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Experimental quantum network coding
He Lu1,2,3, Zheng-Da Li1,2, Xu-Fei Yin1,2, Rui Zhang 1,2, Xiao-Xu Fang3, Li Li1,2, Nai-Le Liu1,2, Feihu Xu 1,2*, Yu-Ao Chen1,2* and
Jian-Wei Pan1,2*

Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information
processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state
distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we
report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements
shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this
protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of
single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of
0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.
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INTRODUCTION
The global quantum network1 is believed to be the next-
generation information-processing platform and promises an
exponential increase in computation speed, a secure means of
communication,2,3 and an exponential saving in transmitted
information.4 The efficient distribution of quantum state and
entanglement is a key ingredient for such a global platform.
Entanglement distribution5 and quantum teleportation6 can be
employed to transmit quantum states over long distances. By
exploiting entanglement swapping5 and quantum purification, the
transmission distance could be extended significantly, and the
fidelities of transmitted states can be enhanced up to unity, which
is known as quantum repeaters.7 However, with the increased of
complexity of quantum networks, especially when many parties
require simultaneous communication and communication rates
exceed the capacity of quantum channels, low transmission rates,
or long delays, known as bottleneck problems, are expected to
occur. Thus, it is important to resolve the bottleneck problem and
achieve high-speed quantum communication. This question is in
the line with issues related to quantum communication complex-
ity, which attempts to reduce the amount of information to be
transmitted in solving distributed computational tasks.8

The bottleneck problem is common in classical networks. A
landmark solution is the network coding concept,9 where the key
idea is to allow coding and replication of information locally at any
intermediate node in the network. The metadata arriving from
two or more sources at intermediate nodes can be combined into
a single packet, and this distribution method can increase the
effective capacity of a network by minimizing the number and
severity of bottlenecks. The improvement is most pronounced
when the network traffic volume is near the maximum capacity
obtainable via traditional routing. As a result, network coding has
realized a new communication-efficient method to send informa-
tion through networks.10

A primary question relative to quantum networks is whether
network coding is possible for quantum-state transmission, which
is referred as quantum network coding (QNC). Classical network

coding cannot be applied directly in a quantum case due to the
no-cloning theorem.11 However, remarkable theoretical effort has
been directed at this important question. For example, Hayashi
et al.12 were the first to study QNC, and they proved that perfect
quantum state cross-transmission is impossible in the butterfly
network, i.e., the fidelity of crossly transmitted quantum states
cannot reach one. However, if two senders have shared
entanglements priorly, the perfect QNC is possible by exploiting
quantum teleportation.13–15 Thus, various studies have focused on
network coding for quantum networks, such as the multicast
problem,16,17 QNC based on quantum repeaters,18 QNC-based
quantum computation,19 and other efficient quantum-
communication protocols with entanglement.20–23 Despite these
theoretical advances, to the best of our knowledge, an experi-
mental demonstration of QNC has not been realized in a
laboratory, even for the simplest of cases.
In this study, we provide the first experimental demonstration

of a perfect QNC protocol on the butterfly network. This
experiment adopted the protocol proposed by Hayashi,14 who
proved that perfect QNC is achievable if the two senders have two
prior maximally entangled pairs, while it is impossible without
prior entanglement. We demonstrate this protocol by employing
eight photons generated via spontaneous parametric down-
conversion (SPDC). We observed a cross-transmission of single-
photon states with an average fidelity of 0.9685 ± 0.0013, as well
as cross-transmission of two-photon entanglement with an
average fidelity of 0.9611 ± 0.0061, both of which are greater
than the theoretical upper bounds without prior entanglement.

RESULTS
QNC on butterfly network
Network coding refers to coding at a node in a network.9 The most
famous example of network coding is the butterfly network, which
is illustrated in Fig. 1a. While network coding has been generally
considered for multicast in a network, its throughput advantages
are not limited to multicast. We focus on a simple modification of
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the butterfly network that facilitates an example involving two
simultaneous unicast connections. This is also known as 2-pairs
problem,24,25 which seeks to answer the following: for two
sender–receiver pairs (S1–R1 and S2–R2), is there a way to send
two messages between the two pairs simultaneously? In the
network shown in Fig. 1a, each arc represents a directed link that
can carry a single packet reliably. Here, is a single packet b1
presents at sender S1 that we want to transmit to receiver R1, and
a single packet b2 presents at sender S2 that we want to transmit
to receiver R2 simultaneously. The intermediate node C1 breaks
from the traditional routing paradigm of packet networks, where
intermediate nodes are only permitted to make copies of received
packets for output. Intermediate node C1 performs a coding
operation that takes two received packets, forms a new packet by
taking the bitwise sum or XOR), of the two packets, and outputs
the resulting packet b1 ⊕ b2. Ultimately, R1 recovers b2 by taking
the XOR of b1 and b1 ⊕ b2, and similarly R2 recovers b1 by taking
the XOR of b2 and b1 ⊕ b2. Therefore, two unicast connections can
be established with coding and cannot without coding.
In the case of quantum 2-pairs problem, the model is the same

butterfly network (Fig. 1a) with unit-capacity quantum channels
and the goal is to send two unknown qubits crossly, i.e., to send ρ1
from S1 to R1 and ρ2 from S2 to R2 simultaneously. However, two
rules prevent applying classical network coding directly in the
quantum case: (i) an XOR operation for two quantum states is not
possible; (ii) an unknown quantum state cannot be cloned exactly.
Therefore, it has been proven that the quantum 2-pairs problem is
impossible.12

Hayashi proposed a protocol that addresses the quantum 2-
pairs problem by exploition prior entanglements between two
senders.14 As shown in Fig. 1b, the scheme is a resource-efficient
protocol that only requires two pre-shared pairs of maximally
entangled state |Φ+〉 between the two senders. Notice that if the
sender (S1, S2) nodes and receiver (R1, R2) nodes allow to share
prior entanglements, then transmitting classical information with
classical network coding can complete the task only by using
quantum teleportation.13 If free classical between all nodes is not
limited, perfect 2-pair communication over the butterfly network
is possible.26 However, we consider a more practical situation that
the sender and receiver nodes do not share any prior entangle-
ments. Also, the channel capacity is limited to transmit either one
qubit or two classical bits. Hayashi proved that the average fidelity
of quantum state transmitted is upper bounded by 0.9504 for
single-qubit state, and 0.9256 for entanglement without prior
entanglement.14 However, with prior entanglement between
senders, the average fidelity can reach 1. The protocol is
summarized as follows (see Fig. 1b).

1. S1 (S2) applies the Bell-state measurement (BSM) between
the transmitted state ρ1 (ρ2) and one qubit of |Φ+〉.
According to the result of BSM m1n1 (m2n2), S1 (S2) perform
the unitary operation Xm1Zn1 (Xm2Zn2 ) on the other qubit of
|Φ+〉.

2. S1 (S2) sends the quantum state (after the unitary operation)
to R2 (R1), and sends the classical bits m1n1 (m2n2) to C1. C1
performs the XOR on m1 and m2, n1 and n2, respectively,
then sends m3=m1 ⊕ m2 and n3= n1 ⊕ n2 to C2. C2 makes
copies of m3n3 and sends them to R1 and R2, respectively.

3. R1 and R2 recover the quantum states ρ1 and ρ2 by applying
the unitary operation Xm3Zn3 on their received quantum
states.

Experimental realization
We demonstrate the perfect QNC protocol by employing the
polarization degree of freedom of photons generated via SPDC. As
shown in Fig. 2a, an ultraviolet pulse (with a central wavelength of
390 nm, power of 100mW, pulse duration of 130 fs, and repetition
of 80 MHz) passes through four 2-mm-long BBO crystals
successively, and generates four maximally entangled photon
pairs via SPDC in the form of Ψþj iij¼ 1

ffiffiffi
2

p
HVj i þ VHj ið Þij . Here, H

(V) denotes the horizontal (vertical) polarization and i, j denote the
path modes. Then, we use a Bell-state synthesizer to reduce the
frequency correlation between two photons27,28 (as shown in Fig.
2b). After the Bell-state synthesizer, |Ψ+〉ij is converted to
Φþ�� �

ij
¼ 1

ffiffiffi
2

p
HHj i þ VVj ið Þij . We set narrow-band filters with full-

width at half-maximum (λFWHM) of 2.8 and 3.6 nm for the e- and o-
ray, respectively, and, with this filter setting, we observe an
average two-photon coincidence count rate of 21,000 per second
with a visibility of 99.6% in the |H(V)〉 basis and visibility of 99.0%
in the |+ (−)〉 basis, from which we calculate the fidelity of
prepared entangled photons with an ideal |Φ+〉 of 99.3%. We
estimate a single-pair generation rate of p ≈ 0.0036, and overall
collection efficiency of 28%.
|Φ+〉12 and |Φ+〉34 are the two entangled pairs priorly shared

between S1 and S2, i.e., S1 holds photons 1 and 3 and S2 holds
photons 2 and 4. |Φ+〉56 and |Φ+〉78 are held by S1 and S2,
respectively. Photon 5 is projected on α�1 Hj i þ β�1 Vj i to prepare ρ1
with ideal form in α1|H〉+ β1|V〉. Similarly, photon 7 is projected on
α�2 Hj i þ β�2 Vj i to prepare ρ2 with ideal form α2|H〉+ β2|V〉.
On S1’s side, by finely adjusting the position of the prism on the

path of photon 1, we interfere with photons 1 and photon 6 on a
polarizing beam splitter (PBS) to realize a Bell-state measurement
(BSM). The BSM projects photons 1 and 6 to |ψ〉∈ {|Ψ+〉, |Ψ−〉,
|Φ+〉, |Φ−〉}. As the complete BSM is impossible with linear optics,
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Fig. 1 Classical network coding and quantum network coding on a butterfly network. a Classical network coding on a butterfly network. Dash
line with arrow represents information flow with a capacity of a single packet. In the two simultaneous unicast connections problem, one
packet b1 presented at source node S1 is required to transmit to node R1, and the other packet b2 presented at source node S2 is required to
transmit to node R2 simultaneously. The intermediate node C1 performs a coding operation XOR ⊕ on b1 and b2. C2 makes copies of b1 ⊕ b2
and sends them to R1 and R2, respectively. R1 and R2 decode by performing further XOR operations on the packets that they each receive.
b Quantum network coding on butterfly network. The red line with arrow represents quantum information flow with a capacity of a single
qubit, and the dash line with arrow represents classical information flow with a capacity of a two bits. See main text for more details
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we perform the complete measurements with two setup settings
by rotating the angle of the half-wave plate (HWP) on path 6 or 1
before they interfere from 0° to 45°. Note that in each setup, the
success probability to identify two of the Bell states is 50%. So, the
total success probability is 25% in our experiment. The BSM results
(different responses on the four detectors after the interference)
are related to two classical bits denoted as m1n1∈ {00, 01, 10, 11}.
According to the BSM results, S1 applies the unitary operation
U1= Xm1Zn1 on photon 3, and then sends m1n1 to node C1 and
photon 3 to the receiver node R2. Here, we use X, Y, Z to represent
the Pauli-X, Pauli-Y, and Pauli-Z matrix. Similarly, on the S2 side, we
interfere with photons 4 and 8 on a PBS to realize a BSM with
result of m2n2, according to which S2 applies the unitary operation
U2= Xm2Zn2 on photon 2. Then, S2 sends m2n2 to node C1 and
sends photon 2 to the receiver node R1.
On node C1, we perform the XOR operation on m1 and m2 and

n1 and n2, and send the results m3=m1 ⊕ m2, n3= n1 ⊕ n2 to
node C2, where we make two copies of m3n3 and send these
copies to R1 and R2. Finally, according to m3n3, we apply the
unitary operation U3= Xm3Zn3 on photons 3 and photon 2 to
recover ρ2 and ρ1.
In our experiment, the unitary operation is realized by HWPs

with transformation matrix UðθÞ ¼ cos2θ sin2θ
sin2θ �cos2θ

� �
, where θ is

the angle fast axis relative to the vertical axis. X0Z0= I means no
operation on the photon. Here, X0Z1= Z is realized by setting an
HWP at 0°. X1Z0= X is realized by setting an HWP at 45°, and
X1Z1= XZ is realized by setting two HWPs (one at 45° and the
other at 0° (shown in Fig. 2c)).

Experimental results
We first show that two single-photon states can be crossly
delivered from S1 to R2 and from S2 to R1 simultaneously in the

butterfly network. S1 and S2 can prepare six individual quantum
states ρ1 and ρ2 with an average fidelity of 99.3%. ρ1 and ρ2 have
an ideal form of ρ1= |ϕ1〉〈ϕ1| and ρ2= |ϕ2〉〈ϕ2|, where ϕ1j i; ϕ2j i∈
Hj i; Vj i; ±j i ¼ 1ffiffi

2
p Hj i± Vj ið Þ; LðRÞj i ¼ 1ffiffi

2
p Hj i± i Vj ið Þ

n o
. In our

experiment, both S1 and S2 irrelatively select ρ1 and ρ2 from six
states for transmission, thereby resulting in a total of 36
combinations. After recover of R1 and R2, we measure the fidelities
between the recovered state ρ01 (ρ02) and the ideal input state
ρ1= |ϕ1〉〈ϕ1| (ρ2= |ϕ2〉〈ϕ2|), i.e., FS1!R2 ¼ Tr ϕ1j i ϕ1h jρ01

� �
and

FS2!R1 ¼ Tr ϕ2j i ϕ2h jρ02
� �

. We project the photon on the |ϕ〉(|ϕ⊥〉)
basis and record the counts N+ and N−, where |ϕ⊥〉 is the
orthogonal state of |ϕ〉. Thus, the fidelity of the transferred single-
photon state can be calculated by F ¼ Nþ

NþþN�
. The average fidelities

over all possible BSM outcomes are shown in Fig. 3a. Note that
each BSM has four possible outcomes, thus there are 16
combinations of outcomes for the two BSMs. For each combina-
tion, we apply the unitary operations and record the measured
fidelities. In Fig. 3a, the red line represents the theoretical upper
bound of the average fidelity without prior entanglement, i.e.,
Fth= 0.9503. Specifically, Fig. 3b shows the histogram of all
measured fidelities of the 576 situations, and the average fidelity is
quantified as F ¼ P

i piFi ¼ 0:9685± 0:0013, where pi and Fi are
the probability and fidelity shown in Fig. 3b. The average fidelity
beyonds Fth= 0.9503 with 14 standard deviations.
We also show that two-photon entanglement can be estab-

lished crossly with this setup, i.e., two-photon entanglement can
be established between S1 and R2 and S2 and R1, simultaneously.
Here, the experimental setup is the same, S1(S2) does not project
photon 5(7) on α*|H〉+ β*|V〉, and photon 5(7) is retained to
perform the joint measurements with photon 2(3). To quantify the
cross-entanglement between photons 5 and 2 and 7 and 3, we
measure the entanglement witness on rho52 and ρ73, respectively.
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Fig. 2 Schematic drawing of the experimental setup. a An ultraviolet pulse successively pass through four BBO crystals, and generate four
pairs of maximally entangled photons. We use four Bell-state synthesizer (shown in Fig. 2b) to improve the counter rate of entangled photon
pair. To avoiding a mess of illustration, we separated propagation of ultraviolet pulse. In our experiment, the ultraviolet pulse is guided by
mirrors to shine on four BBO one by one. All the photons are collected by single-mode fiber and detected by single-photon detecters (SPD).
The coincidence is recored by several home-made field-programmable gate arrays (FPGA). See main text for more details. b Bell-state
synthesizer. The generated photons are compensated by a HWP at 45° and 1-mm-long BBO crystal. Then, one photon is rotated by a HWP at
45°, and finally two photons are recombined on a PBS. With Bell-state synthesizer makes ordinary ray(o-ray) exiting from one port of PBS and
extraordinary ray(e-ray) exiting the other port of PBS. c The unitary operation Ui ¼ Xmi Zni is realized by HWPs. We post-selectively apply Ui
according to mini. c Symbols used in a–c. BBO beta barium borate crystal, PBS polarizing beam splitter, HWP Half-wave plate, QWP quarter-
wave plate, SPD single-photon detector
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In particular, we measure the entanglement witness 〈W〉= I/2−
|Φ+〉〈Φ+|, which can also be related to the entanglement fidelity
〈W〉= 1/2− Fent. Here, Fent is defined as the entanglement fidelity
between the entanglement state ρij and the maximal entangle-
ment state |Φ+〉, i.e., Fent= Tr(ρij|Φ

+〉〈Φ+|). |Φ+〉〈Φ+| can be
decomposed to local observables as Φþ�� �

Φþ	 �� ¼ IIþXX�YYþZZ
4 . By

measuring the expected values of local observables, we can
calculate the entanglement fidelity. The local observable O can be
expressed as O ¼ ϕj i ϕh j � ϕ?j i ϕ?h j, where |ϕ〉(|ϕ⊥〉) is the
eigenstate of O with eigenvalue of 1(−1). The expected value of
O can be calculated by the counts hOi ¼ Nþ�N�

NþþN�
. The experimental

results of the fidelities of cross-entanglement are shown in Fig. 4.
We calculate that the average fidelity of two crossly established
entanglement is 0.9611 ± 0.0061, which beyonds 0.9256 with
5.8 standard deviations.

DISCUSSION
QNC provides an alternative solution for the transition of
quantum states in quantum networks. Compared to entangle-
ment swapping, QNC demonstrates superiority especially when
quantum resources are limited or a high communication rate is
required.29 In addition, large-scale QNC demonstrates superiority
relative to fidelity performance as well.30 In this paper, We have
demonstrated the first perfect QNC on a butterfly network. The
average fidelities of cross-state transmission and cross-
entanglement distribution achieved in our experiment exceed
the theoretical upper bounds permitted without prior entangle-
ment. We expect that our results will pave the way to

experimentally explore the advanced features of prior entangle-
ment in quantum communication. In addition, we expect that our
results will realize opportunities for various studies of efficient
quantum communication protocols in quantum networks with
complex topologies.

DATA AVAILABILITY
The data are available from the corresponding author upon reasonable request.
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