n/2]’ (6)

written in terms of nearly Lorentz spatial coordinates and global
coordinate xtime ¢ (Schutz 2022). The GW propagates in the n-
direction (where n is a unit vector), has a constant (see justification
below) angular frequency €2, phase offset ®(, and two orthogonal
polarizations with amplitude tensors Hi(j*’x). Throughout this paper,
we work with pulsar TOAs defined relative to the Solar system
barycentre (SSB). We are free to choose coordinates such that ® is
the GW phase at r = 0 at the SSB. The amplitude tensors are given
by

H =h.ef, (7

HY = he ®)

[V
where /4 and h, are the respective polarization amplitudes. The
plus and cross-polarization tensors e;; and e;; are uniquely defined
by the principal axes of the wave, viz. the unit three-vectors k and /,
according to

e,?;(n) Zkilj +likj . (10)
The principal axes are in turn specified by the location of the GW

source on the sky (colatitude 0, azimuth ¢) and the polarization angle
Y according to

k = (sin ¢ cos ¥ — sin ¥ cos ¢ cos 0)X
—(cos ¢ cos Y + sin Y sin ¢ cos 0) y
+(siny sin 6)Z , (11)

Il = (—sin¢ siny — cos ¥ cos ¢ cos 6)%
+(cos ¢ sin Yy — cos i sin¢ cos0)y
+(cos ¢ sin6)Z , (12)

where, for example, ¥ is a unit vector in the direction of the x-axis.
The direction of GW propagation is related to the principal axes by

n=kxl. (13)
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In this paper, the source is approximated as monochromatic. In
reality, the GW frequency fgw = £2/27 increases during the inspiral
by an amount (e.g. Sesana & Vecchio 2010)

M, ST flt = ns o
A few = 0.05nHz Jewlt =11) v\ (1)
10%* Mg 50 nHz 10yr

where M. is the chirp mass of the SMBHB, f,,(t =1t) is the
GW frequency at the time of the first observation, and Tqps is the
length of time over which A fy, is measured, which for PTAs is
~ 10 yr. A source can be considered monochromatic, if A f,, is
less than the PTA frequency resolution 1/7qs. Equation (14) im-
plies  (Mc/10%° Mg)* /[ fow(t = t1)/50 nHz]"/3(T s /10 yr)* 2 20
for A few 2 1/Tops. The majority of SMBHBs detectable with PTAs
are expected to satisfy A fy, < 1/Tops; for a PTA composed of
pulsars with a mean distance of 1.5 kpc, 78 percent of simulated
SMBHBs satisfy this condition for the current IPTA, whilst for the
second phase of the Square Kilometer Array this fraction drops to
52 percent; see fig. 7 in Rosado, Sesana & Gair (2015). We are
therefore justified in treating the GW source as monochromatic as
a first pass in this introductory paper (Sesana et al. 2008; Sesana &
Vecchio 2010; Ellis et al. 2012).

2.2.2 Measurement equation

In general radio pulses from a pulsar are transmitted as amplitude
modulations of a radio-frequency carrier wave. They are described
by the geometric object p, which we identify as the momentum
four-vector of the radio pulse. The presence of a GW induces a shift
in the temporal component of the associated momentum one form,
while the photon travels from the emitter to the observer, that is,
AP; = Prlobserver — Pt lemitter- One obtains (e.g. Maggiore 2018)

Ap, = 7 fphij(t;x = 0)q'q’ [1 _

1+n-q

where f, is the pulse frequency measured in the momentarily
comoving reference frame of an observer at rest in the nearly Lorentz
coordinates (¢, x). In equation (15), ¢ is the unit vector connecting
the observer and the pulsar and d is the distance to the pulsar. We
take the pulsar location to be constant, that is, neither ¢ nor d are
functions of time. In practice, the pulsar locations vary with respect to
the Earth but are constant with respect to the SSB. The barycentring
correction is typically applied when generating TOAs, for example,
with TEMPO2 (Hobbs, Edwards & Manchester 2006) and related
timing software, and is inherited by the frequency time-series. Some
pulsars, including some PTA pulsars, do have non-negligible proper
motions of order 10> km s~ after the barycentring corrections have
been applied (e.g. Jankowski et al. 2018), but we do not consider this
effect in this paper.

Generally, the measured frequency of a photon recorded by an
observer who is travelling with four-velocity u is given by the
coordinate-independent expression p,u“. After barycentring, one
has u* = (1, 0, 0, 0) for both the emitter and the observer to leading
order in the respective momentarily comoving reference frames.
Hence, equation (15) can be written for the nth pulsar as

PO = f" [r=d"] g0 + 70, (16)

where d™ labels the distance to the nth pulsar, and £™ is a Gaussian
measurement noise which satisfies

(e™®) =0, (17)

eiQ(1+n-q)d:| , (15)

(5('1)(1‘)8()1,)0/)) — O'é‘sn.n’a(t — t’) s (18)
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where oy, is the covariance of the measurement noise at the telescope
and is shared between all pulsars by assumption. The measurement
function g™ (¢) is related to a redshift z”(¢) through

P =1-:"0), (19)
with
)i 17
) = [g"1'[g"]
21 +n-q"]
x [hij(t, x = 0) = hyj(s, x = Q) 2tma” ] (20)

where [¢™]' labels the ith coordinate component of the nth pulsar’s
position vector ¢™. It is also instructive to express equation (20) in
a trigonometric form (cf. e.g. Sesana & Vecchio 2010; Perrodin &
Sesana 2018; Agazie et al. 2023c¢) as

)1,
) = l¢"'1[g"™]
2[1+n-q™]
x{ [Hig.ﬂ cos ®(t) + H;].X> sin CD(t)}
- [H,.(]f) cos (1) + H sin CID(")(I)] } , 1)
where we define the phases

(1) = —Qt + Dy, (22)

q;(n)([) =00+ Q [1 +n .q(n)] am . (23)

Equations (16)—(23) define a non-linear measurement equation that
relates the intrinsic pulsar spin frequency to the pulse frequency
measured by an observer on Earth.

3 SIGNAL TRACKING, PARAMETER
ESTIMATION, AND MODEL SELECTION

The set of static parameters 6 of the model outlined in Section 2
can be separated into parameters controlling the intrinsic frequency
evolution of the pulsars in the array and the GW source, that is,

0=0,:U0,,, (24)
with
O = (™. 0™, £, f80).d™Y Ly (25)
and
0oy = {ho, 1, 8,0, Y, 2, Do}, (26)

where §, o, and ¢ are the declination, right ascension, and inclination
of the GW source respectively.! In equation (26), we reparametrize
the two GW polarization amplitudes, 4 and &, in terms of ¢ and
the characteristic wave strain £ through

hy = ho(1 4+ cos?v) , (27)

hy = —2hgycost . (28)

We use the parametrization in terms of ho and ¢ throughout the
remainder of this work. A PTA containing N pulsars comprises
7+ 5N parameters to estimate. Typically the pulsar parameters
are constrained better a priori by electromagnetic observations than
the GW parameters. For example, estimates of pulsar distances are

1, is the angle between the unit normal to the SMBHB orbital plane, L, and
the observer’s line of sight, that is, cost =n - L.
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accurate to ~ 10 per cent (Cordes & Lazio 2002; Verbiest et al. 2012;
Desvignes et al. 2016; Yao, Manchester & Wang 2017), but we have
no prior information about § and «.

In this section, we present a new method to infer # and calculate
the marginal likelihood (i.e. the model evidence). In Section 3.1, we
outline how noisy measurements of the pulsar frequency, f(¢), can
be used to estimate the hidden state sequence, fp(”>(t), using a Kalman
filter. In Section 3.2, we demonstrate how to deploy the Kalman filter
in conjunction with a nested sampling technique to perform Bayesian
inference. Model selection and the specification of the null model
are described in Section 3.3. A complete summary of the workflow is
presented in Section 3.4. The method complements traditional PTA
analyses because (i) it harnesses the favourable asymptotic properties
of the adaptive gain of the Kalman filter to track timing noise more
nimbly than alternatives like least-squares estimators; and (ii) it infers
0 conditional on the specific, time-ordered, random realization of the
noise corresponding to the observed sequence of TOAs rather than on
ensemble-averaged quantities like the power spectral density. Points
(i) and (ii) are discussed further in Section 3.5

3.1 Kalman filter and likelihood

The Kalman filter (1960) is a Gauss—Markov model used to algo-
rithmically recover a temporal sequence of stochastically evolving
system state variables, X (¢), which are not observed directly, given
a temporal sequence of noisy measurements, Y (¢). It finds common
use in engineering applications and has been applied successfully in
neutron star astrophysics (e.g. Meyers et al. 2021a, b; Melatos et al.
2023). In this work we use the linear Kalman filter, which assumes a
linear relation between d X /dr and X (¢) (dynamics) and between Y (¢)
and X (¢) (measurement), with X (1) = {fp(")(t)} and Y () = {fr;")(t)}.
Extension to non-linear problems is straightforward using either an
extended Kalman filter (Zarchan & Musoff 2000), unscented Kalman
filter (Wan & Van Der Merwe 2000), or particle filter (Simon 2006).
Equations (16) and (21) are non-linear in the static parameters
(e.g. d™), even though they are linear in X(¢) and Y(z). Hence,
inferring the static parameters is a non-linear exercise, to be tackled
separately after the linear Kalman filter operates on the data for
a fixed set of static parameters. Inference of the static parameters
in equations (16) and (21) by nested sampling is discussed in
Section 3.2.

Implementation instructions for the linear Kalman filter for the
PTA state-space model in Section 2, including the full set of
Kalman recursion relations, are presented in Appendix A. At each
discrete time-step indexed by 1 <i < M, the Kalman filter returns
an estimate of the state variables, X; = X(;), and the covariance of
those estimates, P; = (X, X ,-T), where the superscript T denotes the
matrix transpose. The filter tracks the error in its predictions of X;
by converting X; into predicted measurements ¥ via equations (16)
and (21) and comparing with the actual, noisy measurements ¥;.
This defines a residual €; = Y; — ¥;, which is sometimes termed the
innovation. The Kalman filter also calculates the uncertainty in €;
via the innovation covariance S; = (e ,-el.T ). The innovation and the
innovation covariance are then used to correct the state estimate X;
according to equation (A8). For a fixed set of static parameters, the
Kalman filter returns an estimate of the state sequence X Ty eens X M
which minimizes the mean square error. We explain how to use this
intermediate output to infer the optimal values of the static parameters
0 in Section 3.2

The Gaussian log-likelihood of obtaining ¥; given X; can then be
calculated at each time-step from the Kalman filter output according
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to
1
log £; =3 (Nlog2m +log|S;| + €] S; 'e;) . (29)

The total log-likelihood for the entire sequence is

M
log L = Zlog L. (30)

i=1

Given Y, ..., Yy, L is a function of the estimates  of the static
parameters passed to the Kalman filter, thatis, £ = L(Y10). Similarly
the estimates of the state and measurement variables, X and ¥, are
functions of . If 6 is close to the true underlying parameters 6,
then the errors in X and ¥ are minimized and £ is maximized.
This is illustrated with synthetic data in Fig. 1. In the left-hand
column, a time-series of flg)(t) including Gaussian noise (middle
panel, red curve) is generated from equations (1)-(4), (16), and
(21) for a single pulsar and fed into the Kalman filter along with
the true static parameters 6 = 0. The Kalman filter recovers the
evolution of £ (r) with high fidelity; the estimate of fp(l)(t) (left
top panel, blue curve) overlaps almost perfectly with the true f1"(r)
(left top panel, green curve). The predicted state fp“)(t) is converted

into a predicted measurement £("(¢) (middle panel, magenta curve),
which again overlaps almost perfectly with the true measurement.
The residuals €(¢) between the true and predicted measurements
are small (< 0.1 percent) and normally distributed (left bottom
panel). By contrast, in the right-hand column, the exercise is repeated
while passing incorrect static parameters ) # 0) to the Kalman filter,
where 2 is displaced from its true value by 20 per cent. In this case,
the Kalman filter fails to track fp(')(t) accurately, as the discrepancy
between the blue and green curves in the top panel of the right-hand
column indicates. It similarly fails to predict f{"(¢) accurately, as
shown by the discrepancy between the red and magenta curves in the
middle panel, and the residuals are no longer distributed normally
(right bottom panel). In Section 3.2, we explain how to combine the
Kalman filter with a nested sampler to iteratively guide 6 towards
the true value of 6.

3.2 Nested sampling

We can use the likelihood returned by the Kalman filter, equation
(30), in conjunction with likelihood-based inference methods to
estimate the posterior distribution of § by Bayes’ rule,

L(Y0)r(9)

Z )
where (@) is the prior distribution on @ and Z is the marginalized
likelihood, or evidence

p@|Y) = (31

Z= /d0£(Y|0)71(0). (32)

We estimate the posterior distribution and the model evidence
through nested sampling (Skilling 2006) in this paper. Nested
sampling evaluates marginalized-likelihood integrals, of the form
given by equation (32). It also approximates the posterior by returning
samples from p(@|Y). It does so by drawing a set of njy. live
points from (@) and iteratively replacing the live point with the
lowest likelihood with a new live point drawn from (@), where
the new live point is required to have a higher likelihood than
the discarded point. The primary advantage of nested sampling is
its ability to compute Z, on which model selection relies. Nested
sampling is also computationally efficient and can handle multimodal
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Figure 1. Sample output of the Kalman filter illustrating the accuracy of the reconstructed state sequence f,;l) (#) when the static parameters are correct @=0,

(1)

left-hand column) and incorrect (9 # 0, right-hand column). The top panels show the true pulsar state fp(l)(t) — fem (¢) (blue curve) and the state estimated by the

Kalman filter fp(])(t) - 'c(r],,)(t) (green curve). We subtract fc(,ln)

(1) to better illustrate the stochastic wandering of the pulsar frequency. In the left-hand column, the

(1)

blue/green solutions overlap almost perfectly; in the right-hand column, they do not. The middle panels show the true measured frequency fi, '(f) — e(&,) (t) (red

curve) and the frequency estimated by the Kalman filter f,iP

(t) — fe(,il)(t) (magenta curve). Again we subtract fe(,L) (). In the left-hand column, the red/magenta

solutions overlap almost perfectly; in the right-hand column, they do not. The bottom panels show the residual or innovation €(t) = fé,l)(t) — Aé,l)(t). In the
right-hand column, €2 is displaced from its true value by 20 per cent. Results are shown for a single pulsar.

problems (Ashton et al. 2022). For these reasons, it has enjoyed
widespread adoption in the physical sciences, particularly within
the cosmological community (Mukherjee, Parkinson & Liddle 2006;
Feroz & Hobson 2008; Handley, Hobson & Lasenby 2015), neutron
star astrophysics (Meyers et al. 2021a; Meyers et al. 2021b; Melatos
etal. 2023), particle physics (Trassinelli 2019), and materials science
(Partay, Bartok & Cséanyi 2009). For reviews of nested sampling, we
refer the reader to Buchner (2023) and Ashton et al. (2022). Multiple
nested sampling algorithms and computational libraries exist (e.g.
Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009; Handley
et al. 2015; Speagle 2020; Buchner 2021). In GW research, it is
common to use the DYNESTY sampler (Speagle 2020) via the BILBY
(Ashton & Talbot 2021) front-end library. We follow this precedent
and use BILBY for all nested sampling Bayesian inference in this
work.

The primary tunable parameter in nested sampling is njye. More
live points assist with large parameter spaces and multimodal
problems, whilst the uncertainties in the evidence and the posterior
scale as (’)(nlfvle/ %). However the computational runtime scales as
O(njiye). Ashton et al. (2022) offered a rule-of-thumb trade-off,
where the minimum number of live points should be greater than
the number of static parameters. Informal empirical tests conducted
as part of this paper support the trade-off suggested by Ashton et al.
(2022); we find typically that the true 6 is contained within the
90 per cent credible interval of the one-dimensional marginalized
posteriors of d for Niive > 7+ 5N with N <50. Unless stated
otherwise, we take nje = 1000 for all results presented in this work.
Empirically, we find that values of ny,e > 1000 do not improve
appreciably the accuracy of the results presented in Sections 4
and 5.

3.3 Model selection

The evidence integral Z returned by nested sampling is the probabil-
ity of the data Y given a model M;. We compare competing models
via a Bayes factor,

_ 2 M)
ZH Mo

Throughout this work, we take M to be the state-space model that
includes the presence of a GW. M is the null model, which assumes
no GW exists in the data, and is equivalent to setting g™ (¢) = 1 in
equation (19). The Bayes factors we quote in this work therefore
quantify whether the data support evidence for a GW signal compared
to there being no GW signal present.

B (33)

3.4 Summary of workflow

For the reader’s convenience, we now summarize the workflow for
a representative PTA analysis using the Kalman filter and nested
sampler for parameter estimation and model selection:

(i) Specify a PTA composed of N pulsars.

(i) Obtain N data inputs f{(z), collectively labelled ¥ .

(iii) Specify a state-space model M, with static parameters 6.
(iv) Specity prior distribution ().

(v) Sample ny; points from 7 (@).

(vi) For each live point:

(a) Pass the sample 0 ,p to the Kalman filter.
(b) Iterate over the input data using the Kalman filter and
obtain a single log £ value, equation (30).
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(vii) Remove the live point with the lowest likelihood value,
10g Llowest-

(viii) Sample a new live point from (@), subject to the require-
ment that the new likelihood obeys Lyew > Liowest, Where 10g Lyey is
calculated via steps (6)(1) and (2).

(ix) Update p (#|Y) and Z with nested sampler.

(x) Repeat steps (7)—(9) until convergence criteria are satisfied.

In order to compute B the above workflow is repeated for a different
M. The resulting Z values can then be compared. We remind the
reader that the above workflow differs from a realistic PTA analysis
in one important respect, namely that the data are input as frequency
time-series fV(¢) instead of pulse TOAs. The generalization to
TOA:s is subtle and will be tackled in a forthcoming paper.

3.5 Relation to traditional PTA analyses

It is natural to ask how the workflow in Sections 3.1-3.4 differs from
traditional PTA analyses. One superficial difference is the detection
statistic: traditional analyses use a frequentist matched filter like the
maximum-likelihood F-statistic (Ellis et al. 2012; Antoniadis et al.
2023c) or Bayesian inference (Arzoumanian et al. 2023; Agazie
et al. 2023c), whereas the workflow in Sections 3.1-3.4 maximizes
the Kalman likelihood in equation (30).

A more subtle difference is the manner in which the intrinsic,
achromatic timing noise is tracked and modelled. With respect to
noise tracking, traditional analyses usually involve some form of
least-squares minimization. The adaptive gain, which measures the
fractional amount of new information incorporated into the updated
state estimate at each time-step, tends to zero in the limit t — oo
in least-squares minimization but remains non-zero in the same
limit for a Kalman filter. That is, a Kalman filter responds more
nimbly to new data than least-squares estimators, which is why it is
favoured in many electrical and mechanical engineering applications
(Gelb et al. 1974; Zarchan & Musoff 2000; Byrne 2005; Sarkka
2013). The Kalman gain is discussed more fully in Appendix B1 and
compared with traditional analyses. With respect to noise modelling,
traditional analyses usually introduce a sum of Fourier modes in
a TOA-based phase model, with random coefficients drawn from
an ensemble-averaged power spectral density, whose form is often
a (broken) power law with estimable amplitude and exponent(s).
In this paper, the Kalman filter tracks the specific, time-ordered,
random realization of the noise in the data consistent with the
Ornstein—Uhlenbeck process in equations (2)—(4), without ensemble
averaging or imposing the extra time-domain structure implicit in
a finite-term Fourier expansion (e.g. continuity from one time-step
to the next). Nevertheless, the noise models are similar and can be
related in certain limits; for example, equations (2)—(4) imply an
associated power spectral density, which is a broken power law. A
fuller discussion of equations (2)—(4), including a comparison with
traditional noise models, is presented in Appendix B2.

4 VALIDATION WITH SYNTHETIC DATA

In this section, we outline how synthetic data are generated in order
to validate the analysis scheme in Section 3. Synthetic data enable
validation to occur systematically and under controlled conditions. In
Section 4.1, we describe how to construct a representative synthetic
PTA, and how to set astronomically reasonable values for the static
pulsar parameters . In Section 4.2, we demonstrate how to solve
equations (1)—(4), and (16)—(21) for the synthetic PTA so as to
generate noisy, frequency time-series £{)(1), ..., f{M().
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Figure 2. Spatial distribution in Galactic coordinates of 47 pulsars from the
12.5 yr NANOGrav data release that make up the synthetic PTA used in this
work. The pulsar distances relative to the observer are also indicated, with
distance < 2kpc for 38 pulsars. The grey dashed curve denotes the Galactic
plane.

4.1 Constructing a synthetic PTA

We consider, by way of illustration, a synthetic PTA composed of
the 47 pulsars in the 12.5 yr NANOGrav data set (Arzoumanian
et al. 2020b). The NANOGrav pulsars are chosen arbitrarily as
being representative of a typical PTA; the analysis below extends
unchanged to any other PTA.

For each pulsar, we adopt fiducial values for g™, d™, f(z),
and fé’l‘])(tl), with the latter two quantities evaluated at the SSB. A
table of fiducial values is presented in Appendix C for the sake of
reproducibility. The sky positions and colour-coded distances of the
pulsars are displayed in Fig. 2. The pulsar parameters are acquired via
the Australia Telescope National Facility (ATNF) pulsar catalogue
(Manchester et al. 2005) using the PSRQPY package (Pitkin 2018).

The other static pulsar parameters are y™ and o™, for which no
direct measurements exist. The ratio o™ /[y™]'/? sets the typical
root mean square fluctuations in fl(,">(t), as discussed in Section 2.1,
and the mean reversion time-scale typically satisfies [y ™]7! > Ty,
(Price et al. 2012; Meyers et al. 2021a, b; Vargas & Melatos 2023).
In this paper, for the sake of simplicity in the absence of independent
measurements, we fix y® = 107'3 s7! for all n, consistent with
(Vargas & Melatos 2023). We follow two complementary approaches
in order to set physically reasonable values for o ™. The first approach
relies on the empirical timing noise model from Shannon & Cordes
(2010) which gives the standard deviation of the pulsar TOAs, a%'(’))A,
as

U(n) A (n) T. d
In | TOA :lnal-',-azlnfp(”)—i-mln —r +a4ln( = ) ,

s 10~155—2 1yr
(34

where T, is the cadence of the timing observations. For MSPs, the
best-fitting parameters are Ino; = —20 £ 20,00 = 1 £ 2,053 =2+
1,and a4y = 2.4 4+ 0.6 (20 confidence limits). The uncertainties are
broad; for the purpose of generating astrophysically representative
synthetic data we adopt the central values in this paper. Throughout
this work, we assume for simplicity that all pulsars are observed with
a weekly cadence, 7., = 1 week. In order to relate equation (34) to
o™ in equation (1), we equate o™ to the root mean square TOA
noise accumulated over one week, obtaining

~ —-3/2
o™ & ofop [ Tead . (35)
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Figure 3. Actual (left panel, blue points) and synthetic (right panel, orange
points) phase residuals for NANOGrav MSP PSR J1939 + 2134. The actual
residuals are sourced from the NANOGrav 12.5 yr wide-band timing data set
(Pennucci & Collaboration 2020; Alam et al. 2021). The synthetic residuals
are generated by numerically solving equation (1) with y® = 10713 s~!
and 0™ =2 x 10727 s=3/2, The error bars indicate the uncertainty in the
phase residuals and are generated by propagating the uncertainty in the TOAs
through TEMPO2. We set the TOA uncertainty to be a constant, viz. 0.1us.
The blue and orange residuals are qualitatively similar by inspection. Similar
results are obtained for the other 46 pulsars in the synthetic PTA in Section 4.1
by tuning the value of o™,

For the synthetic NANOGrav PTA depicted in Fig. 2, the median o™
calculated in this way is 0™ = 5.51 x 1072* s7%/2, with min[c "] =
1.67 x 10726573/2 for PSR J0645 + 5158 and max[oc™] = 2.56 x
10712 s73/2 for PSR J1939 + 2134.

As a cross-check, we estimate o™ by solving equation (1)
numerically using the BABOO package,” generating a synthetic phase
solution,

Py = / a'fO), (36)
0

and adjusting o ™ iteratively to generate phase residuals which qual-
itatively (i.e. visually) resemble empirical phase residuals measured
from real pulsars; see section 2 in Vargas & Melatos (2023) for
a successful example of this approach. We obtain empirical phase
residuals from the NANOGrav 12.5 yr wide-band timing data set
(Pennucci & Collaboration 2020; Alam et al. 2021). A visual cross-
check is sufficient for the purposes of this paper, where we seek
broadly representative values for . In an analysis involving real
PTA data, ™ would be estimated from the data jointly with the
other static parameters in €. In Fig. 3, we compare the synthetic and
empirical residuals for PSR J1939 + 2134, one of the 47 NANOGrav
pulsars plotted in Fig. 2. We see that the synthetic and empirical
residuals are qualitatively similar. For this pulsar, the synthetic
residuals are generated using 0™ = 2 x 1077 s73/2 which is much
less than the central value 0™ = 2.56 x 10~'? s73/2 inferred from
equations (34) and (35), but is consistent with the wide ranges on
ay, ..., a4, for example, Ina; = —38 implies 0™ = 3.90 x 10?7
s7%/2 for PSR J1939+2134.

Zhttps://github.com/meyers-academic/baboo

Kalman PTA 1851

4.2 Generating a synthetic sequence of pulse frequencies

We generate N synthetic noisy time series of the measured pulse
frequency f"(¢), one for each pulsar 1 < n < N, as follows:

(i) Integrate equations (1)—(4) numerically for the synthetic PTA
described in Section 4.1, to obtain random realizations of f,")(r) for
1<n<N.

(ii) Map from fp(")(t) to f(¢) via equations (16) and (21).

Equations (1)—(4) are solved by a Runge—Kutta Itd integrator
implemented in the SDEINTPYTHON package.’ The static pulsar
parameters 6, are completely specified for the synthetic PTA
outlined in Section 4.1. For this work, we consider all pulsars to
be observed for T,,s = 10 yr, uniformly sampled with a weekly
cadence.

The measurement noise covariance as defined in equation (18) can
be approximately related to the uncertainty in the pulse TOA, oroa,
through

Om ~ GTOAfl)('l) Tcad71 . (37)

Although equations (35) and (37) superficially resemble one another,
they are distinct. Equation (35) deals with the timing noise intrinsic
to the pulsar due to rotational irregularities, whereas equation (37)
handles the detector measurement noise. For an MSP with f{* ~ 10
Hz observed with weekly cadence and oroa ~ 1us, equation (37)
implies o, ~ 1079 Hz. The most accurately timed pulsars have
oroa ~ 10 ns and oy, ~ 107!2 Hz. Throughout this paper, we fix
om = 107" Hz and take it as known a priori rather than a parameter to
be inferred for the sake of simplicity; this assumption can be relaxed
easily when analysing real data. Whilst o, is the same for every
pulsar, £(¢) is constructed from a different random realization of
£™(t) for each pulsar.

Finite precision arithmetic leads to numerical errors when solv-
ing equations (1)=(4) in the regime |0 ™ dB(1)| < f" relevant to
PTAs, where dB(¢) labels an increment of Brownian motion (see
Appendix A). To fix the problem, we subtract the deterministic
frequency evolution and track the new variable

= 50— 5 a9

equivalent to a change of variables. We similarly modify the mea-
surement variable to be

frz(n) _ frgln) _ f;(ln) i (39)

where f20 is a guess of the deterministic evolution based on the
pulsar ephemeris returned by TEMPO2 which is measured to high
accuracy in practice. For synthetic data, we can set £ = £
without loss of generality, but this is impossible generally for
astronomical observations, because the spin-down ephemeris is only

known approximately. Equation (16) is then updated to read
fa@ = ;700 = g™ ) — fa)t =) [1 =g 0] . (40)

We emphasize that the change of variables in equations (38) and
(39) is a convenient device to bring the numerical values into a
reasonable dynamic range without having to use excessively long
floating point formats (e.g. long double and quadruple). It does not
remove any degrees of freedom nor does it involve an approximation.
In particular £)(#) and £)(#,) remain as static parameters but
appear in the measurement equation (40) rather than the dynamical
state equations, that is, equations (1)—(4).

3https://github.com/mattja/sdeint
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Table 1. Summary of injected static parameters used for generating synthetic data in the representative example of
Section 5, along with the prior used for Bayesian inference on each parameter (rightmost column). The top and bottom
halves of the table contain the values for 65y and 6 s, respectively. The subscript ‘ATNF’ denotes values obtained from
the ATNF pulsar catalogue as described in Section 4.1. The subscript ‘SC’ indicates that the injected value is calculated
using equations (34) and (35) in Shannon & Cordes (2010). The quantities n?” and n(/'f) are the errors in fe(,';) (t1) and

f e(;',)(tl) respectively, as quoted in the ATNF catalogue. No priors are set for 4™ and ™, as those parameters do not
enter the inference model, as discussed in Section 5.1, cf. equation (41).

Parameter Injected value Units Prior
Oow Q 5x 1077 Hz LogUniform(10~%, 1075)
o 1.0 rad Uniform(0, 27)
) 1.0 rad Cosine(—m /2, /2)
v 0.90 rad Uniform(0, v /2)
(o1 3.30 rad Uniform(0, 27)
ho 5% 10715 — LogUniform(10~13, 10~?)
L 1.0 rad Sin(0, )
O R i Hz Uniform | itk = 1007, e + 100
fadan NE s72 Uniform | /i — 100, fitne + 10°0
(n)
am dAr’ll‘NF m —
o™ oo 5732 LogUniform(10726, 10722)
J/(n) 10713 Sfl _

5 REPRESENTATIVE END-TO-END ANALYSIS

In this section, we apply the analysis scheme in Section 3 and the
validation procedure in Section 4 to a PTA perturbed by a GW from
an individual quasi-monochromatic SMBHB source. The analysis of
a stochastic background composed of the superposition of multiple
sources is more challenging and is postponed to a forthcoming paper.
The goal of this section is to run end-to-end through every step in
the analysis for a representative worked example to help the reader
implement the scheme and reproduce the results in Sections 6 and 7.
To assist with reproducibility, we present intermediate outputs from
each step. In Section 5.1, we define the priors on . In Section 5.2, we
define the measurement equation used in the inference model by the
Kalman filter. In Section 5.3, we apply the workflow in Section 3.4
to estimate @, for a single realization of the pulsar process noise
and the measurement noise. In Section 5.4, we extend the parameter
estimation exercise to multiple noise realizations to quantify the
variance in the parameter estimates. In Section 5.5, we calculate the
detectability of the source as a function of hj.

The static GW source parameters 6, used for this mock analysis
are selected to be astrophysically reasonable and representative. The
injected components of @, and 6, are summarized in the second
column of Table 1.

5.1 Prior distribution

The first step is to select a reasonable Bayesian prior, 7 (), for the
static parameters. For 7 (8,,), we choose standard non-informative
priors (e.g. Bhagwat et al. 2021; Falxa et al. 2023) as summarized
in Table 1. The static parameters ®, and ¢ are degenerate; a GW
with (g, ¥) is identical to a GW with (P + 7, Y + 7 /2). The
degeneracy is well known in the PTA literature (Bécsy, Cornish &
Digman 2022; Charisi et al. 2024) and results in bimodal posteriors
for &, and . For the purposes of this paper, it is sufficient to
circumvent the issue by restricting the prior on v to the domain
0 < ¢ < m/2. A similar approach is taken in targeted searches of
continuous GWs by the Laser Interferometer Gravitational-Wave
Observatory (LIGO; Prix & Krishnan 2009). In the hypothetical
event that we do not restrict the prior we obtain bimodal posteriors in
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@, and ¢ (cf. Section 5.3) which are out of phase by (&g + 7, ¥ +
/2), as expected, in line with, for example, fig. 2 of Bécsy et al.
(2022). The degeneracy between @, and ¥ is related to the formal
concept of identifiability from the theory of signal processing, which
is applied routinely to engineering problems (Bellman & Astrém
1970). Identifiability refers to whether it is theoretically possible to
infer unique and accurate parameter values, given the measured data
and the model structure (Walter & Pronzato 1996; Dobre et al. 2012;
Guillaume et al. 2019; Casella & Berger 2021).

We now discuss the choice of 7 (f,). The parameters that govern
the deterministic evolution of fp(" )(t), namely £(t;) and £ (#)), are
well determined by radio timing observations. We identify £ (#/)
and £ (¢;) with the pulsar barycentric rotation frequency and its time
derivative respectively, as quoted in catalogues (Manchester et al.
2005). For the 12.5 yr NANOGtrav pulsars, the median fractional
errors on fU(#) and f0(t;) are +2.68 x 10™'3 percent and
+2.31 x 1073 per cent respectively. In this paper, we adopt uniform
priors on (1) and f%)(#;), which extend +10°7}" and i103n(;),

respectively about the central, injected values, where n(;') and n(;')

denote the errors quoted in the ATNF Pulsar Database (Manchester
et al. 2005). Wider-than-necessary priors, such as those above, test
the method more stringently than narrow priors. The results below
confirm that the method estimates @,,, accurately, whether the priors
are wide or narrow.

The pulsar distances d™ are less constrained than £ (#;) and
£ (), with typical uncertainties ~ 10 per cent (Yao et al. 2017;
Arzoumanian et al. 2018a). In this paper, however, we omit the term
involving d™ from equation (21), as justified in Section 5.3, so there
is no need to set a prior on d™. Furthermore we do not set a prior
on y™, because we have y™ Ty ~ 107°, and y™ is effectively
‘unobservable’ over a decade; that is, for Ty, = 10 yr, the solution
of equation (1) is approximately independent of y, as long as
[y™17' > T, is satisfied. It is therefore sufficient for validation
purposes to carry ¥ through the analysis at its injected value.*

4We check this empirically in two independent ways for an informal
selection of test cases: (i) we set an uninformative prior 7 [y™/1s71] ~
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Most pulsars in the synthetic PTA have 1072 < ¢™/(1s73/?) <
1072 as calculated from equations (34) and (35). For these
pulsars, we set an uninformative broad prior w[o™/(1s73/%)] ~
LogUniform(10~2¢, 10~22). The sole exception is PSR J1939 + 2134
which has 0™ ~ 107'%s73/2, For validation purposes, we artificially
set 0™ = 10723 s73/2 for this pulsar, so that o for every pulsar in
the synthetic PTA falls within the aforementioned log-uniform prior.
This is done purely for testing convenience; it is straightforward to
expand the prior when analysing real, astronomical data.

By not setting priors on y™ and d™, we reduce the number of
parameters to 7 + 3N. We use the notation 0 requcea to refer to the
reduced parameter set, cf. equation (25). Explicitly, we write

0psr.reduced = {fe(,?(fl), j;(r’;)(tl)» a(n)}lgnsN . (41)

The injected static parameters and their corresponding priors for the
representative analysis in Section 5 are summarized in Table 1.

5.2 Earth and pulsar terms

The general measurement equation used in the inference model,
equation (21), separates into four terms. The first two terms,
Hi(j.“ cos d(t) + H,-(/-X) sin ®(t), depend only on the GW source pa-
rameters which are shared across all pulsars. The argument of the
trigonometric functions corresponds to the GW phase at the Earth.
The next two terms, H,-(;r) cos M (1) + H,-(/-X) sin ®™(¢), depend ad-
ditionally on d™ and ¢ and vary between pulsars. The argument
of the trigonometric functions corresponds to the GW phase at each
individual pulsar. The first and second pairs of terms are commonly
referred to as the ‘Earth term’ and ‘pulsar term’, respectively. Whilst
the Earth term is phase coherent between all pulsars, the pulsar terms
have uncorrelated phases. They are typically considered as a source
of self-noise and dropped from many standard PTA analyses (e.g.
Sesana & Vecchio 2010; Babak & Sesana 2012; Petiteau et al. 2013;
Zhu et al. 2015b; Taylor et al. 2016; Goldstein et al. 2018; Charisi
etal. 2024) at the expense of a modestly reduced detection probability
(~5 percent) and the introduction of a bias in the inferred sky
position (Zhu et al. 2016; Chen & Wang 2022).

In this paper, we follow the standard approach and drop the
pulsar terms from the inference calculation (but not the source
model). Explicitly the measurement equation used in the Kalman
filter reduces to

T = £ — gl @) . 42)
with
(1) = 1 — 20 (1), 3)
and

Z(") o = [q(n)]i[q(n)]j
Earth 2[1 +n- q(,,)]

We defer the inclusion of the pulsar terms in the inference calculation
to a future paper. As discussed in Section 5.1, this choice reduces
the dimensionality of the parameter estimation problem because the
measurement equation, equation (43), is no longer a function of the
pulsar distance. We stress that the pulsar terms are dropped only when
doing Bayesian inference, that is, from the Kalman filter model that

[Hl.(j*) cos b(1) + H sin q>(z)} L 44

LogUniform(10='%, 10719); and (ii) we deliberately displace ¥y in the
inference analysis from its true, injected value in the synthetic data, for
example, y™ = 10714 s~! versus 10~13 s~ respectively. The results from
(i) and (ii) are found to be the same as those reported in Section 5.
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feeds into the nested sampling algorithm. The synthetic data include
the pulsar terms in full.

5.3 Posterior distribution

In this section, we calculate the posterior probability distribution for
the static parameters @ = 0,,, U 6,5, and compare it to the known,
injected values. The aims are (i) to demonstrate that the analysis
scheme works (i.e. that it converges to a well-behaved, unimodal
posterior), and (ii) to give a preliminary sense of its accuracy. Initially
we consider a single noise realization when generating the synthetic
data for the representative example in Table 1. We apply the Kalman
filter in conjunction with nested sampling in order to infer the joint
posterior distribution p(0|Y).

Fig. 4 displays results for the seven parameters in @, in the
form of a traditional corner plot. The histograms are the one-
dimensional posteriors for each parameter, marginalized over the
six other parameters. The dashed vertical blue lines mark the 0.16
and 0.84 quantiles; the solid orange line marks the known injected
value. The two-dimensional contours mark the (0.5, 1, 1.5, 2)o level
surfaces. All histograms and contours are consistent with a unimodal
joint posterior, which peaks near the known, injected values. There
is scant evidence of railing against the prior bounds. For this
representative example, with characteristic strain kg = 5 x 10713,
the analysis scheme estimates 6, accurately. The injected values
are contained within the 90 per cent credible interval for five of the
seven parameters in .

The posterior is approximately symmetric about the known in-
jected value for some parameters such as €2, where the posterior
median and the injected value coincide approximately. For other
parameters (e.g. v, t) the distribution is not symmetric about the
injected value and the posterior median and the injected value do not
coincide. The median value of the posterior for ¢ is shifted by ~ 0.13
rad relative to the injected value, although the injected value does
still remain inside the 90 per cent credible interval. Similar effects
are seen, albeit with a smaller shift, in other parameters such as
6 and «. For a single realization of the noise it is not clear if this
discrepancy is a systematic effect, that is, a bias, or arandom outcome
specific to this particular noise realization. We explore this further
in Sections 5.4 and 7 using more noise realizations and show that
indeed there is a systematic bias from dropping the pulsar terms,
similar to that reported by Zhu et al. (2016).

Similar results are obtained for the 3N parameters in 6 reduced-
Again, the parameters are recovered unambiguously, in the sense
that the nested sampler converges smoothly to a unimodal joint
posterior near the known, injected parameter values, with all 3N
injected parameters lying within the 90 per cent credible interval of
the 3N one-dimensional, marginalized posteriors. We do not display
the resulting corner plot because it is too big (3N = 141), and
because inferring 6., is the focus of this paper and contemporary
PTA analyses.

5.4 Multiple noise realizations: dispersion of outcomes

The results in Section 5.3 are obtained for a single realization of
the noise processes £(z) and e™(¢). It is important to confirm
that the analysis scheme returns accurate answers for arbitrary noise
realizations and that the specific realization of the noisy data used
in Section 5.3 is not particularly advantageous by accident. It is
also important to quantify, albeit approximately, the natural random
dispersion in the one-dimensional posterior medians from one noise
realization to the next, as the dispersion is a practical measure of the
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Figure 4. Posterior distribution of the GW source parameters g, for the representative system in Table 1, for a single realization of the system noise. The
horizontal and vertical orange lines indicate the true injected values. The contours in the two-dimensional histograms mark the (0.5, 1, 1.5, 2)o levels after
marginalizing over all but two parameters. The one-dimensional histograms correspond to the joint posterior distribution marginalized over all but one parameter.
The super titles of the marginalized one-dimensional histograms specify the posterior median and the 0.16 and 0.84 quantiles. We plot the scaled variables
1092 (units: rad s~!) and 10'3hg. The Kalman filter and nested sampler estimate accurately all seven parameters in 04w, although biases are observed in some
parameters. The horizontal axes span a subset of the prior domain for all seven parameters.

accuracy of the parameter estimation scheme, when it is applied to
real astronomical data, where the true parameter values and specific
noise realization are unknown.

To this end, we start with the representative example in Table 1
and generate 1000 realizations of the process noise £"”(r) and
measurement noise ™ (¢). For each realization, we independently
estimate the static parameters, 6. In Fig. 5, we plot the estimates of
0, for 100 arbitrary realizations. The seven parameters in 6, are

MNRAS 534, 1844-1867 (2024)

recovered unambiguously. The corner plot is arranged identically to
Fig. 4, which stems from one realization. We plot 100 realizations
rather than the full set of 1000 to avoid overcrowding. As in
Section 5.3, @ is also recovered unambiguously across the 1000
noise realizations, but for the sake of brevity we do not show the
results here.

Fig. 5 confirms two main points: (i) the results from the 100 noise
realizations overlap with the single realization in Fig. 4; and (ii)
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Figure 5. Same as Fig. 4, but for 100 realizations of the noise processes, with curves coloured differently. The super titles of the one-dimensional histograms
record the posterior median and the 0.16 and 0.84 quantiles of the median realization. The known, injected value lies within the 90 per cent credible interval for
597 out of the 700 combinations of seven parameters and 100 noise realizations. There is an appreciable dispersion among the peaks of the one-dimensional
posteriors, with coefficient of variation ~ 10 per cent across the 700 combinations. A slight skew bias is apparent in some of the parameters, for example, ¢.

the dispersion among the peaks of the one-dimensional posteriors
is appreciable, with variations of ~ 10 per cent (coefficient of
variation) across the seven parameters and 100 realizations. Indeed,
considering the one-dimensional marginalized posteriors, we find
that the injected value is contained within the 90 per cent credible
interval in 597 (i.e. 85 per cent) out of the 700 possible combinations
of the seven parameters and 100 realizations. Fig. 5, like Fig. 4,
displays tentative signs of bias, where the one-dimensional posteriors
are not symmetric about the injected value. For example, the
maximum a posteriori probability estimates of ¢ appear right-skewed,

consistently overestimating the injected value in all 100 realizations.
Similar trends are seen in ¥ and hy. However, the width of the
posteriors is comparable to the putative bias, so it is difficult to draw
strong conclusions. Biases are discussed in detail in Section 7. There
is no strong evidence for correlations between parameter pairs, for
example, banana-shaped contours, except arguably (/.

We now consider the complete set of 10° noise realizations, going
beyond the subset of nine realizations in the preceding discussion.
We ask the question: how ‘similar’ are the 10 marginalized, one-
dimensional posteriors computed for each of the seven parameters in
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Table 2. Median value of the WD Wi median, for each parameter in 6, calculated across the ( 123) pairs of probability
posteriors, for the 10? noise realizations in Fig. D1. Wi median,inj 1S the Wi median value normalized by the injection value.
W1, median,prior 1 the Wi median Value normalized by the width of the prior domain (cf. Table 1). Both Wi median,inj and
W1, median,prior are quoted as percentages. Wi median is generally smaller than the scales set by the injection values and the prior

domain.

Parameter Injected value Units W1, median W1, median,inj (PeT cent) W1, median, prior (PET cent)

Q 5% 1077 Hz 8.6 x 10710 0.2 8.6 x 1073

[on) 33 rad 0.20 6.2 3.1

v 0.9 rad 0.09 9.9 2.8

t 1.0 rad 0.11 10.5 33

8 1.0 rad 0.04 4.0 1.3

o 1.0 rad 0.06 55 0.9

ho 5x 1071 — 1.3 x 10713 25.0 1.3 x 107
0, ? There is no unique way to answer this question. In this paper,
we appeal to the Wasserstein distance (WD, Vaserstein 1969; Villani -
2009) from optimal transport theory, which defines an intuitive W o
notion of similarity between probability distributions. The WD _,.--"°
is a popular metric in machine learning (Arjovsky, Chintala & - -
Bottou 2017), climate modelling (Paxton et al. 2022; Kimpson 108 'd_..-"
et al. 2023), computational biology (Gonzélez-Delgado et al. 2023), e w
and geophysics (Morris, Lipp & Roberts 2023); a short review is " o
presented in Appendix D. The WD measures the cost of an optimal 10 .__.-"'

o

strategy for moving probability mass between two distributions from
position x to position y, with respect to some cost function c(x, y).
In this paper, we use the first WD moment, W;(u, v), which is
defined and interpreted in Appendix D. For our purposes, W, has a
convenient physical interpretation given by the Monge—Kantorovich
duality (Villani 2003, 2009), viz.

|[E(X,) — EY)| < Wiw, v), (45)

where X, and Y, are random variates drawn from the distributions
n and v respectively, and E denotes the expected value. That is,
W, bounds the difference in the expectation value of a parameter
selected from 6, with respect to the probability distributions u
and v. Taking a concrete example, suppose that we infer two one-
dimensional posterior distributions w(t) and v(¢) for ¢, for two
different realizations of the noise, and calculate W;(u, v) = 0.5 rad.
Then, we can conclude that |E(¢), — E(t),v| < 0.5rad.

Table 2 summarizes the WD between the 5 x 10° pairs of one-
dimensional posteriors across the 10? realizations, for each of the
seven parameters in ,,. The median W; for each parameter is
tabulated in the fourth column and denoted by Wi median- The Wi median
normalized by the injected, known, value is denoted by Wi median, inj
and quoted in the fifth column as a percentage. Wi median,inj Tanges
from 0.17 per cent for 2 to 25 per cent for k(. These values quantify
approximately the natural dispersion in parameter estimates when the
analysis scheme is applied to real, astronomical data, where the true
parameter values are unknown. The W) jeqian Normalized by the width
of the prior domain is denoted by Wi, median, prior and quoted in the sixth
column as a percentage. Wi median prior ranges from 1.3 x 1074 per
cent for A to 3.3 per cent for ¢. These values confirm that the nested
sampler converges reliably to a single, narrow peak without railing
against the prior bounds for 103 noise realizations. The Wi median
normalized by the injected, known, value is denoted by Wi median,inj
and quoted in the fifth column as a percentage. Wi median,inj Fanges
from 0.17 per cent for Q2 to 25 per cent for h.

Further analysis of the WD is performed in Appendix D where
we use it for two separate purposes: (i) to measure the similarity
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Figure 6. Log Bayes factor (odds ratio) In 8 between the competing models
M (GW present in data) and M (GW not present in data) at different GW
strains, hg, for the representative example in Table 1. The horizontal grey
dashed line labels an arbitrary detection threshold, 8 = 10. The minimum
detectable strain, for 8 < 10, equals 3 x 10713, Missing points for 8 < 10
occur when noise subverts the hierarchical relationship between Mg and M
(see Section 5.5). Note that the vertical axis features a logarithmic scale for
In B not B. This is appropriate, because B grows exponentially with .

between probability distributions and (ii) as a convenient heuristic
for assessing convergence of nested sampling.

5.5 Detectability versus kg

We frame the problem of detecting a GW in noisy PTA data in terms
of the Bayesian model selection procedure described in Section 3.3.
In equation (33), M, is the Earth-term-only model with a GW
present, that is, the state-space model with a Kalman filter based
on equation (42). The Bayes factor, 8, defined in equation (33) is
plotted logarithmically in Fig. 6 for the representative source in
Table 1, except that we now vary the source amplitude, /¢, from
10~'3 (undetectable) to 10~'? (easily detectable). To control the test,
the noise processes in the synthetic data are identical realizations for
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each value of h; the only change from one / value to the next is /¢
itself.>

We see in Fig. 6 an approximate quadratic relationship In 8 o< 43
for hy > 1074, The GW source is detectable with decisive evidence
(B = 10) for hg > 2.2 x 10715, Of course, the minimum detectable
strain is particular to the system in Table 1. It is influenced in general
by Tops, 0w, and 0, as discussed in Section 6. Adjusting oy, we find
that an approximate quadratic relationship In 8 o< h3 /02 also exists,
where ho /oy, is the effective signal-to-noise ratio (SNR).

The log odds ratio In 8 drops off (i.e. 8 levels off at unity) for
ho <3 x 10715, This happens because the two competing mod-
els becoming increasingly indistinguishable once the measurement
noise dominates the GW signal. Moreover, the points in Fig.
6 become sparser for kg <3 x 107!3, This happens because we
obtain InfB < 0 for the missing, intermediate points. This is a
noise artefact of the nested sampler. When the sampler converges
suboptimally, the hierarchical relationship between M, and M,
fails, and Z(Y| M) > Z(Y|My) no longer holds. There is nothing
special about the particular missing points; if one recreates the S(h¢)
curve by rerunning the nested sampler with another random seed, a
different set of points are missing.

6 SMBHB SOURCE PARAMETERS

Section 5 focuses on a single representative system, parametrized in
Table 1. In this section, we test the method for various systems,
varying the SMBHB source parameters through astrophysically
relevant ranges.

We analyse 200 injections constructed by fixing sy = 5 x 1071
and ¢ = 1.0 rad and drawing the remaining five elements of 6,
randomly from the prior distributions defined in Table 1. We fix g
and ¢ in order to maintain an approximately constant SNR across
the 200 injections. For each injection, we compute the posterior
distribution of @,,,. To summarize the results we use a parameter—
parameter (PP) plot (Cook, Gelman & Rubin 2006). A PP plot
displays the fraction of injections included within a given credible
interval of the estimated posterior, plotted as a function of the credible
interval itself. In the ideal case of perfect recovery, the PP plot should
be a diagonal line of unit slope.

Fig. 7 displays the results of the numerical experiment described
in the previous paragraph. The shaded grey contours enclose the 1o,
20, and 30 significance levels for 200 injections. We see that only 2
falls wholly within the 3o shaded region. The PP curves for the other
parameters deviate from the diagonal of unit slope. The deviation
is more pronounced for o and § and less for ¢ and ®,. The shape
of the graph indicates that the posteriors for these parameters are
overconstrained; there are fewer injections contained within higher
value credible intervals than would be expected statistically, and there
are more injections contained within lower value credible intervals.
This stems from the bias noted in Section 5.4. The origin of the bias
is discussed in Section 7.

7 SYSTEMATIC BIASES

The tests in Sections 5 and 6 present preliminary evidence that
the inferred value of @, (e.g. the medians of the one-dimensional
marginalized posteriors) is biased away from the true injected value.
The biases result from dropping the pulsar terms from the Kalman

5Changing the noise realizations as well, from one value of & to the next,
adds uninformative scatter to the trend in Fig. 6.
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Figure 7. Fraction of injections included within a given credible interval of
the estimated posterior, as a function of the credible interval itself (i.e. PP
plot). The injections are 200 simulated GW sources generated by drawing
randomly five parameters in 6, from the prior distributions in Table 1. Each
coloured curve corresponds to a different parameter (see the legend). The
parameters hg and ¢ are fixed at 5 x 10~ and 1.0 rad, respectively, in order
to maintain an approximately constant SNR. The grey shaded contours label
the 1o, 20, and 30 confidence intervals. For parameters with well-estimated
posteriors, the PP curve should fall along the diagonal of unit slope. €2 is
generally well estimated (i.e. it lies close to the unit diagonal), but the four
other parameters show evidence of being overconstrained (i.e. the curves lie
above the unit diagonal for low credible intervals, and below the unit diagonal
for high credible intervals). This is due to a modelling bias whose origin is
discussed in Sections 5.3 and 7.

filter measurement equation as described in Section 5.3 and are well
known in the literature (Zhu et al. 2016; Chen & Wang 2022). In this
section, we further investigate these biases. In order to elucidate the
matter without confusion from the measurement noise, we switch
to the high-SNR regime and set iy = 10~'2 (cf. Fig. 6) for the
representative system in Table 1.

Fig. 8 displays a corner plot for 6, analogous to Fig. 5, but for
high SNR (kg = 10~2). Except for &, the injected values lie outside
the 90 per cent credible interval, and indeed fall outside the plotted
domain. The deviation is most severe for ¢ with a bias of ~ 0.3 rad,
but is also present to a lesser extent in the static parameters other than
Q. In this section, we demonstrate how the bias stems from dropping
the pulsar terms described in Section 5.3.

Fig. 9(a) displays the (—h( contours of the log-likelihood returned
by the Kalman filter, that is, log L(, hy), viz. equation (30). The
Kalman filter includes the Earth term in the measurement equation,
that is, using equation (42). The function log L(t, ho) is evaluated
across the prior domain and all other parameters are held constant
at the true injected value of the representative system in Table 1.
The function log L(¢, ho) is calculated for a single realization of the
data and the values are normalized with respect to max | log L(¢, hg)|.
The red point marks the location of max [log L(, ho)]. The orange
star marks the location of log L(t = 1.0, hg = 5 x 10715), that is, the
location of the injected parameters (cf. Table 1). The dashed white
lines illustrate the (¢, o) coordinates of the red point and the orange
star. Fig. 9(b) is identical to Fig. 9(a), except that the Kalman filter
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Figure 8. Same as Fig. 5, but for a high-SNR system with g = 10~'2. For six out of seven parameters the true, injected value does not fall within the 90 per cent
credible interval and falls outside the plotted domain. The estimated posteriors are biased away from the injected value due to dropping the pulsar terms. Note

that the plotted domain is narrower than in Fig. 5.

includes the Earth and pulsar terms in the measurement equation,
that is, using equation (16).

The key observation from Figs 9(a) and (b) is that the location
of the maximum (¢ &~ 1.3rad, log;, hy & —11.8) does not exactly
coincide with the true, injected value (¢t = 1.0rad, log,y ho = —12),
when only the Earth terms are included. That is, the red point and the
orange star occupy different locations in Fig. 9. This is the cause of
the bias in the one-dimensional marginalized posteriors in Fig. 8. In
contrast, the likelihood maximum coincides with the true, injected
value, when the pulsar terms are included, that is, the red point and
the orange star are overlaid in Fig. 9(b). Similar results where the
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likelihood maximum is offset from the injected values are obtained
for the other parameters, with the exception of Q2. An additional
example for likelihood contours in the ®¢— plane is presented in
Fig. 10. The conclusions are analogous to those drawn in the -/
discussion.

Figs 9(a) and (b) emphasize that the bias observed in Figs 4,
5, and 8 is not a numerical convergence problem, whereby the
nested sampler gets stuck in a local optimum. It is instead a
structural problem rooted in the fact that the model used to generate
the synthetic data is different from the model used for parameter
inference. Dropping the pulsar terms biases several of the inferred
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Figure 9. Log-likelihood log £ (equation 30) contours in the (—h( plane calculated based on the Kalman filter using (a) exclusively the Earth terms in equation
(42) and (b) the Earth terms and the pulsar terms in equation (16). The Kalman filter runs on a single realization of the data. The red point marks the maximum
of log L. The orange star marks the injected parameters, cf. Table 1. The dashed white lines label the (¢, ko) coordinates of the red point and the orange star. In
(a), there is a bias; the red point and the orange star occupy different locations. In (b), there is no bias; the red point and the orange star coincide.
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Figure 10. Same as Fig. 9, but for log £ contours in the ®o—y plane. Biases are observed in (a), when the Kalman filter runs using exclusively the Earth terms
in equation (42). Including the pulsar term in (b) remedies the bias and the likelihood maximum coincides with the injected static parameter values.

parameters (e.g. those that affect the GW amplitude), not just the
sky position (Zhu et al. 2016; Chen & Wang 2022). The bias is
not particular to our method; it is shared by all likelihood-based
methods that do not include the pulsar terms in the inference model,
as is well known in the literature. Quantifying the bias for practical,

astronomical PTA continuous wave searches requires a thorough
exploration of the SMBHB parameter space, which falls outside
the scope of this introductory paper. The bias also depends on the
PTA configuration. If the bias is low enough the uncertainty in the
one-dimensional marginalized posterior dominates the bias for quiet
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continuous wave sources with low SNR. This is what we observe for
the synthetic data; for example, in Fig. 5, the marginalized posterior
broadens, as the SNR decreases, until it overwhelms the shift due
to the bias. Conversely the bias dominates if it is high enough, or
if the source is sufficiently loud Generalizing the Kalman tracker
and nested sampler to correct for the bias will be a key goal of a
forthcoming paper.

8 COMPUTATIONAL COST

Bayesian techniques like nested sampling or Markov Chain Monte
Carlo are computationally intensive, requiring a large number of
likelihood evaluations. In order to readily use these methods, it is
important that the central processing unit (CPU) time for a single
likelihood evaluation is fast (although some methods for Bayesian
inference with expensive likelihoods do exist, e.g. Bilionis & Zabaras
2014; Dinkel et al. 2023; EI Gammal et al. 2023). In traditional
PTA analyses, the likelihood function is evaluated on all data si-
multaneously, with corresponding memory demands of large-matrix
multiplication and inversion (see e.g. section 7 of Taylor 2021).
In contrast, state-space algorithms are iterative and read only the
data at the given time-step, with correspondingly smaller memory
demands. If state-space algorithms for PTA analysis are to be used
in conjunction with Bayesian techniques, it is important that they
run quickly. Ideally, they should run at least as fast as traditional
PTA analyses, so that they can run in tandem as a cross-check.
Moreover, the algorithms must scale favourably with increasing
data volume, that is, the number of pulsars in the array, or the
number of time samples. In this section, we benchmark the software
implementation of the state-space PTA analysis scheme in this paper,
as a rough practical guide. We also discuss briefly the scaling of the
computational cost as a function of N, the number of pulsars in the
PTA, and N,, the number of TOAs. More extensive benchmarking is
postponed, until the analysis scheme is generalized to ingest TOAs
instead of £"(¢), and a public, production version of the software is
written.

In this paper, as a first pass, we implement a naive version of
the Kalman filter, without optimization. As a benchmark, a single
likelihood evaluation implemented in PYTHON for the synthetic data
presented in Section 4 takes 7, ~ 9 ms of CPU time on a 2.6 GHz
Intel Core i7 processor. A translation into more performant languages
such as C+ + (Andrist, Sehr & Garney 2020) or JULIA (Bezanson
et al. 2012), the use of PYTHON pre-compilation libraries such as
NUMBA (Lam, Pitrou & Seibert 2015) or JAX (Bradbury et al. 2018),
or additional optimization (Gorelick & Ozsvald 2014), would reduce
T:.

It is important to understand how 7, scales with both N, and
N. Regarding the former, the theoretical time complexity of the
Kalman filter (i.e. its asymptotic behaviour), is O(N;), because the
Kalman filter is an iterative algorithm. Regarding the latter, the
rate-limiting step is set by matrix multiplication, for example, in
equations (A4) and (A6) in the Kalman filter’s predict and update
steps, respectively; see Appendix Al. The dimension of the Kalman
filter matrices, for example, equations (A1)—(A9), is set by N. Matrix
multiplication without optimization scales as O(N?) (Daum 2021).
Modern routines for matrix multiplication reduce the complexity to
~ O(N?3) (Trefethen & Bau 1997). Advanced techniques to further
reduce the complexity include CKMS recursion (Kailath, Sayed &
Hassibi 2000) or low-rank perturbation methods (Pnevmatikakis et
al. 2014). We refer the reader to Raitoharju & Piché (2019) for further
information about complexity reduction for the Kalman filter. The
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memory complexity of the Kalman filter is O(N?), independent of
N,, because the algorithm is iterative.

9 CONCLUSION

In this paper, we demonstrate a new method for the detection
and parameter estimation of GWs from individual, monochromatic
SMBHBs in PTA data. The new method is complementary to
traditional approaches. We track the evolution of the intrinsic pulsar
timing noise explicitly via a state-space method, rather than fitting
for the ensemble-averaged power spectral density of the noise. That
is, we disentangle statistically the specific time-ordered realization
of the timing noise from the GW-induced modulations, and thereby
infer the GW source parameters conditional on the specific observed
realization of the noisy data. We implement a Kalman filter in order to
track the intrinsic rotational state evolution of the pulsar and combine
it with a Bayesian sampling framework to estimate the posterior
distributions of each static parameter, as well as the associated
Bayesian evidence (marginalized likelihood) of the model with and
without a GW. The favourable time-asymptotic behaviour of the
adaptive gain improves the agility of the Kalman tracker compared
to alternatives, such as least-squares estimators, and the recursive
implementation of the Kalman tracker accelerates the computation.

We test the new method on synthetic data and find that it detects
injected signals successfully and estimates their static parameters
accurately with relatively low computational cost. We initially focus
on a single, astrophysically representative, SMBHB GW source
observed synthetically by the 12.5-yr NANOGrav pulsars with
Tobs = 10yr. The minimum detectable strain is estimated to be
min(hg) A~ 2 x 10~ for ¢ = 1.0 rad. We then repeat the parameter
estimation exercise for 1000 noise realizations to compute the
natural dispersion in the recovered values and hence quantify the
statistical accuracy of the method in a real astrophysical application,
when the true parameter values are unknown. Consistent posteriors
are obtained for most realizations. The median WD is limited to
< 4 per cent of the width of the prior domain (i.e. negligible railing).
The median WD divided by the injected value, an approximate
measure of the natural dispersion, ranges from 0.2 per cent for 2 to
25 per cent for hy.

Exploration of a broader SMBHB parameter domain at fixed ¢ and
ho via 200 randomly sampled parameter vectors reveals a bias in
the estimates of each element of the static parameters 6, with the
exception of 2. The bias is examined for a specific SMBHB GW
source in the limit of high SNR. Itis greatest for ¢, amounting to &~ 0.3
rad. Smaller biases of < 0.1 rad are also observed in @, ¥, §, and
«. The bias is shown to result from dropping the pulsar terms from
the measurement equation in the Kalman filter, consistent with the
work of previous authors (Zhu et al. 2016; Chen & Wang 2022). The
computational cost of the method is evaluated; a single likelihood
evaluation is found to take ~ 9 ms which compares favourably with
traditional PTA analyses. The runtime of the full PTA analysis is
found to be ~ 1.5 x 102 min for the representative SMBHB GW
source.

We emphasize that the Kalman tracker and nested sampler in
this paper do not supplant traditional PTA analysis approaches;
they complement traditional approaches and are most powerful
when used in tandem. Relatedly, it is misleading to ask whether
the Kalman tracker and nested sampler are more or less sensitive
than traditional approaches for two reasons. First, one must still
generalize the Kalman tracker and nested sampler to ingest TOAs
directly, as happens traditionally, instead of ingesting a frequency

202 4990)00 gg Uo Jasn 3ayjol|qiqenusz-AS3a Aq €0y L LL/v 8L IEI7EG/A191LE/SeIUW/WOD dNo"dlWepeDe//:sdiy Woly papeojumod



time-series, as in this paper. Generalizing the algorithm is a subtle
task and is postponed to a forthcoming paper. Second, the Kalman
tracker and nested sampler are conditional on a noise model that is
related but different to the noise model in traditional approaches. The
analysis in this paper assumes a specific, time-ordered realization of
a mean-reverting Ornstein—Uhlenbeck process satisfying equations
(1)—(4), whereas traditional analyses assume a stationary Gaussian
process described by an ensemble-averaged, power-law power spec-
tral density, whose amplitude and exponent are adjustable. Hence, the
sensitivities cannot be compared directly. Clarifying the similarities
and differences between various approaches promises to be a fruitful
avenue of future work. It is also a subject of attention in audio-band
GW data analysis involving hidden Markov models applied to data
from terrestrial long-baseline interferometers (Middleton et al. 2020;
Abbott et al. 2022a, b).

The approach in this paper can be extended in at least five ways,
enumerated as (i)—(v) below.

(i) A natural first extension is to retain the pulsar terms in equation
(16). Alternatively, if the method continues to be used with solely
the Earth term, in line with standard practice in some published
PTA analyses, it would be desirable to evaluate systematically the
incurred biases in the model parameters across an astrophysically
representative parameter domain, supplementing the results obtained
by other authors (Zhu et al. 2016; Chen & Wang 2022; Kimpson et al.
2024).

(ii) In this paper, we consider one specific configuration of
the synthetic PTA, namely the same pulsars that make up the
12.5-yr NANOGrav (Section 4.1). It is interesting to compare the
performance of the method using different pulsar configurations, for
example, those in the PPTA and EPTA. Adding pulsars to PTAs
increases the computational cost so it may be advantageous to select
a subset of pulsars by exploiting formal optimization techniques from
electrical engineering (Speri et al. 2023), although the Kalman filter
and nested sampler are already cheaper computationally than some
other methods.

(iii) In practice different PTA pulsars are observed with different
cadences at different times. Extending the Kalman filter to non-
uniform time sampling is straightforward (Zarchan & Musoff 2000).

(iv) The assumption of a monochromatic source is well-justified
astrophysically in various regimes (see Section 2.2.1) and is an
appropriate starting point for this introductory paper. Nevertheless,
SMBHBSs are not strictly monochromatic. It is interesting to extend
the state-space framework such that f,, evolves in time. For A f,, <
1/Tos (see equation 14) evolution adds noise incoherently to the
pulsar terms, whilst for A fg,, > 1/Tp, the pulsar terms induce phase
shifts that affect the overall phase coherence (Sesana & Vecchio 2010;
Perrodin & Sesana 2018). Careful consideration of the evolution of
few Will be needed when including the pulsar terms in the inference
model, as in point (i).

(v) Finally, we assume in this paper that there is only one GW
source. However, it may be possible to resolve multiple continuous
GW sources concurrently (Babak & Sesana 2012). The Kalman
filter extends naturally to multiple sources; one can modify equation
(16) easily to accommodate a linear superposition of GWs. Taking
the logic further, the stochastic background itself is arguably an
incoherent sum of many individual GW sources. As long as a way
can be found to summarize economically the many static parameters
associated with the background sources, it should be possible for
a Kalman filter and nested sampler to operate together to detect the
stochastic background by generalizing the model selection procedure
in Sections 3.3 and 5.5. Summarizing the parameter set econom-
ically, while respecting the mathematical structure of the Kalman

Kalman PTA 1861

filter, is a subtle challenge, which we postpone to a forthcoming
paper (Kimpson et al. 2024). If successful, it will complement the
traditional approach of cross-correlating pulsar residuals to uncover
the Hellings—Downs curve (Hellings & Downs 1983; Agazie et al.
2023a).
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APPENDIX A: KALMAN FILTER

In this appendix, we describe the Kalman filter algorithm used in
this paper. General recursion relations for the discrete-time Kalman
filter are written down for an arbitrary linear dynamical system in
Appendix Al. The mapping onto the specific continuous-time state-
space model in Section 2 is written down in Appendix A2. Separately,
in Appendix B, we compare the Kalman filter and Ornstein—
Uhlenbeck model with traditional PTA data analysis techniques.

A1l Recursion equations

The linear Kalman filter operates on temporally discrete, noisy
measurements Y, which are related to a set of unobservable discrete
system states X, via a linear transformation

YkZHka+Uk, (Al)

where H; is the measurement matrix or observation model, v,
is a zero-mean Gaussian measurement noise, vy ~ N (0, R;) with
covariance Ry, and the subscript k labels the time-step. The Kalman
filter evolves the underlying states according to

Xy = Fi Xi—1 + Gruy + wy (A2)

where F/ is the system dynamics matrix, Gy is the control matrix. uy
is the control vector, and wy is a zero-mean Gaussian process noise,
wy ~ N(0, Q,) with covariance Q,

The Kalman filter is a recursive estimator with two distinct stages:
a ‘predict’ stage and an ‘update’ stage. The predict stage predicts
X kik—1, the estimate of the state at discrete step k, given the state
estimates from step k£ — 1. Specifically, the predict step proceeds as

X1 = FiXioipor + Gy (A3)

Pk\k—l = kak—l\k—lF; + 0, (A4)

where P kk—1 is the covariance of the prediction. Note that the predict
stage is independent of the measurements. The measurement Y is
included to update the prediction during the update stage as follows:

& =Y — Hi Xy, (A5)

Sk =Hki)k\k—1H]I+Rks (A6)
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Ki = Py HTS; ', (A7)
X = Xppor + Krey (A8)
Py = — KiHyp) Py (A9)

Equation (A7) defines the Kalman gain K, which is defined so
as to minimize the mean-squared error in the state estimate, that
is, K, = argmin {E[(Xk — Xk)z]}. For full reviews of the Kalman
filter, including its derivation, we refer the reader to Gelb et al. (1974)
and Zarchan & Musoff (2000).

To apply the Kalman filter in practice means specifying the eight
component matrices that make up the ‘machinery’ of the filter: X,
Y, Fy, Gy, uy, Hy, Q,, and R;. In Appendix A2, we describe how
the machinery is defined for the state-space model in Section 2.

A2 State-space representation of a PTA analysis

We apply the Kalman recursion relations in Appendix Al to the
state-space model of a PTA with N pulsars described in Section 2 as
follows.

We identify X(¢#) with a vector of length N composed of the
intrinsic pulsar frequency states, that is,

X(t) = (f;”(z), 2w, ..., f;N>(r)) : (A10)
Analogously, we package the measured pulsar frequencies as
Y0 = (fa' 0, £ ©, s £ D) - (A1D)

The states evolve according to the continuous stochastic differential
equation (cf. equation 2)

dX = AXdr + C(t)dt + XdB(1), (A12)
where A is a diagonal N x N matrix,

@ L =y™Y) (A13)

A = diag (—y", —y
and C(¢) is a time-dependent vector with nth component
C" =y [f8) + fE @) ] + fem()™ . (A14)

The N x N square matrix X governs the magnitude of the increments

of Brownian motion (Wiener process) dB(t), with
T =diag (cV,0®, ..., 0™ . (A15)

In the idealized model above, each pulsar’s rotational state evolves
phenomenologically according to a mean-reverting Ornstein—
Uhlenbeck process, described by a Langevin equation (equation
A12), whose general solution is given by (Gardiner 2009)

t t
X(r) = e X(0) + / A )dr + / AT AB(t).
0 0
(A16)

From equation (A16), we construct the discrete, recursive solution
for X(#;) = X in the form of equation (A2), with

Fp = eA? (A17)
= diag (eﬂ’“)m, efy(z)m, e eiV(N)A’) , (A18)
Tk+1 ,
Gy = / A=) c(thdr' (A19)
U3
- (G;”, G2, .., G;N)), (A20)
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Tk+1 ,
wy = / A=) 3 dB(1) (A21)

Tk
G = 6+ 0 (8141
_efyAt [fe(:llq)(tl) + fe(r’:l)(l])lk] s (A22)

and At = t;4+1 — ;. From equation (A21), the process noise covari-
ance matrix is

0,8 = (mm}) (A23)
= diag (0", 0?, ..., 0V} | (A24)
with
)72
n) __ [U ] _ —2y™Ar
o =20 [1 e } : (A25)

The Einstein summation convention is suspended temporarily in the
left-hand side of equation (A25). The two remaining unspecified
component matrices of the Kalman filter are the measurement matrix
H, and the measurement covariance matrix R;. These are defined
straightforwardly from equations (16)—(21). Specifically, H; is a
diagonal matrix where the nth component of the diagonal is given
by g(")(tk) from equation (16). The measurement covariance satisfies
Ry = E[vvT] = o2 for all k.

APPENDIX B: COMPARISON WITH
TRADITIONAL PTA ANALYSES

In this appendix, we compare the state-space formulation of PTA
data analysis described in this paper with traditional formulations.
In Appendix B1, we focus on one key difference: the asymptotic
behaviour of the adaptive gain in the Kalman filter compared to
traditional, least-squares estimators. The adaptive gain controls the
fraction of new information that is incorporated into the updated
state estimate at every time-step and hence controls how nimbly the
tracking scheme responds to new data. We illustrate the effect of the
adaptive gain on a simple Wiener process as a pedagogical example
and then explain how it applies analogously to the PTA problem. In
Appendix B2, we compare the Ornstein—Uhlenbeck description of
the process noise intrinsic to the pulsar, specified by equations (2)-
(4), with the traditional approach in terms of modelling red noise as a
Gaussian process with a (broken) power-law power spectral density.
We show that the two descriptions are equivalent in certain limits.

B1 Adaptive gain

Many traditional PTA analyses fit timing data to a phase model
by least-squares estimation. The state-space scheme in this paper
achieves the same goal (for a pulse frequency model rather than a
phase model, strictly speaking) using a Kalman filter. It is natural to
ask how the two approaches differ, if at all.

To understand the difference from first principles, consider as
a simplified pedagogical example the problem of estimating an
unobservable state X using a measurement Y, where X is generated
by a Wiener process, viz.

X=w, B

Y=X+v, (B2)

withw ~ N (0, Q)and v ~ N (0, R), and where an overdot denotes
a derivative with respect to time. We now compare the least-squares
estimator and the Kalman filter for the simplified system in equations
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(B1) and (B2) in two cases: (i) @ = 0 (i.e. the state is constant with
no process noise) and (ii) Q # 0. In order to compare directly the
Kalman filter (which is recursive) and the least-squares estimator,
we reformulate the batch least-squares regression as a recursive
least-squares filter. Batch and recursive least squares are equivalent;
both methods minimize the sum of the squared errors and produce
identical estimates of the state, X.

First, consider Q = 0. In recursive least-squares, the unbiased
minimum variate estimate of the state at time-step k is

k

A 1

Riws =7 > Ve (B3)
i=1

When a new data point is ingested at time-step k + 1, the estimate of
the state is updated according to

| ke
X =) B4
kFLRLS = 37 Z]: k (B4)
A 1 A
=X —— (i1 — X . BS
kRLS K1 ( k+1 k,RLs) (B5)

The prefactor (k + D7 in equation (BS5) is the recursive least-
squares gain (cf. equation A7) and the quantity Yy, — Xy res is the
innovation (cf. equation AS). As the number of data points increases
the gain tends to zero; in recursive least-squares the additional datum
Y41 becomes less and less important, as k increases and more and
more observations are obtained. As the gain tends to zero, the new
observations are asymptotically downweighted.

Now apply Kalman filtering to Q = 0 instead. The state estimate
is updated in response to new data according to

Xir1kr = Xk,KF + (Yk+1 - Xk,KF) ) (B6)

Py
R+ kP
where P, is the initial covariance in X. In equation (B6), the quantity
Py/(R + k Py) is the Kalman gain. As with recursive least-squares,
the gain tends to zero as k increases. Hence, in the special case Q = 0,
the recursive least-squares and Kalman filtering behave equivalently
in the long term.

Now consider Q # 0. The recursive least-squares estimate of the
state proceeds as before via equation (B5). What about the Kalman
filter? For the system described by equations (B1) and (B2), the
continuous-time Riccati equation for the propagation of the error
covariance P(t) is (Lewis, Xie & Popa 2017)

pog- PO (B7)
= T
The continuous-time Kalman gain is
P()
K@t)=—. B8
O=— (B3)

The solution to equation (B7) is

B Py cosh (t./Q/R) + +/OR sinh (1/O/R)
PO= VRO Pysinh (1/Q/R) + +/ORcosh (t/O/R) |
(B9)

From equations (B8) and (B9), we find K(t) - +/O/R > 0 as ¢
increases (equivalent to increasing k in the discrete case). That is,
the gain tends to a positive definite value, unlike for recursive least
squares. Hence, the Kalman filter is more responsive asymptotically
to additional data than a least-squares estimator. Informally speaking,
itis a more nimble tracker, which explains its preferred status in many
electrical and mechanical engineering applications (Gelb et al. 1974;
Zarchan & Musoff 2000; Byrne 2005; Sirkkd 2013).

Kalman PTA 1865

PTA data analysis is far more complicated than the pedagogical
example described by equations (B1) and (B2). Fundamentally,
though, the timing noise tracking step can be understood in the same
way, as a state estimation problem. In this paper, state estimation
is performed with a Kalman filter. In traditional analyses, it is
performed through least-squares estimation using timing software
such as TEMPO2 (Hobbs et al. 2006) or PINT (Luo et al. 2021).
Specifically, traditional least-squares analyses fit a model of the TOA
residuals vector 8¢ of the form

St =Me+ Fa+n (B10)

where Me represents the deterministic deviation from the least-
squares fit to a Taylor-series phase model, Fa represents the
stochastic red noise modelled as a sum of sine and cosine Fourier
modes with amplitudes drawn from a power spectral density (usually
of power-law form), and n represents the stochastic white noise
component, with covariance matrix N (Taylor 2021; Johnson et al.
2024). Minimizing the squared error is equivalent to maximizing the
associated likelihood

1 1

p(rle, a) = TN exp (—ErTNr> , (B11)
with r = 6t — Me — Fa. The above formulation is analogous to
the Q # 0 case analysed above, and the conclusion is the same: the
least-squares gain tends to zero asymptotically, whereas the Kalman
gain does not. This represents a difference between traditional PTA
analyses and the approach in this paper. We refer the reader to
Taylor (2021) for additional details on traditional PTA data analysis
methods.

B2 Red noise power spectral density

In Section 2, the intrinsic achromatic spin wandering of the pulsar,
fp(")(t), is modelled as an Ornstein—Uhlenbeck process governed by
equations (1)—(4). The Ornstein—Uhlenbeck model captures the main
qualitative features of a typical PTA pulsar, namely a deterministic
secular spin down perturbed by stochastic, small-amplitude, mean-
reverting fluctuations.

In traditional PTA analyses, the red-spectrum timing noise fluc-
tuations are described as a zero-mean Gaussian random process
and modelled via a finite decomposition into a Fourier basis (see
Appendix B1). The Fourier coefficients are determined by the power
spectral density of the TOA residuals, which is assumed to take the
standard form (e.g. Goncharov et al. 2021; Taylor 2021),

f A1 L I
= T,
p 12752 Tops \ 1yr~! y

where f denotes the Fourier frequency. The power spectral density is
defined by two hyperparameters, the amplitude A, and the exponent
y. Traditional PTA analyses seek to estimate the values of the
hyperparameters, rather than the Fourier coefficients themselves,
which are drawn randomly by treating equation (B12) as a probability
density function.

Equations (1)—(4) are equivalent to specifying a particular form
of power spectral density, which is related to but different from
equation (B12). Specifically, equations (1)—(4) lead to a broken power
law with p(f) oc f=* for f = y™ and p(f) oc f72 for f < y®™
approximately. The scalings are obtained by Fourier transforming
equations (1)—(4), applying the Wiener—Khintchine theorem, and
converting frequency residuals to phase residuals (Meyers et al.

(B12)
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2021a, b; Antonelli et al. 2023; O’Neill, Meyers & Melatos 2024).6
The specific form of equations (1)—(4) is one particular choice of
stochastic model for pulsar timing noise, whose PSD p( f) is broadly
consistent with observations for several MSPs, especially over typical
inter-TOA intervals Ti,g = fx41 — i ~ 1 week. Alternative models
exist, which include higher derivatives of f;’”(z (Vargas & Melatos
2023) or multiple internal stellar components (Meyers et al. 2021a, b;
Antonelli et al. 2023; O’Neill et al. 2024). The state-space framework
presented in this paper extends straightforwardly to other stochastic
models of pulsar spin wandering. Analogously, in traditional PTA
analyses, whilst equation (B12) is a default description, multiple
alternative parametrized models also exist (Sesana et al. 2008; Lentati
etal. 2013; Sampson, Cornish & McWilliams 2015; Taylor, Simon &
Sampson 2017; Chen et al. 2017a; Chen, Sesana & Del Pozzo 2017b;
Aggarwal et al. 2019; Chen, Sesana & Conselice 2019). We refer the
interested reader to Taylor (2021) for additional details on alternative
power spectral density models.

APPENDIX C: SYNTHETIC PTA
SPECIFICATIONS

The synthetic PTA deployed for testing in this paper is constructed to
mimic the N = 47 pulsars from the 12.5-yr NANOGrav data release,
whose sky positions are plotted in Fig. 2. The construction recipe is
described in full in Section 4.1. In this appendix, we record a complete
list of the pulsar parameters in Table C1, to assist the interested reader
in implementing the analysis scheme and reproducing the test results
in Sections 5-7.

APPENDIX D: DISPERSION OF 6,, ESTIMATES

Every random realization of the noise processes &£)(¢) and &™) (t)
leads to a different 6, posterior, when the synthetic data are analysed
according to the procedure in Section 3.4. The distance between two
posteriors (i.e. how similar they are) can be measured by many valid
metrics, including those related to the Kolmogorov—Smirnoff test
(Corder & Foreman 2014). In this paper, we use the WD (Vaserstein
1969; Villani 2009) which is popular in machine learning (e.g.
Arjovsky et al. 2017) and other domains. In Appendix D1, we define
the WD and summarize its main properties. In Appendix D2, we
present for reproducibility the WD calculated between every pair
of posteriors for each static parameter in @, across the 10° noise
realizations of Section 5.4. The results are summarized via the median
values reported in Table 2.

D1 Overview of the WD

The WD is a metric that defines a distance between two probability
distributions p(x) and v(x). It has an intuitive interpretation as the
lowest total cost with which one can move probability mass from
o to v, with respect to a cost function c(x, y). For this reason, it
is sometimes known as the ‘Earth mover’s distance’. The pth order
WD between two distributions is

1/p
Wy, v) = Leirr(lﬁfm/dx,y)"d/\(x,y)} , (D1)

The Wiener—Khintchine theorem assumes that the timing noise statistics are
stationary, which may not be true in all pulsars. Non-stationarity is a subtle
topic, which is deferred to future work.
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Table C1. List of the fiducial pulsar parameters for the 47 pulsars used
to construct the synthetic PTA in Section 4.1. The right ascension and
declination of an individual pulsar in J2000 coordinates are labelled by «
and §, respectively. Parameter values are obtained from the ATNF pulsar
catalogue (Manchester et al. 2005) using the PSRQPY package (Pitkin 2018).

INAME fem(n) (Hz)  féi(01) x 106 (s72) « (deg) 8 (deg) d (kpe)
J0023 + 0923 327.8 —12.3 5.8 9.4 1.8
JO030 + 0451 205.5 —4.3 7.6 49 0.3
J0340 + 4130 303.1 —6.5 55.1 41.5 1.6
J0613 — 0200 326.6 —-10.2 934 =20 0.9
J0636 + 5128 348.6 —4.2 99.0 51.5 0.7
10645 + 5158 112.9 —0.6 101.,5  52.0 1.2
J0740 + 6620 346.5 —14.6 1152  66.3 1.1
J0931 — 1902 215.6 —-1.7 1428 —-19.0 3.7
J1012 + 5307 190.3 —6.2 153.1  53.1 0.7
J1024 — 0719 193.7 —7.0 1562 =73 1.2
J1125 + 7819 238.0 -39 1715 783 0.9
J1453 4 1902 172.6 -3.5 2234 19.0 1.3
J1455 — 3330 125.2 —-3.8 2239 =335 07
J1600 — 3053 277.9 =73 2402 =309 19
J1614 — 2230 317.4 -9.7 2437 =225 07
J1640 + 2224 316.1 —-2.8 250.1 224 1.5
J1643 — 1224 216.4 —8.6 2509 -—124 07
J1713 4 0747 218.8 —4.1 258.5 7.8 1.3
J1738 + 0333 170.9 -7.0 264.7 3.6 1.5
J1741 4 1351 266.9 -21.5 2654 139 1.7
J1744 — 1134 245.4 —5.4 266.1 —116 04
J1747 — 4036 607.7 —48.5 2670 —-406 7.1
J1832 — 0836 367.8 —11.2 278.1 —8.6 2.1
J1853 + 1303 244.4 5.2 283.5 13.1 2.1
J1857 + 0943 186.5 —6.2 284.4 9.7 1.2
J1903 + 0327 465.1 —40.7 285.8 35 7.0
J1909 — 3744 339.3 —16.1 2874 =377 1.1
J1910 + 1256 200.7 -39 2875 129 1.5
JI911 + 1347 216.2 -7.9 288.0 138 14
J1918 — 0642 130.8 —4.4 289.7 —6.7 1.1
J1923 + 2515 264.0 —6.7 290.8 253 1.2
J1939 + 2134 641.9 —433.1 2949 216 3.5
11944 + 0907 192.9 —6.4 296.0 9.1 1.2
J1946 + 3417 3154 -3.1 2966 343 6.9
J1955 + 2908 163.0 -79 2989  29.1 6.3
J2010 — 1323 191.5 —-1.8 3027 —134 24
J2017 + 0603 3453 -95 304.3 6.1 14
J2033 + 1734 168.1 -3.1 3084 176 1.7
J2043 + 1711 420.2 -93 310.8 172 14
J2145 — 0750 62.3 —-1.2 3265 =78 0.7
J2214 + 3000 320.6 —15.1 3337 300 0.6
12229 + 2643 335.8 —-1.7 3375 267 1.8
12234 + 0611 279.6 -9.4 338.6 6.2 1.0
12234 + 0944 275.7 —15.3 338.7 9.7 1.6
12302 + 4442 192.6 =51 34577 447 0.9
12317 + 1439 290.3 2.0 3493 147 1.7
12322 4 2057 208.0 —4.2 3506 210 1.0

for p € [1, 00), where A(x, y) is the transport plan, and I" (i, v) is the
set of all joint probability distributions for (x, y) that have marginals
 and v, that is, I'(u, v) is the set of couplings of u and v.

The cost function can be freely chosen to suit the nature of the
problem. Often, as in this paper, it is taken to be the absolute value
function, c(x,y) = |x — y|. In general, W,(u,v) with c(x,y) =
|x — y| can be computed from n samples by the Hungarian algorithm
(Kuhn 1955) in polynomial time O(n*) (Villani 2009). However,
for 1 and v defined on R? it is well-known (Dudley 1969) that
E[W,(1, v)] converges slowly oc n~'/4. In this paper, we calculate

202 4990)00 gg Uo Jasn 3ayjol|qiqenusz-AS3a Aq €0y L LL/v 8L IEI7EG/A191LE/SeIUW/WOD dNo"dlWepeDe//:sdiy Woly papeojumod



Kalman PTA 1867
1.0
0.6
08
0.5
0.6 04
b 0a Wi
0.2
0.2
0.1
(a) Q (b) @ () ¢ (d) ¢
=x10-1% -
0.30
0.25 G
0.25
0.20 5
0.20
4
.. 0.15
0.15 [_-[i1 H:] N H-l
0.10 010 )
0.05 0.05 1
(e)o () a (g h

Figure D1. First moment of the WD, W (colour scale), calculated between each pair of one-dimensional posteriors for the representative system in Table 1
across 10° realizations as discussed in Appendix D2, for each component of 0¢w. W1 provides an upper bound on the difference in expected values between any
two probability distributions. W is generally low across all parameters and posteriors. W1(0) is the vector for variable 6 of (120) W values that are plotted in
each panel. The Pearson correlation coefficient between W (1) and W (k) (i.e. the (—h panels) is 0.75, and between the W () and W () (i.e. the §—« panels)

is 0.60.

the WD exclusively between the one-dimensional marginalized
posteriors, setting d = 1 and obtaining

1 1/p
Wy, v) = { / dz [F;'(@) — F;‘(z)]} : (D2)
0

where F " !(z) is the inverse cumulative distribution function of .

The WD holds certain advantages over valid alternatives like
the Kullback-Leibler divergence or the Kolmogorov—Smirnoff test
(Gelman et al. 2013; Corder & Foreman 2014). It is intuitive, being
the minimum cost required to transform one distribution into another.
It satisfies the Monge—Kantorovich duality (Villani 2003, 2009),

|E(X,) — E(Yy)] < Wiu, v), (D3)

where X, and Y, are random variates drawn from the distributions
and v, respectively, and E denotes the expected value. It also satisfies
desirable properties of a measure of distance, such as symmetry
and the triangle inequality. For p = 1, the WD inherits the units
of the underlying distributions. Finally, the WD is versatile; any
two distributions can be compared, irrespective of whether they are
continuous, discrete, or singular.

D2 WD for 6,

Table 2 summarizes the median value of the first moment of the WD,
W, between the 5 x 10° pairs of one-dimensional posteriors across
the 10% realizations analysed in Section 5.4, for each of the seven
parameters in 6 4,,. To assist with reproducibility, we present in Fig.
D1, the WD values for a subset (numbering 10?) of the realizations.
We plot a subset of realizations to avoid overcrowding the figure. The

© 2024 The Author(s).

subset corresponds to the 100 realizations plotted in Fig. 5. Fig. D1
contains seven subplots, one for each element of 6,,. Each subplot is

a lower triangular heat map, where each point denotes the W, value
between a pair of one-dimensional posteriors for that element. Lower
values of W, are magenta; higher values of W, are yellow. Note that
the heat-map colour scale is not the same in every subplot. Instead
the colour scale is set by the minimum and maximum W, values for
each parameter. Normally it would be preferable to set the colour
scale by the domain of the prior, but doing so renders the heat-map
uniform, because the WD is generally much smaller than the prior
domain (cf. Table 2).

Fig. D1 is consistent with the summary results presented in
Table 2, and agrees with the conclusions drawn in Section 5.4,
namely that the nested sampling scheme repeatedly converges to
similar posteriors, for different realizations of the data, although
dispersion remains. The W, value is small compared to the width
of the prior, cf. Fig. 5 and Wi median,prior in Table 2. The W; value
is significant compared to the injection value (up to 140 per cent
for hy, typically < 10 per cent for other parameters; see Table 2), cf.
W1 median,inj in Table 2. Qualitatively, Fig. D1 exhibits some correlated
structure between panels. Specifically, Figs D1(d) and (g) (¢ and A,
respectively) appear correlated, as do Figs D1(e) and (f) (6 and o,
respectively). Quantitively, we define W,(6) as the vector of length
(") W, values for variable ¢ that are plotted in each panel of Fig.
D1. The Pearson correlation coefficient between W (¢) and W (h) is
0.75, and between the W(8) and W («) is 0.60.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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