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Abstract. Recently, a novel approach to quantize SU(N) Yang-Mills theory
was proposed, where the configuration space {Aµ} is split into sectors labeled by
topological defects, and then the gauge is fixed by a sector dependent condition.
As the procedure is local in {Aµ}, it could be free from Gribov copies. In this
work, we review the renormalizability of sectors labeled by an arbitrary number
of elementary center vortices.

Because of the Gribov problem, the understanding of continuum Yang-Mills theory in
the infrared regime is certainly not within reach of the usual Fadeev-Popov method. This
obstruction was established in Refs. [1, 2], where it was shown that there is no continuous,
global gauge fixing condition in configuration space {Aµ}, when the gauge group is S U(N).
One possible approach to circumvent this problem is to restrict the path integral to the first
Gribov region, which was followed in Refs. [3–9].

An alternative approach was proposed by Singer in his seminal paper, which relies on
a locally finite open covering {#↵} of the space of all gauge fields {Aµ}, with a subordinate
partition of unity

X

↵

⇢↵(Aµ) = 1 , 8Aµ 2 {Aµ} , (1)

with the support of the function ⇢↵(Aµ) being on #↵. The idea is to insert this identity in the
Yang-Mills partition function, as follows

ZY M =
X

↵

Z(↵) , Z(↵) =

Z

#↵

[DA]⇢↵(A)e−S Y M (A) , (2)

where the sets {#↵} are to be chosen so as to guarantee the existence of local gauge-fixing
conditions f↵(A) = 0, A 2 #↵, which are free from Gribov copies. Recently, a concrete
implementation of this procedure was proposed for the case where the sets #↵ are disjoint,
thus forming a partition of {Aµ} [10]. The first step is to introduce auxiliary adjoint scalar
fields  I with an auxiliary action S aux( , A) in the theory by means of an identity. Each
gauge field is then correlated with the ⇣I(A) that minimizes S aux(A, ⇣). The next step is to
perform a generalized polar decomposition on the tuple ⇣I(A), which allow us to write ⇣I(A) =
S (A)qI(A)S −1(A), S 2 S U(N). The tuple qI is the rotated ⇣I which is closest to a given
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element of M, the vacuum manifold of S aux. We choose this element to be vTI , so that qI

satisfies the generalized pure modulus condition [qI , TI] = 0. One important fact is that the
phase S will not always be regular. In general, we may write S = US 0, with U regular. We
then introduce an equivalence class, where two phases are said to be equivalent if they di↵er
by a regular gauge transformation, i.e.

[S ] = [S 0] () S = US 0 , (3)

for some regular U. Then, it is natural to split the configuration space {Aµ} into sectorsVS 0 ,
where Aµ 2 VS 0 () [S ] = [S 0]. Because of the structure of S aux, the labels S 0 are
given by center vortex configurations. The gauge is then fixed by the sector dependent gauge
condition

fS 0 ( (A)) = [ I(A), S 0TIS −1
0 ] = 0 . (4)

In this case, Eq. (2) becomes

ZY M =
X

S 0

ZS 0
Y M , ZS 0

Y M =

Z

#(S 0)
[DA]e−S Y Mδ( fS 0 (A))Det

δ fS 0 (AU)
δU

������
U=I

. (5)

Observables may be similarly evaluated by a sum over the partial contributions of the sectors,
i.e.

hOi =
X

S 0

ZS 0
Y M

ZY M
hOiS 0 ,

hOiS 0 =

Z

#(S 0)
[DA]O(A)e−S Y Mδ( fS 0 (A))Det

δfS0 (AU)
δU

������
U=I
. (6)

Eq. (6) resembles the type of expressions which are considered in phenomenological ap-
proaches involving center vortex ensembles (see the reviews [11, 12], and references therein).
In these approaches, averages of the Wilson Loop are represented by a sum over center vor-
tex configurations with a weight that is chosen on phenomenological grounds. Therefore,
this quantization procedure not only has the potential to avoid the Gribov problem, but also
provides a glimpse of a path from Yang-Mills theory to an ensemble of center vortices. An
important line of investigation is then to compute the partial contribution of each vortex sec-
tor from first principles in order to derive and/or improve the phenomenological approach. A
relevant first step in this direction is to establish the renormalizability of the partial contribu-
tions ZS 0 . This was firstly studied for the vortex-free sector in Ref. [13], and then generalized
to a sector containing a general oriented elementary center-vortex configuration in Ref. [14].

In section 1 we present the sector-dependent gauge fixed action that implements the con-
ditions of Eq. (4). In section 2 we review the renormalizability of the vortex-free sector. In
section 3 we review the generalization of this result to a sector labeled by an arbitrary number
of elementary oriented center vortices. In section 4 we present our conclusions.

1 The gauge-fixed action

From Eq. (5) it is clear that the action will be a sector dependent functional of the fields, as
the gauge fixing condition depends onV(S 0). In order to obtain a concrete expression for it,
we introduce in each ZS 0

Y M the identity

1 =
Z

[D⇣I]δ
 
δS aux

δ⇣I

!
det
 
δ2S aux

δ⇣Iδ⇣J

!
(7)
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From Eq. (5) it is clear that the action will be a sector dependent functional of the fields, as
the gauge fixing condition depends onV(S 0). In order to obtain a concrete expression for it,
we introduce in each ZS 0

Y M the identity

1 =
Z

[D⇣I]δ
 
δS aux

δ⇣I

!
det
 
δ2S aux

δ⇣Iδ⇣J

!
(7)

which correlates each gauge field Aµ with the tuple ⇣I(A) that minimizes S aux in the presence
of Aµ. As discussed in Ref. [15], it is important to choose S aux carefully in order to obtain
a well-defined mapping Aµ ! ⇣I(A). In particular, this action should contain Spontaneous
Symmetry Breaking (SSB) in order to avoid problems with the injectivity of the map. We
considered the choice

S aux(⇣, A) =
Z

d4x
⇣
Dab
µ ⇣

b
I Dac
µ ⇣

c
I + µ

2⇣a
I ⇣

a
I +  fIJK f abc⇣a

I ⇣
b
J⇣

c
K

+ λγabcd
IJKL⇣

a
I ⇣

b
J⇣

c
K⇣

d
L

⌘
, (8)

the tensor γ being a general combination of structure constants and deltas. The delta func-
tionals and determinants in Eq. (7) are exponentiated using flavored Lie algebra valued ghost
(c̄I , cI) and Lagrange multiplier (bI) fields. Similarly, the gauge-fixing terms in Eq. (5) are
exponentiated by c̄, c and b. The resulting additional action is given by

⌃(S 0) =
Z

d4x
⇣
Dab
µ bb

I Dac
µ ⇣

c
I + Dab

µ c̄b
I Dac
µ cc

I + µ
2
⇣
c̄a

I ca
I + ba

I ⇣
b
I

⌘
+

 fIJK f abc(ba
I ⇣

b
J⇣

c
K − 2c̄a

I ⇣
b
Kcc

J) + λγabcd
IJKL

⇣
ba

I ⇣
b
J⇣

c
K⇣

d
L + 3c̄a

I cb
J⇣

c
K⇣

d
L

⌘

−U2c̄a
I ⇣

a
I − ⇤ f abc f cdec̄a

I ⇣
b
J⇣

d
I ⇣

e
J − K f IJK f abcc̄a

I ⇣
b
J⇣

c
K

+i f abc
⇣
ba⌘b

I ⇣
c
I + c̄a⌘b

I cc
I

⌘
+ f ecd f ebac̄a⌘b

I ⇣
c
I cd
⌘
, (9)

where the background field ⌘I = vS 0TIS −1
0 implements the sector-dependent condition of Eq.

(4). It is possible to show that this action has a BRST symmetry, given by

sAa
µ =

i
g

Dab
µ cc , sca = − i

g
f abccbcc ,

s⇣a
I = i f abc⇣b

I cc + ca
I , sca

I = −i f abccb
I cc ,

sc̄a
I = −i f abcc̄b

I cc − ba
I , sba

I = i f abcbb
I cc

sc̄a = −ba , sba = 0 ,

sµ2 = U2 , sU2 = 0 ,
s = K , sK = 0 ,
sλ = ⇤ , s⇤ = 0 . (10)

The transformations of the gauge fixing parameters µ2, , λ are introduced to ensure that all
observables will be independent of them [16, 17].

2 The vortex-free sector

In Ref. [13] we have studied the renormalizability of this sector using the algebraic method.
In this approach, the Ward Identities of the action are used to restrict the possible counter
terms. In this regard, it is important to introduce external sources coupled with the non-linear
BRST variations of the fields, i.e.

⌃
(1)
ext =

Z
d4x
 

i
g

Ka
µ(D

ab
µ cb) − 1

2
iC̄a f abccbcc − i f abcL̄a

I cb
I cc + Qa

I (i f abc⇣b
I cc + ca

I )

+ i f abcBa
I bb

I cc − La
I (i f abcc̄b

I cc + ba
I )
⌘
. (11)
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Moreover, an additional pair of external sources (Mab
I ,N

ab
I ) is introduced by means of the

BRST exact term

⌃
(2)
ext = s

Z
d4x Mab

I c̄a⇣b
I . (12)

They are introduced as a doublet, i.e. sMab
I = Nab

I , sNab
I = 0. To analyze the renormalizabil-

ity, we employ the algebraic method [17]. In this regard, we write the quantum action Γ at
first order as

Γ(1) = S v f + ~⌃
v f
C , (13)

⌃vf
C being the counter term, and impose on it all the Ward Identities satisfied by the tree level

action S vf , given by

S vf = S Y M + ⌃(S 0) + ⌃(1)
ext + ⌃

(2)
ext . (14)

2.1 Ward Identities and renormalization

Besides the Slavnov-Taylor, the action S vf satisfies 6 other Ward Identities. These are:

• The gauge-fixing equation,

δS vf

δba = i f abc⌘b
I ⇣

c
I − Mab

I ⇣
b
I , (15)

• The anti-ghost equation,

ḠaS vf =

0
BBBB@
δ

δc̄a − i f abc⌘b
I
δ

δQc
I
+ Mab

I
δ

δQb
I

1
CCCCA S vf = 0 . (16)

• The ghost number equation,

NghS vf =

Z
d4x
✓
ca

I
δ

δca
I
− c̄a

I
δ

δc̄a
I
+ ca δ

δca − c̄a δ

δc̄a + ⇤
δ

δ⇤
+K δ
δK +

+ U2 δ

δU2 − Ka
µ

δ

δKa
µ

− Qa
I
δ

δQa
I
− Ba

I
δ

δBa
I
− 2C̄a δ

δC̄a
− 2L̄a

I
δ

δL̄a
I

+ Nab
I
δ

δNab
I

− ⇠aI
δ

δ⇠aI
+ mab

IJ
δ

δmab
IJ

◆
S vf = 0 . (17)

• The global flavor symmetry,

QS vf =

 
⇣a

I
δ

δ⇣a
I
− ba

I
δ

δba
I
+ ca

I
δ

δca
I
− c̄a

I
δ

δc̄a
I
− ⌘a

I
δ

δ⌘a
I
− Qa

I
δ

δQa
I

+ Ba
I
δ

δBa
I
+ La

I
δ

δLa
I
− L̄a

I
δ

δL̄a
I

−  δ
δ
− 2λ

δ

δλ
− K δ
δK − 2⇤

δ

δ⇤

− Nab
I
δ

δNab
I

− Mab
I
δ

δMab
I

!
S vf = 0 . (18)
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δ

δ⇤
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δK +

+ U2 δ
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µ

δ

δKa
µ

− Qa
I
δ

δQa
I
− Ba

I
δ

δBa
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− 2C̄a δ

δC̄a
− 2L̄a

I
δ

δL̄a
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+ Nab
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δ
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I

− ⇠aI
δ
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+ mab
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δ
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◆
S vf = 0 . (17)

• The global flavor symmetry,

QS vf =

 
⇣a

I
δ

δ⇣a
I
− ba

I
δ

δba
I
+ ca

I
δ

δca
I
− c̄a

I
δ

δc̄a
I
− ⌘a

I
δ

δ⌘a
I
− Qa

I
δ

δQa
I

+ Ba
I
δ

δBa
I
+ La

I
δ

δLa
I
− L̄a

I
δ

δL̄a
I

−  δ
δ
− 2λ

δ

δλ
− K δ
δK − 2⇤

δ

δ⇤

− Nab
I
δ

δNab
I

− Mab
I
δ

δMab
I

!
S vf = 0 . (18)

• The linearly broken rigid symmetry,

RS vf =

 
⇣a

I
δ

δca
I
+ c̄a

I
δ

δba
I
− i f abc⌘a

I
δ

δNbc
I

− Ba
I
δ

δL̄a
I

+ L̄a
I
δ

δQa
I
−  δ
δK − 2λ

δ

δ⇤

− Mab
I
δ

δNab
I

!
S vf = L̄a

I ca
I + La

I c̄a
I − ⇣a

I Qa
I . (19)

• The ghost equation,

GaS vf =

 
δ

δca + ( f abc f cnm⌘n
I + i f abnMmn

I )
δ

δNmb
I

!
S vf

= i f abc
⇣
C̄bcc + Qb

I ⇣
c
I + L̄b

I cc
I + Lb

I c̄c
I + Bb

I bc
I

⌘
+

i
g

Dab
µ Kb

µ . (20)

These symmetries restricted the possible counter terms dramatically. Indeed, we showed that
the most general ⌃vf

C is given by

⌃vf
C =

Z
d4x
⇣
a0S Y M(A) + a1(@µba

I@µ⇣
a
I + g f abcba

I@µ⇣
b
I Ac
µ + g f abc@µba

I Ab
µ⇣

c
I+

+ g2 f abe f cdeAa
µb

b
I Ac
µ⇣

d
I + @µc̄

a
I@µc

a
I + g f abcc̄a

I + g f abc@µc̄a
I Ab
µc

c
I@µc

b
I Ac
µ

+ g2 f abe f cdeAa
µc̄

b
I Ac
µc

d
I ) + a2 f IJK f abc(K c̄a

I ⇣
b
J⇣

c
K − 2c̄a

I cb
J⇣

c
K − ba

I ⇣
b
J⇣

c
K)+

+ aabcd
3,IJKL(⇤c̄a

I ⇣
b
J⇣

c
K⇣

d
L − 3λc̄a

I cb
J⇣

c
K⇣

d
L − λba

I ⇣
b
J⇣

c
K⇣

d
L)+

+ a4(U2c̄a
I ⇣

a
I − µ2c̄a

I ca
I − µ2ba

I ⇣
a
I )
⌘
. (21)

Then, we showed that it may be absorbed by a redefinition of the parameters, fields and
sources of S vf , with appropriate renormalization factors.

3 Sectors labeled by center vortices

In Ref. [14], we considered a sector labeled by n center vortices with guiding centers at
the closed worldsurfaces ⌦1, . . . ,⌦n. When they carry the same fundamental weight β, the
associated defect may be written as S 0 = eiχβ·T , where χ is a multivalued angle with respect
to ⌦1, . . . ,⌦n. Here we are using the notation β · T = β|qTq, Tq being the generators of the
Cartan subalgebra of su(N). In these sectors, because of the gauge condition ..., the gauge-
fixed configurations of auxiliary fields will be of the form ⇣I = S 0qIS −1

0 , with [qI , TI] = 0.
This means that the components of ⇣I that rotate under S 0 must vanish at ⌦ = ⌦1 [ · · · [⌦n.
These are the components along the o↵-diagonal generators T↵, T↵̄, with ↵ · β , 0, ↵ being
the roots of su(N). To impose these boundary conditions, we followed the method of Ref.
[18], where the delta function that implements the boundary conditions is exponentiated as
follows

Y

γ

δ⌦(⇣γI )δ⌦(⇣γ̄I ) =

Z
[Dλ] e

i
P
γ

R
dσ1dσ2

p
g(σ1,σ2)

⇣
λ
γ
I (σ1,σ2)⇣γI (x(σ1,σ2))+λγ̄I (σ1,σ2)⇣γ̄I (x(σ1,σ2))

⌘

. (22)
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Moreover, in order to account for the BRST invariance of these boundary conditions, we
should also impose s⇣γI = s⇣γ̄I = 0 on ⌦ [19]. To this purpose, we represented this expression
in an alternative, more symmetric form, by means of the Symanzik method [20], where a
generic Lie algebra valued source J(x) was introduced. Then

Q
γ
δ⌦(⇣γI )δ⌦(⇣γ̄I )δ⌦(s⇣γI )δ⌦(s⇣γ̄I )!

R
[Dλ][D⇠] e−⌃

b.c.(λ,⇠,J) , (23)

with the additional fields satisfying

s⇠aI = λ
a
I , sλa

I = 0
sJ = 0 . (24)

The expression of interest is recovered when J is set to take its physical values (see Ref. [14]),
and automatically takes into account the BRST invariance of the boundary conditions. Then,
it is convenient to introduce external sources mab

IJ , n
ab
IJ in order to preserve the symmetries of

the vortex-free sector. In order to guarantee that these do not alter the physical theory, they
are introduced as a BRST doublet, i.e.

smab
IJ = −nab

IJ , snab
IJ = 0 . (25)

Therefore, the full action in these sectors is given by

⌃vortex = ⌃(S 0) + S (1)
ext + ⌃

(2)
ext + ⌃

(3)
ext + ⌃

b.c. . (26)

To analyze the renormalizability of ⌃vortex, we proceeded similarly as in the vortex-free case.
Namely, we imposed the Ward Identities in the quantum action to restrict the possible counter-
terms, and studied the stability of the action.

3.1 Ward Identities and renormalization

Three new Ward Identities are satisfied in the center vortex sectors. These involve the new
fields λI , ⇠I , J,mIJ , nIJ , and are given by

• The J equation,

Ja⌃vortex =

0
BBBB@
δ

δJa − f abcδIJ
δ

δmbc
IJ

1
CCCCA⌃vortex = 0 . (27)

• Global symmetry in the boundary-conditions sector,

F ⌃vortex =

0
BBBB@⇠aI
δ

δ⇠aI
+ λa

I
δ

δλa
I
− Ja δ

δJa − nab
IJ
δ

δnab
IJ

− mab
IJ
δ

δmab
IJ

1
CCCCA⌃vortex

= 0 . (28)

• The linearly broken λ equation,

⇤a
I⌃

vortex =
δ⌃vortex

δλa
I
= f abc⇣b

I Jc . (29)

In Ref. [14], we showed that ⌃vortex
C = ⌃vf

C , and that the action is stable in the vortex sectors.
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Moreover, in order to account for the BRST invariance of these boundary conditions, we
should also impose s⇣γI = s⇣γ̄I = 0 on ⌦ [19]. To this purpose, we represented this expression
in an alternative, more symmetric form, by means of the Symanzik method [20], where a
generic Lie algebra valued source J(x) was introduced. Then

Q
γ
δ⌦(⇣γI )δ⌦(⇣γ̄I )δ⌦(s⇣γI )δ⌦(s⇣γ̄I )!

R
[Dλ][D⇠] e−⌃

b.c.(λ,⇠,J) , (23)

with the additional fields satisfying

s⇠aI = λ
a
I , sλa

I = 0
sJ = 0 . (24)

The expression of interest is recovered when J is set to take its physical values (see Ref. [14]),
and automatically takes into account the BRST invariance of the boundary conditions. Then,
it is convenient to introduce external sources mab

IJ , n
ab
IJ in order to preserve the symmetries of

the vortex-free sector. In order to guarantee that these do not alter the physical theory, they
are introduced as a BRST doublet, i.e.

smab
IJ = −nab

IJ , snab
IJ = 0 . (25)

Therefore, the full action in these sectors is given by

⌃vortex = ⌃(S 0) + S (1)
ext + ⌃

(2)
ext + ⌃

(3)
ext + ⌃

b.c. . (26)

To analyze the renormalizability of ⌃vortex, we proceeded similarly as in the vortex-free case.
Namely, we imposed the Ward Identities in the quantum action to restrict the possible counter-
terms, and studied the stability of the action.

3.1 Ward Identities and renormalization

Three new Ward Identities are satisfied in the center vortex sectors. These involve the new
fields λI , ⇠I , J,mIJ , nIJ , and are given by

• The J equation,

Ja⌃vortex =

0
BBBB@
δ

δJa − f abcδIJ
δ

δmbc
IJ

1
CCCCA⌃vortex = 0 . (27)

• Global symmetry in the boundary-conditions sector,

F ⌃vortex =

0
BBBB@⇠aI
δ

δ⇠aI
+ λa

I
δ

δλa
I
− Ja δ

δJa − nab
IJ
δ

δnab
IJ

− mab
IJ
δ

δmab
IJ

1
CCCCA⌃vortex

= 0 . (28)

• The linearly broken λ equation,

⇤a
I⌃

vortex =
δ⌃vortex

δλa
I
= f abc⇣b

I Jc . (29)

In Ref. [14], we showed that ⌃vortex
C = ⌃vf

C , and that the action is stable in the vortex sectors.

4 Discussion

Recently, a new way to quantize Yang-Mills theory based on a local gauge fixing procedure,
so as to avoid the presence of Gribov copies, was proposed. The path integral was written as
a sum over inequivalent sectors labeled by center vortices, and the gauge is fixed with a sec-
tor dependent gauge condition. Within this procedure, observables of Yang-Mills theory are
evaluated as a sum over partial contributions of each possible center vortex sector, providing
a glimpse of a path from Yang-Mills theory to phenomenological center-vortex ensembles.
In Ref. [13], we established the renormalizability of the vortex-free sector by using the alge-
braic method, and then, in Ref. [14], this was generalized to a sector containing an arbitrary
number of elementary center vortices. The BRST structure guaranteed the independence of
observables from the gauge fixing parameters, and the introduction of appropriate external
sources allowed us to to establish a rich set of Ward Identities. These restrictive symmetries
implied that the counter-term is the same in all the analyzed sectors, and so is the number of
independent renormalization parameters. These results show that this first principles Yang-
Mills ensemble is indeed calculable.
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