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Abstract

We formulate and investigate the Dark Abelian Sector Model (DASM), which ex-
tends the gauge group of the Standard Model (SM) by an additional spontaneously
broken U(1)q gauge group of a possible hidden sector. The SM is assumed to be
a singlet with respect to the U(1)q. Keeping the hidden sector rather generic,
the DASM adds a neutral massive Z’ boson corresponding to the U(1)4, a neutral
Higgs boson and a Dirac fermion, which both only carry charge of the U(1)q, as
well as right-handed SM-like neutrinos, to the SM. In this way, the DASM em-
ploys the only two possible SM operators (mass dimension < 4, gauge-invariant),
namely the Higgs mass operator ®'® and the field-strength tensor of the weak
hypercharge, to open up two portals to a possible dark sector. Additionally, the
presence of the right-handed neutrinos allows for a third portal to the dark sector.
We set up the theoretical framework for the DASM in terms of the masses M,
My, and m,,, of the new Higgs boson, gauge boson, and fermion, respectively, the
respective mixing angles «, 7, and 6, of the Higgs, gauge, and fermion sectors, and
the scalar self-coupling A\j2. Furthermore, we define on-shell and MS renormaliza-
tion schemes for the DASM at the 1-loop level. A first phenomenological analysis
is performed using electroweak precision observables, namely the mass of the W
boson derived from muon decay, the anomalous magnetic moment of the muon
(g — 2),, the leptonic effective weak mixing angle, and the leptonic partial decay
width of the Z boson. For Z’-boson masses smaller than the Z-boson mass we find
a wide range of the parameter space of the DASM that provides a significantly
better agreement between measurements and the corresponding predictions for the
investigated precision observables than the SM can provide.
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1. Introduction

The field of high-energy physics (HEP) aims towards describing the fundamental
constituents of matter as well as the fundamental interactions acting between
them. To this end, roughly half a century ago the Standard Model of particle
physics (SM) was developed. The SM is a quantum field theory based on the
spontaneously broken

gauge group. It describes the strong as well as the electroweak interactions. In
the meantime countless results of high-precision collider experiments were found
to agree precisely with their respective SM predictions, showcasing its remarkable
predictive power. Furthermore, with the discovery of a Higgs boson [1,2] at the
Large Hadron Collider in 2012, that appears to have the properties of the Higgs
boson proposed by the SM, it seems that all particles predicted by the SM have
been found.

Despite this astonishing predictive power, there are several observations that clearly
hint that the SM cannot be the ultimate theory of Nature. For one, no renormaliz-
able quantum-field-theoretical description of the gravitational force is known today
and, thus, gravity is not included in the SM. Additionally, the SM does not offer
any explanation for the origin of neutrino masses. Furthermore, it can neither pre-
dict the matter-antimatter asymmetry observed in the visible universe, nor can it
explain the origin of dark matter (DM) or the existence of dark energy.

There are also some precision measurements that show a tension with respect to
their SM prediction. One of them is the measurement of the anomalous magnetic
moment of the muon (g —2),, performed by the BNL and FNAL collaborations [3],
that shows a 5.10 deviation from the SM prediction [4]. However, recent devel-
opments in the field of lattice QCD allow for an alternative determination of the
so-called hadronic vacuum polarization [5], which enters the prediction for (g—2),,.
Making use of this new lattice QCD result leads to a reasonably good agreement
(1.70) between measurement and SM prediction for (¢—2),. Thus, clarification on
the result of the SM prediction is needed in the near future. Another measurement
that shows a tension (70) with respect to its SM prediction [6] is the result for the
W-boson mass obtained by the CDF collaboration [7]. Moreover, the CDF mea-
surement is at variance with respect to the previous experimental world average,
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and further clarification on the compatibility of the different results is needed (see
also Ref. [8]).

As long as no further truly elementary particles are found by experiments, one
promising option to obtain hints on the structure of possible physics beyond the
SM (BSM) is to further increase the precision of measurements and predictions,
i.e. to search for deviations between experimental results and SM predictions at an
even higher level of accuracy. In parallel, it is of uttermost importance to investi-
gate different possible BSM theories to learn more about their phenomenological
implications. To this end, within the era of modern high-precision experiments,
one has to ensure that the precision of any predictions calculated, even within
these BSM theories, matches the accuracy of the respective measurements as far
as possible.

In the pursuit of answering some of the open questions mentioned above, many in-
teresting and possibly more complete theories, like Supersymmetric models (SUSY)
or Grand Unifying Theories (GUTSs), were developed. These more complete mod-
els often introduce several new parameters and predict many additional elementary
particles. Despite the huge effort that was invested in countless analyses to test
these models in the past decades, no significant evidence has been found hinting
that one of them is realized in Nature. In addition, the large complexity of these
theories makes it quite difficult to perform precision calculations within them.
This led to a shift of the focus of the HEP community towards more generic ap-
proaches, like effective field theories (EFTs) or simplified, generic extensions of
the SM. Assuming the SM to be the low-energy limit of some more complete the-
ory, EFTs, like the SM effective field theory (SMEFT) (for a detailed discussion
on SMEFT see Ref. [9]) only consider the fields corresponding to the low-energy
particle content of the full theory as dynamical degrees of freedom (d.o.f.). They
parameterize the effects of possible new physics associated with the high-energy
scale in terms of a perturbative series (in the inverse of the high-energy scale) using
effective higher-order operators. Therefore, EFTs provide an effective framework
for a widely model-independent approach to measure new-physics effects. At the
same time their effective parameterization can—depending on the exact choice of
EFT—Dbe matched to a large amount of possible BSM theories. However, the very
generic approach of EFTs tends to introduce a large number of effective operators
with corresponding Wilson coefficients, already at lowest (non-trivial) order in the
high-energy scale. This increases the complexity of any analysis drastically. Fur-
thermore, the effective parameterization does not allow for an easy interpretation
in case any BSM effects are found. Additionally, matching any BSM theory to
the considered EFT is a non-trivial task, especially for high-precision calculations,
i.e. when higher-order corrections in the perturbative expansion in the coupling
constants are considered in the BSM predictions.

As a promising alternative to EFTs one can investigate generic extensions of the
SM. In contrast to EFTs, these SM extensions are ultraviolet (UV) complete mod-
els that focus on extending specific subsectors of the SM in rather generic ways.



While these are not necessarily candidates for complete theories of Nature, they
comprise generic building blocks for more complete models. Due to their reduced
complexity and the moderate amount of newly introduced free parameters, they
build a perfect basis to investigate and further understand the influence of such
generic extensions on high-precision predictions. Therefore, they can contribute a
crucial part to the search for new physics. One interesting class of these extensions
investigates the exact structure of electroweak (EW) symmetry breaking. Probing
the mechanism that is responsible for the mass generation of the particles at high
precision is especially important since most of the more complete BSM theories
(like SUSY or GUT models) predict some deviations compared to the SM case
by introducing additional Higgs fields to the scalar sector. Some of the histori-
cally most prominent examples for generic Higgs-sector extensions are, e.g., the
Singlet Extension of the SM (SESM) [10-13] or the Two Higgs Doublet Model
(THDM) [14,15]. These are known for several decades and numerous precision
analyses (see e.g. Refs. [16,17]) managed to set limits on the viable parameter
space of these models. However, many of these generic Higgs-sector extensions
(including the SESM and the THDM) are still viable.

A second class of generic SM extensions introduces an additional U(1) gauge group
or even more complex gauge symmetries [18-21] to the SM gauge structure. These
models recently gained popularity since they might be able to loosen the tension
observed in (g — 2),. In the literature, many different ideas have been proposed
on how to introduce such gauge-sector extensions to the SM without introducing
any anomalies to the theory. These models can potentially solve some of the open
questions like the origin of DM. For one, the global B — L (baryon number minus
lepton number) symmetry of the SM can be promoted to a, possibly spontaneously
broken, gauge symmetry U(1)p_r. Consequently a (massive) neutral Z'y ; gauge
boson that couples to the B — L charge (see e.g. Refs. [22-24]) is added to the the-
ory opening a portal to possible new physics carrying this charge. A possibly even
more prominent class of generic U(1) extensions are the so-called “dark photon”
or Z' extensions. They introduce a dark sector with a non-trivial gauge structure
of at least a, possibly broken, U(1)4 to the SM, without specifying the full matter
content of this dark sector in detail [13,25-34]. The presence of this additional
abelian gauge group allows for kinetic mixing between the U(1)y of the SM and
the U(1)q introduced via their gauge-invariant field-strength tensors, as well as
mass mixing for their respective gauge fields. This opens up a portal from the SM
to the dark sector via the resulting massive neutral Z’ gauge boson. A third class
of generic SM extensions introduces generic building blocks to the neutrino sector
of the SM. These types of extensions seem to provide promising DM candidates
and propose several possible solutions for the mass generation of the SM neutrinos
(see Refs. [35,36] and references therein).

In this thesis, we formulate a model henceforth called the Dark Abelian Sector
Model (DASM). The DASM is a quite generic extension of the SM that introduces
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a dark sector to the theory. This dark sector resembles a large class of dark sec-
tors with similar features that can be found in more fundamental models. It is
assumed to be a singlet with respect to the SM gauge group, but features an ad-
ditional “dark” U(1)4 gauge group. Thus, the gauge group of the DASM is given
by

SU(?))C X SU(Q)W X U(l)y X U(l)d

This opens up the possibility of kinetic mixing between the SM U(1)y and the
new U(1)q (see e.g. Refs. [13,26,27] for similar models featuring kinetic mixing).
Furthermore, a second complex Higgs field p is introduced in the dark sector, i.e. it
is a singlet with respect to the SM but carries charge of the dark gauge group.
This Higgs field p develops a non-vanishing vacuum expectation value (vev) which
spontaneously breaks the U(1)q. Ultimately this leads to an additional massive
neutral gauge boson as well as an additional neutral Higgs boson. The fermion
sector of the DASM introduces right-handed, uncharged, partners to the SM neu-
trinos as well as a Dirac fermion that carries charge of the U(1)g4.

Note that, keeping the charges of the SM fields unchanged, there are only two
operators of the SM that are gauge-invariant and renormalizable by themselves.
These are the Higgs mass operator ®'® and the field-strength tensors of the U(1)y
gauge field. The Higgs- and gauge-sector extensions introduced by the DASM uti-
lize both of them to employ possible portals to an abelian dark sector that is a
singlet with respect to the SM gauge group. Further, the extension of the fermion
sector by right-handed SM-like neutrinos as well as the additional fermion allows
us to open up a third portal from the SM to the dark sector via Yukawa interac-
tions. The existence of the additional gauge boson can have a significant impact
on EW precision observables (POs) and potentially loosen the tension between the
measurements and theory predictions for (g — 2), or even for the CDF measure-
ment of the W-boson mass. Furthermore, the fermion sector of the DASM can
accommodate neutrino masses, and some regions of the DASM parameter space
allow for potential DM candidates. In recent times, models similar to the DASM
that combine extensions of several subsectors in a generic way became more and
more interesting and first analyses investigating their phenomenological implica-
tions were performed, e.g. by the authors of Ref. [37] on the Hidden Abelian Higgs
Model, which is a model that features extensions of the Higgs and gauge sector
that are similar to the ones of the DASM.

In this work, we set up the theoretical framework for the DASM and propose
a set of intuitive and experimentally easily accessible input parameters that are
well suited for phenomenological analyses at colliders. Further, being interested in
next-to-leading order (NLO) BSM corrections, we give the complete NLO renor-
malization procedure for the DASM. To this end, we develop an on-shell (OS)
renormalization scheme that is based on measurable quantities as far as possible,
providing a well-suited setup to study Higgs and EW POs. Alternatively, we give
the results for MS renormalization conditions for the additional mixing angles in-
troduced by the DASM. To the best of our knowledge, the discussion of suitable



renormalization schemes for gauge-boson mixing angles originating from kinetic
mixing was not present in the literature beforehand. Thus, Ref. [38] (which an-
ticipated some results of this thesis) might serve as a rather general proposal for
the definition of OS renormalization conditions for such mixing angles. Having the
renormalization set up, we derive predictions for four POs, namely the W-boson
mass My derived from muon decay, the anomalous magnetic moment of the muon
(9 — 2),, the effective weak mixing angle S?N’eﬂvl, and the leptonic partial decay
width of the Z boson, I'z_.;, at the 1-loop level in the BSM effects. Further, we
combine these predictions in a global fit of the BSM d.o.f., to investigate the pre-
dictive power of the DASM and to get a first idea whether the DASM remains a
promising candidate in the search for BSM physics.

This thesis is structured as follows:

e In Chapter 2 a brief overview of the SM is given. We conclude the summary
of the SM with a brief discussion of its shortcomings that highlight the need
for BSM physics.

e A detailed description of the theoretical setup of the DASM is given in Chap-
ter 3. Further, we define a simplified version of the full fermion-sector ex-
tension that is well suited for our following analysis of collider phenomenol-
ogy and (g — 2),, and greatly reduces the amount of newly introduced free
parameters. Finally, we define a set of intuitive and experimentally easily
accessible input parameters for the DASM. To this end, we trade the original
parameters of the theory in favour of the masses of the new particles and
mixing angles which are directly connected to the coupling strengths of the
respective particles.

e Chapter 4 gives a detailed description of the NLO renormalization of the
DASM. In total, we give the results for the NLO renormalization constants
in two different schemes, one being an on-shell scheme and a second one
employing MS renormalization conditions for the newly introduced mixing
angles.

e In the first half of Chapter 5, we define different electroweak input schemes
used in the following calculations. Further, we give a detailed discussion
of the derivations and results for the POs My, (g — 2),, sfvyeﬁ’l, and 'y,

investigated in the following phenomenological analysis. In the second half

of the chapter, a global fit of the BSM parameters is performed using the
predictions for these POs. This includes a detailed discussion of the fit setup

and the fit results.

e In the final Chapter 6, we give a summary and our conclusions, as well as
an outlook.
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e The appendices contain explicit expressions of interesting quantum-field-
theoretical quantities. In particular, we give the Feynman rules for the
DASM in Appendix F.



2. The Standard Model

The SM is the current theory of particle physics. It is a relativistic quantum field
theory based on the gauge group

SU(3)e x SU2)w x U(1)y. (2.1)

The SM describes three of the four known fundamental interactions, namely the
strong, the weak, and the electromagnetic forces, as well as the elementary particles
that make up the fundamental constituents of matter. For the fourth fundamental
interaction, the gravitational force, no fully consistent quantum-field-theoretical
description is known. Thus, it cannot be included in the SM in a straightforward
manner. However, the small value of its coupling strength makes the impact of the
gravitational force on HEP measurements negligible compared to the remaining
three fundamental interactions. Therefore, the SM is suitable to describe physics
at energy scales of modern HEP experiments within the required bounds of accu-
racy.

In the SM, the strong interactions are governed by the theory of quantum chro-
modynamics (QCD) [39-41] described by the SU(3)c part of the gauge group.
The remaining SU(2)w x U(1)y part of the SM gauge group describes the weak
and electromagnetic forces via the Glashow-Salam-Weinberg (GSW) model [42-45]
and combines them into the so-called electroweak (EW) interactions. In the GSW
model, the Higgs—Kibble mechanism [46-50] is introduced to the SM, sponta-
neously breaking the SU(2)w x U(1)y gauge group in order to consistently de-
scribe a gauge theory with massive force carriers. The spontaneous breaking of
the SM gauge group is done such that only a U(1)ey, part of the EW gauge group,
describing quantum electrodynamics (QED), is left unbroken.

The so-called matter fields of the SM are spin J = % fermions. The force carriers
are vector bosons with spin J = 1, and the Higgs boson, whose existence is a
consequence of the Higgs—Kibble mechanism, is the only scalar (J = 0) boson of
the SM. The force carriers of the strong interactions are the eight massless gluons.
The EW force is mediated by two massive, charged bosons W=, the massive, neu-
tral Z boson, and the massless photon.

The fermions described by the SM can further be classified into charged leptons [;,
neutrinos v;, up-type quarks u;, and down-type quarks d;. There are three gen-
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erations, i.e. i = 1,2, 3, of each of these fermion types. The charged leptons and
neutrinos only carry charge of the EW gauge group and can appear as (asymp-
totically) free particles in Nature'. Up-type and down-type quarks additionally
carry colour charge of the SU(3)c. They are subject to confinement and will only
appear in bound states, the so-called hadrons, in Nature.

In the following, we discuss the SM in detail. It is convenient to split the La-
grangian of the SM

Loy = ﬁlsal\v/{; + EsQl\éD (22)

into its EW part L3}, and its QCD part? E%\éD. Throughout this chapter, we follow
Refs. [51-54] and adopt the conventions of Ref. [54] for quantum-field-theoretical
quantities.

2.1. The Electroweak Lagrangian

The gauge structure of the EW part of the SM (EWSM) is given by the non-abelian
gauge group SU(2)w x U(1)y. The SU(2)w part describes the weak isospin. The
generators of the weak isospin in the fundamental representation are given by
]6\/ = %, with the three Pauli matrices o;, j = 1,2,3. The abelian U(1)y part
of the gauge group describes the so-called weak hypercharge with corresponding
quantum number Yyw. Thus, describing the EW interactions, the EWSM intro-
duces the four EW gauge bosons W*, Z, and the photon. While the latter one
is massless, the W* and Z bosons are known to be massive. However, naively
adding mass terms to the Lagrangian would break local gauge invariance, which is
the fundamental guiding principle of the SM for the introduction of interactions.
To solve this contradiction the Higgs mechanism is applied to the SM. It adds a
scalar SU(2)w doublet to the theory. This doublet carries weak hypercharge and
develops a non-vanishing vev that breaks the SU(2)w x U(1)y spontaneously, leav-
ing only the U(1)en which describes the electromagnetic interactions, unbroken.
In this way, mass terms for the three massive EW gauge bosons are introduced
in the EWSM without any violation of gauge invariance in the underlying La-
grangian (see Sect. 2.1.2 for details). The left-chiral up- and down-type quarks as
well as the left-chiral charged leptons and neutrinos are combined into doublets of
the weak isospin for each generation. In contrast, their right-chiral counterparts
are singlets under the SU(2)w gauge group. Consequently, adding simple mass
terms for the corresponding fermion fields would break gauge invariance. Again,
the Higgs mechanism is used to introduce mass terms for the respective fields via
so-called Yukawa interactions. For a detailed discussion of these various parts we

'We give a detailed description of the exact quantum numbers of the different fermions in
Sect. 2.1.3.
2We include the kinetic and mass terms for the quarks in L3N
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split up the Lagrangian of the EWSM according to

ﬁ%hv/{] = ‘C%I\l\/il + ‘CISLII;ggs + ’Clsi‘le}i"[mion + ‘Ci’ll\l/lkawa (23)

and discuss them separately in detail in the following.

2.1.1. Gauge sector

The gauge sector of the EWSM introduces the kinetic terms for the gauge fields
W;, i=1,2,3, and B, of the SU(2)w and U(1)y gauge groups, respectively, to the
SM Lagrangian in a gauge-invariant way. The corresponding part of the EWSM
Lagrangian reads

1

) . 1
TV W, = B B, (2.4)

LSM —
YM 4

with the field-strength tensors

W, = 0.W, — 0,W, + goc ™ WiW], B,, = 0,B, — 9,B,, (2.5)

where ¢, and €', i, k,1 = 1,2,3, are the coupling constant and the totally anti-
symmetric structure constants of the SU(2)w, respectively.
Guided by the principle of local gauge invariance, the gauge fields B,, and WZL can

be used to construct the covariant derivative
Yx o
D' = 9" + ingWB“ — igy I3, W, (2.6)

which rules the EW gauge interactions of the fermions and the Higgs doublet. Here
g1 is the coupling constant corresponding to the U(1)y. The gauge transformations
of the gauge fields are given by

OW,. = 0,00 + o f MWisH', 0B, = 0,00, (27)

where 6! and Y are the gauge-group parameters of the SU(2)w and U(1)y, respec-
tively. Combining Eqs. (2.5) and (2.7) immediately yields the gauge invariance of
the U(1)y field-strength tensor

5B, = 0. (2.8)

Note that Eq. (2.8) is true for the respective field-strength tensors of any abelian
gauge group®. Due to the presence of the non-vanishing structure constants, re-
flecting the non-commutativity of the respective generators of the underlying Lie
algebra, field-strength tensors of non-abelian gauge groups are not gauge invari-
ant by themselves. Thus, in the non-abelian case the contraction of two field-
strength tensors with identical transformation properties is needed to obey the
gauge-invariance requirement.

3This will open up the possibility for so-called kinetic mixing in the DASM introduced in
Chapter 3.
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2.1.2. Higgs sector

The Higgs mechanism is used to introduce mass terms for the SM particles while
keeping the Lagrangian gauge invariant. To this end, it adds a complex, scalar

SU(2)w doublet
+
P — ((ZO) (2.9)

to the theory. This doublet carries weak hypercharge Yiy = 1. With the help of
the covariant derivative defined in Eq. (2.6) the Higgs part of the SM Lagrangian
can be written as

£l = (D) (Dre) — VIM(®). (2.10)
The first term contains the kinetic terms of the Higgs doublet as well as its gauge
interactions. The most general, gauge-invariant, renormalizable Higgs potential is
given by

A
VM) = — 120D + f(qﬂ@)?. (2.11)

The choice g, i3 > 0 ensures that the potential is bounded from below and has
a non-vanishing vev. Choosing a ground state that minimizes the Higgs potential
Eq. (2.11),

2
<1>0_<9), v=2,22 (2.12)
V2

where we introduced the vev parameter v, spontaneously breaks both the weak
isospin and the weak hypercharge, i.e.

L0 #0,  Yywdy #0. (2.13)

The remaining combination

Y,
Qb = (% + TW) By =0, (2.14)

that annihilates this ground state, defines the electric charge operator correspond-
ing to the unbroken U(1), gauge group of electromagnetism.

For the following discussion it is useful to rewrite the Higgs doublet given in
Eq. (2.9) in terms of component fields

®= (%(v ﬁﬂx))’ (2.15)
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which yield an expansion around the ground state Eq. (2.12). Here h corresponds
to the neutral CP-even physical Higgs boson, y represents a neutral CP-odd would-
be Goldstone boson, and ¢+ and ¢~ = (¢*)T describe the charged would-be Gold-
stone bosons.

While the three would-be Goldstone fields represent unphysical degrees of freedom,
the Higgs field A introduces a physical Higgs boson with mass

My, = /242 (2.16)

to the particle content of the SM. Combining Eqgs. (2.10) and (2.15) yields the
mass terms of the gauge bosons

S B 1 v?

V,mass — Z?[QSW;}WL# + QSW,L?WZ“U + (QQWE + .gl-B,LL)(.QZVI/g“u + ng“)]

(2.17)

The fields that correspond to mass and charge eigenstates are obtained by appro-
priate rotations,

1 B Cw S A
+_ 1 Y72 o — W W m
e (8)-(5 D)) e
where the so-called weak mixing angle 6, is given by

92

Vi +g

Finally, one ends up with a massless photon A as well as three massive physical
gauge bosons Z and W, with masses

v v
My=0. Mg =5\/gi+ 3, sz%ﬂ (2.20)

respectively. Further, identifying the coupling constant of the photon to charged
particles to be the electric unit charge e one finds the relation

Cw = cos Oy, = Sy = sin Oy,. (2.19)

o= N9 (2.21)

NCET

between the coupling constants of the SU(2)w, U(1)y, and the U(1)em. Finally,
combining Egs. (2.19) and (2.20) one finds the relation

= 2.22
< (2:22)

Cw

between the weak mixing angle and the gauge-boson masses in the SM.
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2.1.2.1. Gauge-fixing and Ghost parts

Here we briefly discuss the gauge-fixing and ghost parts that have to be added
when using the Faddeev—Popov method (FPM) to quantize the EWSM. A more
detailed discussion on the FPM (within the DASM) is given in Sects. 3.2.2 and
3.2.3.
For the quantization of the EWSM a gauge has to be chosen to eliminate gauge-
equivalent field configurations under the path integral. The most common choice
is the so-called 't Hooft—Feynman gauge which is introduced by adding the gauge-
fixing Lagrangian
1 2
£SM - _ FA .
EW, fix 2 ( )

with the gauge-fixing functionals

FA=0rA,, FZ =0"Z, — Myy, FE = "W T iMwo™, 2.24
1z 1z

(F?) = F*F~, (2.23)

N | —

to the EWSM. This choice leads to a cancelation between terms introduced by
Elsﬁ/égs that result in non-diagonal propagators in the gauge-boson—would-be Gold-
stone boson system and respective terms introduced by L\ s . Furthermore, in
't Hooft-Feynman gauge the masses of the would-be Goldstone bosons coincide
with the masses of their associated gauge bosons, M, = My, My+ = My.

To ensure the consistency of the gauge-fixing procedure under the functional inte-

gral the corresponding ghost part

a0y [0F ()
Liwpp = — /d4yu (x) (W) u’(y), (2.25)
with the ghost fields u® and u®, a = A, Z, %+, has to be added to the Lagrangian of
the EWSM. Note that these Grassman-valued scalar ghost fields do not correspond
to physical particles and, thus, will never represent external particle states in
matrix elements.

2.1.3. Fermion sector

The matter content of the SM can be split up into up-type (u}) and down-type (d)
quarks, charged leptons (I!) , and neutrinos (v/). Each of these classes consists of
three fermions (i = 1,2, 3) with identical internal quantum numbers but different
masses. Note that in our notation primed fermion fields correspond to flavour
eigenstates, while the respective fields without a prime correspond to mass eigen-
states. Left-chiral up-type and down-type quarks as well as the left-chiral charged
leptons and neutrinos are paired into the SU(2)w doublets, L™ and Q'*, respec-
tively. In contrast, their right-chiral counterparts are singlets with respect to the
SU(2)w gauge group,

L V/L L u/L R

L I i Lo /I i R__ /

L =wrl; = L) Qi =wL@; = Jdr ) li"= wrl;,
(2 (2
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Quarks Fermions
type Yw Ly  Q |type Yw I Q
uF +1/3 +1/2 +2/3 | vE -1 +1/2 0
b +1/3 —1/2 —1/3 | IF -1 -1/2 -1
ul  +4/3 0 423 || 2 0 —1
¢ —2/3 0  —1/3

Table 2.1.: The EW quantum numbers carried by up-type quarks (u;), down-type
quarks (d;), charged leptons (I;), and neutrinos (v;), i = 1,2, 3.

u* = wrl, d} = wrd,, (2.26)

where wy, /g = %(1 F75) denote the chiral projection operators. Due to the maximal
parity violation of the weak isospin, right-chiral neutrinos are singlets with respect
to the SM gauge group. Further, neutrinos are assumed to be massless within
the SM. Therefore, right-chiral neutrinos completely decouple from the rest of the
theory and consequently are not present within the SM. In Tab. 2.1 we list the
fermions of the SM with their respective SU(2)w X U(1)y quantum numbers and
electric charges. The kinetic terms and EW gauge interactions for the fermions
read

Lotion = > (LT DL +1Q) PQY + i PUR + i ulft +id Pdf) , (2.27)
J
where we made use of the “slashed notation” ) = y#*D,,, with the gamma matrices
7, and the covariant derivative given by Eq. (2.6).
In the EWSM, the Higgs doublet is used to introduce mass terms for the fermion
fields in a gauge-invariant way. The respective Yukawa part of the Lagrangian
reads
Liwn = — > _(LIGLURD + QLG ® + QMG @ + hc.). (2.28)

(/] v J (VAR
7]

Here i, j runs over the three fermion generations, GU, G}, and Gd are the Yukawa
coupling-constant matrices, and the charge-conjugated Higgs doublet is given by
d = ((¢°)*, —p~)T. To obtain the mass eigenbasis, the matrices Gi;, GY, and GY;
have to be diagonalized. This is achieved by an appropriate bi-unitary transfor—

mation of the form
e _ Lf/L FR = UfR R f=1lud (2.29)
ij ) i ij Jj o i '

The resulting masses for the fermions are given by

myq; =

v T
EUZ?;LG; (vi™) (2.30)
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While the unitary matrices UZ-];’L/ i systematically cancel in the fermion-—neutral-
gauge-boson interactions, Eq. (2.29) introduces the Cabibbo—Kobayashi-Maskawa
(CKM) [55,56] matrix

Vo = ULT (U;;L)T, (2.31)

in the quark-W-boson and quark-¢*-boson interactions. This non-diagonal uni-
tary matrix can be parameterized by three angles and a complex phase. The CKM
matrix allows for flavour-changing charged currents in the quark sector and pro-
vides the only source of CP violation within the EWSM. The absence of a neutrino
mass matrix in Eq. (2.28) allows to choose the fields corresponding to the physical
neutrinos according to

vl = Uzt (2.32)

This choice results in a diagonal matrix in the lepton-W-boson and lepton—¢*-
boson interactions, showcasing that no flavour-changing charged currents are present
in the leptonic sector. This, however, is only true if the SM-like neutrinos are as-
sumed to be massless (or if all neutrinos have the same mass) whereas the so-called
Pontecorvo-Maki-Nakagawa—Sakata (PMNS) [57,58] matrix has to be taken into
account otherwise.

2.2. The QCD Lagrangian

To complete our description of the SM, we briefly discuss the main features of
QCD. The theory of QCD is based on the SU(3)¢ part of the SM gauge group and
governs the strong interactions. In the SM the SU(3)¢ part of the gauge group
fully factorises from the EW part described in the previous section.

The mediators of the strong force are the massless gluons. In total, there are
eight gluons, associated with the eight generators 7% a =1, ..., 8, of SU(3)¢. The
charge associated with the SU(3)¢ is called colour charge. There are three colours:
red, green, and blue. In the SM only quarks and gluons carry colour charge,
i.e. are affected by the strong interactions. The quarks transform as triplets*
under SU(3)¢ and, therefore, carry an additional colour index ¢

7pq,red
¢q,c = ¢q,green . (233)
7qu,blue

To account for the three colours in the quark parts of Egs. (2.27) and (2.28) an
implicit sum over the colours is assumed. The gluon fields themselves transform
according to the adjoint (octet) representation of SU(3)c. The respective part of

4Antiquarks carry the respective anti-colours: anti-red, anti-green, and anti-blue.
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the Lagrangian, describing the kinetic terms for the gluons as well as the strong
gauge interactions of the quarks, reads

1 a a,uv : — Na
E(SQI\éD = _ZGMVG o + 195 Z Q’L$ T q;, (234)
qi

where T = %, a = 1,...,8, with the Gell-Mann matrices \*, are the eight
generators in the fundamental representation of SU(3)c, G, are the gluon fields,
gs is the coupling constant corresponding to the strong interactions, and the sum
runs over all up- and down-type quarks ¢; = u;,d;, 1 = 1,2,3. The field-strength

tensors of the gluons are given by
G, = 0.G, — 0.G), + gsfachZGﬁ, a,bye=1,...,8, (2.35)

with the structure constants f%¢ of SU(3)c.
The gauge-fixing procedure for QCD is done similarly to the one of the EW sector.
Using 't Hooft-Feynman gauge, we add the respective gauge-fixing part

1
Lqcp fix = 3 (FG“)2 : Fle = oGy, (2.36)
and the corresponding ghost part
OF*(x
tacorn(e) = - [ dtyut(o) (G ), ab=GioGr (237)

with the SU(3)¢ group parameters 6°; to ﬁ%l\éD to complete the construction of
the SM Lagrangian.

2.3. Physics Beyond the SM

Countless predictions of the SM show an impressive agreement with their respective
high-precision collider measurements. Moreover, all particles postulated by the SM
are found and their predicted properties agree precisely with the corresponding
experimental results, further highlighting the outstanding predictive power of the
SM. Nevertheless, there are several open questions that cannot be addressed by
the SM in its current form. Some of the most pressing ones are:

e In the SM neutrinos are assumed to be massless. This is, however, in con-
tradiction to the observed neutrino oscillations [59,60]. These oscillations
are sensitive to the squared mass differences between the three neutrino gen-
erations, implying that at least two of the three neutrinos must be mas-
sive. There are several ongoing studies aiming to determine the masses
of the neutrinos through g-decay [61] or via cosmological observations (see
e.g. Refs. [24,62] and references therein). However, to the present day, these
analyses are only capable of setting upper limits on the neutrino masses or
the sum of the masses of the three generations, respectively.
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e There are several observations, e.g. measurements of rotation curves of galax-
ies [63] that hint towards the existence of so-called “dark matter” (DM).
Modern experiments suggest that DM makes up 27% [62] of the energy den-
sity of the universe. Yet, observations suggest that DM cannot be made up of
SM particles (as required e.g. by Big Bang nucleosynthesis, see e.g. Ref. [64]
and references therein). If DM is assumed to be of particle nature its con-
stituents have to be electrically neutral; stable on cosmological scales; “cold”,
i.e. non-relativistic during the epoch of structure formation (for more details
see e.g. Ref. [65]); and have a small self-interaction cross section (also referred
to as “collisionless” in the literature) [66].

e The SM offers no explanation for the matter—antimatter asymmetry observed
in the visible universe. If we assume that the universe started in a symmetric
phase (with equal amounts of matter and antimatter), the baryon asymmetry
must have been generated dynamically in the early universe. Such a process
is called baryogenesis. For baryogenesis to happen three necessary conditions
have to be fulfilled [67]: there have to be baryon-number violating processes,
there have to be C- and CP-violating processes, and finally, there has to be
some non-equilibrium present in the process of baryogenesis. In the SM all of
these effects are possible: there are (non-perturbative) baryon-number vio-
lating processes present at high temperatures, C- and CP-violation is present
within the EW part of the SM, and the out-of-equilibrium condition is pro-
vided by the EW phase transition. With this setting a baryon asymmetry
could have been generated in the SM via the so-called EW baryogenesis.
Nonetheless, it has been shown that the magnitude of CP violation present
in the EWSM is not sufficient to account for the observed matter—antimatter
asymmetry in the visible universe and that the second-order phase transi-
tion present in the SM does not allow for the creation of a sizable baryon
asymmetry within the setting of the EW baryogenesis.

e Within the SM there is no explanation for the origin of “dark energy”, which
drives the accelerated expansion of the present universe. Modern experi-
ments performed, e.g. by the Planck Collaboration [62], suggest that dark
energy makes up 68% of the total energy density of the universe. A possi-
ble contribution to this energy density could originate from the cosmological
constant describing a respective energy density that is constant within space-
time. However, some estimates of the SM vacuum energy, i.e. its possible
contributions to the cosmological constant, yield an energy density that is 120
orders of magnitude larger than the measured energy density (see Ref. [68]
and references therein).

e Due to the lack of a quantum-field-theoretical description of the gravitational
force, gravity is not included in the SM.

These unresolved issues clearly demonstrate that the SM cannot be the ultimate
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theory describing Nature, but should rather be seen as an effective model of some
more fundamental theory. In addition to the previously mentioned problems, one
might include the long-standing tension between the high-precision SM prediction
and the measurement of the anomalous magnetic moment of the muon:

e The SM prediction for the anomalous magnetic moment of the muon, (g—2),,,
shows a 5.10 deviation from its measured value [3]. However, recent devel-
opments in the field of lattice QCD (see e.g. Ref. [5]) raised questions on the
correct determination of the so-called hadronic vacuum polarization Aaﬁz)d
which enters the theoretical prediction for (g —2),. Using the lattice results
for Aafi)d to predict (g —2), leads to reasonably good agreement (1.70) be-
tween its SM prediction and the measured value. Thus, clarification on the
correct theoretical treatment is needed. However, if the tension between pre-
diction and measurement remains, BSM physics might yield an explanation
for the observed discrepancy.






3. The Dark Abelian Sector Model

In the following, we define the Dark Abelian Sector Model (DASM) and discuss in
detail all its additional features with respect to the SM. Further, in Sect. 3.6, we
give a particularly intuitive set of input parameters, which is used in the renormal-
ization of the model described in Chapter 4 and the phenomenological investigation
of the DASM discussed in Chapter 5. Finally, the resulting Feynman rules for the
DASM are listed in Appendix F. Note that the results presented in Chapters 3
and 4 have already been published in Ref. [38].

The DASM adds an additional U(1)q gauge symmetry, with corresponding gauge
field C*, of a possible hidden sector to the SM gauge group. Thus, its underlying
gauge group is given by

SU@3)c x SUQ2)w x U(L)y x U(1)q. (3.1)

The SM is a singlet with respect to the new U(1)q. Further, a Higgs field p and a
Dirac fermion f}, which are both singlets with respect to the SM, but carry charge
of the U(1)q, are introduced in the DASM. Finally, the DASM introduces right-
handed SM-like neutrino fields I/]/R, j = e, u, 7, which are singlets with respect to
the gauge group of the DASM. This leads to various additional terms that have
to be added to the SM Lagrangian discussed in the previous chapter. As already
stated in Chapter 2, we adopt the notation and conventions from Ref. [54] for all
field-theoretical quantities.

It is convenient to split up the full Lagrangian of the DASM in a similar way as it
was done for the SM case

ﬁDASM = £YM + ‘CFermion + ‘CHiggs + ﬁQCD- (32>

Below we discuss the non-SM contributions to the individual parts of Lpagy in
detail. Note that the QCD part of the DASM Lgcp is equivalent to its SM
counterpart and, therefore, its description given in Section 2.2 accounts for the
QCD part of the DASM as well.

19
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3.1. Higgs sector

The presence of an additional complex Higgs field p leads to modifications of the
scalar sector compared to its SM counterpart. The respective Higgs part of the
DASM Lagrangian reads

Liiggs = (D, @)1 (D"®) + (Dap)' (Dip) = V (@, p). (3-3)

Since the SM-like Higgs doublet is not charged under the additional U(1)q gauge
symmetry, its covariant derivative is equivalent to the one in the SM given in
Eq. (2.6). For the Higgs field p the covariant derivative is given by

Dy = 0" +iGeaC",  Gp=14qpp, G =1, (3.4)

where we introduced the charge operator ¢ and the coupling constant eq of the
U(1)q. Note that the choice ¢, = 1 will, without loss of generality, only provide a
normalization of the coupling constant eq.

To obtain the most general renormalizable (mass dimension < 4) and gauge-
invariant scalar potential V' (®, p) we have to add three additional terms to the
SM Higgs potential (see Eq. (2.11)),

A
V(@.p) = —132® — 2uipp + 7 (@12)° + 4N (p'p)” + 20120100
= VIM(@) — 217 pTp + 4N (pTp)? + 20120 p, (3.5)

which introduces the three additional real free parameters' p?, A\;, and Aj5. The
last term of Eq. (3.5) is of particular interest since it opens a portal from the SM
to the hidden sector of the DASM by allowing for mixing between the SM-like
Higgs doublet ® and the Higgs field p. The strength of this mixing is ruled by the
free parameter \j5. The Higgs fields & and p can be parameterized as

¢* 1 .
o = . = — .
(\%(hQ + vy + 1X2) ’ p \/§(h1 Tt 1X1)’ (3 6)

with the CP-even Higgs fields ho, hy, the neutral CP-odd would-be Goldstone-
boson fields ys, X1, and the charged would-be Goldstone-boson field ¢*. The
real and positive constants v, and v; quantify the non-vanishing vevs of ® and p,
respectively. To ensure the stability of the vacuum the parameters of the Higgs
potential have to fulfill the conditions

/\1 > 0, )\2 > 0, /\1)\2 — >\%2 > 0. (37)
Combining Egs. (3.5) and (3.6) leads to
V - — tlhl - tghg

'We choose their normalization such that it matches previous studies of Higgs singlet extensions
(see, e.g., Refs. [69]).
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1 2 ha 1 2 [ X1 2 -
+ §(h2, hl)MHiggs <h1) + §(X1,X2)MX <X2 + M¢+¢—¢ ¢r
+ interaction terms. (3.8)

The first line of Eq. (3.8) contains the tadpole terms, t;h; and tohy, with the
tadpole constants given by

2
%

tl = —U (41}%)\1 + U%)\lg - 2/15) y tg = —V3 ( 1

>\2 + /U%)\IQ — ,U/g) . (39)

The mass terms of the component fields are given in the second line of Eq. (3.8),
with their corresponding mass matrices

- W TR b
M2- — o N\2 v 1V2A12 M2 — 1 310
Higes (21)1?]2)\122 81}%)\1 — f]—ll ’ X 0 —L2 ) ( )

v2

and the masses of the charged would-be Goldstone-boson fields are given by
M3y = ——. (3.11)

The last line of Eq. (3.8) summarizes all scalar self-interaction terms, i.e., all terms
containing three or four scalar fields. Similar to the SM, the tadpole constants t;
and to are set to zero at leading order. This ensures at LO that the Higgs potential
acquires its minimum at the vevs, i.e. for h; = x; = ¢7 = 0 with ¢ = 1,2. Since
they play a special role in the renormalization procedure, we keep them explicit in
the following.

In order to obtain the field basis corresponding to physical particles we have to
rotate the Higgs fields hq, hs into the fields h, H, which correspond to the desired
mass eigenstates. Therefore, we diagonalize the respective mass matrix 1\/[2Higgs
with the following rotation by an angle «,

h\ (cosa —sina ho
(H) N (sina cos o ) (hl) ’ (3.12)
Expressing the potential given in Eq. (3.8) in terms of h and H reads
V=—twh—tygH
1 Mg Mgy h 1 2 (X1 2 -4t
+ 5(’% H) (Mle M2 )T §(X1, X2)My a + Mgs -0~ ¢
+ interaction terms, (3.13)

with the rotated tadpole constants

th = Catg — Sath tH = Satg + Catl. (314)
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Here we introduced the shorthands ¢, = cosa and s, = sina, which will be
used throughout this thesis to keep expressions compact. In this field basis, the
coefficients of the Higgs-boson mass matrix are given by

2 o 1 t
M = av2 Aoy — —2 + 8s2viA; — si—l — 45,Ca01V2\ 19, (3.15)
2 V2 U1
t t
MI?I = Si%)\Q - 82—2 + 8637}%)\1 — Ci—l + 4SQCQU1U2A12, (316)
U1
t
My = M2, = 54Ca ( Dy — =2 — 8u I\ — —) +2(c2 — 2 vivA. (3.17)
V2 U1
The diagonalization condition fixing the rotation angle o thus reads
3 t t
My = SaCa <U—2)\2 — 2 SviA; — —) +2(c — 82)v1va A1 . 0, (3.18)
2 () U1
and for ¢; = t9 = 0 one finds
8 A
toq = & (3'19)

16@%)\1 - 1)2)\2

Without loss of generality we enforce the mass hierarchy My < My by allowing
for a € (=%, 3] and simultaneously demanding sy, A1z > 0. This fixes a to

Sa0 = Sortadiz (3.20)
\/(87)11)2)\12)2 + (16'1]%)\1 — 1)2)\2)
1 2 Y
(20 = Burd — vy (3.21)
\/(87}11)2)\12)2 + (161}%)\1 — UQ)\Q)

The relation between the mass eigenvalues of the Higgs bosons h and H, and the
original parameters of the Lagrangian (see Egs. (3.5) and (3.6)) are given by

1
M}? = 102)\2 + 4'0 )\1 - 1\/(8’01’02)\12)2 + (162]%/\1 — U%A2)2, (322)
MI% = —UQ)\Q + 4U1 )\1 + = \/ 8’(}1'1}2)\12) (16’0%)\1 — U%)\Q)2. (323)

In total, the Higgs sector extension of the DASM introduces three additional free
parameters to the theory. The tadpole constants ¢; and ¢y (or equivalently ¢,
and ty) are fixed by the definition of the EW vacuum and, therefore, do not
count as free input parameters. As mentioned above, we only keep them here for
later convenience. Choosing the input parameters to be the most intuitive and
phenomenologically easily accessible, we use My, My, the mixing angle «, and
the dimensionless scalar self-coupling A5 to express the original parameters of the
Higgs potential,

1
— (3.24)

A = 1 (c M2+s Mz) S0
1

8
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v =

(c M{ + 52 M2) 23152,
Uz

3
(s2 M + 2 MG) + 112)\12+4 t1,
U1

1 3
U%)\lg + = (CZMI? + SzMI?I) + —tz,
2 21}2
(MPQI - M}%) 520
4va 12 .

(3.25)
(3.26)
(3.27)

(3.28)

In the DASM, similar to the SM case, the vev v, is determined by the W-boson
mass (see Sect. 3.2 for more details). From Eqs. (3.24)-(3.28) it is obvious that
the vacuum stability constraints given in Eq. (3.7) as well as the requirement of
symmetry breaking p? > 0 or 2 > 0 are automatically fulfilled for physical input
parameters, i.e. My, My > 0.
Expanding the interaction terms in the last line of Eq. (3.13) one finds three and
four particle scalar self-interaction terms of the form

Vint = cunnh® + cunnh®H + chpnhH? + capnH>

+ cunnnh?t + connph® H + coninh® H? + copanhH? + cppnn H*

1
+ 5 (Chosh + criggH + cangoh” + cungpoh H + crgs H*) (26707 + X5)

1
+§(

ChXXh + CHXXH + CthXh2 + ChHXXhH + CHHXXH2)X%

A _ A
+ 1620767 +03) + SN0 +20767) + A,

2

with the coupling constants

Chhh = V2Cq (

3
ChhH = Ul)\1202 + 1)2)\1282 + S2a (Uzca(§>\2 — Ai2) + 0154 (6A; — )\12)) ;

3 3
ChHH = V2A12C, — V1 A125,, + S2q (SaU2(

CHHH = V2Sq (

C2
2404) — V184 (/\1263 + 4/\18(21) ,

8

2
248a) + ’l]lca(>\12$i —+ 4)\1Ci),

1
c = st + =822 Ag + a)\ ,
hhhh 1 2 ataN2 ].6 2
A A
ChhhH = §252ac — 289452\ — %C2a52a7
3\ 3\ A
ChhHH — 21 Sga 322 ga =+ f (26301 - Sga) )
A A
ChHHH = 232115 — 2)\1890C2 + 2 ras2as

8

2

3
—A2 — A12) + cav1(A12 — 6)\1)) )

(3.29)

(3.30)
(3.31)
(3.32)
(3.33)

(3.34)
(3.35)
(3.36)

(3.37)
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4
1
CHHHH = c;*)\l + i—%)w + 55303)\12, (3.38)
v
Chopp = 52/\2004 - 2SQU1>\12, (339)
CHpp = %/\Qsa -+ 22]1)\126&, (340)
A
Cuboo = ot 53z, (3.41)
A2
Chttgg = = SaCa = 2 1280Ca, (3.42)
A
CHHpp = ZQSi + )\1203, (343)
Chyx = 2U2)\120a - 8’01)\180“ (344)
CHyx — 8?]1)\1Ca -+ 2U2)\128a, (345)
CthX = )\1262 + 4)\182, (346)
ChHyy = 2AM1250Ca — 8A154Cas (3.47)
CHHxx — 4)\163 + )\1283. (348)

3.2. Gauge sector

Due to the presence of the additional U(1)q gauge group, the gauge sector of the
DASM governs several additional terms compared to its SM counterpart. In the
past, several types of U(1) extensions have been discussed qualitatively in the
literature (see e.g. [13,25-28]). However, to match the precision of modern EW
precision measurements at least NLO precision is needed. In this work, we give
the DASM in R, gauge, which is the most common and convenient framework for
the calculation of the higher-order corrections performed in the following Chapters
4 and 5.

Due to the extension of the SM gauge group by an additional U(1)4, further terms
have to be added to the SM YM part to obtain its DASM counterpart,

Lynm = LG + L, (3.49)
where
d 1 72 a nz
‘CYM - _ZC C/“/ - §B Cl“" (350)
The gauge-invariant field-strength tensors
B, =90,B, —0,B,, Cw=0,C,—-0,C,, (3.51)

correspond to the gauge fields B, and C,, of the U(1)y and U(1)q4, respectively.
While the first term on the right-hand side of Eq. (3.50) simply gives the kinetic
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term for the gauge field C),, the gauge invariance of field-strength tensors of abelian
gauge groups (see Sect. 2.1.1) further allows for kinetic mixing described by the
second term. The strength of this mixing is ruled by the free parameter a.

3.2.1. Physical gauge bosons

In a first step towards constructing the field basis corresponding to the physical
gauge bosons, we diagonalize the kinetic terms by redefining the fields [27],

L _ '
(gﬂ) = Vi (gy) : (3.52)
n —vime 1) \By

With this redefinition the kinetic terms for the primed fields €}, and Bj, are in the
common canonically normalized form

1 v a v 1 v 1”rb7 VIJ[rb
EYM == —ZC'M Cp,l/ - §BN Cuu - ZBM Bl“’ - Z s %
1 1 1
= 50" C, = ;B" B, — W, (3.53)

Note that we have to restrict the kinetic mixing strength to |a| < 1 to maintain
the self-consistency of the theory, since choosing |a| > 1 would lead to a wrong
signature for one of the kinetic terms. Rewriting the covariant derivatives for the
Higgs fields ® and p given in Eqs. (2.6) and (3.4), respectively, in terms of the
primed fields and expanding the kinetic part of the Higgs Lagrangian given by
Eq. (3.3) leads to the mass terms of the EW gauge bosons,

B/
1 2 _
Laty zi(BL,Wi,C;) M3 Ig//j + MWW~ (3.54)
I

Similar to the SM case the mass of the W boson is given

My = % (3.55)

and the mass matrix for the neutral vector bosons by

S\QVM\Z,V SWM\%V . ns%vM\%v
c2 ) Cw c2 )
M. M
M2 = swlMiy M2 _nswMiy (3.56)
v Cy W Cw ’
_nse M3 nswMy n?sE My + M2
c2, Cw c2, C

where we introduced the shorthands

a €4

=— 2 Mo=én, é=—2_
7 V1—a? ¢ ' V1—a?
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g1
Va+ G

Note that the mass matrix M3 is not of full rank, i.e. rank (M%) = 2. Thus,
to obtain the fields corresponding to the physical neutral gauge bosons we can

diagonalize M%, by a combination of two appropriate rotations of the neutral gauge-
boson fields,

Cw = 0SBy, (3.57)

Sw = sinf,, =

BL A, Cw Sw O 1 0 0
W2l =Rv|2Z,], Ry=|-s¢ ¢ O 0 ¢y —s, ,  (3.58)
o Z, 0 0 1 0 s, ¢

where we introduced the shorthands s, = sin~, ¢, = cos~. It is easy to see that in
the case v = 0 the rotation Ry reduces to its SM counterpart (see Eq. (2.18)). To
determine the mixing angle v we use Eq. (3.58) to express Eq. (3.53) in terms of
the fields corresponding to the mass eigenbasis and diagonalize the resulting mass
matrix for the neutral gauge fields,

0 0 0
RyM{Ry = (0 MZ M2, |, (3.59)
0 M, M
where
M2, (¢ — $4547)°
M%:siMé—i— W 702 1 ,
M3y (5, + cy547m)°
2 _ 2772 w Sy T CySw
M7 = C’YMC + 02 9
M2 2,2 1) — 2
M2, = s,c, M2 + VV[S?”(S“”72 . ) = 2swexn]. (3.60)
cW
As required by QED, the photon remains massless
M3 =0, (3.61)

and, similar to the SM case, demanding the photon—fermion coupling to reproduce
its respective QED form relates the electric unit charge e directly to the gauge
couplings ¢; and g,

o= N9 (3.62)

NCEY A

The diagonalization condition

Mgy [s25 (s2m® — 1) — 28 cay1)
2¢2,

M2, = sy, M3 + =0 (3.63)
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yields a relation between the mixing angle v and the original parameters of the
Lagrangian of the form
—21Sy
lyy =tan2y = 5 (3.64)

M
202 2 7C
1_778W_CWM3V

Further, choosing v € (=7, §] we find

s
4

2
2nsysgn {1 —n?s? — C‘QN%}
W

t
Sy = = = — - : (3.65)
2
1+13, \/(1 — s, — CEMA%Z) +di?sy,
w
‘1 —Ps% — ok (3.66)
3.66

1
Coy = L. = N2 )
VIR (e - 22) e

and the mass eigenvalues of the two neutral, massive gauge bosons are given by

M3, M3, Sw1)
2 2 w
M; = 2 (1 — swtyn), M = 2 <1 + . ) : (3.67)

w

Again, we choose the phenomenologically easily accessible parameters e and Myy
as well as the masses of the two neutral gauge-bosons My and My, and the mixing
angle v as input parameters of the gauge-boson sector of the DASM. Note that, in
contrast to the scalar sector where we imposed the mass hierarchy M, < My, we
do not enforce any mass hierarchy between the Z- and Z'- boson masses, leaving
My < My as well as My > My as valid parameter choices. Using Eq. (3.60), we
express the original parameters of the Lagrangian in terms of our input parameters
and find

B My o MZM, oyl (Mg, — M3)
o= o MeETg T T T g
\/c?/M§ + S%MZ, W SwiVlvy
(3.68)
and further
My UIMW\/1+772’ V1412

Here, we did not fully insert all analytical dependences to keep the expressions
compact. However, using the relations given in Eqgs. (3.24)—(3.28), and (3.57) it is
straightforward to relate the Lagrangian parameters directly to our chosen input
parameter set. Furthermore, without loss of generality we choose the coupling
constant of the U(1)q to be positive, i.e. eq > 0 and absorb? the sign into the

2This is possible since we do not constrain the sign of the kinetic-mixing parameter a.
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definition of the gauge field C),. Additionally, Eq. (3.68) yields the lowest-order
restriction

Mg, < EMj + s2Mj, (3.70)

for the parameters of the DASM. Thus, in the DASM the mass of the W boson
My differs from ¢y, M. Therefore, in contrast to the SM, the p parameter [70,71]
in the DASM is already at LO not equal to 1 and in order to obey constraints from
EW precision data, the mixing angle v needs to be fine-tuned to small values in

the DASM.

3.2.2. Gauge-fixing part

Expanding the kinetic terms of the Higgs fields ® and p (see Eq. (3.3)) in terms
of their component fields one finds terms that lead to non-diagonal propagators in
the gauge-boson-would-be-Goldstone-boson system,

. _ _ CoyCy M2
Ly = 1My [(au¢+) WM - (au¢ ) W/ﬂ + |:MCS’Y (0"x1) + TWZ (0"x2) Z,
Co Sy M2, ,
+ MCC'y (8“)(1) — % <8MX2):| ZN' (371)
A%

At LO these unpleasant mixing terms can be canceled by choosing R, gauge-fixing
conditions. Therefore, we introduce a gauge-fixing Lagrangian

Lo = —— (FY’ = — (F/)* = —(F7)* = —F*"F~, (3.72)

where the gauge-fixing functionals are given by

F* = 0"WF F iw Mwo™,

CoCy M2
F? =07, —¢&y [Mcswﬁ + ]\;W ZX2] ;

/ CoSo M2,
FZ = G“Z;L — &z |:MCC'yX1 - #)@] )

FA=0rA,. (3.73)

This choice of gauge-fixing will not only eliminate the unpleasant mixing in the
massive gauge-boson propagators, but introduces masses to the would-be Gold-
stone bosons as well. While the masses of the charged would-be Goldstone bosons
are given by My = \/§w My, our choice of the gauge-fixing introduces a non-
diagonal mass matrix Mi for the neutral would-be Goldstone bosons x and '
To diagonalize this mass matrix, we perform a rotation of the neutral would-be
Goldstone-boson fields by an angle 6,,

X, _ pT (X1 T [(Cx —S2
Gok) W) e
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where we used the shorthands s, = sinf,, ¢, = cosf,. The resulting mass matrix
of the y, X’ system is given by

I~ ! M2 !
XX

with
M52 + nsyse My (2Mocycy + MwnsySs) — s201ts + 2oty

2 2.2
M2, = M3 +

Co V1V28v ’
ME = M2 4 M2 + nsy e My (Mynsyc, — 2Mocy s, B vty + 29ty
X ’ o v102€y
A2 5 (M2 B M3v> _ Mwnsy (2M ey Cor + MwnsySaz) N S2Ce (V1ty — Uaty) |
D) © 2 2¢2 v1U9€y

(3.76)

Here we chose a common gauge parameter &y = 4 = &4 for the two neutral gauge
bosons for convenience. Setting the tadpole terms to zero the diagonalization
condition reads

2 Sox 2 M\%V Mwnsw (2MCCWCQZ‘ + MWT]SWSQm) !
M, = -5 (MC — g> — %] =0, (3.77)
and we find
—2nMc Sy Cy wMct
o, = tan(20,) = C5wC ~ =7 C(l _C ht ) (3.78)
My (1 + 0?82 — C?N%) WAS T
W
for the mixing angle #,. Further, choosing
wSoy M
Sog = Cj’\z—yc’ Coy = Coy — Syl)S2y (3.79)
w

connects the masses of the y and Y’ to the masses of the neutral massive gauge
bosons Z and Z', respectively, via

M, = /& Mgz, M, = /&My (3.80)
With this choice, we find the useful relations
CwSy My CwCy My My
_ _ wTTZ == 81
Sz My Ca My ty i, ty, (3.81)

and, similar to the SM case, the gauge-fixing functionals reduce to their simple
form

F* = "W F iwMwo™ — 0"WE F iMwo™,
W
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7 =017, — &yMzx — 0" Z, — Mz,
f\/—>l
F? =97 — &yMyx —— O*Z' — My,
14 Ev—l 1
=0"'A,, (3.82)

where in the last expression of each line we employed the 't Hooft—Feynman gauge,
ie. &4 = &w = &y = 1, which is used in the calculations presented in Chapter 5.

3.2.3. Ghost part

A corresponding Faddeev—Popov ghost part

ool == [ atyerto) () ) o (3.83)

where a,b =+, 7, 7', A, has to be added to the Lagrangian for the consistency of
the gauge-fixing procedure in the functional integral. Here the u® and u® denote
unphysical, anti-commuting ghost fields. The corresponding ghosts will never rep-
resent external states, but only appear as inner lines of Feynman diagrams. We
give the infinitesimal gauge transformations of the scalar and EW gauge-boson
fields in Appendix B. Using these transformatlons it is straightforward to evaluate

the infinitesimal gauge variations %Zb of the gauge-fixing functionals F'* by the

gauge-group parameters 6°(y) needed to evaluate Eq. (3.83). Finally, the ghost
Lagrangian in the DASM explicitly reads

Lrp = — aAa“BﬂuA —+ ie(@“ﬂA) (W: T W_U+)

_ lecyey _ _
— (0,0 + & M) u — 5 (i) (Wi — W)
Cre
s i (6tu + ¢t
_ €CoCuCrCu M2 ~ €50, Cry Cog M2
_ ngvMZ{ [W — eswsxsa] h+ [esvsmca + W} H} u?
B . €CyCo,SmyCoy M2, ~ €CyS e Sy M2, /
+UZ€VMZ{ {ecwsxsoﬂLW} h— {ecvsxca_W} H}UZ
— @7 (0,0" + &y M) u” + chw (070 ) (Wiiu~ = W u)

- ﬂzl;;e EvMy (¢Tu™ + ¢7u™)

2 2
o €CaSySyCw M5 €SuSpS~Cow M5 ,
— @ e My | = G pSa | b | —— 2 4 eecpco | H pu?
254 M3 K 25 M2 K
Swirlwy Sw i

€CaSsCyCy MZ €S0 SpCyCy M5 _ 7
i T E55aC ht | —2 02 Es cpca | Hypu
w iVl

+ uz’gvMZ/{ [
25 M2,
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E—W(CWZ# - S,YZ:)} u”

W

+—{——a*ﬁL&“4—&Nﬂﬁ§ﬁﬁ‘+deQWa+)[Au—-
—at 26 EwMyy [cah + soH +i(cox — soX)]ut —ie (8“27“) W:uA

+a éw MyepTut + — lecw ((9“H+) W: (cvuz — svuzl>

+ @t w Myweg M_M P G NCUAW
QCWSW QCW 2SWCW QCW
Hu" suma s, W= W et = 67,1 — ) } (3.84)

Similar to the SM case, in the chosen R¢ gauge the masses of the ghost fields
match the masses of the respective would-be Goldstone bosons (and therefore, in
the 't Hooft-Feynman gauge, used in the calculations in Chapter 5, they match
the masses of the corresponding gauge bosons as well).

3.3. Fermion and Yukawa sectors

The presence of the right-handed counterparts VJ’-R, j =e,u, T, to the left-handed
SM-like neutrino fields /" as well as the additional non-chiral Dirac fermion f} of
the hidden sector of the DASM leads to several modifications to the SM fermion
sector. Note that the non-chiral nature of the additional fermion f] ensures that
no anomalies are introduced in the DASM. Similar to the discussion of the SM
fermion sector, throughout this section, we use primed fields to denote the gauge-
interaction eigenbasis, whereas non-primed fields indicate the mass eigenbasis.
The right-handed neutrino fields V;»R are assumed to be singlets under the gauge
group of the DASM. The fermion field f] is a singlet with respect to the SM part
of the DASM gauge group, i.e. carries no weak hypercharge, nor weak isospin nor
colour. However, it carries the charge greq of the U(1)q gauge group. We choose

G =qp =1, (3.85)

where §,eq is the charge of the Higgs field p introduced in Eq. (3.4). This allows
for an additional portal term from the SM to the hidden sector in the fermion part
of the DASM Lagrangian. Therefore, the relation (3.85) between the two charges
is, in contrast to the mere normalization of the U(1)q coupling constant provided
by choosing ¢, = 1 (see Sect. 3.1), a choice that leads to the most interesting BSM
structures in the fermion sector of the DASM. In detail, it allows for an additional
Yukawa term connecting the Higgs field p with the right-handed neutrinos l/j/-R and
the fermion f] resulting in

EFermion EFermlon Yukawa + fd (llpd mfd) f(/i - Z (L/LGZ; l/R(I)C + hC)

kJl=e,u,T
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- Z [V — (yppfivi + )], (3.86)

j:e7l’l‘77—

for the fermion part of the Lagrangian. The covariant derivative DY, governing
the gauge interactions of the hidden sector fermion, is given in Eq. (3.4). Further,
without loss of generality, we choose the Dirac mass mg, of f] to be real and posi-
tive. This can always be achieved by adjusting a chiral phase of f] appropriately.
The sum in the first line of Eq. (3.86) governs the Yukawa terms for the three
SM-like neutrino generations with their respective Yukawa coupling constants G7;.
In general, they lead to mass terms and a PMNS-like matrix structure in the
SM-like neutrino sector, which are of particular interest in flavour and neutrino
physics (see, e.g., Ref. [24] and references therein). However, as we shall see in the
following discussion, they do not affect our phenomenological analysis of collider
observables and will therefore play no further role in this work. The second line of
Eq. (3.86) governs the kinetic terms of the right-handed neutrinos as well as the
Yukawa interactions connecting them to the hidden sector, i.e. to p and fj, with
respective Yukawa couplings ¥, ;. Finally, there is the possibility for Majorana
mass terms for the right-handed neutrinos, which we do not further consider in
this work.

Plugging the decomposition of the Higgs fields (see Eq. (3.6)) into Eq. (3.86) and

decomposing fi = fi + fi}, with fcllL/ R /r.fy, the mass terms for the neutral
fermions become

/R
Ve

/R
m ~/L /L —/L /L /
fc’iV:_(Ve JV;J,JVT ) d) £4 VlfR +h-C-, (387)

g
/R
d

A

with the non-diagonal, non-symmetric, complex mass matrix

mi; Mz Mg 0 o
/ Mo1 Moz Moz 0 - U1l (PIEH
_ : ;= . my = . 3.88
fa ms; Mgz ms3 0 Y V2 ! V2 ( )
ge gu 377' me,

In general M can be diagonalized by a bi-unitary transformation of the form

UIM; Ug = M,, My.08 = My.a0as, My >0,  a,f=1,234,
(3.89)
with the unitary matrices Uy, and Ug. This can, in general, be achieved by trans-

forming the fields of the interaction eigenbasis (primed fields) into the mass eigen-
basis (non-primed fields) via

/R R /L L
VeR V%{ VeL Vi

/ /
1% 14 14 14

_ 2 _ 2

'I;LR — UR VR 5 '7L — UL yL . (390)
s i o 1

/ /
fa Vy d vy
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3.3.1. Neutrino mixing for small SM-like neutrino masses

In this section, we investigate the interesting features of the diagonalization of
the neutral fermion mass matrix under the assumption of small SM-like neutrino
masses. These are highly favoured by experimental studies, like attempts to mea-
sure the masses of the neutrinos by analyzing S-decay (see e.g. [61]).

In more detail, we assume all entries of the SM-like mass matrix (my,, k,l = 1,2,3)
in Eq. (3.88) to be of some small scale m,,, representing the SM-like neutrino mass
scale. However, we assume not all entries of the mass matrix M; to be of this
small scale,

my = O(m,), m, < m=max{g,my}, 7° =g+ |gu|2 +1g:1?, §>0.

(3.91)
With this hierarchy, the fermion mass matrix Eq. (3.88) has the structure
0
(= O(my) 0| (3.92)

ge g,u gT me,
To determine the resulting neutrino masses one simply calculates the square roots

of the eigenvalues of the matrices Mj, Mg or M; VIQL. In our parameter hierarchy;,
d d d
the former one has the form

, 0 (o)
LMY = O(my) o EZ% L (3.93)

O (m,m) O(m,m) O(m,m) mg + 7*

where the O(m?) represents a 3 x 3 matrix with each element being of order O(m?2).
We find the following mass hierarchy

my, = O0(m,), k=1,2,3, my, = y/mi, + 3%+ O(m,), (3.94)

for the resulting neutrino masses. Further, the mixing matrix for the left-handed
fields, responsible for the diagonalization of M;d Mg via

P}‘JM;dUIE UI{M;ZUL = U{;M;dM;ZUL = dla‘g(mil ? m12/27 m12/37 m34)7 (395>
M, =)

has the structure

Uy = UL

_— o O O

0 0 0
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with the 3 x 3 unitary matrix Uy, with elements of O(1) introducing mixing of the
left-handed SM-like neutrinos, i.e. resembling effects of a PMNS-like matrix for
the SM-like part of the fermion sector. The more interesting feature of Eq. (3.96)
is the large suppression of the mixing between the left-handed SM-like neutrino
fields and f{¥ practically decoupling the SM and hidden parts in the left-handed
fermion sector®. By contrast, the structure of the right-handed unitary mixing
matrix is more complicated and, in general, no entries of Ug are suppressed in
our mass hierarchy. In a similar way to the determination of Uy, it can, e.g., be
determined via

UI{MQM&IUR = diag(m, ,m,,,m.,,m,,). (3.97)
Having Eq. (3.92) in mind we write Ug as product of two successive unitary field
transformations Ug = Ug 1Ug 2. We choose Uy ;

0
/ 2
e e e 0 O - -
Ug, = o |+ Geltn)=ge', 520, (3.98)
0O 0 0 1
with the orthogonal unit vectors {e,e’,e"}, |e| = |&/| = |e"| = 1, ele’ = 0, such

that it aligns the first three components of the last row of Eq. (3.92), (e, Uy, Ur),
along the unit vector (0,0, 1). Starting from this point

tUr1 = , (3.99)

0
O(m,) o
0
0 0 g my

the second rotation Ug is used to rotate the remaining two non-zero entries in
the last row of Eq. (3.99), (g, my,), into (0, m,,) resulting in

0

! O(ml/) 0
i, Ur1Urz2 = O (my) (3.100)

0 00 m,

Therefore, while the alignment of the SM-like right-handed neutrinos done with
Ugr,1 does not affect the right-handed field from the hidden sector, the rotation
Ug o is responsible for the mixing of the right-handed SM-like neutrinos with f/R.
With all the insights gained in this section we can now define the simplified fermion
sector of the DASM in Sect. 3.4.

3Note that féL still appears in several NLO calculations due to its gauge interactions.



3.4 THE SIMPLIFIED FERMION SECTOR OF THE DASM 35

3.4. The simplified fermion sector of the DASM

In this work, we are not interested in any observables that are sensitive to SM-like
neutrino masses or mixings. Having the previous section in mind, we thus restrict
the fermion sector of the DASM to the case m;; = 0, 4,7 = 1,2,3. Applying the
alignment transformation for the right-handed neutrino fields given in Eq. (3.98)
the Lagrangian given in Eq. (3.86) becomes

‘CFermion ‘Cgle\fmlon + EYukawa + fd (llDd mfd) (yﬂpféLyéR + hC)
+ > [V (3.101)
§j=1,2,3

with y, = V/27j/vy. In this simplified scenario the mass matrix for the neutrinos
and the fermion from the hidden sector has the simple form

000 0
000 0

My=10 00 ol (3.102)
00 § m

where we can always adjust (chiral) phases of the fields such that g, m¢, > 0. For
the unitary matrices Uy, and Ug o needed for the diagonalization of Eq. (3.102) we
make the ansatz

10 0 0 10 0 0
0 1 0 0 0 1 0 0
UL = 0 0 cosf sinf |’ Ur2 = 0 0 cosf, sind, (3.103)
0 0 —sinf, cosb; 0 0 —sinf, cosé,
This leads to the two diagonalization conditions
0 = sin 6, (g sin 6, + mg, cosb,), 0 = cos b (y cos Oy —mg, sinb,),  (3.104)

which determine the rotation angles 6; and 6, of the left- and right-handed field
rotations, respectively, to

sinf, = 0, tand, = b (3.105)
me,
We choose
6, =0, Sp, = sinf, = L, cp, = cosl, = $, (3.106)
\/Q2+m%d ,/§2+m§d
with 6, € [0, 5], to fix the rotations into the fields corresponding to the mass

eigenstates. The resulting neutrino masses are given by

My, = My, =My, =0, My, = /U + Mg, (3.107)
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Therefore, in this simplified fermion sector of the DASM we have no mixing be-
tween the left-handed fields Uy, = 14, and, thus, the flavour and mass eigenstate
coincide in the case of vanishing neutrino masses m,, ,, ,,. In particular, this leaves
the freedom of any unitary transformation Uy, of the left-handed SM-like neutrino
fields (see Eq. (3.96) for m, = 0). Thus, the simplified version of the DASM neu-
trino sector will not account for any PMNS-like mixing matrix, i.e. there are no
lepton-flavour-changing charged-current interactions present at LO.

In total, the extension of the fermion sector introduces two free parameters to the
theory. Again, choosing the most intuitive and phenomenologically easily accessi-
ble input parameters we take the mixing angle for the right-handed neutrino fields
6, as well as the mass m,, of the heavy neutrino field v4. Using Egs. (3.106) and
(3.107) we can easily connect the original parameters of the Lagrangian with the
chosen input parameters resulting in

y - SermV4’ mfd

= Cp, My, (3.108)
Finally, expressing the Lagrangian (3.101) in terms of the new input parameters

and the fermion mass eigenstates v;, ¢ = 1,2,3,4, with the help of Eq. (3.6) we
find

SM SM — (: ~R: R
ﬁFermion = £Fermion + ‘CYukawa + 1y (la - mV4) Vg + E : Vj layj

j=1,2,3
S0, M, _L R ~L R _L. R ~L. R
+— (s(,vrsahy4 Uy 4co, Sah Vs —s9,co HU V) —Co.co HU 1 +h.c.)
01
.56, My _L R ~L R /=L R /=L, R
— [1— (SeerX% Uy 4 Co.SuXVs V3 + Se,CaX Vs Vs + CoCaX Vg3 )

+ h.c.] —€ (S’YZ,M + CWZ;) (;74L7My£ + cgrﬂ}},}ﬂiy}fn 4 S§r5§7uV§

— [so,co, vy v3 + hee.]) (3.109)

for the fermion sector Lagrangian of the DASM.

3.5. Non-linear representation of the DASM Higgs
sector

In the previous sections the DASM was introduced for the well-known linear rep-
resentation (see Eq. (3.6)) of the Higgs fields ® and p. In the following, we briefly
introduce a non-linear representation for the two Higgs fields, which is used in the
tadpole renormalization procedure described in Sect. 4.2.1. For the discussion in
this section we closely follow the strategies outlined in Refs. [72-75] and apply
them to the DASM.

To introduce the non-linear representation we first define the 2 x 2 matrix notation
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for the linear representation of the Higgs doublet,

¢;0;

@z(@C,q>):i[(v2+h2)1+21¢], ¢ =5

V2
Note that, throughout this section, we use bold symbols to indicate the matrix
structure of the respective objects. In Eq. (3.110) the ¢;, i = 1,2, 3, represent the
real would-be Goldstone-boson fields. They are connected to the ones defined in
Eq. (3.6) via

(3.110)

1 .
¢F = 7 (g2 £ idhy), X2 = —¢s, (3.111)
and the o; denote the Pauli matrices. The kinetic terms for the Higgs doublet
as well as its gauge-invariant mass operator needed for the Higgs part of the La-
grangian (see Eq. (3.3)) are obtained by applying the trace in the matrix formu-
lation, resulting in

Lo jin = %tr [(Ducb)T (D“@)] ,  olo= %tr [@T®]. (3.112)

Moreover, since p only carries U(1)4 charge, we do not have to introduce a matrix
representation for it. With this, we can now switch to a non-linear representation
of the Higgs fields by introducing

1 i(;0; 1 iyl
P = E (hgl +v2) exp ( ij:]) , p= E (hIIll +vl) exp ( fll ) . (3.113)
Here the fields i and h3! are the gauge-invariant Higgs fields which will, after
a rotation similar to the one given in Eq. (3.12), lead to the two Higgs fields
corresponding to the physical Higgs bosons. The real would-be Goldstone-boson
fields of the non-linear representation are denoted by % and ¢;, i = 1,2, 3. Note
that these fields in general differ from their corresponding counterparts in the
linear representation. For our choice (3.113) we find the relations

nl

h, = (h‘fl + U1> cos (X—l) — vy, ho= (hgl + vg) cos (M) — Vs, (3.114)

U1 V2

b1 v ) I¢)

with 5 = (¢1, ¢, G3)T, between the fields in the two representations. Therefore,
the respective Higgs fields of the linear and non-linear representations agree up to
linear order in the would-be Goldstone-boson fields.

The scalar potential in the non-linear representation, spelled out explicitly in terms
of the component fields, is given by

X1 = (h?l + vl) sin (X—Ilﬂ) , O;= (hgl + 112) sin (ﬂ) & (3.115)

nl _ ,u_% nl 2 2 (gl 2
VD, p) = 5 (RS +v2)” — pi (R} + 1)
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] (B8 4 vs) " + M (B 4 v) " + % (B 4 v2)” (B2 + 1)

16
(3.116)

From Eq. (3.116) it is obvious that the Feynman rules for the Higgs self-interactions
coincide in the linear and non-linear representations. In contrast to the linear
representation, no would-be Goldstone-boson fields appear in the scalar potential
of the non-linear representation. In the non-linear representation the Higgs—would-
be-Goldstone-boson interactions as well as the 4-point would-be Goldstone-boson
interactions are contained in the kinetic parts of the Higgs Lagrangian. Further,
the Higgs fields in the linear and non-linear representations coincide to LO in
the would-be Goldstone-boson fields and, therefore, the Feynman rules for the
Higgs—gauge-boson interactions coincide in the two representations. The same is
true for the Higgs—fermion interactions. The explicit expressions for the respective
Feynman rules can be taken from Appendix F. Finally, we want to emphasize that,
due to the gauge invariance of the Higgs fields h}! and h3', there are no interactions
between the Higgs bosons and ghost particles in the non-linear representation.

3.6. Input parameters

Setting up the theoretical framework for any BSM model, it is of uttermost im-
portance to choose input parameters that are intuitive and phenomenologically
easily accessible. In the previously described DASM extensions of the SM Higgs,
gauge, and fermion sectors in total seven additional free parameters have been
introduced. To this end, we choose

e the mass M, of the additional Higgs boson, where A’ represents the non-SM-
like Higgs boson of h and H, the scalar mixing angle a;, which is most directly
connected to the measured signal strength of the SM-like Higgs boson, and
the scalar self-coupling constant A5 in place of the three additional free
parameters A;, A2, and p? (see Egs. (3.24)-(3.28)) in the extended Higgs
sector of the DASM.

e the mass My of the additional neutral gauge boson as well as the additional
rotation angle v in the neutral gauge-boson system, which most directly in-
fluences all couplings of the SM-like Z boson and especially rules its coupling
strength to particles from the hidden sector, instead of two new parameters
a and eq (see Eq. (3.69)) in the extended gauge sector of the DASM.

e the mass m,, of the heavy neutrino and the mixing angle 6, in the right-
handed neutrino system for the two additional parameters mg, and § (see
Eq. (3.108)) in the extended fermion sector of the DASM.
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With these additional parameters our complete set of phenomenologically easily
accessible and intuitive input parameters for the DASM is given by

{MW7 MZ7 MZ'? MH; Mh7 Aem, Y, &, 91‘7 )\127 Mty My, ‘/;]7 as}- (3117>

In this parameter basis, the DASM incorporates the following SM limits

1) vy — 0, Mh’ — MSM, )\12 — O,
2) MZ’ — Mz, My, — M}?M, A2 — O,
0 for M, = MM
3) v—0, a— { +T for My = MM Az — 0,
0 for M, = MM
4) MZ/ — MZ, o — { :i:% fOI‘ MH — MEM ; A12 — 0, (3118)

where, again, h’ denotes the non-SM-like Higgs boson of h and H, fully decoupling
the hidden sector from the SM parts of the theory. Note that the decoupling of the
extension in the gauge and scalar sectors described in Eq. (3.118) will automatically
lead to a decoupling of the fermion sector. However, the limit 6, — 0 will not, as
one might naively expect, decouple the fermion sector extension from the rest of
the theory, due to the remaining non-zero gauge couplings of v, to the Z and Z’
bosons.

4Note that we do not give a detailed description of the QCD part of the DASM since it is
equivalent to its SM counterpart described in Sect. 2.2. Nevertheless, we included the strong
coupling constant ag in the input parameter set for completeness.






4. Renormalization of the DASM

In the following phenomenological analysis of the DASM, we are interested in
1-loop precision for the BSM contributions to the investigated POs. In any anal-
yses of EW POs, at least this level of accuracy of predictions is crucial to match
the precision of modern collider measurements, like analyses performed with LHC
data, or of other high-precision observables like the (g — 2), results. In order to
perform the necessary higher-order calculations, a proper regularization scheme is
needed to regularize appearing ultraviolet (UV) divergences. We use dimensional
regularization [76,77] (see Appendix C for a brief summary) throughout this work.
Further, a suitable renormalization scheme is needed to obtain phenomenologically
sound predictions. In Sect. 4.1, we introduce the renormalization transformation
for the parameters and fields used in the renormalization procedure. The full
renormalization of the DASM is discussed in Sect. 4.2. There, we define on-shell
(OS) renormalization conditions for the chosen set of input parameters' given in
Eq. (3.117). Additionally, we set up MS renormalization for the BSM mixing an-
gles. For both cases, we give explicit expressions for the resulting renormalization
constants as well as interesting intermediate results.

4.1. Renormalization transformation

For the following renormalization procedure of the DASM we split the bare pa-
rameters and fields into their renormalized counterparts and corresponding renor-
malization constants. At NLO the renormalization transformations for the SM
and BSM input parameters read

My = My + Mg, M2, = M3+ 6M3,

Mgy = M+ 002, M2 — M 4 62,
Mo = Mg, + 6 My, eo=(14+06Z.)e = e+ de,
Y =7 +9d7, ap = o+ da,

INote that for A;» an OS renormalization condition is phenomenologically not appropriate as
long as the non-SM Higgs boson is not found. Therefore, we use an MS renormalization
condition for the renormalization of Ais.

41
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)\12,0 = )\12 + 5)\127 myio = My, + (5mf7l-,
Vijo = Vig +0Vy, Oc0 = Or + 60;. (4.1)

It is common to label bare parameters and fields with a subscript “0”, and we adopt
this notation throughout this chapter. A bare parameter py is connected to its
renormalized counterpart p (without subscript) via the renormalization constant
O0p. Thus, the choice of the respective renormalization constant determines the
interpretation of the renormalized parameter and gives it its (physical) meaning.
The definition of suitable renormalization conditions for the input parameters of
the DASM is the subject of Sect. 4.2. The renormalization transformation of the
fields that correspond to mass and charge eigenstates read

ho\ 1 h _(0Zwm  0Zpn
() = (riom) (). o= (i 52m).
Ay 1 A 0Zaa 0Zaz O0Zay
ZO == (1]_3 + §6ZV> Z ; 5ZV == 5ZZA 5ZZZ 5ZZZ’ s
Z(/] 7' 0L ga 0Lgg O0Lgg
1
Wi = (1 + 552W> W,
1 1
flo= (1 + gézf’L) 1k Ho= (&-j + §5Z£’R) i (42

where, to account for the possibility of mixing between the respective fields, we in-
troduce a matrix structure for the Higgs fields h, H, the gauge-boson fields A, Z, Z,
and the right-handed fermion fields f}. For charged leptons, up-, and down-type
quarks the indices 7, 7 run over the three fermion generations. In the DASM the
BSM fermion field f} mixes with the neutrino fields. To account for this additional
mixing in the DASM, for f = v the indices 7, 7 run over the three SM-like genera-
tions as well as v4. In the following phenomenological analysis we do not consider
any flavour-sensitive observables. Thus, we set the CKM matrix to the unit matrix
and do not introduce a matrix structure in renormalization transformations of the
quark sector. The renormalization for a non-diagonal CKM matrix in the DASM
would, however, exactly follow the respective SM procedure (see, e.g., Refs [51,54]
and references therein).

Finally, we introduce the renormalization transformation

tho = tn + Otp, tho =ty + 0tm, (4.3)

for the tadpole parameters defined in Eq. (3.14). While Eq. (3.14) holds for the
bare and renormalized tadpole parameters, {t1 0, %20, tho, tuo} and {t1,te, tn, tu},
respectively, the parameter relations given in Eq. (3.9) depend on the chosen renor-
malization scheme and, thus, are in general only valid for the bare parameters, but
do not hold for the renormalized ones.
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The remaining freedom of the choice of the renormalization of the unphysical sec-

tor, i.e. the gauge parameters, ghost fields, and would-be Goldstone-boson fields,

does not affect S-matrix elements, and the counterterms introduced above are suf-

ficient to render S-matrix elements finite. Thus, we choose the renormalization

of the unphysical sector such that the gauge-fixing functionals will not introduce

any counterterms, i.e. the gauge-fixing Lagrangian has the form Eq. (3.72) with

Eq. (3.73) for renormalized parameters and fields.

Employing the renormalization transformations Eqs. (4.1) and (4.2), the Lagrangian
of the DASM L, written in terms of the bare parameters and fields can, at NLO,

be split up in the following way

Lo=L+ Le, (4.4)

where £ has the same form as Ly, but with the bare quantities replaced by their
respective renormalized ones, and L. yields the counterterm contributions. In
particular, this means that the respective LO Feynman rules are recovered at
NLO, but with renormalized parameters instead of the bare ones. Furthermore,
we find additional Feynman rules originating from L that introduce the respective
renormalization constants in calculations.

4.2. Renormalization conditions

As already mentioned above, the precise choice of the renormalization constants
defines the physical meaning of the renormalized quantities. The renormalization
constants are obtained by imposing renormalization conditions on the correspond-
ing fields and parameters. In the following, we set up a renormalization scheme
that employs OS renormalization conditions for the fields and input parameters.
OS renormalization conditions tie the input parameters directly to some physi-
cal quantities, making them more directly accessible in suitable experiments and
giving them a rather intuitive meaning. Furthermore, this direct connection to
physical objects results in several desirable features of OS schemes (see discus-
sions below). As the only exception within this OS scheme, we renormalize the
input parameter ;o with an MS renormalization condition, since a sensible OS
renormalization condition will only be applicable if the non-SM Higgs boson is
found. The MS renormalization of Ao will, however, not jeopardize any of the
nice benefits of our OS scheme, like the independence of predictions on the tad-
pole treatment (see Sect. 4.2.1), since the dimensionless scalar self-coupling Ajy
is not connected to the mass generation of any of the particles. Having the OS
scheme set up, we alternatively set up MS renormalization for the BSM mixing
angles introduced by the DASM. In MS renormalization schemes, the respective
renormalization constants only absorb the standard UV divergence of dimensional
regularization (see Eq. (C.2)), i.e. their finite parts are zero. Since the structure of
the UV divergences is unique within a given theory, the UV-divergent parts of the
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renormalization constants coincide in all renormalization schemes. Thus, having
the OS renormalization scheme established, we can simply switch to MS renor-
malization by setting the finite parts of the respective renormalization constants
to zero.

4.2.1. Tadpole treatment

Before we define the OS and MS renormalization of the DASM, we briefly discuss
the treatment of the tadpoles, i.e. of the EW vacuum, following the discussion of
the authors of Refs. [54,72,73], where a more detailed and comprehensive discus-
sion of tadpole schemes can be found. While predictions of observables in full OS
renormalization schemes are independent of the tadpole treatment?, tadpoles are
particularly important whenever any parameters related to masses are renormal-
ized via MS conditions. In the latter case, predictions of observables are sensitive
to the choice of the tadpole scheme. In this section, we discuss three impor-
tant tadpole schemes. The historically most relevant schemes are the Parameter
Renormalized Tadpole Scheme (PRTS) [78,79] and the Fleischer-Jegerlehner Tad-
pole Scheme (FJTS) [80]. As an alternative to these schemes, more recently, the
Gauge-Invariant Vacuum expectation value Scheme (GIVS) was proposed by the
authors of Refs. [72,73].

Due to the spontaneous symmetry breaking introduced by the non-vanishing vevs
of the Higgs fields p and ®, explicit tadpole contributions have to be taken into
account in calculations within the DASM, whenever the minimum of the effective
Higgs potential is not at the renormalized vevs vy, vo. From a technical point of
view one wants to avoid the appearance of these tadpole contributions as far as
possible. This can be achieved by suitable parameter and field definitions. Fur-
thermore, a bad choice of the tadpole scheme and, thus, of the expansion point of
the Higgs fields around the respective vevs can lead to large missing higher-order
corrections, i.e. large uncertainties of predictions.

Forcing the bare tadpole terms to be zero, ie. t,0 = tgo = 0, eliminates the
tadpole contributions at LO. At NLO, tadpole contributions of the form

h H
ir =iT" = Q ir =iT" = Q (4.5)

where the blobs represent any 1-loop subdiagrams, enter calculations. To elimi-
nate the appearance of these explicit tadpole contributions, one generates tadpole
counterterms of the form dt,h and 0ty H in the NLO Lagrangian and fixes them
such that they cancel against the unrenormalized NLO contributions to the renor-

2Note that, even in full OS schemes, intermediate results, like renormalization constants, in
general do depend on the tadpole treatment. However, this dependence cancels out system-
atically in the calculation of observables.
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malized 1-point functions 't and T'¥ of the physical Higgs fields h and H,

Tt =T"+6t, =0 = 5ty = —T™,

=146ty =0 = Sty = —TH. (4.6)
While all three tadpole schemes discussed in this section enforce Eq. (4.6), they
introduce these tadpole terms in different ways. Therefore, the respective tadpole
counterterms will enter the Lagrangian at different places.

The Fleischer-Jegerlehner Tadpole Scheme introduces the tadpole counterterms
via field shifts of the physical Higgs fields

h—h + A’UFJTS AUFJTS _ _5t£JTS
h ) h — M2 )
h
H H A FJTS A FJTS __ _6tEJTS 4.7
— + UH ) UH - MQ ) ( . )
H

while setting the explicit bare tadpole terms ¢5, o and ¢ to zero. Due to the gauge
dependence of the unrenormalized contributions 7" and T to the Higgs 1-point
functions, AvEITS and AvE'TS turn out to be gauge dependent as well. However,
the field redefinitions Eq. (4.7) are mere shifts in the integration variables of the
functional integral. Thus, it cannot introduce any gauge dependence to the pre-
dictions for observables in either OS or MS renormalization schemes. However,
the FJTS tends to introduce large tadpole contributions to mass parameter renor-
malization constants, that can jeopardize the perturbative stability of predictions
in MS schemes® (see e.g. Refs. [69,72,73,81,82]).

In the Parameter Renormalized Tadpole Scheme the tadpoles are treated similarly
to input parameters, and, consequently, the tadpole counterterms are introduced
via the parameter renormalization transformations given by Eq. (4.3). In the
PRTS the minimum of the renormalized effective Higgs potential is at the renor-
malized vevs v, and vy. To achieve this, the renormalized tadpoles are set to zero
th =ty =0, leading to 6t = tpo and 0ty = tyo. Combining

5ty = —vio (407 gAro + V30 A20 — 2043 )

2
v
2,0 2 2
Oty = —va < A2,0 + U7 gA12,0 — Mg,o) )

4
/\ . ULO (ci,OMI%,O + 8370M§70) + ca70§tH — Sa,Odth
w 8“?,0 ’
2 [va0 (2 M2y + 52 \M3 o) + Candtn + Saodts]
Ao = 3 : (4.8)

V2.0

with Eq. (3.28) for the bare and renormalized vev v and vy, respectively, the
tadpole counterterms in the PRTS can be restored to the Lagrangian, where the
bare tadpole terms are set to zero, by the simple replacements

3Recall that the tadpole scheme dependence of predictions for observables cancels in OS
schemes.
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3 (cadtTRTS — 5, 0LFRTS)

41)1
a0t TS — 5,0t 1S 2 (cadty "5 + 5405 0)
A2 — Ao + 3 )

8v? ’ U3
A12,0 = A120- (4.9)

3 (cadtERTS + 5, 01ERTS)

2U2

2 2 2 2
Mip = Mo T y o Mo = Moo T

Y

)\170 — )\170 +

In the PRTS, in contrast to the FJTS, the renormalized vev parameters denote the
minimum of the renormalized Higgs potential. Therefore, the PRTS leads to small
corrections to renormalized mass parameters. However, the gauge-dependent tad-
pole counterterms enter the relations between the bare original parameters of the
Lagrangian and the chosen bare input parameters. This leads to a gauge depen-
dence in the parameterization of predictions in terms of renormalized parameters
for observables in MS renormalization schemes. Therefore, using MS renormaliza-
tion, one has to fix a gauge once and for all, or the values of the input parameters
have to be converted between different gauge choices, to obtain consistent results
within the PRTS. Recall that full OS schemes are independent of the tadpole
scheme and, thus, there is no such gauge dependence introduced.
As a third option, the Gauge-Invariant Vacuum expectation value Scheme was
developed to combine the gauge independence of the FJTS and the perturbative
stability of the PRT'S in a single tadpole scheme. Therefore, it introduces two parts
otghYS and 6tGYS, S = h, H, of the respective tadpole renormalization constants
0tg. The former ones are introduced via a parameter renormalization transforma-
tion (similar to the PRTS) and the latter ones via a field redefinition (similar to
the FJTS). To determine &gllvs’ one switches to the non-linear representation (see
Sect. 3.5), where the Higgs fields that correspond to the physical Higgs bosons are
gauge invariant. Consequently, the resulting tadpole functions are gauge indepen-
dent as well. These are used to determine the first parts of the tadpole constants
via

StyVS = =Tk

GIVS __ H
nl» 5tH,1 - _Tnl7

(4.10)

where the subscript “nl” marks the non-linear representation. At NLO they ex-
plicitly read

TS= Y dev [BAg(M) =20+ D [AssrAo(M3)]
V=2,2' W S'=h,H
+Asr Y [NeymiAo(m})] + Asmi, Ao(m?,),  S=hH, (411)

f=lu,d

where N¢ s is the respective colour factor of a fermion f. The various coupling
constants in the non-linear representation are given by

2 772 2772 2772
co M (U1CaCWMz - vgsastZ,)

1672009 M, ’

2 772 2772 2772
M7 (vlsacvMZ + U2Ca87MZ/)

16720109 M, ’

)\hZ -

)\HZ
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2 172 2 /2 2 /2
M, (U1CaSWMZ/ — UQSOZC,YMZ)

Az =

2 172 2 172 2 /2
co M7, (vlsavaZ, + UQCOZC,YMZ)

HZ' —

16720109 M, ’ 16720109 M3, ’
2 2
f— ca M, N Sa My
hW 2 ) HW - 2 )
8129 8129
N = 3Chhn A\, _ ChhH
hh = Ty Hh = —
1672’ 1672’
ChHH 3cnan
Mg = 16,2’ AHH 16r2
Cq Sa
Ahp = ————, AHF = — %
A2y, 40y
2 2
S S5 CaSs
Y £ ANy, = — L 4.12
v 471'21)1 ’ v 471'2’1}1 ’ ( )

where we made use of the shorthands for the Higgs self-couplings introduced in
Sect. 3.1, and Ay(m?) denotes the standard 1-loop 1-point integral in dimensional
regularization in the conventions of Ref. [54]. Similar to the PRTS, the resulting
(gauge-independent) tadpole counterterms 5tGIVS and (515%}/3 can be restored in
the Lagrangian, where 5, o and tg o are set to zero7 via the replacements

3 (cadtGYS — sa0t51YS) 3 (cadtftVS + 5,0t 515)
Mio - Mio + 7 1o, —, Ng,o - Ng,o + ’ 20y —,
CaltGYS — s,0t51VS 2 (caltis + 540t F®)
Ao = Ao+ e —, A2 — A2 + 3 —,
1 2
A12,0 = A12,0- (4.13)

Since we want to employ the linear Higgs representation in practical calculations,
we need to introduce further tadpole renormalization constants—in addition to
515%}?’8 and 5tGIVS —+to the Lagrangian to ensure the full cancelation of the explicit
tadpole loop contributions in NLO calculations. These additional tadpole renor-
malization constants 5tGIVS and 5t§f¥ S are gauge dependent, but can, nevertheless,
be introduced such that predictions of observables stay gauge independent (even
in MS schemes) via field shifts similarly to the ones performed in the FJTS,

h — h+AUGIVS AUGIVS 5tGIVS
) M2 )
5tGIVS
H— H+AvSYS, ASVS = M2 (4.14)
The explicit field shifts read
GIVS _ T° - Ty
AU T /\SXAO(g\/MZ) + )\Sx’AO(g\/MZ ) + )\5¢A0(fwa) (415)

with S = h, H and the respective constants are given by

V1CaC2 — V98452 V18aC2 + V9Ca 82

Ay = Ay =
X 3271'21)1’02 ’ X 3271'21)1’02 ’
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2

vlcasi — vgsaci vlsasg + vac,C

Ayt = Ay = z
hx 32720109 Hx 32720109
C S
Mg = ——— | Aio = —a—. 4.16
" 16720, Ho = 16r20, (4.16)

Introducing the two parts of the tadpole renormalization constants in this way will
tie the renormalized vevs v; and vs to the minimum of the renormalized effective
Higgs potential without introducing any gauge dependence to the parameteriza-
tion of observables. Thus, the GIVS combines the benefits of the PRTS and FJTS,
making it a perturbatively stable, gauge-independent tadpole scheme.

As previously mentioned, for MS renormalization the choice of the tadpole treat-
ment has an impact on the predictions for observables. Whenever we use MS
renormalization in this work, we make use of the PRTS, which is the most com-
monly used tadpole scheme. Similar to the SM, the THDM, and the SESM cases,
it is expected that the results in the DASM obtained within the PRTS deviate
only marginally from the corresponding results obtained within the GIVS [72,73].
However, for the MS renormalization of the mixing angles we explicitly give all
expressions needed to translate the respective results from the PRTS to the GIVS
and FJTS.

4.2.2. Mass and field renormalization

We renormalize fields and masses using well-known OS conditions. To intro-
duce these OS renormalization conditions we follow the procedure described in
Refs. [54,79]. The resulting OS-renormalized fields are canonically normalized and
do not mix with each other. Furthermore, the renormalized mass parameters cor-
responding to physical particles mark the positions of the poles of the real parts of
the propagators. The renormalization conditions for the renormalized two-point
vertex functions T'Y of the fields a, b, for OS external particles read

ReT} b (—k, k)e" (k) eope =0, V,V/ = A, 2,2/, W*, (4.17)

klﬁv ﬁ ReT}, V (—k, k)e" (k) = —e,(k), (4.18)

ReI'R™ (=k,k)ljecpz =0, 8,8 =h,H, (4.19)

leiﬂ ) lﬂ—;]\/jg Rel'3%(—k, k) =1, (4.20)

Relily(-p.p)ue) =0 (4.21)
MY

tim 2 Re T (—p p)ui(p) = o) (4.22)

p2—>m?ﬂ. pe— mfﬂ.

Here, we introduced the polarization vectors (k) and the spinors u;(p) for the
OS external vector bosons and fermions with momenta k£ and p, respectively. The



4.2 RENORMALIZATION CONDITIONS 49

renormalized two-point vertex functions can further be decomposed using their
respective covariant decompositions. In 't Hooft-Feynman gauge they are given
by

17 k ]{71, ty7 k ku Ty
AL 8) = 8 20— (g~ ) s )~ B ey

TR (=k, k) = (K — M3) dss + T8 (K°), (4.23)

with the renormalized transversal and longitudinal self-energies, EVTV (k?) and

ZE}Y '(k?), for the renormalized vector boson two-point functions. Further, in our
conventions all self-energies can be split up into

5 (k%) = Sip1 (k) + St + Staa, (4.24)

with the one-particle irreducible (1PI) contributions ¥ip;, the reducible tadpole
contributions .4, and the 1- and 2-point tadpole counterterms s (see Ref. [54]
for further details). Similarly to the case of the neutral gauge bosons, the possi-
bility of mixing fields in the scalar sector of the DASM leads to a non-diagonal
structure in the renormalized Higgs self-energies given by

: : 1 1
Y25 (k?) = £ (k%) + §(k:2 — M2)6Zss + 5(zg2 — M2)6Zsis — 0550 M2, (4.25)

with S, 8" = h, H. Combining Eqs. (4.17)—(4.20) with Eqgs. (4.23)—(4.25) finally
leads to the well-known results

VIV g2 oy (k?) J—
5MV—R eXy " (My), 0Zyiy = —Re—-—> , V=AZ7 W=,
ok? KR=M2
E¥TV/(M12/’) ! / / ! /
0Zyvyv = —2Re —— VV'=AZ ZA AZ' \ Z'A, Z 7", 7' 7, (4.26)
My, — My
for the renormalization constants in the vector-boson sector and
azSS k2
5M§v = Re ESS(Mg), 5255 = — Re —( ) s
ok? K2 012
S
29(ME)
§Zgs = —2Re ———52 S+ S, 8" =h,H 4.27
SS € Mg/ _ Mg? 7A ) y ) 3 ( )

for the renormalization constants of the scalar sector. The covariant decomposition
of the renormalized fermion two-point vertex function is given by

T8 (=p.p) = porTHY (0%) + porT (%) + ol (%) + wrTE (), (4.28)

with the chiral projectors wy,/r = % (1 F 5) and the renormalized left- and right-
handed vector and scalar parts of the fermion two-point vertex function are denoted
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by F{{”I;j (p*), T {{’7}; (p?), FQ}Z. (%), and FQ‘; ;(p?), respectively. Adopting this notation
for the covariants of the self-energies, the different contributions to the two-point
function can be further decomposed in terms of unrenormalized self-energy contri-
butions and renormalization constants leading to

TS %) = 0y + S () + 5 (620F +ozM) (4.29)
TES (%) = 0+ S () + 5 (5257 + 025, (430)
PR (%) = —mpady + 5 (97) - % (mpad Z5" 4 mps02L™ ) = y0mys (4.31)
PR (0%) = —myidy + 257 (0°) - % (mf,iaz{ﬁ +my 6 Z5H ) — bi;0my;, (4.32)

where (5ij = 6Z;; follows from the hermiticity of £. Combining Eqgs. (4.21) and
(4.22) with Eqs. (4.28)—(4.32), we find, similarly to the SM case [51,54,79],
1
omys = 5Re [myi(SHHm3 ) + S5 m3 ) + =) + = md)].

0
57 = RoBEH) — my e [y (24G7) + 407))

Y

+ 2507 + 27|

pP=m3,
ZI" = — Resf(md ) - my, o oRe [y (S50 + S°07))
o)+ 2l ed)| L,
pP=m3,
0zl = ﬁm [m?”,jzf;R(mfﬂj) + mymp S5 (3 ) + mp Sl md )
+ mf,ifo(m?,j)] ; i # J, (4.33)

for the field and mass renormalization constants of the fermion sector.

4.2.3. Mixing-angle renormalization

In many BSM models, where some sort of mixing of fields appears, mixing angles,
like v, «a, or 6, in the DASM, are introduced to parameterize the BSM modifica-
tions of certain couplings of SM-like particles. This intuitive interpretation and
direct experimental accessibility make them a natural choice as input parameters.
However, they are often introduced to diagonalize mass matrices of mixing fields
and, thus, are related to the masses of the corresponding particles. Therefore, MS
renormalization of these mixing angles will, in general, lead to a dependence of
predictions for observables on the choice of the tadpole renormalization scheme
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(see Sect. 4.2.1). Hence, a proper OS renormalization for mixing angles is de-
sirable. In the past, several OS renormalization schemes for mixing angles were
developed. A comprehensive overview of such schemes and a detailed discussion
of their benefits and downsides is given in Ref. [81]. Following this discussion, a
good OS renormalization scheme for mixing angles should have several desirable
properties:

e Resulting OS renormalization constants should be gauge independent. This
guarantees that predictions for observables are gauge-independent functions
of the renormalized mixing angles.

e Resulting higher-order corrections to observables should be of moderate size,
i.e., the renormalization scheme should not spoil the stability of the pertur-
bative approach in calculations. In detail, there should be no region in the
(otherwise perturbative region of the) parameter space, where the corrections
to S-matrix elements become unreasonably large or even develop a singular-
ity. Accordingly, the OS renormalization constants should not introduce any
“dead corners” to the parameter space for extreme values of the respective
mixing angle or in the case of degeneracy of the masses of the mixing particles
that are not already present in the LO coupling structure of the model.

e The renormalization of the mixing angle should not distinguish between the
mixing fields. Thus, it should be symmetric with respect to the mixing
degrees of freedom. Furthermore, it should be as process independent as
possible.

e The renormalization scheme should respect the LO decoupling properties of
heavy particles [83].

Having this in mind, we now define OS renormalization conditions for the mixing
angles present in the DASM.

4.2.3.1. Renormalization of the gauge-boson mixing angle ~

Following the approach for OS renormalization of scalar-sector mixing angles dis-
cussed in Ref. [81], we introduce a “fake fermion” wq that carries an infinitesimal
charge of the new U(1)q gauge group. Besides that, it is a singlet under the re-
maining gauge symmetry of the DASM. Introducing wq to the theory, we have
to add the most general gauge-invariant, renormalizable Lagrangian that includes
the fake fermion,

L, = wa (ilDd — mwd) Wq = Wq [1(‘/? — €q, <57Z + C,YZ/) — mwd} Wd, (4.34)

to the Lagrangian of the DASM. Here ¢ represents the U(1)4 charge and m,,, is
the Dirac mass parameter of wq, which is present since wq is non-chiral*. Equation

4Note that this also ensures that no anomalies are introduced to the theory by introducing the
fake fermion.
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(4.34) introduced two additional vertices with the respective Feynman rules®

wq wq
Zywv< = —iGuES) Y, Z,Qw< = —iGuécs,, (4.35)
wq Wq

to the theory, which vanish in the limit ¢ — 0, where the DASM is recovered.
However, we can use these additional interaction terms, or rather the possible®
Z/ 7' — @qwq decays to define the OS renormalization condition for v. To this
end, we parameterize the matrix elements of the two decays by the OS formfactors
FVeawa (V =7 7", via

MPuss = (g, du, |, FPoe pME 5 = (g, du, ] g FPe(4.36)

with the spinors of the final-state fermions #,,, and v,,,, and the polarization vector
of the respective gauge boson ¢,. Further, the subscripts of the spinor chains
[...]z/2 indicate the respective decay kinematics. These OS formfactors can now
be used to determine the gauge-boson mixing angle renormalization constant -y
at NLO. To this end, we use the ratio of the two formfactors and demand that the
NLO corrections to this ratio in the limit ¢ — 0 vanish

Z0qwd Zwqwd
lim 70 L Flo 5 (4.37)
q =0 J,—_-Z’:ded - fZ’@dwd - I : :
“ NLO LO gl

We specifically choose this ratio since it only depends on «, but no other parameter
at LO. In this way, we can ensure that we do not absorb any corrections that are
related to other parameters of the model into the definition of 6. Otherwise, this
misalignment can potentially lead to unnaturally large corrections (see e.g. Ref. [81]
and references therein). Using OS renormalization for the fields, the renormalized
formfactors are given by

0 o) 5é 58 1 C _
.FNZEJSwd = .FLngwd (1 + g + S—PY + (5de —‘I— §6ZZZ _|_ #5ZZ/Z + (sifgswd) ,
v v

de 9 1
S 0Zuyy + z0Z 7170 +

s
€ Cy 2 2cy

g 6ZZZ’ + 5ZIded) .

5 1\ZI£%Wd =5 LZ(I)@d(JJd <1 + loop
(4.38)

Here we introduced the unrenormalized relative 1-loop corrections to the two ver-
tices (5120{5 “4¥4respectively, as well as the field renormalization constant for 67,

of wq. In combination with Eq. (4.37) we find

5In our convention for Feynman rules all fields are considered incoming.
5The mass of the fake fermion can always be chosen such that these decays are possible.
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Wd Wd
ZHMA@ Z/'LM@
wq Wy

Z/Z/Q)dwd
loop .

Figure 4.1.: Feynman diagrams contribution to .

Zqwq Zwqwq
Fano Lo {1 05y _ ocy

1 ( C S
15 - 7 (SZZZ 5ZZ’Z’ 'YézZ’Z ’y(sZZZ’)
YAURE) 7! wqw, 2
f L dWd ‘F.L dWd S C

Sy Cy 5y y

+ e 5120;?%] . (4.39)
The only NLO contributions to the vertex corrections are introduced by the re-
spective Feynman diagrams shown in Fig. 4.1. Thus, we find 5&{5@"% = O(q3) for
da — 0. Similarly, the Feynman diagrams contributing to 0Z,,, include at least two
couplings of the Z or Z' boson to wq and, thus, §Z,, = O(¢3) as well. Therefore,
combining the renormalization condition Eq. (4.37) with Eq. (4.39) and taking the

decoupling limit g3 — 0 for the fake fermion leads to
1 1, 9
(S"yOS = 55767 (5ZZ’Z’ — (SZZz) + 5 (875ZZZ’ — C,YCSZle) s (440)

where we made use of ds, = c,07.
This OS renormalization combines several of the desirable properties mentioned
above:

e By defining the OS condition in terms of OS formfactors, the resulting
renormalization constant is based on S-matrix elements resulting in a gauge-
independent combination of field renormalization constants.

e It is symmetric in the neutral gauge-boson fields Z and Z’.
® )7os has smooth limits for s, — 0 and ¢, — 0.

e The renormalization constant dyos does not depend on a specific physical
process.

e Predictions using this OS renormalization are stable in the degeneracy limit
My — My. To see this, we first note that all appearance of v originating
from parameter replacements of the original parameters of the Lagrangian in
terms of our chosen input parameter set (see e.g. Eqgs. (3.68) and (3.69) for
eq and a) include a prefactor M2 — Mé,. This prefactor cancels the respective
poles introduced to dvyps via the off-diagonal gauge-boson field renormaliza-
tion constants in Eq. (4.40). Additionally, dvos is explicitly introduced to
the theory by the field rotation matrix Eq. (3.58). In combination with the
introduced OS field renormalization Eq. (4.2) we find at NLO

RV(VO; CW,O) = RV(’Ya CW) + 5R’V(77 Cw, 5’7a 5CW)7 (441)
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and finally
B, Lo (A
W; = RV(77 CW) (1 + R;F/(’ya CW>6R‘V(,}/7 Cw, 577 6CW) + 552\/) Z/;L
o Z,
(4.42)

The explicit v terms originating from dRy are always introduced in either
one of the combinations

1 1
—(5’}/ + §5ZZZ’7 5")/ + §5ZZ’Z7 (443)

which in either case only introduces the off-diagonal field renormalization

constants 077, and 077 in the combination

S (Mz) — X257 (M)
Mg/ - M% '

5ZZ/Z + 6ZZZ’ = 2Re (444)

This combination is stable for M; — My making the OS scheme perturba-
tively stable in this limit.

e As discussed in Sect. 4.2.1, having full OS renormalization for all parame-
ters related to masses leads to a cancelation of all tadpole contributions in
predictions for observables.

Having this OS renormalization set up, it is straightforward to derive the respec-
tive MS result by simply setting the finite parts of dy0g to zero and only keeping
the terms proportional to the standard 1-loop UV divergence of dimensional reg-
ularization Ayy,

(S’YWS = 5’YOS|UV' (445)

The explicit result for d7yg in the PRTS is given in Appendix D. Note that even
though the dependence on the tadpole treatment cancels exactly in predictions of
observables using OS renormalization, dyog itself depends on the chosen tadpole
scheme. So does dy5g (see Eq. (4.45)). Its tadpole contributions in the three
tadpole schemes described in Sect. 4.2.1 explicitly read

PRTS
57@,1}3&1 — O, (446)
SAFITS (czzn Doy + czzmAvi’™®) (4.47)
IYMS,tad MZQ _ M%/ UV7 :

GIVS GIVS
GIVS _ (CZZ’hAUh + czzuAvy )

57m,tad - MZ2 _ MZQ’ , (4.48)

uv
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where we introduced

M2 M?2
Czz'h = —S2y (CaU1 + SaU2) FUCQ’ Cz7'H = S2y (CaUQ - Savl) 1)—0027 (449)
1

representing the couplings czz,hZ), Z" + czzuH Z, Z" in the Lagrangian. In the
PRTS, and, thus, in the GIVS, tadpole terms are explicitly introduced in the rela-
tions between the bare parameters of the Higgs potential Ao, A2, A2, ,uio, ,ug,o
and the bare vevs, masses, and mixing angles, introducing a tadpole scheme de-
pendence to the latter. The relation between the bare gauge-boson mixing angles
in the PRTS and FJTS is given by

PRTS _ FJTS _ 1 oty 57551”8) ’ (4.50)

Yoo = MZ M (CZZ’th + Czz'n M2
Z/

leading, in combination with Eqgs. (4.46) and (4.47), to the (gauge-dependent) shift

PRTS FJTS _ _PRTS FJTS PRTS FJTS
™Ms — Tms — o — % - (571\75 _571\73 )
1 T TH
= —— | Cyoy—= + Cro—= 4.51
v (g temgg) o O

for the MS-renormalized mixing angle. Here the subscript “finite” indicates that
only the finite parts are kept. Similarly one finds the (gauge-independent) shift

/yGilvs — 'YHTS — —1 Crrrt T_Iill + Ct T_I{IJ (4 52)
NSNS g = MR MR e '

for the connection between the GIVS and FJTS values of the MS renormalized
mixing angle. Finally, we want to emphasize that predictions using an MS renor-
malized ~ are in general not stable in the limit My — My.

4.2.3.2. Renormalization of the Higgs mixing angle o

Since the Higgs field p is charged under the U(1)q gauge group, no gauge-invariant
interaction with a “fake fermion” (that allows us to recover the original theory
by taking an “easy” decoupling limit), as proposed in Ref. [81], is possible in
the DASM. Consequently, no fully process-independent OS definition is suitable
for the Higgs mixing angle a. In this section, we define two different, process-
dependent OS renormalization conditions for a and additionally give the result
for its MS renormalization. Note that a comparison of predictions obtained with
these different schemes can provide an estimate of the theoretical uncertainties of
the predictions. In order to define the first OS scheme, we make use of the decays
h/H — v4vy. Naturally, this is only applicable in the case M), > 2m,,. We use the
ratio of the respective on-shell formfactors F/H#74 of the two decays, defined by

Mh—>ﬁ4l/4 = [ﬂmvm]h]:hmma MH_W4V4 = [aV4UV4]H]:Hﬁ4V4’ (453)
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to define our OS renormalization condition. Recall that in our notation [...],/u
represent the kinematics of the respective decays, and u,, and v,, denote the
spinors of the final-state fermions. For our NLO renormalization of o, we demand
all NLO corrections to the ratio of the real parts of these formfactors to vanish

higvy hvgvy
R‘e‘F.NLO ; LO — _8_0‘ (4 54)
Re F{8"  Flo™  ca '
NL L

In the presented OS scheme we treat a as a real parameter, and, thus, the real
parts on the left-hand side of Eq. (4.54) are needed to ensure that absorptive
parts are not taken into account in the renormalization condition. At LO the
ratio Eq. (4.54) only depends on the parameter a and, thus, it is particularly well
suited for the Higgs mixing angle renormalization (see discussion below Eq. (4.37)).
Decomposing the two formfactors at NLO leads to

= = 58 (SS (SN (S'U
th/ v. Fhu v. o 0 Yy 1
L4 ’ - |:1 S Sp g U1

1 « v 1277
+5 (25254 + 0T — 26 Ty, + 523;5‘) + o } ,

Sq Sy loop
FHows _ pHos | 0cq  0Sp, @ B vy
NLO . — Y10 +—+ t—=—-—
Cq 50, Yy U1

1 Sa

loop

?f 5Z§f> + 5H”4”4}, (4.55)
Or

where we introduced the shorthands 6&’2‘;’4 and (555;”4 for the unrenormalized rel-
ative 1-loop corrections to the two decays, respectively. Note that these process-
dependent parts will not cancel and enter the final result for the renormalization
constant obtained via the presented OS renormalization procedure. The intro-

duced field renormalization constant for the fermion v, is given by
1
624 =5 (52:;} + 5Z§f) . (4.56)

Combining Eq. (4.54) with Eq. (4.55) leads to

R fh’74”4 o ) a ) ~ 1 « o
e NLO_ 3_{1 4 %%a O - [5Zhh 5 Zum + 2257 — 26 Z
Re JT:NL?) 4 Ca Sa Ca 2 Ca Sa
+ Re [dfuivs — gimm] } (4.57)

which, with the help of ds, = c,da, yields

1 1
(5&051 = icasa (5ZHH - 5Zhh) + 5 (Cidth — Si&ZhH)
+ casaRe [5Hl_’4”4 — 5}”_’4”4} : (4.58)

loop loop
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for the OS renormalization constant dagpg; for the Higgs mixing angle based on
the renormalization condition Eq. (4.54).

As an alternative OS renormalization condition, we employ the decays h/H — m314
or vy — h/Hus allowing for a wider range of applications”. In this case, the above
assumed mass hierarchy M), > 2m,,, is relaxed to m,, < My, My, m,,. For
M, > m,,, the respective on-shell formfactors are defined by

Mh_>53y4 - [ﬁmevm]h‘FhMVBa MH_W?)M = [aV4wRUV3]H‘FHﬁ4V37 (459)
while for My < m,, we define
Ml744)h173 _ [77114va1/3]11th4”37 M174%H173 — [@M(JJRUVS]HJT_-HMVS’ (460)

where the respective formfactors are formally identical in the two cases. Note
that in our notation the labels of the formfactors denote incoming fields. Here
we made us of the right-handed chiral projection operator wg = %(1 +95), Upys Vo
and ©,,,v,, denote the spinors of the respective fermions, and [...],/y indicate
the respective decay kinematics. Similarly to the previous case, the ratio of the
two formfactors at LO only depends on the parameter «, and as renormalization
condition, we demand the higher-order corrections to the ratio of their real parts
to vanish

hiavs hiavs
1%’e‘F'NLO ; LO — _8_a (4 61)
Re fH174l/3 HU4vs Cor ' :
NLO LO

At NLO the formfactors are given by

= = 53 50 5~ 5@
th/ v th/ v a 0 Yy 1
L4 ’ L - |:1 S Cy g U1

1 v v CO[ S T 1% vav
+3 <5Z3éR + 025 + 6 Zn — S—5ZHh + Ce 5Z4éR) + 51};0‘; 3} ,
« er
_ _ dco Ocg, 07 Ouy
FHV4V3 — THuws 1 o _Yr <z _ -
NLO LO {+ca+cer+ﬂ "
1 v v Sa 50, v D4vs
+5 <5Z44L + 0253 + 6 Zyn — C—5ZhH + CG 5Z4éR> + Gioos 5] )
(e er
(4.62)
with the unrenormalized relative 1-loop corrections to the decays 5&{55‘”’3, re-

spectively. Evaluating the renormalization condition Eq. (4.61) with the help of
Eq. (4.62), and making use of ds, = c¢,0a yields

"Recall that in the here considered “collider approximation”, we find m,, = 0. Further note
that for non-vanishing neutrino masses m,,, ¢ = 1, 2, 3, the full renormalization of the neutrino
sector is way more involved. However, this is neither needed nor of further interest in this
work.
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1 1
daogn = §Ca5a (5ZHH - 5Zhh) + 5 (Cidth — SiéZhH)
+ CasaRe [5fars — lrivs] (4.63)

for the Higgs mixing-angle renormalization constant dapge obtained via the OS
renormalization condition Eq. (4.61).

While both proposed OS renormalizations are process dependent, as can be seen
by the non-vanishing higher-order contributions 5&';? and 555;”, j = 3,4, in

Egs. (4.58) and (4.63), respectively, they have various other desirable features:

e Both are based on S-matrix elements and, thus, the resulting renormalization
constants are gauge independent.

e They are symmetric in the fields h and H.

e Both OS renormalization constants dagpg;, ¢ = 1,2, have smooth limits for
extreme values of o, i.e. s, — 0, ¢, — 0.

e The renormalization constants dagg; are designed in such a way that predic-
tions in the degeneracy limit My — M) are numerically stable. This can be
seen by a similar argument as given above for the renormalization process of
7 and is explicitly shown® in Ref. [81].

As a process-independent alternative MS renormalization can be employed for o.
The respective MS renormalization constant can, e.g., be obtained by keeping only
the terms of Eq. (4.58) or Eq. (4.63) that are proportional to the standard 1-loop
UV divergence of dimensional regularization, i.e.

= (50&032 (4.64)

5aMS = 5@051 oy
We give the explicit expression for dagg in the PRTS in Appendix D. Note that the
process-independent dogg is independent of any mass hierarchy of the particles.
While the tadpole contributions in full OS schemes cancel in predictions of ob-
servables this is not true if parameters related to masses are renormalized via MS
renormalization conditions. In general, o depends on the tadpole treatment and
the explicit tadpole contributions to dagg in the three tadpole schemes introduced
in Sect. 4.2.1 read

PRTS
JalRTS — (4.65)
salirs oAUy "+ cunAvy (4.66)

MS,tad MI% _ M}? UV7

8Note that they investigate pure Higgs extensions, like the Singlet Extension of the SM, where
it is even possible to construct process-independent renormalization constants. The presence
of the higher-order contributions is, however, irrelevant for the numerical stability in the
degeneracy limit.
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GIVS GIVS
5QGIVS — _9 ChhHAvh -+ ChHHAUH

MS,tad MI% _ M}? U\/’

(4.67)

with the scalar self-coupling constants cy,y and ¢y given in Egs. (3.31) and
(3.32). As discussed in Sect. 4.2.1, the tadpole counterterms enter in the rela-
tions between the original bare parameters of the Higgs sector and the chosen set
of (bare) input parameters. Thus, the latter depend on the tadpole treatment.
Explicitly, the bare mixing angles in the PRTS, of®S and FJTS, of’™5, are
connected via

TG S . . L B
Q =« — ChhH + chuH . .
T B AN T AT

Combining this with Eqgs. (4.65) and (4.66) leads to

PRTS FJTS _ PRTS _ FJTS _ PRTS _ 5 FJTS
OFITS — QEITS = GFRTS _ fTTS  (3aBITS — 5aET)

2 h H
=— — — 4.69
T GRS
representing a gauge-dependent shift between the values of the MS-renormalized
mixing angle in the two schemes. Similarly, one finds for the relation between the
values of the MS-renormalized Higgs mixing angle in the FJTS and the GIVS the

gauge-independent shift

@/S — O[MS — —2 ChhHT_rﬁ + ChHHT_n}lI (4 70)
MS MS MEI - M}? M}? Igl finite '

Note that predictions based on an MS renormalized « are in general not stable in
the limit My — M.

4.2.3.3. Renormalization of the fermion mixing angle 6,

The OS renormalization of the mixing angle in the fermion sector closely follows
the renormalization procedure for the gauge and Higgs mixing angles presented in
the previous two sections. Similarly to the case of the Higgs mixing angle o no
fully process-independent OS renormalization for 6, is possible. In the following,
we give two possible OS renormalization conditions for the mixing angle 6, as well
as the result for its MS renormalization.

For the first OS renormalization condition we assume the mass hierarchy
My > 2m,, and make use of the OS formfactors of the decays H — 7,14 and
H — 314 defined by

MH_>D4V4 = [amvm]Hmem) MH_WSM = [ﬂmeUm]H'FHMV?)’ (471)

where the spinors of the final-state fermions are given by #,, and vj;, j = v3, 14,
WR = %(1 + 75) is the right-handed chiral projection operator, and [...]y denotes
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the kinematics of the decay. The respective OS renormalization condition is defined
by demanding the NLO corrections to the ratio of the real parts of the NLO
formfactors to vanish

Re FHV4I/4 ! IHV4V4 S

Re J,—_-Hy41/3 f[{%ﬂl/s = Cgr : (472)

Note that this ratio is especially well suited for the renormalization of the fermion
mixing angle, since it does not depend on any other parameter but 6,. The ex-
Huyvy Hvyvs

plicit decompositions of Fy;/4™ and Fy 4™ are given by Egs. (4.55) and (4.62),
respectively, and yield

r

Re Fird” 3_9{1+ 0sg,  0cCy,
Hu4vs
Re 1o Co,

]‘ v 1% ¢ T 1% S T 1%
2 S0, Co,

56, Co,

loop loop

+ Re [g 10 — g1vivs] } (4.73)
Combining this with the OS renormalization condition Eq. (4.72) one finds

1 1
005ios = enso, (025 = 024 + 5 (sh 024 — 024

+ o0, Re[Sien — o] (4.74)
where we used dsg, = ¢y, 00;.

As an alternative to Eq. (4.74), we briefly sketch a second OS renormalization for
6, making use of the OS formfactors FZ7% and FZ7s defined by the decays
7' — v?vl and 7' — 31y via

MZ BV = [, dwrvy,) 5 F7 7 (4.75)

MZ,HDBM = [umﬁwavua]Z’ fZ vavs + [umevl/s]Z' (gﬂpus) fZ V4V3 <476)

where the spinors of the final-state fermions are represented by u,, and v,,, j = 3,4,
£, 1s the polarization vector of the Z' boson, and wg = %(1—1—75) is the right-handed
chirality projector. Further, p,, is the momentum of the neutrino v3 and the decay
kinematics are denoted by [...]z. Here we want to stress that in the Z' — sy
decay an additional, loop-induced, formfactor ]_—22’17 s appears at NLO. However,
due to the unique decomposition of the matrix element into different covariants
spanning the underlying Z'-truncated Green function, we can formulate the OS
renormalization conditions by only using F7 Pavs,

With these formfactors we can now define a second, alternative OS renormalization
condition for #,. To this end, we demand, similarly to Eq. (4.72), that the higher-
order corrections to the ratio of the real parts of the respective NLO formfactors

YAZSY YAZSY
R ‘FNLOS ° ' L03 ° _ _Ser (477)

Z! Z! J
Re F 1\?1%3 }_ 1 L%V3 C6:
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vanish. Even though the Z' — D314 decay requires the mass hierarchy My > m,,,
for Mz < m,,, we can simply switch from the Z" — v, decay to the vy — Z'vs
decay in Eq. (4.77) to cover the whole parameter space (within our collider approxi-
mation where m,,, = 0), without changing the formal result of the renormalization
constant 595’08. Following the same recipe as given above for the derivation of
00} 0g, leads to

4 1 v v 1 v, v
‘wrz,os = 5%0:C0 <5Z451R - 5Z3éR> + B (CZﬁZBR - 33r5Z321R>

+ 59,00, Re [52’”4”3 - 52’”3”3} : (4.78)

loop loop

for the renormalization constant (50?7’08 defined by Eq. (4.77). Here, 5120;1:;1/3’ i=3,4,
denote the unrenormalized relative NLO contributions to the decays, respectively.
While both presented OS renormalization schemes for 6, are process dependent,
they both incorporate several desirable features. Not only will predictions of
observables in full OS renormalization schemes be independent of the tadpole
treatment, but also both d6}'og and 605’08 are directly connected to S-matrix
elements and, therefore, are gauge-independent combinations of quantum-field-
theoretical quantities. Furthermore, they are well-behaved for exceptional values
of Hr, i.e. Sg, — O, Co, — 0.

As a process-independent alternative, MS renormalization can be employed. The
respective renormalization constant 00, 355 can be obtained by dropping all finite

parts in either 59508 or 585/05

0,515 = 90%os| = 90%0s]

uv UV’

(4.79)

While this is true in any tadpole scheme, the renormalization of 6, in general
depends on the tadpole treatment. We give the explicit result for 60, 355 in the
PRTS in Appendix D. Predictions of observables based on 6, 375 in general depend
on the tadpole treatment. The tadpole contributions to 46, 35 in the different
schemes introduced in Sect. 4.2.1 are given by

PRTS
00, 315 taa = 0> (4.80)
1
00, 15 12a = (hmara A0, + Cttpgs AU )| (4.81)
My UV
1
60?%%811 - (Ch’74V3AUi(L;IVS + CHE4V3AUI(31VS) ) (482)
o MMy UV

with the coupling constants

1 1
Chravy = =8aS6,C0,Muss  Clizary = — 7 Ca$0,C0, 1M (4.83)
1 1
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of the respective ¢y, hivaVs + crp,, H4vs terms in the Lagrangian. Similarly to
the case for 7y and g the definition of 6, depends on the tadpole scheme. The
relation between the bare mixing angles in the PRTS and the FJTS is given by

PRTS __ oFJTS 1 oty TS StEITS
Hr,o = 0r70 + — (ChmuST}? + CHV4VSTI?I) s (484)

V4

leading, in combination with Eqgs. (4.80) and (4.81), to the gauge-dependent shift

PRTS _ gFJTS _ gPRTS _ oFJTS _ (sgPRTS _ s FJTS
Hr,ﬁs - er,m o er 0 er,o (56r,MS o0 MS >

1 T TH
=— Chigvs 773 + CHiavs 775
my, \ MR T T 2

between the values of the MS-renormalized mixing angles in the PRTS and FJTS.
Similarly, a gauge-independent shift

, (4.85)

finite

h H
geIVS _ pgFITS _ _ 1 Iy . T (4.86)
r,WS r,m _ ChV4V3 M2 CHI/4113 2 ; .
My h H/ lfinite

connects the renormalized mixing angles in the GIVS and FJTS.

4.2.4. Charge renormalization in the DASM

To complete the renormalization of the DASM, we need to define the renormal-
ization of the electric unit charge. The electric unit charge is commonly defined
via the low-energy photon-fermion interaction, i.e. via the Af f-vertex for on-shell
fermions f in the Thomson limit, i.e. in the limit of vanishing photon momentum.
To derive the resulting charge renormalization constant, we follow the procedure
presented in Ref. [84], which generalizes the OS charge renormalization in the SM
to a wide range of BSM theories that include at least one U(1) gauge symme-
try?, like the broken U(1)y representing the weak hypercharge in the SM and the
DASM. In the following we make use of the all-order recipe given in Ref. [84] and
briefly sketch the derivation of 67, in the DASM at NLO using our notation and
conventions.

To start, we emphasize that higher-order corrections to the coupling strength of the
photon to any charged particle—typically chosen to be fermions—in the Thomson
limit do not depend on the specific properties (besides the charge) of the charged
particle. This fact is commonly known as charge universality. This can, e.g., be
proven via the background field method [51,84-86], where the complexity of the
electric-charge renormalization of the SM is greatly reduced. Taking charge univer-
sality as a starting point for our derivation of the NLO OS charge renormalization

9The proof relies on the freedom to choose the U(1) gauge-group charge of any particle at will,
since their charges turn out to be not quantized.
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constant in the DASM, we introduce a second “fake fermion” field'® x to the the-
ory. This fake fermion field carries an infinitesimal weak hypercharge Yy ., but
transforms as a singlet under the remaining gauge group of the DASM. This in-
finitesimal weak hypercharge leads to an infinitesimal electric charge Q. = Y /2
(see Eq. (2.14)). To account for the presence of this fermion field, we have to add
the most general renormalizable gauge-invariant Lagrangian that includes the fake
fermion field

(ia R mﬂ) .
R{ia —cQu A+ - ((suer =15 2 = (sus, +1) )] - m} (4.87)

Ly

Il
PN

to the Lagrangian of the DASM. The first term in the upper line represents the
kinetic term of the fermion field, the second term represents its gauge interaction
with the neutral gauge fields (see also second line), and the last term represents a
possible Dirac mass term (present since k is non-chiral). Note that the infinitesi-
mal hypercharge does not allow for any Yukawa-type interactions between x and
the scalar bosons of the DASM.

From Eq. (4.87) it is obvious that the resulting Feynman rules for the V&r,
V =A 7 7' vertices are proportional to the charge @, of the fake fermion .
Thus, taking the limit @, — 0 (or equivalently Yy , — 0) will decouple x com-
pletely from the theory and the DASM is recovered. As discussed above, charge
universality implies that any charged particle can be used to derive the renormal-
ization constant of the electric unit charge and restore its low-energy interpretation.
Thus, we define the charge renormalization constant in the DASM by demanding
that all higher-order corrections to the Ark vertex vanish in the Thomson limit.
This means that the respective NLO renormalized vertex function recovers its LO
result, i.e.

u(p)TR5 (0, —p, p)u(p) = —Qreti(p)yu(p), (4.88)

pP=mi

with the renormalized on-shell mass of the fake fermion m,,. Further decomposing
this NLO renormalized vertex function in terms of unrenormalized quantities as
well as renormalization constants leads to

_ 1 _ _
Fﬁif(k7pv p) - (1 + §5ZAA + 5Zn + 526) ngi,,(ka@p) + QRAﬁHH(kapa p)

1 - 1 -
+ §5ZZAF58'L(/€;I57 p)+ §5ZZ'AF5&Z(/%Z5, p), (4.89)

ONote that we only change the name of the fake fermion from 7, used in the respective discussion
in Ref. [84], to & here, to avoid confusion with the parameter 7 introduced in Eq. (3.56).
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where the LO vertex functions in the DASM are given by

T165 (k, 5, p) = — Qe (4.90)
s _ €

ngju(kupap) = - an_ (SWC"/ - 7]37) y (491)
/= _ e

TGk 5, p) = Qu— (swsy +1cy). (4.92)

W

Here, Aﬁ’%’“(k:, P, p) represents the unrenormalized vertex corrections and §7, is the
OS field renormalization constant for x. Since all couplings of the fake fermion to
any particles of the DASM scale with @), it is obvious that

§Z,=0(Q2), A (k,p,p) = O (Q2) . (4.93)

Thus, taking the limit @), — 0 and keeping only terms linear in @), in Eq. (4.89),
the renormalization condition Eq. (4.88) leads to

1 1
0=10Z.+ §5ZAA + g{(swc7 —N8y) 0274 — (SwSy + 11Cy) 5ZZ/A}} aw(p)yu(p).
(4.94)

This further yields

Sy T, — St Ny 5ZZ/A} , (4.95)

1
0Ze=—3 [5ZAA +

for the OS charge renormalization constant in the DASM. Note that, as expected
by charge universality, 07, is independent of any specific properties of x, but only
depends on gauge-boson self-energies. Furthermore, the well-known SM result (see
e.g. Refs. [51,54]) is recovered by taking the respective SM limit v — 0 (which
implies n — 0).



5. Confrontation of the DASM
with precision data

After setting up the DASM as well as corresponding OS and MS renormalization
schemes in the previous two chapters, we are now ready to test its predictive power.
Therefore, we perform a first phenomenological study of the DASM in this chapter.
After introducing the input-parameter scheme used in the following calculations
in Sect. 5.1 and the computational setup implemented for the numerical evalua-
tions in Sect. 5.2, we define two different renormalization schemes in Sect. 5.3 that
are used for the following calculations. In Sect. 5.4, we derive 1-loop BSM effects
and combine them with their respective state-of-the-art SM predictions to obtain
even more precise predictions for several precision observables (POs) within the
DASM.

Higgs singlet extensions, introducing scalar sector extensions to the SM that are
similar to the extended Higgs sector within the DASM, are already discussed in the
literature in quite some detail, and several analyses (see e.g. Refs [16,87] and refer-
ences therein) on their phenomenological implications have been performed. Thus,
we mainly focus on the gauge-sector extension of the DASM in the phenomeno-
logical analysis presented in this work. We investigate four EW POs, namely the
W-boson mass, derived from muon decay, the anomalous magnetic moment of the
muon (g — 2),, the leptonic partial decay width of the Z boson, and the leptonic
effective weak mixing angle. In Sect. 5.4, we give the theoretical setup of these POs
in the DASM as well as explicit results for interesting intermediate steps in their
derivations. Further, this section includes a detailed discussion of the dependences
of each of the predictions for these POs on the BSM parameters introduced by the
DASM. This is done for both renormalization schemes defined in Sect. 5.3, and
interesting differences between the results of the two respective renormalization
schemes are discussed in detail.

In the last part of this chapter (see Sect. 5.5), we perform a global fit to find the
BSM parameter values that minimize the tension between all investigated PO pre-
dictions in the DASM and measurements. Trying to be as general as possible, we
include the possibilities for the Z’' boson and the BSM Higgs boson to be heavier
or lighter than their respective SM counterparts. To account for parametric un-

65
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certainties of our predictions, we also take some SM-like parameters as free input
parameters in the fit. Treating them similar to the POs described above, they are
constrained by their respective measured values via additional contributions to the
investigated x? function (see Sect. 5.5.1.1 for more details).

5.1. Input-parameter scheme

In order to perform precision calculations in any QFT, a consistent set of input
parameters is of uttermost importance to ensure the consistency of the results. A
careless change of the set of input parameters or their respective values within a
calculation could not only break gauge invariance (if it is done in gauge-dependent
subparts of the calculation), but also destroy the cancellation of UV or infrared
divergences, rendering the result meaningless. In contrast, a good choice of the
set of input parameters will incorporate well-defined and precisely measured pa-
rameters which minimize the parametric uncertainties in theory predictions. For
the DASM, we chose Eq. (3.117) as intuitive input-parameter set and formulated
renormalization schemes based on these input parameters in the previous chapter.
It is common to define the electromagnetic coupling constant

ey = — (5.1)

from the electric unit charge. In the following discussion, we closely follow the ar-
guments of Ref. [54]. Depending on the quantities investigated in EW calculations,
one of three different input-parameter schemes is commonly used for the electro-
magnetic coupling constant, to further improve the precision of predictions: the
first scheme employs the fine-structure constant aen,(0), representing the electric
unit charge in the Thomson limit (see Sect. 4.2.4); the second scheme uses a(M3),
where the renormalization group equation is used to evolve the running electro-
magnetic coupling constant from qepm(Q* = 0) t0 Qe (Q* = MZ), where Q denotes
the energy scale where the running electromagnetic coupling constant aem(Q?) is
evaluated; and as a third option, one can use the so-called G,-scheme, where the
very precisely known Fermi constant G, is used to derive an effective value ag,
for the electromagnetic coupling ., using muon decay. While the fine-structure
constant aem(0) can be used straightforwardly with our choice of charge renormal-
ization, the two latter schemes need some further explanations. At Q* = M2, the
running electromagnetic coupling constant is given by

Qe (0)

Cen(M2) = T N

(5.2)
It allows us to resum the large logarithms of light-fermion masses appearing in the

charge renormalization constant §Z., via the so-called vacuum polarization Ac,
(see Eq. (5.22) for the explicit definition). These logarithms of the light-fermion
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masses can lead to numerical instabilities as well as large higher-order corrections.
Additionally, it can be used to drastically reduce uncertainties of predictions, orig-
inating from the appearance of light-quark masses. From a practical point of view,
one can introduce the a(M2)-scheme by substituting

1
Qem(0) — Qe (M), 0Zc = 6 Zelaumnizy = 0% — §Aaem, (5.3)

where 07, is the charge renormalization constant defined in the Thomson limit
(see Eq. (4.95)). The last term in Eq. (5.3) has to be introduced to avoid double
counting of any corrections introduced by the first replacement of Eq. (5.3). For
further details on the a(MZ)-scheme we refer the reader to Sect. 5.4.1 (and refer-
ences therein), where we use muon decay to eliminate the W-boson mass from our
input-parameter scheme in favour of G,. In the G,-scheme the electromagnetic
coupling constant is connected to the Fermi constant via muon decay, yielding at
NLO

_ V2G, 52 Mg,

- = aem(O)(l + ATNLo), (54)

OzGM

where Arnpo represents the NLO EW corrections to muon decay. The exact
definition of Aryro is given in Sect. 5.4.1 (see Eq. (5.16)), where we investigate
the prediction for muon decay in the DASM at NLO in full detail. In general,
the G,-scheme allows to largely absorb universal corrections originating from the
renormalization of the weak mixing angle by introducing the precisely measured
quantity G,,. Thus, it can be used to greatly reduce the size of radiative corrections,
especially for processes with W-boson couplings at LO. At NLO it can, e.g., be
introduced in calculations via the replacements

1
Oéem(O) — OéGH, 5Ze — 5Z€|O<Gu = (5Ze — §AT‘NL0. (55)

Equations (5.3) and (5.5) show that the choice of the input scheme for the elec-
tromagnetic coupling is merely a choice of the renormalization of the electric unit
charge, differing only by the finite parts %Aaem and %ATNLQ, respectively. We want
to emphasize that, in some calculations, it is possible to define gauge-invariant
subsets of contributions that ultimately add up to the desired prediction. While
one has to stick to one input-parameter scheme within these subsets, it is pos-
sible (and sometimes even desirable) to use different input schemes for different
gauge-invariant subsets.

5.1.1. Input-parameter values and benchmark scenarios

With the discussion of the previous section in mind, we now define the explicit
values for the SM-like input parameters used in the discussion of the dependence
of the POs on the BSM parameters given below (see Sect. 5.4). We choose

(em(0)) ™' = 137.035999180, G, = 1.1663788 - 107° GeV 2,
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Aol = 0.02768, as(M2) = 0.1179,
My = 91.1876 GeV, Mg = 125.25 GeV,
me = 0.51099895 - 1072 GeV, m,, = 0.1056583755 GeV,
m, = 1.77686 GeV, my = 0.1 GeV,
mq = 0.1 GeV, ms = 0.1 GeV,
me = 1.27GeV, my, = 4.18 GeV,
m, = 172.5 GeV, (5.6)

closely following the recommendations of Ref. [16]. Here, S denotes the SM-like
Higgs boson, which can either be h or H, depending on the investigated DASM
scenario. Even though the W-boson mass My is part of our input-parameter
set for the DASM defined in Eq. (3.117), we use the predicted value from muon
decay derived in Sect. 5.4.1, as its input value in the calculation of all other POs,
effectively trading it for the Fermi constant G, in our numerical input-parameter
set. For our discussion of the parameter dependences of the investigated POs in
Sect. 5.4, we further define the two benchmark scenarios

(i) =001, My =50GeV, a=02 Ap=0.01, My =>500GeV,

0, =0.5, m,, =200GeV, (5.7)
(i) =001, My =50CeV, o =02, A\o=0.01, M, =30GeV,
0, = 0.5, my, = 200GCeV, (5.8)

for the BSM parameters of the DASM, which are, of course, only used for the
parameters that are not varied in the respective plots. Here we defined o/ = § —«
representing the “distance” to the SM limit in the case My = MPM (benchmark
scenario (ii)), and the values given for M, b’ = h,H, is the mass of the non-
SM-like Higgs boson, respectively. Note that the two benchmark points (5.7) and
(5.8) are chosen such that they showcase the influence of the BSM parameters on
the predictions of the investigated POs in the case of the new Higgs boson being
heavier (scenario (i)) or lighter (scenario (ii)) than the observed SM-like Higgs
boson.

5.1.2. Perturbativity constraints

All predictions for observables investigated in this work are based on a perturba-
tion theory!. The respective expansion parameters? are the coupling constants gs,
g1, and eq of the gauge groups SU(2)w, U(1)y, and U(1)g, respectively, the cou-
pling constants i, Ay, and A5 introduced by the Higgs potential, and the Yukawa
coupling constant gy, introduced in the fermion sector of the DASM. If the absolute

IFor details see Appendix A and references therein.
2Note that we only explicitly list the respective expansion parameters that are critical for our
analysis here.
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value of any of these parameters becomes too large, the higher-order contributions
to the perturbative series are no longer sufficiently suppressed, leading to a bad
convergence behaviour of predictions, ultimately invalidating the perturbative ap-
proach. To ensure perturbativity of the theory, we constrain these parameters
in our phenomenological analysis to some upper limit. For the new parameters
introduced in the Higgs potential we demand that the absolute values of the cou-

pling constants appearing in the respective Feynman rules of hfh?, = 1,2,
interactions, resulting from the Higgs potential
A A
Vis = MY+ 1éh4 12h2h§, (5.9)

are in the interval [0, 27], i.e

4N\ 1 40\ 1 2120\ 1
L< 2, 2 <o 2 <z (5.10)
47 2 641 2 8T 2
Similarly, we demand the absolute value of the coupling constant y, appearing in
the respectlve Feynman rule for the h; fi'vE vertex to be in the interval [0 V 27r]
Yo <

5. Inspired by the typical parameter combinations Eq. (5.1) and as =

used for the power counting of higher-order corrections, we demand «; = 9% < l
gi = 1, g2, €q, for the respective gauge-coupling strengths. In total, this leads to
the additional constraints

4
93,91, €3 < 2m, |A1|sf—2, Dol < om0 Ao <, y2 < 4, (5.11)

for the respective coupling parameters of the DASM.

5.2. Computational setup

In high-energy physics, most calculations for quantum-field-theoretical quantities
involve the evaluation of many Feynman diagrams. While for most 2-loop (and
beyond) calculations, many needed results for loop integrals are still unknown, for
1-loop calculations a complete basis of standard integrals exists (see e.g. [79]),
covering all integrals possibly appearing in the evaluation of 1-loop diagrams.
However, simply due to the large amount of Feynman diagrams that need to be
calculated already at 1-loop, especially in BSM theories, an automation of these
calculations is inevitable for any precision calculation. To this end, we produced
a FEYNARTS [88] model file for the DASM using the MATHEMATICA [89] package
FEYNRULES [90]. With the help of this model file, we use the MATHEMATICA
packages FEYNARTS and FORMCALC to construct all needed Feynman diagrams
and compute them in terms of standard integrals, respectively. The results of the
POs presented in Sects. 5.4.1, 5.4.2, and 5.4.4-5.4.5 are checked against a sec-
ond implementation (using FEYNARTS and FORMCALC as well) using a second



70 5. CONFRONTATION OF THE DASM WITH PRECISION DATA

model file created by Heidi Rzehak. To achieve the time efficiency of the numerical
evaluation of these analytic expressions needed for the global fit (see Sect. 5.5),
we export them in the form of C++ libraries. For the numerical evaluation of
the appearing loop integrals, the results are linked to the Fortran library CoOL-
LIER [91-94], using the private code LINC [95]. COLLIER is particularly well suited
for the computations occurring in BSM global fits since it is designed to be numer-
ically stable even for extreme input parameter regions of the loop integrals. This
C++ implementation was tested against results obtained using the Mathematica
package LOOPT0OOLS [96] for both FEYNARTS model files. Finally, the numerical
results are used in our global fit routine, which makes use of the python interface
iminuit [97] for the C++ library Minuit2 [98] (see Sect. 5.5.2 for more details on
the technical setup of the fit).

5.3. Definition of renormalization schemes

In Chapter 4, we have discussed the full renormalization of the DASM including OS
as well as MS renormalization conditions for the renormalization constants of the
entire DASM input-parameter set. Here, we define two complete renormalization
schemes, an OS schemes and a hybrid scheme, which are then used in the following
study of the phenomenology of the DASM.

5.3.1. OS scheme

For the OS scheme, we take OS renormalization conditions for the parameters and
fields®. The OS mass and field renormalization constants are defined in Sect. 4.2.2
and the OS renormalization constant of the gauge-boson mixing angle v is given in
Eq. (4.40). All DASM predictions for the observables discussed in the following are
independent of the renormalization conditions for the Higgs mixing angle o and
the mixing angle 6, of the fermion sector. Therefore, we either take Eq. (4.58) or
Eq. (4.63), and Eq. (4.74) or Eq. (4.78) for daps and §6; og, respectively, to com-
plete the definition of the OS scheme. This OS renormalization scheme incorpo-
rates all benefits of pure OS renormalization, like the independence of predictions
on the tadpole treatment, the numerical stability in the case of degenerate masses
of particles corresponding to mixing fields, etc., as already discussed in detail in
Chapter 4.

However, it turns out that our definitions of the OS mixing angles can introduce so-
called threshold effects to predictions in specific parameter regions*. These effects

3This excludes the renormalization of A2, where we only define an MS renormalization con-
dition. However, all observables considered here are independent of the renormalization
constant for Ais at 1-loop level.

4For similar OS renormalization conditions for mixing angles of scalar BSM sectors, similar
results were found by the authors of Ref. [99].
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Figure 5.1.: The renormalization constant dvyog is shown, illustrating the appear-
ance of threshold effects introduced, e.g., via the self-energy contri-
butions of the Z' and Z with a virtual v, loop, in the vicinity of
M, 7' )7 = 2my4.

are non-physical artifacts of the OS scheme originating from neglecting the unsta-
ble nature of decaying particles. Including the respective width effects via, e.g.,
the so-called complex-mass scheme (see Refs. [54,100-102]) can cure these non-
physical threshold effects. The threshold effects enter, e.g., d70s, via self-energy di-
agrams (and their derivatives) introduced by the renormalization constants 0 Zyy-,
V.,V =7 7' At the 1-loop level, they can appear whenever the invariant mass of
the momentum is close to the sum of the two masses in the 1-loop bubble Feynman
diagram. For illustration, we show the dependence of dypg on m,, in the vicinity
of My /7 = 2m,, in Fig. 5.1 using Eq. (5.6) for the SM-like input parameters and
for the remaining BSM input parameters we use the values defined by benchmark
scenario (5.7) as well as Ayy = 0, u? = M2 for the standard 1-loop UV divergence
and the reference scale p of dimensional regularization (see Sect. C), respectively.
Fig. 5.1 shows that dyos develops a divergence at My ; = 2m,,. However, the
affected regions turn out to be very small compared to the overall magnitude of
the respective masses®. Nevertheless, their size, in general, depends on the exact
input parameter configuration. Therefore, we exclude these regions in our global
fit performed in Sect. 5.5 to ensure that we obtain trustworthy results.

5.3.2. Hybrid scheme

In a second renormalization scheme, we take over the OS conditions for masses
and fields, but use an MS renormalization condition for the mixing angle v. For
the tadpole renormalization scheme, we choose the PRTS, which tends to lead

®In the discussion of the parameter dependence of the various investigated POs given below (see
Sect. 5.4) the affected regions are often so small, that they are below the sample precision
and, thus, cannot be seen in some plots at all.
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to reasonably small higher-order corrections. In the following, this scheme is de-
noted as the hybrid scheme. In the hybrid scheme, the MS renormalization of
~ introduces a dependence on the reference scale of dimensional regularization.
We choose p? = M7 in all predictions shown in the following. While the hybrid
scheme is not affected by any of the unphysical threshold effects introduced by
dv0s (see above), it has severe other downsides, like the large dependence on the
treatment of the tadpoles or numerical instabilities for degenerate masses of the
mixing particles (e.g. for My — My), etc., (see Sect. 4.2.3 for details).

We use the OS scheme, with all its desired features, as default renormalization
scheme in the following discussions. However, the analyses presented in Sect. 5.4
and the minimization performed in Sect. 5.5 are done in both the OS and hybrid
schemes, since a comparison of their respective results yields a good estimate for
the theoretical uncertainty of the predictions. To account for the different defi-
nitions of the renormalized mixing angle in the two schemes, a proper parameter
scheme conversion of ~ is performed in these comparisons. To this end, we make
use of their connection via the bare mixing angle o,

Yo = Yos + 0Y0s = Vs + 0Vsrs: (5.12)
and find

s = Yos T A0y, Ady = dy0s — Oy (5.13)

5.4. Selected precision observables in the DASM

In this section, we describe the theoretical definitions of the investigated POs and
their derivation in the DASM at NLO. Assuming BSM effects to be small, for each
PO we add SM corrections beyond NLO to the respective NLO DASM predic-
tions to obtain the best possible DASM predictions. Further, we give a detailed
discussion of the dependences on the new parameters introduced by the DASM
extensions for each of the POs separately and discuss any interesting differences
between the predictions in the OS and hybrid scheme (after proper scheme con-
version of 7). The predictions derived in this section form the basis for the x?
function used in the global fit in Sect. 5.5 to find the input parameter values that
lead to the least tension between DASM predictions and measurements.

5.4.1. My prediction from muon decay

As a first PO, we derive the prediction for the mass of the W boson from muon
decay in the DASM. The high-precision measurement [103] of the lifetime of the
muon 7, makes it a perfect observable to test the predictive power of the DASM.
Further, considering the significant deviation of 7o between the SM prediction
and the most recent measurement of the CDF collaboration [7], it is certainly
interesting—for any BSM model—to investigate whether a potential new physics
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Figure 5.2.: The LO Feynman diagrams representing muon decay in the Fermi
theory (left) and in the SM/DASM (right).

effect could explain such measured values, or at least loosen this tension. Note,
however, that the CDF result is also at variance with the previous experimental
world average, which is in reasonable agreement with its SM prediction [8]. There-
fore, we investigate two scenarios in this section, using either the experimental
world average or the CDF result, as measured values in our analysis.

Experimentally, 7, is used to determine the Fermi constant G, of the Fermi theory.
Thus, we effectively compare the prediction for 7, in the Fermi theory, 7‘5 , to the
respective prediction in the DASM, TEASM, to obtain our prediction for the W-
boson mass. The Fermi theory is an effective field theory in which charged-current
interactions are described by 4-fermion contact interactions. Figure 5.2 shows the
LO diagrams describing muon decay in the Fermi theory (left) and in the DASM

(right). At LO, neglecting relative contributions of O ( X/[nvz‘v > in the DASM, one

finds the well-known results

LGl s\ 1 _ab wh (| sed [
™o 19273 m2 )7 TPASM 384w M sd, m2 M) )’

s B 3
(5.14)

for the prediction of the muon lifetime in the two models. A comparison of the
two LO predictions yields

A T

G,=——-+..., 5.15
m2 .
where the “...” represent contributions of O ( 3 >, connecting the W-boson mass
w

My of the DASM with the precisely measured Fermi constant G, of the Fermi
theory. Note that even though Eq. (5.15) has the same form as the respective
equation for the SM, the appearance of s,, introduces a dependence on the BSM

parameters v and My of the DASM (see Eq. (3.57)) already at LO. To match

the experimental precision, higher-order predictions for TE /DASM 4 e needed. At

NLO, neglecting electron and muon masses throughout the calculation, Eq. (5.15)
generalizes to

(0% T
G,=—2" (14 Ar)
V252 M2,
Qo T 62 oMZ  XVW(0)
= (1427, — 2> W T Overt - box 5.16
ﬁsgngv(+ R VRS V- R t+b>’ (5.16)
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Figure 5.3.: Feynman diagrams contributing to the vertex corrections dyertex tO

muon decay. The grey blobs represent the renormalized vertex correc-
tions at NLO.
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Figure 5.4.: Exchange of the massive Z, Z', and W bosons between initial- and
final-state particles in the DASM at NLO, leading to the box diagram

contributions Jp5"°

where Ar [104] denotes the relative NLO corrections to Eq. (5.15) originating from
the NLO contributions to muon decay in the Fermi theory and the DASM. Further,
we introduced

5vert+box - 5vertex + passive + JYW (517)

box box >

denoting the relative NLO vertex corrections to the Wuw, and Wr.et vertices in
the DASM in dyerex (see Fig. 5.3), the relative corrections coming from massive
box diagrams in 5%V (see Fig. 5.4), and the QED corrections to both, the Fermi

theory and the DASM predictions in 5];’31 (see Figs. 5.5 and 5.6).
Neglecting initial- and final-state masses, their contribution to Ar is given by

M2
2 10g_z
massive __ Com My My (2 2 4 3 2 2.2
= c, (5 —10s 2s 65> nc S, — 38-n“s
box 8meZs2 | M2 — M2, (e ( vt 28y) + 6symeysy — 3sun’s])
M?Z,
o

+ T 2 (Si (5 — 1082 + 25@) - 63;‘2770737 — 333,7720,%) ] . (5.18)
7 W

The Feynman diagrams representing the NLO QED corrections to muon decay
in the Fermi theory are shown in Fig. 5.5. The respective QED contributions to
Ar in the DASM and the SM originating from bremsstrahlung effects as well as
the box diagram including photon exchange between the initial-state muon and
the final-state electron (see Fig. 5.6) are identical. Note that the right diagram

in Fig. 5.6 is, due to the presence of a second W-boson propagator, suppressed

1 m;
g 7,
neglected in the derivation. Thus, combining these contributions from the DASM

by an additional factor and, therefore, only contributes at O ( >, which is
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Figure 5.5.: Feynman diagrams representing the virtual (left) and bremsstrahlung
(middle and right) corrections to muon decay in the Fermi theory at

NLO.
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Figure 5.6.: Feynman diagrams representing the QED virtual (first diagram on the
left) and bremsstrahlung (three diagrams on the rlght) corrections to
muon decay in the DASM at NLO.

and the Fermi theory leads, as for the SM case, to [105]

My My 9
g = Gem () lo ——21 Me 9] 1
box = < 0g - + log m, og 5 og —+ 3 +2> (5.19)

where we introduced an infinitesimal photon mass A for infrared regularization.

Finally, combining 622 and 67" with the weak vertex corrections (see Fig. 5.3)
one finds
M3, 1 oy log My
Olemn 14 M2,
Soertibox = 16 [ Apy —log =W ) 194 — = M
o= o 0 (3 v ) e 5 |

x (ov[3BMy[se (2 + 1) — 1] + 10¢y, My + o, (3My,

X [1+ s5,(n° — 2)] — 10¢,, M) + 6ns2,55 M) ] } ., (5.20)

with 07,7 = F1, the standard 1-loop UV divergence Ayy, and the reference scale
p of dimensional regularization (see Sect. C).

To further reduce theoretical uncertainties in the DASM prediction for the W-
boson mass, we use the running electromagnetic coupling qem(M2) instead of
the fine-structure constant ey, (0) in our calculation. This allows us to absorb
the strong dependence of Ar on the light-quark masses, introduced via non-
perturbative effects of the photonic vacuum polarization at low energies by the
charge renormalization constant 07, into (measured) input parameters. In addi-
tion, we resum the leading SM terms of the top-quark mass dependence Ap at least
up to order O(a?,) to further reduce the uncertainties of our prediction. In detail,
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the replacements described above can be summarized by [70,71,104,106,107]

em 0 !
Qem — Qe (M3) = a_()) s2 =8 =8 +AAp, Ar = Arpen, (5.21)
1 — A
where
0N (k2 ¥4 (k2
Al = Aoy + Aoy, = # # , (5.22)
ok k2=0 k k2=M?2
cZ 3Qemm?2 M2
A p —
% 167 (M3, — M3)”
3aems m ]\42 M2 L+ M2) — MZ(ME |+ 2M3, ., + M?
+ t [ ( Z) Z( 3?}V,l W,2 Z)] + O (8,?;) ,
167T<M\%V’1 — M%)
(5.23)
2
Ar = Adem — 5 Ap + Aren. (5.24)
s

w

Note that, in addition to the leading SM contributions, we resum the leading
(for small values of 7) top-quark mass contributions to Ar originating from the
BSM part of the DASM, given in the second line of Eq. (5.23), as well. Here, we
introduced the expansion

Mg = My + M 557+ O (s3), (5.25)

to keep the results compact. Explicit expressions for M\%\m and M\%VQ can easily be
obtained by solving Eq. (5.15) for M3 and then expanding in s,. The quantities
Aoy, and A&l(i)d, the so-called leptonic and hadronic vacuum polarizations, re-
spectively, summarize the aforementioned contributions of lepton- and light-quark
(excluding only the top-quark) mass logarithms introduced via §Z,. Taking all of
the above into account, Eq. (5.16) is modified to

G Ozem(MZ)
e \/_$2M2

In the following, we solve Eq. (5.26) for My to obtain the desired NLO prediction
for the W-boson mass in the DASM. In detail, we eliminate My in the NLO parts
of Eq. (5.26) in favor of the Fermi constant by using their LO relation® (given in
Eq. (5.15)) and then solve Eq. (5.26) for My. As mentioned above, we complement
our NLO prediction in the DASM with SM corrections to muon decay beyond NLO.
Assuming higher-order BSM effects to be small compared to their respective SM
counterparts—which clearly is a well-founded assumption when considering the

(14 Aryer) - (5.26)

6Note that one has to first plug in the full dependence on My coming from s, before solving
for the W-boson mass.
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astonishing predictive power of the SM for all collider experiments—this yields
an even better prediction for My in the DASM. Therefore, we add the difference
between the NLO DASM and NLO SM predictions to the best W-boson mass
prediction taken from Ref. [6],

MMM = MM + AMy,  AMw = MG — Mikio- (5.27)

The authors of Ref. [6] give an approximation for the parametric dependence of
their result, which is used for all predictions for M3M. With the input-parameter
values given in Eq. (5.6), we find MM = 80.3536 GeV. Note that, in contrast to
the NLO case, we use Aayep v = 0.0314977 given in Ref. [6] in the computation
of MEM for consistency. For the experimental counterpart we use [16]

MS® = (80.377 + 0.012) GeV. (5.28)

Additionally, due to the large variance between the world average (5.28) and the
CDF measurement [7]

M'tpr = (80.4335 £ 0.094) GeV, (5.29)

we include the M"tpp in the comparison.

In the following, we discuss the dependence of MY*SM on the various BSM pa-
rameters in the OS and the hybrid schemes. We use the input values (5.6) for
the SM-like input parameters as well as the benchmark points of Egs. (5.7) and
(5.8) for the remaining BSM parameters and show the dependence of MEASM
on the BSM parameters in the OS scheme. To account for the approximations
Mp > m,, B=h,7', used in the derivation of M{**™  we restrict our discussion
to My, Mz > 1GeV. In certain regions of the parameter space differences in the
parameter dependence of the MY*SM predictions in the OS and hybrid scheme can
be observed, indicating potentially large theoretical uncertainties of the prediction
in these regions. Thus, whenever any interesting feature, which distinguishes the
OS and hybrid scheme predictions, can be observed, we will show the respective
hybrid scheme predictions, after proper scheme conversion of the mixing angle
7, in addition to the OS predictions. Furthermore, whenever any curve (repre-
senting a certain benchmark scenario) is shown only for an interval smaller than
the respective z-axis, this means that the remaining parameter points violate our
perturbativity limits given in Eq. (5.11).

5.4.1.1. Benchmark Scenario (i): M, = MM

In benchmark scenario (i) (see Eq. (5.7)), we identify the Higgs boson h with the
discovered SM-like Higgs boson, i.e. My, = MPM = 125.25GeV. In the upper-left
plot of Fig. 5.7, we show the dependence of M{F*M on the mixing angle yog for
several values of My . Note that the predictions are symmetric in the parameter
vos (Yos = —70s). At y0s = 0, the predictions for all shown values of My co-
incide, reflecting the decoupling of the gauge sector at this parameter point. At
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Figure 5.7.: Dependence of MY*M in the OS scheme on |yos| (upper left) as well
as its dependence on My in the OS scheme (lower left), and hybrid
scheme (lower right) after proper scheme conversion of y for bench-
mark scenario (i). The scheme conversion of 7 depending on My, is
shown in the upper-right plot.

this point the remaining downward shift (with respect to the SM prediction) of the
DASM prediction reflects the influence of the Higgs- and fermion-sector extensions
of the DASM for the chosen values of the input parameters. For My > My the
predictions for MYASM increase with increasing |yos| and can describe the experi-
mental world average My" and even the CDF measurement MSPF, as well as the
full interval between the two experimental results for a wide range of |yos|-My
combinations. Further, for larger values of My, the increase of the prediction with
increasing |yos| becomes steeper. For My < My the prediction decreases with
increasing |yogs|, driving the DASM prediction further away from the experimental
measurements.

We complement this discussion by showing the dependence of MYASM on My, for
different values of 7pg in more detail in the plots shown in the lower line of Fig. 5.7.
In addition to the prediction in the OS scheme (lower left), we show the respec-
tive prediction in the hybrid scheme (lower right) after proper scheme conversion
of v, and the relation between the shown yog values and their respective counter-
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parts Ynybria after scheme conversion (upper right). As expected, the OS prediction
shows an increase of MY*M for increasing values of My that becomes steeper for
larger values of |yos|. Further, the predictions for all shown values of |yos| coin-
cide at My = My, reflecting the decoupling of the gauge sector at this point. The
MEAM prediction in the hybrid scheme widely follows its respective prediction in
the OS scheme. However, for My =~ My, we see a divergent behaviour of the pre-
diction of the hybrid scheme. As mentioned above, MS renormalization of mixing
angles, as done for 7 in the hybrid scheme, can lead to divergences in the case of
degenerate masses of the particles corresponding to the respective mixing fields
(see also Ref. [81]), introduced by the respective off-diagonal field renormalization
constants. However, the respective field renormalization constants do not appear
in MEASM and the observed divergences are simply introduced via the scheme con-
version of v as can be seen by the upper-right plot”. Note that this is a general
feature of the parameter conversion of 7 between the OS and hybrid scheme, which
will often show up in respective plots.

In Fig. 5.8, we show the dependence of the W-boson mass prediction on My in
the OS scheme in the upper-left plot and the hybrid scheme in the upper-right
plot. For increasing My, the predictions in both, the OS and hybrid schemes, de-
crease. However, this decrease is small compared to the experimental uncertainty.
For My — My the parameters A\; as well as eq (for My > My), become large
and eventually reach their perturbativity limits. While the predictions in the two
schemes agree well for almost all given input values, they start to develop signifi-
cant deviations from one another in this region for My = 200 GeV, showcasing the
potential for large theory uncertainties in certain regions of the parameter space.
The dependence of MYASM on the Higgs mixing angle « is shown in the lower plot
of Fig. 5.8. For increasing values of «, the My predictions decrease. Again, this
is only a small effect with respect to the experimental uncertainty. In the limit
a — 0 the parameter \; becomes large and eventually enters the non-perturbative
region. Further, the predictions are symmetric in the parameter o (o« — —a)
and we find the effect of a sign flip of Aj5 (A2 — —A12) to be negligible for the
investigated values in both benchmark scenarios (i) and (ii). Note that, due to our
convention ss,A12 > 0, we adjust the respective signs of the values of the input
parameters \jp or « in the following accordingly, if needed.

The influence of the remaining BSM parameters A3, m,,, and 6, on the W-boson
mass prediction is negligible (not shown) in benchmark scenario (i).

5.4.1.2. Benchmark Scenario (ii): My = MM

For the benchmark scenario Eq. (5.8), we chose the heavy Higgs boson H to be
the SM-like Higgs boson, i.e. My = MM = 125.25GeV. In Fig. 5.9, we show

"This is expected, since our definition of §yog is designed to exactly cancel the aforementioned
divergences systematically, so that the resulting predictions are well-behaved in the degener-
acy limit for the masses (see Sect. 4.2.3).
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Figure 5.8.: Dependence of MY*M on My in the OS scheme (upper left) and

hybrid scheme (after proper scheme conversion of ) (upper right), as
well as its dependence on the Higgs mixing angle o in the OS scheme
(lower plot) for benchmark scenario (i).

the dependence of the OS prediction of MEASM on |yos| (left) and My (right).
While the vps dependence shows a similar behaviour as for benchmark scenario
(i), for yos — 0 one finds, that, in contrast to the corresponding parameter point
in benchmark scenario (i), the extensions in the Higgs and fermion sectors lead
to an upward shift of the DASM predictions with respect to the SM prediction
(leading to a better description of the experimental data by the prediction already
for 705 — 0). The plot on the right-hand side of Fig. 5.9 shows, similar to its coun-
terpart for the benchmark point (i), an increase of the prediction with increasing
mass of the Z’' boson, which is steeper for larger values of |yos|. Furthermore,
threshold effects at Mz =~ 2m,, = 400 GeV (see Sect. 5.3) become visible.

In Fig. 5.10, we show the dependence of the W-boson mass prediction on the ad-
ditional parameters of the Higgs sector My, o/ = 7 — «, and Aj5. The predictions
are shown in the OS scheme and the hybrid scheme after scheme conversion of
7. In contrast to the case M, = MS™M (see benchmark scenario (i)), the W-boson
mass prediction in the OS renormalization scheme increases the more M, and o
differ from their respective values in the SM limit, i.e. MEASM grows for decreas-
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Figure 5.9.: Dependence of MJASM on |yog] (left) and My (right) in the OS renor-
malization scheme in benchmark scenario (ii).

ing M, and increasing «’. For small values of My < 100 GeV the dependence of
the prediction on A5 is negligible. For My = 200 GeV a decrease of the predic-
tion is visible for increasing values of ;5. However, all influences of the Higgs
sector parameters are small with respect to the experimental uncertainty. For
M, — My, o — 0, and large enough values of A5 the parameters \; and eq
(for My > My) enter the non-perturbative region. Comparing the respective OS
and hybrid scheme predictions one observes an increasing scheme dependence for
My > My in these regions.

Finally, we show the dependence of MEASM on m,, in the benchmark scenario (ii)
in Fig. 5.11. While the OS scheme predictions are widely independent® of m,,, for
My > My one finds large differences between the OS and hybrid schemes in the
region m,, > 1TeV. Note that in this region of the parameter space, the Yukawa
coupling y, is close to its non-perturbativity limit.

As for benchmark scenario (i) the dependence of MYASM on the fermionic mixing
angle 6, is negligible in benchmark scenario (ii).

In summary, we find for both benchmark scenarios a large dependence of M{ASM
on the new parameters v and My of the gauge sector. In both cases, we find
for Mz > My a wide range of |y|-My combinations that can lead to agreement
between the W-boson mass prediction and the experimental world average My"
or even the CDF measurement MGPY. Further, the new parameters introduced
in the Higgs sector can lead to downward or upward shifts of the predictions for
My, = MM or My, = MM, respectively, which are, however, small compared to
the experimental uncertainty. Finally, the OS scheme prediction is widely unaf-
fected by variations of the parameters 6, and m,, introduced by a possible dark

8Using a scan precision of =~ 100 MeV here, we see only one of the discussed threshold effects
of the OS scheme at m,, = Mz /2 =100GeV. Note that, due to the scheme conversion
YOS — Yhybrid it is introduced to the prediction in the hybrid scheme as well.
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Figure 5.10.: Dependence of MYASM on the BSM Higgs sector parameters M, (up-

per row), o/ = 7 — a (middle row), and A (lower row) in the OS
scheme (left column) and the hybrid scheme (right column) after
proper scheme conversion of v for benchmark scenario (ii).
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fermion. However, we observe a significant renormalization scheme dependence of
MEAM in benchmark scenario (i) for m,, > 1TeV, signalling the onset of non-
perturbative effects induced by a too large Yukawa coupling to the dark neutrino
sector.

5.4.2. The anomalous magnetic moment of the muon

The measurement of the anomalous magnetic moment of the muon, a,, provides a
second powerful test of the predictive power of the DASM. Not only is it measured
with extremely high precision, but also its theoretical prediction within the SM
matches this astonishing precision. There is a 5.10 discrepancy between the exper-
imental world average [3] and the SM prediction, making a,, a possible candidate
hinting towards BSM physics. However, according to recent developments, more
reliable lattice results are available that tend to disagree with the data-driven de-
termination of non-perturbative parts of a, via the ete™ dispersion relation and
also seem to agree better with measurements. To properly define a,, we follow the
discussion of Ref. [108], starting with the equations of motion for a muon in an
external electromagnetic field A%,

(i — e(A+ A™) —m, ) =0,
(0,0 gy — (1 — é)@na”)A“ e, (5.30)

with the radiation field A, and ¢ denoting the Dirac spinor of the muon field.
Note that we here used the suffix p to refer to the muon (and it should not be
read as a Lorentz index). Also, in this section bold symbols are used to represent
3-vectors. Neglecting the radiative field for illustrative purposes at first, we are,
thus, interested in the solution of the equations of motion of a muon in an external
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field described by

imr =" (p—eA) +e®+9"m] v, (5.31)

where we introduced A%* = (®, A). The non-relativistic limit of the Dirac equa-
tion (5.31) is obtained by performing the so-called Foldy—Wouthuysen transforma-
tion [109], leading to the Pauli equation

590

1
i {— (p—eA)P +ed— o -B|g (5.32)

2m,, 2m,,

~

where B = rotA and ¢ = <£) e~mut - For our discussion of the anomalous

magnetic moment of the muon, the last term of Eq. (5.32), present due to the
intrinsic spin of the muon, is of interest. It has the form of a contribution to the
potential energy of a magnetic dipole in an external field. The resulting magnetic
moment induced by the spin of the muon is given by

eo €

S 5.33
gu4mu gu2musv ( )

Hs =

where we introduced the gyromagnetic ratio g, of the muon. It is given by the
ratio of a magnetic moment and the spin operator s = ¢ in units? of g = 27‘;#.
A comparison of Egs. (5.32) and (5.33) yields g, = 2. With the presence of
the radiation field (see Eq. (5.30)) the Foldy—Wouthuysen transformation cannot
be performed in a closed analytic way. One can, however, derive the effective
Hamiltonian of Eq. (5.30) in the non-relativistic limit by expanding in %, where c
is the speed of light (for further details see Ref. [108] and references therein).

We are interested in the anomalous magnetic moment of the muon taking into
account relativistic quantum corrections. These can be derived via a simultaneous
expansion in the fine-structure constant am, (0) and the external field (assuming the
latter to be weak). In detail, we investigate the yjuu vertex function I';, , with on-
shell muons. Its most general covariant decomposition (respecting electromagnetic

current conservation) is given by

001 D500 0) = ien ) 2P () + (= 25 ) ()

aui 2 av Qv 2
+io QmMFM (q )+0 2m“’)/5FD (q )}U (p).
(5.34)

9By convention the gyromagnetic ratio is normalized such that its respective value originating
from orbital momentum is —1. For the electron one finds g = ugp = 5=, where up is Bohr’s
magneton.
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Figure 5.12.: Relevant Feynman diagrams contributing to a, in the DASM at the
1-loop level. Here the second diagram, describing ¢-exchange, is, of
course, meant to also represent its related diagram, where the W and
¢ bosons are interchanged.

Here we introduced the photon momentum ¢ = p’ — p, the electric charge form
factor Fg(q?), the parity violating anapole moment Fi(¢?), with F(0) = 0, and
Fp(¢?) is the CP-violating electric dipole moment, respectively. Finally, the Fy(q¢?)
is the magnetic form factor yielding, for zero photon momentum, the anomalous
magnetic moment

a, = % (9. —2)=Fu (¢ =0). (5.35)

In this work, we are interested in the prediction for a, in the DASM at 1-loop
e >, with X = H, Z, W. The pure QED radiative corrections
X

do not change with respect to their SM counterparts, resulting in the well-known
correction aj, i = 2em(0) 1110]. Taking this into account, all Feynman diagrams
representing the relevant 1- loop weak corrections a3}l that contribute to a;*5"
in the DASM are shown in Fig. 5.12. Note that in our derivation we include the
contributions originating from the h and x’ exchange diagrams (Fig. 5.12 right-
hand side diagrams), to explicitly account for the possibility of low Z'- and h-boson
masses in our calculation. For the explicit computations of these diagrams we
use the G-scheme described in Sect. 5.1. In the Thomson limit, i.e. for photon
momentum transfer of ¢> — 0, the contributions of the first two diagrams shown

in Fig. 5.12 to a;*M are given by

order up to O <

70zSM 2 . a%Mm

= s a =
AT (1 _ —> M2, 16 (1 _ —> M2,

: (5.36)

where, after switching to the G ,-scheme in the DASM, we introduced the standard
input parameter of the G,-scheme in the SM via

2 M2
2 V2G, M2, (1 — 2
sM Sw SM HEEW M;
Qe — ag, = OéG’u —M\QN, aGu = p . (537)
oM

In this form it is obvious that the contributions (5.36) coincide with their respective
SM counterparts (see e.g. [111,112]) and, therefore, do not contribute any BSM
effects to aEASM. However, the Z-, Z'-, h-, and Y’-exchange diagrams present in
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the DASM differ from their respective SM counterparts. Their contributions to
the anomalous magnetic moment of the muon are given by

aghtm?, (4Myy — 6 M, M7 + My) ¢

Z
a? = + ..., 5.38
f12m M, (ME — M) (AMZ + s2M2) (5:38)
p Commp Mz (AMy, — 6MG My, + My) 53 s 20
a“—12 M2.M2 (M2 — M2 2 \f2 2 \f2 o ( )
m My My, (M; W)(Cw z t55 ')
S mi
. oSt MZ (11 + 6Ing ) 52 X 50
BOABT M (ME — M,)(2MZ + s2M2) '
m2
) aghtms, M (7 +6 lnﬁ)ci
a +.... (5.41)

T ARTMEME, (M2, — M2)

Here, we only spell out the respective leading terms for Mg > m,,, B =7,7', ¥/, h,
explicitly to keep the expressions compact, but use the full mass dependence of
the results in our numerical evaluations if necessary, such that the results remain
valid in the region of small Z’' and h masses. Assuming BSM effects to be small
compared to the SM contributions, we take the difference between the DASM and
the SM at 1-loop, and add it to the best SM prediction [4],

DASM __ _SM DASM DASM DASM SM
a,u = au + Aa,u,lfloopﬂ Aa’,u,lfloop - a’[LL,l*lOOp - au,17100p7 (542)
to obtain the best DASM prediction.
As mentioned above, there are two different results for the LO hadronic vacuum
polarization contributions Aay2; , = entering aj: one obtained via a data-driven
approach (see Ref. [4] and references therein for more details) and a second one
calculated via lattice computations (see, e.g., Refs. [4,5] and references therein).
The prediction for aiM significantly depends on the value of this non-perturbative
contribution. However, the two approaches are at variance with one another. In
this work, we consider the two results separately, taking the value

ai{\eﬂe_ = (116591810 + 44) x 10~ (5.43)
from [4] for the discussion of the prediction using the data-driven determination of
Aap .- For the lattice result, we use the value Aaﬁ%}jﬁmce = (7075+55) x 101
given in Ref. [5] and combine it with the remaining contributions given in Ref. [4]
to obtain

aSN o = (116591954 4 58) x 107, (5.44)

w,lattice

For the experimental counterpart we use the world average

as™® = (116592059 £ 22) x 107", (5.45)
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from Ref. [3].

In the following, we discuss the explicit parameter dependence of a, on the addi-
tional parameters introduced by the DASM. As standard input, we choose Eq. (5.6)
for the SM-like input parameters and Egs. (5.7) and (5.8) for the BSM parameters
of the DASM, which is, of course, only used for the parameters that are not var-
ied in the respective plot. As in the discussion of the W-boson mass prediction,
whenever any curve is shown only for an interval smaller than the full range of
the z-axis, we find that the remaining parameter points violate the perturbativity
limits given by Eq. (5.11).

Since a, is a loop-induced quantity, no renormalization constants appear in its
derivation at the 1-loop level. However, we use the prediction for Mw as input
for a,, which introduces an additional dependence of the predictions on the new
parameters of the Higgs and fermion sectors. Further, this can lead to differences
between the predictions in the OS and hybrid schemes. While this is the only de-
pendence on the BSM fermion-sector parameters introduced to (g — 2),,, the BSM
parameters of the Higgs sector additionally enter the calculation via the Higgs-
boson exchange diagram (see Fig. 5.12 right diagram with h exchange). Even
though the result for (¢ — 2), is valid for very low masses of the BSM Higgs bo-
son, like e.g., My, Mz < m,,, this is not true for the prediction of the W-boson
mass (as discussed in the previous section). Thus, we restrict the analysis here to
Mh, MZ’ >1 GeV.

In this region, we find aBASM to be widely independent of the additional Higgs sec-
tor parameters «, Az, and Mj,, where h’ denotes the BSM Higgs boson of h and
H. The dependence of a** on 6, and m,, is also negligible in both benchmark
scenarios and for both the OS and hybrid renormalization scheme. However, there
is a strong dependence of aBASM on the new parameters of the gauge sector v and
My, which is shown in Fig. 5.13 using the input values of benchmark scenario'® (i)
for the two scenarios using either aff,\éﬂe_ or abl ;e to derive the SM prediction'!.
The aBASM prediction is symmetric with respect to 705 — —70s. An increase of
the prediction for increasing values of |yos| can be observed for all shown values of
My:. The magnitude of this increase strongly depends on the Z’-boson mass and
is greatly enhanced for small Z' masses. This can be seen even clearer in the plot
on the right-hand side, where we show the dependence of a?*M on M. For the
given values of |yog| one observes a steep increase of aEASM for My, — 1 GeV, but
no visible effect for larger Z'-boson masses (Mz > 25GeV). For small values of
Mz we find a wide range of |yos|-My combinations that can explain the measured

exp : : S SM SM
value a;;® using either of the SM predictions aj; ¢+ OF Gjgice-

19The negligible influence of the remaining BSM parameters on a}*5M leads to a negligibly small
difference between the respective results in the two benchmark scenarios.

"Note that switching between the best SM predictions leads effectively only to an overall shift
of the measured value in the plots shown in Fig. 5.13.
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Figure 5.13.: Dependence of a;)*M on |yos| (left) and My (right) within bench-

mark scenario (i). The predictions are given as difference to the SM
value a5, which is either chosen to be aS™, _ or a5\

wete w,lattice*

For an observable O; the pull is defined via

O'pheo _ O?XP
l=————"— 5.46
where AQ; denotes the uncertainty of the observable and O and O;*" are
the theory prediction and the measured value of the observable, respectively. In
Fig 5.14 the pull for a, in the |yos|-Myz plane in benchmark scenario (i) is shown.

In order to derive the predictions within the DASM, either ail\f+e_ (left plot) or
ai%\fgttice (right plot) is used. For both cases, we give the parameter points where

the respective DASM predictions are within the 1o uncertainty band of the mea-
surement (black dotted lines). The black dashed line denotes the points where
predictions and measurement agree exactly. In the shown parameter regions the

points of exact agreement yield a distinct direction in the |yos|-My plane for

both cases. Using ai¥+e, (left) the preferred |yos|-My combinations roughly ful-

fill yos &~ (0.0089My + 0.0004) GeV ™" and using 5 Nattice (right) in the predictions
leads to yos ~ (0.00583 My +0.00002) GeV . In both scenarios, we find a stronger
increase of the pull below these lines than above (with respect to the y-axis). Fi-
nally, in either scenario, for increasing values of |yog| the regions of the predictions

that lie within the 1o uncertainty band of the measurement widen up.

5.4.3. The forward—backward asymmetry in the DASM

In the era of the Large Electron-Positron Collider (LEP) [113] various preci-
sion measurements of a large set of observables were performed by the experi-
ments ALEPH, DELPHI, L3, and OPAL (see Refs. [114-117]). Colliding electrons
and positrons with a centre-of-mass energy close to the Z-boson resonance, high-
precision measurements of cross sections (“Z lineshape”), and forward—backward
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Figure 5.14.: The pull for a, in the |yos|-My plane within benchmark scenario (i).
We use either ai¥+e, (left) or a3l ;.. (right) for the derivation of
a*M. The black dashed line marks the |yos|-Myz combinations
that lead to exact agreement between predictions and measurement,
and the black dotted lines mark the 1o uncertainty band of the mea-

surement.

asymmetries Apg were performed. The four experiments decided to combine their
results for the POs in a widely model-independent way [118]. Therefore, they
parameterize the measured POs by a common set of pseudo-observables?. Fi-
nally, the results for these pseudo-observables for each experiment were combined
resulting in even more accurate results. In this section, we briefly discuss the in-
fluence of BSM effects introduced by the DASM on the leptonic forward—backward
asymmetry ALp, which is one of the (true) observables measured by each of the
experiments. This is done to ensure that the BSM contributions do not spoil the
effective parameterization of their measurements by the pseudo-observables used in
the combination of the results from the four experiments'®. In the Sects. 5.4.4 and
5.4.5, we present the prediction for two of the above mentioned pseudo-observables,
the leptonic effective weak mixing angle s%eﬁp’l and the leptonic partial decay width
of the Z boson, I;_,;, in the DASM. Both yield excellent tests of the Zll-coupling
structure, and, thus, excellent tests of any SM extension that modifies lepton—Z-
boson interactions.

12Note that we will explicitly differentiate between the terminologies of pseudo-observables (in-
herently model dependent) and “real” observables, i.e. counting rates, in the discussions given
in Sects. 5.4.3-5.4.5, but use the term observable throughout the rest of this work for either
of the two.

3Even though the parameterization of the results in terms of the pseudo-observables is widely
model independent, it still assumes a certain SM-like particle content. The analysis given in
Sect. 5.4.3 will confirm that the presence of the Z’ boson will not spoil this assumption in the
interesting regions of the parameter space, which would otherwise add additional uncertainties
to results obtained from investigating the respective pseudo-observables.
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Figure 5.15.: Feynman diagrams contributing to Agg at LO in the DASM.

One of the POs measured by the LEP experiments is the leptonic forward—back-
ward asymmetry ALg. Here, we investigate the influence of the BSM structures,
introduced in ALy by the DASM already at LO by additional contributions due
to Z'-boson exchange. If we find their influence to be negligible, we can safely
assume that the definitions of the pseudo-observables s3, .z, and Iz, as given
in Ref. [118], reflect the parameter dependences of the PO predictions within the
DASM with sufficient precision. The leptonic forward—backward asymmetry is
defined by

! l
Op — 03

Apg=—"—2 5.47
FB O'{; + 0_£37 ( )
with
1 l 0 !
do do
alF:27r/0 dcos@d—Q, aézQ%/ldcosﬁd—Q, (5.48)
where i—‘g is the differential cross section of the process ete™ — I, | = e, u, T,

and # is defined as the scattering angle between the incoming electron and the
outgoing lepton. For simplicity, we focus on the muonic final state!* in the following
discussion. Neglecting electron-mass effects, in the DASM the three Feynman
diagrams shown in Fig. 5.15 contribute to Akg at LO. Considering unpolarized
electrons in the initial state, the LO differential cross section can be parameterized
by
n 2
C:E) = Oéen;l(so) [GY(s)(1 + cos® ) + 2G4 (s) cos b] (5.49)

where /s is the centre-of-mass energy. In the DASM, the factors G1(s) and G3(s)
can further be split up into contributions originating from the pure Z, Z’, and ~y
exchange, and contributions coming from the interference of the respective dia-
grams

GT’DASM(S) — G%Z(S> + GYZ(S) + G’lw(5> + G%/Z/(S> + G—lyz/(s) + G%Z,<S), (550)
GyPAM(s) = GE2(s) + G (s) + GE 7 (s) + G3¥ (s) + GF% (s). (5.51)

Using Eq. (5.48), the muonic forward—backward asymmetry at LO is given by

AM,DASM( ) _ §G'g’DASM(S)
FB 4 GT’DASM(S)

(5.52)

MNote that Bhabha scattering (eTe™ — ete™) gets additional contributions from t-channel
diagrams.
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In the following, we are only interested in the kinematic region s ~ M2. In this
region the Z-boson exchange is resonance enhanced, and width effects, reflecting
the unstable nature of the Z boson, have to be taken into account properly. To in-
troduce the total decay width I'; of the Z boson properly, we resum the self-energy
corrections [119,120] to the Z-boson propagator, using Dyson resummation, lead-
ing to a correction to the Z-boson propagator in the DASM with a similar structure
to its SM counterpart,
i
soMZ 5 — M7+ XE0(s) + r(s)’
SR ENG (5)ls — M+ SEE ()] - 2085 (9) S (s)
(ZR%(5))2 = (s + Spp(s))(s — My, + TFZ (s))
[s + S (s)| SR ()
(ER7%())2 = (s + D% (s))(s — My + SFF (s))

Note, that the SM expression, ie. k = —(3p%(s))?/(s + L (s)), is directly
recovered in the decoupling limit, i.e. by setting all off-diagonal self-energies with
a Z' boson to zero. For s ~ M2 the quantity x(s) resembles at least NLO effects to
the Z-boson propagator as long as |Mz — My/| > EK’\%(S), V.V = A, Z, 7', which
is a well-motivated assumption, having the discussions of the previous chapters in
mind!'®. In the quantitative discussion here, we are only interested in LO accuracy,
and, thus, we can safely neglect the contributions originating from x(s) in the
following. In on-shell renormalization, we further have

GR(s)

r(s)

n (5.53)

Re{Z{(Mz)} =0, V=AZ7. (5.54)
Using the optical theorem,

MyTy = Im{S%5 (M2)}, (5.55)
to connect the imaginary part of the self-energy with I'z, and the approximation
s
m{S§7%(s)} ~ WIm{E%{,ZT(MZQ)}v (5.56)

Z

one finds for the Z-boson propagator in the vicinity of its pole

GZ2(5) — i | (5.57)

2 1 1.1z
S*)M% S — MZ + ISVZ

In this approximation the various contributions to the leptonic forward-backward
asymmetry at s ~ M2 are given by

svi(s — M7)
soM2 20282 (M2 — s)? + M2T2)

G%(s) — 0, (5.58)

5 Furthermore, since My — My leads to decoupling of the gauge-sector extension introduced
by the DASM, k(s) will, similar to the respective SM case, even in this limit only contribute
at NLO to the Z-boson propagator.
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s%(s — M%)(alai + vv)?

G (s) —— -0 5.59
v (s) soMz 8cksd(s — Mg,)((s — M2)? + M2T%) ’ ( )
Gi'(s) —— 1, (5.60)
5—>M§
2(,.2 2\2 2 2\2 3 2
M,
G%Z(S) — Yo S (/Ul +2a;) 5 - (/Ul +4a/l4) - Z’ (561)
soMz 165k et ((s — M7)? + MZT'7) 1654 i1
2 (.12 12\2 /2 12\2 214
isdi M
G () —— SO ta) i da) My (5.62)
soMz 16ckst(s — M7)?  16cy st (M; — M7,)?
svp? v M2

GY% (s) —— —
v () sz 2¢2s2(s — MZ) 2282 (M7 — MZ)’

2 _ M2)
Gy%(s) —— sai(s — My 0 5.64
YO T eai-gr gy (564

s%(s — M2)(va] + apvp)?

(5.63)

) TR Sehst(s— M) (s — MY + METY) o)
2,2 2 2,2 M2

CZ2(6) — S o Uiy 5.66
57(s) somz 4sicd((s — M3)? + M2TZ) 45 cAT2’ ( )
-~ 2,12 12 12,02 )[4

Q2% . S04 N Y 4 g 5.67
) T sl AP T A (g - M) o

sa)? a;” M3

G’YZ/ —— —
i () soM2 2252 (s —M7) 2282 (M; — M)

(5.68)

where we made use of lepton universality and the limit in each row holds for
s = MZ. The LO vector and axial-vector couplings of the ZIl and Z'll interactions
are given by

L e (3ME —4M3) W M (5.69)
! 3, LM |
2 3 2 -3 W w
o= (2 sw);7 Mwly — gr w, (5.70)

respectively. While there is never a contribution G to Apg, the interference terms
resulting from the interference of the v- and Z'-boson exchange diagrams with the
Z-boson exchange diagram (see Eqs. (5.58),(5.59),(5.64), and (5.65)) contribute to
the forward—backward asymmetry at higher loop orders even for a centre-of-mass
energy s = MZ. As already mentioned above, we are here interested in the in-
fluence of the contributions originating from the presence of the right diagram in
Fig. 5.15, i.e. the parts GY?', with i = 1,3 and V = +,%,7Z" at s = M2. Thus, we
compare Akp using the full LO result given by Eqs. (5.58)(5.68) with ALSM1ke,
where we only include contributions from the v- and Z-boson exchange diagrams,
but set all GY Z" to zero. To account for the results of the previous sections, we
constrain the || region to small values and use the experimental world average,
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Figure 5.16.: Influence of the Z'-boson exchange diagram present in the DASM

on ALy at LO for different values of |y| and M. Here, ALk
denotes the forward-backward asymmetry, where all contributions
introduced by the Z'-boson exchange diagram are neglected. For
comparison, the black dotted line shows the experimental uncertainty

AA%]lg = 0.0010 of the leptonic peak asymmetry.

My = 80.377 GeV, for the mass of the W boson'¢, as well as I'z = 2.499 GeV [16]
for the total Z-boson decay width. The remaining input parameters are taken
from Eq. (5.6). Further, we note that all results in this section are symmetric with
respect to Yos — —7os. In Fig. 5.16 the difference between ALy and AlF’%M'hke
is given for some exemplary values for My for the cases My < My (left) and
My > My (right). As a reference value for the experimental accuracy we plot
the experimental uncertainty AAY%, = 0.0010 (taken from Tab. 2.13 of Ref. [118])
of the so-called leptonic peak asymmetry'” AOF’]la. The leptonic peak asymmetry
is one of the aforementioned pseudo-observables, used in the combination of the
results of the four LEP experiments, that resembles the weak corrections to ALy
at \/s = My (for the exact definition of A%, see Eq. (5.75)). In general, the pres-
ence of the Z'-boson exchange diagram leads to a decrease of ALy at LO, making
the differences shown in Fig. 5.16 negative for all |y|-Mz combinations. While
the BSM effects seem to influence ALy stronger in the case My > My (note the
different scales of |y| in the two plots), their influence in the interesting regions of
the parameter space is only of generic order ~ 107% and thus negligible compared
to the size of the experimental uncertainty AA%]% = 1073, In Fig. 5.17 the absolute
magnitude of the different GYV', i = 1,3, VV' = gg, 27, 7'7', gZ', contributing to
ALy at LO is shown for My = 5GeV (upper line) and My = 600GeV (lower
line). Again, one clearly finds the contributions induced by the presence of the

6This is only done here in the quantitative discussion of ALy in this section. All other results
make use of the prediction M&{ASM if not explicitly stated otherwise.

1"This is the best we can do, since the combination of the results was only performed for the
pseudo-observables.
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Figure 5.17.: The various LO contributions to ALy for My = 5GeV (upper row)
and My = 600 GeV (lower row).

Z'-boson exchange diagram to be largely suppressed with respect to the SM-like
contributions. Thus, we can safely neglect the influence of the right Feynman di-
agram given in Fig. 5.15 in the following.

Note that the BSM effects affecting the Z-boson exchange diagram are, of course,
taken into account by the BSM effects contained in the Z-pole POs in all consid-
erations in this and the following sections.

5.4.4. The effective leptonic weak mixing angle

Having the results of the previous section in mind, we now derive the predictions
for the effective leptonic weak mixing angle in the DASM. Due to its precisely
measured value it yields a high-precision test of the vector and axial-vector cou-
plings of the Z boson to leptons.

The LO vector and axial-vector couplings (v; and a;, respectively) can be promoted
to the effective NLO vector and axial-vector couplings (V; and A;, respectively).
Neglecting the masses of the external leptons in the calculation, they capture the
“weak” NLO corrections of the Zll interaction, i.e. the NLO EW corrections minus
their pure photonic QED contributions. In detail, they are defined via promoting
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the LO vector and axial-vector couplings to effective NLO couplings in the Z — [I
decay matrix element

M(Z — ll) = [ﬂl 32(2 (Vi — Al’75) Ud + ..., (571)

SWW

where the dots represent the aforementioned small corrections proportional to the
mass of the final state lepton, which are neglected in this work. Using these
effective NLO couplings, the effective leptonic weak mixing angle is defined by

(see e.g. Ref. [118])
1
Sl = 1 (1 - Re{%}) : (5.72)

Note that at LO Eq. (5.72) does not depend on any BSM parameters and simply
yields to the respective SM result

M3 2
2L0 _ W _ (.SM
Sw,eff,l =1- W == (S ) . (573)
To obtain the best prediction in the DASM we take the difference between the
NLO predictions of the DASM and the SM, and add it to the best SM prediction
2,SM
s, taken from Ref. [121],

w,eff,

2DASM _ 2.SM 2,NLO 9NLO _ 2DASM 2.8M
weftl = Swefrs T ASY e ASU ] = Sy el LNLO — Sw.eff L NLO- (5.74)

The authors of Ref. [121] give an approximation for the parametric dependence

of their result, which is used for all predictions of sfv’i% in the following. In

the discussion of the explicit parameter dependence of Sf&?élSM on the additional
parameters introduced by the DASM we make use of the G,-scheme. As standard
input we choose Eq. (5.6) for the SM-like input parameters and Egs. (5.7) and
(5.8) for the BSM parameters of the DASM, which is, of course, only used for
the parameters that are not varied in the respective plot. For these values we
find sfv’,sel;ﬁl = 0.23157. Note that, at LO siv’fzf?’fM seems to be independent of ~
(see Eq. (5.73)). However, we use the DASM prediction for the W-boson mass as
input for the prediction (see Sect. 5.4.1), which introduces a dependence of the
prediction on v already at LO (and, thus, on §vy at NLO). Similar to the previous
discussions, we restrict the analysis here to M, My > 1GeV to account for the
approximations performed in the derivation of the W-boson mass predictions. For
the experimental result we use the value from Tab. 2.13 of Ref. [118] and their
definition of the leptonic peak asymmetry

o, 3[Re {VI/AZ}]2 _ 3(1 — 45‘2N7eﬂ?l)2
T Re /A (= 35 (5.75)
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and find
sfv’f’e’;ﬁl = 0.23102 £+ 0.00056, (5.76)

for the measured value used in our studies. Note that, Eq. (5.76) is in agreement
with the official result of si,’ig = 0.23153 £+ 0.00016 given in Ref. [118]. How-
ever, their stated central value is shifted upwards by ~ 1o and their uncertainty
is significantly smaller than the one we find (see Eq. (5.76)). To determine sgv”l‘;g,
the authors of Ref. [118] do not only use the forward-backward asymmetry mea-
surements for leptons (summarized in Tab. 2.13 of Ref. [118], which is used in this
work), but further asymmetry measurements for quark pairs in the final state!®, as
well as the so-called left—right asymmetries measured at SLC (for more details see
Ref. [118] and references therein). To this end, a model-dependent correction has
to be applied to the data in order to account for the differences between leptons
and up-, and down-type quarks. These corrections are taken from the SM, which
differ from the respective corrections within the DASM. Furthermore, Tab. 2.13 of
Ref. [118] provides the only stated correlation coefficients connecting the measure-
ments of the pseudo-observables, sfv’fe’gjl and [0, investigated in this work. These
correlations should be taken into account in any quantitative analysis. Therefore,
Eq. (5.76) is the preferred choice for the experimental result of the effective weak
mixing angle used in this work. Further, we remark that in the found best fit
scenarios (see Sect. 5.5.1 for details) the predictions for 5‘2;7]21% lSM vary only loosely
in the vicinity of the minimum of the minimized function and are close to the SM
value. Thus, we find that si;gf? ZSM does not lead to dominant contributions in the

minimization process performed in Sect. 5.5.4.

5.4.4.1. Benchmark Scenario (i): M, = M3

We find sfv’gf;lsM to be symmetric with respect to 705 — —7vo0s. Furthermore,
in benchmark scenario (i), we see only a small (with respect to the experimental
uncertainty) dependence of sfv’gf? ZSM on the mixing angle yos within the investigated
interval, as can be seen in the upper-left plot in Fig. 5.18. For increasing values
of |vos|, the prediction increases for My > My and decreases for My < My. At
~vos = 0 the prediction is shifted downwards compared to the SM prediction (black
dashed line), showcasing the influence of the Higgs- and fermion-sector extensions
of the DASM on the prediction at this parameter point in benchmark scenario (i).

In the upper-right plot of Fig. 5.18, we show the dependence of sgv’gé?M on My.

The dependence of the prediction for sfv’gf? ZSM for values of My < 250 GeV is small
compared to the measurement uncertainty. For My, > 250 GeV the prediction
decreases for an increasing mass of the Z' boson, bringing the prediction closer to
the measured value. For very small values of |yos| = 1073 the dependence on the
7'-boson mass is negligible in the entire shown interval.

8Here, especially the b-quark final state leads to a very precise results.
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Figure 5.18.: Dependence of sfv’gf?lSM on |yos| (upper left), My (upper right), My

(lower left), and « (lower right) is shown within benchmark scena-
rio (i).

The dependence on the mass of the additional Higgs boson My (lower left) and the
Higgs mixing angle a (lower right) is shown in Fig. 5.18. We find the prediction
for sfv”]zélsM to be symmetric in the parameter o (&« — —a) and the influence of a
sign flip of the parameter'® A, (A2 = —A12) to be negligible in both benchmark
scenarios (i) and (ii). For increasing values of My and «, sfv’}zf? M decreases. This
effect is, however, small compared to the experimental uncertainty. The influence
of the remaining BSM parameters A2, 6,, and m,, on sfv’gf?ZSM turn out to be

negligible in benchmark scenario (i).

5.4.4.2. Benchmark Scenario (ii): My = M3

For both, the variations of |yog| or My, shown in the upper-left and upper-right
plots of Fig. 5.19, respectively, the predictions show a very similar dependence as
in benchmark scenario (i). However, investigating the influence of the Higgs- and
fermion-sector extensions at yog = 0, we find an upward shift (in contrast to the
downward shift in benchmark scenario (i)) with respect to the SM prediction.

YHere, we always adjust the signs of A2 and a such that the convention soqA12 > 0 is fulfilled.
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Figure 5.19.: Dependence of s/ g

on |vos| (upper left), My (upper right), My,

(lower left), and o’ (lower right) in benchmark scenario (ii).

The influence of the Higgs-sector parameters M, (lower left) and o/ =

s

2—Oé

(lower right) is shown in Fig. 5.19 in further detail. In contrast to the observation
in benchmark scenario (i), we find an increase of the prediction the further the two
Higgs-boson masses are apart and for increasing o/. Again, the influence on the
remaining BSM parameters A2, 0;, and m,, is negligible in benchmark scenario (ii).
In summary, in both investigated scenarios, the dependence of sf&?é lSM on |yos/,
My, «, and Mj,, where h' denotes the non-SM Higgs boson of h and H, is small

compared to the experimental uncertainty of sfv’f’e’;ﬁl. Further, the dependence of
sfv’zc?lSM on A2, 6, and m,, is negligible.

5.4.5. The leptonic partial decay width of the Z boson

The second considered pseudo-observable, used in the combination of the results
of the LEP experiments (see above), is the leptonic partial decay width. Similarly
to the effective leptonic weak mixing angle, it is defined via (see [118]) the vector
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and axial-vector couplings of the ZIl interaction. At NLO, it is given by

(s5MSM)2 G, M; 9 9 3em (M3)

D, ., = W W 14+ 6 Vi A Aew , 0QEDp = ——(——,
751l 2 6\/%( +dqep) ([ViP+1A1*) +Aew/qep,  dqep .

(5.77)

where dqrp accounts for NLO final-state QED corrections. Here, we introduced
the SM relations for the sine and cosine of the weak mixing angle

2
(M) =1 (M)°, (M) = % (5.78)
Z

to keep the expression compact. Note that, in contrast to the case for dqrp, we
use the G ,-scheme in the derivation of V; and A;. The term A,y /qcp in Eq. (5.77)
accommodates for non-factorizable NNLO effects and, thus, can be neglected in
our NLO calculation of DASM corrections. Again, assuming BSM effects to be
small, we take the best SM prediction I7™,, from Ref. [122], and add the difference
between the DASM and the SM at NLO to get the most accurate prediction for
the leptonic partial decay width of the Z boson in the DASM,

LA =N + ALY, ALEY = L5 — L. (5.79)
The authors of Ref. [122] give an approximation for the parametric dependence of
their result, which is used for all predictions of I3, in the following. Using the
values of Eq. (5.6) we find T, = 0.083974 GeV. From Tab. 2.13 of Ref. [118], we

—ll —
take the measured values as well as the definitions

RO — Ihad 0 127 1701 had

L o) = et had 5.80
Fz_m had MZ2 1—\% ( )

for the so-called hadronic decay width I'y.q and the hadronic pole cross section
o 4 of the Z boson, to obtain

ISP = (0.08399 = 0.00009) GeV, (5.81)

which is in good agreement with their officially stated result
[FER = (0.083985 4 0.000086) GeV [118], for the measured value of the leptonic
partial decay width of the Z boson. In the following, we discuss the explicit pa-
rameter dependence of TP43M on the BSM parameters of the DASM. As standard
input we use Eq. (5.6) for the SM-like input parameters. For these input values we
find T}, = 0.08397 GeV. Due to a negligible dependence of TP?4M on the BSM
Higgs sector parameters, the predictions turn out to be very similar in the two
benchmark scenarios. Thus, we focus on benchmark scenario (i) (see Eq. (5.7))
for the BSM parameters of the DASM in the following, if not explicitly stated
otherwise. Finally, we make use of the prediction for the W-boson mass as input

for [228M and, thus, again restrict our discussion to the case My, My > 1GeV.
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Figure 5.20.: Dependence of TP43M on |yog| in the OS scheme (upper left), and on

My in the hybrid scheme (upper right) without scheme conversion

of 4. In the lower line the dependence of TPASM on My is shown in

the OS scheme (lower left) and the hybrid scheme (lower right), after
proper scheme conversion of ~.

Similarly to the other investigated observables, the prediction is symmetric with

respect to 7os — —7o0s. The plot in the upper left-hand side of Figure 5.20 shows
the dependence of TP23M on |yos|. We find an increase (decrease) of the prediction

for increasing values of |yos| and My < My (My > My). For vos = 0 there is no
visible shift of TP4M with respect to its SM prediction.

The dependence of the prediction on My is shown in the remaining three plots of
Fig. 5.20. We give the OS prediction in the bottom-left plot. As expected in the
OS scheme, we find a smooth behaviour for M; — My. Further, the prediction
decreases for increasing My/. In the bottom-right plot of Fig. 5.20 the correspond-
ing prediction using the hybrid scheme, after proper scheme conversion of v, is
shown. One finds similar features to the ones found in the OS predictions for all
points except in the vicinity of Mz =~ My, where the prediction diverges. This
divergence has two origins. For one, the scheme conversion of v will, as previously

discussed (see Sect. 5.4.1), introduce this behaviour to the hybrid scheme predic-
tions. Additionally, TPA5M is sensitive to the field renormalization constants of
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Figure 5.21.: Dependence of the prediction for T?ASM on M,, in benchmark scena-

rio (i) in the OS scheme (left) and the hybrid scheme (right) after
proper scheme conversion of ~.

the massive neutral gauge-boson sector. Therefore, the observed divergence show-
cases the ill-defined limit My — My, for MS renormalization of mixing angles (see
discussion in Sect. 4.2.3 for more details). This can be seen in the top-right plot
of Fig. 5.20, where we show the prediction in the hybrid scheme plotted against
My, without any scheme conversion of v, i.e. using fixed values for yuynriq, clearly
showing the divergence in the prediction in the case of degenerate masses of the Z
and Z' boson in the hybrid scheme.

Similarly to the case of the W-boson mass prediction, we find small differences
in the dependence of the prediction on the BSM Higgs sector parameters «, My,
and 6, close to the non-perturbative region for the free parameters of the original
Lagrangian. Additionally, for benchmark scenario (ii)—in both renormalization
schemes—a significant decrease of the predictions is found for M, — 1 GeV, (see
Fig. 5.21). Besides this decrease and the small differences observed between the
two renormalization schemes, we find TP45M to be widely independent of the new
parameters from the Higgs sector as well as 6, and m,, from the fermion sector.

5.5. Global fit

With the evaluation of the POs performed in the previous section, we are now
perfectly equipped to perform a global fit of the parameter space of the DASM.
Our fit aims towards finding regions of the parameter space that lead to signifi-
cantly better agreement between the measured values of the investigated POs and
their respective predictions within the DASM (described above) than the SM can
provide. In the first part of this section (see Sects. 5.5.1 and 5.5.2), we give a
detailed description of the fit setup and the definition of the fit function. After
defining several interesting fit scenarios in Sect. 5.5.3, we dedicate the last part of
this section (see Sect. 5.5.4) to a detailed discussion of the fit results.
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5.5.1. Construction of the fit function

The function F minimized in the global fit can be split into two parts,

F(p) = xo(p) + Pp), (5.82)

where x%(p) is a measure describing the level of agreement between predictions
and measured values and, therefore, in principle encodes the relevant phenomeno-
logical information. The precise definition of x%(p) is given below. The additional
cost function P(p) is introduced in Eq. (5.82) to account for additional limits on
certain input-parameter combinations, such as perturbativity constraints for cou-
pling constants. The explicit definition of P(p) used in our analysis is given in the
last part of this section. Note that the presence of the cost function P(p) destroys
the straightforward translation of F(p) (with its y*-like nature) into its proba-
bilistic interpretation, whenever P(p) is non-zero. Nevertheless, P(p) is needed to
ensure that the fit remains in regions of the parameter space that lead to mean-
ingful predictions. Thus, we perform a detailed analysis, probing the dependence
of our results on the precise choice of P(p) for each investigated fit scenario (see
Sect. 5.5.4). The arguments of the fit function are given by

p = {/7; a, 6r7 >\127 my,, Mh7 MH? MZ'7 MZ7 my, Aaiada as}- (583)

They represent the parameters that are treated as free input parameters of the
fit. Thus, besides the BSM parameters, we allow for a variation of (the potentially
most influential) SM-like parameters to include effects originating from paramet-
ric uncertainties in the input. Note that for the predictions M{ASM, 3\;7]21?7 ISM, and
CPASM - this treatment of the parametric uncertainties includes the respective vari-
ations of the best SM predictions (see Sects. 5.4.1, 5.4.4, and 5.4.5). The precise
treatment of these free SM-like input parameters is discussed in the following in
more detail. The values of the remaining input parameters? used in the numerical

evaluation of F(p) are given in Eq. (5.6).

5.5.1.1. The 2 function

Assuming the probability density functions of the measurements for the investi-
gated observables to be of Gaussian form, we choose a y2-distributed cost function

Xo(p) = Z(@f"p = O (P)(V 1)y (OF = OF(p)), (5.84)

encoding all relevant information on the observables in our fit. Here V' denotes
the covariance matrix and we introduced the vectors

20 As mentioned in the previous sections, we use the predicted value for My from muon decay
as an input value in F(p) for a given set of input values.
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pre _ DASM _DASM 1 DASM _2,DASM 5

0 (p) - (MW @y, 1Lz ) Sweffl Mz, Mg, my, AO‘hadv aS)> (5'85>
exp o eXp _exp TeXp 2,exp exp exp exp 5,exp _exp

O (p) = (My ) @y, Az Sweff, 1> My™®, Mg™® me™, Aoy, g”, ad™®), (5.86)

where S denotes the SM-like Higgs boson of h and H. Note that, similarly to the
other POs, we constrain the SM-like parameters included in the global fit with the
help of their respective measurements. The inverse V! of the covariance matrix
V is used to introduce the experimental uncertainties in x%(p) and accounts for
possible correlations between the different PO measurements. For the investigated
POs, the only non-vanishing correlations connect the results of I, sfv’fe’gjl, and
M;® all being measured at LEP.

Taking this into account, we find the following form for the inverse of the covariance
matrix

1
(AM)?
1
e V(v
V-l — 33 34 35 , 5 87
(Vs (VT (Vs (5.87)
(V3 (Vs (V)
V—l
PsM

where AQ;, O; € {Mw,a,}, are the uncertainties of the respective POs and the
entries (V1) k,1 = 3,4, 5, encode the information on the uncertainties and cor-
relations of the erff”fsfv’:ngz system. Further, XA/p;il denotes a 4 x 4 diagonal
matrix with the diagonal elements W, O; = Mg, mq, A 4, s, given by the
respective experimental uncertainties AQ; of the measurements of the SM-like
parameters [16]. All entries of V™! that are not explicitly shown in Eq. (5.87)
are zero. The derivation of V! and the explicit values of its entries are given in
Appendix E.

In addition, we notice that the size of the theoretical uncertainty of aﬁM is com-
parable to its experimental counterpart. Approximating this uncertainty to be of
Gaussian nature?!, we add it in quadrature to the uncertainty of the measurement
to obtain the full uncertainty used in V1.

In summary, Eq. (5.84) yields a measure of the level of agreement between predic-
tions OP' and experimental results O based on the uncertainties of the respec-
tive quantities as well as their possible correlations. In general, smaller values of
X% (p) correspond to a better agreement between theory predictions and measure-
ments. Note that V! is positive semi-definite, and therefore, x%(p) is bounded
from below at 0, i.e. x5(p) > 0. This lower bound is only reached for an exact
agreement between all predictions and their experimental counterparts.

2INote that our treatment of the theoretical uncertainty is only approximative. For a more
correct treatment, a more sophisticated analysis would be needed. However, for a first con-
frontation of the DASM with precision data, our treatment of the theoretical uncertainty is
sufficiently precise.



104 5. CONFRONTATION OF THE DASM WITH PRECISION DATA

5.5.1.2. Perturbativity of the coupling parameters

As discussed in Sect. 5.5.1.2, we have to ensure the validity of the perturbative
approach for the calculations of the investigated POs. Thus, we need to con-
strain the parameter region of our fit such that the constraints given in Eq. (5.11)
are fulfilled. As already discussed in Sects. 3.6 and 5.5, all of the parameters of
Eq. (5.11), but A, are neither used as input parameters of the theory, nor as
direct input of the fit. Thus, we have to use Eqs. (3.24)—-(3.28), (3.55), (3.57), and
(3.62) for the renormalized parameters to compute the values of the remaining fit
input parameters that are constrained by Eq. (5.11). To introduce their respective
perturbativity bounds to the fit function, we add an additional cost function of
the form

P91, 92, €4, M, Aoy p) = D [eaf(lgi] = pg) (9] = )] + 0|\ | = py)(|Ma] = py)?
gi
+ e:0(1Aa] = Do) (2| = D2)* + ca0([yo| — D) (90| — P5)*,
(5.88)

where the sum runs over g; = ¢, g2, eq, and 0(z) is the usual Heaviside function.
The constants p,; introducing the respective perturbativity limits are given by
Dy = V21, py = 15 Pg = %71’, and ps = 47. We do not need to add an additional
cost function of the form Eq. (5.88) to ensure |\j3| < 7 since the iminuit interface
allows to directly constrain input parameters to certain regions, if needed.

The constants ¢, and ¢, rule the amount of extra cost that is added to the fit
function if any parameter enters the non-perturbative region. Choosing them
appropriately prevents the parameter scan in the minimization procedure to access
the non-perturbative region. While in principle ¢, ¢ — 00 seems to be the best
choice to achieve this, the algorithms used in the minimization procedure rely
on smoothness (up to the second derivative) of the minimized function. Further,
having large scale differences between certain regions in the parameter space can
lead to a bad convergence behaviour of the used algorithms. In the following
analyses, we vary ¢, and ¢ to ensure that the dependence of the minimization
results on the precise choice of P is negligible.

5.5.2. Technical setup

With the computational setup described in Sect. 5.2 we have the numerical results,
needed for the desired parameter fit, accessible in Python. As already discussed
before, we want our fit to minimize (5.82) in order to find the parameter region
that leads to the best agreement between predictions and measurements for the
investigated POs. Therefore, we perform the multidimensional minimization using
the Python interface iminuit v.2.24.0 [97] for the C++ library Minuit2 [98]. Using
iminuit allows us to not only determine the best-fit parameters as well as an error
estimate for them, but also to determine confidence regions using the minos algo-
rithm, which effectively scans over the respective parameter while minimizing the
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investigated function in all other parameters to construct the desired confidence
regions. Further, iminuit allows to directly set limits on the free input parameters
of the fit. However, to the best of our knowledge, it is not possible in iminuit to
directly assign limits to certain combinations of input parameters, as needed in
our analysis to introduce certain perturbativity limits on the original parameters
of the Lagrangian. Therefore, we have to introduce them via the function P as
described in the previous section.

In our analysis we determine the minimum of the fit function F. As already
mentioned above, the main focus of this first phenomenological analysis lies on
investigating the influence of the newly introduced parameters v and My, intro-
duced in the extension of the gauge-sector, on the considered POs. To obtain
a better understanding of the fit results, we scan over the function F(p) in the
v—Mg; plane in the vicinity of the minimum. In this scan, we minimize F(p) for
each combination of v—My leaving all remaining parameters of the fit free (within
their respective limits of the global minimization). This allows for a detailed de-
termination of the most influential POs for the minimization. Furthermore, we
also determine the set of points F3 3 with

Faz = Fmin + AF23, AFy3 =123, (5.89)

in the 2-dimensional My, plane. If one assumes the fit function to be y*-
distributed (in the vicinity of the minimum), F 3 would define the contour cor-
responding to the limits of the 68% confidence region [123]. To determine these
contour points we use the minos algorithm implemented in iminuit®?.

5.5.3. Fit scenarios

Having everything for the minimization set up in the previous sections, we can
now define the fit scenarios of interest. Due to the strong tension between the
best SM predictions for the anomalous magnetic moment of the muon a3

wete™

SM - : - sM
and @, Jayice: We choose to perform our fit twice, using either results for a7,
or G,Sf\gmce (see Sect. 5.4.2). In both cases, we choose the OS scheme with all

its previously discussed benefits as renormalization scheme. Further, we choose
the world average My" (see Eq. (5.28)) over the respective CDF result MSPF in
the minimization [8]. As in the case for the analyses of the POs performed in
Sect. 5.4, we demand M,,, My > 1GeV to ensure that the approximations made
in the derivations of the POs in Sect. 5.4, such as assuming m,, < M, My, remain
valid.

As mentioned above, the investigated POs are chosen to be most sensitive to the
BSM gauge sector parameters and it turns out that they only loosely depend on the
additional parameters of the Higgs sector. Thus, we additionally include the con-
straints |a| < 0.2(a/ < 0.2) in the case M}, = MM (My = MSM), so that our results

22Note that the minos algorithm will not ensure that we find all disconnected areas that fulfill
F(p) < Fuin + AFa3.
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# | ren. scheme | oM | my, | My, My | |a] or o
1. 0S a1 €(01,10)TeV | > 1GeV [ < 0.2
2. OS a5 otice | € (0.1,10) TeV | > 1GeV | < 0.2

Table 5.1.: Fit scenarios used in our phenomenological analysis in Sect. 5.5.4. The
third column gives the value used for the best SM prediction for aBASM.
The entries of the columns 4-6 show the additional constraints imposed
on the input parameters of the fit.

(roughly) obey limits for the respective mixing angle in pure Higgs singlet exten-
sions obtained from analyzing LEP data or by analyses performed with LHC data
(see Ref. [87] for details). Further, we constrain m,, to 100 GeV < m,,, < 10 TeV.
While the lower limit?® is chosen to avoid that the minimization is disturbed by
the non-physical threshold effects of the OS scheme (see Sect. 5.3), the upper limit
of 10 TeV is some value chosen to prevent the minimization from running into
numerically unstable regions. Noticing the weak dependence of the investigated
observables on m,, discussed in Sects. 5.4, it is expected to be only loosely con-
strained by the investigated POs anyhow. The complete fit setups, which are used
to explore the phenomenology of the DASM in the following analysis, are summa-
rized in Tab. 5.1. Note that the results discussed in the next section are derived in
the OS scheme (see Tab. 5.1). Additionally, we perform the minimization using the
hybrid scheme. A comparison of the minimization results obtained in the OS and
hybrid schemes is used to get uncertainty estimates for the found minima and to
ensure a small renormalization scheme dependence of the results (see Sect. 5.5.4).

5.5.4. Fit results

In this section, we present the results for the fits obtained within the two fit
scenarios 1 and 2 (see Tab. 5.1). In addition to the minimum, we give the Fj3
contour (see Eq. (5.89)) in the vyos— My plane for both scenarios. Further, we
perform a scan of the investigated function F in the vicinity of the minimum,
where we determine the minimum value for fixed yos—My combinations, but leave
all remaining parameters of the fit free. This allows us to further understand the
fit function F in the vicinity of the minimum, to check the robustness of the minuit
result, and to discuss the several contributions to and features of F leading to the
respective results in detail.

As mentioned in Sect. 5.4, we find all investigated POs to be symmetric with
respect to v — —v and o — —a. Further, their predictions only loosely change
under a sign change A5 — —A12. While we here discuss the results choosing all of
the previously mentioned parameters to be positive, one, therefore, finds almost

Z3This specific value results as compromise between the aim to constrain m,, as little as possible
to minimize any bias and the necessity to avoid artifacts.
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DASM scenario 1 SM

Fonin 4.5445+0.0008 | 30.70
Yos % 10° 9.2475:57 -
My [GeV] 155% -

o 0.2075 15 -
A2 0.341_& -~
M, [GeV] 227, -
: 017755 -
my, [GeV] 263" 163" -

[
My [GeV] 125.25 £0.17 125.25
Mz [GeV] 91.188 £0.002 | 91.1876

my [GeV] 172.95 + 0.7 172.5
Aol . | 0.02766 & 0.00007 | 0.02768
0 0.1178 £0.001 | 0.1179

Table 5.2.: The minimum of F and the corresponding parameter values in the
DASM (middle) and in the SM (right) in fit scenario 1.

identical results when changing the signs of any of them?*.

In particular, constraining o, A2 < 0 and repeating the minimization results in a
similar position of the minimum (with flipped signs for o and \j2) and a shift of
the minimal value of O(107°) for either of the presented fit scenarios. This is well
below their respective uncertainties of O(10™*) estimated via a comparison of the
respective results in the OS and hybrid schemes (see below).

5.5.4.1. Fit scenario 1: a5M = aM, _
1 weTe

In fit scenario 1, we find the minimum value F,;;, = 4.5445 4 0.0008 of the fit func-
tion highlighting the significant improvement in the compatibility of the DASM
predictions for the considered POs with their respective measurements, as com-
pared to the respective SM predictions (leading to Fgy = 30.70 for fit scenario 1).
We give all details on the input-parameter values of the minimum in Tab. 5.2.
The uncertainty on the best fit value F;, in the DASM is taken as the dif-
ference between the OS result and the result obtained in the hybrid scheme,
JFhvbrideon _ 4 5437 after proper scheme conversion of 4. In addition, the mini-
mization was repeated using the hybrid renormalization scheme to test the renor-
malization-scheme dependence of the obtained minimum. A similar result as for

24Note that to obtain meaningful results, for a sign change of a, one always has to change the
sign of A\12 as well (and vice versa), to obey saaA12 > 0.
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the OS renormalization scheme of Fr3"" = 4.5434 was found.

To determine the 1o uncertainty limits for the input parameters, we search for the
values of the respective parameter—while minimizing in all remaining parameters—
where F(p) = Fuin + 1. Whenever any upper or lower parameter uncertainty is
underlined, the respective parameter value reaches the limit of the allowed pa-
rameter space before our requirement for F(p) is reached, i.e. the corresponding
parameter is not really constrained in the respective direction within the fit sce-
nario.

The fit prefers small values for the mass of the Z' boson and the minimum of F lies

at the lower limit My = 11“8'33 GeV of the parameter space. For the mixing angle

7 in the gauge sector the minimization prefers a small value of yog = 0.009270003.

Furthermore, the scenario My = MM, My, < MSM is preferred. As expected (see
Sect. 5.4), the BSM Higgs sector parameters come with very large uncertainties,
reflecting the fact that the investigated POs only loosely depend on them. The
preferred mass of the new Higgs boson M, = 2.27%, GeV is close to its lower limit

and o/ = 0.201%13 is at its upper limit, forcing the Higgs mixing angle o = § — o

as far away from its respective SM-limit value as possible. For this combination of
M, and o/, the scalar self-coupling takes the larges possible value of A5 = 0.34fﬁ
that is allowed by the perturbativity constraint on A;.

Finally, the combination of the mixing angle 6, = 0174:& and the mass of the

new fermion m,, = QGBf% GeV is only constrained by the perturbativity limit

imposed on y,, i.e. they are practically unconstrained by the fit (as expected from
the discussions given in Sect. 5.4), which is also reflected by their large uncertain-
ties. Further, we want to emphasize that the found uncertainties for the SM-like
input parameters agree with the experimental uncertainties used to construct F.
In Fig. 5.22, we show the result of our minimization of F with minimal value F;,
(black point), the respective Fa 3 contour (black dashed line), and the results ob-
tained by our scan in the vicinity of the minimum (coloured points, see Sect. 5.5.2
for details). The white regions correspond to areas with F(p) > Fun + 3.5, which
we do not display in colour here to have a more detailed representation of the
remaining (more interesting) scan results. Note that the best fit value is located
at Ay = 0.247 and y, = 3.537, i.e. close to their respective perturbativity limits.
A variation of ¢; and ¢, (which rule the precise form of P, see Eq. (5.88)) in the
range 102-10* leads to a variation of Fi, of O(107%) as well as a shift of the Fy 3
contour that is below the plot precision. Thus, we choose ¢ = ¢, = 10* here. The
additional cost, added by P to ensure that the results respect the perturbativity
limits of the parameters, is of O(10~") for all shown points, and, thus, negligible
compared to the theoretical uncertainty of Fin.

While we constrain our fit to Mz > 1 GeV leading to the lower My bound of the
JFo.3 contour, it reaches up to values of My ~ 1.6 GeV. The values of vog that can
be reached within the F5 3 contour are given by vog € [0.0077,0.0143]. We recall
that the limitations of our predictions for the POs do not allow us to make reliable
statements in the parameter region My = O(m,). However, the position of the
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Figure 5.22.: The location of the minimum (black dot), the corresponding F; 3
contour (black dashed line), and the results for the scan of the vicin-
ity of the minimum (coloured squares) in the yos—My plane for
fit scenario 1.

minimum as well as the scan of F in the vicinity of the minimum indicate that the
predictions might show even better agreement with data for even smaller values
of My. Moreover, moving away from the minimum towards larger values of My,
larger values for vpg are preferred. Thus, the scan reveals a valley-shaped form,
highlighting a direction in the yos—My plane that seems, compared to all other
directions, only loosely constrained by the considered POs. The direction given
by this valley agrees with the one found in the left plot of Fig. 5.14 that resolves
the tension between predictions and measurement of (g — 2),. To further explore
the results of the minimization in detail, we investigate the different contributions
to F originating from each of the considered POs separately in the following.

In the left columns of Figs. 5.23 and 5.24, we give the differences of the pull
values for the considered POs between the DASM and the SM, respectively. In
the right columns of Figs. 5.23 and 5.24 the corresponding contributions® o,
O; = a,, My, sfv,eff,l, Iy, to F originating from the diagonal elements of V! are
shown. They are defined by

Xo. = [(V7)a(07 — 0Py 2 (5.90)

where the (VV71);; denote the corresponding diagonal elements of Eq. (5.87). Fur-
ther, we give the values of yp, in the DASM at the location of the minimum and

ZPNote that yo, coincides with the absolute value of the pull (see Eq. (5.46)) in the case of
uncorrelated observables. Whenever correlations are taken into account this relation is no
longer valid.
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O; OgﬁM X0; | X0;,SM

ay, 1.165920528 x 1072 | 0.13 | 5.08
My 80.3567 GeV 1.69 | 1.95
sfvveff,l 0.23158 1.01 1.0
I'z_u 83.9817 MeV 0.19 | 0.35

Table 5.3.: Values of the PO predictions OQ&?}A at the location of the minimum

in fit scenario 1. Further, the respective values of the x¢, are given for
the DASM and for the SM case.

for the SM in Tab. 5.3.

On the left side of the upper row of Fig. 5.23, the difference between the DASM
and SM values of the pull for a, is shown. As already observed in Sect. 5.4.2, for
low Z'-boson masses a large dependence of aﬁ‘zflev[, on both, yos and My, is found.
In the upper-right plot of Fig. 5.23 the contributions y,, to F are shown. As
expected from the previous discussion it shows the same valley-shaped structure
that can be observed in the scan of the full function F (see Fig. 5.22). In agree-
ment with the results found in Sect. 5.4.2, within this valley the DASM predictions
precisely match the measured value a;®, i.e. x4, = 0. However, approaching the
Fa.3 contour perpendicular to this direction, one observes a strong increase of the
Xa, Vvalues. Furthermore, especially for values yos < 0.012 this increase of x,,
seems to dominantly determine the JF5 3 contour.

In the lower row of Fig. 5.23 the differences between the DASM and SM pull val-
ues for the mass of the W boson (lower left) as well as the contributions xaz, to
F (lower right) are shown. At the location of the minimum Yy, is lower than
its SM counterpart Xasy g, (see Tab. 5.3), i.e. there is better agreement between
the measured value and the prediction within the DASM than for the SM case.
Furthermore, for further decreasing values of vos the agreement between theory
prediction and measurement becomes even better for all given points of the scan.
However, for increasing values of vpg, the tension between prediction and mea-
surement increases, and Xz, surpasses its SM counterpart. For even larger values
of yos > 0.012, the contributions xas, to F become more and more significant
and play a deciding role in the determination of the F3 3 contour, especially in the
aforementioned direction of the valley observed in the x,, scan. Note that this is
in agreement with the results found in Sect. 5.4.1, where smaller values of yog are
preferred in the parameter regions where My < My.

Throughout the entire scan region, the predictions for 8‘2,‘,79&7[ and I'z_,; vary only
slightly compared to the respective experimental uncertainties. The difference be-
tween their respective pulls in the DASM and SM are shown in the left column of
Fig. 5.24. Furthermore, the variation as well as the absolute value of their con-
tributions® xo,, O; = 57, .q;, Tz—u, to F is small (see right column of Fig. 5.24)

26To keep the discussion compact, we only show the contributions e, (see Eq. (5.90)) explic-
itly here, i.e. we do not explicitly show the contributions originating from the presence of
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Figure 5.23.: The differences of the pull values between the DASM and the SM for
a 22 (upper left) and MM (lower left) and the contributions xo,,
O; = ay,, My, to F (right column) in the vicinity of the minimum for

fit scenario 1.

compared to the contributions originating from My and a, discussed above. Start-
ing from the location of the minimum within the /5 3 contour, the predictions for
52 oy (upper left) decrease, while the predictions for I'z_,; (lower left) increase for
increasing values of 7pg. Consequently, the tension between theory and measure-
ments slightly decreases for both s2, .4, (upper right) and I'z_;; (lower right). This,
again, is expected having the discussion of Sect. 5.4 in mind (see Figs. 5.19 and
5.20). For values of yog &~ 0.012 the prediction for I';_,; precisely agrees with its
corresponding measured value (dark blue region in lower-right plot). For further
increasing values of yog the values of IDAM further increase, leading to increasing
contributions xr,_,, to F.

Finally, we want to emphasize that at the location of the minimum the value of the
W-boson mass prediction is below its measured value. Thus, from the discussion
given in Sect. 5.4.1 one would expect that all three BSM Higgs parameters adjust
themselves such that they have the maximal distance to their respective values in

(V=1 #0,4 % 4,14,7 = 3,4,5, since they do not show any interesting additional features.



112 5. CONFRONTATION OF THE DASM WITH PRECISION DATA

® Finin=4.5445 0.016 ®  Finin=4.5445 1.012
16 == Fa3 16 == Fa3
My <1GeV 0.015 o Mz <1GeV 1.011
151 oz 151
5 1.010
0.014 :5
S o013 = 5] 1.009
93] N =134 1.008 %
N 0.012 "% N 2
s ) o= s
= .
) 3 gz i v 1.007
12 / o011 22 12 /
Va NE 4
1l 7 0010 < 111 7/ 1.006
’ 7 7
/
/./ 0.000 S, 1.005
1.01 /o 1.01 /e
0.008 0.009 0010 0.011 0012 0013 0.014 0015 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015
Yos Yos
®  Fmin=4.5445 ®  Foin=4.5445 040
164 == Fas 035 L6{|== Faa )
o Mz <1GeV 0 Mz <1GeV
035
154 030 - 151
gL 0.30
=
. 14 g — 141
2 X 3 0.25 _
O NI &
~ 131 020 & ~ 0.20 <
= zl =
J a3 121
12 015 % 0.15
11 114 0.10
0.10
0.05
1.0 1.0
T T T T T T T 0.05 T T T T T T T
0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015
Yos Yos

Figure 5.24.: The differences of the pull values between the DASM and the SM

for 33‘;’2&% "M (upper left) and TRASM (lower left) and the contributions

X0y, Oi = 8 1> Lzsu, to F (right column) in the vicinity of the
minimum for fit scenario 1.

the SM limit, i.e. one would expect o/ — 0.2, A\j — 7, and My, — 1GeV. This
parameter configuration would lead to the maximally allowed (within the BSM
Higgs sector parameter space) increase of MEASM. This behaviour is observed for
o' and?” \;5. However, the value of the BSM Higgs mass does not follow this ex-
pectation. At the location of the minimum the value of M, is close to, but not at,
its lower limit of My = 1 GeV. This indicates that in the region of the minimum,
the potential increase of ME*SM is too small to compensate for the extra cost that
is added to F for My, — 1GeV by the remaining POs (mainly originating from a
decrease of TPAM see Fig. 5.21).

In summary, the minimization in fit scenario 1 is dominantly driven by minimizing
the tension between prediction and measurement for (¢ — 2),, which singles out a
preferred direction in the yog—Mys plane. Furthermore, for My < My, small val-
ues of ypg are preferred in the comparison of predictions and measured value for

2TNote that, for the given values of o/ and My, Ai5 is at its upper limit set by the perturbative
constraint on A;.
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DASM scenario 2 SM

Frnin 3.8734 £ 0.0001 | 7.7490
Yos % 10° 5.85755 -
My [GeV] 15 -

o 0275, -
A12 0.3470% —
M, [GeV] 5.25 150 -
0, 0.0009" 55000 -
my, [ TeV] 10f§ -

My [GeV] 125.25 £0.17 125.25
Mz [GeV] 91.188 £0.002 | 91.1876

my [ GeV] 1729+ 0.7 172.5
Aad . | 0.02767 +0.00007 | 0.02768
O 0.1178 £ 0.001 0.1179

Table 5.4.: The minimum of F and the corresponding parameter values in the
DASM (middle) and in the SM (right) in fit scenario 2.

Myy. This pushes the location of the minimum towards the lowest possible value
of 70g, in the direction dictated by (g — 2),. In the vicinity of the minimum, the
remaining two considered POs steff,l and ['y_,; vary only slightly compared to the
respective experimental uncertainties. Thus, they do not contribute significantly
to the precise determination of the location of the minimum or the respective F5 3
contour.

: : . SM __ . SM
5.5.4.2. Fit scenario 2: a,” = Q3 aice

In fit scenario 2, the found minimum value F;, = 3.8734 £ 0.0001 within the
DASM is, again, significantly lower than the respective value Fgy = 7.7490 within
the SM. The uncertainty of F,;, is determined via a comparison with the respective
value in the hybrid scheme FPU4™ — 3 8733 after proper scheme conversion
of v. In addition, the minimization was repeated in the hybrid renormalization
scheme to test the renormalization-scheme dependence of the obtained minimum
and a similar value of F130"! = 3.8731 was obtained.

Due to the significantly reduced tension between the prediction and the measured
value for a, within the SM for fit scenario 2, Fgy is closer to F, than in fit
scenario 1. All details on the location of the found minimum of F are given in
Tab. 5.4. The minimum of fit scenario 2 is located at A\; = 0.257, i.e. close to its
perturbativity limit. A variation of the parameters ¢, and ¢ in the range 10%-10*
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Figure 5.25.: The location of the minimum (black dot), the F53 contour (black
dashed line), and the results for the scan of the vicinity of the mini-
mum (coloured squares) in the yos—My plane in fit scenario 2.

shows only a negligible effect on the results obtained for the minimum and the
Fs3 contour in the y—My plane. Thus, we choose ¢g = ¢; = 10* here.

In fit scenario 2 the minimum is, compared to fit scenario 1, located at an even
smaller value of the gauge-boson mixing angle of o5 = 0.005975003. The mass

of the Z' boson is at its lower limit?® M, = 113°*GeV. For the Higgs-sector pa-
rameters one finds o/ = 0.270,, A\p = 0.34799 and My, = 5.2577%5° GeV. Thus,
as in fit scenario 1, the mass hierarchy My = MM M, < MPM is preferred.
Again, o’ and A\ are at the maximum?® values of the available parameter space,
i.e. they have the maximum distance to their respective SM-limit values, and the
BSM Higgs-boson mass is found to minimize the tension between predictions and
measurements when it is close to, but not exactly at, its lower bound of 1 GeV.
However, all three BSM Higgs parameters are only very loosely constrained by the
fit, which is reflected by their large uncertainties. This is even more extreme for
the BSM parameters introduced in the fermion sector. We find the BSM fermion
mass at its upper limit m,, = 1073, TeV and a small value of 6, = 0.00097 523 for
the BSM mixing angle. Both are, however, practically unconstrained by the fit.
Finally, we remark that all uncertainties for the SM-like input parameters agree
with their measurement uncertainties used in the construction of F.

In Fig. 5.25 the result of the minimization of F with minimal value F;, (black
point), the corresponding F» 3 contour (black dashed line), and the respective re-

28Here, underlined values lie at extreme values at the borders of the allowed parameter space.
29Gimilar to fit scenario 1, for the given values of o’ and My, A2 is at its upper limit set by the
perturbativity constraint on A;.
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i Ogﬁ?}d X0; | X0,;,SM
ay, 1.165920508 x 1072 | 0.12 | 1.69
My 80.3591 GeV 1.49 ] 1.95
sfv,eff’l 0.23158 1.01 1.0
| N 83.9755 MeV 0.31| 0.35

Table 5.5.: Values of the PO predictions Ogﬁ?}ﬂ at the location of the minimum

in fit scenario 2. Further, the respective values of the x¢, are given for
the DASM and the SM case.

sults obtained by the scan in the vicinity of the minimum are shown. Again, the
white region corresponds to an area with F(p) > Fin + 3.5, which we do not dis-
play in colour here to have a more detailed representation of the remaining (more
interesting) scan results.

As mentioned above, the minimum is located close to the perturbativity limit of
A1. This can lead to non-vanishing contributions of P # 0 contributing to the
found minima in the scan of the vicinity of the location of the minimum. For our
choice of ¢ = ¢ = 10* the additional cost introduced by P is of O(107°) in the
entire scan range and, thus, negligible compared to the theoretical uncertainty of
Frnin-

The F53 contour is bounded from below by the constraint M, > 1GeV and
reaches up to values of My = 3.27 GeV. Further, the scan indicates that the pre-
dictions might agree even better with data for smaller values®® of M, < 1GeV.
The values for the gauge-boson mixing angle that can be reached within the /5 3
contour are within [0.0012,0.0133].

Starting from the position of the minimum, there is a strong increase of F for
increasing values of vog, compared to the overall scale set by F,. However, in
contrast to fit scenario 1, there is only a moderate increase when leaving the region
marked by the F» 3 contour in the opposite direction (yos — 0). This is directly
related to the difference in the used SM predictions for a, in the two fit scenarios,
simply reflecting that the SM prediction, and, thus, the SM limit yo5 — 0, pro-
vides a significantly better description of the data in fit scenario 2. Finally, we want
to highlight that within the given F5 3 contour, one finds a rather narrow valley-
shaped area (blue region) tied to the location of the minimum, that provides the
best agreement between measurements and predictions. This valley-shaped region
singles out the same direction in the yos—My plane that was found to minimize
the tension between predictions and measurements of a, (see lower-right plot of
Fig. 5.14).

We list the values of the POs at the location of the minimum and the respective
values of the yp, within the DASM (at the location of the minimum) and within
the SM in Tab. 5.5. To further investigate the results of the minimization, we

30However, similar to the situation for fit scenario 1, our approximations done in the derivations
of the POs do not allow us to explore this region of the parameter space properly.
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Figure 5.26.: The differences of the pull values between the DASM and the SM for
apitice (upper left) and Mg (lower left) and the corresponding
contributions yp, to F (right column) in the vicinity of the minimum

for fit scenario 2.

give the differences between the pull values for the considered POs in the DASM
and SM and the corresponding contributions ye, in the left and right columns of
Figs. 5.26 and 5.27, respectively.

In the upper-left plot of Fig. 5.26 one finds a strong increase of the a, prediction
within the DASM for increasing values of vyog (at the right side of the F5 3 con-
tour) for values of My < 2GeV, which leads to a strong increase of the respective
contributions x,, to F. These contributions dominantly determine the F3 3 con-
tour in this part of the parameter space. For decreasing yos — 0, afﬁi\ﬁ:e slowly
approaches its respective SM value leading to a comparably moderate increase of
Xa,- As expected by the previous discussion, there is a distinct direction (blue area,
right plot) in the yos—My plane where the predictions show very good agreement
with the data, giving rise to the valley-shaped area mentioned previously.

The difference between the DASM and SM pull values for My (lower left) and the
values of XOnry, (lower right) are shown in the lower row of Fig. 5.26. For large

parts of the scanned parameter space ME*M (lower-left plot in Fig. 5.26) is larger
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Figure 5.27.: The differences of the pull values between the DASM and the SM for

si;?f%}qM (upper left) and TPASM (lower left) and the corresponding

contributions yp, to F (right column) in the vicinity of the minimum
for fit scenario 2.

than its respective counterpart in the SM, i.e. closer to its measured value. How-
ever, as expected from the discussion given in Sect. 5.4.1, for large enough values
of vos the DASM prediction MEASM is lower than its SM counterpart, leading to
an increase of the respective contributions x g, (lower-right plot in Fig. 5.26) to
F compared to its corresponding SM value. Further, we want to emphasize that
for fit scenario 2, xn, provides in the SM (see Tab. 5.5) the largest contribution
to F, and leads to the dominant contributions that determine the /5 3 contour for
increasing values of yog in the direction dictated by a,. Finally, we note that, due
to contributions from the Higgs sector extension that lead to an increase of the
predicted value, MEASM shows, at the location of the minimum, better agreement
with data than the respective SM prediction (see Tab. 5.5).

In contrast to agyﬁﬂ\{[ce and MYASM the Z-pole observables sfv”]zf? M oand TRASM (see
left column of Fig. 5.27) show only small variations with respect to the correspond-
ing experimental uncertainties in the entire fit range. Starting from the location
of the minimum, the agreement between their predictions and the respective mea-

surements increases (decreases) with increasing (decreasing) values of g, but
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show only little sensitivity to variations of My within the shown region. Similarly
to fit scenario 1, TPATM precisely agrees with the corresponding measured value for
vos ~ 0.012. For further increasing values of vog the prediction for I'z_,; further
increases and consequently the values of xp, , increase.

In summary, in fit scenario 2 the minimization is, similar to fit scenario 1, domi-
nantly driven by minimizing the tension between the predictions and the measured
value for a,,. This yields a distinct direction in the yog—My plane where the predic-
tion and the measured value show perfect agreement. Within this direction the fit
prefers the smallest possible value for 7pg. This maximizes the level of agreement
between the predictions and the measured value for My within the area preferred
by (g — 2),. In the vicinity of the minimum the remaining two POs sw oty and
'z do not contribute significantly to the precise determination of the location

of the minimum or the respective F5 3 contour.

5.5.4.3. Summary and comparison of the fit results

For both fit scenarios the DASM can provide significantly better agreement be-
tween theory predictions and experimental results for the considered POs. This
is reflected by the significantly lower values of Fiing1 = 4.54 and Fiinse = 3.87
obtained within the two scenarios, respectively, compared to the corresponding
SM values of Fgmer = 30.70 and Fsmse = 7.75. To test the renormalization-
scheme dependence of the results, the minimization was repeated using the hybrid
renormalization scheme instead of the OS scheme in the two fit setups. The val-
ues Fiﬂfzd 4.54 and Fr}[’lylsr:d 3.87 were found for the minima in the two fit
scenarios, showcasing a negligible dependence of the result on the renormalization
scheme.

In both fit scenarios, small values of yog = O(107?) and Mz = 1 GeV are preferred.
For the precise determination of the vos—My region preferred by the minimiza-
tion, a, plays a major role. It singles out a specific direction in the yogs—My plane
which resolves the tension between the respective predictions and the measured
value of a,,.

For My < My the W-boson mass prediction shows the highest level of agreement
for the smallest possible value of yog. Therefore, in the vos—Myz region preferred
by a,, the minimum is located at the lowest possible value for vog. Note that the
significantly smaller discrepancy between ai lattice a1 @, compared to the dis-
crepancy between aii@e_ and a;®, allows for smaller values of yog in fit scenario 2
compared to fit scenario 1, i.e. the value of vog at the location of the minimum
is closer to its SM limit (yos — 0) in fit scenario 2. Additionally, My yields an
important constraint for the determination of the respective F53 contour in the
Yos—My plane, especially for increasing values of vog in the direction dictated by
ay.

Finally, for all parameter configurations found by the respective scans over the

vicinities of the minima, both sgv’[e)ngM and T'DAM vary only slightly compared to
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the respective experimental uncertainties and an equally good agreement between
the respective predictions and measurements as in the SM case is found at the
minima. Thus, their impact on the minimization of F and the determination of
the F5.3 contour in the yos—My plane is small in either fit scenario.

The DASM prediction for a, depends only slightly on the remaining BSM param-
eters originating from the Higgs and fermion sectors. Their preferred values are
mainly determined via the remaining three POs. For both fit scenarios, the mass
hierarchy My = MM My, < MM i.e. a light BSM Higgs boson, is preferred. In
the determination of the precise values of the BSM Higgs-sector parameters at
the location of the minimum, My plays an important role. In both investigated
scenarios, the BSM Higgs-sector parameters lead to an increase of M{*SM | bring-
ing it closer to its experimental counterpart. Thus, even though the preferred
gauge-sector parameter configuration leads to an increase in the tension between
MEASM and MyP, with the help of the BSM Higgs sector one ultimately finds
better agreement between its measurement and the prediction at the location of
the minimum compared to the SM case in both fit scenarios. However, in either
fit scenario the BSM Higgs-sector parameters remain widely unconstrained by the
investigated POs.

In the investigated parameter regions, the impact of the BSM fermion-sector pa-
rameters on the considered POs is negligible. Thus, they remain practically un-
constrained by the fit, as is also pointed out by the respective values for their 1o
uncertainty intervals.
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5.5.5. Outlook

The results of this first analysis on the phenomenological implications of the var-
ious SM extensions introduced by the DASM clearly show that the DASM is an
interesting and promising candidate in the search for new physics. In order to ob-
tain a more sophisticated and more complete picture of the predictive power of the
DASM and its phenomenological implications, we list several desirable additions
for future analyses below.

To gain an even better insight into the exact implications of the gauge-sector
extension introduced by the DASM, we propose the following future analyses:

e One should include the possibility for very light masses of the Z' boson
Mz < 1GeV in order to explore this promising part of the parameter space.
In either of the two investigated setups—scenario 1 or scenario 2—our analy-
sis suggests that masses of the Z’ boson below the lower limit of Mz > 1 GeV
are preferred. This lower bound is introduced to ensure the validity of certain
approximations used in the derivations of the POs, which rely on the fact
that the masses of external leptons are small compared to the mass of the Z’
boson. Additionally, in the case My < m, — m. the possibility of invisibly
decaying Z’ radiation opens up an additional decay channel in muon decay.
This yields further NLO BSM contributions to the prediction of the mass of
the W boson performed in Sect. 5.4.1, which have to be taken into account
in respective analyses.

e Invisible Z'-radiation effects will, even for My, > 1GeV, affect the LEP
observables at NLO in the BSM effects. Similarly to the virtual BSM correc-
tions, contributions originating from real Z' radiation lead to O(si) effects
in the two LEP POs considered in this work. Therefore, having the results
from our analyses performed in Sects. 5.4.3-5.5.4 in mind, the respective
contributions to I'PASM and st’EfJEZSM are expected to be small in the phe-
nomenologically preferred parameter regions (where v = O(107%)) and are
neglected in the presented analyses. However, taking into account the exact
experimental setup used for the LEP measurements, a sophisticated anal-
ysis dedicated to a more correct theoretical treatment of these additional
real-radiation effects should be performed to ensure that they are correctly

included in the respective predictions in future analyses.

e There seem to be very powerful limits, especially for small gauge-boson
masses of My < 10GeV, on certain yv—My combinations obtained from di-
rect searches of neutral BSM gauge bosons at the NA64 [124], BaBar [125],
and FASER [126] experiments that should be taken into account in future
analyses. Unfortunately, their description of the chosen underlying theo-
retical setup is rather blurry, i.e. the exact interpretation of their reported
results is not clear to us. A careful study is needed to understand how the
reported limits translate into constraints on DASM parameters.
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e To obtain a more complete picture, further POs such as additional Z-boson
branching ratios, aiming to test the gauge-sector extension of the DASM at
an even higher level of precision, should be included in the analyses.

With our choice of investigated POs the main focus of the analysis lies in exploring
the phenomenological implications of the gauge-sector extension of the DASM.
This is also reflected in the fact that the remaining BSM parameters of the Higgs
and fermion sectors are widely unconstrained by the analysis. Thus, to further
investigate the Higgs- and fermion-sector extensions of the DASM we propose for
future analyses:

e To obtain a more precise estimate for the BSM Higgs-sector parameters,
studies on branching ratios of the SM-like Higgs boson, or even more subtle
predictions, such as a full prediction for the S — 4 fermions branching ratio,
where S denotes the SM-like Higgs boson of h and H, should be included in
future analyses. For instance, even though the decay width of the SM-like
Higgs boson is not known precisely, in case its decay into two BSM Higgs
bosons is kinematically allowed, the resulting partial decay width can be
used to get a first, rough upper limit3' on \,.

e The lower bound of m,, > 100 GeV was introduced to avoid the unphysical
artifacts, i.e. the threshold effects discussed in Sect. 5.3, in the minimization
procedure. These artifacts originate from neglecting the unstable nature of
decaying particles. Even though our analysis is not sensitive to the exact
value of m,, (see Sects. 5.4.1-5.4.5 and 5.5.4), it is desirable to cure these
artifacts in future analyses. This can, e.g., be achieved by introducing a
complex mass for v4 via the complex-mass scheme.

e In certain regions of the parameter space, the additional fermion of the dark
sector v4 can be a stable particle®?. A dedicated DM analysis should be
performed within the DASM to see whether v4 provides a promising DM
candidate, i.e. if the DASM offers potential explanations for the existence of
DM.

Finally, the DASM introduces an additional gauge boson, a BSM Higgs boson,
and a dark fermion. A dedicated study on their possible decays should be per-
formed. This will give first implications for possible direct searches at modern
high-precision experiments.

31This rough estimate is, e.g., obtained by simply demanding that this partial decay width does
not exceed the upper experimental limit of the total decay width of the SM-like Higgs boson.

32This can, e.g., be achieved by taking 6, — 0, where in our collider approximation the only
non-vanishing interaction of v4 is given by Z'v4v4.






6. Summary

There are several observations, such as the existence of DM or the matter—antimat-
ter asymmetry in the visible universe that imply that the SM cannot be the com-
plete theory describing Nature. Thus, it should rather be seen as an effective theory
of some more fundamental model. In the pursuit of finding solutions for some of
the open questions of modern HEP, many promising theories, like SUSY models,
were developed. However, to this day there exists no evidence for the realization
of any of these models in Nature. One promising ansatz in the search for possible
new physics is to investigate the phenomenological implications of promising, but
rather simple and generic extensions of the SM. Testing the predictions of these
extensions with high precision shows whether they can address some of the open
questions without destroying the astonishing predictive power that the SM shows
for numerous collider measurements. This might offer first hints on the structure
of possible new physics.

In the first part of this work we formulated the DASM. The DASM extends the
SM by a rather generic dark sector. This dark sector is a singlet with respect to
the SM gauge group, but comprises a U(1)q gauge symmetry. The SM part of the
theory is a singlet under this additional gauge group. The full gauge group of the
DASM is given by SU(3)c x SU(2)w x U(1)y x U(1)4. In addition to the gauge
field corresponding to the U(1)q, the DASM introduces a new complex Higgs field
p to the scalar sector, which develops a non-vanishing vev. The Higgs field p car-
ries only charge of the U(1)q. Consequently, the gauge group of the dark sector is
spontaneously broken. This results in two new massive bosons, one Higgs boson
and a Z' boson. Furthermore, right-handed SM-like neutrinos, as well as a Dirac
fermion that carries charge of the U(1)q, are introduced in the DASM. Thus, the
DASM uses the field-strength tensor of the weak hypercharge as well as the mass
operator of the SM-like Higgs doublet, which are the only two gauge-invariant and
renormalizable operators present in the SM, to open two portals to its dark sec-
tor. Additionally, the right-handed parts of the SM-like neutrinos provide a third
portal to the dark sector.

We set up the theoretical framework for the DASM and formulate the theory in
terms of the fields that correspond to mass eigenstates. Further, we give explicit
results for the full Lagrangian of the DASM in R, gauge. To this end, we introduce
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a “collider approximation” for the neutrino sector extension which is well suited for
studies of collider phenomenology. In this collider approximation, the DASM in-
troduces two additional free parameters in the gauge sector, three free parameters
in the Higgs sector, and two additional input parameters in the neutrino sector.
Making use of the masses of the new particles and the mixing angles introduced
in the Higgs, gauge, and neutrino sectors, we defined a particularly intuitive and
experimentally easily accessible set of input parameters suitable for studies of the
phenomenological implications of the DASM.

To be able to derive NLO predictions for POs within the DASM, we set up a
complete renormalization of the DASM at NLO. For one, we defined a proper OS
renormalization scheme—Dbased on physical S-matrix elements—for the newly in-
troduced mixing angles. This is of particular interest, since mixing angles are often
introduced to parameterize BSM models, and there seems to be no agreement on
their proper OS renormalization in the literature. We give explicit results for the
OS renormalization constants of the gauge-, Higgs-, and fermion-sector mixing an-
gles within the DASM. The suggested OS renormalization scheme for the mixing
angles has various desirable properties [81]:

e The OS renormalization conditions for the mixing angles are based on S-
matrix elements leading to gauge-independent renormalization constants.

e The resulting OS mixing-angle renormalization constants have smooth limits
for extreme values of the respective mixing angle.

e Predictions for observables based on the OS renormalization scheme are sta-
ble in the degeneracy limit of the masses of the respective mixing particles.

e Employing complete OS renormalization for all mass-related parameters leads
to a cancellation of all tadpole contributions in predictions for observables.
Therefore, the presented OS predictions do not depend on the treatment of
the tadpoles.

e The proposed OS renormalization for the gauge-sector mixing angle v leads
to a process-independent renormalization constant dvos.

For mixing angles connected to kinetic mixing, such as the mixing angle v intro-
duced in the gauge sector of the DASM, we are not aware of any complete OS
renormalization proposed in the literature (previously to our work [38]). There-
fore, the here presented OS renormalization can be seen as a proposal for the
OS renormalization of gauge-sector mixing angles. As an alternative to the OS
renormalization we give the corresponding MS renormalization constants for all
introduced mixing angles explicitly. MS renormalization schemes are symmetric
in the mixing fields and, by definition, process independent. However, MS renor-
malization for mixing angles can lead to perturbative instabilities in certain regions
of the parameter space and, in general, introduces a dependence on the tadpole
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treatment in predictions for observables.

Finally, we performed a first phenomenological analysis of the DASM to inves-
tigate the effects of its various newly introduced features on POs. Due to the
detailed studies of Higgs singlet extensions, which introduce Higgs sector exten-
sions similar to the one of the DASM, the focus of our analysis was to investigate
the phenomenological implications of the gauge-sector extension. To this end, we
consider four POs: the mass of the W boson derived from muon decay, the anoma-
lous magnetic moment of the muon, the leptonic effective weak mixing angle, and
the leptonic partial decay width of the Z boson. We derived NLO predictions for
these POs within the DASM. Assuming BSM contributions to be small we add for
each PO the difference between the NLO DASM and NLO SM predictions to the
respective state-of-the-art SM prediction to obtain sufficiently precise predictions
that match the precision of the respective measurements.

The SM predictions for the leptonic effective weak mixing angle and the leptonic
partial decay width of the Z boson agree with their respective measurements within
their experimental 1o uncertainties. The SM prediction for the mass of the W bo-
son agrees with the corresponding experimental world average within 20. Note
that, the world average used in our studies does not include the CDF measure-
ment [7] since it is not compatible with other measurements of the W-bosons
mass [8]. However, we want to remark that there exist regions in the parameter
space of the DASM that lead to agreement between its predictions for the W-
boson mass and the CDF measurement. For the anomalous magnetic moment of
the muon currently two different SM predictions are present. They are based on
different approaches for the determination of the hadronic vacuum polarization,
either via a data-driven approach (ail’\éﬂe,) [4] or via lattice QCD (aS\, i) [5)-
The two approaches lead to a 5.1¢ and a 1.7¢ difference between SM prediction
and measurement, respectively. Due to this large discrepancy, we included both
scenarios in our studies. The dependences of these predictions on the new parame-
ters were investigated in detail. All four POs only loosely depend on the additional
parameters introduced by the Higgs- and neutrino-sector extensions and they are
insensitive to the sign of the gauge-sector mixing angle.

A simultaneous fit of all four POs was performed to determine the parameter con-
figuration that minimizes the tension between theory predictions and data. To this
end, a y*like likelihood function F was minimized within the perturbative region
of the parameter space. For the two investigated scenarios, using either ai¥+e, or
a;SLI,\l/[attice for the derivation of (g — 2),, we find the minimum values Fins1 = 4.54
and Finin 2 = 3.87, respectively. The corresponding SM values in the two scenarios
are given by Fsmer = 30.70 and Femge = 7.75. This shows that in both scenar-
ios a significantly better agreement between data and predictions can be achieved
within the DASM than for the SM case. In either scenario, the DASM can provide
perfect agreement between predictions and measurement of (¢ — 2),. Simultane-
ously the agreement between measurement and prediction for the W-boson mass
is slightly better than in the SM and the predictions for the leptonic effective weak
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mixing angle and the leptonic partial decay width show an equally good agreement
with their respective measurements as in the SM case. In both scenarios, small
values of the gauge-boson mixing angle v = O(1073) are preferred. Furthermore,
both minima are located at the lower limit of M, = 1GeV, which was imposed
to guarantee the validity of the approximations performed in the derivations of
the considered POs. As expected, the remaining BSM parameters remain widely
unconstrained in our analysis.

This first analysis shows that the DASM remains a promising candidate to pa-
rameterize and identify possible new physics. However, to fully explore the pre-
dictive power of the DASM, further analyses have to be performed. Considering
the results of our parameter fit, future analyses should avoid approximations that
restrict the viable parameter space to My > 1GeV. This would reveal whether
even lower masses of the Z' boson can lead to even better agreement between mea-
surements and predictions.

To set the cornerstone for direct searches at any HEP experiments, a detailed
study of the decays of the new physics particles predicted by the DASM should
be performed. Furthermore, the obvious next step for future analyses is to take
more EW POs as well as limits obtained from direct Z'-boson searches performed,
e.g. at the NA64 [124], BaBar [125], and FASER [126] experiments, into account.
To obtain a more precise estimate of the Higgs-sector parameters additional POs
sensitive to the Higgs-sector extension—such as predictions for branching ratios
of the SM-like Higgs boson—should be considered. If kinematically allowed, even
the decay of the SM-like Higgs boson into two BSM Higgs bosons could be used to
obtain a first rough upper limit on Ai5. Finally, a dedicated DM analysis should
be performed within the DASM to investigate whether the DASM might offer a
possible explanation for the origin of DM.
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A. Cross sections within pertur-
bation theory

In theoretical HEP, one of the main interests lies in determining precise predictions
for cross sections of scattering events. In this thesis, we make use of perturbation
theory to compute predictions. To this end, we expand the investigated observ-
ables in the coupling constants, which are assumed to be small. Here, we briefly
describe the perturbative approach, closely following Refs. [51,52].

In quantum field theory any scattering process can be described by the so-called
S-matrix. The S-matrix quantifies the transition between the (possibly multi-
particle) incoming state |i) and the final state |f). Splitting the Lagrangian in a
free part £y (monomials with up to two fields) and an interaction part £; (mono-
mials with more than two fields)

L=Lo+ L, (A1)

the S-matrix element is, assuming asymptotically free initial and final states!,
given by the time-evolution operator in the interaction picture

S=T leXp {i/d%cIH : (A.2)

where T denotes the time-ordering operator. The corresponding transition matrix
element My; is defined via

(fIS iy = (fli) +i(2m)'8" (pi — pp) My, (A-3)

where the first term on the right side describes the scenario where no interaction
takes place. Further, p;/; denote the total initial- and final-state four-momenta,
respectively, the delta function ensures four-momentum conservation, and |i) and
|f) are assumed to be asymptotically free states. Within perturbation theory,
the S-matrix element can be related to so-called Feynman diagrams. Feynman
diagrams are built of propagators (described by Ly) and vertices (described by

Tt is assumed that all interactions happen in a finite time interval and that the states are free
of interactions for asymptotic times t — +oo.
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L), which can be translated into analytical expressions via the Feynman rules.
For 2 — n particle scattering of unpolarized initial-state particles the absolute
square of M; is related to the desired interaction cross section via

1
do = ————d®(p1, pa, @1, - - - @) | M pil%, A4
PF(r o) (p1, P2, @1 Gn) | M il (A.4)

with P = 1! x --- x I,!, where [;, j = 1,...,n, is given by the number of identical
final-state particles of type j, denoting the symmetry factor that has to be included
to avoid double-counting. The flux factor for the incoming particles? is given by

Flg1, 42) = 41/ (prp2)? — mim3, (A.5)

with the masses of the incoming particles my, ms. The differential phase-space
volume is defined via

d q1 d3(j'n
(p17p27 qi1, 4 ) ( ﬂ—) (pl +p2 Z q) 2Eq1 27‘( QEqn(QTF)S’

(A.6)

where E, = /m2 + |Gi|?, @, and ¢; denote the energies as well as the three-

and four-momenta of the final-state particles, respectively, and m,, is the mass of
the final-state particle ¢. Further, for unpolarized scattering the squared matrix
element | M 4;|? has to be spin averaged over the initial-state particles and summed
over all unresolved d.o.f. of the final-state particles. In the case of a particle decay,
i.e. a 1 — n process, the differential decay width is given by

(2 (4) d’g, 2
oy = °F, P5 Zq’ 2qu 27r) "2E, (21) 5 Ml (A7)

where p = (E,, p) is the four-momentum of the mother particle. For two massless
particles in the final state Eqgs. (A.4) and (A.7) simplify in the centre-of-mass frame
to

dP1—>2 _ |(T1|
dQCM 327r2m§P

dog_so . |§1|

dQCM N 6471'28|]71|P

|Mfi‘27 ’Mfi|27 (A'8)
where /s = (E; + E»), with the energies of the initial-state particles Ey, Ey, m, is
the mass of the mother particle, and [p1], |¢1| denote the magnitude of the three-

momenta of the incoming and outgoing particles, respectively. Further, dQcy is
the solid angle in the CM frame defined by ¢;.

2Here, it is assumed that the incoming particles are (anti)parallel to each other.



B. Gauge transformations of the
fields

Here we give the infinitesimal gauge transformations of the fields needed for the
derivation of the Faddeev—Popov ghost Lagrangian in Sect. 3.2.3. As in the rest
of this work, we adopt the conventions of Ref. [54] for the field-theoretical SM
quantities here.

The infinitesimal gauge transformations of the gauge fields Wy, B, and C), read

5W; = 8u59“ + ngachleéec’ 5Bu = a,u(SQY’ 5Cu = 8u590a (Bl)

where the gauge-group parameters of the SU(2)w, U(1)y, and U(1)q gauge groups
are given by 862, 0¥, and 60°, respectively. Similarly we find for the Higgs fields
® and p

§b = (—%MY + 1’”%59“) P, 6p = —ieadp. (B.2)

Therefore, the infinitesimal gauge transformations for the fields corresponding to
the gauge and scalar bosons of the DASM are given by

SWE = 9,00% + ;—e W [enle,06% = 5,66) — 560" (B.3)
+ [swdy — cw(cyZy — 5,2,)] 66*] (B.4)
5A, = 8,60 +ie (W66~ — W, 50%), (B.5)
52, = 9,00% — iecvz—: (Wis6~ — W, 66%), (B.6)
57!, = 956” + 16372—2 (WFe6~ — W66+, (B.7)
82 _ C2
ST = Fiep™ {MA + 66% |:—CWS,Y77 + ;V = (cy — swsﬂ,n)}
SwCw
, 2
—66 {cwcm + . (84 + swc,m)H
+ [Ug + Cah + 5o H £ (cox — 52X')] 667, (B.8)

25y
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6h = — és, (Cv(mzl + vaz) (CaX' + 82X) + =2 (X — 52X')

2WVV

X [5«9Z (¢y — sunsy) — 00% (s, + Swncw)] + IQGSCQ (¢766~ — ¢~ 667) ,
(B.9)
0H = éc, (CVMZ/ + 5750Z> (cox + S2X') + 23ae (CeX — 82X')
SW W
X (067 (e, = surs,) = 067 (5, + sney)| + o (0007 — 67007
(B.10)

5y = 00% [—ésvsz (caH — Sah +v1) — 26% (va + cah + 5o H) (cy — 5w7757>1

Swlw

+ 567 [Q;C;w (v + cah + SoH) (Sy + Swncy) — €cySy (ca H — sah + Ul)}

+ Zjv (¢+56’_ + ¢—59+) : Bl
5y = 56" {;jzw (2 + Cah + 5o H) (y — $415y) = €85Cy (Ca — sah + Ul))

— 567 L;fjxw (55 + swncy) (V2 + cah + S H) + Ecy0y (caH — 5oh + Ul)}

- Sz (6766~ + ¢ 607), (B.12)

where we introduced the gauge-group parameters

1o 552
50% = m’ (B.13)
V2
50% = acy00° + 4,00 — 5,06, (B.14)
56% = (CLC»ySw +8,V1- a2) 00 + ¢y5w00" + 0 06°, (B.15)
00 = (VI e, — s, ) 0° = syu” — 5,600, (B.16)

With these explicit results for the infinitesimal gauge transformations it is straight-
forward to evaluate the infinitesimal variations of the gauge functionals (see
Eq. (3.82)) needed for the calculation of the ghost Lagrangian given in Eq. (3.84).



C. Dimensional regularization

Going from LO calculations to higher-loop orders, loop integrals appear in calcu-
lations of observables. In general, these loop integrals can lead to UV and infrared
(IR) divergences. The Kinoshita—Lee-Nauenberg [127,128] theorem states that
appearing IR divergences cancel in the calculation of sufficiently inclusive quan-
tities. To address the appearing UV divergences a proper renormalization of the
input parameters is needed.

To regularize appearing UV divergences, a regularization scheme is needed. In
general, regularization schemes modify the underlying theory such that the UV
divergences are mapped to well-defined expressions. However, they incorporate a
certain limit, where the original theory is recovered. In this work, we use dimen-
sional regularization [76,77], which is well suited for the regularization of UV diver-
gences appearing in NLO calculations. In the following, we briefly sketch the main
idea of dimensional regularization (for a more in-depth discussion see e.g. [129]).
In dimensional regularization, appearing UV divergences are regularized by a shift
of the space-time dimension D = 4 to arbitrary (complex) dimensions D = 4 — 2e.
In D dimensions the integration measure of the appearing loop integrals becomes

Here, a mass scale i, the so-called reference scale of dimensional regularization, is
introduced to keep the mass dimension of the integrals constant for any value of
the space-time dimensions D.

For the consistency of the theory, all appearing four-vectors and other Lorentz
covariants are analytically continued to D # 4 dimensions. In dimensional regu-
larization, the space-time dimension D is chosen such that the integrals are well-
defined. At NLO the UV divergences of the original theory are expressed as e~*
poles. Further, the original theory is recovered in the limit ¢ — 0. It is common
to represent appearing UV divergences at NLO by the so-called standard 1-loop
UV divergence of dimensional regularization

AUV —VE + IOg 471'7 (02)

“4-D
~——
=1/e
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136 C. DIMENSIONAL REGULARIZATION

where the Euler-Mascheroni constant g is introduced. Finally, we want to empha-
size that the correct treatment of 5 in D dimensions is non-trivial (see e.g. [54] for
details). For NLO calculations, it is, however, sufficient to use the so-called naive
5 scheme [54], where 75 anticommutes with all generators of the Dirac algebra
Yu, =0, ...,D —1. This scheme is implemented in the FeynArts and FormCalc
packages, which are frequently used in the calculation of observables throughout
this work.



D. MS renormalization constants
of mixing angles

The results for the MS renormalization constants 0rs» Oaqrs, and 00, 575 are ob-
tained from their respective OS results by keeping only terms proportional to the
standard 1-loop UV divergence of dimensional regularization Ayy (see Sect. C).
In this appendix, we give their explicit expressions in 't Hooft—Feynman gauge.
In the PRTS, one finds

2.2
(S”YPRTS _ AUV{ Qem [327 (1 Swil ) + 23w77027] Z [ml2 + B(mi + mz)]

MS 2 62 Nf2
167ceg, s5, Mz, o
2 2 2\2 02 1727172
| CaSwS2y85 Aymy, Mz M, 1 {772042 { 2
3.2 212 4 3 2 A )2 em 2
Qem 385, My Mg, TO8T3 e S5, Cor My Mz,

X [027 (3CQO¢CEVMI?Ih—[4SWnM\%V_QSWC\QNUMgz’—&-_’_SQVCEVM%Z’—(S?NTF

- 1)] — 25 [3¢2 M2, (2M2, — M2y )+2¢k [My, . —2M2MZ]
+ 262 M2y, M2,(825% — 1) + 480y (26252 + 820 + 1)})

50, (Beaact M, (537 — 1) (A Mz, — 203)

— 32 My, (sin® — 1) (A Mgy — 2My) + co My, (sin® — 1)
+2¢2 My, Mg, [81sin® +4s2 (5 — 23s2) — 9]

+ASME, [2¢2 (s2n% — 252 +1) + sty — 1])] + 282

X <3Cx2v(MI%h+ - M%zur) - 6C2acgycgvMI%h— + c4’YC\QN<3MI%Ih+ - Mgzur)

FAM (T — 552 — 6)) ~ [siych (s ~1) (3MF ~ My, )] }
852+ 54,8 NIy MZ M,
My,

2 2 2 2 2
ISV —3coa My, (CuMyy, + caycy, My,
CaSa
2 2 2 2 2 2 2 2

77—
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138 MS RENORMALIZATION CONSTANTS OF MIXING ANGLES

+ 6 My, M + A My, +8MZ, M + 48c3VM§M§,] }}
(D.1)
with the shorthands
M, =M £ M}, My = (M), (D.2)

for the MS renormalization constant of the gauge-boson mixing angle. Combining
this with Eqs. (4.46), (4.47), and (4.48) it is straightforward to derive the explicit

expressions for §72° and 571?418\/5 as well.

For the Higgs mixing angle, the MS-renormalization constant in the PRTS reads

5 PRTS — A Qem S20. A zz/ N _ 8m?2
s T 32 M M, _(AZ,, — 20MF) Z c.r [y (Miany. = 8my)]

77!

N sa Nam2 Mg, (2M3, — AZ,) (2629 m2, —6m2, + M3, )
Atem 380 Ca (MF,_ ) A%Z,
N 1 { QemT™2 M, ( 250,Col
512m3 My, | s2A5, \ Mg, _
= 2o My M2 Aby + oy My [1 LM, +48Mpy,

|:2C4CM MHh AZZ/

— 16MEMZ,, + AMEME — 32MEM, + 96M | + e,

X (1102, MEy_ M, + AMEy My [MEME + 8MF, (3M3, — M)
+16 [ME (Mg — MS) +3 (M5 — My)] | + (1M, +4AMEM)

X (2MZMZy, + My + M) + 16M2 [SMEMZ, (M3, + MY,)

— 3My, (M3, +20M3)| - 2526221 (MZ,,)" — 136MEMEMy
+ 8OMAMY | + L [1B6MEME My, — 21 (MZy,)" — 8OMEMY |

+ 96 My, (2M7 Mg, + My + 3My,) + 3 (55 — 7cy,) (Mg + My)

+ 6 My My (5 + 11c,,) — 5252, Mg My (1 + c2,) (Mg + M‘%)}

— 16500A2,, [%Mgz_ (M2, +2M2) + 2M% M2y, , + M} + M4,D

1672, M2,s2
CemSaCa (M,
X [12¢o0a My, + CaaMpy,_| + dcaycy, M7 Mg My, Mg,

o v [ ] s

+ dcg, My My, Mg, + 4, Mz My, (Mg, — 12M§)}
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271')\12 1 4 4 4
—2C6a My My A7,
i A%Z’Méhf [casa [ (oo W -z

o caa | My (M o (M Miy — 16MEME |4 My,

— MMy, +AMY]) + 8o, MEMEME, (M3, — 230y, )]
ey [ M My M — 26 MEME My, (M3, — 26, M.,

+ 2MG M My, [ M My, — 8¢, My My, _|

+ 4MZ My My, [cy (5Myy., — AMZ M) + 16 My, |

MM, (M + 3ME)| + AMEME Ay, (cb[50Ey,, — aMEM3 ]
- 40@ (M%z'+ [C4VM§Z’+ + CG'yM%zu] - CQwMgzurM%ZL)

+ 16¢4, My — 16M;}v)] — 8C—a087c§VM§M2, (Mgz,)“} }} (D.3)
Sa

with the respective colour factor for the fermions N¢ ; and the shorthands
2
A%Z/ - MZQZ/+ —|— M%Z/—CQ'Y’ A%Z/ = (A%Z,) . (D4>

In combination with Eqgs. (4.65), (4.66), and (4.67) the explicit expressions for

6aaS and 6aSIVS can easily be derived. Finally, the MS-renormalization constant

S
for 6, in the PRTS is given by

2 .2

50PRTS _ AUV}\IQSWSQrC@r {5602 M2M2

r,MS T 3 2 o2 2 A/2\2 w LAy
643 tem 2 52 (M§F — M)

+2m?, sp.[3¢s cor (M7 — My) — 3¢y, (Mg + Mg,) + 10My,] } (D.5)

Similarly to the cases above, the respective expressions for 667715 and 6095 can
be obtained from (D.5) using Eqgs. (4.80), (4.81), and (4.82).






E. Derivation of the covariance
matrix

The only relevant correlations needed in our analysis are between Iy, 53, ;, and
My. Their correlation coefficients are obtained from the correlation matrix given
in Tab. 2.13 of Ref. [118]. To this end, we make use of the relations Eqs. (5.75)
and (5.80) as well as (see e.g. [123])

S Oy, ayg
ng N Zz]: 81‘2 aiL'j

A~

Uij, (E.1)

T=T

where U is the covariance matrix for the set of pseudo-observables
v = {My, Tz 00, R, A%}, with their respective best fit values Z given in
Ref. [118], and V is the respective covariance matrix for the set of pseudo-observa-
bles y = {My,T'z, aﬁad, Iy, sfwﬁl} we are interested in. Inverting the covariance
matrix V of this subsystem will give the respective values of (Vm_l), 1,7 = 3,4,5,
used in our analysis (see Eq. (5.87)). To obtain the correct result for the inverse of
the covariance matrix, one has to invert the full covariance matrix! \7, including
the respective entries that account for the presence of I'; and o}, ;. The explicit
values of the inverse of the covariance matrix read

(VHy = TSt 6.9444 x 10° GeV 2, (E.2)
1
Vg ete- = ——— = 4.16493 x 10'®, E.3
W e = (R T =
1
(Va2 1attice = s = 2.60146 x 10'®, (E.4)
. (Aa;si\l/gtticey + (Aay™)?
(V)33 = 4.08712 x 10* GeV ™2, (E.5)
(V1) = 3.19361 x 10°, (E.6)

INote that this procedure reflects the situation where we do not have any knowledge about the
predictions for I'z and o}, ; within the DASM and, thus, have to scale their respective theory
uncertainties to infinity (after adding them in quadrature to the respective experimental
eITors).
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142 E. DERIVATION OF THE COVARIANCE MATRIX

(Vs = NS = 2.28271 x 10° GeV 2, (E.7)
(V)34 = 2.20856 x 10°GeV ™1, (E.8)
(V)35 = 8.65289 x 10* GeV ™1, (E.9)
(V)5 = 4.78144 x 10* GeV ™1, (E.10)
(VHes = (AMLE 34.6021 GeV 2, (E.11)
S
1
(Vg = B~ 2.04082 GeV 2, (E.12)
t
_ 1
(V1)gs = N 2.04082 x 10%, (E.13)
1
g9 = —— = 10° E.14
(V7" )oo (Aa,)? 0, (E.14)

where, as already mentioned above, we used the values given in Tab. 2.13 of
Ref. [118] for the determination of (V~1),;, 4,7 = 3,4,5. For the respective entries
of the remaining SM-like input parameters as well as My, we make use of their
experimental uncertainties AQ;, O; € { My, Mg, m¢, Acj,4, s}, where S denotes
the SM-like Higgs boson of h and H, taken from Ref. [16]. Further, for a,, we add
the respective theoretical uncertainty given in Eqs. (5.43) or (5.44) in quadrature
to the experimental uncertainty given in Eq. (5.45) to obtain the square of its total
uncertainty (Aa,)? used in V-1 All remaining entries of V! are zero.



F. Feynman rules of the DASM

In the following, we give the Feynman rules of the DASM in the 't Hooft—-Feynman
gauge. To keep the expressions compact we do not give their full analytic depen-
dence on the input parameters. The full dependence on the input parameters can
be obtained with the help of Eqs. (3.28), (3.68), (3.69), and (3.81). All momenta
are chosen to be incoming. Note that we do not explicitly list the Feynman rules
for QCD, since they are equivalent to their counterpart in the SM (see e.g. [51,54]).

Propagators

Here we list the propagators for fields. They read:
e for scalar fields S = h, H, x, ¥, 07,

oo
R Rl ¥ VL

with MX = Mz, MX' = MZ’ and M¢i = MW
o for gauge fields V = A, Z, 7/, W+,
k - —1gu
VeV, = m
e for ghost fields G = u?, u?, u? , u*,

K2 — M2’

with Mya = 0, M,z = My, M, = My, and M+ = My.

e for fermion fields F' = w;, d;, l;, v;, vq, 2 = 1,2, 3,

p +
Fo>—F —I(Zf mf)
pT—mg

143



144 F. FEYNMAN RULES OF THE DASM

Vertices
In the following we list the Feynman rules for the vertices in the DASM.
VVV vertex:

‘/2,V7 kQ

=ieC [QW (k1 — k2), + Gup (k3 — k1), + gup (ka2 — 74?3)] ,
Vl,;m kl

‘/3,,07 k3

with the values

ViVaVs

AWTW =

ZWHW=

ZWHW =

C

1

_Cylw

Sw

Sy Cw

Sw

VVVV vertex:

V1 1

Vau, ko

‘/3,/)7 k3

= 1620 [QQ,WQ,)U — GuoGvp — gupgutf] )

Viao, ka

with the values

ViVoVsVy | WWW-W— | WYW~AZ | WW~ZZ | WTW-AZ'
1 C~Cyw C%C‘QV S~ Cw
¢ s3 TSw s T Tsw
ViV | WTW—ZZ' | WW=Z2'Z' | WTIW~AA
€y S~ C2 s2¢c2
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VFF vertex:
2

'm< = iey, (Crwi, + Crwr) ,
Vu

Fy
with the values
VFIFQ Aﬁf] Zﬁf] W+aidj W*Jjui
Cy 5W Sw—nt T
Cu _Qféij SwCw (1 18wl ) (I\%v ~ d-ms Zwy)Qf> \/ilsw Vij \/%Sw VJZ
Cr —Q 0y —CW(SVZ—;”HQJC%‘ G, 0i0i30 1, 0 0
VFlFQ Z’ﬁfj W+Dilj W_iji
Sw(Swit~y+
e | v (R —@> 5 | | At
Cr bt Q6,7 — “06,0,30 1, 0 0
VFlFQ ZD4V4 Zﬁ4/3V3/4 Z/174l/4 Z/D4/3V3/4
Cr —& 0 — 0
CR €Sy Cy éS»Y 50, Coy o éc’chr éc’ySGr Coy
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SFF vertex:

S

Fy

=1e (CLCUL + CRWR) s

Fy

with the values

SF\Fy hff Hff Xff lef
Cu || ~Sinecdiy | —siediy | —200% ,Zorimitsy | 20l PSRy
Cn | ~ S iy | —ineacty | 20§ “gommiesy | —2ly 2 5rmanied;
SFlFQ h174V4 h174V3 ]’LD?,V4 HD4V4 HD4V3 HDgV4
S [ T R rasofermuy | St 0 T
CR sasflrzlm socsgrvclgerml,4 0 _ casf,:?:m o Casg;)clgelﬂly4 0
SE\F, XValy XVaV3 XV3V4 X'Vavy X'Vavs
| Behra 0 et oy | oty 0
CR . iSwsgrmm  i5080,Co My 0 . iSmsgrmm _ lcasg.co,muy
vie vie vie vie
SF\Fy X' V314 o ud; ¢_Jjui ool <Z5_l_jl/z‘
o | | ey, |yt o0 [-pes,
| o o v [guen] o
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SSSS vertex:

ie

? (caMit + 5o Mi)

N 48is2 N2, M3, (2 M + 2 ME)

452 M3,

with the values

e (M — M)’

3

9,555, | hhhh | hhhH | hhHH | hRHHH | HHHH | HHé ¢~ | hhé*é-
C, 3¢t | 3c3s, | 3c2sE | 3casd 3st s2 o
Cy —3s3, | o | 1t 3%4a 352, —2c2 —252
Ch —t2 ta —1 i — 0 0
51595354 | Hhoto~ | HHY'Y HHY'x HHyy HhY'Y'
4 SaCa s2s? —528,Cy s2c? CaSaS>
Cy 52a =1+ coaCor | C2082: | —1 — CoxCon | —S2aC22
Cs 0 e S i A s~ S
5155535, Hhx'x | Hhxx hhx'x' hhx'x hhxx
Cy —50CaS2Cs | CaSal? 2s? —2 8,0, e
Cy —S20S2: | S20C2z | —1 = C20C2z | —C2aS2x | —1 + C20Cos
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S1995384 | ¢T¢TdTT | TN X | dTETX X | 2T XX | XX | X' XXX
Cy 2 s2 —55Cy 2 %sgw 3sd
Cy 0 _2035 —Soy —253 ——1_304” —38596
Cs 0 0 0 0 % | G
2 a®a
S1525354 || xooxx | X'xxx | X'X'x'x
C, 3¢t | =3c3s, | —3c,s3
Cy —383, | —354a 2 5uw
84 S3Cg3 SQ;CS
CS _5:2_1 - s§c2 T2 Cg
2a ata ata
VSS vertex:
527 kQ
f\‘;\/\x: =i (eC) + éCy) (k;2—k:3)“,
1 AN
S3, k3
with the values
ViS3Ss || WEgTh | WEGTH | WEoFx | WEeTy/
Ca Sa iMyc Cw iM. 1Cw S
Cl :FE :FE - 2]\;\;\75\” 2]\ZJV\/5W’y
Cy 0 0 0 0
V15585 || Agto Zopt o~ Ao Zxh
C -1 nswsgrccv:‘gvcv%—sa) SW(nC’Y'ng‘:j:/)_S’YCgv _iMZCa;EEJ;VmwM)
iM, /SaSQCW
Cy 0 0 0 — ey
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V15555 ZxH Zx'h ZxX'H
C _ iMzceysa(cy—nswsy) | iMgreasyey(1—nswty) | iMgisasycy(1-nswiy)
1 2 My Sw 2 My Sw 2 My Sw
C iMZ,cas?ycw _ iMgzsasycycw iMzCca5~CyCw
2 Mw Mw Mw
‘/15253 Z/Xh Z/X/h Z/XH
C iMzcacl (mswtty) | iMyscasy(sy+nswey) | iMzsacs (nswtty)
1 2Myy 5w 2Myy 5 2My 5w
C _iMysasycycw . iMzsaciow iMy/casyCyCw
2 Mw Mw Mw
‘/15253 Z/X/H
C _iMyrsasy(syteynsw)
1 2 My Sw
C iMzcac,chw
2 My
SVV vertex:
VZ,M
—ST - - = iguy (601 -+ éOQ) i
Vs
with the values
S1VoVs hzZ HZZ hz 7'
C caMw (nsyswtey)? | saMw(cy—nsysw)? | CaMw [527(n25\2;v_1)_2n5w02w]
1 c2s c2s 2¢2 s
wOowW wOW wSw
Cy —2u; ésasi 21 écasg — V1654524
S1Va Vs HZZ' hz'Z' HZ'Z
C saMw [32“/ (77282W_1)_2778W62'Y:| ca Mw (5y4n5wey)? | saMw(syFnswey)?
: 27 on Fow
Cy V1€6Co 827 —201€54C2 2016¢aC2




150 . FEYNMAN RULES OF THE DASM
SiVoVs | AWHW = | HWFTW ™ | ¢TWTA OTWTZ GTWTZ!
Cl Co My Sa My _MW My (nsy—swey) | Mw(ney+5sysw)
Cy 0 0 0 0 0
SSS vertex:
S
o ie Aisy Ao My
o = C C.
S . ST O Ve V)
S3
with the values
515553 HHhR Hhh hhh HHH
4 —82cq (2ME + My) | — (ME + 2M3) soc? | —3MPcd | —3MAs?
Co || —ca@ME+M2) | sy (ME+2M2) | —Bstohp | Mice
S19:83 || ¢To™h | 9T H | X'X'h xxh | X'X'H xxH
Cy —MZcy | —MEsy | —Micas? | MEcoc? | MiEsas? | —MEsac?
Cy 0 0 —Mic _MEsi Mg Mis?
515253 XX,h XX/H
289,82 2 8228a
o, Mhzca M2 :
259, 282
Cy | - | e
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SSVV vertex:

S V3., k3
) ) ﬁ =1 (6201 + 6202) v
Sy Vi

with the values

S15Vo Vs hhZ Z hhZ'Z hhZ'Z' HHZZ
C Ci(cw—nswﬁ)z ca [2n£w€27+827(17n28‘2”)] ca (5’y+775wc'y)2 sa (CV_WSWS'Y)Q
1 2¢2,s2, 4c2 82, 2c2 52, 2¢2,s2,
Cy 28333 Sa52y 2330% 20233
S15Vo Vs HHZ'Z HHZ'Z' HhzZ
o | AR (PR | iy | sty
1 4c2 82, 2¢2 52, 4s2.c2,
Cy 2 Sy 2¢5¢2 — 52057
1.5, Va Vs HhZ'Z HhZ'Z' | ¢t~ AA|  ¢toZA
Cl S2ax [27]5w02;0‘:2;582‘2: (1—77253V)] sza(schvgvz;szcw)z 2 _Uswsvt‘lﬂ/s(vf%v_S?Q
Cy —520,C Sy —52aC2 0 0
515 V2V3 ¢ToZ'A ¢t o 27 ¢t o2'Z
C sw(ca,fsa,)fnswcy [nswsaﬂrc,Y (ca,fsa,)r 2nswezy (c5—5%,) =524 [(Ci*Si)Q*WQSi]
1 Cw Sw 2c2, 52, 4c2 82,
Cy 0 0 0
S15Vo V3 ot~ 2'7' RAW W= | HKWWTW = | HHW W~
SwCytS si,—c?,v 2 soc 52
N i R R l
Cy 0 0 0 0
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S 5 VoV | o WHW— | \xWH W= | oW | W
C 1 MZ3E, | MgMysyencd | Mpsicq
1 252, 2MZ s2, 2MZ 52, 2M3,s2,
Cy 0 0 0 0
S15:Va Vs XXZZ xx2'Z xx2'2'
C M3t (1=nswty)® | MZE[2nsweaytsay (1-ns3)] | M2 (nswey+s4)°
1 2M3Z, 52, AMZ, 52 2MZ, 52,
02 QME,S?YC‘Q,V QME,CWS%C%V 2M§,c%s%c§v
2 2 2
M, M, M3,
S152V2 V3 X'x2Z X'xZ'Z
C Mz My san (nswsy—cy)? | MzMzgisay [2T]Sw02»y+327 (1*7]233,)]
1 AMZ, 52 8MZ, 2,
C 2MzMZ/S,3;C»yC%V 2MzMZ/S?YC?YC?V
2 — Pttt e
M3, MZ,
515:V5 V3 X'x2'2' X'X'Z2Z
C Mz My say (sy4nswey)? | Myis? (NSwSy—Cry)?
! AMZ %) 2MZ, 52,
CQ 2MZMZ’;§/ syC2, ZM%C,QYQS%C%V
Mg, My,
515,15 V3 X'X'Z2'Z X'X'2'2'
C Mz My s2+ [2nswcz7+527 (1—7]%%)] M%,s?,cg(t7+nsw)2
! 8MZ, 52, 2MZ, 52,
C 2MZMZ/C%S%C‘2,V QM%C‘}/C?N
2 LTy w e
M, Mg,

$1SVaVs | hdTWEA | HOFWFA | x¢TWEA | N 6TWEA | hoTW*Z

_— Ca_ _ Sa iMzcycw iMyrsycw Co (15 —5wCxy)
Cl 25w 25w :F 2My 5w :i: 2 My o Tew s
Cs 0 0 0 0 0

S19VoVa | h¢TW=Z' | HpTW=*Z | HpTW=*Z' XOTW*Z

C ca(ney+swsy) Sa(nsy—swey) sa(ney+swsy) :l:iMZC’Y(nS’Y_ch’Y)
1 2Cw Sw 2Cw Sw 2Cw Sw 2 My Sw

Cy 0 0 0 0
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S19:Vo Vs xOTW=Z' X'oTW*Z X'oTW=Z2'
iMzcy (n+swty) iMys 5~ (CySw—mn5~) iMyss~ycy(N+swiy)
4 + 2 My Sw + 2 M Sw + 2Mwy sw
Cy 0 0 0
SGG vertex:
uy
- - == -0 = 1601 + iéOQ7
)
with the values
_ _ 7! / _
Sty hu?u? ha? u? Hu?u?
C . M%cacq,(c.y—ns,ysw) . Mé/cas'y(s'y"l‘nswc’y) M%cvsa(ns,ysw—cv)
1 2Myy sw 2Myy Sw 2Myy Sw
C MzMZ/CWSaS% MZMZ/C%SQCW _MZMZ/CQS?/CW
2 My Mw Mw
Salu2 Xa:tu:t X/,a:l:uﬂ: ¢:|:,a:|:uz4 ¢:ta:tuz
s Myzcwey s Myrsycw (s2,—c2)
Cl :FIT ﬂ:lT MW MW Dswew (C’y — SWnS,\/) — SwSy7]
Co 0 0 0 0
— — ! _ 7l _
Sty us orutu? dTufut | ptuf ut | hutut
2 2
— M _MZ/S'YCW MZCWC'\/ _CaMW
Cl MW { 28w Cw (37 + SWnCV) + SWCV” 2 My Sw 2 My Sw 28w
Cy 0 0 0 0
— — — / 7l _ !’
Stqus || HuTu* ha?u? ha? u? Hu?u?
C  saMy | MZcacy(sytneysw) | MZicasy(cy—nsysw) | MZeysa(sy+nswey)
1 25w 2 My S 2 My Sw 2 My S
C 0 Mz My cy505yCw Mz My cy505Cw _ MzMyicacysyew
2 My My Mw
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StUius Hu?'u? Hu? u?
C Mé,sasy(cv—ns,ysw) _Mé,sasw(sw—{—ncwsw)
1 2MWSW 2MWSW
C _MZMZ/cac.Ysﬂ,cw _MZMZ/CaC?YCw
2 My M
VGG vertex:
ala kl
.”1 —" .
AVAVAC S = ek, C,
Vi ¥,
U2
with the values
Viguy | Autu®t | WEaAuT® | WHaFTud | Zatu® | Z'a*u®
C +1 +1 +1 $C;ﬂ :Fsgﬂ
Viquy | WEaZuF | WEaZ'uF | WFaFu? | WTaFu?
CyCw Sy Cw CyCyw S~Cw
C o o T .




German Summary

Die gegenwiértige Theorie der Hochenergiephysik ist das sogenannte Standard Mo-
dell der Teilchenphysik (SM). In der Vergangenheit wurde Ubereinstimmung zwi-
schen zahlreichen sehr préazisen Messungen an Beschleunigerexperimenten und den
entsprechenden Vorhersagen des SMs gefunden. Trotz dieser erstaunlichen Vorher-
sagekraft des SMs gibt es einige Beobachtungen, wie beispielsweise die im sicht-
baren Universum beobachtete Materie-Antimaterie Asymmetrie oder die Existenz
von Dunkler Materie, die es nicht erkldren kann. Auch haben Neutrinos, im Wi-
derspruch zu den Erkenntnissen, die aus Messungen moderner Experimente ge-
schlossen werden konnten, im SM keine Masse.

Diese unerkliarten Phénomene zeigen, dass das SM nicht die ultimative Theorie, die
der Natur zugrunde liegt, sein kann. Mit der Entdeckung eines Higgs-Bosons [1,2]
am LHC im Jahre 2012 wurde das letzte Teilchen, das vom SM vorhergesagt
wird, gefunden. Da trotz immenser Bemiihungen seitdem keine neuen Elementar-
teilchen entdeckt wurden, ist die Suche nach kleinsten Abweichungen zwischen
hochprizisen Messungen und ebenso prézisen Theorievorhersagen des SMs und
seiner Erweiterungen der vielversprechendste Weg, um Hinweise auf die Struktur
von neuer Physik zu bekommen.

In dieser Arbeit wird die sogenannte ,Dark Abelian Sector Model“(DASM) Er-
weiterung des SMs definiert. Das DASM erweitert die Eichgruppe des SMs um
eine weitere, spontan gebrochene, U(1)q Eichsymmetrie. Das SM ist ein Singu-
lett unter der U(1)4. Zusitzlich zum massebehafteten neutralen Z'-Eichboson, das
zum entsprechenden Eichfeld der U(1)4 gehort, fithrt das DASM noch ein weiteres
Higgs-Boson und ein Dirac-Fermion ein, die beide ausschlieBlich Ladung der U(1)q
tragen, sowie ungeladene SM-artige rechts-héindige Neutrinos. Das SM besitzt zwei
Operatoren — den Higgsmassenoperator ®'® und den Feldstirketensor der schwa-
chen Hyperladung — die eichinvariant sind und eine Massendimension < 4 haben.
Die durch das DASM eingefithrten Erweiterungen des SM nutzen diese beiden
Operatoren, um zwei Portale zu einem moglichen dunklen Sektor, der unter dem
SM ungeladen ist, zu 6ffnen. Die Existenz der rechts-héndigen SM-artigen Neutri-
nos und des zusatzlichen Fermions erlaubt es zudem, ein drittes Portal zwischen
dem SM und dem dunklen Sektor zu 6ffnen.

In der vorgelegten Arbeit erarbeiten wir das DASM vollstéindig und bringen es
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in eine Form, die das Berechnen von Vorhersagen erleichtert. Des Weiteren de-
finieren wir intuitive und experimentell gut messbare Inputparameter fiir das
DASM. Dafiir ersetzen wir die urspriinglichen Parameter der Lagrangedichte so-
weit moglich durch die Massen der neuen Teilchen und Mischungswinkel, die die
Anderungen der Kopplungsstirken der entsprechenden SM-artigen Teilchen im
Vergleich zu ihren jeweiligen SM-Werten parametrisieren. Fiir den Higgssektor
wéhlen wir die Masse M des neuen Higgs-Bosons, den Mischungswinkel o des
Higgssektors, und die skalare Selbstkopplung Ao als Inputparameter fiir die drei
neu eingefiithrten freien Parameter. Im Eichsektor wihlen wir die Masse My des
neuen Eichbosons und den Mischungswinkel v des Eichsektors als neue Inputpa-
rameter. Im Fermionsektor wihlen wir die Masse m,, des neuen Fermions und
den Mischungswinkel 6, des fermionischen Sektors. Mit dieser Wahl der Input-
parameter definieren wir darauthin auf néchstfithrender Ordnung ein ,, On-Shell-
Renormierungsschema® und geben zusétzlich die Ergebnisse der Renormierungs-
konstanten der Mischungswinkel fiir MS-Renormierung explizit an.

Wir nutzen diese Renormierungsschemata, um eine erste Analyse der phdnomeno-
logischen Implikationen der DASM-Erweiterungen durchzufiithren. Dafiir betrach-
ten wir vier elektroschwache Prizessionsobservablen (PO): Die Masse des W-
Bosons, errechnet iiber den Myonenzerfall, das anomale magnetische Moment des
Myons, den leptonischen effektiven schwachen Mischungswinkel, und die lepto-
nische Zerfallsbreite des Z-Bosons. Mithilfe eines simultanen Fits dieser PO fin-
den wir Regionen des DASM-Parameterraumes, die die grofle Diskrepanz zwi-
schen Messung und Vorhersage des anomalen magnetischen Moments des Myons
verschwinden lassen und gleichzeitig zu einer Ubereinstimmung der Vorhersagen
und Messungen der anderen drei PO fiihren, die dhnlich gut wie die respekti-
ve Ubereinstimmung im SM ist. Somit beschreibt das DASM die untersuchten
Daten in diesen Bereichen signifikant besser als das SM und bleibt damit eine viel-
versprechende Erweiterung fiir die Suche nach neuer Physik. Fiir weiterfithrende
Untersuchungen wére es interessant, wenn weitere PO mit in diese Analyse auf-
genommen werden, um ein noch besseres und ganzheitlicheres Versténdnis fiir die
phanomenologischen Implikationen der DASM-Erweiterung zu bekommen und zu
untersuchen, ob das DASM beispielsweise mogliche Erklarungen fiir den Ursprung
Dunkler Materie liefern kann.
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