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A B S T R A C T 

Continuous nanohertz gra vitational wa ves from individual supermassive black hole binaries may be detectable with pulsar timing 

arrays. A no v el search strate gy is dev eloped, wherein intrinsic achromatic spin w andering is track ed simultaneously with the 
modulation induced by a single gra vitational wa ve source in the pulse times of arri v al. A two-step inference procedure is applied 

within a state-space framework, such that the modulation is tracked with a Kalman filter, which then provides a likelihood for 
nested sampling. The procedure estimates the static parameters in the problem, such as the sky position of the source, without 
fitting for ensemble-averaged statistics such as the power spectral density of the timing noise, and therefore complements 
traditional parameter estimation methods. It also returns the Bayes factor relating a model with a single gravitational wave 
source to one without, complementing traditional detection methods. It is shown via astrophysically representative software 
injections in Gaussian measurement noise that the procedure distinguishes a gravitational wave from pure noise down to a 
characteristic wave strain of h 0 ≈ 2 × 10 

−15 . Full posterior distributions of model parameters are reco v ered and tested for 
accuracy. There is a bias of ≈ 0 . 3 rad in the marginalized one-dimensional posterior for the orbital inclination ι, introduced by 

dropping the so-called pulsar terms. Smaller biases � 10 per cent are also observed in other static parameters. 

Key w ords: gravitational w aves – pulsars: general. 
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 I N T RO D U C T I O N  

he inspiral of supermassive black hole binaries (SMBHBs; Ra-
agopal & Romani 1995 ; Jaffe & Backer 2003 ; Wyithe & Loeb 2003 ;
esana 2013 ; McWilliams, Ostriker & Pretorius 2014 ; Ravi et al.
015 ; Burke-Spolaor et al. 2019 ; Sykes et al. 2022 ) is predicted to
mit nanohertz (nHz) gravitational waves (GWs). Other GW sources
n this low-frequency regime include cosmic strings (e.g. Sanidas,
attye & Stappers 2012 ) and cosmological phase transitions (e.g.
ue et al. 2021 ). The detection of nHz GWs has inspired the develop-
ent of new observational methods, since it is impractical to engineer

errestrial interferometric detectors with sufficiently long baselines.
he foremost method is timing an ensemble of pulsars, that is, a
ulsar timing array (PTA; Tiburzi 2018 ; Verbiest, Osłowski & Burke-
polaor 2021 ). A nHz GW influences the trajectory and frequency
f individual radio pulses, leaving a characteristic impression on the
ulse times of arri v al (TOAs) measured at the Earth. By measuring
OAs from multiple pulsars simultaneously one can ef fecti vely
onstruct a detector with a baseline on the scale of parsecs. Multiple
 E-mail: tom.kimpson@unimelb.edu.au 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
TA detectors have been built o v er the last few decades, including
he North American Nanohertz Observatory for Gravitational Waves
NANOGrav, Agazie et al. 2023b ), the Parkes Pulsar Timing Array
PPTA, Zic et al. 2023 ), and the European Pulsar Timing Array
EPTA, Antoniadis et al. 2023b ). These indi vidual ef forts have joined
n international collaboration, under the umbrella of the International
ulsar Timing Array (IPTA, Perera et al. 2019 ), along with a number
f newer PTAs such as the Indian Pulsar Timing Array Project
InPTA, Tarafdar et al. 2022 ), MeerTime (Bailes et al. 2020 ; Spiewak
t al. 2022 ), and the Chinese PTA (CPTA, Hobbs et al. 2019 ). 

The incoherent superposition of multiple SMBHB sources leads to
 stochastic GW background at nHz frequencies (Allen 1997 ; Sesana,
ecchio & Colacino 2008 ; Christensen 2019 ; Renzini et al. 2022 ).
re vious ef forts have mainly focused on detecting the stochastic
ackground by measuring the cross-correlation between the timing
esiduals from pairs of pulsars as a function of the angular separation
etween the pulsars – the Hellings–Downs curve (Hellings &
owns 1983 ). After multiple non-detections (Lentati et al. 2015 ;
rzoumanian et al. 2018b ; Antoniadis et al. 2022 ) consilient evidence

or the GW background was presented by NANOGrav (Agazie et al.
023a ), EPT A/InPT A (Antoniadis et al. 2023a ), PPTA (Reardon et al.
023 ), and the CPTA (Xu et al. 2023 ). 
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Individual SMBHBs that are sufficiently massive and nearby 
ay be resolvable with PTAs, allowing the early stages of their 

volution and coalescence to be investigated (Sesana & Vecchio 
010 ; Yardley et al. 2010 ; Babak & Sesana 2012 ; Ellis 2013 ;
hu et al. 2015a , 2016 ). Indeed, the stochastic GW background

tself may be dominated by a few individual binary sources (Ravi
t al. 2012 ). Individual SMBHBs are continuous wave sources; they 
enerate persistent, quasi-monochromatic modulations of a known 
orm in pulsar timing residuals. Consequently, they are detected 
ore efficiently by either a frequentist matched filter, for example, 

he F -statistic (Lee et al. 2011 ; Ellis, Siemens & Creighton 2012 ;
hu et al. 2014 ), or else Bayesian inference (Ellis & Cornish 2016 ;
rzoumanian et al. 2020a ), rather than by cross-correlating pulsar 
airs. Ho we ver, PTA observ ational campaigns to detect individual 
ources have been unsuccessful so far (Jenet et al. 2004 ; Zhu et al.
014 ; Babak et al. 2016 ; Arzoumanian et al. 2023 ). Inconclusive
 vidence at lo w significance was presented recently by the EPTA for
n individual source at 4–5 nHz (Antoniadis et al. 2023c ). 

Intrinsic pulsar timing noise – that is, random, unmodelled, red- 
pectrum TOA fluctuations due to irregularities in the rotation of the 
tar – has been identified as a k ey f actor limiting the sensitivity
f PTAs to GW signals (Shannon & Cordes 2010 ; Lasky et al.
015 ; Caballero et al. 2016 ; Goncharov et al. 2021 ). This timing
oise has multiple theorized causes including free precession (Stairs, 
yne & Shemar 2000 ; Kerr et al. 2015 ), microglitches (D’Alessandro
t al. 1995 ; Melatos, Peralta & Wyithe 2008 ; Espinoza et al. 2021 ),
steroid encounters (Brook et al. 2013 ; Shannon et al. 2013 ), glitch
eco v ery (Johnston & Galloway 1999 ; Hobbs, Lyne & Kramer 2010 ),
uctuations in internal and external stochastic torques (Cordes & 

reenstein 1981 ; Urama, Link & Weisberg 2006 ; Meyers, Melatos &
’Neill 2021a ; Meyers et al. 2021b ; Antonelli, Basu & Haskell
023 ), variations in the coupling between the stellar crust and 
ore (Jones 1990 ; Meyers et al. 2021b ; Melatos et al. 2023 ),
agnetospheric state switching (Kramer et al. 2006 ; Lyne et al. 

010 ; Stairs et al. 2019 ), and superfluid turbulence (Greenstein 1970 ;
eralta et al. 2006 ; Melatos & Link 2014 ). In order to mitigate the

mpact of timing noise, PTAs are typically composed of millisecond 
ulsars (MSPs), which are relatively stable rotators. Ho we ver, timing 
oise in MSPs may be a latent phenomenon that will increasingly 
ssert itself as longer stretches of more sensitive data are analysed in
he quest to detect nHz GWs (Shannon & Cordes 2010 ). In modern
ayesian PTA searches, the power spectral density of the red intrinsic

iming noise is modelled (usually as a broken or unbroken power law)
nd estimated, in an effort to distinguish it from the noise induced
y a stochastic GW background (whose spectrum is also red). In
ddition to the red timing noise there are secondary, white noise 
ources to consider such as phase jitter noise and radiometer noise 
Cordes & Shannon 2010 ; Lam et al. 2019 ; Parthasarathy et al. 2021 ).

In this work, we present an alternative and complementary ap- 
roach to PTA data analysis for individual, quasi-monochromatic, 
MBHB sources which self-consistently tracks the intrinsic timing 
oise in PTA pulsars and disentangles it from GW-induced TOA 

odulations. The new approach differs from existing approaches 
n one key respect: it infers the GW parameters conditional on 
he unique, time-ordered realization of the noisy TOAs observed, 
nstead of fitting for the ensemble-averaged statistics of the TOA 

oise process, for example, the amplitude and exponent of its power 
pectral density. Stated another way, existing approaches seek to 
etect a GW signal by marginalizing o v er the ensemble of possible
oise realizations summarized by the power spectral density, whereas 
he new approach delivers the most likely set of GW parameters 
onsistent with the actual, observed noise realization. The new and 
xisting approaches are therefore complementary. In particular, we 
ormulate PTA analysis as a state-space problem and demonstrate 
ow to optimally estimate the state-space evolution using a Kalman 
lter, a tried-and-tested tool (Kalman 1960 ; Meyers et al. 2021b ;
elatos et al. 2023 ). We combine the Kalman tracking of the pulsars’

ntrinsic rotational states with a Bayesian nested sampler (Skilling 
006 ; Ashton et al. 2022 ) to estimate the static GW parameters and
alculate the marginal likelihood (i.e. the model evidence) for model 
election. The adaptive bias of the Kalman filter tracks timing noise
ore ef fecti vely than alternati ve techniques such as least-squares

stimators. 
The paper is organized as follows. In Section 2 , we present the

tate-space model for the rotational states of an array of pulsars falling 
reely in the curved space–time of a single-source GW. In Section 3 ,
e develop a Kalman filter to track the state evolution and deploy

he Kalman filter in conjunction with nested sampling to estimate the
W and other system parameters, along with the model evidence. 

n Section 4 , we describe how we create synthetic validation data
o test the method. In Section 5 , we test the method on synthetic
ata for a single representative GW source. In Section 6 , we extend
he tests to co v er an astrophysically rele v ant domain of SMBHB
ource parameters. In Section 7 , we quantify the bias in the parameter
stimates. In Section 8 , we re vie w the computational cost of the
ethod. Conclusions are drawn in Section 9 . The data are formulated

s pulse frequency time-series with Gaussian measurement noise as 
 proof of principle and to maintain consistency with previous work
Meyers et al. 2021a , b ). It will be necessary to modify the method
o accept pulse TOAs instead of a pulse frequency time-series when
nalysing real, astronomical data, a subtle generalization which is 
eferred to future work. Throughout the paper we adopt natural 
nits, with c = G = � = 1, and metric signature ( −, + , + , + ). 

 STA  TE-SPAC E  F O R M U L A  T I O N  

e formulate the PTA analysis as a state-space problem, in which
he intrinsic rotational state of each pulsar evolves according to a
tochastic differential equation and is related to the observed pulse 
equence via a measurement equation. In this w ork, we tak e the
ntrinsic state variable to be the n th pulsar’s spin frequency f ( n ) p ( t),
s measured in the local, freely falling rest frame of the pulsar’s centre
f mass. A phenomenological model for the evolution of f ( n ) p ( t) is
resented in Section 2.1 . We take the measurement variable to be
he radio pulse frequency measured by an observer at Earth, f ( n ) m 

( t).
he measurement equation relating f ( n ) m 

( t) to f ( n ) p ( t) is presented in
ection 2.2 . The superscript 1 ≤ n ≤ N inde x es the n th pulsar in the
rray. The subtle problem of generalizing the measurement variable 
o pulse TOAs is postponed to future work, as noted in Introduction.

.1 Spin evolution 

 predictive, first-principles theory of timing noise does not exist at
resent; there are several plausible physical mechanisms, referenced 
n Introduction. We therefore rely on an idealized phenomenological 
odel to capture the main qualitative features of a typical PTA

ulsar’s observed spin evolution, that is, random, mean-reverting, 
mall-amplitude excursions around a smooth, secular trend. In the 
odel, f ( n ) p ( t) evolves according to the sum of a deterministic and a

tochastic torques. The deterministic torque is attributed to magnetic 
ipole braking, with braking index n em 

= 3 for the sake of definite-
ess (Goldreich & Julian 1969 ). Most PTAs involve MSPs, for which
he quadratic correction due to n em 

in f ( n ) p ( t) is negligible over the
bservation time T obs ∼ 10 yr , and the deterministic evolution f ( n ) em 

( t)
MNRAS 534, 1844–1867 (2024) 
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an be approximated accurately by 

 

( n ) 
em 

( t) = f ( n ) em 

( t 1 ) + ḟ ( n ) em 

( t 1 ) t , (1) 

here an o v erdot denotes a deri v ati ve with respect to t , and t 1 
abels the time of the first TOA. The stochastic torque is assumed
o be a zero-mean, white noise process. Specifically, the frequency
volves according to an Ornstein–Uhlenbeck process, described by
 Langevin equation with a time-dependent drift term (Vargas &
elatos 2023 ), 

d f ( n ) p 

d t 
= −γ ( n ) [ f ( n ) p − f ( n ) em 

( t)] + ḟ ( n ) em 

( t) + ξ ( n ) ( t) . (2) 

n equation ( 2 ), f ( n ) em 

is the solution of the electromagnetic spin-down
quation given by equation ( 1 ), ḟ ( n ) em 

is the spin derivative, γ ( n ) is
 damping constant whose reciprocal specifies the mean-reversion
ime-scale, and ξ ( n ) ( t) is a white noise stochastic process which
atisfies 

 ξ ( n ) ( t) 〉 = 0 , (3) 

 ξ ( n ) ( t ) ξ ( n ′ ) ( t ′ ) 〉 = [ σ ( n ) ] 2 δn,n ′ δ( t − t ′ ) . (4) 

n equation ( 4 ) [ σ ( n ) ] 2 is the variance of ξ ( n ) and parametrizes
he amplitude of the noise. Combined with the mean reversion it
ives characteristic root mean square fluctuations ≈ σ ( n ) / [ γ ( n ) ] 1 / 2 

n f ( n ) p ( t) (Gardiner 2009 ). It is important to note that white noise
uctuations in ξ ( t) translate into red noise fluctuations in the
otational phase φ( t) = 

∫ t 
t 1 

d t ′ f p ( t ′ ) after being filtered by the terms

nvolving d / d t and γ ( n ) in equation ( 2 ), consistent with the observed
ower spectral density of typical MSPs in the nHz band rele v ant to
TA experiments. 
Equations ( 1 )–( 4 ) represent a phenomenological model, which

ims to reproduce qualitatively the typical timing behaviour observed
n PTAs, viz. a mean-reverting random walk about a secular spin-
own trend (Agazie et al. 2023b ; Antoniadis et al. 2023b ; Zic et al.
023 ). Equations ( 1 )–( 4 ) are not derived from first principles by
pplying a microphysical theory. As a first pass, they also exclude
ertain phenomenological elements, which are likely to be present
n reality, for example, the classic, two-component, crust-superfluid
tructure inferred from post-glitch reco v eries (Baym et al. 1969 ;
an Eysden & Melatos 2010 ; G ̈ugercino ̆glu & Alpar 2017 ; Meyers
t al. 2021a , b ). An approach akin to equations ( 1 )–( 4 ) has been
ollowed successfully in other timing analyses in the context of
nomalous braking indices (Vargas & Melatos 2023 ) and hidden
arkov model glitch searches (Melatos et al. 2020 ; Lower et al.

021 ; Dunn et al. 2022 , 2023 ). Ho we ver, equations ( 1 )–( 4 ) involve
ignificant idealizations, which must be recognized at the outset
Meyers et al. 2021a , b ; Vargas & Melatos 2023 ). First, the white
oise driver ξ ( t) in equation ( 2 ) is not differentiable, which makes the
ormal interpretation of d 2 f p / d t 2 ambiguous, even though d 2 f p / d t 2 

s not used in the PTA analysis proposed in this paper. Second,
he white spectrum assumed for ξ ( t) may or may not be suitable
or MSPs in PTAs. It is challenging observationally to infer the
pectrum of ξ ( t) from the observed spectrum of the phase residuals,
ecause the inference is conditional on the (unknown) dynamical
odel go v erning d f p / d t . F or small-amplitude fluctuations sampled

elatively often, as in MSPs in PTAs, it is likely that ξ ( t) is white to a
ood approximation o v er the inter-TOA intervals and generates red
hase residuals as observed, but caution is warranted nevertheless.
hird, the Brownian increment d B( t) = ξ ( t)d t does not include non-
aussian excursions such as L ́evy flights (Sornette 2004 ), which
ave not been ruled out by pulsar timing experiments to date.
he abo v e three idealizations are supplemented by other, physical
NRAS 534, 1844–1867 (2024) 
pproximations noted abo v e, for e xample, ne glecting n em 

in equation
 1 ) and differential rotation between the crust and superfluid in
quation ( 2 ). 

.2 Modulation of pulsar frequency by a GW 

n the presence of a GW, the pulse frequency measured by an
bserver in the local rest frame of the neutron star’s centre of mass is
ifferent from that measured by an observer on Earth. Specifically,
he pulse frequency at the Earth is modulated harmonically at the GW
requenc y. We deriv e the non-linear measurement equation relating
 m 

( t ) to f p ( t ) in this section. The measurement equation is a key
nput into the Kalman filter in Section 3.1 

.2.1 Plane GW perturbation 

e consider a gravitational plane wave from a single, distant
MBHB. The GW perturbs the background Minkowski metric ημν

s 

 μν = ημν + h μν , (5) 

here the metric perturbation h μν has zero temporal components
 0 ν = h μ0 = 0. For elliptically polarized GWs emitted by a SMBHB,

he spatial metric components are (Maggiore 2018 ) 

 ij ( t, x ) = H 

( + ) 
ij e i [ �( x ·n −t) + � 0 ] + H 

( ×) 
ij e i [ �( x ·n −t) + � 0 + π/ 2 ] , (6) 

ritten in terms of nearly Lorentz spatial coordinates and global
oordinate x time t (Schutz 2022 ). The GW propagates in the n -
irection (where n is a unit vector), has a constant (see justification
elow) angular frequency �, phase offset � 0 , and two orthogonal
olarizations with amplitude tensors H 

( + , ×) 
ij . Throughout this paper,

e work with pulsar TOAs defined relative to the Solar system
arycentre (SSB). We are free to choose coordinates such that � 0 is
he GW phase at t = 0 at the SSB. The amplitude tensors are given
y 

 

( + ) 
ij = h + 

e + 

ij , (7) 

 

( ×) 
ij = h ×e ×ij , (8) 

here h + 

and h × are the respective polarization amplitudes. The
lus and cross-polarization tensors e + 

ij and e ×ij are uniquely defined
y the principal axes of the wave, viz. the unit three-vectors k and l ,
ccording to 

 

+ 

ij ( n ) = k i k j − l i l j , (9) 

 

×
ij ( n ) = k i l j + l i k j . (10) 

he principal axes are in turn specified by the location of the GW
ource on the sky (colatitude θ , azimuth φ) and the polarization angle
 according to 

k = ( sin φ cos ψ − sin ψ cos φ cos θ ) ̂  x 

−( cos φ cos ψ + sin ψ sin φ cos θ ) ̂  y 

+ ( sin ψ sin θ ) ̂ z , (11) 

l = ( − sin φ sin ψ − cos ψ cos φ cos θ ) ̂  x 

+ ( cos φ sin ψ − cos ψ sin φ cos θ ) ̂  y 

+ ( cos ψ sin θ ) ̂ z , (12) 

here, for example, ˆ x is a unit vector in the direction of the x-axis.
he direction of GW propagation is related to the principal axes by 

n = k × l . (13) 
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In this paper, the source is approximated as monochromatic. In 
eality, the GW frequency f gw = �/ 2 π increases during the inspiral
y an amount (e.g. Sesana & Vecchio 2010 ) 

f gw = 0 . 05 nHz 

(
M c 

10 8 . 5 M �

)5 / 3 [
f gw ( t = t 1 ) 

50 nHz 

]11 / 3 (
T obs 

10 yr 

)
, (14) 

here M c is the chirp mass of the SMBHB, f gw ( t = t 1 ) is the
W frequency at the time of the first observation, and T obs is the

ength of time o v er which �f gw is measured, which for PTAs is
10 yr. A source can be considered monochromatic, if �f gw is

ess than the PTA frequency resolution 1 /T obs . Equation ( 14 ) im-
lies ( M c / 10 8 . 5 M �) 5 / 3 [ f gw ( t = t 1 ) / 50 nHz ] 11 / 3 ( T obs / 10 yr ) 2 � 20
or �f gw � 1 /T obs . The majority of SMBHBs detectable with PTAs
re expected to satisfy �f gw < 1 /T obs ; for a PTA composed of
ulsars with a mean distance of 1.5 kpc, 78 per cent of simulated
MBHBs satisfy this condition for the current IPTA, whilst for the 
econd phase of the Square Kilometer Array this fraction drops to 
2 per cent; see fig. 7 in Rosado, Sesana & Gair ( 2015 ). We are
herefore justified in treating the GW source as monochromatic as 
 first pass in this introductory paper (Sesana et al. 2008 ; Sesana &
ecchio 2010 ; Ellis et al. 2012 ). 

.2.2 Measurement equation 

n general radio pulses from a pulsar are transmitted as amplitude 
odulations of a radio-frequency carrier wave. They are described 

y the geometric object p , which we identify as the momentum 

our-vector of the radio pulse. The presence of a GW induces a shift
n the temporal component of the associated momentum one form, 
hile the photon travels from the emitter to the observer, that is,
p t = p t | observer − p t | emitter . One obtains (e.g. Maggiore 2018 ) 

p t = 

πf p h ij ( t ; x = 0) q i q j 

1 + n · q 

[
1 − e i�(1 + n ·q ) d ] , (15) 

here f p is the pulse frequency measured in the momentarily 
omoving reference frame of an observer at rest in the nearly Lorentz
oordinates ( t, x ). In equation ( 15 ), q is the unit vector connecting
he observer and the pulsar and d is the distance to the pulsar. We
ake the pulsar location to be constant, that is, neither q nor d are
unctions of time. In practice, the pulsar locations vary with respect to
he Earth but are constant with respect to the SSB. The barycentring
orrection is typically applied when generating TOAs, for example, 
ith TEMPO 2 (Hobbs, Edwards & Manchester 2006 ) and related 

iming software, and is inherited by the frequency time-series. Some 
ulsars, including some PTA pulsars, do hav e non-ne gligible proper 
otions of order 10 2 km s −1 after the barycentring corrections have 

een applied (e.g. Jankowski et al. 2018 ), but we do not consider this
ffect in this paper. 

Generally, the measured frequency of a photon recorded by an 
bserver who is travelling with four-velocity u is given by the 
oordinate-independent expression p αu 

α . After barycentring, one 
as u 

α = (1 , 0 , 0 , 0) for both the emitter and the observer to leading
rder in the respective momentarily comoving reference frames. 
ence, equation ( 15 ) can be written for the n th pulsar as 

 

( n ) 
m 

( t) = f ( n ) p 

[
t − d ( n ) 

]
g ( n ) ( t) + ε ( n ) ( t) , (16) 

here d ( n ) labels the distance to the n th pulsar, and ε ( n ) is a Gaussian
easurement noise which satisfies 

 ε ( n ) ( t) 〉 = 0 , (17) 

 ε ( n ) ( t ) ε ( n 
′ ) ( t ′ ) 〉 = σ 2 

m 

δn,n ′ δ( t − t ′ ) , (18) 
here σm 

is the covariance of the measurement noise at the telescope
nd is shared between all pulsars by assumption. The measurement 
unction g ( n ) ( t) is related to a redshift z ( n ) ( t) through 

 

( n ) ( t) = 1 − z ( n ) ( t) , (19) 

ith 

( t) = 

[ q ( n ) ] i [ q ( n ) ] j 

2[1 + n · q ( n ) ] 

×
[ 
h ij ( t, x = 0) − h ij ( t, x = 0) e i�(1 + n ·q n ) d ( n ) 

] 
, (20) 

here [ q ( n ) ] i labels the ith coordinate component of the n th pulsar’s
osition vector q ( n ) . It is also instructive to express equation ( 20 ) in
 trigonometric form (cf. e.g. Sesana & Vecchio 2010 ; Perrodin &
esana 2018 ; Agazie et al. 2023c ) as 

( t) = 

[ q ( n ) ] i [ q ( n ) ] j 

2[1 + n · q ( n ) ] 

×
{ [ 

H 

( + ) 
ij cos � ( t) + H 

( ×) 
ij sin � ( t) 

] 
−

[ 
H 

( + ) 
ij cos � 

( n ) ( t) + H 

( ×) 
ij sin � 

( n ) ( t) 
] } 

, (21) 

here we define the phases 

 ( t) = −�t + � 0 , (22) 

 

( n ) ( t) = � ( t) + �
[
1 + n · q ( n ) 

]
d ( n ) . (23) 

Equations ( 16 )–( 23 ) define a non-linear measurement equation that
elates the intrinsic pulsar spin frequency to the pulse frequency 
easured by an observer on Earth. 

 S I G NA L  T R AC K I N G ,  PA R A M E T E R  

STI MATI ON,  A N D  M O D E L  SELECTI ON  

he set of static parameters θ of the model outlined in Section 2
an be separated into parameters controlling the intrinsic frequency 
volution of the pulsars in the array and the GW source, that is, 

= θpsr ∪ θgw , (24) 

ith 

psr = 

{
γ ( n ) , σ ( n ) , f ( n ) em 

( t 1 ) , ḟ 
( n ) 
em 

( t 1 ) , d 
( n ) 

}
1 ≤n ≤N 

, (25) 

nd 

gw = { h 0 , ι, δ, α, ψ, �, � 0 } , (26) 

here δ, α, and ι are the declination, right ascension, and inclination
f the GW source respectively. 1 In equation ( 26 ), we reparametrize
he two GW polarization amplitudes, h + 

and h ×, in terms of ι and
he characteristic wave strain h 0 through 

 + 

= h 0 (1 + cos 2 ι) , (27) 

 × = −2 h 0 cos ι . (28) 

e use the parametrization in terms of h 0 and ι throughout the
emainder of this work. A PTA containing N pulsars comprises 
 + 5 N parameters to estimate. Typically the pulsar parameters
re constrained better a priori by electromagnetic observations than 
he GW parameters. For example, estimates of pulsar distances are 
MNRAS 534, 1844–1867 (2024) 
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ccurate to ∼ 10 per cent (Cordes & Lazio 2002 ; Verbiest et al. 2012 ;
esvignes et al. 2016 ; Yao, Manchester & Wang 2017 ), but we have
o prior information about δ and α. 
In this section, we present a new method to infer θ and calculate

he marginal likelihood (i.e. the model evidence). In Section 3.1 , we
utline how noisy measurements of the pulsar frequency, f ( n ) m 

( t), can
e used to estimate the hidden state sequence, f ( n ) p ( t), using a Kalman
lter. In Section 3.2 , we demonstrate how to deploy the Kalman filter

n conjunction with a nested sampling technique to perform Bayesian
nference. Model selection and the specification of the null model
re described in Section 3.3 . A complete summary of the workflow is
resented in Section 3.4 . The method complements traditional PTA
nalyses because (i) it harnesses the fa v ourable asymptotic properties
f the adaptive gain of the Kalman filter to track timing noise more
imbly than alternatives like least-squares estimators; and (ii) it infers
conditional on the specific, time-ordered, random realization of the
oise corresponding to the observed sequence of TOAs rather than on
nsemble-averaged quantities like the power spectral density. Points
i) and (ii) are discussed further in Section 3.5 

.1 Kalman filter and likelihood 

he Kalman filter ( 1960 ) is a Gauss–Markov model used to algo-
ithmically reco v er a temporal sequence of stochastically evolving
ystem state variables, X ( t), which are not observed directly, given
 temporal sequence of noisy measurements, Y ( t). It finds common
se in engineering applications and has been applied successfully in
eutron star astrophysics (e.g. Meyers et al. 2021a , b ; Melatos et al.
023 ). In this work we use the linear Kalman filter, which assumes a
inear relation between d X / d t and X ( t) (dynamics) and between Y ( t)
nd X ( t) (measurement), with X ( t) = { f ( n ) p ( t) } and Y ( t) = { f ( n ) m 

( t) } .
xtension to non-linear problems is straightforward using either an
xtended Kalman filter (Zarchan & Musoff 2000 ), unscented Kalman
lter (Wan & Van Der Merwe 2000 ), or particle filter (Simon 2006 ).
quations ( 16 ) and ( 21 ) are non-linear in the static parameters

e.g. d ( n ) ), ev en though the y are linear in X ( t) and Y ( t). Hence,
nferring the static parameters is a non-linear e x ercise, to be tackled
eparately after the linear Kalman filter operates on the data for
 fixed set of static parameters. Inference of the static parameters
n equations ( 16 ) and ( 21 ) by nested sampling is discussed in
ection 3.2 . 
Implementation instructions for the linear Kalman filter for the

TA state-space model in Section 2 , including the full set of
alman recursion relations, are presented in Appendix A . At each
iscrete time-step inde x ed by 1 ≤ i ≤ M , the Kalman filter returns
n estimate of the state variables, ˆ X i = 

ˆ X ( t i ), and the covariance of

hose estimates, P i = 〈 ̂  X i 
ˆ X 

T 
i 〉 , where the superscript T denotes the

atrix transpose. The filter tracks the error in its predictions of X i 

y converting ˆ X i into predicted measurements ˆ Y i via equations ( 16 )
nd ( 21 ) and comparing with the actual, noisy measurements ˆ Y i .
his defines a residual εi = Y i − ˆ Y i , which is sometimes termed the

nnovation. The Kalman filter also calculates the uncertainty in εi 

ia the innovation covariance S i = 〈 εi ε
T 
i 〉 . The innovation and the

nno vation co variance are then used to correct the state estimate ˆ X i 

ccording to equation ( A8 ). For a fixed set of static parameters, the
alman filter returns an estimate of the state sequence ˆ X 1 , . . . , ˆ X M 

hich minimizes the mean square error. We explain how to use this
ntermediate output to infer the optimal values of the static parameters

in Section 3.2 
The Gaussian log-likelihood of obtaining Y i given ˆ X i can then be

alculated at each time-step from the Kalman filter output according
NRAS 534, 1844–1867 (2024) 
o 

log L i = −1 

2 

(
N log 2 π + log | S i | + ε

ᵀ 
i S 

−1 
i εi 

)
. (29) 

he total log-likelihood for the entire sequence is 

log L = 

M ∑ 

i= 1 

log L i . (30) 

iven Y 1 , . . . , Y M 

, L is a function of the estimates ˆ θ of the static
arameters passed to the Kalman filter, that is, L = L ( Y | ̂  θ ). Similarly
he estimates of the state and measurement variables, ˆ X and ˆ Y , are
unctions of ˆ θ . If ˆ θ is close to the true underlying parameters θ ,
hen the errors in ˆ X and ˆ Y are minimized and L is maximized.
his is illustrated with synthetic data in Fig. 1 . In the left-hand
olumn, a time-series of f (1) 

m 

( t) including Gaussian noise (middle
anel, red curve) is generated from equations ( 1 )–( 4 ), ( 16 ), and
 21 ) for a single pulsar and fed into the Kalman filter along with
he true static parameters ˆ θ = θ . The Kalman filter reco v ers the
volution of f (1) 

p ( t) with high fidelity; the estimate of ˆ f (1) 
p ( t) (left

op panel, blue curve) overlaps almost perfectly with the true f (1) 
p ( t)

left top panel, green curve). The predicted state ˆ f (1) 
p ( t) is converted

nto a predicted measurement ˆ f (1) 
m 

( t) (middle panel, magenta curve),
hich again o v erlaps almost perfectly with the true measurement.
he residuals ε( t) between the true and predicted measurements
re small ( � 0 . 1 per cent ) and normally distributed (left bottom
anel). By contrast, in the right-hand column, the e x ercise is repeated
hile passing incorrect static parameters ( ̂  θ 
= θ ) to the Kalman filter,
here � is displaced from its true value by 20 per cent . In this case,

he Kalman filter fails to track f (1) 
p ( t) accurately, as the discrepancy

etween the blue and green curves in the top panel of the right-hand
olumn indicates. It similarly fails to predict f (1) 

m 

( t) accurately, as
hown by the discrepancy between the red and magenta curves in the
iddle panel, and the residuals are no longer distributed normally

right bottom panel). In Section 3.2 , we explain how to combine the
alman filter with a nested sampler to iteratively guide ˆ θ towards

he true value of θ . 

.2 Nested sampling 

e can use the likelihood returned by the Kalman filter, equation
 30 ), in conjunction with likelihood-based inference methods to
stimate the posterior distribution of θ by Bayes’ rule, 

( θ | Y ) = 

L ( Y | θ) π ( θ) 

Z 

, (31) 

here π ( θ) is the prior distribution on θ and Z is the marginalized
ikelihood, or evidence 

 = 

∫ 

d θL ( Y | θ ) π ( θ) . (32) 

e estimate the posterior distribution and the model evidence
hrough nested sampling (Skilling 2006 ) in this paper. Nested
ampling e v aluates marginalized-likelihood integrals, of the form
iven by equation ( 32 ). It also approximates the posterior by returning
amples from p( θ | Y ). It does so by drawing a set of n live live
oints from π ( θ) and iteratively replacing the live point with the
owest likelihood with a new live point drawn from π ( θ), where
he new live point is required to have a higher likelihood than
he discarded point. The primary advantage of nested sampling is
ts ability to compute Z , on which model selection relies. Nested
ampling is also computationally efficient and can handle multimodal
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Figure 1. Sample output of the Kalman filter illustrating the accuracy of the reconstructed state sequence f (1) 
p ( t) when the static parameters are correct ( ̂ θ = θ , 

left-hand column) and incorrect ( ̂ θ 
= θ , right-hand column). The top panels show the true pulsar state f (1) 
p ( t) − f 

(1) 
em 

( t) (blue curve) and the state estimated by the 

Kalman filter ˆ f 
(1) 
p ( t) − f 

(1) 
em 

( t) (green curve). We subtract f (1) 
em 

( t) to better illustrate the stochastic wandering of the pulsar frequency. In the left-hand column, the 

blue/green solutions o v erlap almost perfectly; in the right-hand column, they do not. The middle panels show the true measured frequency f (1) 
m 

( t) − f 
(1) 
em 

( t) (red 
curve) and the frequency estimated by the Kalman filter ˆ f 

(1) 
m 

( t) − f 
(1) 
em 

( t) (magenta curve). Again we subtract f (1) 
em 

( t). In the left-hand column, the red/magenta 
solutions o v erlap almost perfectly; in the right-hand column, they do not. The bottom panels show the residual or innovation ε( t) = f 

(1) 
m 

( t) − ˆ f 
(1) 
m 

( t). In the 
right-hand column, � is displaced from its true value by 20 per cent. Results are shown for a single pulsar. 
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roblems (Ashton et al. 2022 ). For these reasons, it has enjoyed
idespread adoption in the physical sciences, particularly within 

he cosmological community (Mukherjee, Parkinson & Liddle 2006 ; 
eroz & Hobson 2008 ; Handley, Hobson & Lasenby 2015 ), neutron
tar astrophysics (Meyers et al. 2021a ; Meyers et al. 2021b ; Melatos
t al. 2023 ), particle physics (Trassinelli 2019 ), and materials science
P ́artay, Bart ́ok & Cs ́anyi 2009 ). For re vie ws of nested sampling, we
efer the reader to Buchner ( 2023 ) and Ashton et al. ( 2022 ). Multiple
ested sampling algorithms and computational libraries exist (e.g. 
eroz & Hobson 2008 ; Feroz, Hobson & Bridges 2009 ; Handley
t al. 2015 ; Speagle 2020 ; Buchner 2021 ). In GW research, it is
ommon to use the DYNESTY sampler (Speagle 2020 ) via the BILBY

Ashton & Talbot 2021 ) front-end library. We follow this precedent 
nd use BILBY for all nested sampling Bayesian inference in this
ork. 
The primary tunable parameter in nested sampling is n live . More

ive points assist with large parameter spaces and multimodal 
roblems, whilst the uncertainties in the evidence and the posterior 
cale as O( n −1 / 2 

live ). Ho we ver the computational runtime scales as
( n live ). Ashton et al. ( 2022 ) of fered a rule-of-thumb trade-of f,
here the minimum number of live points should be greater than 

he number of static parameters. Informal empirical tests conducted 
s part of this paper support the trade-off suggested by Ashton et al.
 2022 ); we find typically that the true θ is contained within the
0 per cent credible interval of the one-dimensional marginalized 
osteriors of ˆ θ for n live > 7 + 5 N with N ≤ 50. Unless stated
therwise, we take n live = 1000 for all results presented in this work.
mpirically, we find that values of n live > 1000 do not impro v e
ppreciably the accuracy of the results presented in Sections 4 
nd 5 . 
.3 Model selection 

he evidence integral Z returned by nested sampling is the probabil-
ty of the data Y given a model M i . We compare competing models
ia a Bayes factor, 

= 

Z( Y | M 1 ) 

Z( Y | M 0 ) 
. (33) 

hroughout this work, we take M 1 to be the state-space model that
ncludes the presence of a GW. M 0 is the null model, which assumes
o GW exists in the data, and is equi v alent to setting g ( n ) ( t) = 1 in
quation ( 19 ). The Bayes factors we quote in this work therefore
uantify whether the data support evidence for a GW signal compared 
o there being no GW signal present. 

.4 Summary of w orkflo w 

or the reader’s convenience, we now summarize the workflow for 
 representative PTA analysis using the Kalman filter and nested 
ampler for parameter estimation and model selection: 

(i) Specify a PTA composed of N pulsars. 
(ii) Obtain N data inputs f ( n ) m 

( t), collectively labelled Y . 
(iii) Specify a state-space model M , with static parameters θ . 
(iv) Specify prior distribution π ( θ). 
(v) Sample n live points from π ( θ). 
(vi) For each live point: 

(a) Pass the sample θ sample to the Kalman filter. 
(b) Iterate o v er the input data using the Kalman filter and

obtain a single log L value, equation ( 30 ). 
MNRAS 534, 1844–1867 (2024) 
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Figure 2. Spatial distribution in Galactic coordinates of 47 pulsars from the 
12.5 yr NANOGrav data release that make up the synthetic PTA used in this 
work. The pulsar distances relative to the observer are also indicated, with 
distance ≤ 2 kpc for 38 pulsars. The grey dashed curve denotes the Galactic 
plane. 
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(vii) Remo v e the liv e point with the lowest likelihood value,
og L lowest . 

(viii) Sample a new live point from π ( θ), subject to the require-
ent that the new likelihood obeys L new > L lowest , where log L new is

alculated via steps (6)(1) and (2). 
(ix) Update p ( θ | Y ) and Z with nested sampler. 
(x) Repeat steps (7)–(9) until convergence criteria are satisfied. 

In order to compute β the abo v e workflow is repeated for a different
 . The resulting Z values can then be compared. We remind the

eader that the abo v e workflo w dif fers from a realistic PTA analysis
n one important respect, namely that the data are input as frequency
ime-series f ( n ) m 

( t) instead of pulse TOAs. The generalization to
OAs is subtle and will be tackled in a forthcoming paper. 

.5 Relation to traditional PTA analyses 

t is natural to ask how the workflow in Sections 3.1 –3.4 differs from
raditional PTA analyses. One superficial difference is the detection
tatistic: traditional analyses use a frequentist matched filter like the
aximum-likelihood F -statistic (Ellis et al. 2012 ; Antoniadis et al.

023c ) or Bayesian inference (Arzoumanian et al. 2023; Agazie
t al. 2023c ), whereas the workflow in Sections 3.1 –3.4 maximizes
he Kalman likelihood in equation ( 30 ). 

A more subtle difference is the manner in which the intrinsic,
chromatic timing noise is tracked and modelled. With respect to
oise tracking, traditional analyses usually involve some form of
east-squares minimization. The adaptive gain, which measures the
ractional amount of new information incorporated into the updated
tate estimate at each time-step, tends to zero in the limit t → ∞
n least-squares minimization but remains non-zero in the same
imit for a Kalman filter. That is, a Kalman filter responds more
imbly to new data than least-squares estimators, which is why it is
a v oured in many electrical and mechanical engineering applications
Gelb et al. 1974 ; Zarchan & Musoff 2000 ; Byrne 2005 ; S ̈arkk ̈a
013 ). The Kalman gain is discussed more fully in Appendix B1 and
ompared with traditional analyses. With respect to noise modelling,
raditional analyses usually introduce a sum of Fourier modes in
 TOA-based phase model, with random coefficients drawn from
n ensemble-averaged power spectral density, whose form is often
 (broken) power law with estimable amplitude and exponent(s).
n this paper, the Kalman filter tracks the specific, time-ordered,
andom realization of the noise in the data consistent with the
rnstein–Uhlenbeck process in equations ( 2 )–( 4 ), without ensemble

veraging or imposing the extra time-domain structure implicit in
 finite-term Fourier expansion (e.g. continuity from one time-step
o the ne xt). Nev ertheless, the noise models are similar and can be
elated in certain limits; for example, equations ( 2 )–( 4 ) imply an
ssociated power spectral density, which is a broken power law. A
uller discussion of equations ( 2 )–( 4 ), including a comparison with
raditional noise models, is presented in Appendix B2 . 

 VA LIDATION  WITH  SYNTHETIC  DATA  

n this section, we outline how synthetic data are generated in order
o validate the analysis scheme in Section 3 . Synthetic data enable
alidation to occur systematically and under controlled conditions. In
ection 4.1 , we describe how to construct a representative synthetic
TA, and how to set astronomically reasonable values for the static
ulsar parameters θpsr . In Section 4.2 , we demonstrate how to solve
quations ( 1 )–( 4 ), and ( 16 )–( 21 ) for the synthetic PTA so as to
enerate noisy, frequency time-series f (1) 

m 

( t ) , . . . , f ( N) 
m 

( t ). 
NRAS 534, 1844–1867 (2024) 
.1 Constructing a synthetic PTA 

e consider, by way of illustration, a synthetic PTA composed of
he 47 pulsars in the 12.5 yr NANOGrav data set (Arzoumanian
t al. 2020b ). The NANOGrav pulsars are chosen arbitrarily as
eing representative of a typical PTA; the analysis below extends
nchanged to any other PTA. 
For each pulsar, we adopt fiducial values for q ( n ) , d ( n ) , f ( n ) em 

( t 1 ),
nd ḟ ( n ) em 

( t 1 ), with the latter two quantities e v aluated at the SSB. A
able of fiducial values is presented in Appendix C for the sake of
eproducibility. The sky positions and colour-coded distances of the
ulsars are displayed in Fig. 2 . The pulsar parameters are acquired via
he Australia Telescope National Facility (ATNF) pulsar catalogue
Manchester et al. 2005 ) using the PSRQPY package (Pitkin 2018 ). 

The other static pulsar parameters are γ ( n ) and σ ( n ) , for which no
irect measurements exist. The ratio σ ( n ) / [ γ ( n ) ] 1 / 2 sets the typical
oot mean square fluctuations in f ( n ) p ( t), as discussed in Section 2.1 ,
nd the mean reversion time-scale typically satisfies [ γ ( n ) ] −1 
 T obs 

Price et al. 2012 ; Meyers et al. 2021a , b ; Vargas & Melatos 2023 ).
n this paper, for the sake of simplicity in the absence of independent
easurements, we fix γ ( n ) = 10 −13 s −1 for all n , consistent with

Vargas & Melatos 2023 ). We follow two complementary approaches
n order to set physically reasonable values for σ ( n ) . The first approach
elies on the empirical timing noise model from Shannon & Cordes
 2010 ) which gives the standard deviation of the pulsar TOAs, σ ( n ) 

TOA ,
s 

ln 

[ 

σ
( n ) 
TOA 

μs 

] 

= ln α1 + α2 ln f 
( n ) 
p + α3 ln 

[ 

ḟ 
( n ) 
p 

10 −15 s −2 

] 

+ α4 ln 

(
T cad 

1 yr 

)
, 

(34) 

here T cad is the cadence of the timing observations. For MSPs, the
est-fitting parameters are ln α1 = −20 ± 20, α2 = 1 ± 2, α3 = 2 ±
, and α4 = 2 . 4 ± 0 . 6 ( ±2 σ confidence limits). The uncertainties are
road; for the purpose of generating astrophysically representative
ynthetic data we adopt the central values in this paper. Throughout
his work, we assume for simplicity that all pulsars are observed with
 weekly cadence, T cad = 1 week . In order to relate equation ( 34 ) to
( n ) in equation ( 1 ), we equate σ ( n ) to the root mean square TOA
oise accumulated o v er one week, obtaining 

( n ) ≈ σ
( n ) 
TOA f 

( n ) 
p T cad 

−3 / 2 . (35) 
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Figure 3. Actual (left panel, blue points) and synthetic (right panel, orange 
points) phase residuals for NANOGrav MSP PSR J1939 + 2134. The actual 
residuals are sourced from the NANOGrav 12.5 yr wide-band timing data set 
(Pennucci & Collaboration 2020 ; Alam et al. 2021 ). The synthetic residuals 
are generated by numerically solving equation ( 1 ) with γ ( n ) = 10 −13 s −1 

and σ ( n ) = 2 × 10 −27 s −3 / 2 . The error bars indicate the uncertainty in the 
phase residuals and are generated by propagating the uncertainty in the TOAs 
through TEMPO2 . We set the TOA uncertainty to be a constant, viz. 0 . 1 μs. 
The blue and orange residuals are qualitatively similar by inspection. Similar 
results are obtained for the other 46 pulsars in the synthetic PTA in Section 4.1 
by tuning the value of σ ( n ) . 
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or the synthetic NANOGrav PTA depicted in Fig. 2 , the median σ ( n ) 

alculated in this way is σ ( n ) = 5 . 51 × 10 −24 s −3 / 2 , with min [ σ ( n ) ] =
 . 67 × 10 −26 s −3 / 2 for PSR J0645 + 5158 and max [ σ ( n ) ] = 2 . 56 ×
0 −19 s −3 / 2 for PSR J1939 + 2134. 
As a cross-check, we estimate σ ( n ) by solving equation ( 1 )

umerically using the BABOO package, 2 generating a synthetic phase 
olution, 

 

( n ) ( t) = 

∫ t 

0 
d t ′ f ( n ) p ( t ′ ) , (36) 

nd adjusting σ ( n ) iteratively to generate phase residuals which qual- 
tatively (i.e. visually) resemble empirical phase residuals measured 
rom real pulsars; see section 2 in Vargas & Melatos ( 2023 ) for
 successful example of this approach. We obtain empirical phase 
esiduals from the NANOGrav 12.5 yr wide-band timing data set 
Pennucci & Collaboration 2020 ; Alam et al. 2021 ). A visual cross-
heck is sufficient for the purposes of this paper, where we seek
roadly representati ve v alues for σ ( n ) . In an analysis involving real
TA data, σ ( n ) would be estimated from the data jointly with the 
ther static parameters in θ . In Fig. 3 , we compare the synthetic and
mpirical residuals for PSR J1939 + 2134, one of the 47 NANOGrav
ulsars plotted in Fig. 2 . We see that the synthetic and empirical
esiduals are qualitativ ely similar. F or this pulsar, the synthetic 
esiduals are generated using σ ( n ) = 2 × 10 −27 s −3 / 2 which is much 
ess than the central value σ ( n ) = 2 . 56 × 10 −19 s −3 / 2 inferred from
quations ( 34 ) and ( 35 ), but is consistent with the wide ranges on
1 , . . . , α4 , for example, ln α1 = −38 implies σ ( n ) = 3 . 90 × 10 −27 

 

−3 / 2 for PSR J1939 + 2134. 
 https:// github.com/ meyers-academic/ baboo 

I  

a  

s

3

.2 Generating a synthetic sequence of pulse frequencies 

e generate N synthetic noisy time series of the measured pulse
requency f ( n ) m 

( t), one for each pulsar 1 ≤ n ≤ N , as follows: 

(i) Integrate equations ( 1 )–( 4 ) numerically for the synthetic PTA
escribed in Section 4.1 , to obtain random realizations of f ( n ) p ( t) for
 ≤ n ≤ N . 
(ii) Map from f ( n ) p ( t) to f ( n ) m 

( t) via equations ( 16 ) and ( 21 ). 

Equations ( 1 )–( 4 ) are solved by a Runge–Kutta It ̂ o integrator
mplemented in the SDEINTPYTHON package. 3 The static pulsar 
arameters θpsr are completely specified for the synthetic PTA 

utlined in Section 4.1 . For this work, we consider all pulsars to
e observed for T obs = 10 yr, uniformly sampled with a weekly
adence. 

The measurement noise covariance as defined in equation ( 18 ) can
e approximately related to the uncertainty in the pulse TOA, σTOA ,
hrough 

m 

≈ σTOA f 
( n ) 
p T cad 

−1 . (37) 

lthough equations ( 35 ) and ( 37 ) superficially resemble one another,
hey are distinct. Equation ( 35 ) deals with the timing noise intrinsic
o the pulsar due to rotational irregularities, whereas equation ( 37 )
andles the detector measurement noise. For an MSP with f ( n ) p ∼ 10 2 

z observed with weekly cadence and σTOA ∼ 1 μs, equation ( 37 )
mplies σm 

∼ 10 −10 Hz. The most accurately timed pulsars have 
TOA ∼ 10 ns and σm 

∼ 10 −12 Hz. Throughout this paper, we fix 
m 

= 10 −11 Hz and take it as known a priori rather than a parameter to
e inferred for the sake of simplicity; this assumption can be relaxed
asily when analysing real data. Whilst σm 

is the same for every
ulsar, f ( n ) m 

( t) is constructed from a different random realization of
 

( n ) ( t) for each pulsar. 
Finite precision arithmetic leads to numerical errors when solv- 

ng equations ( 1 )–( 4 ) in the regime | σ ( n ) d B( t) | � f ( n ) p rele v ant to
TAs, where d B( t) labels an increment of Brownian motion (see
ppendix A ). To fix the problem, we subtract the deterministic

requency evolution and track the new variable 

 

∗( n ) 
p = f ( n ) p − f ( n ) em 

, (38) 

qui v alent to a change of variables. We similarly modify the mea-
urement variable to be 

 

∗( n ) 
m 

= f ( n ) m 

− f �( n ) 
em 

, (39) 

here f �( n ) 
em 

is a guess of the deterministic evolution based on the
ulsar ephemeris returned by TEMPO2 which is measured to high 
ccurac y in practice. F or synthetic data, we can set f �( n ) 

em 

= f ( n ) em 

ithout loss of generality, but this is impossible generally for 
stronomical observations, because the spin-down ephemeris is only 
nown approximately. Equation ( 16 ) is then updated to read 

 

∗( n ) 
m 

( t) = f ∗( n ) 
p ( t − d) g ( n ) ( t) − f ( n ) em 

( t − d) 
[
1 − g ( n ) ( t) 

]
. (40) 

e emphasize that the change of variables in equations ( 38 ) and
 39 ) is a convenient device to bring the numerical values into a
easonable dynamic range without having to use e xcessiv ely long
oating point formats (e.g. long double and quadruple). It does not
emo v e an y de grees of freedom nor does it involv e an approximation.
n particular f ( n ) em 

( t 1 ) and ḟ ( n ) em 

( t 1 ) remain as static parameters but
ppear in the measurement equation ( 40 ) rather than the dynamical
tate equations, that is, equations ( 1 )–( 4 ). 
MNRAS 534, 1844–1867 (2024) 
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Table 1. Summary of injected static parameters used for generating synthetic data in the representative example of 
Section 5 , along with the prior used for Bayesian inference on each parameter (rightmost column). The top and bottom 

halves of the table contain the values for θgw and θpsr , respectively. The subscript ‘ATNF’ denotes values obtained from 

the ATNF pulsar catalogue as described in Section 4.1 . The subscript ‘SC’ indicates that the injected value is calculated 
using equations ( 34 ) and ( 35 ) in Shannon & Cordes ( 2010 ). The quantities η( n ) 

f and η( n ) 
ḟ 

are the errors in f ( n ) em 

( t 1 ) and 

ḟ 
( n ) 
em 

( t 1 ) respectively, as quoted in the ATNF catalogue. No priors are set for d ( n ) and γ ( n ) , as those parameters do not 
enter the inference model, as discussed in Section 5.1 , cf. equation ( 41 ). 

Parameter Injected value Units Prior 

θgw � 5 × 10 −7 Hz LogUniform(10 −9 , 10 −5 ) 
α 1.0 rad Uniform(0 , 2 π ) 
δ 1.0 rad Cosine( −π/ 2 , π/ 2) 
ψ 0.90 rad Uniform(0 , π/ 2) 
� 0 3.30 rad Uniform(0 , 2 π ) 
h 0 5 × 10 −15 — LogUniform(10 −15 , 10 −9 ) 
ι 1.0 rad Sin(0 , π ) 

θpsr f 
( n ) 
em 

( t 1 ) f 
( n ) 
ATNF Hz Uniform 

[ 
f 

( n ) 
ATNF − 10 3 η( n ) 

f , f 
( n ) 
ATNF + 10 3 η( n ) 

f 

] 
ḟ 

( n ) 
em 

( t 1 ) ḟ 
( n ) 
ATNF s −2 Uniform 

[ 
ḟ 

( n ) 
ATNF − 10 3 η( n ) 

ḟ 
, ḟ 

( n ) 
ATNF + 10 3 η( n ) 

ḟ 

] 
d ( n ) d 

( n ) 
ATNF m —

σ ( n ) σ
( n ) 
SC s −3 / 2 LogUniform(10 −26 , 10 −22 ) 

γ ( n ) 10 −13 s −1 —
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4 We check this empirically in two independent ways for an informal 
selection of test cases: (i) we set an uninformative prior π

[
γ ( n ) / 1 s −1 

] ∼
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 REPRESEN TATIVE  END-TO -END  ANALYSI S  

n this section, we apply the analysis scheme in Section 3 and the
alidation procedure in Section 4 to a PTA perturbed by a GW from
n individual quasi-monochromatic SMBHB source. The analysis of
 stochastic background composed of the superposition of multiple
ources is more challenging and is postponed to a forthcoming paper.
he goal of this section is to run end-to-end through every step in

he analysis for a representative w ork ed example to help the reader
mplement the scheme and reproduce the results in Sections 6 and 7 .
o assist with reproducibility, we present intermediate outputs from
ach step. In Section 5.1, we define the priors on θ . In Section 5.2 , we
efine the measurement equation used in the inference model by the
alman filter. In Section 5.3 , we apply the workflow in Section 3.4

o estimate θ , for a single realization of the pulsar process noise
nd the measurement noise. In Section 5.4 , we extend the parameter
stimation e x ercise to multiple noise realizations to quantify the
ariance in the parameter estimates. In Section 5.5 , we calculate the
etectability of the source as a function of h 0 . 
The static GW source parameters θgw used for this mock analysis

re selected to be astrophysically reasonable and representative. The
njected components of θgw and θpsr are summarized in the second
olumn of Table 1 . 

.1 Prior distribution 

he first step is to select a reasonable Bayesian prior, π ( θ), for the
tatic parameters. For π ( θgw ), we choose standard non-informative
riors (e.g. Bhagwat et al. 2021 ; Falxa et al. 2023 ) as summarized
n Table 1 . The static parameters � 0 and ψ are degenerate; a GW
ith ( � 0 , ψ) is identical to a GW with ( � 0 + π, ψ + π/ 2). The
e generac y is well known in the PTA literature (B ́ecsy, Cornish &
igman 2022 ; Charisi et al. 2024 ) and results in bimodal posteriors

or � 0 and ψ . For the purposes of this paper, it is sufficient to
ircumvent the issue by restricting the prior on ψ to the domain
 ≤ ψ ≤ π/ 2. A similar approach is taken in targeted searches of
ontinuous GWs by the Laser Interferometer Gra vitational-Wa ve
bservatory (LIGO; Prix & Krishnan 2009 ). In the hypothetical

vent that we do not restrict the prior we obtain bimodal posteriors in
NRAS 534, 1844–1867 (2024) 
 0 and ψ (cf. Section 5.3 ) which are out of phase by ( � 0 + π, ψ +
/ 2), as expected, in line with, for example, fig. 2 of B ́ecsy et al.
 2022 ). The de generac y between � 0 and ψ is related to the formal
oncept of identifiability from the theory of signal processing, which
s applied routinely to engineering problems (Bellman & Åstr ̈om
970 ). Identifiability refers to whether it is theoretically possible to
nfer unique and accurate parameter v alues, gi ven the measured data
nd the model structure (Walter & Pronzato 1996 ; Dobre et al. 2012 ;
uillaume et al. 2019 ; Casella & Berger 2021 ). 
We now discuss the choice of π ( θpsr ). The parameters that go v ern

he deterministic evolution of f ( n ) p ( t), namely f ( n ) em 

( t 1 ) and ḟ ( n ) em 

( t 1 ), are
ell determined by radio timing observations. We identify f ( n ) em 

( t 1 )
nd ḟ ( n ) em 

( t 1 ) with the pulsar barycentric rotation frequency and its time
eri v ati ve respecti vely, as quoted in catalogues (Manchester et al.
005 ). For the 12.5 yr NANOGrav pulsars, the median fractional
rrors on f ( n ) em 

( t 1 ) and ḟ ( n ) em 

( t 1 ) are ±2 . 68 × 10 −13 per cent and
2 . 31 × 10 −3 per cent respectively. In this paper, we adopt uniform

riors on f ( n ) em 

( t 1 ) and ḟ ( n ) em 

( t 1 ), which extend ±10 3 η( n ) 
f and ±10 3 η( n ) 

ḟ 
,

espectively about the central, injected values, where η( n ) 
f and η( n ) 

ḟ 

enote the errors quoted in the ATNF Pulsar Database (Manchester
t al. 2005 ). Wider-than-necessary priors, such as those abo v e, test
he method more stringently than narrow priors. The results below
onfirm that the method estimates θgw accurately, whether the priors
re wide or narrow. 

The pulsar distances d ( n ) are less constrained than f ( n ) em 

( t 1 ) and
 ̇

( n ) 
em 

( t 1 ), with typical uncertainties ∼ 10 per cent (Yao et al. 2017 ;
rzoumanian et al. 2018a ). In this paper, ho we ver, we omit the term

nvolving d ( n ) from equation ( 21 ), as justified in Section 5.3 , so there
s no need to set a prior on d ( n ) . Furthermore we do not set a prior
n γ ( n ) , because we have γ ( n ) T obs ∼ 10 −5 , and γ ( n ) is ef fecti vely
unobservable’ o v er a decade; that is, for T obs = 10 yr, the solution
f equation ( 1 ) is approximately independent of γ ( n ) , as long as
 γ ( n ) ] −1 
 T obs is satisfied. It is therefore sufficient for validation
urposes to carry γ ( n ) through the analysis at its injected value. 4 
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Most pulsars in the synthetic PTA have 10 −25 ≤ σ ( n ) / (1 s −3 / 2 ) ≤
0 −23 as calculated from equations ( 34 ) and ( 35 ). For these
ulsars, we set an uninformative broad prior π [ σ ( n ) / (1 s −3 / 2 )] ∼
ogUniform(10 −26 , 10 −22 ). The sole exception is PSR J1939 + 2134
hich has σ ( n ) ∼ 10 −19 s −3 / 2 . For validation purposes, we artificially 

et σ ( n ) = 10 −23 s −3 / 2 for this pulsar, so that σ ( n ) for every pulsar in
he synthetic PTA falls within the aforementioned log-uniform prior. 
his is done purely for testing convenience; it is straightforward to 
xpand the prior when analysing real, astronomical data. 

By not setting priors on γ ( n ) and d ( n ) , we reduce the number of
arameters to 7 + 3 N . We use the notation θpsr, reduced to refer to the
educed parameter set, cf. equation ( 25 ). Explicitly, we write 

psr, reduced = 

{
f ( n ) em 

( t 1 ) , ḟ 
( n ) 
em 

( t 1 ) , σ
( n ) 

}
1 ≤n ≤N 

. (41) 

he injected static parameters and their corresponding priors for the 
epresentative analysis in Section 5 are summarized in Table 1 . 

.2 Earth and pulsar terms 

he general measurement equation used in the inference model, 
quation ( 21 ), separates into four terms. The first two terms,
 

( + ) 
ij cos � ( t) + H 

( ×) 
ij sin � ( t), depend only on the GW source pa-

ameters which are shared across all pulsars. The argument of the 
rigonometric functions corresponds to the GW phase at the Earth. 
he next two terms, H 

( + ) 
ij cos � 

( n ) ( t) + H 

( ×) 
ij sin � 

( n ) ( t), depend ad-
itionally on d ( n ) and q ( n ) and vary between pulsars. The argument 
f the trigonometric functions corresponds to the GW phase at each 
ndividual pulsar. The first and second pairs of terms are commonly 
eferred to as the ‘Earth term’ and ‘pulsar term’, respectively. Whilst 
he Earth term is phase coherent between all pulsars, the pulsar terms
ave uncorrelated phases. They are typically considered as a source 
f self-noise and dropped from many standard PTA analyses (e.g. 
esana & Vecchio 2010 ; Babak & Sesana 2012 ; Petiteau et al. 2013 ;
hu et al. 2015b ; Taylor et al. 2016 ; Goldstein et al. 2018 ; Charisi
t al. 2024 ) at the expense of a modestly reduced detection probability 
 ∼ 5 per cent ) and the introduction of a bias in the inferred sky
osition (Zhu et al. 2016 ; Chen & Wang 2022 ). 
In this paper, we follow the standard approach and drop the 

ulsar terms from the inference calculation (but not the source 
odel). Explicitly the measurement equation used in the Kalman 
lter reduces to 

 

( n ) 
m 

( t) = f ( n ) p ( t − d) g ( n ) Earth ( t) , (42) 

ith 

 

( n ) 
Earth ( t) = 1 − z 

( n ) 
Earth ( t) , (43) 

nd 

 

( n ) 
Earth ( t) = 

[ q ( n ) ] i [ q ( n ) ] j 

2[1 + n · q ( n ) ] 

[ 
H 

( + ) 
ij cos � ( t) + H 

( ×) 
ij sin � ( t) 

] 
. (44) 

e defer the inclusion of the pulsar terms in the inference calculation
o a future paper. As discussed in Section 5.1, this choice reduces
he dimensionality of the parameter estimation problem because the 

easurement equation, equation ( 43 ), is no longer a function of the
ulsar distance. We stress that the pulsar terms are dropped only when 
oing Bayesian inference, that is, from the Kalman filter model that 
ogUniform(10 −15 , 10 −10 ); and (ii) we deliberately displace γ ( n ) in the 
nference analysis from its true, injected value in the synthetic data, for 
 xample, γ ( n ) = 10 −14 s −1 v ersus 10 −13 s −1 , respectiv ely. The results from 

i) and (ii) are found to be the same as those reported in Section 5 . 

t
r  

i  

a
d
r  
eeds into the nested sampling algorithm. The synthetic data include 
he pulsar terms in full. 

.3 P osterior distrib ution 

n this section, we calculate the posterior probability distribution for 
he static parameters θ = θgw ∪ θpsr and compare it to the known,
njected values. The aims are (i) to demonstrate that the analysis
cheme works (i.e. that it converges to a well-behaved, unimodal 
osterior), and (ii) to give a preliminary sense of its accuracy. Initially
e consider a single noise realization when generating the synthetic 
ata for the representative example in T able 1 . W e apply the Kalman
lter in conjunction with nested sampling in order to infer the joint
osterior distribution p( θ | Y ). 
Fig. 4 displays results for the seven parameters in θgw in the

orm of a traditional corner plot. The histograms are the one-
imensional posteriors for each parameter, marginalized o v er the 
ix other parameters. The dashed vertical blue lines mark the 0.16
nd 0.84 quantiles; the solid orange line marks the known injected
alue. The two-dimensional contours mark the (0.5, 1, 1.5, 2) σ level
urfaces. All histograms and contours are consistent with a unimodal 
oint posterior, which peaks near the known, injected values. There 
s scant evidence of railing against the prior bounds. For this
epresentativ e e xample, with characteristic strain h 0 = 5 × 10 −15 ,
he analysis scheme estimates θgw accurately. The injected values 
re contained within the 90 per cent credible interval for five of the
even parameters in θgw . 

The posterior is approximately symmetric about the known in- 
ected value for some parameters such as �, where the posterior

edian and the injected value coincide approximately. For other 
arameters (e.g. ψ , ι) the distribution is not symmetric about the
njected value and the posterior median and the injected value do not
oincide. The median value of the posterior for ι is shifted by ≈ 0 . 13
ad relative to the injected value, although the injected value does
till remain inside the 90 per cent credible interval. Similar effects
re seen, albeit with a smaller shift, in other parameters such as
and α. For a single realization of the noise it is not clear if this

iscrepancy is a systematic effect, that is, a bias, or a random outcome
pecific to this particular noise realization. We explore this further 
n Sections 5.4 and 7 using more noise realizations and show that
ndeed there is a systematic bias from dropping the pulsar terms,
imilar to that reported by Zhu et al. ( 2016 ). 

Similar results are obtained for the 3 N parameters in θpsr, reduced .
gain, the parameters are reco v ered unambiguously, in the sense

hat the nested sampler converges smoothly to a unimodal joint 
osterior near the known, injected parameter values, with all 3 N 

njected parameters lying within the 90 per cent credible interval of
he 3 N one-dimensional, marginalized posteriors. We do not display 
he resulting corner plot because it is too big (3 N = 141), and
ecause inferring θgw is the focus of this paper and contemporary 
TA analyses. 

.4 Multiple noise realizations: dispersion of outcomes 

he results in Section 5.3 are obtained for a single realization of
he noise processes ξ ( n ) ( t) and ε ( n ) ( t). It is important to confirm
hat the analysis scheme returns accurate answers for arbitrary noise 
ealizations and that the specific realization of the noisy data used
n Section 5.3 is not particularly advantageous by accident. It is
lso important to quantify, albeit approximately, the natural random 

ispersion in the one-dimensional posterior medians from one noise 
ealization to the next, as the dispersion is a practical measure of the
MNRAS 534, 1844–1867 (2024) 
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Figure 4. Posterior distribution of the GW source parameters θgw for the representative system in Table 1 , for a single realization of the system noise. The 
horizontal and vertical orange lines indicate the true injected values. The contours in the two-dimensional histograms mark the (0.5, 1, 1.5, 2) σ levels after 
marginalizing o v er all but two parameters. The one-dimensional histograms correspond to the joint posterior distribution marginalized o v er all but one parameter. 
The super titles of the marginalized one-dimensional histograms specify the posterior median and the 0.16 and 0.84 quantiles. We plot the scaled variables 
10 9 � (units: rad s −1 ) and 10 15 h 0 . The Kalman filter and nested sampler estimate accurately all seven parameters in θgw , although biases are observed in some 
parameters. The horizontal axes span a subset of the prior domain for all seven parameters. 
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ccuracy of the parameter estimation scheme, when it is applied to
eal astronomical data, where the true parameter values and specific
oise realization are unknown. 
To this end, we start with the representative example in Table 1

nd generate 1000 realizations of the process noise ξ ( n ) ( t) and
easurement noise ε ( n ) ( t). For each realization, we independently

stimate the static parameters, θ . In Fig. 5 , we plot the estimates of
gw for 100 arbitrary realizations. The seven parameters in θgw are
NRAS 534, 1844–1867 (2024) 
eco v ered unambiguously. The corner plot is arranged identically to
ig. 4 , which stems from one realization. We plot 100 realizations
ather than the full set of 1000 to a v oid o v ercrowding. As in
ection 5.3 , θpsr is also reco v ered unambiguously across the 1000
oise realizations, but for the sake of brevity we do not show the
esults here. 

Fig. 5 confirms two main points: (i) the results from the 100 noise
ealizations o v erlap with the single realization in Fig. 4 ; and (ii)
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Figure 5. Same as Fig. 4 , but for 100 realizations of the noise processes, with curves coloured differently. The super titles of the one-dimensional histograms 
record the posterior median and the 0.16 and 0.84 quantiles of the median realization. The known, injected value lies within the 90 per cent credible interval for 
597 out of the 700 combinations of seven parameters and 100 noise realizations. There is an appreciable dispersion among the peaks of the one-dimensional 
posteriors, with coefficient of variation ∼ 10 per cent across the 700 combinations. A slight skew bias is apparent in some of the parameters, for example, ι. 
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he dispersion among the peaks of the one-dimensional posteriors 
s appreciable, with variations of ∼ 10 per cent (coefficient of 
ariation) across the seven parameters and 100 realizations. Indeed, 
onsidering the one-dimensional marginalized posteriors, we find 
hat the injected value is contained within the 90 per cent credible
nterval in 597 (i.e. 85 per cent ) out of the 700 possible combinations
f the seven parameters and 100 realizations. Fig. 5 , like Fig. 4 ,
isplays tentative signs of bias, where the one-dimensional posteriors 
re not symmetric about the injected value. For example, the 
aximum a posteriori probability estimates of ι appear right-skewed, 
onsistently o v erestimating the injected value in all 100 realizations.
imilar trends are seen in ψ and h 0 . Ho we ver, the width of the
osteriors is comparable to the putative bias, so it is difficult to draw
trong conclusions. Biases are discussed in detail in Section 7 . There
s no strong evidence for correlations between parameter pairs, for 
xample, banana-shaped contours, except arguably ι–h 0 . 

We now consider the complete set of 10 3 noise realizations, going
eyond the subset of nine realizations in the preceding discussion. 
e ask the question: how ‘similar’ are the 10 3 marginalized, one-

imensional posteriors computed for each of the seven parameters in 
MNRAS 534, 1844–1867 (2024) 
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Table 2. Median value of the WD W 1 , median , for each parameter in θgw , calculated across the 
(10 3 

2 

)
pairs of probability 

posteriors, for the 10 3 noise realizations in Fig. D1 . W 1 , median , inj is the W 1 , median value normalized by the injection value. 
W 1 , median , prior is the W 1 , median value normalized by the width of the prior domain (cf. Table 1 ). Both W 1 , median , inj and 
W 1 , median , prior are quoted as percentages. W 1 , median is generally smaller than the scales set by the injection values and the prior 
domain. 

Parameter Injected value Units W 1 , median W 1 , median , inj (per cent) W 1 , median , prior (per cent) 

� 5 × 10 −7 Hz 8 . 6 × 10 −10 0.2 8 . 6 × 10 −3 

� 0 3.3 rad 0.20 6.2 3.1 
ψ 0.9 rad 0.09 9.9 2.8 
ι 1.0 rad 0.11 10.5 3.3 
δ 1.0 rad 0.04 4.0 1.3 
α 1.0 rad 0.06 5.5 0.9 
h 0 5 × 10 −15 — 1 . 3 × 10 −15 25.0 1 . 3 × 10 −4 
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Figure 6. Log Bayes factor (odds ratio) ln β between the competing models 
M 1 (GW present in data) and M 0 (GW not present in data) at different GW 

strains, h 0 , for the representativ e e xample in Table 1 . The horizontal grey 
dashed line labels an arbitrary detection threshold, β = 10. The minimum 

detectable strain, for β < 10, equals 3 × 10 −15 . Missing points for β � 10 
occur when noise sub v erts the hierarchical relationship between M 0 and M 1 

(see Section 5.5 ). Note that the vertical axis features a logarithmic scale for 
ln β not β. This is appropriate, because β grows exponentially with h 0 . 
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gw ? There is no unique way to answer this question. In this paper,
e appeal to the Wasserstein distance (WD, Vaserstein 1969 ; Villani
009 ) from optimal transport theory, which defines an intuitive
otion of similarity between probability distributions. The WD
s a popular metric in machine learning (Arjo vsk y, Chintala &
ottou 2017 ), climate modelling (Paxton et al. 2022 ; Kimpson
t al. 2023 ), computational biology (Gonz ́alez-Delgado et al. 2023 ),
nd geophysics (Morris, Lipp & Roberts 2023 ); a short re vie w is
resented in Appendix D . The WD measures the cost of an optimal
trate gy for mo ving probability mass between two distributions from
osition x to position y, with respect to some cost function c( x , y ).
n this paper, we use the first WD moment, W 1 ( μ, ν), which is
efined and interpreted in Appendix D . For our purposes, W 1 has a
onvenient physical interpretation given by the Monge–Kantorovich
uality (Villani 2003 , 2009 ), viz. 

 E ( X μ) − E ( Y ν) | ≤ W 1 ( μ, ν) , (45) 

here X μ and Y ν are random variates drawn from the distributions
and ν respectively, and E denotes the expected value. That is,
 1 bounds the difference in the expectation value of a parameter

elected from θgw with respect to the probability distributions μ
nd ν. Taking a concrete example, suppose that we infer two one-
imensional posterior distributions μ( ι) and ν( ι) for ι, for two
ifferent realizations of the noise, and calculate W 1 ( μ, ν) = 0 . 5 rad.
hen, we can conclude that | E ( ι) μ − E ( ι) νν| ≤ 0 . 5 rad . 
Table 2 summarizes the WD between the 5 × 10 5 pairs of one-

imensional posteriors across the 10 3 realizations, for each of the
even parameters in θgw . The median W 1 for each parameter is
abulated in the fourth column and denoted by W 1 , median . The W 1 , median 

ormalized by the injected, known, value is denoted by W 1 , median , inj 

nd quoted in the fifth column as a percentage. W 1 , median , inj ranges
rom 0.17 per cent for � to 25 per cent for h 0 . These values quantify
pproximately the natural dispersion in parameter estimates when the
nalysis scheme is applied to real, astronomical data, where the true
arameter values are unknown. The W 1 , median normalized by the width
f the prior domain is denoted by W 1 , median , prior and quoted in the sixth
olumn as a percentage. W 1 , median , prior ranges from 1 . 3 × 10 −4 per
ent for h 0 to 3.3 per cent for ι. These values confirm that the nested
ampler converges reliably to a single, narrow peak without railing
gainst the prior bounds for 10 3 noise realizations. The W 1 , median 

ormalized by the injected, known, value is denoted by W 1 , median , inj 

nd quoted in the fifth column as a percentage. W 1 , median , inj ranges
rom 0.17 per cent for � to 25 per cent for h 0 . 

Further analysis of the WD is performed in Appendix D where
e use it for two separate purposes: (i) to measure the similarity
NRAS 534, 1844–1867 (2024) 
etween probability distributions and (ii) as a convenient heuristic
or assessing convergence of nested sampling. 

.5 Detectability versus h 0 

e frame the problem of detecting a GW in noisy PTA data in terms
f the Bayesian model selection procedure described in Section 3.3 .
n equation (33), M 1 is the Earth-term-only model with a GW
resent, that is, the state-space model with a Kalman filter based
n equation ( 42 ). The Bayes factor, β, defined in equation (33) is
lotted logarithmically in Fig. 6 for the representative source in
able 1 , except that we now vary the source amplitude, h 0 , from
0 −15 (undetectable) to 10 −12 (easily detectable). To control the test,
he noise processes in the synthetic data are identical realizations for
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Figure 7. Fraction of injections included within a given credible interval of 
the estimated posterior, as a function of the credible interval itself (i.e. PP 
plot). The injections are 200 simulated GW sources generated by drawing 
randomly five parameters in θgw from the prior distributions in Table 1 . Each 
coloured curve corresponds to a different parameter (see the legend). The 
parameters h 0 and ι are fixed at 5 × 10 −15 and 1.0 rad, respectively, in order 
to maintain an approximately constant SNR. The grey shaded contours label 
the 1 σ , 2 σ , and 3 σ confidence intervals. For parameters with well-estimated 
posteriors, the PP curve should fall along the diagonal of unit slope. � is 
generally well estimated (i.e. it lies close to the unit diagonal), but the four 
other parameters show evidence of being o v erconstrained (i.e. the curves lie 
abo v e the unit diagonal for low credible intervals, and below the unit diagonal 
for high credible intervals). This is due to a modelling bias whose origin is 
discussed in Sections 5.3 and 7 . 
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ach value of h 0 ; the only change from one h 0 value to the next is h 0 

tself. 5 

We see in Fig. 6 an approximate quadratic relationship ln β ∝ h 

2 
0 

or h 0 � 10 −14 . The GW source is detectable with decisive evidence
 β ≥ 10) for h 0 � 2 . 2 × 10 −15 . Of course, the minimum detectable
train is particular to the system in Table 1 . It is influenced in general
y T obs , θgw , and θpsr , as discussed in Section 6 . Adjusting σm 

we find
hat an approximate quadratic relationship ln β ∝ h 

2 
0 /σ

2 
m 

also exists, 
here h 0 /σm 

is the ef fecti ve signal-to-noise ratio (SNR). 
The log odds ratio ln β drops of f (i.e. β le vels of f at unity) for

 0 � 3 × 10 −15 . This happens because the two competing mod-
ls becoming increasingly indistinguishable once the measurement 
oise dominates the GW signal. Moreo v er, the points in Fig.
 become sparser for h 0 � 3 × 10 −15 . This happens because we
btain ln β < 0 for the missing, intermediate points. This is a 
oise artefact of the nested sampler. When the sampler converges 
uboptimally, the hierarchical relationship between M 0 and M 1 

ails, and Z( Y | M 1 ) > Z( Y | M 0 ) no longer holds. There is nothing
pecial about the particular missing points; if one recreates the β( h 0 )
urve by rerunning the nested sampler with another random seed, a 
ifferent set of points are missing. 

 SM BHB  S O U R C E  PA R A M E T E R S  

ection 5 focuses on a single representative system, parametrized in 
able 1 . In this section, we test the method for various systems,
arying the SMBHB source parameters through astrophysically 
ele v ant ranges. 

We analyse 200 injections constructed by fixing h 0 = 5 × 10 −15 

nd ι = 1 . 0 rad and dra wing the remaining fiv e elements of θgw 

andomly from the prior distributions defined in T able 1 . W e fix h 0 

nd ι in order to maintain an approximately constant SNR across 
he 200 injections. For each injection, we compute the posterior 
istribution of θgw . To summarize the results we use a parameter–
arameter (PP) plot (Cook, Gelman & Rubin 2006 ). A PP plot
isplays the fraction of injections included within a given credible 
nterval of the estimated posterior, plotted as a function of the credible
nterval itself. In the ideal case of perfect reco v ery, the PP plot should
e a diagonal line of unit slope. 
Fig. 7 displays the results of the numerical experiment described 

n the previous paragraph. The shaded grey contours enclose the 1 σ ,
 σ , and 3 σ significance levels for 200 injections. We see that only �
alls wholly within the 3 σ shaded region. The PP curves for the other
arameters deviate from the diagonal of unit slope. The deviation 
s more pronounced for α and δ and less for ψ and � 0 . The shape
f the graph indicates that the posteriors for these parameters are 
 v erconstrained; there are fewer injections contained within higher 
 alue credible interv als than would be expected statistically, and there 
re more injections contained within lower value credible intervals. 
his stems from the bias noted in Section 5.4 . The origin of the bias

s discussed in Section 7 . 

 SYSTEMATIC  BIASES  

he tests in Sections 5 and 6 present preliminary evidence that 
he inferred value of θgw (e.g. the medians of the one-dimensional 
arginalized posteriors) is biased away from the true injected value. 
he biases result from dropping the pulsar terms from the Kalman 
 Changing the noise realizations as well, from one value of h 0 to the next, 
dds uninformative scatter to the trend in Fig. 6 . 

s  

l  

l  

s  
lter measurement equation as described in Section 5.3 and are well
nown in the literature (Zhu et al. 2016 ; Chen & Wang 2022 ). In this
ection, we further investigate these biases. In order to elucidate the
atter without confusion from the measurement noise, we switch 

o the high-SNR regime and set h 0 = 10 −12 (cf. Fig. 6 ) for the
epresentative system in Table 1 . 

Fig. 8 displays a corner plot for θgw , analogous to Fig. 5 , but for
igh SNR ( h 0 = 10 −12 ). Except for �, the injected values lie outside
he 90 per cent credible interval, and indeed fall outside the plotted
omain. The deviation is most severe for ι with a bias of ≈ 0 . 3 rad,
ut is also present to a lesser extent in the static parameters other than
. In this section, we demonstrate how the bias stems from dropping

he pulsar terms described in Section 5.3 . 
Fig. 9 (a) displays the ι–h 0 contours of the log-likelihood returned

y the Kalman filter, that is, log L ( ι, h 0 ), viz. equation ( 30 ). The
alman filter includes the Earth term in the measurement equation, 

hat is, using equation ( 42 ). The function log L ( ι, h 0 ) is e v aluated
cross the prior domain and all other parameters are held constant
t the true injected value of the representative system in Table 1 .
he function log L ( ι, h 0 ) is calculated for a single realization of the
ata and the values are normalized with respect to max | log L ( ι, h 0 ) | .
he red point marks the location of max 

[
log L ( ι, h 0 ) 

]
. The orange 

tar marks the location of log L ( ι = 1 . 0 , h 0 = 5 × 10 −15 ), that is, the
ocation of the injected parameters (cf. Table 1 ). The dashed white
ines illustrate the ( ι, h 0 ) coordinates of the red point and the orange
tar. Fig. 9 (b) is identical to Fig. 9 (a), except that the Kalman filter
MNRAS 534, 1844–1867 (2024) 
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M

Figure 8. Same as Fig. 5 , but for a high-SNR system with h 0 = 10 −12 . For six out of seven parameters the true, injected value does not fall within the 90 per cent 
credible interval and falls outside the plotted domain. The estimated posteriors are biased away from the injected value due to dropping the pulsar terms. Note 
that the plotted domain is narrower than in Fig. 5 . 
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ncludes the Earth and pulsar terms in the measurement equation,
hat is, using equation ( 16 ). 

The key observation from Figs 9 (a) and (b) is that the location
f the maximum ( ι ≈ 1 . 3 rad , log 10 h 0 ≈ −11 . 8) does not exactly
oincide with the true, injected value ( ι = 1 . 0 rad , log 10 h 0 = −12),
hen only the Earth terms are included. That is, the red point and the
range star occupy different locations in Fig. 9 . This is the cause of
he bias in the one-dimensional marginalized posteriors in Fig. 8 . In
ontrast, the likelihood maximum coincides with the true, injected
alue, when the pulsar terms are included, that is, the red point and
he orange star are o v erlaid in Fig. 9 (b). Similar results where the
NRAS 534, 1844–1867 (2024) 
ikelihood maximum is offset from the injected values are obtained
or the other parameters, with the exception of �. An additional
xample for likelihood contours in the � 0 –ψ plane is presented in
ig. 10 . The conclusions are analogous to those drawn in the ι–h 0 

iscussion. 
Figs 9 (a) and (b) emphasize that the bias observed in Figs 4 ,

 , and 8 is not a numerical convergence problem, whereby the
ested sampler gets stuck in a local optimum. It is instead a
tructural problem rooted in the fact that the model used to generate
he synthetic data is different from the model used for parameter
nference. Dropping the pulsar terms biases several of the inferred
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Figure 9. Log-likelihood log L (equation 30 ) contours in the ι–h 0 plane calculated based on the Kalman filter using (a) e xclusiv ely the Earth terms in equation 
( 42 ) and (b) the Earth terms and the pulsar terms in equation ( 16 ). The Kalman filter runs on a single realization of the data. The red point marks the maximum 

of log L . The orange star marks the injected parameters, cf. Table 1 . The dashed white lines label the ( ι, h 0 ) coordinates of the red point and the orange star. In 
(a), there is a bias; the red point and the orange star occupy different locations. In (b), there is no bias; the red point and the orange star coincide. 

Figure 10. Same as Fig. 9 , but for log L contours in the � 0 –ψ plane. Biases are observed in (a), when the Kalman filter runs using e xclusiv ely the Earth terms 
in equation ( 42 ). Including the pulsar term in (b) remedies the bias and the likelihood maximum coincides with the injected static parameter values. 
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arameters (e.g. those that affect the GW amplitude), not just the 
ky position (Zhu et al. 2016 ; Chen & Wang 2022 ). The bias is
ot particular to our method; it is shared by all likelihood-based 
ethods that do not include the pulsar terms in the inference model,

s is well known in the literature. Quantifying the bias for practical,
stronomical PTA continuous wave searches requires a thorough 
xploration of the SMBHB parameter space, which falls outside 
he scope of this introductory paper. The bias also depends on the
TA configuration. If the bias is low enough the uncertainty in the
ne-dimensional marginalized posterior dominates the bias for quiet 
MNRAS 534, 1844–1867 (2024) 
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ontinuous wave sources with low SNR. This is what we observe for
he synthetic data; for example, in Fig. 5 , the marginalized posterior
roadens, as the SNR decreases, until it o v erwhelms the shift due
o the bias. Conversely the bias dominates if it is high enough, or
f the source is sufficiently loud Generalizing the Kalman tracker
nd nested sampler to correct for the bias will be a key goal of a
orthcoming paper. 

 C O M P U TAT I O NA L  COST  

ayesian techniques like nested sampling or Markov Chain Monte
arlo are computationally intensive, requiring a large number of

ikelihood e v aluations. In order to readily use these methods, it is
mportant that the central processing unit (CPU) time for a single
ikelihood e v aluation is fast (although some methods for Bayesian
nference with e xpensiv e likelihoods do e xist, e.g. Bilionis & Zabaras
014 ; Dinkel et al. 2023 ; El Gammal et al. 2023 ). In traditional
TA analyses, the likelihood function is e v aluated on all data si-
ultaneously, with corresponding memory demands of large-matrix
ultiplication and inversion (see e.g. section 7 of Taylor 2021 ).

n contrast, state-space algorithms are iterative and read only the
ata at the given time-step, with correspondingly smaller memory
emands. If state-space algorithms for PTA analysis are to be used
n conjunction with Bayesian techniques, it is important that they
un quickly . Ideally , they should run at least as fast as traditional
TA analyses, so that they can run in tandem as a cross-check.
oreo v er, the algorithms must scale fa v ourably with increasing

ata volume, that is, the number of pulsars in the array, or the
umber of time samples. In this section, we benchmark the software
mplementation of the state-space PTA analysis scheme in this paper,
s a rough practical guide. We also discuss briefly the scaling of the
omputational cost as a function of N , the number of pulsars in the
TA, and N t , the number of TOAs. More e xtensiv e benchmarking is
ostponed, until the analysis scheme is generalized to ingest TOAs
nstead of f ( n ) m 

( t), and a public, production version of the software is
ritten. 
In this paper, as a first pass, we implement a naive version of

he Kalman filter, without optimization. As a benchmark, a single
ikelihood e v aluation implemented in PYTHON for the synthetic data
resented in Section 4 takes T L 

∼ 9 ms of CPU time on a 2.6 GHz
ntel Core i7 processor. A translation into more performant languages
uch as C + + (Andrist, Sehr & Garney 2020 ) or JULIA (Bezanson
t al. 2012 ), the use of PYTHON pre-compilation libraries such as
UMBA (Lam, Pitrou & Seibert 2015 ) or JAX (Bradbury et al. 2018 ),
r additional optimization (Gorelick & Ozsvald 2014 ), would reduce
 L 

. 
It is important to understand how T L 

scales with both N t and
. Regarding the former, the theoretical time complexity of the
alman filter (i.e. its asymptotic behaviour), is O( N t ), because the
alman filter is an iterative algorithm. Regarding the latter, the

ate-limiting step is set by matrix multiplication, for example, in
quations ( A4 ) and ( A6 ) in the Kalman filter’s predict and update
teps, respectively; see Appendix A1 . The dimension of the Kalman
lter matrices, for example, equations ( A1 )–( A9 ), is set by N . Matrix
ultiplication without optimization scales as O( N 

3 ) (Daum 2021 ).
odern routines for matrix multiplication reduce the complexity to
O( N 

2 . 3 ) (Trefethen & Bau 1997 ). Advanced techniques to further
educe the complexity include CKMS recursion (Kailath, Sayed &
assibi 2000 ) or low-rank perturbation methods (Pnevmatikakis et

l. 2014 ). We refer the reader to Raitoharju & Pich ́e ( 2019 ) for further
nformation about complexity reduction for the Kalman filter. The
NRAS 534, 1844–1867 (2024) 
emory complexity of the Kalman filter is O( N 

2 ), independent of
 t , because the algorithm is iterative. 

 C O N C L U S I O N  

n this paper, we demonstrate a new method for the detection
nd parameter estimation of GWs from individual, monochromatic
MBHBs in PTA data. The new method is complementary to

raditional approaches. We track the evolution of the intrinsic pulsar
iming noise explicitly via a state-space method, rather than fitting
or the ensemble-averaged power spectral density of the noise. That
s, we disentangle statistically the specific time-ordered realization
f the timing noise from the GW-induced modulations, and thereby
nfer the GW source parameters conditional on the specific observed
ealization of the noisy data. We implement a Kalman filter in order to
rack the intrinsic rotational state evolution of the pulsar and combine
t with a Bayesian sampling framework to estimate the posterior
istributions of each static parameter, as well as the associated
ayesian evidence (marginalized likelihood) of the model with and
ithout a GW. The fa v ourable time-asymptotic behaviour of the

daptive gain improves the agility of the Kalman tracker compared
o alternatives, such as least-squares estimators, and the recursive
mplementation of the Kalman tracker accelerates the computation. 

We test the new method on synthetic data and find that it detects
njected signals successfully and estimates their static parameters
ccurately with relatively low computational cost. We initially focus
n a single, astrophysically representative, SMBHB GW source
bserved synthetically by the 12.5-yr NANOGrav pulsars with
 obs = 10 yr . The minimum detectable strain is estimated to be
in ( h 0 ) ≈ 2 × 10 −15 for ι = 1 . 0 rad. We then repeat the parameter

stimation e x ercise for 1000 noise realizations to compute the
atural dispersion in the reco v ered values and hence quantify the
tatistical accuracy of the method in a real astrophysical application,
hen the true parameter values are unknown. Consistent posteriors

re obtained for most realizations. The median WD is limited to
 4 per cent of the width of the prior domain (i.e. negligible railing).
he median WD divided by the injected value, an approximate
easure of the natural dispersion, ranges from 0.2 per cent for � to

5 per cent for h 0 . 
Exploration of a broader SMBHB parameter domain at fixed ι and

 0 via 200 randomly sampled parameter v ectors rev eals a bias in
he estimates of each element of the static parameters θgw , with the
xception of �. The bias is examined for a specific SMBHB GW
ource in the limit of high SNR. It is greatest for ι, amounting to ≈ 0 . 3
ad. Smaller biases of � 0 . 1 rad are also observed in � 0 , ψ, δ, and
. The bias is shown to result from dropping the pulsar terms from

he measurement equation in the Kalman filter, consistent with the
ork of previous authors (Zhu et al. 2016 ; Chen & Wang 2022 ). The

omputational cost of the method is e v aluated; a single likelihood
 v aluation is found to take ∼ 9 ms which compares fa v ourably with
raditional PTA analyses. The runtime of the full PTA analysis is
ound to be ∼ 1 . 5 × 10 2 min for the representative SMBHB GW
ource. 

We emphasize that the Kalman tracker and nested sampler in
his paper do not supplant traditional PTA analysis approaches;
hey complement traditional approaches and are most powerful
hen used in tandem. Relatedly, it is misleading to ask whether

he Kalman tracker and nested sampler are more or less sensitive
han traditional approaches for two reasons. First, one must still
eneralize the Kalman tracker and nested sampler to ingest TOAs
irectly, as happens traditionally, instead of ingesting a frequency
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ime-series, as in this paper. Generalizing the algorithm is a subtle 
ask and is postponed to a forthcoming paper. Second, the Kalman 
racker and nested sampler are conditional on a noise model that is
elated but different to the noise model in traditional approaches. The 
nalysis in this paper assumes a specific, time-ordered realization of 
 mean-reverting Ornstein–Uhlenbeck process satisfying equations 
 1 )–( 4 ), whereas traditional analyses assume a stationary Gaussian
rocess described by an ensemble-a veraged, power -law power spec- 
ral density, whose amplitude and exponent are adjustable. Hence, the 
ensitivities cannot be compared directly. Clarifying the similarities 
nd differences between various approaches promises to be a fruitful 
venue of future work. It is also a subject of attention in audio-band
W data analysis involving hidden Markov models applied to data 

rom terrestrial long-baseline interferometers (Middleton et al. 2020 ; 
bbott et al. 2022a , b ). 
The approach in this paper can be extended in at least five ways,

numerated as (i)–(v) below. 
(i) A natural first extension is to retain the pulsar terms in equation

 16 ). Alternatively, if the method continues to be used with solely
he Earth term, in line with standard practice in some published 
TA analyses, it would be desirable to e v aluate systematically the

ncurred biases in the model parameters across an astrophysically 
epresentative parameter domain, supplementing the results obtained 
y other authors (Zhu et al. 2016 ; Chen & Wang 2022 ; Kimpson et al.
024 ). 
(ii) In this paper, we consider one specific configuration of 

he synthetic PTA, namely the same pulsars that make up the 
2.5-yr NANOGrav (Section 4.1 ). It is interesting to compare the 
erformance of the method using different pulsar configurations, for 
xample, those in the PPTA and EPTA. Adding pulsars to PTAs
ncreases the computational cost so it may be advantageous to select 
 subset of pulsars by exploiting formal optimization techniques from 

lectrical engineering (Speri et al. 2023 ), although the Kalman filter
nd nested sampler are already cheaper computationally than some 
ther methods. 
(iii) In practice different PTA pulsars are observed with different 

adences at different times. Extending the Kalman filter to non- 
niform time sampling is straightforward (Zarchan & Musoff 2000 ). 
(iv) The assumption of a monochromatic source is well-justified 

strophysically in various regimes (see Section 2.2.1 ) and is an 
ppropriate starting point for this introductory paper. Nevertheless, 
MBHBs are not strictly monochromatic. It is interesting to extend 

he state-space framework such that f gw evolves in time. For �f gw <

 /T obs (see equation 14 ) evolution adds noise incoherently to the
ulsar terms, whilst for �f gw > 1 /T obs the pulsar terms induce phase
hifts that affect the o v erall phase coherence (Sesana & Vecchio 2010 ;
errodin & Sesana 2018 ). Careful consideration of the evolution of
 gw will be needed when including the pulsar terms in the inference
odel, as in point (i). 
(v) Finally, we assume in this paper that there is only one GW

ource. Ho we ver, it may be possible to resolve multiple continuous
W sources concurrently (Babak & Sesana 2012 ). The Kalman 
lter extends naturally to multiple sources; one can modify equation 
 16 ) easily to accommodate a linear superposition of GWs. Taking
he logic further, the stochastic background itself is arguably an 
ncoherent sum of many individual GW sources. As long as a way
an be found to summarize economically the many static parameters 
ssociated with the background sources, it should be possible for 
 Kalman filter and nested sampler to operate together to detect the
tochastic background by generalizing the model selection procedure 
n Sections 3.3 and 5.5 . Summarizing the parameter set econom- 
cally, while respecting the mathematical structure of the Kalman 
lter, is a subtle challenge, which we postpone to a forthcoming
aper (Kimpson et al. 2024 ). If successful, it will complement the
raditional approach of cross-correlating pulsar residuals to unco v er 
he Hellings–Downs curve (Hellings & Downs 1983 ; Agazie et al.
023a ). 
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PPENDI X  A :  K A L M A N  FILTER  

n this appendix, we describe the Kalman filter algorithm used in
his paper. General recursion relations for the discrete-time Kalman 
lter are written down for an arbitrary linear dynamical system in
ppendix A1 . The mapping onto the specific continuous-time state- 

pace model in Section 2 is written down in Appendix A2 . Separately, 
n Appendix B , we compare the Kalman filter and Ornstein–
hlenbeck model with traditional PTA data analysis techniques. 

1 Recursion equations 

he linear Kalman filter operates on temporally discrete, noisy 
easurements Y k , which are related to a set of unobservable discrete

ystem states X k , via a linear transformation 

 k = H k X k + v k , (A1) 

here H k is the measurement matrix or observation model, v k 
s a zero-mean Gaussian measurement noise, v k ∼ N (0 , R k ) with
ovariance R k , and the subscript k labels the time-step. The Kalman
lter evolves the underlying states according to 

X k = F k X k−1 + G k u k + w k , (A2) 

here F k is the system dynamics matrix, G k is the control matrix. u k 

s the control vector, and w k is a zero-mean Gaussian process noise,
 k ∼ N (0 , Q k ) with covariance Q k 

The Kalman filter is a recursive estimator with two distinct stages:
 ‘predict’ stage and an ‘update’ stage. The predict stage predicts
ˆ X k | k −1 , the estimate of the state at discrete step k, given the state
stimates from step k − 1. Specifically, the predict step proceeds as 

ˆ X k | k −1 = F k 
ˆ X k −1 | k −1 + G k u k , (A3) 

ˆ P k | k −1 = F k 
ˆ P k −1 | k −1 F T

 

k + Q k , (A4) 

here ˆ P k | k −1 is the covariance of the prediction. Note that the predict
tage is independent of the measurements. The measurement Y k is 
ncluded to update the prediction during the update stage as follows:

k = Y k − H k 
ˆ X k | k −1 , (A5) 

S k = H k 
ˆ P k | k −1 H T

 

k + R k , (A6) 
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K k = 

ˆ P k | k −1 H T

 

k S 
−1 
k , (A7) 

ˆ X k| k = 

ˆ X k | k −1 + K k εk , (A8) 

ˆ P k| k = ( I − K k H k ) ˆ P k | k −1 . (A9) 

quation ( A7 ) defines the Kalman gain K k which is defined so
s to minimize the mean-squared error in the state estimate, that
s, K k = argmin 

{
E [( X k − ˆ X k ) 2 ] 

}
. For full re vie ws of the Kalman

lter, including its deri v ation, we refer the reader to Gelb et al. ( 1974 )
nd Zarchan & Musoff ( 2000 ). 

To apply the Kalman filter in practice means specifying the eight
omponent matrices that make up the ‘machinery’ of the filter: X k ,
 k , F k , G k , u k , H k , Q k , and R k . In Appendix A2 , we describe how

he machinery is defined for the state-space model in Section 2 . 

2 State-space r epr esentation of a PTA analysis 

e apply the Kalman recursion relations in Appendix A1 to the
tate-space model of a PTA with N pulsars described in Section 2 as
ollows. 

We identify X ( t) with a vector of length N composed of the
ntrinsic pulsar frequency states, that is, 

X ( t) = 

(
f (1) 

p ( t) , f (2) 
p ( t) , ..., f ( N) 

p ( t) 
)

. (A10) 

nalogously, we package the measured pulsar frequencies as 

 ( t) = 

(
f (1) 

m 

( t) , f (2) 
m 

( t) , ..., f ( N) 
m 

( t) 
)

. (A11) 

he states evolve according to the continuous stochastic differential
quation (cf. equation 2 ) 

 X = A X d t + C ( t)d t + � d B ( t) , (A12) 

here A is a diagonal N × N matrix, 

A = diag 
(−γ (1) , −γ (2) , ..., −γ ( N) 

)
, (A13) 

nd C ( t) is a time-dependent vector with n th component 

 

( n ) = γ ( n ) 
[
f ( n ) em 

( t 1 ) + ḟ ( n ) em 

( t 1 ) t 
] + ḟ em 

( t 1 ) 
( n ) . (A14) 

he N × N square matrix � go v erns the magnitude of the increments
f Brownian motion (Wiener process) d B ( t), with 

 = diag 
(
σ (1) , σ (2) , ..., σ ( N) 

)
. (A15) 

In the idealized model abo v e, each pulsar’s rotational state evolves
henomenologically according to a mean-reverting Ornstein–
hlenbeck process, described by a Langevin equation (equation
12), whose general solution is given by (Gardiner 2009 ) 

X ( t) = e A t X (0) + 

∫ t 

0 
e A ( t −t ′ ) C ( t ′ )d t ′ + 

∫ t 

0 
e A ( t −t ′ ) � d B ( t ′ ) . 

(A16) 

rom equation ( A16 ), we construct the discrete, recursive solution
or X ( t k ) = X k in the form of equation ( A2 ), with 

F k = e A �t (A17) 

= diag 
(
e −γ (1) �t , e −γ (2) �t , ..., e −γ ( N ) �t 

)
, (A18) 

G k u k = 

∫ t k+ 1 

t k 

e A ( t k+ 1 −t ′ ) C ( t ′ )d t ′ , (A19) 

= 

(
G 

(1) 
k , G 

(2) 
k , ..., G 

( N) 
k 

)
, (A20) 
NRAS 534, 1844–1867 (2024) 
 k = 

∫ t k+ 1 

t k 

e A ( t k+ 1 −t ′ ) � d B ( t ′ ) , (A21) 

 

( n ) 
k = f ( n ) em 

( t 1 ) + ḟ ( n ) em 

( t 1 ) ( �t + t k ) 

−e −γ�t 
[
f ( n ) em 

( t 1 ) + ḟ ( n ) em 

( t 1 ) t k 
]

, (A22) 

nd �t = t k+ 1 − t k . From equation ( A21 ), the process noise covari-
nce matrix is 

Q k δkj = 〈 ηk η
ᵀ 
j 〉 (A23) 

= diag 
(
Q 

(1) , Q 

(2) , ..., Q 

( N) 
)

, (A24) 

ith 

 

( n ) = 

[ σ ( n ) ] 2 

2 γ ( n ) 

[ 
1 − e −2 γ ( n ) �t 

] 
. (A25) 

he Einstein summation convention is suspended temporarily in the
eft-hand side of equation ( A25 ). The two remaining unspecified
omponent matrices of the Kalman filter are the measurement matrix

H k and the measurement covariance matrix R k . These are defined
traightforwardly from equations ( 16 )–( 21 ). Specifically, H k is a
iagonal matrix where the n th component of the diagonal is given
y g ( n ) ( t k ) from equation ( 16 ). The measurement covariance satisfies

R k = E [ v v T  ] = σ 2 
m 

for all k. 

PPENDI X  B:  C O M PA R I S O N  WI TH  

R A D I T I O NA L  PTA  ANALYSES  

n this appendix, we compare the state-space formulation of PTA
ata analysis described in this paper with traditional formulations.
n Appendix B1 , we focus on one key difference: the asymptotic
ehaviour of the adaptive gain in the Kalman filter compared to
raditional, least-squares estimators. The adaptive gain controls the
raction of new information that is incorporated into the updated
tate estimate at every time-step and hence controls how nimbly the
racking scheme responds to new data. We illustrate the effect of the
daptive gain on a simple Wiener process as a pedagogical example
nd then explain how it applies analogously to the PTA problem. In
ppendix B2 , we compare the Ornstein–Uhlenbeck description of

he process noise intrinsic to the pulsar, specified by equations ( 2 )–
 4 ), with the traditional approach in terms of modelling red noise as a
aussian process with a (broken) po wer-law po wer spectral density.
e show that the two descriptions are equivalent in certain limits. 

1 Adapti v e gain 

any traditional PTA analyses fit timing data to a phase model
y least-squares estimation. The state-space scheme in this paper
chieves the same goal (for a pulse frequency model rather than a
hase model, strictly speaking) using a Kalman filter. It is natural to
sk how the two approaches differ, if at all. 

To understand the difference from first principles, consider as
 simplified pedagogical example the problem of estimating an
nobservable state X using a measurement Y , where X is generated
y a Wiener process, viz. 

˙
 = w , (B1) 

 = X + v , (B2) 

ith w ∼ N ( 0 , Q ) and v ∼ N ( 0 , R ) , and where an o v erdot denotes
 deri v ati ve with respect to time. We now compare the least-squares
stimator and the Kalman filter for the simplified system in equations
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 B1 ) and ( B2 ) in two cases: (i) Q = 0 (i.e. the state is constant with
o process noise) and (ii) Q 
= 0. In order to compare directly the
alman filter (which is recursive) and the least-squares estimator, 
e reformulate the batch least-squares regression as a recursive 

east-squares filter. Batch and recursive least squares are equivalent; 
oth methods minimize the sum of the squared errors and produce 
dentical estimates of the state, ˆ X . 

First, consider Q = 0. In recursive least-squares, the unbiased 
inimum variate estimate of the state at time-step k is 

ˆ 
 k, RLS = 

1 

k 

k ∑ 

i= 1 

Y k . (B3) 

hen a new data point is ingested at time-step k + 1, the estimate of
he state is updated according to 

ˆ 
 k+ 1 , RLS = 

1 

k + 1 

k+ 1 ∑ 

i= 1 

Y k (B4) 

= 

ˆ X k, RLS + 

1 

k + 1 

(
Y k+ 1 − ˆ X k, RLS 

)
. (B5) 

he prefactor ( k + 1 ) −1 in equation ( B5 ) is the recursive least-
quares gain (cf. equation A7 ) and the quantity Y k+ 1 − ˆ X k, RLS is the
nnovation (cf. equation A5 ). As the number of data points increases
he gain tends to zero; in recursive least-squares the additional datum 

 k+ 1 becomes less and less important, as k increases and more and
ore observations are obtained. As the gain tends to zero, the new

bservations are asymptotically downweighted. 
Now apply Kalman filtering to Q = 0 instead. The state estimate

s updated in response to new data according to 

ˆ 
 k+ 1 , KF = 

ˆ X k, KF + 

P 0 

R + kP 0 

(
Y k+ 1 − ˆ X k, KF 

)
, (B6) 

here P 0 is the initial covariance in ˆ X . In equation ( B6 ), the quantity
 0 / ( R + kP 0 ) is the Kalman gain. As with recursive least-squares,

he gain tends to zero as k increases. Hence, in the special case Q = 0,
he recursive least-squares and Kalman filtering behave equi v alently 
n the long term. 

Now consider Q 
= 0. The recursive least-squares estimate of the 
tate proceeds as before via equation ( B5 ). What about the Kalman
lter? For the system described by equations ( B1 ) and ( B2 ), the
ontinuous-time Riccati equation for the propagation of the error 
ovariance P ( t) is (Lewis, Xie & Popa 2017 ) 

˙
 = Q − P ( t) 2 

R 

. (B7) 

he continuous-time Kalman gain is 

( t ) = 

P ( t ) 

R 

. (B8) 

he solution to equation ( B7 ) is 

 ( t) = 

√ 

RQ 

[ 

P 0 cosh 
(
t 
√ 

Q/R 

) + 

√ 

QR sinh 
(
t 
√ 

Q/R 

)
P 0 sinh 

(
t 
√ 

Q/R 

) + 

√ 

QR cosh 
(
t 
√ 

Q/R 

)
] 

. 

(B9) 

rom equations ( B8 ) and ( B9 ), we find K( t) → 

√ 

Q/R > 0 as t 
ncreases (equi v alent to increasing k in the discrete case). That is,
he gain tends to a positive definite value, unlike for recursive least
quares. Hence, the Kalman filter is more responsive asymptotically 
o additional data than a least-squares estimator. Informally speaking, 
t is a more nimble tracker, which explains its preferred status in many
lectrical and mechanical engineering applications (Gelb et al. 1974 ; 
archan & Musoff 2000 ; Byrne 2005 ; S ̈arkk ̈a 2013 ). 
PTA data analysis is far more complicated than the pedagogical 
xample described by equations ( B1 ) and ( B2 ). Fundamentally,
hough, the timing noise tracking step can be understood in the same
ay, as a state estimation problem. In this paper, state estimation

s performed with a Kalman filter. In traditional analyses, it is
erformed through least-squares estimation using timing software 
uch as TEMPO2 (Hobbs et al. 2006 ) or PINT (Luo et al. 2021 ).
pecifically, traditional least-squares analyses fit a model of the TOA 

esiduals vector δ t of the form 

t = M ε + F a + n (B10) 

here M ε represents the deterministic deviation from the least- 
quares fit to a Taylor-series phase model, F a represents the 
tochastic red noise modelled as a sum of sine and cosine Fourier
odes with amplitudes drawn from a power spectral density (usually 

f power-law form), and n represents the stochastic white noise 
omponent, with covariance matrix N (Taylor 2021 ; Johnson et al. 
024 ). Minimizing the squared error is equi v alent to maximizing the
ssociated likelihood 

( r | ε, a ) = 

1 √ 

det ( 2 π N ) 
exp 

(
−1 

2 
r T N r 

)
, (B11) 

ith r = δ t − M ε − F a . The abo v e formulation is analogous to
he Q 
= 0 case analysed abo v e, and the conclusion is the same: the
east-squares gain tends to zero asymptotically, whereas the Kalman 
ain does not. This represents a difference between traditional PTA 

nalyses and the approach in this paper. We refer the reader to
aylor ( 2021 ) for additional details on traditional PTA data analysis
ethods. 

2 Red noise power spectral density 

n Section 2 , the intrinsic achromatic spin wandering of the pulsar,
 

( n ) 
p ( t), is modelled as an Ornstein–Uhlenbeck process go v erned by
quations ( 1 )–( 4 ). The Ornstein–Uhlenbeck model captures the main
ualitative features of a typical PTA pulsar, namely a deterministic 
ecular spin down perturbed by stochastic, small-amplitude, mean- 
everting fluctuations. 

In traditional PTA analyses, the red-spectrum timing noise fluc- 
uations are described as a zero-mean Gaussian random process 
nd modelled via a finite decomposition into a Fourier basis (see
ppendix B1 ). The Fourier coefficients are determined by the power

pectral density of the TOA residuals, which is assumed to take the
tandard form (e.g. Goncharov et al. 2021 ; Taylor 2021 ), 

( f ) = 

A 

2 
a 

12 π2 

1 

T obs 

(
f 

1 yr −1 

)−γ

yr 2 , (B12) 

here f denotes the Fourier frequency. The power spectral density is
efined by two hyperparameters, the amplitude A a and the exponent 
. Traditional PTA analyses seek to estimate the values of the
yperparameters, rather than the Fourier coefficients themselves, 
hich are drawn randomly by treating equation ( B12 ) as a probability
ensity function. 
Equations ( 1 )–( 4 ) are equi v alent to specifying a particular form

f power spectral density, which is related to but different from
quation ( B12 ). Specifically, equations ( 1 )–( 4 ) lead to a broken power
aw with ρ( f ) ∝ f −4 for f � γ ( n ) and ρ( f ) ∝ f −2 for f � γ ( n ) 

pproximately. The scalings are obtained by Fourier transforming 
quations ( 1 )–( 4 ), applying the Wiener–Khintchine theorem, and
onv erting frequenc y residuals to phase residuals (Meyers et al.
MNRAS 534, 1844–1867 (2024) 
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Table C1. List of the fiducial pulsar parameters for the 47 pulsars used 
to construct the synthetic PTA in Section 4.1 . The right ascension and 
declination of an individual pulsar in J2000 coordinates are labelled by α
and δ, respectiv ely. P arameter values are obtained from the ATNF pulsar 
catalogue (Manchester et al. 2005 ) using the PSRQPY package (Pitkin 2018 ). 

JNAME f em 

( t 1 ) (Hz) ḟ 
( n ) 
em 

( t 1 ) × 10 16 (s −2 ) α (deg) δ (deg) d (kpc) 

J0023 + 0923 327.8 −12.3 5.8 9.4 1.8 
J0030 + 0451 205.5 −4.3 7.6 4.9 0.3 
J0340 + 4130 303.1 −6.5 55.1 41.5 1.6 
J0613 − 0200 326.6 −10.2 93.4 −2.0 0.9 
J0636 + 5128 348.6 −4.2 99.0 51.5 0.7 
J0645 + 5158 112.9 −0.6 101.5 52.0 1.2 
J0740 + 6620 346.5 −14.6 115.2 66.3 1.1 
J0931 − 1902 215.6 −1.7 142.8 −19.0 3.7 
J1012 + 5307 190.3 −6.2 153.1 53.1 0.7 
J1024 − 0719 193.7 −7.0 156.2 −7.3 1.2 
J1125 + 7819 238.0 −3.9 171.5 78.3 0.9 
J1453 + 1902 172.6 −3.5 223.4 19.0 1.3 
J1455 − 3330 125.2 −3.8 223.9 −33.5 0.7 
J1600 − 3053 277.9 −7.3 240.2 −30.9 1.9 
J1614 − 2230 317.4 −9.7 243.7 −22.5 0.7 
J1640 + 2224 316.1 −2.8 250.1 22.4 1.5 
J1643 − 1224 216.4 −8.6 250.9 −12.4 0.7 
J1713 + 0747 218.8 −4.1 258.5 7.8 1.3 
J1738 + 0333 170.9 −7.0 264.7 3.6 1.5 
J1741 + 1351 266.9 −21.5 265.4 13.9 1.7 
J1744 − 1134 245.4 −5.4 266.1 −11.6 0.4 
J1747 − 4036 607.7 −48.5 267.0 −40.6 7.1 
J1832 − 0836 367.8 −11.2 278.1 −8.6 2.1 
J1853 + 1303 244.4 −5.2 283.5 13.1 2.1 
J1857 + 0943 186.5 −6.2 284.4 9.7 1.2 
J1903 + 0327 465.1 −40.7 285.8 3.5 7.0 
J1909 − 3744 339.3 −16.1 287.4 −37.7 1.1 
J1910 + 1256 200.7 −3.9 287.5 12.9 1.5 
J1911 + 1347 216.2 −7.9 288.0 13.8 1.4 
J1918 − 0642 130.8 −4.4 289.7 −6.7 1.1 
J1923 + 2515 264.0 −6.7 290.8 25.3 1.2 
J1939 + 2134 641.9 −433.1 294.9 21.6 3.5 
J1944 + 0907 192.9 −6.4 296.0 9.1 1.2 
J1946 + 3417 315.4 −3.1 296.6 34.3 6.9 
J1955 + 2908 163.0 −7.9 298.9 29.1 6.3 
J2010 − 1323 191.5 −1.8 302.7 −13.4 2.4 
J2017 + 0603 345.3 −9.5 304.3 6.1 1.4 
J2033 + 1734 168.1 −3.1 308.4 17.6 1.7 
J2043 + 1711 420.2 −9.3 310.8 17.2 1.4 
J2145 − 0750 62.3 −1.2 326.5 −7.8 0.7 
J2214 + 3000 320.6 −15.1 333.7 30.0 0.6 
J2229 + 2643 335.8 −1.7 337.5 26.7 1.8 
J2234 + 0611 279.6 −9.4 338.6 6.2 1.0 
J2234 + 0944 275.7 −15.3 338.7 9.7 1.6 
J2302 + 4442 192.6 −5.1 345.7 44.7 0.9 
J2317 + 1439 290.3 −2.0 349.3 14.7 1.7 
J2322 + 2057 208.0 −4.2 350.6 21.0 1.0 
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021a , b ; Antonelli et al. 2023 ; O’Neill, Meyers & Melatos 2024 ). 6 

he specific form of equations ( 1 )–( 4 ) is one particular choice of
tochastic model for pulsar timing noise, whose PSD ρ( f ) is broadly
onsistent with observations for several MSPs, especially over typical
nter-TOA intervals T cad = t k+ 1 − t k ∼ 1 week . Alternative models
xist, which include higher deri v ati ves of f ( n ) p ( t (Vargas & Melatos
023 ) or multiple internal stellar components (Meyers et al. 2021a , b ;
ntonelli et al. 2023 ; O’Neill et al. 2024 ). The state-space framework
resented in this paper extends straightforwardly to other stochastic
odels of pulsar spin wandering. Analogously, in traditional PTA

nalyses, whilst equation ( B12 ) is a default description, multiple
lternative parametrized models also exist (Sesana et al. 2008 ; Lentati
t al. 2013 ; Sampson, Cornish & McW illiams 2015 ; Taylor , Simon &
ampson 2017 ; Chen et al. 2017a ; Chen, Sesana & Del Pozzo 2017b ;
ggarwal et al. 2019 ; Chen, Sesana & Conselice 2019 ). We refer the

nterested reader to Taylor ( 2021 ) for additional details on alternative
ower spectral density models. 

PPENDIX  C :  SY NTHETIC  PTA  

PE CIF ICATIONS  

he synthetic PTA deployed for testing in this paper is constructed to
imic the N = 47 pulsars from the 12.5-yr NANOGrav data release,
hose sky positions are plotted in Fig. 2 . The construction recipe is
escribed in full in Section 4.1 . In this appendix, we record a complete
ist of the pulsar parameters in Table C1 , to assist the interested reader
n implementing the analysis scheme and reproducing the test results
n Sections 5 –7 . 

PPENDIX  D :  DISPERSION  O F  θgw ESTIMATES  

very random realization of the noise processes ξ ( n ) ( t) and ε ( n ) ( t)
eads to a different θgw posterior, when the synthetic data are analysed
ccording to the procedure in Section 3.4 . The distance between two
osteriors (i.e. how similar they are) can be measured by many valid
etrics, including those related to the Kolmogorov–Smirnoff test

Corder & Foreman 2014 ). In this paper, we use the WD (Vaserstein
969 ; Villani 2009 ) which is popular in machine learning (e.g.
rjo vsk y et al. 2017 ) and other domains. In Appendix D1 , we define

he WD and summarize its main properties. In Appendix D2 , we
resent for reproducibility the WD calculated between every pair
f posteriors for each static parameter in θgw across the 10 3 noise
ealizations of Section 5.4 . The results are summarized via the median
alues reported in Table 2 . 

1 Ov er view of the WD 

he WD is a metric that defines a distance between two probability
istributions μ( x) and ν( x). It has an intuitive interpretation as the
owest total cost with which one can mo v e probability mass from

to ν, with respect to a cost function c( x, y). For this reason, it
s sometimes known as the ‘Earth mo v er’s distance’. The pth order

D between two distributions is 

 p ( μ, ν) = 

[
inf 

γ∈ �( μ,ν) 

∫ 

c( x, y) p d λ( x, y) 

]1 /p 

, (D1) 
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 The Wiener–Khintchine theorem assumes that the timing noise statistics are 
tationary, which may not be true in all pulsars. Non-stationarity is a subtle 
opic, which is deferred to future work. 

f  

|  

(  

f  

E  
or p ∈ [1 , ∞ ), where λ( x, y) is the transport plan, and �( μ, ν) is the
et of all joint probability distributions for ( x , y ) that have marginals

and ν, that is, �( μ, ν) is the set of couplings of μ and ν. 
The cost function can be freely chosen to suit the nature of the

roblem. Often, as in this paper, it is taken to be the absolute value
unction, c( x , y ) = | x − y | . In general, W p ( μ, ν) with c( x , y ) =
 x − y| can be computed from n samples by the Hungarian algorithm
Kuhn 1955 ) in polynomial time O( n 3 ) (Villani 2009 ). Ho we ver,
or μ and ν defined on R 

d it is well-known (Dudley 1969 ) that
[ W p ( μ, ν)] converges slowly ∝ n −1 /d . In this paper, we calculate
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Figure D1. First moment of the WD, W 1 (colour scale), calculated between each pair of one-dimensional posteriors for the representative system in Table 1 
across 10 3 realizations as discussed in Appendix D2 , for each component of θgw . W 1 provides an upper bound on the difference in expected values between any 

two probability distributions. W 1 is generally low across all parameters and posteriors. W 1 ( θ ) is the vector for variable θ of 
(100 

2 

)
W 1 values that are plotted in 

each panel. The Pearson correlation coefficient between W 1 ( ι) and W 1 ( h ) (i.e. the ι–h panels) is 0.75, and between the W 1 ( δ) and W 1 ( α) (i.e. the δ–α panels) 
is 0.60. 
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he WD e xclusiv ely between the one-dimensional marginalized 
osteriors, setting d = 1 and obtaining 

 p ( μ, ν) = 

{∫ 1 

0 
d z 

[
F 

−1 
μ ( z) − F 

−1 
ν ( z) 

]}1 /p 

, (D2) 

here F 

−1 
μ ( z) is the inverse cumulative distribution function of μ. 

The WD holds certain advantages o v er valid alternativ es like
he K ullback–Leibler div ergence or the Kolmogoro v–Smirnoff test 
Gelman et al. 2013 ; Corder & Foreman 2014 ). It is intuitive, being
he minimum cost required to transform one distribution into another. 
t satisfies the Monge–Kantorovich duality (Villani 2003 , 2009 ), 

 E ( X μ) − E ( Y ν) | ≤ W 1 ( μ, ν) , (D3) 

here X μ and Y ν are random variates drawn from the distributions μ
nd ν, respectively, and E denotes the expected value. It also satisfies
esirable properties of a measure of distance, such as symmetry 
nd the triangle inequality. For p = 1, the WD inherits the units
f the underlying distributions. Finally, the WD is v ersatile; an y
wo distributions can be compared, irrespective of whether they are 
ontinuous, discrete, or singular. 

2 WD for θgw 

able 2 summarizes the median value of the first moment of the WD,
 1 , between the 5 × 10 5 pairs of one-dimensional posteriors across

he 10 3 realizations analysed in Section 5.4 , for each of the seven
arameters in θgw . To assist with reproducibility, we present in Fig. 
1 , the WD values for a subset (numbering 10 2 ) of the realizations.
e plot a subset of realizations to a v oid o v ercrowding the figure. The
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
ubset corresponds to the 100 realizations plotted in Fig. 5 . Fig. D1
ontains seven subplots, one for each element of θgw . Each subplot is
 lower triangular heat map, where each point denotes the W 1 value
etween a pair of one-dimensional posteriors for that element. Lower 
alues of W 1 are magenta; higher values of W 1 are yellow. Note that
he heat-map colour scale is not the same in every subplot. Instead
he colour scale is set by the minimum and maximum W 1 values for
ach parameter. Normally it would be preferable to set the colour
cale by the domain of the prior, but doing so renders the heat-map
niform, because the WD is generally much smaller than the prior
omain (cf. Table 2 ). 
Fig. D1 is consistent with the summary results presented in 

able 2 , and agrees with the conclusions drawn in Section 5.4 ,
amely that the nested sampling scheme repeatedly converges to 
imilar posteriors, for different realizations of the data, although 
ispersion remains. The W 1 value is small compared to the width
f the prior, cf. Fig. 5 and W 1 , median , prior in Table 2 . The W 1 value
s significant compared to the injection value (up to 140 per cent
or h 0 , typically � 10 per cent for other parameters; see Table 2 ), cf.
 1 , median , inj in Table 2 . Qualitatively, Fig. D1 exhibits some correlated

tructure between panels. Specifically, Figs D1 (d) and (g) ( ι and h ,
espectively) appear correlated, as do Figs D1 (e) and (f) ( δ and α,
especti vely). Quantiti vely, we define W 1 ( θ ) as the vector of length
100 
2 

)
W 1 values for variable θ that are plotted in each panel of Fig.

1 . The Pearson correlation coefficient between W 1 ( ι) and W 1 ( h ) is
.75, and between the W 1 ( δ) and W 1 ( α) is 0.60. 
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