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Abstract

We formulate and investigate the Dark Abelian Sector Model (DASM), which ex-
tends the gauge group of the Standard Model (SM) by an additional spontaneously
broken U(1)d gauge group of a possible hidden sector. The SM is assumed to be
a singlet with respect to the U(1)d. Keeping the hidden sector rather generic,
the DASM adds a neutral massive Z′ boson corresponding to the U(1)d, a neutral
Higgs boson and a Dirac fermion, which both only carry charge of the U(1)d, as
well as right-handed SM-like neutrinos, to the SM. In this way, the DASM em-
ploys the only two possible SM operators (mass dimension < 4, gauge-invariant),
namely the Higgs mass operator Φ†Φ and the field-strength tensor of the weak
hypercharge, to open up two portals to a possible dark sector. Additionally, the
presence of the right-handed neutrinos allows for a third portal to the dark sector.
We set up the theoretical framework for the DASM in terms of the masses Mh′ ,
MZ′ , and mν4 of the new Higgs boson, gauge boson, and fermion, respectively, the
respective mixing angles α, γ, and θr of the Higgs, gauge, and fermion sectors, and
the scalar self-coupling λ12. Furthermore, we define on-shell and MS renormaliza-
tion schemes for the DASM at the 1-loop level. A first phenomenological analysis
is performed using electroweak precision observables, namely the mass of the W
boson derived from muon decay, the anomalous magnetic moment of the muon
(g − 2)µ, the leptonic effective weak mixing angle, and the leptonic partial decay
width of the Z boson. For Z′-boson masses smaller than the Z-boson mass we find
a wide range of the parameter space of the DASM that provides a significantly
better agreement between measurements and the corresponding predictions for the
investigated precision observables than the SM can provide.
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1. Introduction

The field of high-energy physics (HEP) aims towards describing the fundamental
constituents of matter as well as the fundamental interactions acting between
them. To this end, roughly half a century ago the Standard Model of particle
physics (SM) was developed. The SM is a quantum field theory based on the
spontaneously broken

SU(3)C × SU(2)W × U(1)Y

gauge group. It describes the strong as well as the electroweak interactions. In
the meantime countless results of high-precision collider experiments were found
to agree precisely with their respective SM predictions, showcasing its remarkable
predictive power. Furthermore, with the discovery of a Higgs boson [1, 2] at the
Large Hadron Collider in 2012, that appears to have the properties of the Higgs
boson proposed by the SM, it seems that all particles predicted by the SM have
been found.
Despite this astonishing predictive power, there are several observations that clearly
hint that the SM cannot be the ultimate theory of Nature. For one, no renormaliz-
able quantum-field-theoretical description of the gravitational force is known today
and, thus, gravity is not included in the SM. Additionally, the SM does not offer
any explanation for the origin of neutrino masses. Furthermore, it can neither pre-
dict the matter–antimatter asymmetry observed in the visible universe, nor can it
explain the origin of dark matter (DM) or the existence of dark energy.
There are also some precision measurements that show a tension with respect to
their SM prediction. One of them is the measurement of the anomalous magnetic
moment of the muon (g−2)µ performed by the BNL and FNAL collaborations [3],
that shows a 5.1σ deviation from the SM prediction [4]. However, recent devel-
opments in the field of lattice QCD allow for an alternative determination of the
so-called hadronic vacuum polarization [5], which enters the prediction for (g−2)µ.
Making use of this new lattice QCD result leads to a reasonably good agreement
(1.7σ) between measurement and SM prediction for (g−2)µ. Thus, clarification on
the result of the SM prediction is needed in the near future. Another measurement
that shows a tension (7σ) with respect to its SM prediction [6] is the result for the
W-boson mass obtained by the CDF collaboration [7]. Moreover, the CDF mea-
surement is at variance with respect to the previous experimental world average,
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2 1. Introduction

and further clarification on the compatibility of the different results is needed (see
also Ref. [8]).
As long as no further truly elementary particles are found by experiments, one
promising option to obtain hints on the structure of possible physics beyond the
SM (BSM) is to further increase the precision of measurements and predictions,
i.e. to search for deviations between experimental results and SM predictions at an
even higher level of accuracy. In parallel, it is of uttermost importance to investi-
gate different possible BSM theories to learn more about their phenomenological
implications. To this end, within the era of modern high-precision experiments,
one has to ensure that the precision of any predictions calculated, even within
these BSM theories, matches the accuracy of the respective measurements as far
as possible.
In the pursuit of answering some of the open questions mentioned above, many in-
teresting and possibly more complete theories, like Supersymmetric models (SUSY)
or Grand Unifying Theories (GUTs), were developed. These more complete mod-
els often introduce several new parameters and predict many additional elementary
particles. Despite the huge effort that was invested in countless analyses to test
these models in the past decades, no significant evidence has been found hinting
that one of them is realized in Nature. In addition, the large complexity of these
theories makes it quite difficult to perform precision calculations within them.
This led to a shift of the focus of the HEP community towards more generic ap-
proaches, like effective field theories (EFTs) or simplified, generic extensions of
the SM. Assuming the SM to be the low-energy limit of some more complete the-
ory, EFTs, like the SM effective field theory (SMEFT) (for a detailed discussion
on SMEFT see Ref. [9]) only consider the fields corresponding to the low-energy
particle content of the full theory as dynamical degrees of freedom (d.o.f.). They
parameterize the effects of possible new physics associated with the high-energy
scale in terms of a perturbative series (in the inverse of the high-energy scale) using
effective higher-order operators. Therefore, EFTs provide an effective framework
for a widely model-independent approach to measure new-physics effects. At the
same time their effective parameterization can—depending on the exact choice of
EFT—be matched to a large amount of possible BSM theories. However, the very
generic approach of EFTs tends to introduce a large number of effective operators
with corresponding Wilson coefficients, already at lowest (non-trivial) order in the
high-energy scale. This increases the complexity of any analysis drastically. Fur-
thermore, the effective parameterization does not allow for an easy interpretation
in case any BSM effects are found. Additionally, matching any BSM theory to
the considered EFT is a non-trivial task, especially for high-precision calculations,
i.e. when higher-order corrections in the perturbative expansion in the coupling
constants are considered in the BSM predictions.
As a promising alternative to EFTs one can investigate generic extensions of the
SM. In contrast to EFTs, these SM extensions are ultraviolet (UV) complete mod-
els that focus on extending specific subsectors of the SM in rather generic ways.
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While these are not necessarily candidates for complete theories of Nature, they
comprise generic building blocks for more complete models. Due to their reduced
complexity and the moderate amount of newly introduced free parameters, they
build a perfect basis to investigate and further understand the influence of such
generic extensions on high-precision predictions. Therefore, they can contribute a
crucial part to the search for new physics. One interesting class of these extensions
investigates the exact structure of electroweak (EW) symmetry breaking. Probing
the mechanism that is responsible for the mass generation of the particles at high
precision is especially important since most of the more complete BSM theories
(like SUSY or GUT models) predict some deviations compared to the SM case
by introducing additional Higgs fields to the scalar sector. Some of the histori-
cally most prominent examples for generic Higgs-sector extensions are, e.g., the
Singlet Extension of the SM (SESM) [10–13] or the Two Higgs Doublet Model
(THDM) [14, 15]. These are known for several decades and numerous precision
analyses (see e.g. Refs. [16, 17]) managed to set limits on the viable parameter
space of these models. However, many of these generic Higgs-sector extensions
(including the SESM and the THDM) are still viable.
A second class of generic SM extensions introduces an additional U(1) gauge group
or even more complex gauge symmetries [18–21] to the SM gauge structure. These
models recently gained popularity since they might be able to loosen the tension
observed in (g − 2)µ. In the literature, many different ideas have been proposed
on how to introduce such gauge-sector extensions to the SM without introducing
any anomalies to the theory. These models can potentially solve some of the open
questions like the origin of DM. For one, the global B − L (baryon number minus
lepton number) symmetry of the SM can be promoted to a, possibly spontaneously
broken, gauge symmetry U(1)B−L. Consequently a (massive) neutral Z′

B−L gauge
boson that couples to the B−L charge (see e.g. Refs. [22–24]) is added to the the-
ory opening a portal to possible new physics carrying this charge. A possibly even
more prominent class of generic U(1) extensions are the so-called “dark photon”
or Z′ extensions. They introduce a dark sector with a non-trivial gauge structure
of at least a, possibly broken, U(1)d to the SM, without specifying the full matter
content of this dark sector in detail [13, 25–34]. The presence of this additional
abelian gauge group allows for kinetic mixing between the U(1)Y of the SM and
the U(1)d introduced via their gauge-invariant field-strength tensors, as well as
mass mixing for their respective gauge fields. This opens up a portal from the SM
to the dark sector via the resulting massive neutral Z′ gauge boson. A third class
of generic SM extensions introduces generic building blocks to the neutrino sector
of the SM. These types of extensions seem to provide promising DM candidates
and propose several possible solutions for the mass generation of the SM neutrinos
(see Refs. [35,36] and references therein).

In this thesis, we formulate a model henceforth called the Dark Abelian Sector
Model (DASM). The DASM is a quite generic extension of the SM that introduces
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a dark sector to the theory. This dark sector resembles a large class of dark sec-
tors with similar features that can be found in more fundamental models. It is
assumed to be a singlet with respect to the SM gauge group, but features an ad-
ditional “dark” U(1)d gauge group. Thus, the gauge group of the DASM is given
by

SU(3)C × SU(2)W × U(1)Y × U(1)d.

This opens up the possibility of kinetic mixing between the SM U(1)Y and the
new U(1)d (see e.g. Refs. [13, 26, 27] for similar models featuring kinetic mixing).
Furthermore, a second complex Higgs field ρ is introduced in the dark sector, i.e. it
is a singlet with respect to the SM but carries charge of the dark gauge group.
This Higgs field ρ develops a non-vanishing vacuum expectation value (vev) which
spontaneously breaks the U(1)d. Ultimately this leads to an additional massive
neutral gauge boson as well as an additional neutral Higgs boson. The fermion
sector of the DASM introduces right-handed, uncharged, partners to the SM neu-
trinos as well as a Dirac fermion that carries charge of the U(1)d.
Note that, keeping the charges of the SM fields unchanged, there are only two
operators of the SM that are gauge-invariant and renormalizable by themselves.
These are the Higgs mass operator Φ†Φ and the field-strength tensors of the U(1)Y
gauge field. The Higgs- and gauge-sector extensions introduced by the DASM uti-
lize both of them to employ possible portals to an abelian dark sector that is a
singlet with respect to the SM gauge group. Further, the extension of the fermion
sector by right-handed SM-like neutrinos as well as the additional fermion allows
us to open up a third portal from the SM to the dark sector via Yukawa interac-
tions. The existence of the additional gauge boson can have a significant impact
on EW precision observables (POs) and potentially loosen the tension between the
measurements and theory predictions for (g − 2)µ or even for the CDF measure-
ment of the W-boson mass. Furthermore, the fermion sector of the DASM can
accommodate neutrino masses, and some regions of the DASM parameter space
allow for potential DM candidates. In recent times, models similar to the DASM
that combine extensions of several subsectors in a generic way became more and
more interesting and first analyses investigating their phenomenological implica-
tions were performed, e.g. by the authors of Ref. [37] on the Hidden Abelian Higgs
Model, which is a model that features extensions of the Higgs and gauge sector
that are similar to the ones of the DASM.
In this work, we set up the theoretical framework for the DASM and propose
a set of intuitive and experimentally easily accessible input parameters that are
well suited for phenomenological analyses at colliders. Further, being interested in
next-to-leading order (NLO) BSM corrections, we give the complete NLO renor-
malization procedure for the DASM. To this end, we develop an on-shell (OS)
renormalization scheme that is based on measurable quantities as far as possible,
providing a well-suited setup to study Higgs and EW POs. Alternatively, we give
the results for MS renormalization conditions for the additional mixing angles in-
troduced by the DASM. To the best of our knowledge, the discussion of suitable
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renormalization schemes for gauge-boson mixing angles originating from kinetic
mixing was not present in the literature beforehand. Thus, Ref. [38] (which an-
ticipated some results of this thesis) might serve as a rather general proposal for
the definition of OS renormalization conditions for such mixing angles. Having the
renormalization set up, we derive predictions for four POs, namely the W-boson
massMW derived from muon decay, the anomalous magnetic moment of the muon
(g − 2)µ, the effective weak mixing angle s2w,eff,l, and the leptonic partial decay
width of the Z boson, ΓZ→ll, at the 1-loop level in the BSM effects. Further, we
combine these predictions in a global fit of the BSM d.o.f., to investigate the pre-
dictive power of the DASM and to get a first idea whether the DASM remains a
promising candidate in the search for BSM physics.

This thesis is structured as follows:

• In Chapter 2 a brief overview of the SM is given. We conclude the summary
of the SM with a brief discussion of its shortcomings that highlight the need
for BSM physics.

• A detailed description of the theoretical setup of the DASM is given in Chap-
ter 3. Further, we define a simplified version of the full fermion-sector ex-
tension that is well suited for our following analysis of collider phenomenol-
ogy and (g − 2)µ, and greatly reduces the amount of newly introduced free
parameters. Finally, we define a set of intuitive and experimentally easily
accessible input parameters for the DASM. To this end, we trade the original
parameters of the theory in favour of the masses of the new particles and
mixing angles which are directly connected to the coupling strengths of the
respective particles.

• Chapter 4 gives a detailed description of the NLO renormalization of the
DASM. In total, we give the results for the NLO renormalization constants
in two different schemes, one being an on-shell scheme and a second one
employing MS renormalization conditions for the newly introduced mixing
angles.

• In the first half of Chapter 5, we define different electroweak input schemes
used in the following calculations. Further, we give a detailed discussion
of the derivations and results for the POs MW, (g − 2)µ, s

2
w,eff,l, and ΓZ→ll

investigated in the following phenomenological analysis. In the second half
of the chapter, a global fit of the BSM parameters is performed using the
predictions for these POs. This includes a detailed discussion of the fit setup
and the fit results.

• In the final Chapter 6, we give a summary and our conclusions, as well as
an outlook.
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• The appendices contain explicit expressions of interesting quantum-field-
theoretical quantities. In particular, we give the Feynman rules for the
DASM in Appendix F.



2. The Standard Model

The SM is the current theory of particle physics. It is a relativistic quantum field
theory based on the gauge group

SU(3)C × SU(2)W × U(1)Y. (2.1)

The SM describes three of the four known fundamental interactions, namely the
strong, the weak, and the electromagnetic forces, as well as the elementary particles
that make up the fundamental constituents of matter. For the fourth fundamental
interaction, the gravitational force, no fully consistent quantum-field-theoretical
description is known. Thus, it cannot be included in the SM in a straightforward
manner. However, the small value of its coupling strength makes the impact of the
gravitational force on HEP measurements negligible compared to the remaining
three fundamental interactions. Therefore, the SM is suitable to describe physics
at energy scales of modern HEP experiments within the required bounds of accu-
racy.
In the SM, the strong interactions are governed by the theory of quantum chro-
modynamics (QCD) [39–41] described by the SU(3)C part of the gauge group.
The remaining SU(2)W × U(1)Y part of the SM gauge group describes the weak
and electromagnetic forces via the Glashow-Salam-Weinberg (GSW) model [42–45]
and combines them into the so-called electroweak (EW) interactions. In the GSW
model, the Higgs–Kibble mechanism [46–50] is introduced to the SM, sponta-
neously breaking the SU(2)W × U(1)Y gauge group in order to consistently de-
scribe a gauge theory with massive force carriers. The spontaneous breaking of
the SM gauge group is done such that only a U(1)em part of the EW gauge group,
describing quantum electrodynamics (QED), is left unbroken.
The so-called matter fields of the SM are spin J = 1

2
fermions. The force carriers

are vector bosons with spin J = 1, and the Higgs boson, whose existence is a
consequence of the Higgs–Kibble mechanism, is the only scalar (J = 0) boson of
the SM. The force carriers of the strong interactions are the eight massless gluons.
The EW force is mediated by two massive, charged bosons W±, the massive, neu-
tral Z boson, and the massless photon.
The fermions described by the SM can further be classified into charged leptons li,
neutrinos νi, up-type quarks ui, and down-type quarks di. There are three gen-

7



8 2. The Standard Model

erations, i.e. i = 1, 2, 3, of each of these fermion types. The charged leptons and
neutrinos only carry charge of the EW gauge group and can appear as (asymp-
totically) free particles in Nature1. Up-type and down-type quarks additionally
carry colour charge of the SU(3)C. They are subject to confinement and will only
appear in bound states, the so-called hadrons, in Nature.
In the following, we discuss the SM in detail. It is convenient to split the La-
grangian of the SM

LSM = LSM
EW + LSM

QCD (2.2)

into its EW part LSM
EW and its QCD part2 LSM

QCD. Throughout this chapter, we follow
Refs. [51–54] and adopt the conventions of Ref. [54] for quantum-field-theoretical
quantities.

2.1. The Electroweak Lagrangian

The gauge structure of the EW part of the SM (EWSM) is given by the non-abelian
gauge group SU(2)W ×U(1)Y. The SU(2)W part describes the weak isospin. The
generators of the weak isospin in the fundamental representation are given by
IjW =

σj

2
, with the three Pauli matrices σj, j = 1, 2, 3. The abelian U(1)Y part

of the gauge group describes the so-called weak hypercharge with corresponding
quantum number YW. Thus, describing the EW interactions, the EWSM intro-
duces the four EW gauge bosons W±, Z, and the photon. While the latter one
is massless, the W± and Z bosons are known to be massive. However, naively
adding mass terms to the Lagrangian would break local gauge invariance, which is
the fundamental guiding principle of the SM for the introduction of interactions.
To solve this contradiction the Higgs mechanism is applied to the SM. It adds a
scalar SU(2)W doublet to the theory. This doublet carries weak hypercharge and
develops a non-vanishing vev that breaks the SU(2)W×U(1)Y spontaneously, leav-
ing only the U(1)em which describes the electromagnetic interactions, unbroken.
In this way, mass terms for the three massive EW gauge bosons are introduced
in the EWSM without any violation of gauge invariance in the underlying La-
grangian (see Sect. 2.1.2 for details). The left-chiral up- and down-type quarks as
well as the left-chiral charged leptons and neutrinos are combined into doublets of
the weak isospin for each generation. In contrast, their right-chiral counterparts
are singlets under the SU(2)W gauge group. Consequently, adding simple mass
terms for the corresponding fermion fields would break gauge invariance. Again,
the Higgs mechanism is used to introduce mass terms for the respective fields via
so-called Yukawa interactions. For a detailed discussion of these various parts we

1We give a detailed description of the exact quantum numbers of the different fermions in
Sect. 2.1.3.

2We include the kinetic and mass terms for the quarks in LSM
EW.
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split up the Lagrangian of the EWSM according to

LSM
EW = LSM

YM + LSM
Higgs + LSM

Fermion + LSM
Yukawa (2.3)

and discuss them separately in detail in the following.

2.1.1. Gauge sector

The gauge sector of the EWSM introduces the kinetic terms for the gauge fields
W i

µ, i = 1, 2, 3, and Bµ of the SU(2)W and U(1)Y gauge groups, respectively, to the
SM Lagrangian in a gauge-invariant way. The corresponding part of the EWSM
Lagrangian reads

LSM
YM = −1

4
W i,µνW i

µν −
1

4
BµνBµν , (2.4)

with the field-strength tensors

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ϵ

iklW k
µW

l
ν , Bµν = ∂µBν − ∂νBµ, (2.5)

where g2 and ϵikl, i, k, l = 1, 2, 3, are the coupling constant and the totally anti-
symmetric structure constants of the SU(2)W, respectively.
Guided by the principle of local gauge invariance, the gauge fields Bµ and W i

µ can
be used to construct the covariant derivative

Dµ = ∂µ + ig1
YW
2
Bµ − ig2I

j
WW

j,µ, (2.6)

which rules the EW gauge interactions of the fermions and the Higgs doublet. Here
g1 is the coupling constant corresponding to the U(1)Y. The gauge transformations
of the gauge fields are given by

δW i
µ = ∂µδθ

i + g2f
iklW k

µ δθ
l, δBµ = ∂µδθ

Y, (2.7)

where θl and θY are the gauge-group parameters of the SU(2)W and U(1)Y, respec-
tively. Combining Eqs. (2.5) and (2.7) immediately yields the gauge invariance of
the U(1)Y field-strength tensor

δBµν = 0. (2.8)

Note that Eq. (2.8) is true for the respective field-strength tensors of any abelian
gauge group3. Due to the presence of the non-vanishing structure constants, re-
flecting the non-commutativity of the respective generators of the underlying Lie
algebra, field-strength tensors of non-abelian gauge groups are not gauge invari-
ant by themselves. Thus, in the non-abelian case the contraction of two field-
strength tensors with identical transformation properties is needed to obey the
gauge-invariance requirement.

3This will open up the possibility for so-called kinetic mixing in the DASM introduced in
Chapter 3.
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2.1.2. Higgs sector

The Higgs mechanism is used to introduce mass terms for the SM particles while
keeping the Lagrangian gauge invariant. To this end, it adds a complex, scalar
SU(2)W doublet

Φ =

(
ϕ+

ϕ0

)
(2.9)

to the theory. This doublet carries weak hypercharge Y Φ
W = 1. With the help of

the covariant derivative defined in Eq. (2.6) the Higgs part of the SM Lagrangian
can be written as

LSM
Higgs = (DµΦ)

† (DµΦ)− V SM(Φ). (2.10)

The first term contains the kinetic terms of the Higgs doublet as well as its gauge
interactions. The most general, gauge-invariant, renormalizable Higgs potential is
given by

V SM(Φ) =− µ2
2Φ

†Φ +
λ2
4
(Φ†Φ)2. (2.11)

The choice λ2, µ
2
2 > 0 ensures that the potential is bounded from below and has

a non-vanishing vev. Choosing a ground state that minimizes the Higgs potential
Eq. (2.11),

Φ0 =

(
0
v√
2

)
, v ≡ 2

√
µ2
2

λ2
, (2.12)

where we introduced the vev parameter v, spontaneously breaks both the weak
isospin and the weak hypercharge, i.e.

IjWΦ0 ̸= 0, YWΦ0 ̸= 0. (2.13)

The remaining combination

QΦ0 ≡
(
σ3
2

+
YW
2

)
Φ0 = 0, (2.14)

that annihilates this ground state, defines the electric charge operator correspond-
ing to the unbroken U(1)em gauge group of electromagnetism.
For the following discussion it is useful to rewrite the Higgs doublet given in
Eq. (2.9) in terms of component fields

Φ =

(
ϕ+

1√
2
(v + h+ iχ)

)
, (2.15)
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which yield an expansion around the ground state Eq. (2.12). Here h corresponds
to the neutral CP-even physical Higgs boson, χ represents a neutral CP-odd would-
be Goldstone boson, and ϕ+ and ϕ− = (ϕ+)† describe the charged would-be Gold-
stone bosons.
While the three would-be Goldstone fields represent unphysical degrees of freedom,
the Higgs field h introduces a physical Higgs boson with mass

Mh =
√
2µ2

2 (2.16)

to the particle content of the SM. Combining Eqs. (2.10) and (2.15) yields the
mass terms of the gauge bosons

LSM
V,mass =

1

4

v2

2
[g22W

1
µW

1,µ + g22W
2
µW

2,µ + (g2W
3
µ + g1Bµ)(g2W

3,µ + g1B
µ)].

(2.17)

The fields that correspond to mass and charge eigenstates are obtained by appro-
priate rotations,

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
,

(
Bµ

W 3
µ

)
=

(
cw sw
−sw cw

)(
Aµ

Zµ

)
, (2.18)

where the so-called weak mixing angle θw is given by

cw ≡ cos θw =
g2√
g21 + g22

, sw ≡ sin θw. (2.19)

Finally, one ends up with a massless photon A as well as three massive physical
gauge bosons Z and W±, with masses

MA = 0, MZ =
v

2

√
g21 + g22, MW =

g2v

2
, (2.20)

respectively. Further, identifying the coupling constant of the photon to charged
particles to be the electric unit charge e one finds the relation

e =
g1g2√
g21 + g22

, (2.21)

between the coupling constants of the SU(2)W, U(1)Y, and the U(1)em. Finally,
combining Eqs. (2.19) and (2.20) one finds the relation

cw =
MW

MZ

, (2.22)

between the weak mixing angle and the gauge-boson masses in the SM.
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2.1.2.1. Gauge-fixing and Ghost parts

Here we briefly discuss the gauge-fixing and ghost parts that have to be added
when using the Faddeev–Popov method (FPM) to quantize the EWSM. A more
detailed discussion on the FPM (within the DASM) is given in Sects. 3.2.2 and
3.2.3.
For the quantization of the EWSM a gauge has to be chosen to eliminate gauge-
equivalent field configurations under the path integral. The most common choice
is the so-called ’t Hooft–Feynman gauge which is introduced by adding the gauge-
fixing Lagrangian

LSM
EW,fix = −1

2

(
FA
)2 − 1

2

(
FZ
)2 − F+F−, (2.23)

with the gauge-fixing functionals

FA = ∂µAµ, FZ = ∂µZµ −MZχ, F± = ∂µW± ∓ iMWϕ
±, (2.24)

to the EWSM. This choice leads to a cancelation between terms introduced by
LSM

Higgs that result in non-diagonal propagators in the gauge-boson–would-be Gold-
stone boson system and respective terms introduced by LSM

EW,fix. Furthermore, in
’t Hooft–Feynman gauge the masses of the would-be Goldstone bosons coincide
with the masses of their associated gauge bosons, Mχ =MZ, Mϕ± =MW.
To ensure the consistency of the gauge-fixing procedure under the functional inte-
gral the corresponding ghost part

LSM
EW,FP = −

∫
d4y ūa(x)

(
δF a(x)

δθb(y)

)
ub(y), (2.25)

with the ghost fields ua and ūa, a = A,Z,±, has to be added to the Lagrangian of
the EWSM. Note that these Grassman-valued scalar ghost fields do not correspond
to physical particles and, thus, will never represent external particle states in
matrix elements.

2.1.3. Fermion sector

The matter content of the SM can be split up into up-type (u′i) and down-type (d′i)
quarks, charged leptons (l′i) , and neutrinos (ν ′i). Each of these classes consists of
three fermions (i = 1, 2, 3) with identical internal quantum numbers but different
masses. Note that in our notation primed fermion fields correspond to flavour
eigenstates, while the respective fields without a prime correspond to mass eigen-
states. Left-chiral up-type and down-type quarks as well as the left-chiral charged
leptons and neutrinos are paired into the SU(2)W doublets, L′L and Q′L, respec-
tively. In contrast, their right-chiral counterparts are singlets with respect to the
SU(2)W gauge group,

L′L
i = ωLL

′
i =

(
ν ′Li
l′Li

)
, Q′L

i = ωLQ
′
i =

(
u′Li
d′Li

)
, l′Ri = ωRl

′
i,
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Quarks Fermions

type YW I3W Q type YW I3W Q

uLi +1/3 +1/2 +2/3 νLi −1 +1/2 0

dLi +1/3 −1/2 −1/3 lLi −1 −1/2 −1

uRi +4/3 0 +2/3 lRi −2 0 −1

dRi −2/3 0 −1/3

Table 2.1.: The EW quantum numbers carried by up-type quarks (ui), down-type
quarks (di), charged leptons (li), and neutrinos (νi), i = 1, 2, 3.

u′Ri = ωRu
′
i, d′Ri = ωRd

′
i, (2.26)

where ωL/R = 1
2
(1∓γ5) denote the chiral projection operators. Due to the maximal

parity violation of the weak isospin, right-chiral neutrinos are singlets with respect
to the SM gauge group. Further, neutrinos are assumed to be massless within
the SM. Therefore, right-chiral neutrinos completely decouple from the rest of the
theory and consequently are not present within the SM. In Tab. 2.1 we list the
fermions of the SM with their respective SU(2)W × U(1)Y quantum numbers and
electric charges. The kinetic terms and EW gauge interactions for the fermions
read

LSM
Fermion =

∑
j

(
iL̄′L

j
/DL′L

j + iQ̄′L
j
/DQ′L

j + il̄′Rj /Dl′Rj + iū′Rj /Du′Rj + id̄′Rj /Dd′Rj
)
, (2.27)

where we made use of the “slashed notation” /D = γµDµ, with the gamma matrices
γµ and the covariant derivative given by Eq. (2.6).
In the EWSM, the Higgs doublet is used to introduce mass terms for the fermion
fields in a gauge-invariant way. The respective Yukawa part of the Lagrangian
reads

LSM
Yukawa = −

∑
i,j

(L̄′L
i G

l
ijl

′R
j Φ + Q̄′L

i G
u
iju

′R
j Φ̃ + Q̄′L

i G
d
ijd

′R
j Φ + h.c.). (2.28)

Here i, j runs over the three fermion generations, Gl
ij, G

u
ij, and G

d
ij are the Yukawa

coupling-constant matrices, and the charge-conjugated Higgs doublet is given by
Φ̃ ≡ ((ϕ0)∗,−ϕ−)T. To obtain the mass eigenbasis, the matrices Gl

ij, G
u
ij, and G

d
ij

have to be diagonalized. This is achieved by an appropriate bi-unitary transfor-
mation of the form

fL
i = U f,L

ij f ′L
j , fR

i = U f,R
ij f ′R

j , f = l, u, d. (2.29)

The resulting masses for the fermions are given by

mf,i =
v√
2
U f,L
ij Gf

jk

(
U f,R
ki

)†
. (2.30)
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While the unitary matrices U
f,L/R
ij systematically cancel in the fermion–neutral-

gauge-boson interactions, Eq. (2.29) introduces the Cabibbo–Kobayashi–Maskawa
(CKM) [55,56] matrix

VCKM = Uu,L
ij

(
Ud,L
ij

)†
, (2.31)

in the quark–W-boson and quark–ϕ±-boson interactions. This non-diagonal uni-
tary matrix can be parameterized by three angles and a complex phase. The CKM
matrix allows for flavour-changing charged currents in the quark sector and pro-
vides the only source of CP violation within the EWSM. The absence of a neutrino
mass matrix in Eq. (2.28) allows to choose the fields corresponding to the physical
neutrinos according to

νLi = U l,L
ij ν

′L
j . (2.32)

This choice results in a diagonal matrix in the lepton–W-boson and lepton–ϕ±-
boson interactions, showcasing that no flavour-changing charged currents are present
in the leptonic sector. This, however, is only true if the SM-like neutrinos are as-
sumed to be massless (or if all neutrinos have the same mass) whereas the so-called
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) [57, 58] matrix has to be taken into
account otherwise.

2.2. The QCD Lagrangian

To complete our description of the SM, we briefly discuss the main features of
QCD. The theory of QCD is based on the SU(3)C part of the SM gauge group and
governs the strong interactions. In the SM the SU(3)C part of the gauge group
fully factorises from the EW part described in the previous section.
The mediators of the strong force are the massless gluons. In total, there are
eight gluons, associated with the eight generators T a, a = 1, ..., 8, of SU(3)C. The
charge associated with the SU(3)C is called colour charge. There are three colours:
red, green, and blue. In the SM only quarks and gluons carry colour charge,
i.e. are affected by the strong interactions. The quarks transform as triplets4

under SU(3)C and, therefore, carry an additional colour index c

ψq,c =

 ψq,red

ψq,green

ψq,blue

 . (2.33)

To account for the three colours in the quark parts of Eqs. (2.27) and (2.28) an
implicit sum over the colours is assumed. The gluon fields themselves transform
according to the adjoint (octet) representation of SU(3)C. The respective part of

4Antiquarks carry the respective anti-colours: anti-red, anti-green, and anti-blue.
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the Lagrangian, describing the kinetic terms for the gluons as well as the strong
gauge interactions of the quarks, reads

LSM
QCD = −1

4
Ga

µνG
a,µν + igs

∑
qi

q̄i /G
a
T aqi, (2.34)

where T a = λa

2
, a = 1, . . . , 8, with the Gell-Mann matrices λa, are the eight

generators in the fundamental representation of SU(3)C, G
a
µ are the gluon fields,

gs is the coupling constant corresponding to the strong interactions, and the sum
runs over all up- and down-type quarks qi = ui, di, i = 1, 2, 3. The field-strength
tensors of the gluons are given by

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , a, b, c = 1, . . . , 8, (2.35)

with the structure constants fabc of SU(3)C.
The gauge-fixing procedure for QCD is done similarly to the one of the EW sector.
Using ’t Hooft–Feynman gauge, we add the respective gauge-fixing part

LQCD,fix = −1

2

(
FGa

)2
, FGa = ∂µGa

µ, (2.36)

and the corresponding ghost part

LQCD,FP(x) = −
∫

d4y ūa(x)

(
δF a(x)

δθb(y)

)
ub(y), a, b = G1, . . . , G8, (2.37)

with the SU(3)C group parameters θb, to LSM
QCD to complete the construction of

the SM Lagrangian.

2.3. Physics Beyond the SM

Countless predictions of the SM show an impressive agreement with their respective
high-precision collider measurements. Moreover, all particles postulated by the SM
are found and their predicted properties agree precisely with the corresponding
experimental results, further highlighting the outstanding predictive power of the
SM. Nevertheless, there are several open questions that cannot be addressed by
the SM in its current form. Some of the most pressing ones are:

• In the SM neutrinos are assumed to be massless. This is, however, in con-
tradiction to the observed neutrino oscillations [59, 60]. These oscillations
are sensitive to the squared mass differences between the three neutrino gen-
erations, implying that at least two of the three neutrinos must be mas-
sive. There are several ongoing studies aiming to determine the masses
of the neutrinos through β-decay [61] or via cosmological observations (see
e.g. Refs. [24,62] and references therein). However, to the present day, these
analyses are only capable of setting upper limits on the neutrino masses or
the sum of the masses of the three generations, respectively.
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• There are several observations, e.g. measurements of rotation curves of galax-
ies [63] that hint towards the existence of so-called “dark matter” (DM).
Modern experiments suggest that DM makes up 27% [62] of the energy den-
sity of the universe. Yet, observations suggest that DM cannot be made up of
SM particles (as required e.g. by Big Bang nucleosynthesis, see e.g. Ref. [64]
and references therein). If DM is assumed to be of particle nature its con-
stituents have to be electrically neutral; stable on cosmological scales; “cold”,
i.e. non-relativistic during the epoch of structure formation (for more details
see e.g. Ref. [65]); and have a small self-interaction cross section (also referred
to as “collisionless” in the literature) [66].

• The SM offers no explanation for the matter–antimatter asymmetry observed
in the visible universe. If we assume that the universe started in a symmetric
phase (with equal amounts of matter and antimatter), the baryon asymmetry
must have been generated dynamically in the early universe. Such a process
is called baryogenesis. For baryogenesis to happen three necessary conditions
have to be fulfilled [67]: there have to be baryon-number violating processes,
there have to be C- and CP-violating processes, and finally, there has to be
some non-equilibrium present in the process of baryogenesis. In the SM all of
these effects are possible: there are (non-perturbative) baryon-number vio-
lating processes present at high temperatures, C- and CP-violation is present
within the EW part of the SM, and the out-of-equilibrium condition is pro-
vided by the EW phase transition. With this setting a baryon asymmetry
could have been generated in the SM via the so-called EW baryogenesis.
Nonetheless, it has been shown that the magnitude of CP violation present
in the EWSM is not sufficient to account for the observed matter–antimatter
asymmetry in the visible universe and that the second-order phase transi-
tion present in the SM does not allow for the creation of a sizable baryon
asymmetry within the setting of the EW baryogenesis.

• Within the SM there is no explanation for the origin of “dark energy”, which
drives the accelerated expansion of the present universe. Modern experi-
ments performed, e.g. by the Planck Collaboration [62], suggest that dark
energy makes up 68% of the total energy density of the universe. A possi-
ble contribution to this energy density could originate from the cosmological
constant describing a respective energy density that is constant within space-
time. However, some estimates of the SM vacuum energy, i.e. its possible
contributions to the cosmological constant, yield an energy density that is 120
orders of magnitude larger than the measured energy density (see Ref. [68]
and references therein).

• Due to the lack of a quantum-field-theoretical description of the gravitational
force, gravity is not included in the SM.

These unresolved issues clearly demonstrate that the SM cannot be the ultimate
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theory describing Nature, but should rather be seen as an effective model of some
more fundamental theory. In addition to the previously mentioned problems, one
might include the long-standing tension between the high-precision SM prediction
and the measurement of the anomalous magnetic moment of the muon:

• The SM prediction for the anomalous magnetic moment of the muon, (g−2)µ,
shows a 5.1σ deviation from its measured value [3]. However, recent devel-
opments in the field of lattice QCD (see e.g. Ref. [5]) raised questions on the

correct determination of the so-called hadronic vacuum polarization ∆α
(5)
had

which enters the theoretical prediction for (g− 2)µ. Using the lattice results

for ∆α
(5)
had to predict (g− 2)µ leads to reasonably good agreement (1.7σ) be-

tween its SM prediction and the measured value. Thus, clarification on the
correct theoretical treatment is needed. However, if the tension between pre-
diction and measurement remains, BSM physics might yield an explanation
for the observed discrepancy.





3.The Dark Abelian Sector Model

In the following, we define the Dark Abelian Sector Model (DASM) and discuss in
detail all its additional features with respect to the SM. Further, in Sect. 3.6, we
give a particularly intuitive set of input parameters, which is used in the renormal-
ization of the model described in Chapter 4 and the phenomenological investigation
of the DASM discussed in Chapter 5. Finally, the resulting Feynman rules for the
DASM are listed in Appendix F. Note that the results presented in Chapters 3
and 4 have already been published in Ref. [38].

The DASM adds an additional U(1)d gauge symmetry, with corresponding gauge
field Cµ, of a possible hidden sector to the SM gauge group. Thus, its underlying
gauge group is given by

SU(3)C × SU(2)W × U(1)Y × U(1)d. (3.1)

The SM is a singlet with respect to the new U(1)d. Further, a Higgs field ρ and a
Dirac fermion f ′

d, which are both singlets with respect to the SM, but carry charge
of the U(1)d, are introduced in the DASM. Finally, the DASM introduces right-
handed SM-like neutrino fields ν ′Rj , j = e, µ, τ , which are singlets with respect to
the gauge group of the DASM. This leads to various additional terms that have
to be added to the SM Lagrangian discussed in the previous chapter. As already
stated in Chapter 2, we adopt the notation and conventions from Ref. [54] for all
field-theoretical quantities.
It is convenient to split up the full Lagrangian of the DASM in a similar way as it
was done for the SM case

LDASM = LYM + LFermion + LHiggs + LQCD. (3.2)

Below we discuss the non-SM contributions to the individual parts of LDASM in
detail. Note that the QCD part of the DASM LQCD is equivalent to its SM
counterpart and, therefore, its description given in Section 2.2 accounts for the
QCD part of the DASM as well.

19
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3.1. Higgs sector

The presence of an additional complex Higgs field ρ leads to modifications of the
scalar sector compared to its SM counterpart. The respective Higgs part of the
DASM Lagrangian reads

LHiggs = (DµΦ)
† (DµΦ) + (Dd,µρ)

† (Dµ
dρ)− V (Φ, ρ). (3.3)

Since the SM-like Higgs doublet is not charged under the additional U(1)d gauge
symmetry, its covariant derivative is equivalent to the one in the SM given in
Eq. (2.6). For the Higgs field ρ the covariant derivative is given by

Dµ
d = ∂µ + iq̃edC

µ, q̃ρ = q̃ρρ, q̃ρ = 1, (3.4)

where we introduced the charge operator q̃ and the coupling constant ed of the
U(1)d. Note that the choice q̃ρ = 1 will, without loss of generality, only provide a
normalization of the coupling constant ed.
To obtain the most general renormalizable (mass dimension ≤ 4) and gauge-
invariant scalar potential V (Φ, ρ) we have to add three additional terms to the
SM Higgs potential (see Eq. (2.11)),

V (Φ, ρ) = − µ2
2Φ

†Φ− 2µ2
1ρ

†ρ+
λ2
4
(Φ†Φ)2 + 4λ1(ρ

†ρ)2 + 2λ12Φ
†Φρ†ρ

= V SM(Φ)− 2µ2
1ρ

†ρ+ 4λ1(ρ
†ρ)2 + 2λ12Φ

†Φρ†ρ, (3.5)

which introduces the three additional real free parameters1 µ2
1, λ1, and λ12. The

last term of Eq. (3.5) is of particular interest since it opens a portal from the SM
to the hidden sector of the DASM by allowing for mixing between the SM-like
Higgs doublet Φ and the Higgs field ρ. The strength of this mixing is ruled by the
free parameter λ12. The Higgs fields Φ and ρ can be parameterized as

Φ =

(
ϕ+

1√
2
(h2 + v2 + iχ2)

)
, ρ =

1√
2
(h1 + v1 + iχ1), (3.6)

with the CP-even Higgs fields h2, h1, the neutral CP-odd would-be Goldstone-
boson fields χ2, χ1, and the charged would-be Goldstone-boson field ϕ+. The
real and positive constants v2 and v1 quantify the non-vanishing vevs of Φ and ρ,
respectively. To ensure the stability of the vacuum the parameters of the Higgs
potential have to fulfill the conditions

λ1 > 0, λ2 > 0, λ1λ2 − λ212 > 0. (3.7)

Combining Eqs. (3.5) and (3.6) leads to

V =− t1h1 − t2h2

1We choose their normalization such that it matches previous studies of Higgs singlet extensions
(see, e.g., Refs. [69]).
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+
1

2
(h2, h1)M

2
Higgs

(
h2
h1

)
+

1

2
(χ1, χ2)M

2
χ

(
χ1

χ2

)
+M2

ϕ+ϕ−ϕ−ϕ+

+ interaction terms. (3.8)

The first line of Eq. (3.8) contains the tadpole terms, t1h1 and t2h2, with the
tadpole constants given by

t1 = −v1
(
4v21λ1 + v22λ12 − 2µ2

1

)
, t2 = −v2

(
v22
4
λ2 + v21λ12 − µ2

2

)
. (3.9)

The mass terms of the component fields are given in the second line of Eq. (3.8),
with their corresponding mass matrices

M2
Higgs =

(
v22
2
λ2 − t2

v2
2v1v2λ12

2v1v2λ12 8v21λ1 − t1
v1

)
, M2

χ =

(
− t1

v1
0

0 − t2
v2

)
, (3.10)

and the masses of the charged would-be Goldstone-boson fields are given by

M2
ϕ+ϕ− = − t2

v2
. (3.11)

The last line of Eq. (3.8) summarizes all scalar self-interaction terms, i.e., all terms
containing three or four scalar fields. Similar to the SM, the tadpole constants t1
and t2 are set to zero at leading order. This ensures at LO that the Higgs potential
acquires its minimum at the vevs, i.e. for hi = χi = ϕ+ = 0 with i = 1, 2. Since
they play a special role in the renormalization procedure, we keep them explicit in
the following.
In order to obtain the field basis corresponding to physical particles we have to
rotate the Higgs fields h1, h2 into the fields h, H, which correspond to the desired
mass eigenstates. Therefore, we diagonalize the respective mass matrix M2

Higgs

with the following rotation by an angle α,(
h
H

)
=

(
cosα − sinα
sinα cosα

)(
h2
h1

)
. (3.12)

Expressing the potential given in Eq. (3.8) in terms of h and H reads

V =− thh− tHH

+
1

2
(h,H)

(
M2

h M2
hH

M2
hH M2

H

)(
h
H

)
+

1

2
(χ1, χ2)M

2
χ

(
χ1

χ2

)
+M2

ϕ+ϕ−ϕ−ϕ+

+ interaction terms, (3.13)

with the rotated tadpole constants

th = cαt2 − sαt1, tH = sαt2 + cαt1. (3.14)
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Here we introduced the shorthands cα = cosα and sα = sinα, which will be
used throughout this thesis to keep expressions compact. In this field basis, the
coefficients of the Higgs-boson mass matrix are given by

M2
h = c2α

v22
2
λ2 − c2α

t2
v2

+ 8s2αv
2
1λ1 − s2α

t1
v1

− 4sαcαv1v2λ12, (3.15)

M2
H = s2α

v22
2
λ2 − s2α

t2
v2

+ 8c2αv
2
1λ1 − c2α

t1
v1

+ 4sαcαv1v2λ12, (3.16)

M2
hH =M2

Hh = sαcα

(
v22
2
λ2 −

t2
v2

− 8v21λ1 −
t1
v1

)
+ 2(c2α − s2α)v1v2λ12. (3.17)

The diagonalization condition fixing the rotation angle α thus reads

M2
hH = sαcα

(
v22
2
λ2 −

t2
v2

− 8v21λ1 −
t1
v1

)
+ 2(c2α − s2α)v1v2λ12

!
= 0, (3.18)

and for t1 = t2 = 0 one finds

t2α =
8v1v2λ12

16v21λ1 − v22λ2
. (3.19)

Without loss of generality we enforce the mass hierarchy Mh < MH by allowing
for α ∈ (−π

2
, π
2
] and simultaneously demanding s2αλ12 ≥ 0. This fixes α to

s2α =
8v1v2λ12√

(8v1v2λ12)2 + (16v21λ1 − v22λ2)
2
, (3.20)

c2α =
16v21λ1 − v22λ2√

(8v1v2λ12)2 + (16v21λ1 − v22λ2)
2
. (3.21)

The relation between the mass eigenvalues of the Higgs bosons h and H, and the
original parameters of the Lagrangian (see Eqs. (3.5) and (3.6)) are given by

M2
h =

1

4
v22λ2 + 4v21λ1 −

1

4

√
(8v1v2λ12)2 + (16v21λ1 − v22λ2)

2, (3.22)

M2
H =

1

4
v22λ2 + 4v21λ1 +

1

4

√
(8v1v2λ12)2 + (16v21λ1 − v22λ2)

2. (3.23)

In total, the Higgs sector extension of the DASM introduces three additional free
parameters to the theory. The tadpole constants t1 and t2 (or equivalently th
and tH) are fixed by the definition of the EW vacuum and, therefore, do not
count as free input parameters. As mentioned above, we only keep them here for
later convenience. Choosing the input parameters to be the most intuitive and
phenomenologically easily accessible, we use Mh, MH, the mixing angle α, and
the dimensionless scalar self-coupling λ12 to express the original parameters of the
Higgs potential,

λ1 =
1

8v21

(
c2αM

2
H + s2αM

2
h

)
+

1

8v31
t1, (3.24)
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λ2 =
2

v22

(
c2αM

2
h + s2αM

2
H

)
+

2

v32
t2, (3.25)

µ2
1 =

1

4

(
s2αM

2
h + c2αM

2
H

)
+

1

2
v22λ12 +

3

4v1
t1, (3.26)

µ2
2 = v21λ12 +

1

2

(
c2αM

2
h + s2αM

2
H

)
+

3

2v2
t2, (3.27)

v1 =
(M2

H −M2
h) s2α

4v2λ12
. (3.28)

In the DASM, similar to the SM case, the vev v2 is determined by the W-boson
mass (see Sect. 3.2 for more details). From Eqs. (3.24)–(3.28) it is obvious that
the vacuum stability constraints given in Eq. (3.7) as well as the requirement of
symmetry breaking µ2

1 > 0 or µ2
2 > 0 are automatically fulfilled for physical input

parameters, i.e. Mh,MH > 0.
Expanding the interaction terms in the last line of Eq. (3.13) one finds three and
four particle scalar self-interaction terms of the form

Vint = chhhh
3 + chhHh

2H + chHHhH
2 + cHHHH

3

+ chhhhh
4 + chhhHh

3H + chhHHh
2H2 + chHHHhH

3 + cHHHHH
4

+
1

2
(chϕϕh+ cHϕϕH + chhϕϕh

2 + chHϕϕhH + cHHϕϕH
2)(2ϕ+ϕ− + χ2

2)

+
1

2
(chχχh+ cHχχH + chhχχh

2 + chHχχhH + cHHχχH
2)χ2

1

+
λ2
16

(2ϕ+ϕ− + χ2
2)

2 +
λ12
2
χ2
1(χ

2
2 + 2ϕ−ϕ+) + λ1χ

4
1, (3.29)

with the coupling constants

chhh = v2cα

(
λ12s

2
α +

λ2c
2
α

4

)
− v1sα

(
λ12c

2
α + 4λ1s

2
α

)
, (3.30)

chhH = v1λ12c
3
α + v2λ12s

3
α + s2α

(
v2cα(

3

8
λ2 − λ12) + v1sα(6λ1 − λ12)

)
, (3.31)

chHH = v2λ12c
3
α − v1λ12s

3
α + s2α

(
sαv2(

3

8
λ2 − λ12) + cαv1(λ12 − 6λ1)

)
, (3.32)

cHHH = v2sα

(
λ12c

2
α +

λ2s
2
α

4

)
+ v1cα(λ12s

2
α + 4λ1c

2
α), (3.33)

chhhh = s4αλ1 +
1

2
s2αc

2
αλ12 +

c4α
16
λ2, (3.34)

chhhH =
λ2
8
s2αc

2
α − 2s2αs

2
αλ1 −

λ12
2
c2αs2α, (3.35)

chhHH =
3λ1
2
s22α +

3λ2
32

s22α +
λ12
4

(
2c22α − s22α

)
, (3.36)

chHHH =
λ2
8
s2αs

2
α − 2λ1s2αc

2
α +

λ12
2
c2αs2α, (3.37)



24 3. The Dark Abelian Sector Model

cHHHH = c4αλ1 +
s4α
16
λ2 +

1

2
s2αc

2
αλ12, (3.38)

chϕϕ =
v2
2
λ2cα − 2sαv1λ12, (3.39)

cHϕϕ =
v2
2
λ2sα + 2v1λ12cα, (3.40)

chhϕϕ =
λ2
4
c2α + s2αλ12, (3.41)

chHϕϕ =
λ2
2
sαcα − 2λ12sαcα, (3.42)

cHHϕϕ =
λ2
4
s2α + λ12c

2
α, (3.43)

chχχ = 2v2λ12cα − 8v1λ1sα, (3.44)

cHχχ = 8v1λ1cα + 2v2λ12sα, (3.45)

chhχχ = λ12c
2
α + 4λ1s

2
α, (3.46)

chHχχ = 2λ12sαcα − 8λ1sαcα, (3.47)

cHHχχ = 4λ1c
2
α + λ12s

2
α. (3.48)

3.2. Gauge sector

Due to the presence of the additional U(1)d gauge group, the gauge sector of the
DASM governs several additional terms compared to its SM counterpart. In the
past, several types of U(1) extensions have been discussed qualitatively in the
literature (see e.g. [13, 25–28]). However, to match the precision of modern EW
precision measurements at least NLO precision is needed. In this work, we give
the DASM in Rξ gauge, which is the most common and convenient framework for
the calculation of the higher-order corrections performed in the following Chapters
4 and 5.

Due to the extension of the SM gauge group by an additional U(1)d, further terms
have to be added to the SM YM part to obtain its DASM counterpart,

LYM = LSM
YM + Ld

YM, (3.49)

where

Ld
YM = −1

4
CµνCµν −

a

2
BµνCµν . (3.50)

The gauge-invariant field-strength tensors

Bµν = ∂µBν − ∂νBµ, Cµν = ∂µCν − ∂νCµ, (3.51)

correspond to the gauge fields Bµ and Cµ of the U(1)Y and U(1)d, respectively.
While the first term on the right-hand side of Eq. (3.50) simply gives the kinetic
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term for the gauge field Cµ, the gauge invariance of field-strength tensors of abelian
gauge groups (see Sect. 2.1.1) further allows for kinetic mixing described by the
second term. The strength of this mixing is ruled by the free parameter a.

3.2.1. Physical gauge bosons

In a first step towards constructing the field basis corresponding to the physical
gauge bosons, we diagonalize the kinetic terms by redefining the fields [27],(

Cµ

Bµ

)
=

(
1√

1−a2
0

− a√
1−a2

1

)(
C ′

µ

B′
µ

)
. (3.52)

With this redefinition the kinetic terms for the primed fields C ′
µ and B′

µ are in the
common canonically normalized form

LYM = −1

4
CµνCµν −

a

2
BµνCµν −

1

4
BµνBµν −

1

4
W b,µνW b

µν

= −1

4
C ′µνC ′

µν −
1

4
B′µνB′

µν −
1

4
W b,µνW b

µν . (3.53)

Note that we have to restrict the kinetic mixing strength to |a| ≤ 1 to maintain
the self-consistency of the theory, since choosing |a| > 1 would lead to a wrong
signature for one of the kinetic terms. Rewriting the covariant derivatives for the
Higgs fields Φ and ρ given in Eqs. (2.6) and (3.4), respectively, in terms of the
primed fields and expanding the kinetic part of the Higgs Lagrangian given by
Eq. (3.3) leads to the mass terms of the EW gauge bosons,

LMV
=

1

2

(
B′

µ,W
3
µ , C

′
µ

)
M2

V

B′
µ

W 3
µ

C ′
µ

+M2
WW

+W−. (3.54)

Similar to the SM case the mass of the W boson is given

MW =
g2v2
2

(3.55)

and the mass matrix for the neutral vector bosons by

M2
V =


s2wM

2
W

c2w

swM2
W

cw
−ηs2wM

2
W

c2w
swM2

W

cw
M2

W −ηswM2
W

cw

−ηs2wM
2
W

c2w
−ηswM2

W

cw

η2s2wM
2
W

c2w
+M2

C

 , (3.56)

where we introduced the shorthands

η =
a√

1− a2
, MC = ẽv1, ẽ =

ed√
1− a2

,



26 3. The Dark Abelian Sector Model

sw ≡ sin θw =
g1√
g21 + g22

, cw ≡ cos θw. (3.57)

Note that the mass matrix M2
V is not of full rank, i.e. rank (M2

V) = 2. Thus,
to obtain the fields corresponding to the physical neutral gauge bosons we can
diagonalize M2

V by a combination of two appropriate rotations of the neutral gauge-
boson fields,B′

µ

W 3
µ

C ′
µ

 = RV

Aµ

Zµ

Z ′
µ

 , RV =

 cw sw 0
−sw cw 0
0 0 1

1 0 0
0 cγ −sγ
0 sγ cγ

 , (3.58)

where we introduced the shorthands sγ ≡ sin γ, cγ ≡ cos γ. It is easy to see that in
the case γ = 0 the rotation RV reduces to its SM counterpart (see Eq. (2.18)). To
determine the mixing angle γ we use Eq. (3.58) to express Eq. (3.53) in terms of
the fields corresponding to the mass eigenbasis and diagonalize the resulting mass
matrix for the neutral gauge fields,

RT
VM

2
VRV =

0 0 0
0 M2

Z M2
ZZ′

0 M2
ZZ′ M2

Z′

 , (3.59)

where

M2
Z = s2γM

2
C +

M2
W (cγ − sγswη)

2

c2w
,

M2
Z′ = c2γM

2
C +

M2
W (sγ + cγswη)

2

c2w
,

M2
ZZ′ = sγcγM

2
C +

M2
W [s2γ (s

2
wη

2 − 1)− 2swc2γη]

2c2w
. (3.60)

As required by QED, the photon remains massless

M2
A = 0, (3.61)

and, similar to the SM case, demanding the photon–fermion coupling to reproduce
its respective QED form relates the electric unit charge e directly to the gauge
couplings g1 and g2,

e =
g1g2√
g21 + g22

. (3.62)

The diagonalization condition

M2
ZZ′ = sγcγM

2
C +

M2
W [s2γ (s

2
wη

2 − 1)− 2swc2γη]

2c2w

!
= 0 (3.63)
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yields a relation between the mixing angle γ and the original parameters of the
Lagrangian of the form

t2γ ≡ tan 2γ =
−2ηsw

1− η2s2w − c2w
M2

C

M2
W

. (3.64)

Further, choosing γ ∈ (−π
4
, π
4
] we find

s2γ =
t2γ√
1 + t22γ

= −
2ηswsgn

{
1− η2s2w − c2w

M2
C

M2
W

}
√(

1− η2s2w − c2w
M2

C

M2
W

)2
+ 4η2s2w

, (3.65)

c2γ =
1√

1 + t22γ

=

∣∣∣1− η2s2w − c2w
M2

C

M2
W

∣∣∣√(
1− η2s2w − c2w

M2
C

M2
W

)2
+ 4η2s2w

, (3.66)

and the mass eigenvalues of the two neutral, massive gauge bosons are given by

M2
Z =

M2
W

c2w
(1− swtγη) , M2

Z′ =
M2

W

c2w

(
1 +

swη

tγ

)
. (3.67)

Again, we choose the phenomenologically easily accessible parameters e and MW

as well as the masses of the two neutral gauge-bosonsMZ andMZ′ , and the mixing
angle γ as input parameters of the gauge-boson sector of the DASM. Note that, in
contrast to the scalar sector where we imposed the mass hierarchy Mh < MH, we
do not enforce any mass hierarchy between the Z- and Z′- boson masses, leaving
MZ < MZ′ as well as MZ > MZ′ as valid parameter choices. Using Eq. (3.60), we
express the original parameters of the Lagrangian in terms of our input parameters
and find

cw =
MW√

c2γM
2
Z + s2γM

2
Z′

, M2
C =

c2wM
2
ZM

2
Z′

M2
W

, η =
s2γc

2
w

(
M2

Z′ −M2
Z

)
2swM2

W

,

(3.68)

and further

ẽ =
cwMZMZ′

v1MW

, ed =
cwMZMZ′

v1MW

√
1 + η2

, a =
η√

1 + η2
. (3.69)

Here, we did not fully insert all analytical dependences to keep the expressions
compact. However, using the relations given in Eqs. (3.24)–(3.28), and (3.57) it is
straightforward to relate the Lagrangian parameters directly to our chosen input
parameter set. Furthermore, without loss of generality we choose the coupling
constant of the U(1)d to be positive, i.e. ed > 0 and absorb2 the sign into the

2This is possible since we do not constrain the sign of the kinetic-mixing parameter a.



28 3. The Dark Abelian Sector Model

definition of the gauge field Cµ. Additionally, Eq. (3.68) yields the lowest-order
restriction

M2
W < c2γM

2
Z + s2γM

2
Z′ (3.70)

for the parameters of the DASM. Thus, in the DASM the mass of the W boson
MW differs from cwMZ. Therefore, in contrast to the SM, the ρ parameter [70,71]
in the DASM is already at LO not equal to 1 and in order to obey constraints from
EW precision data, the mixing angle γ needs to be fine-tuned to small values in
the DASM.

3.2.2. Gauge-fixing part

Expanding the kinetic terms of the Higgs fields Φ and ρ (see Eq. (3.3)) in terms
of their component fields one finds terms that lead to non-diagonal propagators in
the gauge-boson–would-be-Goldstone-boson system,

LV χ = iMW

[(
∂µϕ+

)
W−

µ −
(
∂µϕ

−)W+
µ

]
+

[
MCsγ (∂

µχ1) +
cwcγM

2
Z

MW

(∂µχ2)

]
Zµ

+

[
MCcγ (∂

µχ1)−
cwsγM

2
Z′

MW

(∂µχ2)

]
Z ′

µ. (3.71)

At LO these unpleasant mixing terms can be canceled by choosing Rξ gauge-fixing
conditions. Therefore, we introduce a gauge-fixing Lagrangian

Lfix = − 1

2ξA

(
FA
)2 − 1

2ξZ

(
FZ
)2 − 1

2ξZ′

(
FZ′)2 − 1

ξW
F+F−, (3.72)

where the gauge-fixing functionals are given by

F± = ∂µW±
µ ∓ iξWMWϕ

±,

FZ = ∂µZµ − ξZ

[
MCsγχ1 +

cwcγM
2
Z

MW

χ2

]
,

FZ′
= ∂µZ ′

µ − ξZ′

[
MCcγχ1 −

cwsγM
2
Z′

MW

χ2

]
,

FA = ∂µAµ. (3.73)

This choice of gauge-fixing will not only eliminate the unpleasant mixing in the
massive gauge-boson propagators, but introduces masses to the would-be Gold-
stone bosons as well. While the masses of the charged would-be Goldstone bosons
are given by Mϕ± =

√
ξWMW, our choice of the gauge-fixing introduces a non-

diagonal mass matrix M2
χ for the neutral would-be Goldstone bosons χ and χ′.

To diagonalize this mass matrix, we perform a rotation of the neutral would-be
Goldstone-boson fields by an angle θx,(

χ′

χ

)
= RT

χ

(
χ1

χ2

)
, RT

χ =

(
cx −sx
sx cx

)
, (3.74)
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where we used the shorthands sx ≡ sin θx, cx ≡ cos θx. The resulting mass matrix
of the χ, χ′ system is given by

RT
χM

2
χRχ = ξV

(
M2

χ′χ′ M2
χχ′

M2
χχ′ M2

χχ

)
, (3.75)

with

M2
χ′χ′ =M2

Cc
2
x +

M2
Ws

2
x + ηswsxMW (2MCcxcw +MWηswsx)

c2w
− s2xv1t2 + c2xv2t1

v1v2ξV
,

M2
χχ =M2

Cs
2
x +

M2
Wc

2
x + ηswcxMW (MWηswcx − 2MCcwsx)

c2w
− c2xv1t2 + s2xv2t1

v1v2ξV
,

M2
χχ′ =

s2x
2

(
M2

C − M2
W

c2w

)
−MWηsw (2MCcwc2x+MWηsws2x)

2c2w
+
sxcx (v1t2−v2t1)

v1v2ξV
.

(3.76)

Here we chose a common gauge parameter ξV = ξZ = ξZ′ for the two neutral gauge
bosons for convenience. Setting the tadpole terms to zero the diagonalization
condition reads

M2
χχ′ =

s2x
2

(
M2

C − M2
W

c2w

)
− MWηsw (2MCcwc2x +MWηsws2x)

2c2w

!
= 0, (3.77)

and we find

t2x ≡ tan(2θx) =
−2ηMCswcw

MW

(
1 + η2s2w − c2w

M2
C

M2
W

) =
cwMCt2γ

MW (1− ηswt2γ)
(3.78)

for the mixing angle θx. Further, choosing

s2x =
cws2γMC

MW

, c2x = c2γ − swηs2γ (3.79)

connects the masses of the χ and χ′ to the masses of the neutral massive gauge
bosons Z and Z′, respectively, via

Mχ =
√
ξVMZ, Mχ′ =

√
ξVMZ′ . (3.80)

With this choice, we find the useful relations

sx =
cwsγMZ′

MW

, cx =
cwcγMZ

MW

, tx =
MZ′

MZ

tγ, (3.81)

and, similar to the SM case, the gauge-fixing functionals reduce to their simple
form

F± = ∂µW±
µ ∓ iξWMWϕ

± −−−→
ξW→1

∂µW±
µ ∓ iMWϕ

±,
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FZ = ∂µZµ − ξVMZχ −−−→
ξV→1

∂µZµ −MZχ,

FZ′
= ∂µZ ′

µ − ξVMZ′χ′ −−−→
ξV→1

∂µZ ′
µ −MZ′χ′,

FA = ∂µAµ, (3.82)

where in the last expression of each line we employed the ’t Hooft–Feynman gauge,
i.e. ξA = ξW = ξV = 1, which is used in the calculations presented in Chapter 5.

3.2.3. Ghost part

A corresponding Faddeev–Popov ghost part

LFP(x) = −
∫

d4y ūa(x)

(
δF a(x)

δθb(y)

)
ub(y), (3.83)

where a, b = ±, Z, Z ′, A, has to be added to the Lagrangian for the consistency of
the gauge-fixing procedure in the functional integral. Here the ūa and ua denote
unphysical, anti-commuting ghost fields. The corresponding ghosts will never rep-
resent external states, but only appear as inner lines of Feynman diagrams. We
give the infinitesimal gauge transformations of the scalar and EW gauge-boson
fields in Appendix B. Using these transformations it is straightforward to evaluate
the infinitesimal gauge variations δFa(x)

δθb(y)
of the gauge-fixing functionals F a by the

gauge-group parameters θb(y) needed to evaluate Eq. (3.83). Finally, the ghost
Lagrangian in the DASM explicitly reads

LFP =− ūA∂µ∂µu
A + ie(∂µūA)

(
W+

µ u
− −W−

µ u
+
)

− ūZ
(
∂µ∂

µ + ξVM
2
Z

)
uZ − iecγcw

sw

(
∂µūZ

) (
W+

µ u
− −W−

µ u
+
)

+
cxe

2sw
ξVMZū

Z
(
ϕ+u− + ϕ−u+

)
− ūZξVMZ

{[
ecαcxcγcwM

2
Z

2swM2
W

− ẽsγsxsα

]
h+

[
ẽsγsxcα +

esαcxcγcwM
2
Z

2swM2
W

]
H

}
uZ

+ ūZ ξVMZ

{[
ẽcγsxsα+

ecxcαsγcwM
2
Z′

2swM2
W

]
h−
[
ẽcγsxcα−

ecxsαsγcwM
2
Z′

2swM2
W

]
H

}
uZ

′

− ūZ
′(
∂µ∂

µ + ξVM
2
Z′
)
uZ

′
+

iesγcw
sw

(
∂µūZ

′
) (
W+

µ u
− −W−

µ u
+
)

− ūZ
′ sxe

2sw
ξVMZ′

(
ϕ+u− + ϕ−u+

)
− ūZ′

ξVMZ′

{[
ecαsxsγcwM

2
Z′

2swM2
W

− ẽcγcxsα
]
h+

[
esαsxsγcwM

2
Z′

2swM2
W

+ ẽcγcxcα

]
H

}
uZ

′

+ ūZ
′
ξVMZ′

{[
ecαsxcγcwM

2
Z

2swM2
W

+ ẽsγsαcx

]
h+

[
esαsxcγcwM

2
Z

2swM2
W

− ẽsγcxcα
]
H

}
uZ
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+

{
− ū+(∂µ∂

µ + ξWM
2
W)u+ + ie(∂µū+)

[
Aµ −

cw
sw

(cγZµ − sγZ
′
µ)

]
u+

−ū+ e

2sw
ξWMW [cαh+ sαH + i(cxχ− sxχ

′)]u+ − ie
(
∂µū+

)
W+

µ u
A

+ū+ξWMWeϕ
+uA +

iecw
sw

(
∂µū+

)
W+

µ

(
cγu

Z − sγu
Z′
)

+ ū+ξWMWeϕ
+

[(
cγ (s

2
w− c2w)

2cwsw
− sγη

2cw

)
uZ−

(
sγ (s

2
w− c2w)

2swcw
+
cγη

2cw

)
uZ

′
]

+(u+ → u−, ū+ → ū−,W+ → W−, ϕ+ → ϕ−, i → −i)

}
. (3.84)

Similar to the SM case, in the chosen Rξ gauge the masses of the ghost fields
match the masses of the respective would-be Goldstone bosons (and therefore, in
the ’t Hooft–Feynman gauge, used in the calculations in Chapter 5, they match
the masses of the corresponding gauge bosons as well).

3.3. Fermion and Yukawa sectors

The presence of the right-handed counterparts ν ′Rj , j = e, µ, τ , to the left-handed
SM-like neutrino fields ν ′Lj as well as the additional non-chiral Dirac fermion f ′

d of
the hidden sector of the DASM leads to several modifications to the SM fermion
sector. Note that the non-chiral nature of the additional fermion f ′

d ensures that
no anomalies are introduced in the DASM. Similar to the discussion of the SM
fermion sector, throughout this section, we use primed fields to denote the gauge-
interaction eigenbasis, whereas non-primed fields indicate the mass eigenbasis.
The right-handed neutrino fields ν ′Rj are assumed to be singlets under the gauge
group of the DASM. The fermion field f ′

d is a singlet with respect to the SM part
of the DASM gauge group, i.e. carries no weak hypercharge, nor weak isospin nor
colour. However, it carries the charge q̃fed of the U(1)d gauge group. We choose

q̃f = q̃ρ = 1, (3.85)

where q̃ρed is the charge of the Higgs field ρ introduced in Eq. (3.4). This allows
for an additional portal term from the SM to the hidden sector in the fermion part
of the DASM Lagrangian. Therefore, the relation (3.85) between the two charges
is, in contrast to the mere normalization of the U(1)d coupling constant provided
by choosing q̃ρ = 1 (see Sect. 3.1), a choice that leads to the most interesting BSM
structures in the fermion sector of the DASM. In detail, it allows for an additional
Yukawa term connecting the Higgs field ρ with the right-handed neutrinos ν ′Rj and
the fermion f ′

d resulting in

LFermion = LSM
Fermion + LSM

Yukawa + f̄ ′
d

(
i /Dd −mfd

)
f ′
d −

∑
k,l=e,µ,τ

(
L̄′L
k G

′ν
klν

′R
l ΦC + h.c.

)
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+
∑

j=e,µ,τ

[
ν̄ ′Rj i/∂ν ′Rj −

(
yρ,jρf̄

′L
d ν

′R
j + h.c.

)]
, (3.86)

for the fermion part of the Lagrangian. The covariant derivative Dµ
d , governing

the gauge interactions of the hidden sector fermion, is given in Eq. (3.4). Further,
without loss of generality, we choose the Dirac mass mfd of f ′

d to be real and posi-
tive. This can always be achieved by adjusting a chiral phase of f ′

d appropriately.
The sum in the first line of Eq. (3.86) governs the Yukawa terms for the three
SM-like neutrino generations with their respective Yukawa coupling constants G′ν

kl.
In general, they lead to mass terms and a PMNS-like matrix structure in the
SM-like neutrino sector, which are of particular interest in flavour and neutrino
physics (see, e.g., Ref. [24] and references therein). However, as we shall see in the
following discussion, they do not affect our phenomenological analysis of collider
observables and will therefore play no further role in this work. The second line of
Eq. (3.86) governs the kinetic terms of the right-handed neutrinos as well as the
Yukawa interactions connecting them to the hidden sector, i.e. to ρ and f ′

d, with
respective Yukawa couplings yρ,j. Finally, there is the possibility for Majorana
mass terms for the right-handed neutrinos, which we do not further consider in
this work.
Plugging the decomposition of the Higgs fields (see Eq. (3.6)) into Eq. (3.86) and

decomposing f ′
d = f ′L

d + f ′R
d , with f

′L/R
d = ωL/Rf

′
d, the mass terms for the neutral

fermions become

Lm
f ′
dν

= −
(
ν̄ ′Le , ν̄

′L
µ , ν̄

′L
τ , f̄

′L
d

)
M′

fd


ν ′Re
ν ′Rµ
ν ′Rτ
f ′R
d

+ h.c. , (3.87)

with the non-diagonal, non-symmetric, complex mass matrix

M′
fd
=


m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
ỹe ỹµ ỹτ mfd

 , ỹi =
v1yρ,i√

2
, mij =

v2G
ν
ij√
2
. (3.88)

In general M′
fd
can be diagonalized by a bi-unitary transformation of the form

U†
LM

′
fd
UR = Mν , Mν,αβ = mν,αδαβ, mν,α ≥ 0, α, β = 1, 2, 3, 4,

(3.89)

with the unitary matrices UL and UR. This can, in general, be achieved by trans-
forming the fields of the interaction eigenbasis (primed fields) into the mass eigen-
basis (non-primed fields) via

ν ′Re
ν ′Rµ
ν ′Rτ
f ′R
d

 = UR


νR1
νR2
νR3
νR4

 ,


ν ′Le
ν ′Lµ
ν ′Lτ
f ′L
d

 = UL


νL1
νL2
νL3
νL4

 . (3.90)
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3.3.1. Neutrino mixing for small SM-like neutrino masses

In this section, we investigate the interesting features of the diagonalization of
the neutral fermion mass matrix under the assumption of small SM-like neutrino
masses. These are highly favoured by experimental studies, like attempts to mea-
sure the masses of the neutrinos by analyzing β-decay (see e.g. [61]).
In more detail, we assume all entries of the SM-like mass matrix (mkl, k, l = 1, 2, 3)
in Eq. (3.88) to be of some small scale mν , representing the SM-like neutrino mass
scale. However, we assume not all entries of the mass matrix M′

fd
to be of this

small scale,

mkl = O(mν), mν ≪ m̃ ≡ max{ỹ, mfd}, ỹ2 ≡ |ỹe|2 + |ỹµ|2 + |ỹτ |2, ỹ ≥ 0.
(3.91)

With this hierarchy, the fermion mass matrix Eq. (3.88) has the structure

M′
fd
=

O(mν)
0
0
0

ỹe ỹµ ỹτ mfd

 . (3.92)

To determine the resulting neutrino masses one simply calculates the square roots
of the eigenvalues of the matrices M′

fd
M′†

fd
or M′

fd
M′†

fd
. In our parameter hierarchy,

the former one has the form

M′
fd
M′†

fd
=

 O(m2
ν)

O (mνm̃)
O (mνm̃)
O (mνm̃)

O (mνm̃) O (mνm̃) O (mνm̃) m2
fd
+ ỹ2

 , (3.93)

where theO(m2
ν) represents a 3×3 matrix with each element being of orderO(m2

ν).
We find the following mass hierarchy

mνk = O(mν), k = 1, 2, 3, mν4 =
√
m2

fd
+ ỹ2 +O(mν), (3.94)

for the resulting neutrino masses. Further, the mixing matrix for the left-handed
fields, responsible for the diagonalization of M′

fd
M′†

fd
via

U†
LM

′
fd
UR︸ ︷︷ ︸

=M†
ν

U†
RM

′†
fd
UL︸ ︷︷ ︸

=M†
ν

= U†
LM

′
fd
M′†

fd
UL = diag(m2

ν1
,m2

ν2
,m2

ν3
,m2

ν4
), (3.95)

has the structure

UL =


0
0ÛL
0

0 0 0 1

+O
(mν

m̃

)
, ÛL = O(1), (3.96)
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with the 3× 3 unitary matrix ÛL with elements of O(1) introducing mixing of the
left-handed SM-like neutrinos, i.e. resembling effects of a PMNS-like matrix for
the SM-like part of the fermion sector. The more interesting feature of Eq. (3.96)
is the large suppression of the mixing between the left-handed SM-like neutrino
fields and f ′L

d , practically decoupling the SM and hidden parts in the left-handed
fermion sector3. By contrast, the structure of the right-handed unitary mixing
matrix is more complicated and, in general, no entries of UR are suppressed in
our mass hierarchy. In a similar way to the determination of UL it can, e.g., be
determined via

U†
RM

′†
fd
M′

fd
UR = diag(m2

ν1
,m2

ν2
,m2

ν3
,m2

ν4
). (3.97)

Having Eq. (3.92) in mind we write UR as product of two successive unitary field
transformations UR = UR,1UR,2. We choose UR,1

UR,1 =

 e′ e′′ e′
0
0
0

0 0 0 1

 , (ỹe, ỹµ, ỹτ ) = ỹ e†, ỹ ≥ 0, (3.98)

with the orthogonal unit vectors {e, e′, e′′}, |e| = |e′| = |e′′| = 1, e†e′ = 0, such
that it aligns the first three components of the last row of Eq. (3.92), (ỹe, ỹµ, ỹτ ),
along the unit vector (0, 0, 1). Starting from this point

M′
fd
UR,1 =


0
0O(mν)
0

0 0 ỹ mfd

 , (3.99)

the second rotation UR,2 is used to rotate the remaining two non-zero entries in
the last row of Eq. (3.99), (ỹ, mfd), into (0,mν4) resulting in

M′
fd
UR,1UR,2 =


0
0O(mν)

O (mν)
0 0 0 mν4

 . (3.100)

Therefore, while the alignment of the SM-like right-handed neutrinos done with
UR,1 does not affect the right-handed field from the hidden sector, the rotation
UR,2 is responsible for the mixing of the right-handed SM-like neutrinos with f ′R

d .
With all the insights gained in this section we can now define the simplified fermion
sector of the DASM in Sect. 3.4.

3Note that f ′L
d still appears in several NLO calculations due to its gauge interactions.
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3.4. The simplified fermion sector of the DASM

In this work, we are not interested in any observables that are sensitive to SM-like
neutrino masses or mixings. Having the previous section in mind, we thus restrict
the fermion sector of the DASM to the case mij = 0, i, j = 1, 2, 3. Applying the
alignment transformation for the right-handed neutrino fields given in Eq. (3.98)
the Lagrangian given in Eq. (3.86) becomes

LFermion = LSM
Fermion + LSM

Yukawa + f̄ ′
d

(
i /Dd −mfd

)
f ′
d −

(
yρρf̄

′L
d ν

′R
3 + h.c.

)
+
∑

j=1,2,3

[
ν̄ ′Rj i/∂ν ′Rj

]
, (3.101)

with yρ =
√
2ỹ/v1. In this simplified scenario the mass matrix for the neutrinos

and the fermion from the hidden sector has the simple form

M′
fd
=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 ỹ mfd

 , (3.102)

where we can always adjust (chiral) phases of the fields such that ỹ, mfd ≥ 0. For
the unitary matrices UL and UR,2 needed for the diagonalization of Eq. (3.102) we
make the ansatz

UL =


1 0 0 0
0 1 0 0
0 0 cos θl sin θl
0 0 − sin θl cos θl

 , UR,2 =


1 0 0 0
0 1 0 0
0 0 cos θr sin θr
0 0 − sin θr cos θr

 . (3.103)

This leads to the two diagonalization conditions

0 = sin θl (ỹ sin θr +mfd cos θr) , 0 = cos θl (ỹ cos θr −mfd sin θr) , (3.104)

which determine the rotation angles θl and θr of the left- and right-handed field
rotations, respectively, to

sin θl = 0, tan θr =
ỹ

mfd

. (3.105)

We choose

θl = 0, sθr ≡ sin θr =
ỹ√

ỹ2 +m2
fd

, cθr ≡ cos θr =
mfd√
ỹ2 +m2

fd

, (3.106)

with θr ∈ [0, π
2
], to fix the rotations into the fields corresponding to the mass

eigenstates. The resulting neutrino masses are given by

mν1 = mν2 = mν3 = 0, mν4 =
√
ỹ2 +m2

fd
. (3.107)
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Therefore, in this simplified fermion sector of the DASM we have no mixing be-
tween the left-handed fields UL = 14, and, thus, the flavour and mass eigenstate
coincide in the case of vanishing neutrino massesmν1,ν2,ν3 . In particular, this leaves
the freedom of any unitary transformation UL of the left-handed SM-like neutrino
fields (see Eq. (3.96) for mν = 0). Thus, the simplified version of the DASM neu-
trino sector will not account for any PMNS-like mixing matrix, i.e. there are no
lepton-flavour-changing charged-current interactions present at LO.
In total, the extension of the fermion sector introduces two free parameters to the
theory. Again, choosing the most intuitive and phenomenologically easily accessi-
ble input parameters we take the mixing angle for the right-handed neutrino fields
θr as well as the mass mν4 of the heavy neutrino field ν4. Using Eqs. (3.106) and
(3.107) we can easily connect the original parameters of the Lagrangian with the
chosen input parameters resulting in

ỹ = sθrmν4 , mfd = cθrmν4 . (3.108)

Finally, expressing the Lagrangian (3.101) in terms of the new input parameters
and the fermion mass eigenstates νi, i = 1, 2, 3, 4, with the help of Eq. (3.6) we
find

LFermion = LSM
Fermion + LSM

Yukawa + ν̄4
(
i/∂ −mν4

)
ν4 +

∑
j=1,2,3

ν̄Rj i/∂ν
R
j

+
sθrmν4

v1

(
sθrsαhν̄

L
4 ν

R
4 +cθrsαhν̄

L
4 ν

R
3 −sθrcαHν̄L4 νR4 −cθrcαHν̄L4 νR3 +h.c.

)
−
[
i
sθrmν4

v1

(
sθrsxχν̄

L
4 ν

R
4 + cθrsxχν̄

L
4 ν

R
3 + sθrcxχ

′ν̄L4 ν
R
4 + cθrcxχ

′ν̄L4 ν
R
3

)
−
[
+ h.c.

]
− ẽ

(
sγZµ + cγZ

′
µ

) (
ν̄L4 γ

µνL4 + c2θr ν̄
R
4 γ

µνR4 + s2θr ν̄
R
3 γ

µνR3

−
[
sθrcθr ν̄

R
4 γ

µνR3 + h.c.
] )

(3.109)

for the fermion sector Lagrangian of the DASM.

3.5. Non-linear representation of the DASM Higgs
sector

In the previous sections the DASM was introduced for the well-known linear rep-
resentation (see Eq. (3.6)) of the Higgs fields Φ and ρ. In the following, we briefly
introduce a non-linear representation for the two Higgs fields, which is used in the
tadpole renormalization procedure described in Sect. 4.2.1. For the discussion in
this section we closely follow the strategies outlined in Refs. [72–75] and apply
them to the DASM.
To introduce the non-linear representation we first define the 2×2 matrix notation
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for the linear representation of the Higgs doublet,

Φ ≡
(
ΦC,Φ

)
=

1√
2
[(v2 + h2) 1 + 2iϕ] , ϕ ≡ ϕjσj

2
. (3.110)

Note that, throughout this section, we use bold symbols to indicate the matrix
structure of the respective objects. In Eq. (3.110) the ϕi, i = 1, 2, 3, represent the
real would-be Goldstone-boson fields. They are connected to the ones defined in
Eq. (3.6) via

ϕ± =
1√
2
(ϕ2 ± iϕ1) , χ2 = −ϕ3, (3.111)

and the σi denote the Pauli matrices. The kinetic terms for the Higgs doublet
as well as its gauge-invariant mass operator needed for the Higgs part of the La-
grangian (see Eq. (3.3)) are obtained by applying the trace in the matrix formu-
lation, resulting in

LΦ,kin =
1

2
tr
[
(DµΦ)† (DµΦ)

]
, Φ†Φ =

1

2
tr
[
Φ†Φ

]
. (3.112)

Moreover, since ρ only carries U(1)d charge, we do not have to introduce a matrix
representation for it. With this, we can now switch to a non-linear representation
of the Higgs fields by introducing

Φ =
1√
2

(
hnl2 + v2

)
exp

(
iζjσj

v2

)
, ρ =

1√
2

(
hnl1 + v1

)
exp

(
iχnl

1

v1

)
. (3.113)

Here the fields hnl1 and hnl2 are the gauge-invariant Higgs fields which will, after
a rotation similar to the one given in Eq. (3.12), lead to the two Higgs fields
corresponding to the physical Higgs bosons. The real would-be Goldstone-boson
fields of the non-linear representation are denoted by χnl

1 and ζi, i = 1, 2, 3. Note
that these fields in general differ from their corresponding counterparts in the
linear representation. For our choice (3.113) we find the relations

h1 =
(
hnl1 + v1

)
cos

(
χnl
1

v1

)
− v1, h2=

(
hnl2 + v2

)
cos

(
|ζ⃗|
v2

)
− v2, (3.114)

χ1 =
(
hnl1 + v1

)
sin

(
χnl
1

v1

)
, ϕi=

(
hnl2 + v2

)
sin

(
|ζ⃗|
v2

)
ζi

|ζ⃗|
, (3.115)

with ζ⃗ = (ζ1, ζ2, ζ3)
T, between the fields in the two representations. Therefore,

the respective Higgs fields of the linear and non-linear representations agree up to
linear order in the would-be Goldstone-boson fields.
The scalar potential in the non-linear representation, spelled out explicitly in terms
of the component fields, is given by

V nl(Φ, ρ) = − µ2
2

2

(
hnl2 + v2

)2 − µ2
1

(
hnl1 + v1

)2
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+
λ2
16

(
hnl2 + v2

)4
+ λ1

(
hnl1 + v1

)4
+
λ12
2

(
hnl2 + v2

)2 (
hnl1 + v1

)2
.

(3.116)

From Eq. (3.116) it is obvious that the Feynman rules for the Higgs self-interactions
coincide in the linear and non-linear representations. In contrast to the linear
representation, no would-be Goldstone-boson fields appear in the scalar potential
of the non-linear representation. In the non-linear representation the Higgs–would-
be-Goldstone-boson interactions as well as the 4-point would-be Goldstone-boson
interactions are contained in the kinetic parts of the Higgs Lagrangian. Further,
the Higgs fields in the linear and non-linear representations coincide to LO in
the would-be Goldstone-boson fields and, therefore, the Feynman rules for the
Higgs–gauge-boson interactions coincide in the two representations. The same is
true for the Higgs–fermion interactions. The explicit expressions for the respective
Feynman rules can be taken from Appendix F. Finally, we want to emphasize that,
due to the gauge invariance of the Higgs fields hnl1 and hnl2 , there are no interactions
between the Higgs bosons and ghost particles in the non-linear representation.

3.6. Input parameters

Setting up the theoretical framework for any BSM model, it is of uttermost im-
portance to choose input parameters that are intuitive and phenomenologically
easily accessible. In the previously described DASM extensions of the SM Higgs,
gauge, and fermion sectors in total seven additional free parameters have been
introduced. To this end, we choose

• the massMh′ of the additional Higgs boson, where h′ represents the non-SM-
like Higgs boson of h and H, the scalar mixing angle α, which is most directly
connected to the measured signal strength of the SM-like Higgs boson, and
the scalar self-coupling constant λ12 in place of the three additional free
parameters λ1, λ12, and µ2

1 (see Eqs. (3.24)-(3.28)) in the extended Higgs
sector of the DASM.

• the mass MZ′ of the additional neutral gauge boson as well as the additional
rotation angle γ in the neutral gauge-boson system, which most directly in-
fluences all couplings of the SM-like Z boson and especially rules its coupling
strength to particles from the hidden sector, instead of two new parameters
a and ed (see Eq. (3.69)) in the extended gauge sector of the DASM.

• the mass mν4 of the heavy neutrino and the mixing angle θr in the right-
handed neutrino system for the two additional parameters mfd and ỹ (see
Eq. (3.108)) in the extended fermion sector of the DASM.
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With these additional parameters our complete set of phenomenologically easily
accessible and intuitive input parameters for the DASM is given by4

{MW,MZ,MZ′ ,MH,Mh, αem, γ, α, θr, λ12,mf,i,mν4 , Vij, αs}. (3.117)

In this parameter basis, the DASM incorporates the following SM limits

1) γ → 0, Mh′ →MSM
h , λ12 → 0,

2) MZ′ →MZ, Mh′ →MSM
h , λ12 → 0,

3) γ → 0, α →
{

0 for Mh =MSM
h

±π
2

for MH =MSM
h

, λ12 → 0,

4) MZ′ →MZ, α→
{

0 for Mh =MSM
h

±π
2

for MH =MSM
h

, λ12 → 0, (3.118)

where, again, h′ denotes the non-SM-like Higgs boson of h and H, fully decoupling
the hidden sector from the SM parts of the theory. Note that the decoupling of the
extension in the gauge and scalar sectors described in Eq. (3.118) will automatically
lead to a decoupling of the fermion sector. However, the limit θr → 0 will not, as
one might naively expect, decouple the fermion sector extension from the rest of
the theory, due to the remaining non-zero gauge couplings of ν4 to the Z and Z′

bosons.

4Note that we do not give a detailed description of the QCD part of the DASM since it is
equivalent to its SM counterpart described in Sect. 2.2. Nevertheless, we included the strong
coupling constant αs in the input parameter set for completeness.
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In the following phenomenological analysis of the DASM, we are interested in
1-loop precision for the BSM contributions to the investigated POs. In any anal-
yses of EW POs, at least this level of accuracy of predictions is crucial to match
the precision of modern collider measurements, like analyses performed with LHC
data, or of other high-precision observables like the (g − 2)µ results. In order to
perform the necessary higher-order calculations, a proper regularization scheme is
needed to regularize appearing ultraviolet (UV) divergences. We use dimensional
regularization [76,77] (see Appendix C for a brief summary) throughout this work.
Further, a suitable renormalization scheme is needed to obtain phenomenologically
sound predictions. In Sect. 4.1, we introduce the renormalization transformation
for the parameters and fields used in the renormalization procedure. The full
renormalization of the DASM is discussed in Sect. 4.2. There, we define on-shell
(OS) renormalization conditions for the chosen set of input parameters1 given in
Eq. (3.117). Additionally, we set up MS renormalization for the BSM mixing an-
gles. For both cases, we give explicit expressions for the resulting renormalization
constants as well as interesting intermediate results.

4.1. Renormalization transformation

For the following renormalization procedure of the DASM we split the bare pa-
rameters and fields into their renormalized counterparts and corresponding renor-
malization constants. At NLO the renormalization transformations for the SM
and BSM input parameters read

M2
h,0 =M2

h + δM2
h , M2

H,0 =M2
H + δM2

H,

M2
Z,0 =M2

Z + δM2
Z, M2

Z′,0 =M2
Z′ + δM2

Z′ ,

M2
W,0 =M2

W + δM2
W, e0 = (1 + δZe) e = e+ δe,

γ0 = γ + δγ, α0 = α + δα,

1Note that for λ12 an OS renormalization condition is phenomenologically not appropriate as
long as the non-SM Higgs boson is not found. Therefore, we use an MS renormalization
condition for the renormalization of λ12.

41
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λ12,0 = λ12 + δλ12, mf,i,0 = mf,i + δmf,i,

Vij,0 = Vij + δVij, θr,0 = θr + δθr. (4.1)

It is common to label bare parameters and fields with a subscript “0”, and we adopt
this notation throughout this chapter. A bare parameter p0 is connected to its
renormalized counterpart p (without subscript) via the renormalization constant
δp. Thus, the choice of the respective renormalization constant determines the
interpretation of the renormalized parameter and gives it its (physical) meaning.
The definition of suitable renormalization conditions for the input parameters of
the DASM is the subject of Sect. 4.2. The renormalization transformation of the
fields that correspond to mass and charge eigenstates read(

h0
H0

)
=

(
12 +

1

2
δZS

)(
h
H

)
, δZS =

(
δZhh δZhH

δZHh δZHH

)
,A0

Z0

Z ′
0

 =

(
13 +

1

2
δZV

)A
Z
Z ′

 , δZV =

δZAA δZAZ δZAZ′

δZZA δZZZ δZZZ′

δZZ′A δZZ′Z δZZ′Z′

 ,

W±
0 =

(
1 +

1

2
δZW

)
W±,

fL
i,0 =

(
1 +

1

2
δZf,L

i

)
fL
i , fR

i,0 =

(
δij +

1

2
δZf,R

ij

)
fR
j , (4.2)

where, to account for the possibility of mixing between the respective fields, we in-
troduce a matrix structure for the Higgs fields h,H, the gauge-boson fields A,Z, Z ′,
and the right-handed fermion fields fR

i . For charged leptons, up-, and down-type
quarks the indices i, j run over the three fermion generations. In the DASM the
BSM fermion field f ′

d mixes with the neutrino fields. To account for this additional
mixing in the DASM, for f = ν the indices i, j run over the three SM-like genera-
tions as well as ν4. In the following phenomenological analysis we do not consider
any flavour-sensitive observables. Thus, we set the CKM matrix to the unit matrix
and do not introduce a matrix structure in renormalization transformations of the
quark sector. The renormalization for a non-diagonal CKM matrix in the DASM
would, however, exactly follow the respective SM procedure (see, e.g., Refs [51,54]
and references therein).
Finally, we introduce the renormalization transformation

th,0 = th + δth, tH,0 = tH + δtH , (4.3)

for the tadpole parameters defined in Eq. (3.14). While Eq. (3.14) holds for the
bare and renormalized tadpole parameters, {t1,0, t2,0, th,0, tH,0} and {t1, t2, th, tH},
respectively, the parameter relations given in Eq. (3.9) depend on the chosen renor-
malization scheme and, thus, are in general only valid for the bare parameters, but
do not hold for the renormalized ones.
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The remaining freedom of the choice of the renormalization of the unphysical sec-
tor, i.e. the gauge parameters, ghost fields, and would-be Goldstone-boson fields,
does not affect S-matrix elements, and the counterterms introduced above are suf-
ficient to render S-matrix elements finite. Thus, we choose the renormalization
of the unphysical sector such that the gauge-fixing functionals will not introduce
any counterterms, i.e. the gauge-fixing Lagrangian has the form Eq. (3.72) with
Eq. (3.73) for renormalized parameters and fields.
Employing the renormalization transformations Eqs. (4.1) and (4.2), the Lagrangian
of the DASM L0 written in terms of the bare parameters and fields can, at NLO,
be split up in the following way

L0 = L+ Lct, (4.4)

where L has the same form as L0, but with the bare quantities replaced by their
respective renormalized ones, and Lct yields the counterterm contributions. In
particular, this means that the respective LO Feynman rules are recovered at
NLO, but with renormalized parameters instead of the bare ones. Furthermore,
we find additional Feynman rules originating from Lct that introduce the respective
renormalization constants in calculations.

4.2. Renormalization conditions

As already mentioned above, the precise choice of the renormalization constants
defines the physical meaning of the renormalized quantities. The renormalization
constants are obtained by imposing renormalization conditions on the correspond-
ing fields and parameters. In the following, we set up a renormalization scheme
that employs OS renormalization conditions for the fields and input parameters.
OS renormalization conditions tie the input parameters directly to some physi-
cal quantities, making them more directly accessible in suitable experiments and
giving them a rather intuitive meaning. Furthermore, this direct connection to
physical objects results in several desirable features of OS schemes (see discus-
sions below). As the only exception within this OS scheme, we renormalize the
input parameter λ12 with an MS renormalization condition, since a sensible OS
renormalization condition will only be applicable if the non-SM Higgs boson is
found. The MS renormalization of λ12 will, however, not jeopardize any of the
nice benefits of our OS scheme, like the independence of predictions on the tad-
pole treatment (see Sect. 4.2.1), since the dimensionless scalar self-coupling λ12
is not connected to the mass generation of any of the particles. Having the OS
scheme set up, we alternatively set up MS renormalization for the BSM mixing
angles introduced by the DASM. In MS renormalization schemes, the respective
renormalization constants only absorb the standard UV divergence of dimensional
regularization (see Eq. (C.2)), i.e. their finite parts are zero. Since the structure of
the UV divergences is unique within a given theory, the UV-divergent parts of the
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renormalization constants coincide in all renormalization schemes. Thus, having
the OS renormalization scheme established, we can simply switch to MS renor-
malization by setting the finite parts of the respective renormalization constants
to zero.

4.2.1. Tadpole treatment

Before we define the OS and MS renormalization of the DASM, we briefly discuss
the treatment of the tadpoles, i.e. of the EW vacuum, following the discussion of
the authors of Refs. [54, 72, 73], where a more detailed and comprehensive discus-
sion of tadpole schemes can be found. While predictions of observables in full OS
renormalization schemes are independent of the tadpole treatment2, tadpoles are
particularly important whenever any parameters related to masses are renormal-
ized via MS conditions. In the latter case, predictions of observables are sensitive
to the choice of the tadpole scheme. In this section, we discuss three impor-
tant tadpole schemes. The historically most relevant schemes are the Parameter
Renormalized Tadpole Scheme (PRTS) [78,79] and the Fleischer-Jegerlehner Tad-
pole Scheme (FJTS) [80]. As an alternative to these schemes, more recently, the
Gauge-Invariant Vacuum expectation value Scheme (GIVS) was proposed by the
authors of Refs. [72,73].

Due to the spontaneous symmetry breaking introduced by the non-vanishing vevs
of the Higgs fields ρ and Φ, explicit tadpole contributions have to be taken into
account in calculations within the DASM, whenever the minimum of the effective
Higgs potential is not at the renormalized vevs v1, v2. From a technical point of
view one wants to avoid the appearance of these tadpole contributions as far as
possible. This can be achieved by suitable parameter and field definitions. Fur-
thermore, a bad choice of the tadpole scheme and, thus, of the expansion point of
the Higgs fields around the respective vevs can lead to large missing higher-order
corrections, i.e. large uncertainties of predictions.
Forcing the bare tadpole terms to be zero, i.e. th,0 = tH,0 = 0, eliminates the
tadpole contributions at LO. At NLO, tadpole contributions of the form

iΓh = iT h =
h

, iΓH = iTH =
H

, (4.5)

where the blobs represent any 1-loop subdiagrams, enter calculations. To elimi-
nate the appearance of these explicit tadpole contributions, one generates tadpole
counterterms of the form δthh and δtHH in the NLO Lagrangian and fixes them
such that they cancel against the unrenormalized NLO contributions to the renor-

2Note that, even in full OS schemes, intermediate results, like renormalization constants, in
general do depend on the tadpole treatment. However, this dependence cancels out system-
atically in the calculation of observables.
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malized 1-point functions Γh
R and ΓH

R of the physical Higgs fields h and H,

Γh
R = T h + δth = 0 ⇒ δth = −T h,

ΓH
R = TH + δtH = 0 ⇒ δtH = −TH . (4.6)

While all three tadpole schemes discussed in this section enforce Eq. (4.6), they
introduce these tadpole terms in different ways. Therefore, the respective tadpole
counterterms will enter the Lagrangian at different places.
The Fleischer-Jegerlehner Tadpole Scheme introduces the tadpole counterterms
via field shifts of the physical Higgs fields

h→ h+∆vFJTS
h , ∆vFJTS

h = −δt
FJTS
h

M2
h

,

H → H +∆vFJTS
H , ∆vFJTS

H = −δt
FJTS
H

M2
H

, (4.7)

while setting the explicit bare tadpole terms th,0 and tH,0 to zero. Due to the gauge
dependence of the unrenormalized contributions T h and TH to the Higgs 1-point
functions, ∆vFJTS

h and ∆vFJTS
H turn out to be gauge dependent as well. However,

the field redefinitions Eq. (4.7) are mere shifts in the integration variables of the
functional integral. Thus, it cannot introduce any gauge dependence to the pre-
dictions for observables in either OS or MS renormalization schemes. However,
the FJTS tends to introduce large tadpole contributions to mass parameter renor-
malization constants, that can jeopardize the perturbative stability of predictions
in MS schemes3 (see e.g. Refs. [69,72,73,81,82]).
In the Parameter Renormalized Tadpole Scheme the tadpoles are treated similarly
to input parameters, and, consequently, the tadpole counterterms are introduced
via the parameter renormalization transformations given by Eq. (4.3). In the
PRTS the minimum of the renormalized effective Higgs potential is at the renor-
malized vevs v1 and v2. To achieve this, the renormalized tadpoles are set to zero
th = tH = 0, leading to δth = th,0 and δtH = tH,0. Combining

δt1 = −v1,0
(
4v21,0λ1,0 + v22,0λ12,0 − 2µ2

1,0

)
,

δt2 = −v2,0
(
v22,0
4
λ2,0 + v21,0λ12,0 − µ2

2,0

)
,

λ1,0 =
v1,0

(
c2α,0M

2
H,0 + s2α,0M

2
h,0

)
+ cα,0δtH − sα,0δth

8v31,0
,

λ2,0 =
2
[
v2,0

(
c2α,0M

2
h,0 + s2α,0M

2
H,0

)
+ cα,0δth + sα,0δtH

]
v32,0

, (4.8)

with Eq. (3.28) for the bare and renormalized vev v1,0 and v1, respectively, the
tadpole counterterms in the PRTS can be restored to the Lagrangian, where the
bare tadpole terms are set to zero, by the simple replacements

3Recall that the tadpole scheme dependence of predictions for observables cancels in OS
schemes.
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µ2
1,0 → µ2

1,0 +
3
(
cαδt

PRTS
H − sαδt

PRTS
h

)
4v1

, µ2
2,0 → µ2

2,0 +
3
(
cαδt

PRTS
h + sαδt

PRTS
H

)
2v2

,

λ1,0 → λ1,0 +
cαδt

PRTS
H − sαδt

PRTS
h

8v31
, λ2,0 → λ2,0 +

2
(
cαδt

PRTS
h + sαδt

PRTS
H

)
v32

,

λ12,0 → λ12,0. (4.9)

In the PRTS, in contrast to the FJTS, the renormalized vev parameters denote the
minimum of the renormalized Higgs potential. Therefore, the PRTS leads to small
corrections to renormalized mass parameters. However, the gauge-dependent tad-
pole counterterms enter the relations between the bare original parameters of the
Lagrangian and the chosen bare input parameters. This leads to a gauge depen-
dence in the parameterization of predictions in terms of renormalized parameters
for observables in MS renormalization schemes. Therefore, using MS renormaliza-
tion, one has to fix a gauge once and for all, or the values of the input parameters
have to be converted between different gauge choices, to obtain consistent results
within the PRTS. Recall that full OS schemes are independent of the tadpole
scheme and, thus, there is no such gauge dependence introduced.
As a third option, the Gauge-Invariant Vacuum expectation value Scheme was
developed to combine the gauge independence of the FJTS and the perturbative
stability of the PRTS in a single tadpole scheme. Therefore, it introduces two parts
δtGIVS

S,1 and δtGIVS
S,2 , S = h,H, of the respective tadpole renormalization constants

δtS. The former ones are introduced via a parameter renormalization transforma-
tion (similar to the PRTS) and the latter ones via a field redefinition (similar to
the FJTS). To determine δtGIVS

S,1 , one switches to the non-linear representation (see
Sect. 3.5), where the Higgs fields that correspond to the physical Higgs bosons are
gauge invariant. Consequently, the resulting tadpole functions are gauge indepen-
dent as well. These are used to determine the first parts of the tadpole constants
via

δtGIVS
h,1 = −T h

nl, δtGIVS
H,1 = −TH

nl , (4.10)

where the subscript “nl” marks the non-linear representation. At NLO they ex-
plicitly read

T S
nl =

∑
V=Z,Z′,W

λSV
[
3A0(M

2
V)− 2M2

V

]
+
∑

S′=h,H

[
λSS′A0(M

2
S′)
]

+ λSF
∑

f=l,u,d

[
NC,fm

2
fA0(m

2
f )
]
+ λSν4m

2
ν4
A0(m

2
ν4
), S = h,H, (4.11)

where NC,f is the respective colour factor of a fermion f . The various coupling
constants in the non-linear representation are given by

λhZ =
c2wM

2
Z

(
v1cαc

2
γM

2
Z − v2sαs

2
γM

2
Z′

)
16π2v1v2M2

W

, λHZ =
c2wM

2
Z

(
v1sαc

2
γM

2
Z + v2cαs

2
γM

2
Z′

)
16π2v1v2M2

W

,
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λhZ′ =
c2wM

2
Z′

(
v1cαs

2
γM

2
Z′ − v2sαc

2
γM

2
Z

)
16π2v1v2M2

W

, λHZ′ =
c2wM

2
Z′

(
v1sαs

2
γM

2
Z′ + v2cαc

2
γM

2
Z

)
16π2v1v2M2

W

,

λhW =
cαM

2
W

8π2v2
, λHW =

sαM
2
W

8π2v2
,

λhh =
3chhh
16π2

, λHh =
chhH
16π2

,

λhH =
chHH

16π2
, λHH =

3cHHH

16π2
,

λhF = − cα
4π2v2

, λHF = − sα
4π2v2

,

λhν4 =
sαs

2
θr

4π2v1
, λHν4 = −

cαs
2
θr

4π2v1
, (4.12)

where we made use of the shorthands for the Higgs self-couplings introduced in
Sect. 3.1, and A0(m

2) denotes the standard 1-loop 1-point integral in dimensional
regularization in the conventions of Ref. [54]. Similar to the PRTS, the resulting
(gauge-independent) tadpole counterterms δtGIVS

h,1 and δtGIVS
H,1 can be restored in

the Lagrangian, where th,0 and tH,0 are set to zero, via the replacements

µ2
1,0 → µ2

1,0 +
3
(
cαδt

GIVS
H,1 − sαδt

GIVS
h,1

)
4v1

, µ2
2,0 → µ2

2,0 +
3
(
cαδt

GIVS
h,1 + sαδt

GIVS
H,1

)
2v2

,

λ1,0 → λ1,0 +
cαδt

GIVS
H,1 − sαδt

GIVS
h,1

8v31
, λ2,0 → λ2,0 +

2
(
cαδt

GIVS
h,1 + sαδt

GIVS
H,1

)
v32

,

λ12,0 → λ12,0. (4.13)

Since we want to employ the linear Higgs representation in practical calculations,
we need to introduce further tadpole renormalization constants—in addition to
δtGIVS

h,1 and δtGIVS
H,1 —to the Lagrangian to ensure the full cancelation of the explicit

tadpole loop contributions in NLO calculations. These additional tadpole renor-
malization constants δtGIVS

h,2 and δtGIVS
H,2 are gauge dependent, but can, nevertheless,

be introduced such that predictions of observables stay gauge independent (even
in MS schemes) via field shifts similarly to the ones performed in the FJTS,

h→ h+∆vGIVS
h , ∆vGIVS

h = −
δtGIVS

h,2

M2
h

,

H → H +∆vGIVS
H , ∆vGIVS

H = −
δtGIVS

H,2

M2
H

. (4.14)

The explicit field shifts read

∆vGIVS
S =

T S − T S
nl

M2
S

= λSχA0(ξVMZ) + λSχ′A0(ξVMZ′) + λSϕA0(ξWMW), (4.15)

with S = h,H and the respective constants are given by

λhχ =
v1cαc

2
x − v2sαs

2
x

32π2v1v2
, λHχ =

v1sαc
2
x + v2cαs

2
x

32π2v1v2
,
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λhχ′ =
v1cαs

2
x − v2sαc

2
x

32π2v1v2
, λHχ′ =

v1sαs
2
x + v2cαc

2
x

32π2v1v2
,

λhϕ =
cα

16π2v2
, λHϕ =

sα
16π2v2

. (4.16)

Introducing the two parts of the tadpole renormalization constants in this way will
tie the renormalized vevs v1 and v2 to the minimum of the renormalized effective
Higgs potential without introducing any gauge dependence to the parameteriza-
tion of observables. Thus, the GIVS combines the benefits of the PRTS and FJTS,
making it a perturbatively stable, gauge-independent tadpole scheme.
As previously mentioned, for MS renormalization the choice of the tadpole treat-
ment has an impact on the predictions for observables. Whenever we use MS
renormalization in this work, we make use of the PRTS, which is the most com-
monly used tadpole scheme. Similar to the SM, the THDM, and the SESM cases,
it is expected that the results in the DASM obtained within the PRTS deviate
only marginally from the corresponding results obtained within the GIVS [72,73].
However, for the MS renormalization of the mixing angles we explicitly give all
expressions needed to translate the respective results from the PRTS to the GIVS
and FJTS.

4.2.2. Mass and field renormalization

We renormalize fields and masses using well-known OS conditions. To intro-
duce these OS renormalization conditions we follow the procedure described in
Refs. [54,79]. The resulting OS-renormalized fields are canonically normalized and
do not mix with each other. Furthermore, the renormalized mass parameters cor-
responding to physical particles mark the positions of the poles of the real parts of
the propagators. The renormalization conditions for the renormalized two-point
vertex functions Γab

R of the fields a, b, for OS external particles read

ReΓV †V ′

R,µν (−k, k)εν(k)|k2=M2
V
= 0, V, V ′ = A,Z, Z ′,W±, (4.17)

lim
k2→M2

V

1

k2 −M2
V

ReΓV †V
R,µν(−k, k)εν(k) = −εµ(k), (4.18)

ReΓSS′

R (−k, k)|k2=M2
S
= 0, S, S ′ = h,H, (4.19)

lim
k2→M2

S

1

k2 −M2
S

ReΓSS
R (−k, k) = 1, (4.20)

ReΓf̄f
R,ij(−p, p)uj(p)

∣∣∣∣
p2=m2

f,j

= 0, (4.21)

lim
p2→m2

f,i

/p+mf,i

p2 −m2
f,i

ReΓf̄f
R,ii(−p, p)ui(p) = ui(p). (4.22)

Here, we introduced the polarization vectors εµ(k) and the spinors ui(p) for the
OS external vector bosons and fermions with momenta k and p, respectively. The
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renormalized two-point vertex functions can further be decomposed using their
respective covariant decompositions. In ’t Hooft–Feynman gauge they are given
by

ΓV †V ′

R,µν (−k, k) = −gµν(k2 −M2
V )δV V ′ −

(
gµν −

kµkν
k2

)
ΣV †V ′

R,T (k2)− kµkν
k2

ΣV †V ′

R,L (k2),

ΓSS′

R (−k, k) =
(
k2 −M2

S

)
δSS′ + ΣSS′

R (k2), (4.23)

with the renormalized transversal and longitudinal self-energies, ΣV †V ′
R,T (k2) and

ΣV †V ′
R,L (k2), for the renormalized vector boson two-point functions. Further, in our

conventions all self-energies can be split up into

Σ
(
k2
)
= Σ1PI

(
k2
)
+ Σδt + Σtad, (4.24)

with the one-particle irreducible (1PI) contributions Σ1PI, the reducible tadpole
contributions Σtad, and the 1- and 2-point tadpole counterterms Σδt (see Ref. [54]
for further details). Similarly to the case of the neutral gauge bosons, the possi-
bility of mixing fields in the scalar sector of the DASM leads to a non-diagonal
structure in the renormalized Higgs self-energies given by

ΣSS′

R (k2) = ΣSS′
(k2) +

1

2
(k2 −M2

S)δZSS′ +
1

2
(k2 −M2

S′)δZS′S − δSS′δM2
S, (4.25)

with S, S ′ = h,H. Combining Eqs. (4.17)–(4.20) with Eqs. (4.23)–(4.25) finally
leads to the well-known results

δM2
V = ReΣV †V

T (M2
V ), δZV †V = −Re

∂ΣV †V
T (k2)

∂k2

∣∣∣∣
k2=M2

V

, V = A,Z, Z ′,W±,

δZV V ′ = −2Re
ΣV †V ′

T (M2
V ′)

M2
V ′ −M2

V

, V V ′ = AZ,ZA,AZ ′, Z ′A,ZZ ′, Z ′Z, (4.26)

for the renormalization constants in the vector-boson sector and

δM2
S = ReΣSS(M2

S), δZSS =− Re
∂ΣSS(k2)

∂k2

∣∣∣∣
k2=M2

S

,

δZSS′ = −2Re
ΣS′S(M2

S′)

M2
S′ −M2

S

, S ̸=S ′, S, S ′ = h,H, (4.27)

for the renormalization constants of the scalar sector. The covariant decomposition
of the renormalized fermion two-point vertex function is given by

Γff̄
R,ij(−p, p) = /pωLΓ

f,L
R,ij(p

2) + /pωRΓ
f,R
R,ij(p

2) + ωLΓ
f,l
R,ij(p

2) + ωRΓ
f,r
R,ij(p

2), (4.28)

with the chiral projectors ωL/R = 1
2
(1∓ γ5) and the renormalized left- and right-

handed vector and scalar parts of the fermion two-point vertex function are denoted
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by Γf,L
R,ij(p

2), Γf,R
R,ij(p

2), Γf,l
R,ij(p

2), and Γf,r
R,ij(p

2), respectively. Adopting this notation
for the covariants of the self-energies, the different contributions to the two-point
function can be further decomposed in terms of unrenormalized self-energy contri-
butions and renormalization constants leading to

Γf,L
R,ij(p

2) = δij + Σf ,L
ij

(
p2
)
+

1

2

(
δZf ,L

ij + δZf ,L†
ij

)
, (4.29)

Γf,R
R,ij(p

2) = δij + Σf ,R
ij

(
p2
)
+

1

2

(
δZf ,R

ij + δZf ,R†
ij

)
, (4.30)

Γf,l
R,ij(p

2) = −mf,iδij + Σf,l
ij

(
p2
)
− 1

2

(
mf,iδZ

f ,L
ij +mf,jδZ

f ,R†
ij

)
− δijδmf,i, (4.31)

Γf,r
R,ij(p

2) = −mf,iδij + Σf,r
ij

(
p2
)
− 1

2

(
mf,iδZ

f ,R
ij +mf,jδZ

f ,L†
ij

)
− δijδmf,i, (4.32)

where δZ†
ij = δZ∗

ji follows from the hermiticity of L. Combining Eqs. (4.21) and
(4.22) with Eqs. (4.28)–(4.32), we find, similarly to the SM case [51,54,79],

δmf,i =
1

2
Re
[
mf,i

(
Σf,L

ii (m2
f,i) + Σf,R

ii (m2
f,i)
)
+ Σf,l

ii (m
2
f,i) + Σf,r

ii (m
2
f,i)
]
,

δZf,L
ii = − ReΣf,L

ii (m2
f,i)−mf,i

∂

∂p2
Re
[
mf,i

(
Σf,L

ii (p2) + Σf,R
ii (p2)

)
+ Σf,l

ii (p
2) + Σf,r

ii (p
2)
]∣∣∣

p2=m2
f,i

,

δZf,R
ii = − ReΣf,R

ii (m2
f,i)−mf,i

∂

∂p2
Re
[
mf,i

(
Σf,L

ii (p2) + Σf,R
ii (p2)

)
+ Σf,l

ii (p
2) + Σf,r

ii (p
2)
]∣∣∣

p2=m2
f,i

,

δZf,R
ij =

2

m2
f,i −m2

f,j

Re
[
m2

f,jΣ
f,R
ij (m2

f,j) +mf,imf,jΣ
f,L
ij (m2

f,j) +mf,jΣ
f,l
ij (m

2
f,j)

+mf,iΣ
f,r
ij (m

2
f,j)
]
, i ̸= j, (4.33)

for the field and mass renormalization constants of the fermion sector.

4.2.3. Mixing-angle renormalization

In many BSM models, where some sort of mixing of fields appears, mixing angles,
like γ, α, or θr in the DASM, are introduced to parameterize the BSM modifica-
tions of certain couplings of SM-like particles. This intuitive interpretation and
direct experimental accessibility make them a natural choice as input parameters.
However, they are often introduced to diagonalize mass matrices of mixing fields
and, thus, are related to the masses of the corresponding particles. Therefore, MS
renormalization of these mixing angles will, in general, lead to a dependence of
predictions for observables on the choice of the tadpole renormalization scheme
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(see Sect. 4.2.1). Hence, a proper OS renormalization for mixing angles is de-
sirable. In the past, several OS renormalization schemes for mixing angles were
developed. A comprehensive overview of such schemes and a detailed discussion
of their benefits and downsides is given in Ref. [81]. Following this discussion, a
good OS renormalization scheme for mixing angles should have several desirable
properties:

• Resulting OS renormalization constants should be gauge independent. This
guarantees that predictions for observables are gauge-independent functions
of the renormalized mixing angles.

• Resulting higher-order corrections to observables should be of moderate size,
i.e., the renormalization scheme should not spoil the stability of the pertur-
bative approach in calculations. In detail, there should be no region in the
(otherwise perturbative region of the) parameter space, where the corrections
to S-matrix elements become unreasonably large or even develop a singular-
ity. Accordingly, the OS renormalization constants should not introduce any
“dead corners” to the parameter space for extreme values of the respective
mixing angle or in the case of degeneracy of the masses of the mixing particles
that are not already present in the LO coupling structure of the model.

• The renormalization of the mixing angle should not distinguish between the
mixing fields. Thus, it should be symmetric with respect to the mixing
degrees of freedom. Furthermore, it should be as process independent as
possible.

• The renormalization scheme should respect the LO decoupling properties of
heavy particles [83].

Having this in mind, we now define OS renormalization conditions for the mixing
angles present in the DASM.

4.2.3.1. Renormalization of the gauge-boson mixing angle γ

Following the approach for OS renormalization of scalar-sector mixing angles dis-
cussed in Ref. [81], we introduce a “fake fermion” ωd that carries an infinitesimal
charge of the new U(1)d gauge group. Besides that, it is a singlet under the re-
maining gauge symmetry of the DASM. Introducing ωd to the theory, we have
to add the most general gauge-invariant, renormalizable Lagrangian that includes
the fake fermion,

Lωd
= ω̄d

(
i /Dd −mωd

)
ωd = ω̄d

[
i/∂ − ẽq̃ω

(
sγ /Z + cγ /Z

′
)
−mωd

]
ωd, (4.34)

to the Lagrangian of the DASM. Here q̃ represents the U(1)d charge and mωd
is

the Dirac mass parameter of ωd, which is present since ωd is non-chiral4. Equation

4Note that this also ensures that no anomalies are introduced to the theory by introducing the
fake fermion.
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(4.34) introduced two additional vertices with the respective Feynman rules5

Zµ

ω̄d

ωd

= −iq̃ωẽsγγµ, Z ′
µ

ω̄d

ωd

= −iq̃ωẽcγγµ, (4.35)

to the theory, which vanish in the limit q̃ → 0, where the DASM is recovered.
However, we can use these additional interaction terms, or rather the possible6

Z/Z′ → ω̄dωd decays to define the OS renormalization condition for γ. To this
end, we parameterize the matrix elements of the two decays by the OS formfactors
FV ω̄dωd , (V = Z,Z ′), via

MZ→ω̄dωd = [ūωd/εvωd
]ZFZω̄dωd , MZ′→ω̄dωd = [ūωd/εvωd

]Z′FZ′ω̄dωd , (4.36)

with the spinors of the final-state fermions ūωd
and vωd

, and the polarization vector
of the respective gauge boson εµ. Further, the subscripts of the spinor chains
[. . . ]Z/Z′ indicate the respective decay kinematics. These OS formfactors can now
be used to determine the gauge-boson mixing angle renormalization constant δγ
at NLO. To this end, we use the ratio of the two formfactors and demand that the
NLO corrections to this ratio in the limit q̃ → 0 vanish

lim
q̃ω→0

FZω̄dωd
NLO

FZ′ω̄dωd
NLO

!
=

FZω̄dωd
LO

FZ′ω̄dωd
LO

=
sγ
cγ
. (4.37)

We specifically choose this ratio since it only depends on γ, but no other parameter
at LO. In this way, we can ensure that we do not absorb any corrections that are
related to other parameters of the model into the definition of δγ. Otherwise, this
misalignment can potentially lead to unnaturally large corrections (see e.g. Ref. [81]
and references therein). Using OS renormalization for the fields, the renormalized
formfactors are given by

FZω̄dωd
NLO = FZω̄dωd

LO

(
1 +

δẽ

ẽ
+
δsγ
sγ

+ δZωd
+

1

2
δZZZ +

cγ
2sγ

δZZ′Z + δZω̄dωd
loop

)
,

FZ′ω̄dωd
NLO = FZ′ω̄dωd

LO

(
1 +

δẽ

ẽ
+
δcγ
cγ

+ δZωd
+

1

2
δZZ′Z′ +

sγ
2cγ

δZZZ′ + δZ
′ω̄dωd

loop

)
.

(4.38)

Here we introduced the unrenormalized relative 1-loop corrections to the two ver-

tices δ
Z/Z′ω̄dωd

loop , respectively, as well as the field renormalization constant for δZωd

of ωd. In combination with Eq. (4.37) we find

5In our convention for Feynman rules all fields are considered incoming.
6The mass of the fake fermion can always be chosen such that these decays are possible.
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Zµ Z/Z ′
ωd

ω̄d

Z ′
µ Z/Z ′

ωd

ω̄d

Figure 4.1.: Feynman diagrams contribution to δ
Z/Z′ω̄dωd

loop .

FZω̄dωd
NLO

FZ′ω̄dωd
NLO

=
FZω̄dωd

LO

FZ′ω̄dωd
LO

[
1 +

δsγ
sγ

− δcγ
cγ

+
1

2

(
δZZZ − δZZ′Z′ +

cγ
sγ
δZZ′Z − sγ

cγ
δZZZ′

)
+ δZω̄dωd

loop − δZ
′ω̄dωd

loop

]
. (4.39)

The only NLO contributions to the vertex corrections are introduced by the re-

spective Feynman diagrams shown in Fig. 4.1. Thus, we find δ
Z/Z′ω̄dωd

loop = O(q̃2d) for
q̃d → 0. Similarly, the Feynman diagrams contributing to δZωd

include at least two
couplings of the Z or Z′ boson to ωd and, thus, δZωd

= O(q̃2d) as well. Therefore,
combining the renormalization condition Eq. (4.37) with Eq. (4.39) and taking the
decoupling limit q̃d → 0 for the fake fermion leads to

δγOS =
1

2
sγcγ (δZZ′Z′ − δZZZ) +

1

2

(
s2γδZZZ′ − c2γδZZ′Z

)
, (4.40)

where we made use of δsγ = cγδγ.
This OS renormalization combines several of the desirable properties mentioned
above:

• By defining the OS condition in terms of OS formfactors, the resulting
renormalization constant is based on S-matrix elements resulting in a gauge-
independent combination of field renormalization constants.

• It is symmetric in the neutral gauge-boson fields Z and Z ′.

• δγOS has smooth limits for sγ → 0 and cγ → 0.

• The renormalization constant δγOS does not depend on a specific physical
process.

• Predictions using this OS renormalization are stable in the degeneracy limit
MZ′ → MZ. To see this, we first note that all appearance of γ originating
from parameter replacements of the original parameters of the Lagrangian in
terms of our chosen input parameter set (see e.g. Eqs. (3.68) and (3.69) for
ed and a) include a prefactorM2

Z−M2
Z′ . This prefactor cancels the respective

poles introduced to δγOS via the off-diagonal gauge-boson field renormaliza-
tion constants in Eq. (4.40). Additionally, δγOS is explicitly introduced to
the theory by the field rotation matrix Eq. (3.58). In combination with the
introduced OS field renormalization Eq. (4.2) we find at NLO

RV(γ0; cw,0) = RV(γ, cw) + δRV(γ, cw, δγ, δcw), (4.41)
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and finallyB′
µ

W 3
µ

C ′
µ

 = RV(γ, cw)

(
1 + RT

V(γ, cw)δRV(γ, cw, δγ, δcw) +
1

2
δZV

)Aµ

Zµ

Z ′
µ

 .

(4.42)

The explicit δγ terms originating from δRV are always introduced in either
one of the combinations

−δγ + 1

2
δZZZ′ , δγ +

1

2
δZZ′Z , (4.43)

which in either case only introduces the off-diagonal field renormalization
constants δZZ′Z and δZZZ′ in the combination

δZZ′Z + δZZZ′ = 2Re
ΣZZ′

T (M2
Z)− ΣZ′Z

T (M2
Z′)

M2
Z′ −M2

Z

. (4.44)

This combination is stable for MZ′ → MZ making the OS scheme perturba-
tively stable in this limit.

• As discussed in Sect. 4.2.1, having full OS renormalization for all parame-
ters related to masses leads to a cancelation of all tadpole contributions in
predictions for observables.

Having this OS renormalization set up, it is straightforward to derive the respec-
tive MS result by simply setting the finite parts of δγOS to zero and only keeping
the terms proportional to the standard 1-loop UV divergence of dimensional reg-
ularization ∆UV,

δγMS = δγOS

∣∣
UV
. (4.45)

The explicit result for δγMS in the PRTS is given in Appendix D. Note that even
though the dependence on the tadpole treatment cancels exactly in predictions of
observables using OS renormalization, δγOS itself depends on the chosen tadpole
scheme. So does δγMS (see Eq. (4.45)). Its tadpole contributions in the three
tadpole schemes described in Sect. 4.2.1 explicitly read

δγPRTS
MS,tad

= 0, (4.46)

δγFJTS
MS,tad

= −
(
cZZ′h∆v

FJTS
h + cZZ′H∆v

FJTS
H

)
M2

Z −M2
Z′

∣∣∣∣
UV

, (4.47)

δγGIVS
MS,tad

= −
(
cZZ′h∆v

GIVS
h + cZZ′H∆v

GIVS
H

)
M2

Z −M2
Z′

∣∣∣∣
UV

, (4.48)
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where we introduced

cZZ′h = −s2γ (cαv1 + sαv2)
M2

C

v1v2
, cZZ′H = s2γ (cαv2 − sαv1)

M2
C

v1v2
, (4.49)

representing the couplings cZZ′hhZ
′
µZ

µ + cZZ′HHZ
′
µZ

µ in the Lagrangian. In the
PRTS, and, thus, in the GIVS, tadpole terms are explicitly introduced in the rela-
tions between the bare parameters of the Higgs potential λ1,0, λ2,0, λ12,0, µ

2
1,0, µ

2
2,0

and the bare vevs, masses, and mixing angles, introducing a tadpole scheme de-
pendence to the latter. The relation between the bare gauge-boson mixing angles
in the PRTS and FJTS is given by

γPRTS
0 = γFJTS

0 − 1

M2
Z −M2

Z′

(
cZZ′h

δtFJTS
h

M2
h

+ cZZ′H

δtFJTS
H

M2
H

)
, (4.50)

leading, in combination with Eqs. (4.46) and (4.47), to the (gauge-dependent) shift

γPRTS
MS

− γFJTS
MS

= γPRTS
0 − γFJTS

0 −
(
δγPRTS

MS
− δγFJTS

MS

)
=

1

M2
Z −M2

Z′

(
cZZ′h

T h

M2
h

+ cZZ′H

TH

M2
H

)∣∣∣∣
finite

, (4.51)

for the MS-renormalized mixing angle. Here the subscript “finite” indicates that
only the finite parts are kept. Similarly one finds the (gauge-independent) shift

γGIVS
MS

− γFJTS
MS

=
1

M2
Z −M2

Z′

(
cZZ′h

T h
nl

M2
h

+ cZZ′H

TH
nl

M2
H

)∣∣∣∣
finite

, (4.52)

for the connection between the GIVS and FJTS values of the MS renormalized
mixing angle. Finally, we want to emphasize that predictions using an MS renor-
malized γ are in general not stable in the limit MZ′ →MZ.

4.2.3.2. Renormalization of the Higgs mixing angle α

Since the Higgs field ρ is charged under the U(1)d gauge group, no gauge-invariant
interaction with a “fake fermion” (that allows us to recover the original theory
by taking an “easy” decoupling limit), as proposed in Ref. [81], is possible in
the DASM. Consequently, no fully process-independent OS definition is suitable
for the Higgs mixing angle α. In this section, we define two different, process-
dependent OS renormalization conditions for α and additionally give the result
for its MS renormalization. Note that a comparison of predictions obtained with
these different schemes can provide an estimate of the theoretical uncertainties of
the predictions. In order to define the first OS scheme, we make use of the decays
h/H → ν̄4ν4. Naturally, this is only applicable in the case Mh > 2mν4 . We use the
ratio of the respective on-shell formfactors Fh/Hν̄4ν4 of the two decays, defined by

Mh→ν̄4ν4 = [ūν4vν4 ]hFhν̄4ν4 , MH→ν̄4ν4 = [ūν4vν4 ]HFHν̄4ν4 , (4.53)
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to define our OS renormalization condition. Recall that in our notation [. . . ]h/H
represent the kinematics of the respective decays, and ūν4 and vν4 denote the
spinors of the final-state fermions. For our NLO renormalization of α, we demand
all NLO corrections to the ratio of the real parts of these formfactors to vanish

ReFhν̄4ν4
NLO

ReFHν̄4ν4
NLO

!
=

Fhν̄4ν4
LO

FHν̄4ν4
LO

= −sα
cα
. (4.54)

In the presented OS scheme we treat α as a real parameter, and, thus, the real
parts on the left-hand side of Eq. (4.54) are needed to ensure that absorptive
parts are not taken into account in the renormalization condition. At LO the
ratio Eq. (4.54) only depends on the parameter α and, thus, it is particularly well
suited for the Higgs mixing angle renormalization (see discussion below Eq. (4.37)).
Decomposing the two formfactors at NLO leads to

Fhν̄4ν4
NLO = Fhν̄4ν4

LO

[
1 +

δsα
sα

+
δsθr
sθr

+
δỹ

ỹ
− δv1

v1

+
1

2

(
2δZν

44 + δZhh −
cα
sα
δZHh +

cθr
sθr
δZν,R

34

)
+ δhν̄4ν4loop

]
,

FHν̄4ν4
NLO = FHν̄4ν4

LO

[
1 +

δcα
cα

+
δsθr
sθr

+
δỹ

ỹ
− δv1

v1

+
1

2

(
2δZν

44 + δZHH − sα
cα
δZhH +

cθr
sθr
δZν,R

34

)
+ δHν̄4ν4

loop

]
, (4.55)

where we introduced the shorthands δhν̄4ν4loop and δHν̄4ν4
loop for the unrenormalized rel-

ative 1-loop corrections to the two decays, respectively. Note that these process-
dependent parts will not cancel and enter the final result for the renormalization
constant obtained via the presented OS renormalization procedure. The intro-
duced field renormalization constant for the fermion ν4 is given by

δZν
44 =

1

2

(
δZν,L

44 + δZν,R
44

)
. (4.56)

Combining Eq. (4.54) with Eq. (4.55) leads to

ReFhν̄4ν4
NLO

ReFHν̄4ν4
NLO

= − sα
cα

{
1 +

δsα
sα

− δcα
cα

+
1

2

[
δZhh − δZHH +

sα
cα
δZhH − cα

sα
δZHh

]
+Re

[
δhν̄4ν4loop − δHν̄4ν4

loop

]}
, (4.57)

which, with the help of δsα = cαδα, yields

δαOS1 =
1

2
cαsα (δZHH − δZhh) +

1

2

(
c2αδZHh − s2αδZhH

)
+ cαsαRe

[
δHν̄4ν4
loop − δhν̄4ν4loop

]
, (4.58)
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for the OS renormalization constant δαOS1 for the Higgs mixing angle based on
the renormalization condition Eq. (4.54).
As an alternative OS renormalization condition, we employ the decays h/H → ν̄3ν4
or ν̄4 → h/Hν̄3 allowing for a wider range of applications7. In this case, the above
assumed mass hierarchy Mh > 2mν4 , is relaxed to mν3 ≪ Mh,MH,mν4 . For
Mh > mν4 , the respective on-shell formfactors are defined by

Mh→ν̄3ν4 = [ūν4ωRvν3 ]hFhν̄4ν3 , MH→ν̄3ν4 = [ūν4ωRvν3 ]HFHν̄4ν3 , (4.59)

while for MH < mν4 we define

Mν̄4→hν̄3 = [v̄ν4ωRvν3 ]hFhν̄4ν3 , Mν̄4→Hν̄3 = [v̄ν4ωRvν3 ]HFHν̄4ν3 , (4.60)

where the respective formfactors are formally identical in the two cases. Note
that in our notation the labels of the formfactors denote incoming fields. Here
we made us of the right-handed chiral projection operator ωR = 1

2
(1 + γ5), ūν4 , vν3

and v̄ν4 , vν3 denote the spinors of the respective fermions, and [. . . ]h/H indicate
the respective decay kinematics. Similarly to the previous case, the ratio of the
two formfactors at LO only depends on the parameter α, and as renormalization
condition, we demand the higher-order corrections to the ratio of their real parts
to vanish

ReFhν̄4ν3
NLO

ReFHν̄4ν3
NLO

!
=

Fhν̄4ν3
LO

FHν̄4ν3
LO

= −sα
cα
. (4.61)

At NLO the formfactors are given by

Fhν̄4ν3
NLO = Fhν̄4ν3

LO

[
1 +

δsα
sα

+
δcθr
cθr

+
δỹ

ỹ
− δv1

v1

+
1

2

(
δZν,R

33 + δZν,L
44 + δZhh −

cα
sα
δZHh +

sθr
cθr
δZν,R

43

)
+ δhν̄4ν3loop

]
,

FHν̄4ν3
NLO = FHν̄4ν3

LO

[
1 +

δcα
cα

+
δcθr
cθr

+
δỹ

ỹ
− δv1

v1

+
1

2

(
δZν,L

44 + δZν,R
33 + δZHH − sα

cα
δZhH +

sθr
cθr
δZν,R

43

)
+ δHν̄4ν3

loop

]
,

(4.62)

with the unrenormalized relative 1-loop corrections to the decays δ
h/Hν̄4ν3
loop , re-

spectively. Evaluating the renormalization condition Eq. (4.61) with the help of
Eq. (4.62), and making use of δsα = cαδα yields

7Recall that in the here considered “collider approximation”, we find mν3
= 0. Further note

that for non-vanishing neutrino massesmνi , i = 1, 2, 3, the full renormalization of the neutrino
sector is way more involved. However, this is neither needed nor of further interest in this
work.
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δαOS2 =
1

2
cαsα (δZHH − δZhh) +

1

2

(
c2αδZHh − s2αδZhH

)
+ cαsαRe

[
δHν̄4ν3
loop − δhν̄4ν3loop

]
, (4.63)

for the Higgs mixing-angle renormalization constant δαOS2 obtained via the OS
renormalization condition Eq. (4.61).
While both proposed OS renormalizations are process dependent, as can be seen
by the non-vanishing higher-order contributions δ

hν̄4νj
loop and δ

Hν̄4νj
loop , j = 3, 4, in

Eqs. (4.58) and (4.63), respectively, they have various other desirable features:

• Both are based on S-matrix elements and, thus, the resulting renormalization
constants are gauge independent.

• They are symmetric in the fields h and H.

• Both OS renormalization constants δαOSi, i = 1, 2, have smooth limits for
extreme values of α, i.e. sα → 0, cα → 0.

• The renormalization constants δαOSi are designed in such a way that predic-
tions in the degeneracy limit MH →Mh are numerically stable. This can be
seen by a similar argument as given above for the renormalization process of
γ and is explicitly shown8 in Ref. [81].

As a process-independent alternative MS renormalization can be employed for α.
The respective MS renormalization constant can, e.g., be obtained by keeping only
the terms of Eq. (4.58) or Eq. (4.63) that are proportional to the standard 1-loop
UV divergence of dimensional regularization, i.e.

δαMS = δαOS1

∣∣∣
UV

= δαOS2

∣∣∣
UV
. (4.64)

We give the explicit expression for δαMS in the PRTS in Appendix D. Note that the
process-independent δαMS is independent of any mass hierarchy of the particles.
While the tadpole contributions in full OS schemes cancel in predictions of ob-
servables this is not true if parameters related to masses are renormalized via MS
renormalization conditions. In general, δα depends on the tadpole treatment and
the explicit tadpole contributions to δαMS in the three tadpole schemes introduced
in Sect. 4.2.1 read

δαPRTS
MS,tad

= 0, (4.65)

δαFJTS
MS,tad

= −2
chhH∆v

FJTS
h + chHH∆v

FJTS
H

M2
H −M2

h

∣∣∣∣
UV

, (4.66)

8Note that they investigate pure Higgs extensions, like the Singlet Extension of the SM, where
it is even possible to construct process-independent renormalization constants. The presence
of the higher-order contributions is, however, irrelevant for the numerical stability in the
degeneracy limit.
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δαGIVS
MS,tad

= −2
chhH∆v

GIVS
h + chHH∆v

GIVS
H

M2
H −M2

h

∣∣∣∣
UV

, (4.67)

with the scalar self-coupling constants chhH and chHH given in Eqs. (3.31) and
(3.32). As discussed in Sect. 4.2.1, the tadpole counterterms enter in the rela-
tions between the original bare parameters of the Higgs sector and the chosen set
of (bare) input parameters. Thus, the latter depend on the tadpole treatment.
Explicitly, the bare mixing angles in the PRTS, αPRTS

0 , and FJTS, αFJTS
0 , are

connected via

αPRTS
0 = αFJTS

0 − 2

M2
H −M2

h

(
chhH

δtFJTS
h

M2
h

+ chHH
δtFJTS

H

M2
H

)
. (4.68)

Combining this with Eqs. (4.65) and (4.66) leads to

αPRTS
MS

− αFJTS
MS

= αPRTS
0 − αFJTS

0 −
(
δαPRTS

MS
− δαFJTS

MS

)
=

2

M2
H −M2

h

(
chhH

T h

M2
h

+ chHH
TH

M2
H

)∣∣∣∣
finite

, (4.69)

representing a gauge-dependent shift between the values of the MS-renormalized
mixing angle in the two schemes. Similarly, one finds for the relation between the
values of the MS-renormalized Higgs mixing angle in the FJTS and the GIVS the
gauge-independent shift

αGIVS
MS

− αFJTS
MS

=
2

M2
H −M2

h

(
chhH

T h
nl

M2
h

+ chHH
TH
nl

M2
H

)∣∣∣∣
finite

. (4.70)

Note that predictions based on an MS renormalized α are in general not stable in
the limit MH →Mh.

4.2.3.3. Renormalization of the fermion mixing angle θr

The OS renormalization of the mixing angle in the fermion sector closely follows
the renormalization procedure for the gauge and Higgs mixing angles presented in
the previous two sections. Similarly to the case of the Higgs mixing angle α no
fully process-independent OS renormalization for θr is possible. In the following,
we give two possible OS renormalization conditions for the mixing angle θr as well
as the result for its MS renormalization.
For the first OS renormalization condition we assume the mass hierarchy
MH > 2mν4 and make use of the OS formfactors of the decays H → ν̄4ν4 and
H → ν̄3ν4 defined by

MH→ν̄4ν4 = [ūν4vν4 ]HFHν̄4ν4 , MH→ν̄3ν4 = [ūν4ωRvν3 ]HFHν̄4ν3 , (4.71)

where the spinors of the final-state fermions are given by ūν4 and vj, j = ν3, ν4,
ωR = 1

2
(1 + γ5) is the right-handed chiral projection operator, and [. . . ]H denotes
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the kinematics of the decay. The respective OS renormalization condition is defined
by demanding the NLO corrections to the ratio of the real parts of the NLO
formfactors to vanish

ReFHν̄4ν4
NLO

ReFHν̄4ν3
NLO

!
=

FHν̄4ν4
LO

FHν̄4ν3
LO

=
sθr
cθr
. (4.72)

Note that this ratio is especially well suited for the renormalization of the fermion
mixing angle, since it does not depend on any other parameter but θr. The ex-
plicit decompositions of FHν̄4ν4

NLO and FHν̄4ν3
NLO are given by Eqs. (4.55) and (4.62),

respectively, and yield

ReFHν̄4ν4
NLO

ReFHν̄4ν3
NLO

=
sθr
cθr

{
1 +

δsθr
sθr

− δcθr
cθr

+
1

2

[
δZν,R

44 − δZν,R
33 +

cθr
sθr
δZν,R

34 − sθr
cθr
δZν,R

43

]
+Re

[
δHν̄4ν4
loop − δHν̄4ν3

loop

]}
. (4.73)

Combining this with the OS renormalization condition Eq. (4.72) one finds

δθHr,OS =
1

2
cθrsθr

(
δZν,R

33 − δZν,R
44

)
+

1

2

(
s2θrδZ

ν,R
43 − c2θrδZ

ν,R
34

)
+ cθrsθrRe

[
δHν̄4ν3
loop − δHν̄4ν4

loop

]
, (4.74)

where we used δsθr = cθrδθr.
As an alternative to Eq. (4.74), we briefly sketch a second OS renormalization for
θr making use of the OS formfactors FZ′ν̄R3 νR3 and FZ′ν̄4ν3

1 defined by the decays
Z′ → ν̄R3 ν

R
3 and Z′ → ν̄3ν4 via

MZ′→ν̄R3 νR3 = [ūν3/εωRvν3 ]Z′FZ′ν̄R3 νR3 , (4.75)

MZ′→ν̄3ν4 = [ūν4/εωRvν3 ]Z′FZ′ν̄4ν3
1 + [ūν4ωRvν3 ]Z′

(
εµp

µ
ν3

)
FZ′ν̄4ν3

2 , (4.76)

where the spinors of the final-state fermions are represented by ūνj and vν3 , j = 3, 4,
εµ is the polarization vector of the Z′ boson, and ωR = 1

2
(1+γ5) is the right-handed

chirality projector. Further, pν3 is the momentum of the neutrino ν3 and the decay
kinematics are denoted by [. . . ]Z′ . Here we want to stress that in the Z′ → ν̄3ν4
decay an additional, loop-induced, formfactor FZ′ν̄4ν3

2 appears at NLO. However,
due to the unique decomposition of the matrix element into different covariants
spanning the underlying Z′-truncated Green function, we can formulate the OS
renormalization conditions by only using FZ′ν̄4ν3

1 .
With these formfactors we can now define a second, alternative OS renormalization
condition for θr. To this end, we demand, similarly to Eq. (4.72), that the higher-
order corrections to the ratio of the real parts of the respective NLO formfactors

ReFZ′ν̄R3 νR3
NLO

ReFZ′ν̄4ν3
1,NLO

!
=

FZ′ν̄R3 νR3
LO

FZ′ν̄4ν3
1,LO

= −sθr
cθr
, (4.77)
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vanish. Even though the Z′ → ν̄3ν4 decay requires the mass hierarchy MZ′ > mν4 ,
for MZ′ < mν4 , we can simply switch from the Z′ → ν̄3ν4 decay to the ν4 → Z′ν3
decay in Eq. (4.77) to cover the whole parameter space (within our collider approxi-
mation where mν3 = 0), without changing the formal result of the renormalization
constant δθZ

′

r,OS. Following the same recipe as given above for the derivation of
δθHr,OS, leads to

δθZ
′

r,OS =
1

2
sθrcθr

(
δZν,R

44 − δZν,R
33

)
+

1

2

(
c2θrδZ

ν,R
43 − s2θrδZ

ν,R
34

)
+ sθrcθrRe

[
δZ

′ν4ν3
loop − δZ

′ν3ν3
loop

]
, (4.78)

for the renormalization constant δθZ
′

r,OS defined by Eq. (4.77). Here, δZ
′νiν3

loop , i = 3, 4,
denote the unrenormalized relative NLO contributions to the decays, respectively.
While both presented OS renormalization schemes for θr are process dependent,
they both incorporate several desirable features. Not only will predictions of
observables in full OS renormalization schemes be independent of the tadpole
treatment, but also both δθHr,OS and δθZ

′

r,OS are directly connected to S-matrix
elements and, therefore, are gauge-independent combinations of quantum-field-
theoretical quantities. Furthermore, they are well-behaved for exceptional values
of θr, i.e. sθr → 0, cθr → 0.
As a process-independent alternative, MS renormalization can be employed. The
respective renormalization constant δθr,MS can be obtained by dropping all finite

parts in either δθHr,OS or δθZ
′

r,OS

δθr,MS = δθHr,OS

∣∣∣
UV

= δθZ
′

r,OS

∣∣∣
UV
. (4.79)

While this is true in any tadpole scheme, the renormalization of θr in general
depends on the tadpole treatment. We give the explicit result for δθr,MS in the
PRTS in Appendix D. Predictions of observables based on θr,MS in general depend
on the tadpole treatment. The tadpole contributions to δθr,MS in the different
schemes introduced in Sect. 4.2.1 are given by

δθPRTS
r,MS,tad

= 0, (4.80)

δθFJTS
r,MS,tad

=
1

mν4

(
chν̄4ν3∆v

FJTS
h + cHν̄4ν3∆v

FJTS
H

)∣∣∣∣
UV

, (4.81)

δθGIVS
r,MS,tad

=
1

mν4

(
chν̄4ν3∆v

GIVS
h + cHν̄4ν3∆v

GIVS
H

)∣∣∣∣
UV

, (4.82)

with the coupling constants

chν̄4ν3 =
1

v1
sαsθrcθrmν4 , cHν̄4ν3 = − 1

v1
cαsθrcθrmν4 , (4.83)
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of the respective chν̄4ν3hν̄4ν3 + cHν̄4ν3Hν̄4ν3 terms in the Lagrangian. Similarly to
the case for γ0 and α0 the definition of θr,0 depends on the tadpole scheme. The
relation between the bare mixing angles in the PRTS and the FJTS is given by

θPRTS
r,0 = θFJTS

r,0 +
1

mν4

(
chν̄4ν3

δtFJTS
h

M2
h

+ cHν̄4ν3

δtFJTS
H

M2
H

)
, (4.84)

leading, in combination with Eqs. (4.80) and (4.81), to the gauge-dependent shift

θPRTS
r,MS

− θFJTS
r,MS

= θPRTS
r,0 − θFJTS

r,0 −
(
δθPRTS

r,MS
− δθFJTS

r,MS

)
= − 1

mν4

(
chν̄4ν3

T h

M2
h

+ cHν̄4ν3

TH

M2
H

)∣∣∣∣
finite

, (4.85)

between the values of the MS-renormalized mixing angles in the PRTS and FJTS.
Similarly, a gauge-independent shift

θGIVS
r,MS

− θFJTS
r,MS

= − 1

mν4

(
chν̄4ν3

T h
nl

M2
h

+ cHν̄4ν3

TH
nl

M2
H

)∣∣∣∣
finite

, (4.86)

connects the renormalized mixing angles in the GIVS and FJTS.

4.2.4. Charge renormalization in the DASM

To complete the renormalization of the DASM, we need to define the renormal-
ization of the electric unit charge. The electric unit charge is commonly defined
via the low-energy photon–fermion interaction, i.e. via the Af̄f -vertex for on-shell
fermions f in the Thomson limit, i.e. in the limit of vanishing photon momentum.
To derive the resulting charge renormalization constant, we follow the procedure
presented in Ref. [84], which generalizes the OS charge renormalization in the SM
to a wide range of BSM theories that include at least one U(1) gauge symme-
try9, like the broken U(1)Y representing the weak hypercharge in the SM and the
DASM. In the following we make use of the all-order recipe given in Ref. [84] and
briefly sketch the derivation of δZe in the DASM at NLO using our notation and
conventions.
To start, we emphasize that higher-order corrections to the coupling strength of the
photon to any charged particle—typically chosen to be fermions—in the Thomson
limit do not depend on the specific properties (besides the charge) of the charged
particle. This fact is commonly known as charge universality. This can, e.g., be
proven via the background field method [51, 84–86], where the complexity of the
electric-charge renormalization of the SM is greatly reduced. Taking charge univer-
sality as a starting point for our derivation of the NLO OS charge renormalization

9The proof relies on the freedom to choose the U(1) gauge-group charge of any particle at will,
since their charges turn out to be not quantized.
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constant in the DASM, we introduce a second “fake fermion” field10 κ to the the-
ory. This fake fermion field carries an infinitesimal weak hypercharge YW,κ, but
transforms as a singlet under the remaining gauge group of the DASM. This in-
finitesimal weak hypercharge leads to an infinitesimal electric charge Qκ = YW,κ/2
(see Eq. (2.14)). To account for the presence of this fermion field, we have to add
the most general renormalizable gauge-invariant Lagrangian that includes the fake
fermion field

Lκ = κ̄

(
i/∂ − Yw,κ

2
g1 /B −mκ

)
κ

= κ̄

{
i/∂ − eQκ

[
/A+

1

cw

(
(swcγ − ηsγ) /Z − (swsγ + ηcγ) /Z

′
)]

−mκ

}
κ, (4.87)

to the Lagrangian of the DASM. The first term in the upper line represents the
kinetic term of the fermion field, the second term represents its gauge interaction
with the neutral gauge fields (see also second line), and the last term represents a
possible Dirac mass term (present since κ is non-chiral). Note that the infinitesi-
mal hypercharge does not allow for any Yukawa-type interactions between κ and
the scalar bosons of the DASM.
From Eq. (4.87) it is obvious that the resulting Feynman rules for the V κ̄κ,
V = A,Z, Z ′, vertices are proportional to the charge Qκ of the fake fermion κ.
Thus, taking the limit Qκ → 0 (or equivalently YW,κ → 0) will decouple κ com-
pletely from the theory and the DASM is recovered. As discussed above, charge
universality implies that any charged particle can be used to derive the renormal-
ization constant of the electric unit charge and restore its low-energy interpretation.
Thus, we define the charge renormalization constant in the DASM by demanding
that all higher-order corrections to the Aκ̄κ vertex vanish in the Thomson limit.
This means that the respective NLO renormalized vertex function recovers its LO
result, i.e.

ū(p)ΓAκ̄κ
R,µ (0,−p, p)u(p)

∣∣∣∣∣
p2=m2

κ

= −Qκeū(p)γµu(p), (4.88)

with the renormalized on-shell mass of the fake fermion mκ. Further decomposing
this NLO renormalized vertex function in terms of unrenormalized quantities as
well as renormalization constants leads to

ΓAκ̄κ
R,µ (k, p̄, p) =

(
1 +

1

2
δZAA + δZκ + δZe

)
ΓAκ̄κ
LO,µ(k, p̄, p) +QκΛ

Aκ̄κ
µ (k, p̄, p)

+
1

2
δZZAΓ

Zκ̄κ
LO,µ(k, p̄, p) +

1

2
δZZ′AΓ

Z′κ̄κ
LO,µ(k, p̄, p), (4.89)

10Note that we only change the name of the fake fermion from η, used in the respective discussion
in Ref. [84], to κ here, to avoid confusion with the parameter η introduced in Eq. (3.56).
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where the LO vertex functions in the DASM are given by

ΓAκ̄κ
LO,µ(k, p̄, p) = −Qκeγµ, (4.90)

ΓZκ̄κ
LO,µ(k, p̄, p) = −Qκ

e

cw
(swcγ − ηsγ) , (4.91)

ΓZ′κ̄κ
LO,µ(k, p̄, p) = Qκ

e

cw
(swsγ + ηcγ) . (4.92)

Here, ΛAκ̄κ
µ (k, p̄, p) represents the unrenormalized vertex corrections and δZκ is the

OS field renormalization constant for κ. Since all couplings of the fake fermion to
any particles of the DASM scale with Qκ it is obvious that

δZκ = O
(
Q2

κ

)
, ΛAκ̄κ

µ (k, p̄, p) = O
(
Q2

κ

)
. (4.93)

Thus, taking the limit Qκ → 0 and keeping only terms linear in Qκ in Eq. (4.89),
the renormalization condition Eq. (4.88) leads to

0 =

[
δZe +

1

2
δZAA +

1

2cw

{
(swcγ − ηsγ) δZZA − (swsγ + ηcγ) δZZ′A

}]
ū(p)γµu(p).

(4.94)

This further yields

δZe = −1

2

[
δZAA +

swcγ − ηsγ
cw

δZZA − swsγ + ηcγ
cw

δZZ′A

]
, (4.95)

for the OS charge renormalization constant in the DASM. Note that, as expected
by charge universality, δZe is independent of any specific properties of κ, but only
depends on gauge-boson self-energies. Furthermore, the well-known SM result (see
e.g. Refs. [51, 54]) is recovered by taking the respective SM limit γ → 0 (which
implies η → 0).



5. Confrontation of the DASM
with precision data

After setting up the DASM as well as corresponding OS and MS renormalization
schemes in the previous two chapters, we are now ready to test its predictive power.
Therefore, we perform a first phenomenological study of the DASM in this chapter.
After introducing the input-parameter scheme used in the following calculations
in Sect. 5.1 and the computational setup implemented for the numerical evalua-
tions in Sect. 5.2, we define two different renormalization schemes in Sect. 5.3 that
are used for the following calculations. In Sect. 5.4, we derive 1-loop BSM effects
and combine them with their respective state-of-the-art SM predictions to obtain
even more precise predictions for several precision observables (POs) within the
DASM.
Higgs singlet extensions, introducing scalar sector extensions to the SM that are
similar to the extended Higgs sector within the DASM, are already discussed in the
literature in quite some detail, and several analyses (see e.g. Refs [16,87] and refer-
ences therein) on their phenomenological implications have been performed. Thus,
we mainly focus on the gauge-sector extension of the DASM in the phenomeno-
logical analysis presented in this work. We investigate four EW POs, namely the
W-boson mass, derived from muon decay, the anomalous magnetic moment of the
muon (g − 2)µ, the leptonic partial decay width of the Z boson, and the leptonic
effective weak mixing angle. In Sect. 5.4, we give the theoretical setup of these POs
in the DASM as well as explicit results for interesting intermediate steps in their
derivations. Further, this section includes a detailed discussion of the dependences
of each of the predictions for these POs on the BSM parameters introduced by the
DASM. This is done for both renormalization schemes defined in Sect. 5.3, and
interesting differences between the results of the two respective renormalization
schemes are discussed in detail.
In the last part of this chapter (see Sect. 5.5), we perform a global fit to find the
BSM parameter values that minimize the tension between all investigated PO pre-
dictions in the DASM and measurements. Trying to be as general as possible, we
include the possibilities for the Z′ boson and the BSM Higgs boson to be heavier
or lighter than their respective SM counterparts. To account for parametric un-

65
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certainties of our predictions, we also take some SM-like parameters as free input
parameters in the fit. Treating them similar to the POs described above, they are
constrained by their respective measured values via additional contributions to the
investigated χ2 function (see Sect. 5.5.1.1 for more details).

5.1. Input-parameter scheme

In order to perform precision calculations in any QFT, a consistent set of input
parameters is of uttermost importance to ensure the consistency of the results. A
careless change of the set of input parameters or their respective values within a
calculation could not only break gauge invariance (if it is done in gauge-dependent
subparts of the calculation), but also destroy the cancellation of UV or infrared
divergences, rendering the result meaningless. In contrast, a good choice of the
set of input parameters will incorporate well-defined and precisely measured pa-
rameters which minimize the parametric uncertainties in theory predictions. For
the DASM, we chose Eq. (3.117) as intuitive input-parameter set and formulated
renormalization schemes based on these input parameters in the previous chapter.
It is common to define the electromagnetic coupling constant

αem =
e2

4π
(5.1)

from the electric unit charge. In the following discussion, we closely follow the ar-
guments of Ref. [54]. Depending on the quantities investigated in EW calculations,
one of three different input-parameter schemes is commonly used for the electro-
magnetic coupling constant, to further improve the precision of predictions: the
first scheme employs the fine-structure constant αem(0), representing the electric
unit charge in the Thomson limit (see Sect. 4.2.4); the second scheme uses α(M2

Z),
where the renormalization group equation is used to evolve the running electro-
magnetic coupling constant from αem(Q

2 = 0) to αem(Q
2 =M2

Z), where Q denotes
the energy scale where the running electromagnetic coupling constant αem(Q

2) is
evaluated; and as a third option, one can use the so-called Gµ-scheme, where the
very precisely known Fermi constant Gµ is used to derive an effective value αGµ

for the electromagnetic coupling αem using muon decay. While the fine-structure
constant αem(0) can be used straightforwardly with our choice of charge renormal-
ization, the two latter schemes need some further explanations. At Q2 =M2

Z, the
running electromagnetic coupling constant is given by

αem(M
2
Z) =

αem(0)

1−∆αem

. (5.2)

It allows us to resum the large logarithms of light-fermion masses appearing in the
charge renormalization constant δZe, via the so-called vacuum polarization ∆αem

(see Eq. (5.22) for the explicit definition). These logarithms of the light-fermion
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masses can lead to numerical instabilities as well as large higher-order corrections.
Additionally, it can be used to drastically reduce uncertainties of predictions, orig-
inating from the appearance of light-quark masses. From a practical point of view,
one can introduce the α(M2

Z)-scheme by substituting

αem(0) → αem(M
2
Z), δZe → δZe|αem(M2

Z)
= δZe −

1

2
∆αem, (5.3)

where δZe is the charge renormalization constant defined in the Thomson limit
(see Eq. (4.95)). The last term in Eq. (5.3) has to be introduced to avoid double
counting of any corrections introduced by the first replacement of Eq. (5.3). For
further details on the α(M2

Z)-scheme we refer the reader to Sect. 5.4.1 (and refer-
ences therein), where we use muon decay to eliminate the W-boson mass from our
input-parameter scheme in favour of Gµ. In the Gµ-scheme the electromagnetic
coupling constant is connected to the Fermi constant via muon decay, yielding at
NLO

αGµ =

√
2Gµs

2
wM

2
W

π
= αem(0)(1 + ∆rNLO), (5.4)

where ∆rNLO represents the NLO EW corrections to muon decay. The exact
definition of ∆rNLO is given in Sect. 5.4.1 (see Eq. (5.16)), where we investigate
the prediction for muon decay in the DASM at NLO in full detail. In general,
the Gµ-scheme allows to largely absorb universal corrections originating from the
renormalization of the weak mixing angle by introducing the precisely measured
quantityGµ. Thus, it can be used to greatly reduce the size of radiative corrections,
especially for processes with W-boson couplings at LO. At NLO it can, e.g., be
introduced in calculations via the replacements

αem(0) → αGµ , δZe → δZe|αGµ
= δZe −

1

2
∆rNLO. (5.5)

Equations (5.3) and (5.5) show that the choice of the input scheme for the elec-
tromagnetic coupling is merely a choice of the renormalization of the electric unit
charge, differing only by the finite parts 1

2
∆αem and 1

2
∆rNLO, respectively. We want

to emphasize that, in some calculations, it is possible to define gauge-invariant
subsets of contributions that ultimately add up to the desired prediction. While
one has to stick to one input-parameter scheme within these subsets, it is pos-
sible (and sometimes even desirable) to use different input schemes for different
gauge-invariant subsets.

5.1.1. Input-parameter values and benchmark scenarios

With the discussion of the previous section in mind, we now define the explicit
values for the SM-like input parameters used in the discussion of the dependence
of the POs on the BSM parameters given below (see Sect. 5.4). We choose

(αem(0))
−1 = 137.035999180, Gµ = 1.1663788 · 10−5GeV−2,
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∆α
(5)
had = 0.02768, αs(M

2
Z) = 0.1179,

MZ = 91.1876GeV, MS = 125.25GeV,

me = 0.51099895 · 10−3GeV, mµ = 0.1056583755GeV,

mτ = 1.77686GeV, mu = 0.1GeV,

md = 0.1GeV, ms = 0.1GeV,

mc = 1.27GeV, mb = 4.18GeV,

mt = 172.5GeV, (5.6)

closely following the recommendations of Ref. [16]. Here, S denotes the SM-like
Higgs boson, which can either be h or H, depending on the investigated DASM
scenario. Even though the W-boson mass MW is part of our input-parameter
set for the DASM defined in Eq. (3.117), we use the predicted value from muon
decay derived in Sect. 5.4.1, as its input value in the calculation of all other POs,
effectively trading it for the Fermi constant Gµ in our numerical input-parameter
set. For our discussion of the parameter dependences of the investigated POs in
Sect. 5.4, we further define the two benchmark scenarios

(i) γ = 0.01, MZ′ = 50GeV, α = 0.2, λ12= 0.01, MH = 500GeV,

θr = 0.5, mν4 = 200GeV, (5.7)

(ii) γ = 0.01, MZ′ = 50GeV, α′ = 0.2, λ12= 0.01, Mh = 30GeV,

θr = 0.5, mν4 = 200GeV, (5.8)

for the BSM parameters of the DASM, which are, of course, only used for the
parameters that are not varied in the respective plots. Here we defined α′ = π

2
−α

representing the “distance” to the SM limit in the case MH = MSM
h (benchmark

scenario (ii)), and the values given for Mh′ , h′ = h,H, is the mass of the non-
SM-like Higgs boson, respectively. Note that the two benchmark points (5.7) and
(5.8) are chosen such that they showcase the influence of the BSM parameters on
the predictions of the investigated POs in the case of the new Higgs boson being
heavier (scenario (i)) or lighter (scenario (ii)) than the observed SM-like Higgs
boson.

5.1.2. Perturbativity constraints

All predictions for observables investigated in this work are based on a perturba-
tion theory1. The respective expansion parameters2 are the coupling constants g2,
g1, and ed of the gauge groups SU(2)W, U(1)Y, and U(1)d, respectively, the cou-
pling constants λ1, λ2, and λ12 introduced by the Higgs potential, and the Yukawa
coupling constant yρ introduced in the fermion sector of the DASM. If the absolute

1For details see Appendix A and references therein.
2Note that we only explicitly list the respective expansion parameters that are critical for our
analysis here.
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value of any of these parameters becomes too large, the higher-order contributions
to the perturbative series are no longer sufficiently suppressed, leading to a bad
convergence behaviour of predictions, ultimately invalidating the perturbative ap-
proach. To ensure perturbativity of the theory, we constrain these parameters
in our phenomenological analysis to some upper limit. For the new parameters
introduced in the Higgs potential we demand that the absolute values of the cou-
pling constants appearing in the respective Feynman rules of h2ih

2
j , i, j = 1, 2,

interactions, resulting from the Higgs potential

V4S = λ1h
4
1 +

λ2
16
h42 +

λ12
2
h21h

2
2, (5.9)

are in the interval [0, 2π], i.e.

4!λ1
4π

≤ 1

2
,

4!λ2
64π

≤ 1

2
,

2! 2!λ12
8π

≤ 1

2
. (5.10)

Similarly, we demand the absolute value of the coupling constant yρ appearing in
the respective Feynman rule for the h1f̄

′L
d ν

R
3 vertex to be in the interval

[
0,
√
2π
]
,

i.e.
y2ρ
8π

≤ 1
2
. Inspired by the typical parameter combinations Eq. (5.1) and αs =

g2s
4π

used for the power counting of higher-order corrections, we demand αi =
g2i
4π

≤ 1
2
,

gi = g1, g2, ed, for the respective gauge-coupling strengths. In total, this leads to
the additional constraints

g22, g
2
1, e

2
d ≤ 2π, |λ1| ≤

π

12
, |λ2| ≤

4

3
π, |λ12| ≤ π, y2ρ ≤ 4π, (5.11)

for the respective coupling parameters of the DASM.

5.2. Computational setup

In high-energy physics, most calculations for quantum-field-theoretical quantities
involve the evaluation of many Feynman diagrams. While for most 2-loop (and
beyond) calculations, many needed results for loop integrals are still unknown, for
1-loop calculations a complete basis of standard integrals exists (see e.g. [79]),
covering all integrals possibly appearing in the evaluation of 1-loop diagrams.
However, simply due to the large amount of Feynman diagrams that need to be
calculated already at 1-loop, especially in BSM theories, an automation of these
calculations is inevitable for any precision calculation. To this end, we produced
a FeynArts [88] model file for the DASM using the Mathematica [89] package
FeynRules [90]. With the help of this model file, we use the Mathematica
packages FeynArts and FormCalc to construct all needed Feynman diagrams
and compute them in terms of standard integrals, respectively. The results of the
POs presented in Sects. 5.4.1, 5.4.2, and 5.4.4–5.4.5 are checked against a sec-
ond implementation (using FeynArts and FormCalc as well) using a second
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model file created by Heidi Rzehak. To achieve the time efficiency of the numerical
evaluation of these analytic expressions needed for the global fit (see Sect. 5.5),
we export them in the form of C++ libraries. For the numerical evaluation of
the appearing loop integrals, the results are linked to the Fortran library Col-
lier [91–94], using the private code Linc [95]. Collier is particularly well suited
for the computations occurring in BSM global fits since it is designed to be numer-
ically stable even for extreme input parameter regions of the loop integrals. This
C++ implementation was tested against results obtained using the Mathematica
package LoopTools [96] for both FeynArts model files. Finally, the numerical
results are used in our global fit routine, which makes use of the python interface
iminuit [97] for the C++ library Minuit2 [98] (see Sect. 5.5.2 for more details on
the technical setup of the fit).

5.3. Definition of renormalization schemes

In Chapter 4, we have discussed the full renormalization of the DASM including OS
as well as MS renormalization conditions for the renormalization constants of the
entire DASM input-parameter set. Here, we define two complete renormalization
schemes, an OS schemes and a hybrid scheme, which are then used in the following
study of the phenomenology of the DASM.

5.3.1. OS scheme

For the OS scheme, we take OS renormalization conditions for the parameters and
fields3. The OS mass and field renormalization constants are defined in Sect. 4.2.2
and the OS renormalization constant of the gauge-boson mixing angle γ is given in
Eq. (4.40). All DASM predictions for the observables discussed in the following are
independent of the renormalization conditions for the Higgs mixing angle α and
the mixing angle θr of the fermion sector. Therefore, we either take Eq. (4.58) or
Eq. (4.63), and Eq. (4.74) or Eq. (4.78) for δαOS and δθr,OS, respectively, to com-
plete the definition of the OS scheme. This OS renormalization scheme incorpo-
rates all benefits of pure OS renormalization, like the independence of predictions
on the tadpole treatment, the numerical stability in the case of degenerate masses
of particles corresponding to mixing fields, etc., as already discussed in detail in
Chapter 4.
However, it turns out that our definitions of the OS mixing angles can introduce so-
called threshold effects to predictions in specific parameter regions4. These effects

3This excludes the renormalization of λ12, where we only define an MS renormalization con-
dition. However, all observables considered here are independent of the renormalization
constant for λ12 at 1-loop level.

4For similar OS renormalization conditions for mixing angles of scalar BSM sectors, similar
results were found by the authors of Ref. [99].
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Figure 5.1.: The renormalization constant δγOS is shown, illustrating the appear-
ance of threshold effects introduced, e.g., via the self-energy contri-
butions of the Z′ and Z with a virtual ν4 loop, in the vicinity of
MZ′/Z = 2mν4 .

are non-physical artifacts of the OS scheme originating from neglecting the unsta-
ble nature of decaying particles. Including the respective width effects via, e.g.,
the so-called complex-mass scheme (see Refs. [54, 100–102]) can cure these non-
physical threshold effects. The threshold effects enter, e.g., δγOS, via self-energy di-
agrams (and their derivatives) introduced by the renormalization constants δZV V ′ ,
V, V ′ = Z,Z ′. At the 1-loop level, they can appear whenever the invariant mass of
the momentum is close to the sum of the two masses in the 1-loop bubble Feynman
diagram. For illustration, we show the dependence of δγOS on mν4 in the vicinity
of MZ′/Z = 2mν4 in Fig. 5.1 using Eq. (5.6) for the SM-like input parameters and
for the remaining BSM input parameters we use the values defined by benchmark
scenario (5.7) as well as ∆UV = 0, µ2 =M2

Z for the standard 1-loop UV divergence
and the reference scale µ of dimensional regularization (see Sect. C), respectively.
Fig. 5.1 shows that δγOS develops a divergence at MZ′/Z = 2mν4 . However, the
affected regions turn out to be very small compared to the overall magnitude of
the respective masses5. Nevertheless, their size, in general, depends on the exact
input parameter configuration. Therefore, we exclude these regions in our global
fit performed in Sect. 5.5 to ensure that we obtain trustworthy results.

5.3.2. Hybrid scheme

In a second renormalization scheme, we take over the OS conditions for masses
and fields, but use an MS renormalization condition for the mixing angle γ. For
the tadpole renormalization scheme, we choose the PRTS, which tends to lead

5In the discussion of the parameter dependence of the various investigated POs given below (see
Sect. 5.4) the affected regions are often so small, that they are below the sample precision
and, thus, cannot be seen in some plots at all.
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to reasonably small higher-order corrections. In the following, this scheme is de-
noted as the hybrid scheme. In the hybrid scheme, the MS renormalization of
γ introduces a dependence on the reference scale of dimensional regularization.
We choose µ2 = M2

Z in all predictions shown in the following. While the hybrid
scheme is not affected by any of the unphysical threshold effects introduced by
δγOS (see above), it has severe other downsides, like the large dependence on the
treatment of the tadpoles or numerical instabilities for degenerate masses of the
mixing particles (e.g. for MZ′ →MZ), etc., (see Sect. 4.2.3 for details).
We use the OS scheme, with all its desired features, as default renormalization
scheme in the following discussions. However, the analyses presented in Sect. 5.4
and the minimization performed in Sect. 5.5 are done in both the OS and hybrid
schemes, since a comparison of their respective results yields a good estimate for
the theoretical uncertainty of the predictions. To account for the different defi-
nitions of the renormalized mixing angle in the two schemes, a proper parameter
scheme conversion of γ is performed in these comparisons. To this end, we make
use of their connection via the bare mixing angle γ0,

γ0 = γOS + δγOS = γMS + δγMS, (5.12)

and find

γMS = γOS +∆δγ, ∆δγ = δγOS − δγMS. (5.13)

5.4. Selected precision observables in the DASM

In this section, we describe the theoretical definitions of the investigated POs and
their derivation in the DASM at NLO. Assuming BSM effects to be small, for each
PO we add SM corrections beyond NLO to the respective NLO DASM predic-
tions to obtain the best possible DASM predictions. Further, we give a detailed
discussion of the dependences on the new parameters introduced by the DASM
extensions for each of the POs separately and discuss any interesting differences
between the predictions in the OS and hybrid scheme (after proper scheme con-
version of γ). The predictions derived in this section form the basis for the χ2

function used in the global fit in Sect. 5.5 to find the input parameter values that
lead to the least tension between DASM predictions and measurements.

5.4.1. MW prediction from muon decay

As a first PO, we derive the prediction for the mass of the W boson from muon
decay in the DASM. The high-precision measurement [103] of the lifetime of the
muon τµ makes it a perfect observable to test the predictive power of the DASM.
Further, considering the significant deviation of 7σ between the SM prediction
and the most recent measurement of the CDF collaboration [7], it is certainly
interesting—for any BSM model—to investigate whether a potential new physics
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Figure 5.2.: The LO Feynman diagrams representing muon decay in the Fermi
theory (left) and in the SM/DASM (right).

effect could explain such measured values, or at least loosen this tension. Note,
however, that the CDF result is also at variance with the previous experimental
world average, which is in reasonable agreement with its SM prediction [8]. There-
fore, we investigate two scenarios in this section, using either the experimental
world average or the CDF result, as measured values in our analysis.
Experimentally, τµ is used to determine the Fermi constant Gµ of the Fermi theory.
Thus, we effectively compare the prediction for τµ in the Fermi theory, τFµ , to the
respective prediction in the DASM, τDASM

µ , to obtain our prediction for the W-
boson mass. The Fermi theory is an effective field theory in which charged-current
interactions are described by 4-fermion contact interactions. Figure 5.2 shows the
LO diagrams describing muon decay in the Fermi theory (left) and in the DASM

(right). At LO, neglecting relative contributions of O
(

m2
µ

M2
W

)
in the DASM, one

finds the well-known results

1

τFµ,LO
=
G2

µm
5
µ

192π3

(
1− 8m2

e

m2
µ

)
,

1

τDASM
µ,LO

=
α2
em

384π

m5
µ

M4
Ws

4
w

(
1− 8m2

e

m2
µ

+O
(
m2

µ

M2
W

))
,

(5.14)

for the prediction of the muon lifetime in the two models. A comparison of the
two LO predictions yields

Gµ =
αemπ√
2s2wM

2
W

+ . . . , (5.15)

where the “. . . ” represent contributions of O
(

m2
µ

M2
W

)
, connecting the W-boson mass

MW of the DASM with the precisely measured Fermi constant Gµ of the Fermi
theory. Note that even though Eq. (5.15) has the same form as the respective
equation for the SM, the appearance of sw introduces a dependence on the BSM
parameters γ and MZ′ of the DASM (see Eq. (3.57)) already at LO. To match

the experimental precision, higher-order predictions for τ
F/DASM
µ are needed. At

NLO, neglecting electron and muon masses throughout the calculation, Eq. (5.15)
generalizes to

Gµ =
αemπ√
2s2wM

2
W

(1 + ∆r)

=
αemπ√
2s2wM

2
W

(
1 + 2δZe −

δs2w
s2w

− δM2
W

M2
W

+
ΣWW

T (0)

M2
W

+ δvert+box

)
, (5.16)
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µ− νµ

W

e− ν̄e

µ− νµ

W

e− ν̄e

Figure 5.3.: Feynman diagrams contributing to the vertex corrections δvertex to
muon decay. The grey blobs represent the renormalized vertex correc-
tions at NLO.

µ− νµ

W Z/Z ′
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µ− νµ
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µ− νµ
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e− ν̄e

µ− νµ
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e− ν̄e

Figure 5.4.: Exchange of the massive Z, Z′, and W bosons between initial- and
final-state particles in the DASM at NLO, leading to the box diagram
contributions δmassive

box .

where ∆r [104] denotes the relative NLO corrections to Eq. (5.15) originating from
the NLO contributions to muon decay in the Fermi theory and the DASM. Further,
we introduced

δvert+box = δvertex + δmassive
box + δγWbox , (5.17)

denoting the relative NLO vertex corrections to the Wµν̄µ and Wνee
+ vertices in

the DASM in δvertex (see Fig. 5.3), the relative corrections coming from massive
box diagrams in δmassive

box (see Fig. 5.4), and the QED corrections to both, the Fermi
theory and the DASM predictions in δγWbox (see Figs. 5.5 and 5.6).
Neglecting initial- and final-state masses, their contribution to ∆r is given by

δmassive
box =

αemM
2
W

8πc2ws
2
w

[
log

M2
Z

M2
W

M2
Z −M2

W

(
c2γ
(
5− 10s2w + 2s4w

)
+ 6s3wηcγsγ − 3s2wη

2s2γ
)

+
log

M2
Z′

M2
W

M2
Z′ −M2

W

(
s2γ
(
5− 10s2w + 2s4w

)
− 6s3wηcγsγ − 3s2wη

2c2γ
) ]

. (5.18)

The Feynman diagrams representing the NLO QED corrections to muon decay
in the Fermi theory are shown in Fig. 5.5. The respective QED contributions to
∆r in the DASM and the SM originating from bremsstrahlung effects as well as
the box diagram including photon exchange between the initial-state muon and
the final-state electron (see Fig. 5.6) are identical. Note that the right diagram
in Fig. 5.6 is, due to the presence of a second W-boson propagator, suppressed

by an additional factor 1
M2

W
, and, therefore, only contributes at O

(
m2

µ

M2
W

)
, which is

neglected in the derivation. Thus, combining these contributions from the DASM
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Figure 5.5.: Feynman diagrams representing the virtual (left) and bremsstrahlung
(middle and right) corrections to muon decay in the Fermi theory at
NLO.
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Figure 5.6.: Feynman diagrams representing the QED virtual (first diagram on the
left) and bremsstrahlung (three diagrams on the right) corrections to
muon decay in the DASM at NLO.

and the Fermi theory leads, as for the SM case, to [105]

δγWbox =
αem

4π

(
log

MW

me

+ log
MW

mµ

− 2 log
me

λ
− 2 log

mµ

λ
+

9

2

)
, (5.19)

where we introduced an infinitesimal photon mass λ for infrared regularization.
Finally, combining δmassive

box and δγWbox with the weak vertex corrections (see Fig. 5.3)
one finds

δvert+box =
αem

16πs2w

{
16

(
∆UV − log

M2
W

µ2

)
+ 24− 1

c2w

∑
V=Z,Z′

[
σV log

M2
V

M2
W

(M2
V −M2
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×
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σV [3M

2
W[s2w(2 + η2)− 1] + 10c4wM

2
V ] + c2γ(3M

2
W

× [1 + s2w(η
2 − 2)]− 10c4wM

2
V ) + 6ηs2γs

3
wM

2
W

) ]}
, (5.20)

with σZ/Z′ = ∓1, the standard 1-loop UV divergence ∆UV, and the reference scale
µ of dimensional regularization (see Sect. C).
To further reduce theoretical uncertainties in the DASM prediction for the W-
boson mass, we use the running electromagnetic coupling αem(M

2
Z) instead of

the fine-structure constant αem(0) in our calculation. This allows us to absorb
the strong dependence of ∆r on the light-quark masses, introduced via non-
perturbative effects of the photonic vacuum polarization at low energies by the
charge renormalization constant δZe, into (measured) input parameters. In addi-
tion, we resum the leading SM terms of the top-quark mass dependence ∆ρ at least
up to order O(α2

em) to further reduce the uncertainties of our prediction. In detail,
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the replacements described above can be summarized by [70,71,104,106,107]

αem → αem(M
2
Z) =

αem(0)

1−∆αem

, s2w → s̄2w = s2w + c2w∆ρ, ∆r → ∆rrem, (5.21)

where

∆αem = ∆α
(5)
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∂ΣAA
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∂k2
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−
ΣAA

f ̸=t(k
2)
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Z

, (5.22)
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(5.23)

∆r = ∆αem − c2w
s2w

∆ρ+∆rrem. (5.24)

Note that, in addition to the leading SM contributions, we resum the leading
(for small values of γ) top-quark mass contributions to ∆r originating from the
BSM part of the DASM, given in the second line of Eq. (5.23), as well. Here, we
introduced the expansion

M2
W =M2

W,1 +M2
W,2s

2
γ +O

(
s4γ
)
, (5.25)

to keep the results compact. Explicit expressions forM2
W,1 andM

2
W,2 can easily be

obtained by solving Eq. (5.15) for M2
W and then expanding in sγ. The quantities

∆αlep and ∆α
(5)
had, the so-called leptonic and hadronic vacuum polarizations, re-

spectively, summarize the aforementioned contributions of lepton- and light-quark
(excluding only the top-quark) mass logarithms introduced via δZe. Taking all of
the above into account, Eq. (5.16) is modified to

Gµ =
αem(M

2
Z)π√

2s̄2wM
2
W

(1 + ∆rrem) . (5.26)

In the following, we solve Eq. (5.26) for MW to obtain the desired NLO prediction
for the W-boson mass in the DASM. In detail, we eliminate MW in the NLO parts
of Eq. (5.26) in favor of the Fermi constant by using their LO relation6 (given in
Eq. (5.15)) and then solve Eq. (5.26) forMW. As mentioned above, we complement
our NLO prediction in the DASM with SM corrections to muon decay beyond NLO.
Assuming higher-order BSM effects to be small compared to their respective SM
counterparts—which clearly is a well-founded assumption when considering the

6Note that one has to first plug in the full dependence on MW coming from sw before solving
for the W-boson mass.
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astonishing predictive power of the SM for all collider experiments—this yields
an even better prediction for MW in the DASM. Therefore, we add the difference
between the NLO DASM and NLO SM predictions to the best W-boson mass
prediction taken from Ref. [6],

MDASM
W =MSM

W +∆MW, ∆MW =MDASM
W,NLO −MSM

W,NLO. (5.27)

The authors of Ref. [6] give an approximation for the parametric dependence of
their result, which is used for all predictions for MSM

W . With the input-parameter
values given in Eq. (5.6), we find MSM

W = 80.3536GeV. Note that, in contrast to
the NLO case, we use ∆αlep,SM = 0.0314977 given in Ref. [6] in the computation
of MSM

W for consistency. For the experimental counterpart we use [16]

M exp
W = (80.377± 0.012)GeV. (5.28)

Additionally, due to the large variance between the world average (5.28) and the
CDF measurement [7]

M exp
W,CDF = (80.4335± 0.094)GeV, (5.29)

we include the M exp
W,CDF in the comparison.

In the following, we discuss the dependence of MDASM
W on the various BSM pa-

rameters in the OS and the hybrid schemes. We use the input values (5.6) for
the SM-like input parameters as well as the benchmark points of Eqs. (5.7) and
(5.8) for the remaining BSM parameters and show the dependence of MDASM

W

on the BSM parameters in the OS scheme. To account for the approximations
MB ≫ mµ, B = h,Z′, used in the derivation of MDASM

W , we restrict our discussion
to Mh,MZ′ > 1GeV. In certain regions of the parameter space differences in the
parameter dependence of theMDASM

W predictions in the OS and hybrid scheme can
be observed, indicating potentially large theoretical uncertainties of the prediction
in these regions. Thus, whenever any interesting feature, which distinguishes the
OS and hybrid scheme predictions, can be observed, we will show the respective
hybrid scheme predictions, after proper scheme conversion of the mixing angle
γ, in addition to the OS predictions. Furthermore, whenever any curve (repre-
senting a certain benchmark scenario) is shown only for an interval smaller than
the respective x-axis, this means that the remaining parameter points violate our
perturbativity limits given in Eq. (5.11).

5.4.1.1. Benchmark Scenario (i): Mh = MSM
h

In benchmark scenario (i) (see Eq. (5.7)), we identify the Higgs boson h with the
discovered SM-like Higgs boson, i.e. Mh = MSM

h = 125.25GeV. In the upper-left
plot of Fig. 5.7, we show the dependence of MDASM

W on the mixing angle γOS for
several values of MZ′ . Note that the predictions are symmetric in the parameter
γOS (γOS → −γOS). At γOS = 0, the predictions for all shown values of MZ′ co-
incide, reflecting the decoupling of the gauge sector at this parameter point. At
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Figure 5.7.: Dependence of MDASM
W in the OS scheme on |γOS| (upper left) as well

as its dependence on MZ′ in the OS scheme (lower left), and hybrid
scheme (lower right) after proper scheme conversion of γ for bench-
mark scenario (i). The scheme conversion of γ depending on MZ′ is
shown in the upper-right plot.

this point the remaining downward shift (with respect to the SM prediction) of the
DASM prediction reflects the influence of the Higgs- and fermion-sector extensions
of the DASM for the chosen values of the input parameters. For MZ′ > MZ the
predictions for MDASM

W increase with increasing |γOS| and can describe the experi-
mental world average M exp

W and even the CDF measurement MCDF
W , as well as the

full interval between the two experimental results for a wide range of |γOS|–MZ′

combinations. Further, for larger values ofMZ′ , the increase of the prediction with
increasing |γOS| becomes steeper. For MZ′ < MZ the prediction decreases with
increasing |γOS|, driving the DASM prediction further away from the experimental
measurements.
We complement this discussion by showing the dependence of MDASM

W on MZ′ for
different values of γOS in more detail in the plots shown in the lower line of Fig. 5.7.
In addition to the prediction in the OS scheme (lower left), we show the respec-
tive prediction in the hybrid scheme (lower right) after proper scheme conversion
of γ, and the relation between the shown γOS values and their respective counter-
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parts γhybrid after scheme conversion (upper right). As expected, the OS prediction
shows an increase of MDASM

W for increasing values of MZ′ that becomes steeper for
larger values of |γOS|. Further, the predictions for all shown values of |γOS| coin-
cide at MZ′ =MZ, reflecting the decoupling of the gauge sector at this point. The
MDASM

W prediction in the hybrid scheme widely follows its respective prediction in
the OS scheme. However, for MZ′ ≈MZ, we see a divergent behaviour of the pre-
diction of the hybrid scheme. As mentioned above, MS renormalization of mixing
angles, as done for γ in the hybrid scheme, can lead to divergences in the case of
degenerate masses of the particles corresponding to the respective mixing fields
(see also Ref. [81]), introduced by the respective off-diagonal field renormalization
constants. However, the respective field renormalization constants do not appear
inMDASM

W and the observed divergences are simply introduced via the scheme con-
version of γ as can be seen by the upper-right plot7. Note that this is a general
feature of the parameter conversion of γ between the OS and hybrid scheme, which
will often show up in respective plots.
In Fig. 5.8, we show the dependence of the W-boson mass prediction on MH in
the OS scheme in the upper-left plot and the hybrid scheme in the upper-right
plot. For increasing MH, the predictions in both, the OS and hybrid schemes, de-
crease. However, this decrease is small compared to the experimental uncertainty.
For MH → Mh the parameters λ1 as well as ed (for MZ′ > MZ), become large
and eventually reach their perturbativity limits. While the predictions in the two
schemes agree well for almost all given input values, they start to develop signifi-
cant deviations from one another in this region forMZ′ = 200GeV, showcasing the
potential for large theory uncertainties in certain regions of the parameter space.
The dependence of MDASM

W on the Higgs mixing angle α is shown in the lower plot
of Fig. 5.8. For increasing values of α, the MW predictions decrease. Again, this
is only a small effect with respect to the experimental uncertainty. In the limit
α → 0 the parameter λ1 becomes large and eventually enters the non-perturbative
region. Further, the predictions are symmetric in the parameter α (α → −α)
and we find the effect of a sign flip of λ12 (λ12 → −λ12) to be negligible for the
investigated values in both benchmark scenarios (i) and (ii). Note that, due to our
convention s2αλ12 > 0, we adjust the respective signs of the values of the input
parameters λ12 or α in the following accordingly, if needed.
The influence of the remaining BSM parameters λ12, mν4 , and θr on the W-boson
mass prediction is negligible (not shown) in benchmark scenario (i).

5.4.1.2. Benchmark Scenario (ii): MH = MSM
h

For the benchmark scenario Eq. (5.8), we chose the heavy Higgs boson H to be
the SM-like Higgs boson, i.e. MH = MSM

h = 125.25GeV. In Fig. 5.9, we show

7This is expected, since our definition of δγOS is designed to exactly cancel the aforementioned
divergences systematically, so that the resulting predictions are well-behaved in the degener-
acy limit for the masses (see Sect. 4.2.3).
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Figure 5.8.: Dependence of MDASM
W on MH in the OS scheme (upper left) and

hybrid scheme (after proper scheme conversion of γ) (upper right), as
well as its dependence on the Higgs mixing angle α in the OS scheme
(lower plot) for benchmark scenario (i).

the dependence of the OS prediction of MDASM
W on |γOS| (left) and MZ′ (right).

While the γOS dependence shows a similar behaviour as for benchmark scenario
(i), for γOS → 0 one finds, that, in contrast to the corresponding parameter point
in benchmark scenario (i), the extensions in the Higgs and fermion sectors lead
to an upward shift of the DASM predictions with respect to the SM prediction
(leading to a better description of the experimental data by the prediction already
for γOS → 0). The plot on the right-hand side of Fig. 5.9 shows, similar to its coun-
terpart for the benchmark point (i), an increase of the prediction with increasing
mass of the Z′ boson, which is steeper for larger values of |γOS|. Furthermore,
threshold effects at MZ′ ≈ 2mν4 = 400GeV (see Sect. 5.3) become visible.
In Fig. 5.10, we show the dependence of the W-boson mass prediction on the ad-
ditional parameters of the Higgs sector Mh, α

′ = π
2
− α, and λ12. The predictions

are shown in the OS scheme and the hybrid scheme after scheme conversion of
γ. In contrast to the case Mh = MSM

h (see benchmark scenario (i)), the W-boson
mass prediction in the OS renormalization scheme increases the more Mh and α′

differ from their respective values in the SM limit, i.e. MDASM
W grows for decreas-
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Figure 5.9.: Dependence ofMDASM
W on |γOS| (left) andMZ′ (right) in the OS renor-

malization scheme in benchmark scenario (ii).

ing Mh and increasing α′. For small values of MZ′ ≤ 100GeV the dependence of
the prediction on λ12 is negligible. For MZ′ = 200GeV a decrease of the predic-
tion is visible for increasing values of λ12. However, all influences of the Higgs
sector parameters are small with respect to the experimental uncertainty. For
Mh → MH, α

′ → 0, and large enough values of λ12 the parameters λ1 and ed
(for MZ′ > MZ) enter the non-perturbative region. Comparing the respective OS
and hybrid scheme predictions one observes an increasing scheme dependence for
MZ′ > MZ in these regions.
Finally, we show the dependence of MDASM

W on mν4 in the benchmark scenario (ii)
in Fig. 5.11. While the OS scheme predictions are widely independent8 of mν4 , for
MZ′ > MZ one finds large differences between the OS and hybrid schemes in the
region mν4 ≥ 1TeV. Note that in this region of the parameter space, the Yukawa
coupling yρ is close to its non-perturbativity limit.
As for benchmark scenario (i) the dependence of MDASM

W on the fermionic mixing
angle θr is negligible in benchmark scenario (ii).

In summary, we find for both benchmark scenarios a large dependence of MDASM
W

on the new parameters γ and MZ′ of the gauge sector. In both cases, we find
for MZ′ > MZ a wide range of |γ|–MZ′ combinations that can lead to agreement
between the W-boson mass prediction and the experimental world average M exp

W

or even the CDF measurement MCDF
W . Further, the new parameters introduced

in the Higgs sector can lead to downward or upward shifts of the predictions for
Mh = MSM

h or Mh = MSM
H , respectively, which are, however, small compared to

the experimental uncertainty. Finally, the OS scheme prediction is widely unaf-
fected by variations of the parameters θr and mν4 introduced by a possible dark

8Using a scan precision of ≈ 100MeV here, we see only one of the discussed threshold effects
of the OS scheme at mν4 = MZ′/2 = 100GeV. Note that, due to the scheme conversion
γOS → γhybrid it is introduced to the prediction in the hybrid scheme as well.
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Figure 5.10.: Dependence ofMDASM
W on the BSM Higgs sector parametersMh (up-

per row), α′ = π
2
− α (middle row), and λ12 (lower row) in the OS

scheme (left column) and the hybrid scheme (right column) after
proper scheme conversion of γ for benchmark scenario (ii).
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Figure 5.11.: Dependence of MDASM
W on mν4 in the OS scheme (left), and in the

hybrid scheme (right) after proper scheme conversion of γ for bench-
mark scenario (ii).

fermion. However, we observe a significant renormalization scheme dependence of
MDASM

W in benchmark scenario (ii) for mν4 ≥ 1TeV, signalling the onset of non-
perturbative effects induced by a too large Yukawa coupling to the dark neutrino
sector.

5.4.2. The anomalous magnetic moment of the muon

The measurement of the anomalous magnetic moment of the muon, aµ, provides a
second powerful test of the predictive power of the DASM. Not only is it measured
with extremely high precision, but also its theoretical prediction within the SM
matches this astonishing precision. There is a 5.1σ discrepancy between the exper-
imental world average [3] and the SM prediction, making aµ a possible candidate
hinting towards BSM physics. However, according to recent developments, more
reliable lattice results are available that tend to disagree with the data-driven de-
termination of non-perturbative parts of aµ via the e+e− dispersion relation and
also seem to agree better with measurements. To properly define aµ, we follow the
discussion of Ref. [108], starting with the equations of motion for a muon in an
external electromagnetic field Aext

ν ,

(i/∂ − e( /A+ /A
ext

)−mµ)ψ = 0,

(∂ν∂
νgκρ − (1− 1

ξA
)∂κ∂

ρ)Aκ = eψ̄γρψ, (5.30)

with the radiation field Aν and ψ denoting the Dirac spinor of the muon field.
Note that we here used the suffix µ to refer to the muon (and it should not be
read as a Lorentz index). Also, in this section bold symbols are used to represent
3-vectors. Neglecting the radiative field for illustrative purposes at first, we are,
thus, interested in the solution of the equations of motion of a muon in an external
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field described by

i
∂ψ

∂t
=
[
γ0γ (p− eA) + eΦ + γ0mµ

]
ψ, (5.31)

where we introduced Aext
ν = (Φ,A). The non-relativistic limit of the Dirac equa-

tion (5.31) is obtained by performing the so-called Foldy–Wouthuysen transforma-
tion [109], leading to the Pauli equation

i
∂φ̂

∂t
=

[
1

2mµ

(p− eA)2 + eΦ− e

2mµ

σ ·B
]
φ̂, (5.32)

where B = rotA and ψ =

(
φ̂
χ̂

)
e−imµt. For our discussion of the anomalous

magnetic moment of the muon, the last term of Eq. (5.32), present due to the
intrinsic spin of the muon, is of interest. It has the form of a contribution to the
potential energy of a magnetic dipole in an external field. The resulting magnetic
moment induced by the spin of the muon is given by

µs = −gµ
eσ

4mµ

= −gµ
e

2mµ

s, (5.33)

where we introduced the gyromagnetic ratio gµ of the muon. It is given by the
ratio of a magnetic moment and the spin operator s = σ

2
in units9 of µ0 = e

2mµ
.

A comparison of Eqs. (5.32) and (5.33) yields gµ = 2. With the presence of
the radiation field (see Eq. (5.30)) the Foldy–Wouthuysen transformation cannot
be performed in a closed analytic way. One can, however, derive the effective
Hamiltonian of Eq. (5.30) in the non-relativistic limit by expanding in 1

c
, where c

is the speed of light (for further details see Ref. [108] and references therein).
We are interested in the anomalous magnetic moment of the muon taking into
account relativistic quantum corrections. These can be derived via a simultaneous
expansion in the fine-structure constant αem(0) and the external field (assuming the
latter to be weak). In detail, we investigate the γµµ vertex function Γκ

γµµ, with on-
shell muons. Its most general covariant decomposition (respecting electromagnetic
current conservation) is given by

iū (p′) Γα
γµµ(q,−p′, p)u (p) = ieū (p′)

[
γαFE

(
q2
)
+

(
γα − 2mµq

α

q2

)
γ5FA

(
q2
)

+ iσαν qν
2mµ

FM

(
q2
)
+σαν qν

2mµ

γ5FD

(
q2
)]
u (p).

(5.34)

9By convention the gyromagnetic ratio is normalized such that its respective value originating
from orbital momentum is −1. For the electron one finds µ0 = µB = e

2me
, where µB is Bohr’s

magneton.



5.4 Selected precision observables in the DASM 85

γ
W

W

νµ

µ−

µ+

γ
φ

W

νµ

µ−

µ+

γ Z/Z ′
µ−

µ+

γ h, χ′
µ−

µ+

Figure 5.12.: Relevant Feynman diagrams contributing to aµ in the DASM at the
1-loop level. Here the second diagram, describing ϕ-exchange, is, of
course, meant to also represent its related diagram, where the W and
ϕ bosons are interchanged.

Here we introduced the photon momentum q = p′ − p, the electric charge form
factor FE(q

2), the parity violating anapole moment FA(q
2), with FA(0) = 0, and

FD(q
2) is the CP-violating electric dipole moment, respectively. Finally, the FM(q

2)
is the magnetic form factor yielding, for zero photon momentum, the anomalous
magnetic moment

aµ =
1

2
(gµ − 2) = FM

(
q2 = 0

)
. (5.35)

In this work, we are interested in the prediction for aµ in the DASM at 1-loop

order up to O
(

m4
µ

M4
X

)
, with X = H, Z, W. The pure QED radiative corrections

do not change with respect to their SM counterparts, resulting in the well-known
correction aDASM

µ,QED = αem(0)
2π

[110]. Taking this into account, all Feynman diagrams
representing the relevant 1-loop weak corrections aDASM

µ,1−loop that contribute to a
DASM
µ

in the DASM are shown in Fig. 5.12. Note that in our derivation we include the
contributions originating from the h and χ′ exchange diagrams (Fig. 5.12 right-
hand side diagrams), to explicitly account for the possibility of low Z′- and h-boson
masses in our calculation. For the explicit computations of these diagrams we
use the Gµ-scheme described in Sect. 5.1. In the Thomson limit, i.e. for photon
momentum transfer of q2 → 0, the contributions of the first two diagrams shown
in Fig. 5.12 to aDASM

µ are given by

aWW
µ =

7αSM
Gµ
m2

µ

48π
(
1− M2

W

M2
Z

)
M2

W

, aWϕ
µ =

αSM
Gµ
m2

µ

16π
(
1− M2

W

M2
Z

)
M2

W

, (5.36)

where, after switching to the Gµ-scheme in the DASM, we introduced the standard
input parameter of the Gµ-scheme in the SM via

αem → αGµ = αSM
Gµ

s2w

1− M2
W

M2
Z

, αSM
Gµ

=

√
2GµM

2
W

(
1− M2

W

M2
Z

)
π

. (5.37)

In this form it is obvious that the contributions (5.36) coincide with their respective
SM counterparts (see e.g. [111, 112]) and, therefore, do not contribute any BSM
effects to aDASM

µ . However, the Z-, Z′-, h-, and χ′-exchange diagrams present in
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the DASM differ from their respective SM counterparts. Their contributions to
the anomalous magnetic moment of the muon are given by

aZµ =
αSM
Gµ
m2

µ (4M
4
W − 6M2

WM
2
Z +M4

Z) c
2
γ

12πM2
W (M2

Z −M2
W)
(
c2γM

2
Z + s2γM

2
Z′

) + . . . , (5.38)

aZ
′

µ =
αSM
Gµ
m2

µM
2
Z

(
4M4

W − 6M2
WM

2
Z′ +M4

Z′

)
s2γ

12πM2
WM

2
Z′ (M2

Z −M2
W)
(
c2γM

2
Z + s2γM

2
Z′

) + . . . , (5.39)

aχ
′

µ =
αSM
Gµ
m4

µM
2
Z

(
11 + 6 ln

m2
µ

M2
Z′

)
s2γ

48πM2
W(M2

Z −M2
W)(c2γM

2
Z + s2γM

2
Z′)

+ . . . , (5.40)

ahµ =
αSM
Gµ
m4

µM
2
Z

(
7 + 6 ln

m2
µ

M2
h

)
c2α

48πM2
hM

2
W(M2

W −M2
Z)

+ . . . . (5.41)

Here, we only spell out the respective leading terms forMB ≫ mµ, B = Z,Z′, χ′, h,
explicitly to keep the expressions compact, but use the full mass dependence of
the results in our numerical evaluations if necessary, such that the results remain
valid in the region of small Z′ and h masses. Assuming BSM effects to be small
compared to the SM contributions, we take the difference between the DASM and
the SM at 1-loop, and add it to the best SM prediction [4],

aDASM
µ = aSMµ +∆aDASM

µ,1−loop, ∆aDASM
µ,1−loop = aDASM

µ,1−loop − aSMµ,1−loop, (5.42)

to obtain the best DASM prediction.
As mentioned above, there are two different results for the LO hadronic vacuum
polarization contributions ∆αLO

had,aµ
entering aSMµ : one obtained via a data-driven

approach (see Ref. [4] and references therein for more details) and a second one
calculated via lattice computations (see, e.g., Refs. [4, 5] and references therein).
The prediction for aSMµ significantly depends on the value of this non-perturbative
contribution. However, the two approaches are at variance with one another. In
this work, we consider the two results separately, taking the value

aSMµ,e+e− = (116591810± 44)× 10−11 (5.43)

from [4] for the discussion of the prediction using the data-driven determination of
∆αLO

had,aµ
. For the lattice result, we use the value ∆αLO,lattice

had,aµ
= (7075± 55)× 10−11

given in Ref. [5] and combine it with the remaining contributions given in Ref. [4]
to obtain

aSMµ,lattice = (116591954± 58)× 10−11. (5.44)

For the experimental counterpart we use the world average

aexpµ = (116592059± 22)× 10−11, (5.45)
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from Ref. [3].
In the following, we discuss the explicit parameter dependence of aµ on the addi-
tional parameters introduced by the DASM. As standard input, we choose Eq. (5.6)
for the SM-like input parameters and Eqs. (5.7) and (5.8) for the BSM parameters
of the DASM, which is, of course, only used for the parameters that are not var-
ied in the respective plot. As in the discussion of the W-boson mass prediction,
whenever any curve is shown only for an interval smaller than the full range of
the x-axis, we find that the remaining parameter points violate the perturbativity
limits given by Eq. (5.11).
Since aµ is a loop-induced quantity, no renormalization constants appear in its
derivation at the 1-loop level. However, we use the prediction for MW as input
for aµ, which introduces an additional dependence of the predictions on the new
parameters of the Higgs and fermion sectors. Further, this can lead to differences
between the predictions in the OS and hybrid schemes. While this is the only de-
pendence on the BSM fermion-sector parameters introduced to (g− 2)µ, the BSM
parameters of the Higgs sector additionally enter the calculation via the Higgs-
boson exchange diagram (see Fig. 5.12 right diagram with h exchange). Even
though the result for (g − 2)µ is valid for very low masses of the BSM Higgs bo-
son, like e.g., Mh,MZ′ ≪ mµ, this is not true for the prediction of the W-boson
mass (as discussed in the previous section). Thus, we restrict the analysis here to
Mh,MZ′ ≥ 1GeV.
In this region, we find aDASM

µ to be widely independent of the additional Higgs sec-
tor parameters α, λ12, and Mh′ , where h′ denotes the BSM Higgs boson of h and
H. The dependence of aDASM

µ on θr and mν4 is also negligible in both benchmark
scenarios and for both the OS and hybrid renormalization scheme. However, there
is a strong dependence of aDASM

µ on the new parameters of the gauge sector γ and
MZ′ , which is shown in Fig. 5.13 using the input values of benchmark scenario10 (i)
for the two scenarios using either aSMµ,e+e− or aSMµ,lattice to derive the SM prediction11.

The aDASM
µ prediction is symmetric with respect to γOS → −γOS. An increase of

the prediction for increasing values of |γOS| can be observed for all shown values of
MZ′ . The magnitude of this increase strongly depends on the Z′-boson mass and
is greatly enhanced for small Z′ masses. This can be seen even clearer in the plot
on the right-hand side, where we show the dependence of aDASM

µ on MZ′ . For the
given values of |γOS| one observes a steep increase of aDASM

µ for MZ′ → 1GeV, but
no visible effect for larger Z′-boson masses (MZ′ > 25GeV). For small values of
MZ′ we find a wide range of |γOS|–MZ′ combinations that can explain the measured
value aexpµ using either of the SM predictions aSMµ,e+e− or aSMlattice.

10The negligible influence of the remaining BSM parameters on aDASM
µ leads to a negligibly small

difference between the respective results in the two benchmark scenarios.
11Note that switching between the best SM predictions leads effectively only to an overall shift

of the measured value in the plots shown in Fig. 5.13.
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Figure 5.13.: Dependence of aDASM
µ on |γOS| (left) and MZ′ (right) within bench-

mark scenario (i). The predictions are given as difference to the SM
value aSMµ,i , which is either chosen to be aSMµ,e+e− or aSMµ,lattice.

For an observable Oi the pull is defined via

pull =
Otheo

i −Oexp
i

∆Oi

, (5.46)

where ∆Oi denotes the uncertainty of the observable and Otheo
i and Oexp

i are
the theory prediction and the measured value of the observable, respectively. In
Fig 5.14 the pull for aµ in the |γOS|–MZ′ plane in benchmark scenario (i) is shown.
In order to derive the predictions within the DASM, either aSMµ,e+e− (left plot) or

aSMµ,lattice (right plot) is used. For both cases, we give the parameter points where
the respective DASM predictions are within the 1σ uncertainty band of the mea-
surement (black dotted lines). The black dashed line denotes the points where
predictions and measurement agree exactly. In the shown parameter regions the
points of exact agreement yield a distinct direction in the |γOS|–MZ′ plane for
both cases. Using aSMµ,e+e− (left) the preferred |γOS|–MZ′ combinations roughly ful-

fill γOS ≈ (0.0089MZ′ + 0.0004)GeV−1 and using aSMµ,lattice (right) in the predictions

leads to γOS ≈ (0.00583MZ′+0.00002)GeV−1. In both scenarios, we find a stronger
increase of the pull below these lines than above (with respect to the y-axis). Fi-
nally, in either scenario, for increasing values of |γOS| the regions of the predictions
that lie within the 1σ uncertainty band of the measurement widen up.

5.4.3. The forward–backward asymmetry in the DASM

In the era of the Large Electron–Positron Collider (LEP) [113] various preci-
sion measurements of a large set of observables were performed by the experi-
ments ALEPH, DELPHI, L3, and OPAL (see Refs. [114–117]). Colliding electrons
and positrons with a centre-of-mass energy close to the Z-boson resonance, high-
precision measurements of cross sections (“Z lineshape”), and forward–backward
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Figure 5.14.: The pull for aµ in the |γOS|–MZ′ plane within benchmark scenario (i).
We use either aSMµ,e+e− (left) or aSMµ,lattice (right) for the derivation of

aDASM
µ . The black dashed line marks the |γOS|–MZ′ combinations

that lead to exact agreement between predictions and measurement,
and the black dotted lines mark the 1σ uncertainty band of the mea-
surement.

asymmetries AFB were performed. The four experiments decided to combine their
results for the POs in a widely model-independent way [118]. Therefore, they
parameterize the measured POs by a common set of pseudo-observables12. Fi-
nally, the results for these pseudo-observables for each experiment were combined
resulting in even more accurate results. In this section, we briefly discuss the in-
fluence of BSM effects introduced by the DASM on the leptonic forward–backward
asymmetry Al

FB, which is one of the (true) observables measured by each of the
experiments. This is done to ensure that the BSM contributions do not spoil the
effective parameterization of their measurements by the pseudo-observables used in
the combination of the results from the four experiments13. In the Sects. 5.4.4 and
5.4.5, we present the prediction for two of the above mentioned pseudo-observables,
the leptonic effective weak mixing angle s2w,eff,l and the leptonic partial decay width
of the Z boson, ΓZ→ll, in the DASM. Both yield excellent tests of the Zll-coupling
structure, and, thus, excellent tests of any SM extension that modifies lepton–Z-
boson interactions.

12Note that we will explicitly differentiate between the terminologies of pseudo-observables (in-
herently model dependent) and “real” observables, i.e. counting rates, in the discussions given
in Sects. 5.4.3-5.4.5, but use the term observable throughout the rest of this work for either
of the two.

13Even though the parameterization of the results in terms of the pseudo-observables is widely
model independent, it still assumes a certain SM-like particle content. The analysis given in
Sect. 5.4.3 will confirm that the presence of the Z′ boson will not spoil this assumption in the
interesting regions of the parameter space, which would otherwise add additional uncertainties
to results obtained from investigating the respective pseudo-observables.
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Figure 5.15.: Feynman diagrams contributing to AFB at LO in the DASM.

One of the POs measured by the LEP experiments is the leptonic forward–back-
ward asymmetry Al

FB. Here, we investigate the influence of the BSM structures,
introduced in Al

FB by the DASM already at LO by additional contributions due
to Z′-boson exchange. If we find their influence to be negligible, we can safely
assume that the definitions of the pseudo-observables s2w,eff,l and ΓZ→ll, as given
in Ref. [118], reflect the parameter dependences of the PO predictions within the
DASM with sufficient precision. The leptonic forward–backward asymmetry is
defined by

Al
FB =

σl
F − σl

B

σl
F + σl

B

, (5.47)

with

σl
F = 2π

∫ 1

0

d cos θ
dσl

dΩ
, σl

B = 2π

∫ 0

−1

d cos θ
dσl

dΩ
, (5.48)

where dσl

dΩ
is the differential cross section of the process e+e− → ll̄, l = e, µ, τ ,

and θ is defined as the scattering angle between the incoming electron and the
outgoing lepton. For simplicity, we focus on the muonic final state14 in the following
discussion. Neglecting electron-mass effects, in the DASM the three Feynman
diagrams shown in Fig. 5.15 contribute to Aµ

FB at LO. Considering unpolarized
electrons in the initial state, the LO differential cross section can be parameterized
by

dσµ

dΩ
=
αem(0)

2

4s

[
Gµ

1(s)(1 + cos2 θ) + 2Gµ
3(s) cos θ

]
, (5.49)

where
√
s is the centre-of-mass energy. In the DASM, the factors G1(s) and G3(s)

can further be split up into contributions originating from the pure Z, Z′, and γ
exchange, and contributions coming from the interference of the respective dia-
grams

Gµ,DASM
1 (s) = GZZ

1 (s) +GγZ
1 (s) +Gγγ

1 (s) +GZ′Z′

1 (s) +GγZ′

1 (s) +GZZ′

1 (s), (5.50)

Gµ,DASM
3 (s) = GZZ

3 (s) +GγZ
3 (s) +GZ′Z′

3 (s) +GγZ′

3 (s) +GZZ′

3 (s). (5.51)

Using Eq. (5.48), the muonic forward–backward asymmetry at LO is given by

Aµ,DASM
FB (s) =

3

4

Gµ,DASM
3 (s)

Gµ,DASM
1 (s)

. (5.52)

14Note that Bhabha scattering (e+e− → e+e−) gets additional contributions from t-channel
diagrams.
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In the following, we are only interested in the kinematic region s ≈ M2
Z. In this

region the Z-boson exchange is resonance enhanced, and width effects, reflecting
the unstable nature of the Z boson, have to be taken into account properly. To in-
troduce the total decay width ΓZ of the Z boson properly, we resum the self-energy
corrections [119,120] to the Z-boson propagator, using Dyson resummation, lead-
ing to a correction to the Z-boson propagator in the DASM with a similar structure
to its SM counterpart,

GZZ
R (s)∼

s→M2
Z

i

s−M2
Z + ΣZZ

R,T(s) + κ(s)
,

κ(s) =
ΣAZ

R,T(s)(Σ
AZ
R,T(s)[s−M2

Z′ + ΣZ′Z′

R,T (s)]− 2ΣAZ′

R,T(s)Σ
ZZ′

R,T(s))

(ΣAZ′

R,T(s))
2 − (s+ ΣAA

R,T(s))(s−M2
Z′ + ΣZ′Z′

R,T (s))

= +
[s+ ΣAA

R,T(s)]Σ
ZZ′

R,T(s)

(ΣAZ′

R,T(s))
2 − (s+ ΣAA

R,T(s))(s−M2
Z′ + ΣZ′Z′

R,T (s))
. (5.53)

Note, that the SM expression, i.e. κ = −(ΣAZ
R,T(s))

2/(s + ΣAA
R,T(s)), is directly

recovered in the decoupling limit, i.e. by setting all off-diagonal self-energies with
a Z′ boson to zero. For s ≈M2

Z the quantity κ(s) resembles at least NLO effects to
the Z-boson propagator as long as |MZ −MZ′| ≫ ΣVV′

R,T(s), V, V
′ = A, Z, Z′, which

is a well-motivated assumption, having the discussions of the previous chapters in
mind15. In the quantitative discussion here, we are only interested in LO accuracy,
and, thus, we can safely neglect the contributions originating from κ(s) in the
following. In on-shell renormalization, we further have

Re
{
ΣZV

R,T(M
2
Z)
}
= 0, V = A,Z,Z′. (5.54)

Using the optical theorem,

MZΓZ = Im{ΣZZ
R,T(M

2
Z)}, (5.55)

to connect the imaginary part of the self-energy with ΓZ, and the approximation

Im{ΣZZ
R,T(s)} ≈ s

M2
Z

Im{ΣZZ
R,T(M

2
Z)}, (5.56)

one finds for the Z-boson propagator in the vicinity of its pole

GZZ
R (s)∼

s→M2
Z

i

s−M2
Z + is ΓZ

MZ

. (5.57)

In this approximation the various contributions to the leptonic forward–backward
asymmetry at s ∼M2

Z are given by

GγZ
1 (s)∼

s→M2
Z

sv2l (s−M2
Z)

2c2ws
2
w((M

2
Z − s)2 +M2

ZΓ
2
Z)

→ 0, (5.58)

15Furthermore, since MZ′ → MZ leads to decoupling of the gauge-sector extension introduced
by the DASM, κ(s) will, similar to the respective SM case, even in this limit only contribute
at NLO to the Z-boson propagator.
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GZZ′

1 (s)∼
s→M2

Z

s2(s−M2
Z)(ala

′
l + vlv

′
l)
2

8c4ws
4
w(s−M2

Z′)((s−M2
Z)

2 +M2
ZΓ

2
Z)

→ 0, (5.59)

Gγγ
1 (s)∼

s→M2
Z

1, (5.60)

GZZ
1 (s)∼

s→M2
Z

s2 (v2l + a2l )
2

16s4wc
4
w((s−M2

Z)
2 +M2

ZΓ
2
Z)

→ (v2l + a2l )
2
M2

Z

16s4wc
4
wΓ

2
Z

, (5.61)

GZ′Z′

1 (s)∼
s→M2

Z

s2 (v′2l + a′2l )
2

16c4ws
4
w(s−M2

Z′)2
→ (v′2l + a′2l )

2
M4

Z

16c4ws
4
w(M

2
Z −M2

Z′)2
, (5.62)

GγZ′

1 (s)∼
s→M2

Z

sv′2l
2c2ws

2
w(s−M2

Z′)
→ v′2l M

2
Z

2c2ws
2
w(M

2
Z −M2

Z′)
, (5.63)

GγZ
3 (s)∼

s→M2
Z

sa2l (s−M2
Z)

2c2ws
2
w((s−M2

Z)
2 +M2

ZΓ
2
Z)

→ 0, (5.64)

GZZ′

3 (s)∼
s→M2

Z

s2(s−M2
Z)(vla

′
l + alv

′
l)
2

8c4ws
4
w(s−M2

Z′)((s−M2
Z)

2 +M2
ZΓ

2
Z))

→ 0, (5.65)

GZZ
3 (s)∼

s→M2
Z

s2v2l a
2
l

4s4wc
4
w((s−M2

Z)
2 +M2

ZΓ
2
Z)

→ v2l a
2
lM

2
Z

4s4wc
4
wΓ

2
Z

, (5.66)

GZ′Z′

3 (s)∼
s→M2

Z

s2v′2l a
′2
l

4c4ws
4
w(s−M2

Z′)2
→ v′2l a

′2
l M

4
Z

4c4ws
4
w(M

2
Z −M2

Z′)2
, (5.67)

GγZ′

3 (s)∼
s→M2

Z

sa′2l
2c2ws

2
w(s−M2

Z′)
→ a′2l M

2
Z

2c2ws
2
w(M

2
Z −M2

Z′)
, (5.68)

where we made use of lepton universality and the limit in each row holds for
s =M2

Z. The LO vector and axial-vector couplings of the Zll and Z ′ll interactions
are given by

vl =
cγc

2
w(3M

2
Z − 4M2

W)

2M2
W

, al = −cγc
2
wM

2
Z

2M2
W

, (5.69)

v′l =
(c2w − 3s2w) sγ − 3ηswcγ

2
, a′l =

ηswcγ + sγ
2

, (5.70)

respectively. While there is never a contribution Gγγ
3 to AFB, the interference terms

resulting from the interference of the γ- and Z′-boson exchange diagrams with the
Z-boson exchange diagram (see Eqs. (5.58),(5.59),(5.64), and (5.65)) contribute to
the forward–backward asymmetry at higher loop orders even for a centre-of-mass
energy s = M2

Z. As already mentioned above, we are here interested in the in-
fluence of the contributions originating from the presence of the right diagram in
Fig. 5.15, i.e. the parts GV Z′

i , with i = 1, 3 and V = γ,Z,Z′ at s = M2
Z. Thus, we

compare Al
FB using the full LO result given by Eqs. (5.58)–(5.68) with Al,SM-like

FB ,
where we only include contributions from the γ- and Z-boson exchange diagrams,
but set all GV Z′

i to zero. To account for the results of the previous sections, we
constrain the |γ| region to small values and use the experimental world average,



5.4 Selected precision observables in the DASM 93

Figure 5.16.: Influence of the Z′-boson exchange diagram present in the DASM

on Al
FB at LO for different values of |γ| and MZ′ . Here, Al,SM-like

FB

denotes the forward–backward asymmetry, where all contributions
introduced by the Z′-boson exchange diagram are neglected. For
comparison, the black dotted line shows the experimental uncertainty
∆A0,l

FB = 0.0010 of the leptonic peak asymmetry.

MW = 80.377GeV, for the mass of the W boson16, as well as ΓZ = 2.499GeV [16]
for the total Z-boson decay width. The remaining input parameters are taken
from Eq. (5.6). Further, we note that all results in this section are symmetric with
respect to γOS → −γOS. In Fig. 5.16 the difference between Al

FB and Al,SM-like
FB

is given for some exemplary values for MZ′ for the cases MZ′ < MZ (left) and
MZ′ > MZ (right). As a reference value for the experimental accuracy we plot
the experimental uncertainty ∆A0,l

FB = 0.0010 (taken from Tab. 2.13 of Ref. [118])
of the so-called leptonic peak asymmetry17 A0,l

FB. The leptonic peak asymmetry
is one of the aforementioned pseudo-observables, used in the combination of the
results of the four LEP experiments, that resembles the weak corrections to Al

FB

at
√
s =MZ (for the exact definition of A0,l

FB see Eq. (5.75)). In general, the pres-
ence of the Z′-boson exchange diagram leads to a decrease of Al

FB at LO, making
the differences shown in Fig. 5.16 negative for all |γ|–MZ′ combinations. While
the BSM effects seem to influence Al

FB stronger in the case MZ′ > MZ (note the
different scales of |γ| in the two plots), their influence in the interesting regions of
the parameter space is only of generic order ∼ 10−6 and thus negligible compared
to the size of the experimental uncertainty ∆A0,l

FB = 10−3. In Fig. 5.17 the absolute
magnitude of the different GV V ′

i , i = 1, 3, V V ′ = gg,ZZ,Z′Z′, gZ′, contributing to
Al

FB at LO is shown for MZ′ = 5GeV (upper line) and MZ′ = 600GeV (lower
line). Again, one clearly finds the contributions induced by the presence of the

16This is only done here in the quantitative discussion of Al
FB in this section. All other results

make use of the prediction MDASM
W if not explicitly stated otherwise.

17This is the best we can do, since the combination of the results was only performed for the
pseudo-observables.
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Figure 5.17.: The various LO contributions to Al
FB for MZ′ = 5GeV (upper row)

and MZ′ = 600GeV (lower row).

Z′-boson exchange diagram to be largely suppressed with respect to the SM-like
contributions. Thus, we can safely neglect the influence of the right Feynman di-
agram given in Fig. 5.15 in the following.
Note that the BSM effects affecting the Z-boson exchange diagram are, of course,
taken into account by the BSM effects contained in the Z-pole POs in all consid-
erations in this and the following sections.

5.4.4. The effective leptonic weak mixing angle

Having the results of the previous section in mind, we now derive the predictions
for the effective leptonic weak mixing angle in the DASM. Due to its precisely
measured value it yields a high-precision test of the vector and axial-vector cou-
plings of the Z boson to leptons.
The LO vector and axial-vector couplings (vl and al, respectively) can be promoted
to the effective NLO vector and axial-vector couplings (Vl and Al, respectively).
Neglecting the masses of the external leptons in the calculation, they capture the
“weak” NLO corrections of the Zll interaction, i.e. the NLO EW corrections minus
their pure photonic QED contributions. In detail, they are defined via promoting
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the LO vector and axial-vector couplings to effective NLO couplings in the Z → ll
decay matrix element

M(Z → ll) =
e

swcw

[
ūl /εZ (Vl − Alγ5) vl

]
+ . . . , (5.71)

where the dots represent the aforementioned small corrections proportional to the
mass of the final state lepton, which are neglected in this work. Using these
effective NLO couplings, the effective leptonic weak mixing angle is defined by
(see e.g. Ref. [118])

s2w,eff,l =
1

4

(
1− Re

{
Vl
Al

})
. (5.72)

Note that at LO Eq. (5.72) does not depend on any BSM parameters and simply
yields to the respective SM result

s2,LOw,eff,l = 1− M2
W

M2
Z

=
(
sSMw
)2
. (5.73)

To obtain the best prediction in the DASM we take the difference between the
NLO predictions of the DASM and the SM, and add it to the best SM prediction
s2,SMw,eff,l taken from Ref. [121],

s2,DASM
w,eff,l = s2,SMw,eff,l +∆s2,NLO

w,eff,l , ∆s2,NLO
w,eff,l = s2,DASM

w,eff,l,NLO − s2,SMw,eff,l,NLO. (5.74)

The authors of Ref. [121] give an approximation for the parametric dependence
of their result, which is used for all predictions of s2,SMw,eff,l in the following. In

the discussion of the explicit parameter dependence of s2,DASM
w,eff,l on the additional

parameters introduced by the DASM we make use of the Gµ-scheme. As standard
input we choose Eq. (5.6) for the SM-like input parameters and Eqs. (5.7) and
(5.8) for the BSM parameters of the DASM, which is, of course, only used for
the parameters that are not varied in the respective plot. For these values we
find s2,SMw,eff,l = 0.23157. Note that, at LO s2,DASM

w,eff,l seems to be independent of γ
(see Eq. (5.73)). However, we use the DASM prediction for the W-boson mass as
input for the prediction (see Sect. 5.4.1), which introduces a dependence of the
prediction on γ already at LO (and, thus, on δγ at NLO). Similar to the previous
discussions, we restrict the analysis here to Mh,MZ′ > 1GeV to account for the
approximations performed in the derivation of the W-boson mass predictions. For
the experimental result we use the value from Tab. 2.13 of Ref. [118] and their
definition of the leptonic peak asymmetry

A0,l
FB =

3 [Re {Vl/Al}]2(
1 + [Re {Vl/Al}]2

)2 =
3(1− 4s2w,eff,l)

2

(1 + [1− 4s2w,eff,l]
2)2

, (5.75)
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and find

s2,expw,eff,l = 0.23102± 0.00056, (5.76)

for the measured value used in our studies. Note that, Eq. (5.76) is in agreement
with the official result of s2,LEPw,eff,l = 0.23153 ± 0.00016 given in Ref. [118]. How-
ever, their stated central value is shifted upwards by ≈ 1σ and their uncertainty
is significantly smaller than the one we find (see Eq. (5.76)). To determine s2,LEPw,eff,l ,
the authors of Ref. [118] do not only use the forward–backward asymmetry mea-
surements for leptons (summarized in Tab. 2.13 of Ref. [118], which is used in this
work), but further asymmetry measurements for quark pairs in the final state18, as
well as the so-called left–right asymmetries measured at SLC (for more details see
Ref. [118] and references therein). To this end, a model-dependent correction has
to be applied to the data in order to account for the differences between leptons
and up-, and down-type quarks. These corrections are taken from the SM, which
differ from the respective corrections within the DASM. Furthermore, Tab. 2.13 of
Ref. [118] provides the only stated correlation coefficients connecting the measure-
ments of the pseudo-observables, s2,expw,eff,l and Γexp

Z→ll, investigated in this work. These
correlations should be taken into account in any quantitative analysis. Therefore,
Eq. (5.76) is the preferred choice for the experimental result of the effective weak
mixing angle used in this work. Further, we remark that in the found best fit
scenarios (see Sect. 5.5.1 for details) the predictions for s2,DASM

w,eff,l vary only loosely
in the vicinity of the minimum of the minimized function and are close to the SM
value. Thus, we find that s2,DASM

w,eff,l does not lead to dominant contributions in the
minimization process performed in Sect. 5.5.4.

5.4.4.1. Benchmark Scenario (i): Mh = MSM
h

We find s2,DASM
w,eff,l to be symmetric with respect to γOS → −γOS. Furthermore,

in benchmark scenario (i), we see only a small (with respect to the experimental
uncertainty) dependence of s2,DASM

w,eff,l on the mixing angle γOS within the investigated
interval, as can be seen in the upper-left plot in Fig. 5.18. For increasing values
of |γOS|, the prediction increases for MZ′ > MZ and decreases for MZ′ < MZ. At
γOS = 0 the prediction is shifted downwards compared to the SM prediction (black
dashed line), showcasing the influence of the Higgs- and fermion-sector extensions
of the DASM on the prediction at this parameter point in benchmark scenario (i).
In the upper-right plot of Fig. 5.18, we show the dependence of s2,DASM

w,eff,l on MZ′ .

The dependence of the prediction for s2,DASM
w,eff,l for values of MZ′ < 250GeV is small

compared to the measurement uncertainty. For MZ′ > 250GeV the prediction
decreases for an increasing mass of the Z′ boson, bringing the prediction closer to
the measured value. For very small values of |γOS| = 10−3 the dependence on the
Z′-boson mass is negligible in the entire shown interval.

18Here, especially the b-quark final state leads to a very precise results.
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Figure 5.18.: Dependence of s2,DASM
w,eff,l on |γOS| (upper left), MZ′ (upper right), MH

(lower left), and α (lower right) is shown within benchmark scena-
rio (i).

The dependence on the mass of the additional Higgs bosonMH (lower left) and the
Higgs mixing angle α (lower right) is shown in Fig. 5.18. We find the prediction
for s2,DASM

w,eff,l to be symmetric in the parameter α (α → −α) and the influence of a
sign flip of the parameter19 λ12 (λ12 → −λ12) to be negligible in both benchmark
scenarios (i) and (ii). For increasing values of MH and α, s2,DASM

w,eff,l decreases. This
effect is, however, small compared to the experimental uncertainty. The influence
of the remaining BSM parameters λ12, θr, and mν4 on s2,DASM

w,eff,l turn out to be
negligible in benchmark scenario (i).

5.4.4.2. Benchmark Scenario (ii): MH = MSM
h

For both, the variations of |γOS| or MZ′ , shown in the upper-left and upper-right
plots of Fig. 5.19, respectively, the predictions show a very similar dependence as
in benchmark scenario (i). However, investigating the influence of the Higgs- and
fermion-sector extensions at γOS = 0, we find an upward shift (in contrast to the
downward shift in benchmark scenario (i)) with respect to the SM prediction.

19Here, we always adjust the signs of λ12 and α such that the convention s2αλ12 > 0 is fulfilled.
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Figure 5.19.: Dependence of s2,DASM
w,eff,l on |γOS| (upper left), MZ′ (upper right), Mh

(lower left), and α′ (lower right) in benchmark scenario (ii).

The influence of the Higgs-sector parameters Mh (lower left) and α′ = π
2
− α

(lower right) is shown in Fig. 5.19 in further detail. In contrast to the observation
in benchmark scenario (i), we find an increase of the prediction the further the two
Higgs-boson masses are apart and for increasing α′. Again, the influence on the
remaining BSM parameters λ12, θr, andmν4 is negligible in benchmark scenario (ii).

In summary, in both investigated scenarios, the dependence of s2,DASM
w,eff,l on |γOS|,

MZ′ , α, and Mh′ , where h′ denotes the non-SM Higgs boson of h and H, is small
compared to the experimental uncertainty of s2,expw,eff,l. Further, the dependence of

s2,DASM
w,eff,l on λ12, θr, and mν4 is negligible.

5.4.5. The leptonic partial decay width of the Z boson

The second considered pseudo-observable, used in the combination of the results
of the LEP experiments (see above), is the leptonic partial decay width. Similarly
to the effective leptonic weak mixing angle, it is defined via (see [118]) the vector



5.4 Selected precision observables in the DASM 99

and axial-vector couplings of the Zll interaction. At NLO, it is given by

ΓZ→ll =
(sSMw cSMw )2

s2wc
2
w

GµM
3
Z

6
√
2π

(1+ δQED)
(
|Vl|2+|Al|2

)
+∆ew/QCD, δQED =

3αem(M
2
Z)

4π
,

(5.77)

where δQED accounts for NLO final-state QED corrections. Here, we introduced
the SM relations for the sine and cosine of the weak mixing angle

(
sSMw
)2

= 1−
(
cSMw
)2
,

(
cSMw
)2

=
M2

W

M2
Z

, (5.78)

to keep the expression compact. Note that, in contrast to the case for δQED, we
use the Gµ-scheme in the derivation of Vl and Al. The term ∆ew/QCD in Eq. (5.77)
accommodates for non-factorizable NNLO effects and, thus, can be neglected in
our NLO calculation of DASM corrections. Again, assuming BSM effects to be
small, we take the best SM prediction ΓSM

Z→ll from Ref. [122], and add the difference
between the DASM and the SM at NLO to get the most accurate prediction for
the leptonic partial decay width of the Z boson in the DASM,

ΓDASM
Z→ll = ΓSM

Z→ll +∆ΓNLO
Z→ll , ∆ΓNLO

Z→ll = ΓDASM,NLO
Z→ll − ΓSM,NLO

Z→ll . (5.79)

The authors of Ref. [122] give an approximation for the parametric dependence of
their result, which is used for all predictions of ΓSM

Z→ll in the following. Using the
values of Eq. (5.6) we find ΓSM

Z→ll = 0.083974GeV. From Tab. 2.13 of Ref. [118], we
take the measured values as well as the definitions

R0
l =

Γhad

ΓZ→ll

, σ0
had =

12π

M2
Z

ΓZ→llΓhad

Γ2
Z

, (5.80)

for the so-called hadronic decay width Γhad and the hadronic pole cross section
σ0
had of the Z boson, to obtain

Γexp
Z→ll = (0.08399± 0.00009)GeV, (5.81)

which is in good agreement with their officially stated result
ΓLEP
Z→ll = (0.083985± 0.000086)GeV [118], for the measured value of the leptonic
partial decay width of the Z boson. In the following, we discuss the explicit pa-
rameter dependence of ΓDASM

Z→ll on the BSM parameters of the DASM. As standard
input we use Eq. (5.6) for the SM-like input parameters. For these input values we
find ΓSM

Z→ll = 0.08397GeV. Due to a negligible dependence of ΓDASM
Z→ll on the BSM

Higgs sector parameters, the predictions turn out to be very similar in the two
benchmark scenarios. Thus, we focus on benchmark scenario (i) (see Eq. (5.7))
for the BSM parameters of the DASM in the following, if not explicitly stated
otherwise. Finally, we make use of the prediction for the W-boson mass as input
for ΓDASM

Z→ll and, thus, again restrict our discussion to the case Mh,MZ′ > 1GeV.
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Figure 5.20.: Dependence of ΓDASM
Z→ll on |γOS| in the OS scheme (upper left), and on

MZ′ in the hybrid scheme (upper right) without scheme conversion
of γ. In the lower line the dependence of ΓDASM

Z→ll on MZ′ is shown in
the OS scheme (lower left) and the hybrid scheme (lower right), after
proper scheme conversion of γ.

Similarly to the other investigated observables, the prediction is symmetric with
respect to γOS → −γOS. The plot in the upper left-hand side of Figure 5.20 shows
the dependence of ΓDASM

Z→ll on |γOS|. We find an increase (decrease) of the prediction
for increasing values of |γOS| and MZ′ < MZ (MZ′ > MZ). For γOS = 0 there is no
visible shift of ΓDASM

Z→ll with respect to its SM prediction.
The dependence of the prediction on MZ′ is shown in the remaining three plots of
Fig. 5.20. We give the OS prediction in the bottom-left plot. As expected in the
OS scheme, we find a smooth behaviour for MZ′ → MZ. Further, the prediction
decreases for increasing MZ′ . In the bottom-right plot of Fig. 5.20 the correspond-
ing prediction using the hybrid scheme, after proper scheme conversion of γ, is
shown. One finds similar features to the ones found in the OS predictions for all
points except in the vicinity of MZ′ ≈ MZ, where the prediction diverges. This
divergence has two origins. For one, the scheme conversion of γ will, as previously
discussed (see Sect. 5.4.1), introduce this behaviour to the hybrid scheme predic-
tions. Additionally, ΓDASM

Z→ll is sensitive to the field renormalization constants of
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Figure 5.21.: Dependence of the prediction for ΓDASM
Z→ll on Mh in benchmark scena-

rio (ii) in the OS scheme (left) and the hybrid scheme (right) after
proper scheme conversion of γ.

the massive neutral gauge-boson sector. Therefore, the observed divergence show-
cases the ill-defined limit MZ′ →MZ for MS renormalization of mixing angles (see
discussion in Sect. 4.2.3 for more details). This can be seen in the top-right plot
of Fig. 5.20, where we show the prediction in the hybrid scheme plotted against
MZ′ without any scheme conversion of γ, i.e. using fixed values for γhybrid, clearly
showing the divergence in the prediction in the case of degenerate masses of the Z
and Z′ boson in the hybrid scheme.
Similarly to the case of the W-boson mass prediction, we find small differences
in the dependence of the prediction on the BSM Higgs sector parameters α, Mh,
and θr close to the non-perturbative region for the free parameters of the original
Lagrangian. Additionally, for benchmark scenario (ii)—in both renormalization
schemes—a significant decrease of the predictions is found for Mh → 1GeV, (see
Fig. 5.21). Besides this decrease and the small differences observed between the
two renormalization schemes, we find ΓDASM

Z→ll to be widely independent of the new
parameters from the Higgs sector as well as θr and mν4 from the fermion sector.

5.5. Global fit

With the evaluation of the POs performed in the previous section, we are now
perfectly equipped to perform a global fit of the parameter space of the DASM.
Our fit aims towards finding regions of the parameter space that lead to signifi-
cantly better agreement between the measured values of the investigated POs and
their respective predictions within the DASM (described above) than the SM can
provide. In the first part of this section (see Sects. 5.5.1 and 5.5.2), we give a
detailed description of the fit setup and the definition of the fit function. After
defining several interesting fit scenarios in Sect. 5.5.3, we dedicate the last part of
this section (see Sect. 5.5.4) to a detailed discussion of the fit results.
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5.5.1. Construction of the fit function

The function F minimized in the global fit can be split into two parts,

F(p) = χ2
O(p) + P(p), (5.82)

where χ2
O(p) is a measure describing the level of agreement between predictions

and measured values and, therefore, in principle encodes the relevant phenomeno-
logical information. The precise definition of χ2

O(p) is given below. The additional
cost function P(p) is introduced in Eq. (5.82) to account for additional limits on
certain input-parameter combinations, such as perturbativity constraints for cou-
pling constants. The explicit definition of P(p) used in our analysis is given in the
last part of this section. Note that the presence of the cost function P(p) destroys
the straightforward translation of F(p) (with its χ2-like nature) into its proba-
bilistic interpretation, whenever P(p) is non-zero. Nevertheless, P(p) is needed to
ensure that the fit remains in regions of the parameter space that lead to mean-
ingful predictions. Thus, we perform a detailed analysis, probing the dependence
of our results on the precise choice of P(p) for each investigated fit scenario (see
Sect. 5.5.4). The arguments of the fit function are given by

p = {γ, α, θr, λ12,mν4 ,Mh,MH,MZ′ ,MZ,mt,∆α
5
had, αs}. (5.83)

They represent the parameters that are treated as free input parameters of the
fit. Thus, besides the BSM parameters, we allow for a variation of (the potentially
most influential) SM-like parameters to include effects originating from paramet-
ric uncertainties in the input. Note that for the predictions MDASM

W , s2,DASM
w,eff,l , and

ΓDASM
Z→ll , this treatment of the parametric uncertainties includes the respective vari-
ations of the best SM predictions (see Sects. 5.4.1, 5.4.4, and 5.4.5). The precise
treatment of these free SM-like input parameters is discussed in the following in
more detail. The values of the remaining input parameters20 used in the numerical
evaluation of F(p) are given in Eq. (5.6).

5.5.1.1. The χ2 function

Assuming the probability density functions of the measurements for the investi-
gated observables to be of Gaussian form, we choose a χ2-distributed cost function

χ2
O(p) =

∑
i,j

(Oexp
i −Opre

i (p))(V −1)ij(Oexp
j −Opre

j (p)), (5.84)

encoding all relevant information on the observables in our fit. Here V denotes
the covariance matrix and we introduced the vectors

20As mentioned in the previous sections, we use the predicted value for MW from muon decay
as an input value in F(p) for a given set of input values.
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Opre(p) = (MDASM
W , aDASM

µ ,ΓDASM
Z→ll , s2,DASM

w,eff,l ,MZ,MS,mt,∆α
5
had, αs), (5.85)

Oexp(p) = (M exp
W , aexpµ ,Γexp

Z→ll, s
2,exp
w,eff,l,M

exp
Z ,M exp

S ,mexp
t ,∆α5,exp

had , αexp
s ), (5.86)

where S denotes the SM-like Higgs boson of h and H. Note that, similarly to the
other POs, we constrain the SM-like parameters included in the global fit with the
help of their respective measurements. The inverse V −1 of the covariance matrix
V is used to introduce the experimental uncertainties in χ2

O(p) and accounts for
possible correlations between the different PO measurements. For the investigated
POs, the only non-vanishing correlations connect the results of Γexp

Z→ll, s
2,exp
w,eff,l, and

M exp
Z , all being measured at LEP.

Taking this into account, we find the following form for the inverse of the covariance
matrix

V −1 =



1
(∆MW)2

1
(∆aµ)2

(V −1)33 (V −1)34 (V −1)35
(V −1)34 (V −1)44 (V −1)45
(V −1)35 (V −1)45 (V −1)55

V̂ −1
pSM


, (5.87)

where ∆Oi, Oi ∈ {MW, aµ}, are the uncertainties of the respective POs and the
entries (V −1)kl, k, l = 3, 4, 5, encode the information on the uncertainties and cor-
relations of the Γexp

Z→ll–s
2,exp
w,eff,l–MZ system. Further, V̂ −1

pSM
denotes a 4 × 4 diagonal

matrix with the diagonal elements 1
(∆Oj)2

, Oj = MS,mt,∆α
5
had, αs, given by the

respective experimental uncertainties ∆Oj of the measurements of the SM-like
parameters [16]. All entries of V −1 that are not explicitly shown in Eq. (5.87)
are zero. The derivation of V −1 and the explicit values of its entries are given in
Appendix E.
In addition, we notice that the size of the theoretical uncertainty of aSMµ is com-
parable to its experimental counterpart. Approximating this uncertainty to be of
Gaussian nature21, we add it in quadrature to the uncertainty of the measurement
to obtain the full uncertainty used in V −1.
In summary, Eq. (5.84) yields a measure of the level of agreement between predic-
tions Opre and experimental results Oexp based on the uncertainties of the respec-
tive quantities as well as their possible correlations. In general, smaller values of
χ2
O(p) correspond to a better agreement between theory predictions and measure-

ments. Note that V −1 is positive semi-definite, and therefore, χ2
O(p) is bounded

from below at 0, i.e. χ2
O(p) ≥ 0. This lower bound is only reached for an exact

agreement between all predictions and their experimental counterparts.

21Note that our treatment of the theoretical uncertainty is only approximative. For a more
correct treatment, a more sophisticated analysis would be needed. However, for a first con-
frontation of the DASM with precision data, our treatment of the theoretical uncertainty is
sufficiently precise.
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5.5.1.2. Perturbativity of the coupling parameters

As discussed in Sect. 5.5.1.2, we have to ensure the validity of the perturbative
approach for the calculations of the investigated POs. Thus, we need to con-
strain the parameter region of our fit such that the constraints given in Eq. (5.11)
are fulfilled. As already discussed in Sects. 3.6 and 5.5, all of the parameters of
Eq. (5.11), but λ12, are neither used as input parameters of the theory, nor as
direct input of the fit. Thus, we have to use Eqs. (3.24)–(3.28), (3.55), (3.57), and
(3.62) for the renormalized parameters to compute the values of the remaining fit
input parameters that are constrained by Eq. (5.11). To introduce their respective
perturbativity bounds to the fit function, we add an additional cost function of
the form

P(g1, g2, ed, λ1, λ2, yρ) =
∑
gi

[
cgθ(|gi| − pg)(|gi| − pg)

3
]
+ csθ(|λ1| − p1)(|λ1| − p1)

3

+ csθ(|λ2| − p2)(|λ2| − p2)
3 + csθ(|yρ| − p3)(|yρ| − p3)

3,
(5.88)

where the sum runs over gi = g1, g2, ed, and θ(x) is the usual Heaviside function.
The constants pi introducing the respective perturbativity limits are given by
pg =

√
2π, p1 =

π
12
, p2 = 4

3
π, and p3 = 4π. We do not need to add an additional

cost function of the form Eq. (5.88) to ensure |λ12| < π since the iminuit interface
allows to directly constrain input parameters to certain regions, if needed.
The constants cg and cs rule the amount of extra cost that is added to the fit
function if any parameter enters the non-perturbative region. Choosing them
appropriately prevents the parameter scan in the minimization procedure to access
the non-perturbative region. While in principle cg, cs → ∞ seems to be the best
choice to achieve this, the algorithms used in the minimization procedure rely
on smoothness (up to the second derivative) of the minimized function. Further,
having large scale differences between certain regions in the parameter space can
lead to a bad convergence behaviour of the used algorithms. In the following
analyses, we vary cg and cs to ensure that the dependence of the minimization
results on the precise choice of P is negligible.

5.5.2. Technical setup

With the computational setup described in Sect. 5.2 we have the numerical results,
needed for the desired parameter fit, accessible in Python. As already discussed
before, we want our fit to minimize (5.82) in order to find the parameter region
that leads to the best agreement between predictions and measurements for the
investigated POs. Therefore, we perform the multidimensional minimization using
the Python interface iminuit v.2.24.0 [97] for the C++ library Minuit2 [98]. Using
iminuit allows us to not only determine the best-fit parameters as well as an error
estimate for them, but also to determine confidence regions using the minos algo-
rithm, which effectively scans over the respective parameter while minimizing the
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investigated function in all other parameters to construct the desired confidence
regions. Further, iminuit allows to directly set limits on the free input parameters
of the fit. However, to the best of our knowledge, it is not possible in iminuit to
directly assign limits to certain combinations of input parameters, as needed in
our analysis to introduce certain perturbativity limits on the original parameters
of the Lagrangian. Therefore, we have to introduce them via the function P as
described in the previous section.
In our analysis we determine the minimum of the fit function F . As already
mentioned above, the main focus of this first phenomenological analysis lies on
investigating the influence of the newly introduced parameters γ and MZ′ , intro-
duced in the extension of the gauge-sector, on the considered POs. To obtain
a better understanding of the fit results, we scan over the function F(p) in the
γ–MZ′ plane in the vicinity of the minimum. In this scan, we minimize F(p) for
each combination of γ–MZ′ leaving all remaining parameters of the fit free (within
their respective limits of the global minimization). This allows for a detailed de-
termination of the most influential POs for the minimization. Furthermore, we
also determine the set of points F2.3 with

F2.3 = Fmin +∆F2.3, ∆F2.3 = 2.3, (5.89)

in the 2-dimensional γ–MZ′ plane. If one assumes the fit function to be χ2-
distributed (in the vicinity of the minimum), F2.3 would define the contour cor-
responding to the limits of the 68% confidence region [123]. To determine these
contour points we use the minos algorithm implemented in iminuit22.

5.5.3. Fit scenarios

Having everything for the minimization set up in the previous sections, we can
now define the fit scenarios of interest. Due to the strong tension between the
best SM predictions for the anomalous magnetic moment of the muon aSMµ,e+e−

and aSMµ,lattice, we choose to perform our fit twice, using either results for aSMµ,e+e−

or aSMµ,lattice (see Sect. 5.4.2). In both cases, we choose the OS scheme with all
its previously discussed benefits as renormalization scheme. Further, we choose
the world average M exp

W (see Eq. (5.28)) over the respective CDF result MCDF
W in

the minimization [8]. As in the case for the analyses of the POs performed in
Sect. 5.4, we demand Mh,MZ′ ≥ 1GeV to ensure that the approximations made
in the derivations of the POs in Sect. 5.4, such as assuming mµ ≪Mh,MZ′ , remain
valid.
As mentioned above, the investigated POs are chosen to be most sensitive to the
BSM gauge sector parameters and it turns out that they only loosely depend on the
additional parameters of the Higgs sector. Thus, we additionally include the con-
straints |α| < 0.2(α′ < 0.2) in the caseMh =MSM

h (MH =MSM
h ), so that our results

22Note that the minos algorithm will not ensure that we find all disconnected areas that fulfill
F(p) ≤ Fmin +∆F2.3.
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# ren. scheme aSMµ mν4 Mh,MZ′ |α| or α′

1. OS aSMµ,e+e− ∈ (0.1, 10)TeV > 1GeV < 0.2

2. OS aSMµ,lattice ∈ (0.1, 10)TeV > 1GeV < 0.2

Table 5.1.: Fit scenarios used in our phenomenological analysis in Sect. 5.5.4. The
third column gives the value used for the best SM prediction for aDASM

µ .
The entries of the columns 4–6 show the additional constraints imposed
on the input parameters of the fit.

(roughly) obey limits for the respective mixing angle in pure Higgs singlet exten-
sions obtained from analyzing LEP data or by analyses performed with LHC data
(see Ref. [87] for details). Further, we constrain mν4 to 100GeV < mν4 < 10TeV.
While the lower limit23 is chosen to avoid that the minimization is disturbed by
the non-physical threshold effects of the OS scheme (see Sect. 5.3), the upper limit
of 10TeV is some value chosen to prevent the minimization from running into
numerically unstable regions. Noticing the weak dependence of the investigated
observables on mν4 discussed in Sects. 5.4, it is expected to be only loosely con-
strained by the investigated POs anyhow. The complete fit setups, which are used
to explore the phenomenology of the DASM in the following analysis, are summa-
rized in Tab. 5.1. Note that the results discussed in the next section are derived in
the OS scheme (see Tab. 5.1). Additionally, we perform the minimization using the
hybrid scheme. A comparison of the minimization results obtained in the OS and
hybrid schemes is used to get uncertainty estimates for the found minima and to
ensure a small renormalization scheme dependence of the results (see Sect. 5.5.4).

5.5.4. Fit results

In this section, we present the results for the fits obtained within the two fit
scenarios 1 and 2 (see Tab. 5.1). In addition to the minimum, we give the F2.3

contour (see Eq. (5.89)) in the γOS–MZ′ plane for both scenarios. Further, we
perform a scan of the investigated function F in the vicinity of the minimum,
where we determine the minimum value for fixed γOS–MZ′ combinations, but leave
all remaining parameters of the fit free. This allows us to further understand the
fit function F in the vicinity of the minimum, to check the robustness of the minuit
result, and to discuss the several contributions to and features of F leading to the
respective results in detail.
As mentioned in Sect. 5.4, we find all investigated POs to be symmetric with
respect to γ → −γ and α → −α. Further, their predictions only loosely change
under a sign change λ12 → −λ12. While we here discuss the results choosing all of
the previously mentioned parameters to be positive, one, therefore, finds almost

23This specific value results as compromise between the aim to constrain mν4 as little as possible
to minimize any bias and the necessity to avoid artifacts.
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DASM scenario 1 SM

Fmin 4.5445± 0.0008 30.70

γOS × 103 9.24+2.87
−0.98 –

MZ′ [ GeV] 1+0.33
−0 –

α′ 0.20+0
−0.13 –

λ12 0.34+0.04
−0.34 –

Mh [ GeV] 2.2+87
−1.2 –

θr 0.17+1.4
−0.17 –

mν4 [ GeV] 263+9737
−163 –

MH [ GeV] 125.25± 0.17 125.25

MZ [ GeV] 91.188± 0.002 91.1876

mt [ GeV] 172.95± 0.7 172.5

∆α5
had 0.02766± 0.00007 0.02768

αs 0.1178± 0.001 0.1179

Table 5.2.: The minimum of F and the corresponding parameter values in the
DASM (middle) and in the SM (right) in fit scenario 1.

identical results when changing the signs of any of them24.
In particular, constraining α, λ12 < 0 and repeating the minimization results in a
similar position of the minimum (with flipped signs for α and λ12) and a shift of
the minimal value of O(10−6) for either of the presented fit scenarios. This is well
below their respective uncertainties of O(10−4) estimated via a comparison of the
respective results in the OS and hybrid schemes (see below).

5.5.4.1. Fit scenario 1: aSM
µ = aSM

µ,e+e−

In fit scenario 1, we find the minimum value Fmin = 4.5445± 0.0008 of the fit func-
tion highlighting the significant improvement in the compatibility of the DASM
predictions for the considered POs with their respective measurements, as com-
pared to the respective SM predictions (leading to FSM = 30.70 for fit scenario 1).
We give all details on the input-parameter values of the minimum in Tab. 5.2.
The uncertainty on the best fit value Fmin in the DASM is taken as the dif-
ference between the OS result and the result obtained in the hybrid scheme,
Fhybrid,conv

min = 4.5437, after proper scheme conversion of γ. In addition, the mini-
mization was repeated using the hybrid renormalization scheme to test the renor-
malization-scheme dependence of the obtained minimum. A similar result as for

24Note that to obtain meaningful results, for a sign change of α, one always has to change the
sign of λ12 as well (and vice versa), to obey s2αλ12 > 0.
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the OS renormalization scheme of Fhybrid
min = 4.5434 was found.

To determine the 1σ uncertainty limits for the input parameters, we search for the
values of the respective parameter—while minimizing in all remaining parameters—
where F(p) = Fmin + 1. Whenever any upper or lower parameter uncertainty is
underlined, the respective parameter value reaches the limit of the allowed pa-
rameter space before our requirement for F(p) is reached, i.e. the corresponding
parameter is not really constrained in the respective direction within the fit sce-
nario.
The fit prefers small values for the mass of the Z′ boson and the minimum of F lies
at the lower limit MZ′ = 1+0.33

−0 GeV of the parameter space. For the mixing angle

γ in the gauge sector the minimization prefers a small value of γOS = 0.0092+0.003
−0.001.

Furthermore, the scenario MH = MSM
h ,Mh < MSM

h is preferred. As expected (see
Sect. 5.4), the BSM Higgs sector parameters come with very large uncertainties,
reflecting the fact that the investigated POs only loosely depend on them. The
preferred mass of the new Higgs boson Mh = 2.2+87

−1.2GeV is close to its lower limit

and α′ = 0.20+0
−0.13 is at its upper limit, forcing the Higgs mixing angle α = π

2
− α′

as far away from its respective SM-limit value as possible. For this combination of
Mh and α

′, the scalar self-coupling takes the larges possible value of λ12 = 0.34+0.04
−0.34

that is allowed by the perturbativity constraint on λ1.
Finally, the combination of the mixing angle θr = 0.17+1.4

−0.17 and the mass of the

new fermion mν4 = 263+9737
−163 GeV is only constrained by the perturbativity limit

imposed on yρ, i.e. they are practically unconstrained by the fit (as expected from
the discussions given in Sect. 5.4), which is also reflected by their large uncertain-
ties. Further, we want to emphasize that the found uncertainties for the SM-like
input parameters agree with the experimental uncertainties used to construct F .
In Fig. 5.22, we show the result of our minimization of F with minimal value Fmin

(black point), the respective F2.3 contour (black dashed line), and the results ob-
tained by our scan in the vicinity of the minimum (coloured points, see Sect. 5.5.2
for details). The white regions correspond to areas with F(p) > Fmin +3.5, which
we do not display in colour here to have a more detailed representation of the
remaining (more interesting) scan results. Note that the best fit value is located
at λ1 = 0.247 and yρ = 3.537, i.e. close to their respective perturbativity limits.
A variation of cs and cg (which rule the precise form of P , see Eq. (5.88)) in the
range 102–104 leads to a variation of Fmin of O(10−6) as well as a shift of the F2.3

contour that is below the plot precision. Thus, we choose cs = cg = 104 here. The
additional cost, added by P to ensure that the results respect the perturbativity
limits of the parameters, is of O(10−7) for all shown points, and, thus, negligible
compared to the theoretical uncertainty of Fmin.
While we constrain our fit to MZ′ > 1GeV leading to the lower MZ′ bound of the
F2.3 contour, it reaches up to values of MZ′ ≈ 1.6GeV. The values of γOS that can
be reached within the F2.3 contour are given by γOS ∈ [0.0077, 0.0143]. We recall
that the limitations of our predictions for the POs do not allow us to make reliable
statements in the parameter region MZ′ = O(mµ). However, the position of the
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Figure 5.22.: The location of the minimum (black dot), the corresponding F2.3

contour (black dashed line), and the results for the scan of the vicin-
ity of the minimum (coloured squares) in the γOS–MZ′ plane for
fit scenario 1.

minimum as well as the scan of F in the vicinity of the minimum indicate that the
predictions might show even better agreement with data for even smaller values
of MZ′ . Moreover, moving away from the minimum towards larger values of MZ′ ,
larger values for γOS are preferred. Thus, the scan reveals a valley-shaped form,
highlighting a direction in the γOS–MZ′ plane that seems, compared to all other
directions, only loosely constrained by the considered POs. The direction given
by this valley agrees with the one found in the left plot of Fig. 5.14 that resolves
the tension between predictions and measurement of (g − 2)µ. To further explore
the results of the minimization in detail, we investigate the different contributions
to F originating from each of the considered POs separately in the following.
In the left columns of Figs. 5.23 and 5.24, we give the differences of the pull
values for the considered POs between the DASM and the SM, respectively. In
the right columns of Figs. 5.23 and 5.24 the corresponding contributions25 χOi

,
Oi = aµ,MW, s

2
w,eff,l,ΓZ→ll, to F originating from the diagonal elements of V −1 are

shown. They are defined by

χOi
=
[
(V −1)ii(Oexp

i −Opre
i )2

] 1
2 , (5.90)

where the (V −1)ii denote the corresponding diagonal elements of Eq. (5.87). Fur-
ther, we give the values of χOi

in the DASM at the location of the minimum and

25Note that χOi coincides with the absolute value of the pull (see Eq. (5.46)) in the case of
uncorrelated observables. Whenever correlations are taken into account this relation is no
longer valid.
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Oi ODASM
min,i χOi

χOi,SM

aµ 1.165920528× 10−3 0.13 5.08
MW 80.3567GeV 1.69 1.95
s2w,eff,l 0.23158 1.01 1.0

ΓZ→ll 83.9817MeV 0.19 0.35

Table 5.3.: Values of the PO predictions ODASM
min,i at the location of the minimum

in fit scenario 1. Further, the respective values of the χOi
are given for

the DASM and for the SM case.

for the SM in Tab. 5.3.
On the left side of the upper row of Fig. 5.23, the difference between the DASM
and SM values of the pull for aµ is shown. As already observed in Sect. 5.4.2, for
low Z′-boson masses a large dependence of aDASM

µ,e+e− on both, γOS and MZ′ , is found.
In the upper-right plot of Fig. 5.23 the contributions χaµ to F are shown. As
expected from the previous discussion it shows the same valley-shaped structure
that can be observed in the scan of the full function F (see Fig. 5.22). In agree-
ment with the results found in Sect. 5.4.2, within this valley the DASM predictions
precisely match the measured value aexpµ , i.e. χaµ ≈ 0. However, approaching the
F2.3 contour perpendicular to this direction, one observes a strong increase of the
χaµ values. Furthermore, especially for values γOS ≤ 0.012 this increase of χaµ

seems to dominantly determine the F2.3 contour.
In the lower row of Fig. 5.23 the differences between the DASM and SM pull val-
ues for the mass of the W boson (lower left) as well as the contributions χMW

to
F (lower right) are shown. At the location of the minimum χMW

is lower than
its SM counterpart χMW,SM

(see Tab. 5.3), i.e. there is better agreement between
the measured value and the prediction within the DASM than for the SM case.
Furthermore, for further decreasing values of γOS the agreement between theory
prediction and measurement becomes even better for all given points of the scan.
However, for increasing values of γOS, the tension between prediction and mea-
surement increases, and χMW

surpasses its SM counterpart. For even larger values
of γOS > 0.012, the contributions χMW

to F become more and more significant
and play a deciding role in the determination of the F2.3 contour, especially in the
aforementioned direction of the valley observed in the χaµ scan. Note that this is
in agreement with the results found in Sect. 5.4.1, where smaller values of γOS are
preferred in the parameter regions where MZ′ < MZ.
Throughout the entire scan region, the predictions for s2w,eff,l and ΓZ→ll vary only
slightly compared to the respective experimental uncertainties. The difference be-
tween their respective pulls in the DASM and SM are shown in the left column of
Fig. 5.24. Furthermore, the variation as well as the absolute value of their con-
tributions26 χOi

, Oi = s2w,eff,l,ΓZ→ll, to F is small (see right column of Fig. 5.24)

26To keep the discussion compact, we only show the contributions χOi (see Eq. (5.90)) explic-
itly here, i.e. we do not explicitly show the contributions originating from the presence of
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Figure 5.23.: The differences of the pull values between the DASM and the SM for
aDASM
µ,e+e− (upper left) andMDASM

W (lower left) and the contributions χOi
,

Oi = aµ,MW, to F (right column) in the vicinity of the minimum for
fit scenario 1.

compared to the contributions originating fromMW and aµ discussed above. Start-
ing from the location of the minimum within the F2.3 contour, the predictions for
s2w,eff,l (upper left) decrease, while the predictions for ΓZ→ll (lower left) increase for
increasing values of γOS. Consequently, the tension between theory and measure-
ments slightly decreases for both s2w,eff,l (upper right) and ΓZ→ll (lower right). This,
again, is expected having the discussion of Sect. 5.4 in mind (see Figs. 5.19 and
5.20). For values of γOS ≈ 0.012 the prediction for ΓZ→ll precisely agrees with its
corresponding measured value (dark blue region in lower-right plot). For further
increasing values of γOS the values of ΓDASM

Z→ll further increase, leading to increasing
contributions χΓZ→ll

to F .
Finally, we want to emphasize that at the location of the minimum the value of the
W-boson mass prediction is below its measured value. Thus, from the discussion
given in Sect. 5.4.1 one would expect that all three BSM Higgs parameters adjust
themselves such that they have the maximal distance to their respective values in

(V −1)ij ̸= 0, i ̸= j, i, j = 3, 4, 5, since they do not show any interesting additional features.
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Figure 5.24.: The differences of the pull values between the DASM and the SM

for s2,DASM
w,eff,l (upper left) and ΓDASM

Z→ll (lower left) and the contributions
χOi

, Oi = s2w,eff,l,ΓZ→ll, to F (right column) in the vicinity of the

minimum for fit scenario 1.

the SM limit, i.e. one would expect α′ → 0.2, λ12 → π, and Mh → 1GeV. This
parameter configuration would lead to the maximally allowed (within the BSM
Higgs sector parameter space) increase of MDASM

W . This behaviour is observed for
α′ and27 λ12. However, the value of the BSM Higgs mass does not follow this ex-
pectation. At the location of the minimum the value of Mh is close to, but not at,
its lower limit of Mh = 1GeV. This indicates that in the region of the minimum,
the potential increase of MDASM

W is too small to compensate for the extra cost that
is added to F for Mh → 1GeV by the remaining POs (mainly originating from a
decrease of ΓDASM

Z→ll , see Fig. 5.21).
In summary, the minimization in fit scenario 1 is dominantly driven by minimizing
the tension between prediction and measurement for (g − 2)µ which singles out a
preferred direction in the γOS–MZ′ plane. Furthermore, for MZ′ < MZ, small val-
ues of γOS are preferred in the comparison of predictions and measured value for

27Note that, for the given values of α′ and Mh, λ12 is at its upper limit set by the perturbative
constraint on λ1.
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DASM scenario 2 SM

Fmin 3.8734± 0.0001 7.7490

γOS × 103 5.85+4.54
−2.30 –

MZ′ [ GeV] 1+0.94
−0 –

α′ 0.2+0
−0.2 –

λ12 0.34+0.04
−0.34 –

Mh [ GeV] 5.25+9995
−4.25 –

θr 0.0009+1.5699
−0.0009 –

mν4 [ TeV] 10+0
−9.9 –

MH [ GeV] 125.25± 0.17 125.25

MZ [ GeV] 91.188± 0.002 91.1876

mt [ GeV] 172.9± 0.7 172.5

∆α5
had 0.02767± 0.00007 0.02768

αs 0.1178± 0.001 0.1179

Table 5.4.: The minimum of F and the corresponding parameter values in the
DASM (middle) and in the SM (right) in fit scenario 2.

MW. This pushes the location of the minimum towards the lowest possible value
of γOS, in the direction dictated by (g − 2)µ. In the vicinity of the minimum, the
remaining two considered POs s2w,eff,l and ΓZ→ll vary only slightly compared to the
respective experimental uncertainties. Thus, they do not contribute significantly
to the precise determination of the location of the minimum or the respective F2.3

contour.

5.5.4.2. Fit scenario 2: aSM
µ = aSM

µ,lattice

In fit scenario 2, the found minimum value Fmin = 3.8734 ± 0.0001 within the
DASM is, again, significantly lower than the respective value FSM = 7.7490 within
the SM. The uncertainty of Fmin is determined via a comparison with the respective
value in the hybrid scheme Fhybrid,conv

min = 3.8733, after proper scheme conversion
of γ. In addition, the minimization was repeated in the hybrid renormalization
scheme to test the renormalization-scheme dependence of the obtained minimum
and a similar value of Fhybrid

min = 3.8731 was obtained.
Due to the significantly reduced tension between the prediction and the measured
value for aµ within the SM for fit scenario 2, FSM is closer to Fmin than in fit
scenario 1. All details on the location of the found minimum of F are given in
Tab. 5.4. The minimum of fit scenario 2 is located at λ1 = 0.257, i.e. close to its
perturbativity limit. A variation of the parameters cg and cs in the range 102–104
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Figure 5.25.: The location of the minimum (black dot), the F2.3 contour (black
dashed line), and the results for the scan of the vicinity of the mini-
mum (coloured squares) in the γOS–MZ′ plane in fit scenario 2.

shows only a negligible effect on the results obtained for the minimum and the
F2.3 contour in the γ–MZ′ plane. Thus, we choose cg = cs = 104 here.
In fit scenario 2 the minimum is, compared to fit scenario 1, located at an even
smaller value of the gauge-boson mixing angle of γOS = 0.0059+0.005

−0.002. The mass
of the Z′ boson is at its lower limit28 MZ′ = 1+0.94

−0 GeV. For the Higgs-sector pa-

rameters one finds α′ = 0.2+0
−0.2, λ12 = 0.34+0.04

−0.34, and Mh = 5.25+9995
−4.25 GeV. Thus,

as in fit scenario 1, the mass hierarchy MH = MSM
h ,Mh < MSM

h is preferred.
Again, α′ and λ12 are at the maximum29 values of the available parameter space,
i.e. they have the maximum distance to their respective SM-limit values, and the
BSM Higgs-boson mass is found to minimize the tension between predictions and
measurements when it is close to, but not exactly at, its lower bound of 1GeV.
However, all three BSM Higgs parameters are only very loosely constrained by the
fit, which is reflected by their large uncertainties. This is even more extreme for
the BSM parameters introduced in the fermion sector. We find the BSM fermion
mass at its upper limit mν4 = 10+0

−9.9TeV and a small value of θr = 0.0009+1.5699
−0.0009 for

the BSM mixing angle. Both are, however, practically unconstrained by the fit.
Finally, we remark that all uncertainties for the SM-like input parameters agree
with their measurement uncertainties used in the construction of F .
In Fig. 5.25 the result of the minimization of F with minimal value Fmin (black
point), the corresponding F2.3 contour (black dashed line), and the respective re-

28Here, underlined values lie at extreme values at the borders of the allowed parameter space.
29Similar to fit scenario 1, for the given values of α′ and Mh, λ12 is at its upper limit set by the

perturbativity constraint on λ1.
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Oi ODASM
min,i χOi

χOi,SM

aµ 1.165920508× 10−3 0.12 1.69
MW 80.3591GeV 1.49 1.95
s2w,eff,l 0.23158 1.01 1.0

ΓZ→ll 83.9755MeV 0.31 0.35

Table 5.5.: Values of the PO predictions ODASM
min,i at the location of the minimum

in fit scenario 2. Further, the respective values of the χOi
are given for

the DASM and the SM case.

sults obtained by the scan in the vicinity of the minimum are shown. Again, the
white region corresponds to an area with F(p) > Fmin +3.5, which we do not dis-
play in colour here to have a more detailed representation of the remaining (more
interesting) scan results.
As mentioned above, the minimum is located close to the perturbativity limit of
λ1. This can lead to non-vanishing contributions of P ≠ 0 contributing to the
found minima in the scan of the vicinity of the location of the minimum. For our
choice of cg = cs = 104 the additional cost introduced by P is of O(10−6) in the
entire scan range and, thus, negligible compared to the theoretical uncertainty of
Fmin.
The F2.3 contour is bounded from below by the constraint MZ′ > 1GeV and
reaches up to values of MZ′ ≈ 3.27GeV. Further, the scan indicates that the pre-
dictions might agree even better with data for smaller values30 of MZ′ < 1GeV.
The values for the gauge-boson mixing angle that can be reached within the F2.3

contour are within [0.0012, 0.0133].
Starting from the position of the minimum, there is a strong increase of F for
increasing values of γOS, compared to the overall scale set by Fmin. However, in
contrast to fit scenario 1, there is only a moderate increase when leaving the region
marked by the F2.3 contour in the opposite direction (γOS → 0). This is directly
related to the difference in the used SM predictions for aµ in the two fit scenarios,
simply reflecting that the SM prediction, and, thus, the SM limit γOS → 0, pro-
vides a significantly better description of the data in fit scenario 2. Finally, we want
to highlight that within the given F2.3 contour, one finds a rather narrow valley-
shaped area (blue region) tied to the location of the minimum, that provides the
best agreement between measurements and predictions. This valley-shaped region
singles out the same direction in the γOS–MZ′ plane that was found to minimize
the tension between predictions and measurements of aµ (see lower-right plot of
Fig. 5.14).
We list the values of the POs at the location of the minimum and the respective
values of the χOi

within the DASM (at the location of the minimum) and within
the SM in Tab. 5.5. To further investigate the results of the minimization, we

30However, similar to the situation for fit scenario 1, our approximations done in the derivations
of the POs do not allow us to explore this region of the parameter space properly.
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Figure 5.26.: The differences of the pull values between the DASM and the SM for
aDASM
µ,lattice (upper left) and MDASM

W (lower left) and the corresponding
contributions χOi

to F (right column) in the vicinity of the minimum
for fit scenario 2.

give the differences between the pull values for the considered POs in the DASM
and SM and the corresponding contributions χOi

in the left and right columns of
Figs. 5.26 and 5.27, respectively.
In the upper-left plot of Fig. 5.26 one finds a strong increase of the aµ prediction
within the DASM for increasing values of γOS (at the right side of the F2.3 con-
tour) for values of MZ′ < 2GeV, which leads to a strong increase of the respective
contributions χaµ to F . These contributions dominantly determine the F2.3 con-
tour in this part of the parameter space. For decreasing γOS → 0, aDASM

µ,lattice slowly
approaches its respective SM value leading to a comparably moderate increase of
χaµ . As expected by the previous discussion, there is a distinct direction (blue area,
right plot) in the γOS–MZ′ plane where the predictions show very good agreement
with the data, giving rise to the valley-shaped area mentioned previously.
The difference between the DASM and SM pull values forMW (lower left) and the
values of χOMW

(lower right) are shown in the lower row of Fig. 5.26. For large

parts of the scanned parameter spaceMDASM
W (lower-left plot in Fig. 5.26) is larger
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Figure 5.27.: The differences of the pull values between the DASM and the SM for

s2,DASM
w,eff,l (upper left) and ΓDASM

Z→ll (lower left) and the corresponding
contributions χOi

to F (right column) in the vicinity of the minimum
for fit scenario 2.

than its respective counterpart in the SM, i.e. closer to its measured value. How-
ever, as expected from the discussion given in Sect. 5.4.1, for large enough values
of γOS the DASM prediction MDASM

W is lower than its SM counterpart, leading to
an increase of the respective contributions χMW

(lower-right plot in Fig. 5.26) to
F compared to its corresponding SM value. Further, we want to emphasize that
for fit scenario 2, χMW

provides in the SM (see Tab. 5.5) the largest contribution
to F , and leads to the dominant contributions that determine the F2.3 contour for
increasing values of γOS in the direction dictated by aµ. Finally, we note that, due
to contributions from the Higgs sector extension that lead to an increase of the
predicted value, MDASM

W shows, at the location of the minimum, better agreement
with data than the respective SM prediction (see Tab. 5.5).
In contrast to aDASM

µ,lattice and M
DASM
W the Z-pole observables s2,DASM

w,eff,l and ΓDASM
Z→ll (see

left column of Fig. 5.27) show only small variations with respect to the correspond-
ing experimental uncertainties in the entire fit range. Starting from the location
of the minimum, the agreement between their predictions and the respective mea-
surements increases (decreases) with increasing (decreasing) values of γOS, but
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show only little sensitivity to variations of MZ′ within the shown region. Similarly
to fit scenario 1, ΓDASM

Z→ll precisely agrees with the corresponding measured value for
γOS ≈ 0.012. For further increasing values of γOS the prediction for ΓZ→ll further
increases and consequently the values of χΓZ→ll

increase.
In summary, in fit scenario 2 the minimization is, similar to fit scenario 1, domi-
nantly driven by minimizing the tension between the predictions and the measured
value for aµ. This yields a distinct direction in the γOS–MZ′ plane where the predic-
tion and the measured value show perfect agreement. Within this direction the fit
prefers the smallest possible value for γOS. This maximizes the level of agreement
between the predictions and the measured value for MW within the area preferred
by (g − 2)µ. In the vicinity of the minimum the remaining two POs s2w,eff,l and
ΓZ→ll do not contribute significantly to the precise determination of the location
of the minimum or the respective F2.3 contour.

5.5.4.3. Summary and comparison of the fit results

For both fit scenarios the DASM can provide significantly better agreement be-
tween theory predictions and experimental results for the considered POs. This
is reflected by the significantly lower values of Fmin,s1 = 4.54 and Fmin,s2 = 3.87
obtained within the two scenarios, respectively, compared to the corresponding
SM values of FSM,s1 = 30.70 and FSM,s2 = 7.75. To test the renormalization-
scheme dependence of the results, the minimization was repeated using the hybrid
renormalization scheme instead of the OS scheme in the two fit setups. The val-
ues Fhybrid

min,s1 = 4.54 and Fhybrid
min,s2 = 3.87 were found for the minima in the two fit

scenarios, showcasing a negligible dependence of the result on the renormalization
scheme.
In both fit scenarios, small values of γOS = O(10−3) andMZ′ = 1GeV are preferred.
For the precise determination of the γOS–MZ′ region preferred by the minimiza-
tion, aµ plays a major role. It singles out a specific direction in the γOS–MZ′ plane
which resolves the tension between the respective predictions and the measured
value of aµ.
For MZ′ < MZ the W-boson mass prediction shows the highest level of agreement
for the smallest possible value of γOS. Therefore, in the γOS–MZ′ region preferred
by aµ, the minimum is located at the lowest possible value for γOS. Note that the
significantly smaller discrepancy between aSMµ,lattice and aexpµ , compared to the dis-
crepancy between aSMµ,e+e− and aexpµ , allows for smaller values of γOS in fit scenario 2
compared to fit scenario 1, i.e. the value of γOS at the location of the minimum
is closer to its SM limit (γOS → 0) in fit scenario 2. Additionally, MW yields an
important constraint for the determination of the respective F2.3 contour in the
γOS–MZ′ plane, especially for increasing values of γOS in the direction dictated by
aµ.
Finally, for all parameter configurations found by the respective scans over the
vicinities of the minima, both s2,DASM

w,eff,l and ΓDASM
Z→ll vary only slightly compared to
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the respective experimental uncertainties and an equally good agreement between
the respective predictions and measurements as in the SM case is found at the
minima. Thus, their impact on the minimization of F and the determination of
the F2.3 contour in the γOS–MZ′ plane is small in either fit scenario.
The DASM prediction for aµ depends only slightly on the remaining BSM param-
eters originating from the Higgs and fermion sectors. Their preferred values are
mainly determined via the remaining three POs. For both fit scenarios, the mass
hierarchy MH = MSM

h , Mh < MSM
h , i.e. a light BSM Higgs boson, is preferred. In

the determination of the precise values of the BSM Higgs-sector parameters at
the location of the minimum, MW plays an important role. In both investigated
scenarios, the BSM Higgs-sector parameters lead to an increase of MDASM

W , bring-
ing it closer to its experimental counterpart. Thus, even though the preferred
gauge-sector parameter configuration leads to an increase in the tension between
MDASM

W and M exp
W , with the help of the BSM Higgs sector one ultimately finds

better agreement between its measurement and the prediction at the location of
the minimum compared to the SM case in both fit scenarios. However, in either
fit scenario the BSM Higgs-sector parameters remain widely unconstrained by the
investigated POs.
In the investigated parameter regions, the impact of the BSM fermion-sector pa-
rameters on the considered POs is negligible. Thus, they remain practically un-
constrained by the fit, as is also pointed out by the respective values for their 1σ
uncertainty intervals.
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5.5.5. Outlook

The results of this first analysis on the phenomenological implications of the var-
ious SM extensions introduced by the DASM clearly show that the DASM is an
interesting and promising candidate in the search for new physics. In order to ob-
tain a more sophisticated and more complete picture of the predictive power of the
DASM and its phenomenological implications, we list several desirable additions
for future analyses below.
To gain an even better insight into the exact implications of the gauge-sector
extension introduced by the DASM, we propose the following future analyses:

• One should include the possibility for very light masses of the Z′ boson
MZ′ < 1GeV in order to explore this promising part of the parameter space.
In either of the two investigated setups—scenario 1 or scenario 2—our analy-
sis suggests that masses of the Z′ boson below the lower limit ofMZ′ > 1GeV
are preferred. This lower bound is introduced to ensure the validity of certain
approximations used in the derivations of the POs, which rely on the fact
that the masses of external leptons are small compared to the mass of the Z′

boson. Additionally, in the case MZ′ ≤ mµ −me the possibility of invisibly
decaying Z′ radiation opens up an additional decay channel in muon decay.
This yields further NLO BSM contributions to the prediction of the mass of
the W boson performed in Sect. 5.4.1, which have to be taken into account
in respective analyses.

• Invisible Z′-radiation effects will, even for MZ′ ≥ 1GeV, affect the LEP
observables at NLO in the BSM effects. Similarly to the virtual BSM correc-
tions, contributions originating from real Z′ radiation lead to O(s2γ) effects
in the two LEP POs considered in this work. Therefore, having the results
from our analyses performed in Sects. 5.4.3-5.5.4 in mind, the respective
contributions to ΓDASM

Z→ll and s2,DASM
w,eff,l are expected to be small in the phe-

nomenologically preferred parameter regions (where γ = O(10−3)) and are
neglected in the presented analyses. However, taking into account the exact
experimental setup used for the LEP measurements, a sophisticated anal-
ysis dedicated to a more correct theoretical treatment of these additional
real-radiation effects should be performed to ensure that they are correctly
included in the respective predictions in future analyses.

• There seem to be very powerful limits, especially for small gauge-boson
masses of MZ′ < 10GeV, on certain γ–MZ′ combinations obtained from di-
rect searches of neutral BSM gauge bosons at the NA64 [124], BaBar [125],
and FASER [126] experiments that should be taken into account in future
analyses. Unfortunately, their description of the chosen underlying theo-
retical setup is rather blurry, i.e. the exact interpretation of their reported
results is not clear to us. A careful study is needed to understand how the
reported limits translate into constraints on DASM parameters.
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• To obtain a more complete picture, further POs such as additional Z-boson
branching ratios, aiming to test the gauge-sector extension of the DASM at
an even higher level of precision, should be included in the analyses.

With our choice of investigated POs the main focus of the analysis lies in exploring
the phenomenological implications of the gauge-sector extension of the DASM.
This is also reflected in the fact that the remaining BSM parameters of the Higgs
and fermion sectors are widely unconstrained by the analysis. Thus, to further
investigate the Higgs- and fermion-sector extensions of the DASM we propose for
future analyses:

• To obtain a more precise estimate for the BSM Higgs-sector parameters,
studies on branching ratios of the SM-like Higgs boson, or even more subtle
predictions, such as a full prediction for the S → 4 fermions branching ratio,
where S denotes the SM-like Higgs boson of h and H, should be included in
future analyses. For instance, even though the decay width of the SM-like
Higgs boson is not known precisely, in case its decay into two BSM Higgs
bosons is kinematically allowed, the resulting partial decay width can be
used to get a first, rough upper limit31 on λ12.

• The lower bound of mν4 > 100GeV was introduced to avoid the unphysical
artifacts, i.e. the threshold effects discussed in Sect. 5.3, in the minimization
procedure. These artifacts originate from neglecting the unstable nature of
decaying particles. Even though our analysis is not sensitive to the exact
value of mν4 (see Sects. 5.4.1–5.4.5 and 5.5.4), it is desirable to cure these
artifacts in future analyses. This can, e.g., be achieved by introducing a
complex mass for ν4 via the complex-mass scheme.

• In certain regions of the parameter space, the additional fermion of the dark
sector ν4 can be a stable particle32. A dedicated DM analysis should be
performed within the DASM to see whether ν4 provides a promising DM
candidate, i.e. if the DASM offers potential explanations for the existence of
DM.

Finally, the DASM introduces an additional gauge boson, a BSM Higgs boson,
and a dark fermion. A dedicated study on their possible decays should be per-
formed. This will give first implications for possible direct searches at modern
high-precision experiments.

31This rough estimate is, e.g., obtained by simply demanding that this partial decay width does
not exceed the upper experimental limit of the total decay width of the SM-like Higgs boson.

32This can, e.g., be achieved by taking θr → 0, where in our collider approximation the only
non-vanishing interaction of ν4 is given by Z ′ν̄4ν4.
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There are several observations, such as the existence of DM or the matter–antimat-
ter asymmetry in the visible universe that imply that the SM cannot be the com-
plete theory describing Nature. Thus, it should rather be seen as an effective theory
of some more fundamental model. In the pursuit of finding solutions for some of
the open questions of modern HEP, many promising theories, like SUSY models,
were developed. However, to this day there exists no evidence for the realization
of any of these models in Nature. One promising ansatz in the search for possible
new physics is to investigate the phenomenological implications of promising, but
rather simple and generic extensions of the SM. Testing the predictions of these
extensions with high precision shows whether they can address some of the open
questions without destroying the astonishing predictive power that the SM shows
for numerous collider measurements. This might offer first hints on the structure
of possible new physics.
In the first part of this work we formulated the DASM. The DASM extends the
SM by a rather generic dark sector. This dark sector is a singlet with respect to
the SM gauge group, but comprises a U(1)d gauge symmetry. The SM part of the
theory is a singlet under this additional gauge group. The full gauge group of the
DASM is given by SU(3)C × SU(2)W × U(1)Y × U(1)d. In addition to the gauge
field corresponding to the U(1)d, the DASM introduces a new complex Higgs field
ρ to the scalar sector, which develops a non-vanishing vev. The Higgs field ρ car-
ries only charge of the U(1)d. Consequently, the gauge group of the dark sector is
spontaneously broken. This results in two new massive bosons, one Higgs boson
and a Z′ boson. Furthermore, right-handed SM-like neutrinos, as well as a Dirac
fermion that carries charge of the U(1)d, are introduced in the DASM. Thus, the
DASM uses the field-strength tensor of the weak hypercharge as well as the mass
operator of the SM-like Higgs doublet, which are the only two gauge-invariant and
renormalizable operators present in the SM, to open two portals to its dark sec-
tor. Additionally, the right-handed parts of the SM-like neutrinos provide a third
portal to the dark sector.
We set up the theoretical framework for the DASM and formulate the theory in
terms of the fields that correspond to mass eigenstates. Further, we give explicit
results for the full Lagrangian of the DASM in Rξ gauge. To this end, we introduce
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a “collider approximation” for the neutrino sector extension which is well suited for
studies of collider phenomenology. In this collider approximation, the DASM in-
troduces two additional free parameters in the gauge sector, three free parameters
in the Higgs sector, and two additional input parameters in the neutrino sector.
Making use of the masses of the new particles and the mixing angles introduced
in the Higgs, gauge, and neutrino sectors, we defined a particularly intuitive and
experimentally easily accessible set of input parameters suitable for studies of the
phenomenological implications of the DASM.
To be able to derive NLO predictions for POs within the DASM, we set up a
complete renormalization of the DASM at NLO. For one, we defined a proper OS
renormalization scheme—based on physical S-matrix elements—for the newly in-
troduced mixing angles. This is of particular interest, since mixing angles are often
introduced to parameterize BSM models, and there seems to be no agreement on
their proper OS renormalization in the literature. We give explicit results for the
OS renormalization constants of the gauge-, Higgs-, and fermion-sector mixing an-
gles within the DASM. The suggested OS renormalization scheme for the mixing
angles has various desirable properties [81]:

• The OS renormalization conditions for the mixing angles are based on S-
matrix elements leading to gauge-independent renormalization constants.

• The resulting OS mixing-angle renormalization constants have smooth limits
for extreme values of the respective mixing angle.

• Predictions for observables based on the OS renormalization scheme are sta-
ble in the degeneracy limit of the masses of the respective mixing particles.

• Employing complete OS renormalization for all mass-related parameters leads
to a cancellation of all tadpole contributions in predictions for observables.
Therefore, the presented OS predictions do not depend on the treatment of
the tadpoles.

• The proposed OS renormalization for the gauge-sector mixing angle γ leads
to a process-independent renormalization constant δγOS.

For mixing angles connected to kinetic mixing, such as the mixing angle γ intro-
duced in the gauge sector of the DASM, we are not aware of any complete OS
renormalization proposed in the literature (previously to our work [38]). There-
fore, the here presented OS renormalization can be seen as a proposal for the
OS renormalization of gauge-sector mixing angles. As an alternative to the OS
renormalization we give the corresponding MS renormalization constants for all
introduced mixing angles explicitly. MS renormalization schemes are symmetric
in the mixing fields and, by definition, process independent. However, MS renor-
malization for mixing angles can lead to perturbative instabilities in certain regions
of the parameter space and, in general, introduces a dependence on the tadpole
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treatment in predictions for observables.
Finally, we performed a first phenomenological analysis of the DASM to inves-
tigate the effects of its various newly introduced features on POs. Due to the
detailed studies of Higgs singlet extensions, which introduce Higgs sector exten-
sions similar to the one of the DASM, the focus of our analysis was to investigate
the phenomenological implications of the gauge-sector extension. To this end, we
consider four POs: the mass of the W boson derived from muon decay, the anoma-
lous magnetic moment of the muon, the leptonic effective weak mixing angle, and
the leptonic partial decay width of the Z boson. We derived NLO predictions for
these POs within the DASM. Assuming BSM contributions to be small we add for
each PO the difference between the NLO DASM and NLO SM predictions to the
respective state-of-the-art SM prediction to obtain sufficiently precise predictions
that match the precision of the respective measurements.
The SM predictions for the leptonic effective weak mixing angle and the leptonic
partial decay width of the Z boson agree with their respective measurements within
their experimental 1σ uncertainties. The SM prediction for the mass of the W bo-
son agrees with the corresponding experimental world average within 2σ. Note
that, the world average used in our studies does not include the CDF measure-
ment [7] since it is not compatible with other measurements of the W-bosons
mass [8]. However, we want to remark that there exist regions in the parameter
space of the DASM that lead to agreement between its predictions for the W-
boson mass and the CDF measurement. For the anomalous magnetic moment of
the muon currently two different SM predictions are present. They are based on
different approaches for the determination of the hadronic vacuum polarization,
either via a data-driven approach (aSMµ,e+e−) [4] or via lattice QCD (aSMµ,lattice) [5].
The two approaches lead to a 5.1σ and a 1.7σ difference between SM prediction
and measurement, respectively. Due to this large discrepancy, we included both
scenarios in our studies. The dependences of these predictions on the new parame-
ters were investigated in detail. All four POs only loosely depend on the additional
parameters introduced by the Higgs- and neutrino-sector extensions and they are
insensitive to the sign of the gauge-sector mixing angle.
A simultaneous fit of all four POs was performed to determine the parameter con-
figuration that minimizes the tension between theory predictions and data. To this
end, a χ2-like likelihood function F was minimized within the perturbative region
of the parameter space. For the two investigated scenarios, using either aSMµ,e+e− or

aSMµ,lattice for the derivation of (g − 2)µ, we find the minimum values Fmin,s1 = 4.54
and Fmin,s2 = 3.87, respectively. The corresponding SM values in the two scenarios
are given by FSM,s1 = 30.70 and FSM,s2 = 7.75. This shows that in both scenar-
ios a significantly better agreement between data and predictions can be achieved
within the DASM than for the SM case. In either scenario, the DASM can provide
perfect agreement between predictions and measurement of (g − 2)µ. Simultane-
ously the agreement between measurement and prediction for the W-boson mass
is slightly better than in the SM and the predictions for the leptonic effective weak
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mixing angle and the leptonic partial decay width show an equally good agreement
with their respective measurements as in the SM case. In both scenarios, small
values of the gauge-boson mixing angle γ = O(10−3) are preferred. Furthermore,
both minima are located at the lower limit of MZ′ = 1GeV, which was imposed
to guarantee the validity of the approximations performed in the derivations of
the considered POs. As expected, the remaining BSM parameters remain widely
unconstrained in our analysis.

This first analysis shows that the DASM remains a promising candidate to pa-
rameterize and identify possible new physics. However, to fully explore the pre-
dictive power of the DASM, further analyses have to be performed. Considering
the results of our parameter fit, future analyses should avoid approximations that
restrict the viable parameter space to MZ′ > 1GeV. This would reveal whether
even lower masses of the Z′ boson can lead to even better agreement between mea-
surements and predictions.
To set the cornerstone for direct searches at any HEP experiments, a detailed
study of the decays of the new physics particles predicted by the DASM should
be performed. Furthermore, the obvious next step for future analyses is to take
more EW POs as well as limits obtained from direct Z′-boson searches performed,
e.g. at the NA64 [124], BaBar [125], and FASER [126] experiments, into account.
To obtain a more precise estimate of the Higgs-sector parameters additional POs
sensitive to the Higgs-sector extension—such as predictions for branching ratios
of the SM-like Higgs boson—should be considered. If kinematically allowed, even
the decay of the SM-like Higgs boson into two BSM Higgs bosons could be used to
obtain a first rough upper limit on λ12. Finally, a dedicated DM analysis should
be performed within the DASM to investigate whether the DASM might offer a
possible explanation for the origin of DM.
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A. Cross sections within pertur-
bation theory

In theoretical HEP, one of the main interests lies in determining precise predictions
for cross sections of scattering events. In this thesis, we make use of perturbation
theory to compute predictions. To this end, we expand the investigated observ-
ables in the coupling constants, which are assumed to be small. Here, we briefly
describe the perturbative approach, closely following Refs. [51, 52].
In quantum field theory any scattering process can be described by the so-called
S-matrix. The S-matrix quantifies the transition between the (possibly multi-
particle) incoming state |i⟩ and the final state |f⟩. Splitting the Lagrangian in a
free part L0 (monomials with up to two fields) and an interaction part LI (mono-
mials with more than two fields)

L = L0 + LI, (A.1)

the S-matrix element is, assuming asymptotically free initial and final states1,
given by the time-evolution operator in the interaction picture

S = T

[
exp

{
i

∫
d4xLI

}]
, (A.2)

where T denotes the time-ordering operator. The corresponding transition matrix
element Mfi is defined via

⟨f |S |i⟩ = ⟨f |i⟩+ i(2π)4δ(4)(pi − pf )Mfi, (A.3)

where the first term on the right side describes the scenario where no interaction
takes place. Further, pi/f denote the total initial- and final-state four-momenta,
respectively, the delta function ensures four-momentum conservation, and |i⟩ and
|f⟩ are assumed to be asymptotically free states. Within perturbation theory,
the S-matrix element can be related to so-called Feynman diagrams. Feynman
diagrams are built of propagators (described by L0) and vertices (described by

1It is assumed that all interactions happen in a finite time interval and that the states are free
of interactions for asymptotic times t → ±∞.
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LI), which can be translated into analytical expressions via the Feynman rules.
For 2 → n particle scattering of unpolarized initial-state particles the absolute
square of Mfi is related to the desired interaction cross section via

dσ =
1

P F(p1, p2)
dΦ(p1, p2, q1, . . . , qn)|Mfi|2, (A.4)

with P = I1!×· · ·× In!, where Ij, j = 1, . . . , n, is given by the number of identical
final-state particles of type j, denoting the symmetry factor that has to be included
to avoid double-counting. The flux factor for the incoming particles2 is given by

F(q1, q2) = 4
√

(p1p2)2 −m2
1m

2
2, (A.5)

with the masses of the incoming particles m1, m2. The differential phase-space
volume is defined via

dΦ(p1, p2, q1, . . . , qn) = (2π)4δ(4)

(
p1 + p2 −

n∑
i=1

qi

)
d3q⃗1

2Eq1(2π)
3
. . .

d3q⃗n
2Eqn(2π)

3
,

(A.6)

where Eqi =
√
m2

qi
+ |q⃗i|2, q⃗i, and qi denote the energies as well as the three-

and four-momenta of the final-state particles, respectively, and mqi is the mass of
the final-state particle i. Further, for unpolarized scattering the squared matrix
element |Mfi|2 has to be spin averaged over the initial-state particles and summed
over all unresolved d.o.f. of the final-state particles. In the case of a particle decay,
i.e. a 1 → n process, the differential decay width is given by

dΓ1→f =
(2π)4

2EpP
δ(4)

(
p−

n∑
i=1

qi

)
d3q⃗1

2Eq1(2π)
3
. . .

d3q⃗n
2Eqn(2π)

3
|Mfi|2, (A.7)

where p = (Ep, p⃗) is the four-momentum of the mother particle. For two massless
particles in the final state Eqs. (A.4) and (A.7) simplify in the centre-of-mass frame
to

dσ2→2

dΩCM

=
|q⃗1|

64π2s|p⃗1|P
|Mfi|2,

dΓ1→2

dΩCM

=
|q⃗1|

32π2m2
pP

|Mfi|2, (A.8)

where
√
s = (E1+E2), with the energies of the initial-state particles E1, E2, mp is

the mass of the mother particle, and |p⃗1|, |q⃗1| denote the magnitude of the three-
momenta of the incoming and outgoing particles, respectively. Further, dΩCM is
the solid angle in the CM frame defined by q⃗1.

2Here, it is assumed that the incoming particles are (anti)parallel to each other.



B. Gauge transformations of the
fields

Here we give the infinitesimal gauge transformations of the fields needed for the
derivation of the Faddeev–Popov ghost Lagrangian in Sect. 3.2.3. As in the rest
of this work, we adopt the conventions of Ref. [54] for the field-theoretical SM
quantities here.
The infinitesimal gauge transformations of the gauge fields W a

µ , Bµ, and Cµ read

δW a
µ = ∂µδθ

a + g2f
abcW b

µδθ
c, δBµ = ∂µδθ

Y, δCµ = ∂µδθ
C, (B.1)

where the gauge-group parameters of the SU(2)W, U(1)Y, and U(1)d gauge groups
are given by δθa, δθY, and δθC, respectively. Similarly we find for the Higgs fields
Φ and ρ

δΦ =

(
− ig1

2
δθY +

ig2σa
2

δθa
)
Φ, δρ = −iedδθ

Cρ. (B.2)

Therefore, the infinitesimal gauge transformations for the fields corresponding to
the gauge and scalar bosons of the DASM are given by

δW± = ∂µδθ
± ± ie

sw

[
W±

µ

[
cw(cγδθ

Z − sγδθ
Z′
)− swδθ

A
]

(B.3)

+
[
swAµ − cw(cγZµ − sγZ

′
µ)
]
δθ±
]
, (B.4)

δAµ = ∂µδθ
A + ie

(
W+

µ δθ
− −W−

µ δθ
+
)
, (B.5)

δZµ = ∂µδθ
Z − iecγ

cw
sw

(
W+

µ δθ
− −W−

µ δθ
+
)
, (B.6)

δZ ′
µ = ∂δθZ

′
+ iesγ

cw
sw

(
W+

µ δθ
− −W−

µ δθ
+
)
, (B.7)

δϕ± = ∓ ieϕ±
[
δθA + δθZ

[
−cwsγη +

s2w − c2w
2swcw

(cγ − swsγη)

]
−δθZ′

[
cwcγη +

s2w − c2w
2swcw

(sγ + swcγη)

]]
± ie

2sw
[v2 + cαh+ sαH ± i (cxχ− sxχ

′)] δθ±, (B.8)
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δh = − ẽsα

(
cγδθ

Z′
+ sγδθ

Z
)
(cxχ

′ + sxχ) +
ecα

2swcw
(cxχ− sxχ

′)

×
[
δθZ (cγ − swηsγ)− δθZ

′
(sγ + swηcγ)

]
+

iecα
2sw

(
ϕ+δθ− − ϕ−δθ+

)
,

(B.9)

δH = ẽcα

(
cγδθ

Z′
+ sγδθ

Z
)
(cxχ+ sxχ

′) +
sαe

2swcw
(cxχ− sxχ

′)

×
[
δθZ (cγ − swηsγ)− δθZ

′
(sγ + swηcγ)

]
+

iesα
2sw

(
ϕ+δθ− − ϕ−δθ+

)
,

(B.10)

δχ = δθZ
[
−ẽsγsx (cαH − sαh+ v1)−

ecx
2swcw

(v2 + cαh+ sαH) (cγ − swηsγ)

]
+ δθZ

′
[
ecx

2swcw
(v2 + cαh+ sαH) (sγ + swηcγ)− ẽcγsx (cαH − sαh+ v1)

]
+
ecx
2sw

(
ϕ+δθ− + ϕ−δθ+

)
, (B.11)

δχ′ = δθZ
[
esx

2swcw
(v2 + cαh+ sαH) (cγ − swηsγ)− ẽsγcx (cαH − sαh+ v1)

)
− δθZ

′
[
esx

2swcw
(sγ + swηcγ) (v2 + cαh+ sαH) + ẽcγcx (cαH − sαh+ v1)

]
− esx

2sw

(
ϕ+δθ− + ϕ−δθ+

)
, (B.12)

where we introduced the gauge-group parameters

δθ± =
δθ1 ∓ iδθ2√

2
, (B.13)

δθA = acwδθ
C + cwδθ

Y − swδθ
3, (B.14)

δθZ =
(
acγsw + sγ

√
1− a2

)
δθC + cγswδθ

Y + cγcwδθ
3, (B.15)

δθZ
′
=
(√

1− a2cγ − asγsw

)
δθC − sγswδθ

Y − sγcwδθ
3. (B.16)

With these explicit results for the infinitesimal gauge transformations it is straight-
forward to evaluate the infinitesimal variations of the gauge functionals (see
Eq. (3.82)) needed for the calculation of the ghost Lagrangian given in Eq. (3.84).



C. Dimensional regularization

Going from LO calculations to higher-loop orders, loop integrals appear in calcu-
lations of observables. In general, these loop integrals can lead to UV and infrared
(IR) divergences. The Kinoshita–Lee–Nauenberg [127, 128] theorem states that
appearing IR divergences cancel in the calculation of sufficiently inclusive quan-
tities. To address the appearing UV divergences a proper renormalization of the
input parameters is needed.
To regularize appearing UV divergences, a regularization scheme is needed. In
general, regularization schemes modify the underlying theory such that the UV
divergences are mapped to well-defined expressions. However, they incorporate a
certain limit, where the original theory is recovered. In this work, we use dimen-
sional regularization [76,77], which is well suited for the regularization of UV diver-
gences appearing in NLO calculations. In the following, we briefly sketch the main
idea of dimensional regularization (for a more in-depth discussion see e.g. [129]).
In dimensional regularization, appearing UV divergences are regularized by a shift
of the space-time dimension D = 4 to arbitrary (complex) dimensions D = 4− 2ε.
In D dimensions the integration measure of the appearing loop integrals becomes∫

d4q

(2π)4
→ µ4−D

∫
dDq

(2π)D
. (C.1)

Here, a mass scale µ, the so-called reference scale of dimensional regularization, is
introduced to keep the mass dimension of the integrals constant for any value of
the space-time dimensions D.
For the consistency of the theory, all appearing four-vectors and other Lorentz
covariants are analytically continued to D ̸= 4 dimensions. In dimensional regu-
larization, the space-time dimension D is chosen such that the integrals are well-
defined. At NLO the UV divergences of the original theory are expressed as ε−1

poles. Further, the original theory is recovered in the limit ε → 0. It is common
to represent appearing UV divergences at NLO by the so-called standard 1-loop
UV divergence of dimensional regularization

∆UV =
2

4−D︸ ︷︷ ︸
=1/ε

−γE + log 4π, (C.2)
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136 C. Dimensional regularization

where the Euler–Mascheroni constant γE is introduced. Finally, we want to empha-
size that the correct treatment of γ5 in D dimensions is non-trivial (see e.g. [54] for
details). For NLO calculations, it is, however, sufficient to use the so-called naive
γ5 scheme [54], where γ5 anticommutes with all generators of the Dirac algebra
γµ, µ = 0, . . . , D− 1. This scheme is implemented in the FeynArts and FormCalc
packages, which are frequently used in the calculation of observables throughout
this work.



D. MS renormalization constants
of mixing angles

The results for the MS renormalization constants δγMS, δαMS, and δθr,MS are ob-
tained from their respective OS results by keeping only terms proportional to the
standard 1-loop UV divergence of dimensional regularization ∆UV (see Sect. C).
In this appendix, we give their explicit expressions in ’t Hooft–Feynman gauge.
In the PRTS, one finds

δγPRTS
MS

= ∆UV

{
αem [s2γ (1− s2wη

2) + 2swηc2γ]

16πc2ws
2
wM

2
ZZ′−

∑
l,u,d

[
m2

l + 3(m2
u +m2

d)
]

−
c2ws

2
ws2γs

2
θr
λ212m

2
ν4
M2

ZM
2
Z′

αemπ3s22αM
2
ZZ′−M

4
Hh−

+
1

768π3αems2wc
4
wM

2
W

{
π2α2

em

{
2

M2
ZZ′−

×
[
c2γ

(
3c2αc

2
wM

2
Hh−

[
4swηM

2
W−2swc

2
wηM

2
ZZ′++s2γc

2
wM

2
ZZ′−(s

2
wη

2

−1)
]
−2swη

[
3c2wM

2
Hh+(2M

2
W − c2wM

2
ZZ′+)+2c4w

[
M4

ZZ′+−2M2
ZM

2
Z′
]

+ 2c2wM
2
ZZ′+M

2
W(82s2w − 1) + 48M4

W

(
2c2ws

2
w + s2wη

2 + 1
)])

+ s2γ

(
3c2αc

2
wM

2
Hh−

(
s2wη

2 − 1
)
(c2wM

2
ZZ′+ − 2M2

W)

− 3c2wM
2
Hh+

(
s2wη

2 − 1
)
(c2wM

2
ZZ′+ − 2M2

W) + c4wM
4
ZZ′+

(
s2wη

2 − 1
)

+ 2c2wM
2
ZZ′+M

2
W

[
81s2wη

2 + 4s2w(5− 23s2w)− 9
]

+ 48M4
W

[
2c2w

(
s2wη

2 − 2s2w + 1
)
+ s4wη

4 − 1
])]

+ 2swc
2
wη

×
(
3c2w(M

2
Hh+−M2

ZZ′+)−6c2αc
2
2γc

2
wM

2
Hh−+ c4γc

2
w(3M

2
Hh+−M2

ZZ′+)

+4M2
W(7c2w − 75s2w − 6)

)
−
[
s4γc

4
w

(
s2wη

2−1
)
(3M2

Hh+−M2
ZZ′+)

]}
+

8s2γs
4
wc

6
wλ

2
12M

2
ZM

2
Z′

c2αs
2
αM

2
ZZ′−M

4
Hh−

[
−3c2αM

2
Hh−(c

2
wM

2
ZZ′+ + c2γc

2
wM

2
ZZ′−

− 2M2
W) + c2γc

2
wM

2
ZZ′−(M

2
ZZ′+ − 3M2

Hh+)− 3c2wM
2
Hh+M

2
ZZ′+
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+ 6M2
Hh+M

2
W + c2wM

4
ZZ′+ + 8M2

ZZ′+M
2
W + 48c2wM

2
ZM

2
Z′

]}}
,

(D.1)

with the shorthands

M2
ij± ≡M2

i ±M2
j , M4

ij± ≡
(
M2

ij±
)2
, (D.2)

for the MS renormalization constant of the gauge-boson mixing angle. Combining
this with Eqs. (4.46), (4.47), and (4.48) it is straightforward to derive the explicit
expressions for δγFJTS

MS
and δγGIVS

MS
, as well.

For the Higgs mixing angle, the MS-renormalization constant in the PRTS reads

δαPRTS
MS

= ∆UV

{
αems2αΛ

2
ZZ′

32πM2
WM

2
Hh−(Λ

2
ZZ′ − 2M2

W)

∑
f=l,u,d

NC,f

[
m2

f (M
2
Hh+ − 8m2

f )
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+
s2θrλ

2
12m
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W

(
2M2
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ZZ′

) (
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ν4
+M2
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)
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1
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4
ZZ′

(
2sαcα
M2

Hh−
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+
2πλ12
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ZZ′M4
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cαsα

[
−2c6αM

4
WM

4
Hh−Λ
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, (D.3)

with the respective colour factor for the fermions NC,f and the shorthands

Λ2
ZZ′ =M2

ZZ′+ +M2
ZZ′−c2γ, Λ4

ZZ′ ≡
(
Λ2

ZZ′
)2
. (D.4)

In combination with Eqs. (4.65), (4.66), and (4.67) the explicit expressions for
δαFJTS

MS
and δαGIVS

MS
can easily be derived. Finally, the MS-renormalization constant

for θr in the PRTS is given by

δθPRTS
r,MS

=
∆UVλ

2
12s

2
wsθrcθr

64π3αemc2αs
2
α(M

2
H −M2

h)
2

{
56c2wM

2
ZM

2
Z′

+ 2m2
ν4
s2θr
[
3c2wc2γ(M

2
Z′ −M2

Z)− 3c2w(M
2
Z +M2

Z′) + 10M2
W

]}
. (D.5)

Similarly to the cases above, the respective expressions for δθFJTS
r,MS

and δθGIVS
r,MS

can

be obtained from (D.5) using Eqs. (4.80), (4.81), and (4.82).





E. Derivation of the covariance
matrix

The only relevant correlations needed in our analysis are between ΓZ→ll, s
2
w,eff,l, and

MZ. Their correlation coefficients are obtained from the correlation matrix given
in Tab. 2.13 of Ref. [118]. To this end, we make use of the relations Eqs. (5.75)
and (5.80) as well as (see e.g. [123])

V̂kg =
∑
i,j

∂yk
∂xi

∂yg
∂xj

∣∣∣∣
x=x̄

Ûij, (E.1)

where Û is the covariance matrix for the set of pseudo-observables
x = {MZ,ΓZ, σ

0
had, R

0
l , A

0,l
FB}, with their respective best fit values x̄ given in

Ref. [118], and V̂ is the respective covariance matrix for the set of pseudo-observa-
bles y = {MZ,ΓZ, σ

0
had,ΓZ→ll, s

2
w,eff,l} we are interested in. Inverting the covariance

matrix V̂ of this subsystem will give the respective values of (V −1
ij ), i, j = 3, 4, 5,

used in our analysis (see Eq. (5.87)). To obtain the correct result for the inverse of
the covariance matrix, one has to invert the full covariance matrix1 V̂ , including
the respective entries that account for the presence of ΓZ and σ0

had. The explicit
values of the inverse of the covariance matrix read

(V −1)11 =
1

(∆MW)2
= 6.9444× 103GeV−2, (E.2)

(V −1)22,e+e− =
1

(∆aSMµ,e+e−)
2 + (∆aexpµ )2

= 4.16493× 1018, (E.3)

(V −1)22,lattice =
1

(∆aSMµ,lattice)
2 + (∆aexpµ )2

= 2.60146× 1018, (E.4)

(V −1)33 = 4.08712× 108GeV−2, (E.5)

(V −1)44 = 3.19361× 106, (E.6)

1Note that this procedure reflects the situation where we do not have any knowledge about the
predictions for ΓZ and σ0

had within the DASM and, thus, have to scale their respective theory
uncertainties to infinity (after adding them in quadrature to the respective experimental
errors).
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(V −1)55 =
1

(∆MZ)2
= 2.28271× 105GeV−2, (E.7)

(V −1)34 = 2.20856× 106GeV−1, (E.8)

(V −1)35 = 8.65289× 104GeV−1, (E.9)

(V −1)45 = 4.78144× 104GeV−1, (E.10)

(V −1)66 =
1

(∆MS)2
= 34.6021GeV−2, (E.11)

(V −1)77 =
1

(∆mt)2
= 2.04082GeV−2, (E.12)

(V −1)88 =
1

(∆(∆α5
had))

2
= 2.04082× 108, (E.13)

(V −1)99 =
1

(∆αs)2
= 106, (E.14)

where, as already mentioned above, we used the values given in Tab. 2.13 of
Ref. [118] for the determination of (V −1)ij, i, j = 3, 4, 5. For the respective entries
of the remaining SM-like input parameters as well as MW, we make use of their
experimental uncertainties ∆Oi, Oi ∈ {MW,MS,mt,∆α

5
had, αs}, where S denotes

the SM-like Higgs boson of h and H, taken from Ref. [16]. Further, for aµ, we add
the respective theoretical uncertainty given in Eqs. (5.43) or (5.44) in quadrature
to the experimental uncertainty given in Eq. (5.45) to obtain the square of its total
uncertainty (∆aµ)

2 used in V −1. All remaining entries of V −1 are zero.



F. Feynman rules of the DASM

In the following, we give the Feynman rules of the DASM in the ’t Hooft–Feynman
gauge. To keep the expressions compact we do not give their full analytic depen-
dence on the input parameters. The full dependence on the input parameters can
be obtained with the help of Eqs. (3.28), (3.68), (3.69), and (3.81). All momenta
are chosen to be incoming. Note that we do not explicitly list the Feynman rules
for QCD, since they are equivalent to their counterpart in the SM (see e.g. [51,54]).

Propagators

Here we list the propagators for fields. They read:

• for scalar fields S = h, H, χ, χ′, ϕ±,

S S
k

=
i

k2 −M2
S

,

with Mχ =MZ, Mχ′ =MZ′ and Mϕ± =MW.

• for gauge fields V = A,Z, Z ′,W±,

Vµ Vν
k

=
−igµν

k2 −M2
V

.

• for ghost fields G = uA, uZ , uZ
′
, u±,

G Ḡ
k

=
i

k2 −M2
G

,

with MuA = 0,MuZ =MZ,MuZ′ =MZ′ , and Mu± =MW.

• for fermion fields F = ui, di, li, νi, ν4, i = 1, 2, 3,

F F̄
p

=
i
(
/p+mF

)
p2 −m2

F

.
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Vertices

In the following we list the Feynman rules for the vertices in the DASM.

VVV vertex:

V1,µ, k1

V2,ν , k2

V3,ρ, k3

= ieC
[
gµν (k1 − k2)ρ + gµρ (k3 − k1)ν + gνρ (k2 − k3)

]
,

with the values

V1V2V3 AW+W− ZW+W− Z ′W+W−

C 1 − cγcw
sw

sγcw
sw

VVVV vertex:

V1,µ, k1

V2,ν , k2

V3,ρ, k3

V4,σ, k4

= ie2C [2gµνgρσ − gµσgνρ − gµρgνσ] ,

with the values

V1V2V3V4 W+W+W−W− W+W−AZ W+W−ZZ W+W−AZ ′

C 1
s2w

cγcw
sw

− c2γc
2
w

s2w
− sγcw

sw

V1V2V3V4 W+W−ZZ ′ W+W−Z ′Z ′ W+W−AA

C cγsγc2w
s2w

− s2γc
2
w

s2w
−1
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VF̄F vertex:

Vµ

F̄1

F2

= ieγµ (CLωL + CRωR) ,

with the values

V F̄1F2 Af̄ifj Zf̄ifj W+ūidj W−d̄jui

CL −Qfδij
cγ

swcw
(1− ηswtγ)

(
I3W − sw(sw−ηtγ)

1−ηswtγ
Qf

)
δij

1√
2sw
Vij

1√
2sw
V †
ji

CR −Qfδij − cγ(sw−ηtγ)

cw
Qfδij −

ẽsγs2θr
e
δijδi3δfν 0 0

V F̄1F2 Z ′f̄ifj W+ν̄ilj W−l̄jνi

CL − cγ
swcw

(tγ + ηsw)
(
I3W − sw(swtγ+η)

tγ+ηsw
Qf

)
δij

1√
2sw
δij

1√
2sw
δij

CR
cγ(tγsw+η)

cw
Qfδij −

ẽcγs2θr
e
δijδi3δfν 0 0

V F̄1F2 Zν̄4ν4 Zν̄4/3ν3/4 Z ′ν̄4ν4 Z ′ν̄4/3ν3/4

CL − ẽsγ
e

0 − ẽcγ
e

0

CR − ẽsγc2θr
e

ẽsγsθrcθr
e

− ẽcγc2θr
e

ẽcγsθrcθr
e
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SF̄F vertex:

S

F̄1

F2

= ie (CLωL + CRωR) ,

with the values

SF̄1F2 hf̄f Hf̄f χf̄f χ′f̄f

CL − cαmf,i

2MWsw
δij − sαmf,i

2MWsw
δij −2iI3W,f

cγcwMZmf,i

2swM2
W

δij 2iI3W,f
sγcwMZ′mf,i

2M2
Wsw

δij

CR − cαmf,i

2MWsw
δij − sαmf,i

2MWsw
δij 2iI3W,f

cγcwMZmf,i

2swM2
W

δij −2iI3W,f
sγcwMZ′mf,i

2M2
Wsw

δij

SF̄1F2 hν̄4ν4 hν̄4ν3 hν̄3ν4 Hν̄4ν4 Hν̄4ν3 Hν̄3ν4

CL
sαs2θrmν4

v1e
0

sαsθrcθrmν4

v1e
− cαs2θrmν4

v1e
0 − cαsθrcθrmν4

v1e

CR
sαs2θrmν4

v1e

sαsθrcθrmν4

v1e
0 − cαs2θrmν4

v1e
− cαsθrcθrmν4

v1e
0

SF̄1F2 χν̄4ν4 χν̄4ν3 χν̄3ν4 χ′ν̄4ν4 χ′ν̄4ν3

CL
isxs2θrmν4

v1e
0

isxsθrcθrmν4

v1e

icxs2θrmν4

v1e
0

CR − isxs2θrmν4

v1e
− isxsθrcθrmν4

v1e
0 − isxs2θrmν4

v1e
− icxsθrcθrmν4

v1e

SF̄1F2 χ′ν̄3ν4 ϕ+ūidj ϕ−d̄jui ϕ+ν̄ilj ϕ−l̄jνi

CL
icxsθrcθrmν4

v1e

mu,i√
2swMW

Vij − md,i√
2swMW

V †
ji 0 − mf,i√

2MWsw
δij

CR 0 − md,i√
2swMW

Vij
mu,i√
2swMW

V †
ji − mf,i√

2MWsw
δij 0
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SSSS vertex:

S1

S2

S3

S4

= − ie2 (c2αM
2
h + s2αM

2
H)

4s2wM
2
W

C1 + iλ12C2

+
48is2wλ

2
12M

2
W (s2αM

2
h + c2αM

2
H)

e2 (M2
h −M2

H)
2 C3,

with the values

S1S2S3S4 hhhh hhhH hhHH hHHH HHHH HHϕ+ϕ− hhϕ+ϕ−

C1 3c4α 3c3αsα 3c2αs
2
α 3cαs

3
α 3s4α s2α c2α

C2 −3s22α
3s4α
2

−1+3c4α
2

−3s4α
2

−3s22α −2c2α −2s2α

C3 −t2α tα −1 1
tα

− 1
t2α

0 0

S1S2S3S4 Hhϕ+ϕ− HHχ′χ′ HHχ′χ HHχχ Hhχ′χ′

C1 sαcα s2αs
2
x −s2αsxcx s2αc

2
x cαsαs

2
x

C2 s2α −1 + c2αc2x c2αs2x −1− c2xc2α −s2αc2x

C3 0 − c2x
3s2α

− s2x
6s2α

− s2x
3s2α

c2x
3cαsα

S1S2S3S4 Hhχ′χ Hhχχ hhχ′χ′ hhχ′χ hhχχ

C1 −sαcαsxcx cαsαc
2
x c2αs

2
x −c2αsxcx c2αc

2
x

C2 −s2αs2x s2αc2x −1− c2αc2x −c2αs2x −1 + c2αc2x

C3
s2x
3s2α

s2x
3sαcα

− c2x
3cα

− s2x
6c2α

s22x
c2α
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S1S2S3S4 ϕ+ϕ+ϕ−ϕ− ϕ+ϕ−χ′χ′ ϕ+ϕ−χ′χ ϕ+ϕ−χχ χχχ′χ′ χ′χ′χ′χ′

C1 2 s2x −sxcx c2x
3
4
s22x 3s4x

C2 0 −2c2x −s2x −2s2x −1−3c4x
2

−3s22x

C3 0 0 0 0 − s22x
s22α

c4x
c2αs

2
α

S1S2S3S4 χχχχ χ′χχχ χ′χ′χ′χ

C1 3c4x −3c3xsx −3cxs
3
x

C2 −3s22x −3
2
s4x

3
2
s4x

C3 −4s4x
s22α

− s3xcx
s2αc

2
α

− sxc3x
s2αc

2
α

VSS vertex:

Vµ

S2, k2

S3, k3

= i (eC1 + ẽC2) (k2 − k3)µ ,

with the values

V1S2S3 W±ϕ∓h W±ϕ∓H W±ϕ∓χ W±ϕ∓χ′

C1 ∓ cα
2sw

∓ sα
2sw

− iMZcγcw
2MWsw

iMZ′cwsγ
2MWsw

C2 0 0 0 0

V1S2S3 Aϕ+ϕ− Zϕ+ϕ− Z ′ϕ+ϕ− Zχh

C −1 ηswsγ+cγ(c2w−s2w)

2cwsw

sw(ηcγ+swsγ)−sγc2w
2cwsw

− iMZcαcγ(cγ−ηswsγ)

2MWsw

C2 0 0 0 − iMZ′sαs
2
γcw

MW
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V1S2S3 ZχH Zχ′h Zχ′H

C1 − iMZcγsα(cγ−ηswsγ)

2MWsw

iMZ′cαsγcγ(1−ηswtγ)

2MWsw

iMZ′sαsγcγ(1−ηswtγ)

2MWsw

C2
iMZ′cαs

2
γcw

MW
− iMZsαsγcγcw

MW

iMZcαsγcγcw
MW

V1S2S3 Z ′χh Z ′χ′h Z ′χH

C1
iMZcαc

2
γ(ηsw+tγ)

2MWsw
− iMZ′cαsγ(sγ+ηswcγ)

2MWsw

iMZsαc
2
γ(ηsw+tγ)

2MWsw

C2 − iMZ′sαsγcγcw
MW

− iMZsαc
2
γcw

MW

iMZ′cαsγcγcw
MW

V1S2S3 Z ′χ′H

C1 − iMZ′sαsγ(sγ+cγηsw)

2MWsw

C2
iMZcαc

2
γcw

MW

SVV vertex:

S

V2,µ

V3,ν

= igµν (eC1 + ẽC2) ,

with the values

S1V2V3 hZZ HZZ hZZ ′

C1
cαMW(ηsγsw+cγ)

2

c2wsw

sαMW(cγ−ηsγsw)
2

c2wsw

cαMW[s2γ(η2s2w−1)−2ηswc2γ]
2c2wsw

C2 −2v1ẽsαs
2
γ 2v1ẽcαs

2
γ −v1ẽsαs2γ

S1V2V3 HZZ ′ hZ ′Z ′ HZ ′Z ′

C1
sαMW[s2γ(η2s2w−1)−2ηswc2γ]

2c2wsw

cαMW(sγ+ηswcγ)
2

c2wsw

sαMW(sγ+ηswcγ)
2

c2wsw

C2 v1ẽcαs2γ −2v1ẽsαc
2
γ 2v1ẽcαc

2
γ



150 F. Feynman rules of the DASM

S1V2V3 hW+W− HW+W− ϕ±W∓A ϕ±W∓Z ϕ±W∓Z ′

C1
cαMW

sw

sαMW

sw
−MW

MW(ηsγ−swcγ)

cw

MW(ηcγ+sγsw)

cw

C2 0 0 0 0 0

SSS vertex:

S1

S2

S3

=
ie

2swMW

C1 +
4iswλ12MW

e (M2
h −M2

H)
C2,

with the values

S1S2S3 HHh Hhh hhh HHH

C1 −s2αcα (2M2
H +Mh) − (M2

H + 2M2
h) sαc

2
α −3M2

hc
3
α −3M2

Hs
3
α

C2 −cα (2M2
H +M2

h) sα (M
2
H + 2M2

h) −3sαtαM
2
h

3M2
Hcα
tα

S1S2S3 ϕ+ϕ−h ϕ+ϕ−H χ′χ′h χχh χ′χ′H χχH

C1 −M2
hcα −M2

Hsα −M2
hcαs

2
x M2

hcαc
2
x M2

Hsαs
2
x −M2

Hsαc
2
x

C2 0 0
−M2

hc
2
x

cα
−M2

hs
2
x

cα

M2
Hc2x
sα

M2
Hs2x
sα

S1S2S3 χχ′h χχ′H

C1
M2

hs2xs
2
α

2cα

M2
Hs2xsα
2

C2 −M2
hs2x
2cα

M2
Hs2x
2sα
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SSVV vertex:

S1

S2

V3,µ, k3

V4,ν , k4

= i
(
e2C1 + ẽ2C2

)
gµν ,

with the values

S1S2V2V3 hhZZ hhZ ′Z hhZ ′Z ′ HHZZ

C1
c2α(cγ−ηswsγ)

2

2c2ws
2
w

c2α[2ηswc2γ+s2γ(1−η2s2w)]
4c2ws

2
w

c2α(sγ+ηswcγ)
2

2c2ws
2
w

s2α(cγ−ηswsγ)
2

2c2ws
2
w

C2 2s2αs
2
γ sαs2γ 2s2αc

2
γ 2c2αs

2
γ

S1S2V2V3 HHZ ′Z HHZ ′Z ′ HhZZ

C1 − s2α[2ηswc2γ+s2γ(1−η2s2w)]
4c2ws

2
w

s2α(sγ+ηswcγ)
2

2c2ws
2
w

s2α(ηswsγ−cγ)
2

4s2wc
2
w

C2 c2αs2γ 2c2αc
2
γ −s2αs2γ

S1S2V2V3 HhZ ′Z HhZ ′Z ′ ϕ+ϕ−AA ϕ+ϕ−ZA

C1 −s2α[2ηswc2γ+s2γ(1−η2s2w)]
8c2ws

2
w

s2α(sγ+ηswcγ)
2

4c2ws
2
w

2 −ηswsγ+sγ(c2w−s2w)
cwsw

C2 −s2αcγsγ −s2αc2γ 0 0

S1S2V2V3 ϕ+ϕ−Z ′A ϕ+ϕ−ZZ ϕ+ϕ−Z ′Z

C1
sγ(c2w−s2w)−ηswcγ

cwsw

[ηswsγ+cγ(c2w−s2w)]
2

2c2ws
2
w

2ηswc2γ(c2w−s2w)−s2γ
[
(c2w−s2w)

2−η2s2w

]
4c2ws

2
w

C2 0 0 0

S1S2V2V3 ϕ+ϕ−Z ′Z ′ hhW+W− HhW+W− HHW+W−

C1
[ηswcγ+sγ(s2w−c2w)]

2

2c2ws
2
w

c2α
2s2w

sαcα
2sw

s2α
2sw

C2 0 0 0 0
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S1S2V2V3 ϕ+ϕ−W+W− χχW+W− χχ′W+W− χ′χ′W+W−

C1
1

2s2w

M2
Zc

2
γc

2
w

2M2
Ws2w

−MZMZ′sγcγc
2
w

2M2
Ws2w

M2
Z′s

2
γc

2
w

2M2
Ws2w

C2 0 0 0 0

S1S2V2V3 χχZZ χχZ ′Z χχZ ′Z ′

C1
M2

Zc
4
γ(1−ηswtγ)

2

2M2
Ws2w

M2
Zc

2
γ[2ηswc2γ+s2γ(1−η2s2w)]

4M2
Ws2w

M2
Zc

2
γ(ηswcγ+sγ)

2

2M2
Ws2w

C2
2M2

Z′s
4
γc

2
w

M2
W

2M2
Z′cγs

3
γc

2
w

M2
W

2M2
Z′c

2
γs

2
γc

2
w

M2
W

S1S2V2V3 χ′χZZ χ′χZ ′Z

C1
MZMZ′s2γ(ηswsγ−cγ)

2

4M2
Ws2w

MZMZ′s2γ[2ηswc2γ+s2γ(1−η2s2w)]
8M2

Ws2w

C2
2MZMZ′s

3
γcγc

2
w

M2
W

2MZMZ′s
2
γc

2
γc

2
w

M2
W

S1S2V2V3 χ′χZ ′Z ′ χ′χ′ZZ

C1 −MZMZ′s2γ(sγ+ηswcγ)
2

4M2
Ws2w

MZ′s
2
γ(ηswsγ−cγ)

2

2M2
Ws2w

C2
2MZMZ′c

3
γsγc

2
w

M2
W

2M2
Zc

2
γs

2
γc

2
w

M2
W

S1S2V2V3 χ′χ′Z ′Z χ′χ′Z ′Z ′

C1
MZMZ′s2γ[2ηswc2γ+s2γ(1−η2s2w)]

8M2
Ws2w

M2
Z′s

2
γc

2
γ(tγ+ηsw)

2

2M2
Ws2w

C2
2MZMZ′c

2
γs

2
γc

2
w

M2
W

2M2
Zc

4
γc

2
w

M2
W

S1S2V2V3 hϕ∓W±A Hϕ∓W±A χϕ∓W±A χ′ϕ∓W±A hϕ∓W±Z

C1 − cα
2sw

− sα
2sw

∓ iMZcγcw
2MWsw

± iMZ′sγcw
2MWsw

cα(ηsγ−swcγ)

2cwsw

C2 0 0 0 0 0

S1S2V2V3 hϕ∓W±Z ′ Hϕ∓W±Z Hϕ∓W±Z ′ χϕ∓W±Z

C1
cα(ηcγ+swsγ)

2cwsw

sα(ηsγ−swcγ)

2cwsw

sα(ηcγ+swsγ)

2cwsw
± iMZcγ(ηsγ−swcγ)

2MWsw

C2 0 0 0 0



153

S1S2V2V3 χϕ∓W±Z ′ χ′ϕ∓W±Z χ′ϕ∓W±Z ′

C1 ± iMZcγ(η+swtγ)

2MWsw
± iMZ′sγ(cγsw−ηsγ)

2MWsw
∓ iMZ′sγcγ(η+swtγ)

2MWsw

C2 0 0 0

SḠG vertex:

S

ū1

u2

= ieC1 + iẽC2,

with the values

Sū1u2 hūZuZ hūZ
′
uZ

′
HūZuZ

C1 −M2
Zcαcγ(cγ−ηsγsw)

2MWsw
−M2

Z′cαsγ(sγ+ηswcγ)

2MWsw

M2
Zcγsα(ηsγsw−cγ)

2MWsw

C2
MZMZ′cwsαs

2
γ

MW

MZMZ′c
2
γsαcw

MW
−MZMZ′cαs

2
γcw

MW

Sū1u2 χū±u± χ′ū±u± ϕ±ū±uA ϕ±ū±uZ

C1 ∓iMZcwcγ
2sw

±i
MZ′sγcw

2sw
MW MW

[
(s2w−c2w)
2swcw

(cγ − swηsγ)− swsγη
]

C2 0 0 0 0

Sū1u2 ϕ±ū±uZ
′

ϕ±ūZu∓ ϕ±ūZ
′
u∓ hū±u±

C1 −MW

[
(s2w−c2w)
2swcw

(sγ + swηcγ) + swcγη
]

−M2
Z′sγcw

2MWsw

M2
Zcwcγ

2MWsw
− cαMW

2sw

C2 0 0 0 0

Sū1u2 Hū±u± hūZuZ
′

hūZ
′
uZ HūZuZ

′

C1 − sαMW

2sw

M2
Zcαcγ(sγ+ηcγsw)

2MWsw

M2
Z′cαsγ(cγ−ηsγsw)

2MWsw

M2
Zcγsα(sγ+ηswcγ)

2MWsw

C2 0
MZMZ′cγsαsγcw

MW

MZMZ′cγsαsγcw
MW

−MZMZ′cαcγsγcw
MW
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Sū1u2 HūZ
′
uZ HūZ

′
uZ

′

C1
M2

Z′sαsγ(cγ−ηsγsw)

2MWsw
−M2

Z′sαsγ(sγ+ηcγsw)

2MWsw

C2 −MZMZ′cαcγsγcw
MW

−MZMZ′cαc
2
γcw

MW

VḠG vertex:

Vµ

ū1, k1

u2

= iek1,µC,

with the values

V ū1u2 Aū±u± W±ūAu∓ W∓ū∓uA Zū±u± Z ′ū±u±

C ±1 ±1 ±1 ∓ cγcw
sw

∓ sγcw
sw

V ū1u2 W±ūZu∓ W±ūZ
′
u∓ W∓ū∓uZ W∓ū∓uZ

′

C ∓ cγcw
sw

± sγcw
sw

∓ cγcw
sw

∓ sγcw
sw



German Summary

Die gegenwärtige Theorie der Hochenergiephysik ist das sogenannte Standard Mo-
dell der Teilchenphysik (SM). In der Vergangenheit wurde Übereinstimmung zwi-
schen zahlreichen sehr präzisen Messungen an Beschleunigerexperimenten und den
entsprechenden Vorhersagen des SMs gefunden. Trotz dieser erstaunlichen Vorher-
sagekraft des SMs gibt es einige Beobachtungen, wie beispielsweise die im sicht-
baren Universum beobachtete Materie-Antimaterie Asymmetrie oder die Existenz
von Dunkler Materie, die es nicht erklären kann. Auch haben Neutrinos, im Wi-
derspruch zu den Erkenntnissen, die aus Messungen moderner Experimente ge-
schlossen werden konnten, im SM keine Masse.
Diese unerklärten Phänomene zeigen, dass das SM nicht die ultimative Theorie, die
der Natur zugrunde liegt, sein kann. Mit der Entdeckung eines Higgs-Bosons [1,2]
am LHC im Jahre 2012 wurde das letzte Teilchen, das vom SM vorhergesagt
wird, gefunden. Da trotz immenser Bemühungen seitdem keine neuen Elementar-
teilchen entdeckt wurden, ist die Suche nach kleinsten Abweichungen zwischen
hochpräzisen Messungen und ebenso präzisen Theorievorhersagen des SMs und
seiner Erweiterungen der vielversprechendste Weg, um Hinweise auf die Struktur
von neuer Physik zu bekommen.
In dieser Arbeit wird die sogenannte

”
Dark Abelian Sector Model“(DASM) Er-

weiterung des SMs definiert. Das DASM erweitert die Eichgruppe des SMs um
eine weitere, spontan gebrochene, U(1)d Eichsymmetrie. Das SM ist ein Singu-
lett unter der U(1)d. Zusätzlich zum massebehafteten neutralen Z′-Eichboson, das
zum entsprechenden Eichfeld der U(1)d gehört, führt das DASM noch ein weiteres
Higgs-Boson und ein Dirac-Fermion ein, die beide ausschließlich Ladung der U(1)d
tragen, sowie ungeladene SM-artige rechts-händige Neutrinos. Das SM besitzt zwei
Operatoren – den Higgsmassenoperator Φ†Φ und den Feldstärketensor der schwa-
chen Hyperladung – die eichinvariant sind und eine Massendimension < 4 haben.
Die durch das DASM eingeführten Erweiterungen des SM nutzen diese beiden
Operatoren, um zwei Portale zu einem möglichen dunklen Sektor, der unter dem
SM ungeladen ist, zu öffnen. Die Existenz der rechts-händigen SM-artigen Neutri-
nos und des zusätzlichen Fermions erlaubt es zudem, ein drittes Portal zwischen
dem SM und dem dunklen Sektor zu öffnen.
In der vorgelegten Arbeit erarbeiten wir das DASM vollständig und bringen es
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in eine Form, die das Berechnen von Vorhersagen erleichtert. Des Weiteren de-
finieren wir intuitive und experimentell gut messbare Inputparameter für das
DASM. Dafür ersetzen wir die ursprünglichen Parameter der Lagrangedichte so-
weit möglich durch die Massen der neuen Teilchen und Mischungswinkel, die die
Änderungen der Kopplungsstärken der entsprechenden SM-artigen Teilchen im
Vergleich zu ihren jeweiligen SM-Werten parametrisieren. Für den Higgssektor
wählen wir die Masse Mh′ des neuen Higgs-Bosons, den Mischungswinkel α des
Higgssektors, und die skalare Selbstkopplung λ12 als Inputparameter für die drei
neu eingeführten freien Parameter. Im Eichsektor wählen wir die Masse MZ′ des
neuen Eichbosons und den Mischungswinkel γ des Eichsektors als neue Inputpa-
rameter. Im Fermionsektor wählen wir die Masse mν4 des neuen Fermions und
den Mischungswinkel θr des fermionischen Sektors. Mit dieser Wahl der Input-
parameter definieren wir daraufhin auf nächstführender Ordnung ein

”
On-Shell -

Renormierungsschema“ und geben zusätzlich die Ergebnisse der Renormierungs-
konstanten der Mischungswinkel für MS-Renormierung explizit an.
Wir nutzen diese Renormierungsschemata, um eine erste Analyse der phänomeno-
logischen Implikationen der DASM-Erweiterungen durchzuführen. Dafür betrach-
ten wir vier elektroschwache Präzessionsobservablen (PO): Die Masse des W-
Bosons, errechnet über den Myonenzerfall, das anomale magnetische Moment des
Myons, den leptonischen effektiven schwachen Mischungswinkel, und die lepto-
nische Zerfallsbreite des Z-Bosons. Mithilfe eines simultanen Fits dieser PO fin-
den wir Regionen des DASM-Parameterraumes, die die große Diskrepanz zwi-
schen Messung und Vorhersage des anomalen magnetischen Moments des Myons
verschwinden lassen und gleichzeitig zu einer Übereinstimmung der Vorhersagen
und Messungen der anderen drei PO führen, die ähnlich gut wie die respekti-
ve Übereinstimmung im SM ist. Somit beschreibt das DASM die untersuchten
Daten in diesen Bereichen signifikant besser als das SM und bleibt damit eine viel-
versprechende Erweiterung für die Suche nach neuer Physik. Für weiterführende
Untersuchungen wäre es interessant, wenn weitere PO mit in diese Analyse auf-
genommen werden, um ein noch besseres und ganzheitlicheres Verständnis für die
phänomenologischen Implikationen der DASM-Erweiterung zu bekommen und zu
untersuchen, ob das DASM beispielsweise mögliche Erklärungen für den Ursprung
Dunkler Materie liefern kann.
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