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Abstract

Current research is focussed on extending our knowledge of how gravity behaves

on small scales and near black hole horizons, with various modifications which may

probe the low energy limits of quantum gravity. This thesis is concerned with such

modifications to gravity and their implications.

In chapter two thermodynamic and classical gravitational stability analyses are

performed on higher dimensional Kerr anti–de Sitter black holes. We find conditions

for the black holes to be able to be in thermal equilibrium with their surroundings and

for the background to be stable against classical tensor perturbations.

In chapter three new spherically symmetric gravastar solutions, stable to radial

perturbations, are found by utilising the construction of Visser and Wiltshire. The

solutions possess an anti–de Sitter or de Sitter interior and a Schwarzschild–(anti)–

de Sitter or Reissner–Nordström exterior. We find a wide range of parameters which

allow stable gravastar solutions, and present the different qualitative behaviors of the

equation of state for these parameters.

In chapter four a six–dimensional warped brane world compactification of the

Salam-Sezgin supergravity model is constructed by generalizing an earlier hybrid Kaluza–

Klein / Randall–Sundrum construction. We demonstrate that the model reproduces

localized gravity on the brane in the expected form of a Newtonian potential with

Yukawa–type corrections. We show that allowed parameter ranges include values which

potentially solve the hierarchy problem. The class of solutions given applies to Ricci–

flat geometries in four dimensions, and consequently includes brane world realisations

of the Schwarzschild and Kerr black holes as particular examples. Arguments are

given which suggest that the hybrid compactification of the Salam–Sezgin model can

be extended to reductions to arbitrary Einstein space geometries in four dimensions.

This work furthers our understanding of higher dimensional general relativity, which

is potentially interesting given the possibility that higher dimensions may become

observable at the TeV scale, which will be probed in the Large Hadron Collider in

the next few years.
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Chapter 1

Introduction

1.1 Pushing the Limits of General Relativity

Black holes are perhaps the most interesting objects in general relativity. A black hole

is a solution to Einstein’s equations which is generically characterized by having at least

one gravitational trapping horizon – a boundary of a region where the gravitational

field is so great that not even light can escape from it. Exact black hole solutions of

Einstein’s field equation are generally found to also contain singularities within the

horizon. In fact, Hawking and Penrose proved that as long as matter in a generic

spacetime satisfies the strong energy condition and there exists a closed trapped sur-

face then the spacetime will be not be geodesically complete, implying the existence

of a singularity. At such singularities the curvature of the manifold typically (but

not necessarily) becomes infinite. While the properties of horizons are taken to be

physically acceptable by the majority of the scientific community, it is assumed that

black hole singularities are unphysical. Hence it is expected that near the singularity

general relativity breaks down and that a theory of quantum gravity will be required

in order to accurately describe the physics [1, 2]. Unfortunately, gravity has proven to

be difficult to directly quantise [3, 4] and as such current work is focussed on extending

our knowledge of how gravity behaves on small scales and near black hole horizons,

with various modifications designed to link up with the suspected low energy limits of

quantum gravity. This thesis is concerned with such modifications to gravity and their

implications.
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1.2 Black Holes in Four Dimensions

1.2.1 The Schwarzschild Solution

The simplest example of a black hole is given by the Schwarzschild solution [5] to

Einstein’s vacuum equations. The Schwarzschild metric in Schwarzschild coordinates1

is

ds2 = −∆dt2 + ∆−1dr2 + r2dθ2 + r2 sin2 θdφ2 , (1.1)

where

∆(r) = 1− 2GM

r
, (1.2)

M is the gravitational mass of the system measured at spatial infinity and G is Newton’s

constant. The horizon for the Schwarzschild geometry is located by the condition ∆ = 0

in these coordinates, i.e. at r = 2GM . The Schwarzschild geometry has four Killing

vectors, ∂
∂t

and the three rotational Killing vectors of SO(3), corresponding to spherical

symmetry. In fact, by Birkhoff’s theorem the existence of the timelike Killing vector

follows as a result of spherical symmetry in vacuum.

The Kretschmann scalar, RabcdRabcd, measures the curvature in a coordinate inde-

pendent manner, and for Schwarzschild is given by

RabcdRabcd =
48G2M2

r6
. (1.3)

It diverges as r → 0, which implies the existence of a curvature singularity at r = 0.

Given that singularities are generally not thought to be physical, and cannot strictly

speaking be described by a point in the manifold, it is clear that the classical the-

ory of general relativity is incomplete and inaccurate in that regime. In some sense

though, the existence of the singularity is moot, since it is trapped behind an event

horizon, and hence any associated problems are unable to classically escape the black

hole. The cosmic censorship hypothesis states that naked singularities cannot form in

gravitational collapse from generic, initially non–singular states in an asymptotically

flat space–time obeying the dominant energy condition. That is, “there are no naked

singularities” [7].

1These are not the coordinates Schwarzschild originally used [6].
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Outside of the horizon where theoretical interest is centered, the fundamental im-

portance of the Schwarzschild solution is that the behavior of the planets in our solar

system can be excellently modelled as point particles in the Schwarzschild geometry,

since they are at radial parameter distances r > rsun À 2Msun. For example, by

using the Schwarzschild solution as the background metric and solving for the timelike

geodesics of test particles, one can explain the perihelion precession of Mercury (and

similarly for the other planets). The Schwarzschild solution was also used to calculate

the bending of light due to the sun, correctly giving twice the Newtonian prediction.

Irrespective of theoretical concerns about the nature of the Schwarzschild horizon

and its interior interior, the exterior Schwarzschild solution presents an undeniably

functional description of gravity in our solar system.

1.2.2 The Kerr Solution

The Kerr metric [8] is a simple, explicit, exact solution of the Einstein vacuum equations

describing a rotating black hole in a four-dimensional spacetime, providing a non-trivial

generalization of the Schwarzschild geometry. It has just two Killing vectors as opposed

to the four of Schwarzschild geometry - it is stationary and axisymmetric. In Boyer-

Lindquist coordinates, with c = 1, it is given by:

ds2 = −
(

1− 2GMr

ρ2

)
− 2GMar sin2 θ

ρ2
(dtdφ + dφdt)

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2 (1.4)

where

∆(r) = r2 − 2GMr + a2 (1.5)

and

ρ2(r, θ) = r2 + a2 cos2 θ. (1.6)

The solution is parameterised by the two quantities, M and a = J/M . The mass M

of the spacetime can be evaluated by Stokes’ theorem for a conserved current, KνR
µν ,

by

M =
1

4πG

∫

∂Σ

d2x
√

γ(2)nνσµ∇νKµ , (1.7)

3



where nν is the normal to the hypersurface Σ, σµ is the normal to the boundary of

the hypersurface ∂Σ,
√

γ(2) is the determinant of the induced metric on the boundary

of the hypersurface and Kµ is the time-translational Killing vector for the spacetime.

The angular momentum can be similarly calculated,

J =
1

4πG

∫

∂Σ

d2x
√

γ(2)nνσµ∇νRµ , (1.8)

where Rµ is the axisymmetric rotational Killing vector. One can see that the in limit

of a → 0 in (1.4)-(1.6) leads to the Schwarzschild metric in Schwarzschild coordinates.

Interestingly, the Kerr solution can be written in terms of an exact “distortion” on

a background spacetime giving the Kerr-Schild form of the Kerr solution [9],

ds2 = gµνdxµdxν = ηµνdxµdxν +
2M

U
(kµdxµ)2 (1.9)

where kµ is null and geodesic with respect to both the full metric gµν and the flat

metric ηµν . Explicitly, in Cartesian coordinates x, y, z, t, one has [10]

k = kµdxµ = dt +
r(xdx + ydy) + a(xdy − ydx)

r2 + a2
+

zdz

r
, (1.10)

and

U = r +
a2 z2

r3
, (1.11)

where r is defined2 by
x2 + y2

r2 + a2
+

z2

r2
= 1 . (1.12)

The Kerr-Schild form of the Kerr solution naturally generalises to higher dimensions

and background spacetimes.

Generalisation of Schwarzschild and Kerr Solutions in Four Dimensions

The Schwarzschild solution has been generalised in a number of ways by relaxing various

assumptions. For example, it is currently understood that 70% of the energy density

of the universe is due to a repulsive dark energy, namely a fluid with pressure, P , and

energy density, ρ, related by p = ωρ, ω < −1/3, which violates the strong energy

condition. The most well–known example of such a dark energy is a cosmological

2Note that r is not the usual radial coordinate in flat spacetime.
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constant, Λ, for which ω = −1, i.e. P = −ρ = −Λ/8πG. The cosmological constant

was first introduced by Einstein with a finely tuned value in order to produce a static

universe in which the repulsive vacuum energy exactly cancelled the gravitational at-

traction of additional pressureless matter. Willem de Sitter shortly thereafter derived

cosmological solutions without any ordinary matter, in which the cosmological constant

was not finely tuned and the Universe expanded forever [11].

Kottler generalised the Schwarzschild solution by including such a cosmological

constant term to find black hole solutions with asymptotic constant curvature geom-

etry [12]. The Schwarzschild (Anti) de Sitter metric is given by (1.1) where ∆(r) =

1− 2GM/c2r − Λr2/3.

Similarly, Brandon Carter generalised the Kerr solution by adding a cosmological

constant to the background spacetime in Kerr-Schild coordinates, and modifying the

geodesics to find the Kerr-(A)dS solution [13, 14]. We will present this result more

generally later in this chapter. Newman and coworkers [15] also generalised the Kerr

geometry by adding electric and magnetic charge, which can be seen by making the

replacement 2GMr → 2GMr − G(Q2 + P 2) in (1.4)–(1.6). The associated one-form

electromagnetic potential for the Kerr-Newman solution is

At =
Qr − Pa cos θ

ρ2
,

Aφ =
−Qar sin2 θ + P (r2 + a2) cos θ

ρ2
. (1.13)

1.2.3 Black Hole Thermodynamics

In the early 1970s it was discovered that black holes obeyed certain laws of black hole

mechanics:

• Zeroth law: A black hole in a stationary state has a constant surface gravity on

the entire horizon ↔ A system in thermal equilibrium has constant temperature.

• First law:

δM =
κ

8πG
δA + . . . ↔ dE = TdA + . . . (1.14)

• Second law:

δA ≥ 0 ↔ dS ≥ 0. (1.15)
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• Third law: That the area of a black hole cannot be reduced to zero in a finite

number of steps. This remains as a conjecture which may not actually hold and

in some versions is equivalent to the cosmic censorship hypothesis [16].

Bardeen, Carter and Hawking proved the zeroth and first laws for stationary ax-

isymmetric (electro)vacuum asymptotically flat spacetimes [18]. The analogy to the

thermodynamic laws, which is seen explicitly via the substitutions

E ↔ M , S ∝ A , T ∝ κ . (1.16)

Early on Bekenstein suggested that some multiple of the area of the black hole horizon

played the role of entropy due to the form of the second law [17]. However, it was

initially emphasised by Hawking et al. that the laws were at best analogies, as classical

black holes had zero temperature and, in general, non-zero surface gravity [18]. Three

years later, by considering quantum field theory in the background of a Schwarzschild

black hole, Hawking found a non-zero thermal radiation flux at infinity [19]. The

radiation was due to the presence of the black hole horizon, which lead to the concrete

realisation of the proportionality of the temperature and surface gravity,

T = κ/2π , (1.17)

implying that the laws of black hole mechanics were also the laws of black hole ther-

modynamics.

Due to Hawking radiation, a black hole’s horizon area is able to decrease, leading

to a violation of the classical second law of black hole thermodynamics (the area the-

orem). However, the associated Hawking radiation has entropy, which led Bekenstein

to propose the generalised second law of black hole thermodynamics [17],

δ

(
Smatter +

A

4G

)
≥ 0 . (1.18)

This has been checked in a variety of model dependant scenarios of widely varying

nature, and has so far been validated [20]. This strongly suggests that the entropy of

a black hole is of a far more generic nature than had been previously thought [21].

Whether black holes are thermodynamically stable is an important issue for quan-

tum gravity. For example, the negative specific heat of Schwarzschild means that

6



the black hole cannot come into thermal equilibrium with the background spacetime

and will lead to a runaway evaporation of the black hole into thermal radiation [19].

However, the semi-classical calculation used in a vacuum background, for example in a

Schwarzschild background, must necessarily break down since once sufficient thermal

radiation back reacts onto the geometry, the solution can no longer be considered

vacuum. While the radiation is initially low temperature, because of the negative

specific heat of the black hole the energy associated with the radiation will eventually

become comparable to the energy of the radiating black hole. Additionally, it is not

yet known how to deal with the end point of the evaporation process - it is once again

expected that the physics after the breakdown of the semi–classical approximation will

only be answered within the context of a quantum theory of gravity.

Both general relativity and quantum field theory conserve information. In general

relativity with globally hyperbolic manifolds Cauchy data prescribed on an initial

spacelike hypersurface uniquely determines the evolution of the full spacetime, while

in quantum field theory one has a unitary evolution of quantum states. In both cases

the information required to prescribe a state at early time is directly related to the

information required to prescribe a state at later times [22]. The equations of motion

governing the dynamics of the situation are time-reversible. However, according to the

no hair “theorems” a black hole can be described by just a few parameters (e.g. M ,

J and Q for an Einstein electrovacuum black hole in four dimensions), meaning that

any other information which passes over the event horizon becomes hidden. Semi–

classically Hawking radiation given off by such a black hole is almost entirely thermal

at infinity [19], meaning that information trapped behind the horizon does not escape

via this process.

The problem can be illustrated by a thought experiment: Take two states of matter

with the same M , J and Q, one a baryon gas and another a lepton gas and collapse

them into identical black holes (of the same mass, charge and angular momentum).

The thermal radiation collected at infinity will be identical in character for both black

holes. The information of the initial states (baryon and lepton number) before they

became black holes has therefore been ‘lost’ [22].

7



The problem might be attributed to the presence of a singularity, on which all

geodesics entering the event horizon end, thereby destroying information that enters

the horizon (as it cannot reach future infinity). Some suggested ‘resolutions’ to the

information paradox include:

1. Unitarity is violated [23]–[25]. However, the chief proponent of this view, Hawk-

ing, has recently revised his opinion and now favours option two below, namely

that quantum perturbations of the horizon allow information to escape [26].

Unfortunately the details of Hawking’s calculation have yet to appear.

2. The radiation emitted by the black hole is not thermal, but is correlated with

the information that went into the formation of the black hole. This viewpoint

has long been advocated by ’t Hooft, who has provided a number of toy models

to describe this process [27]–[30].

3. The black hole does not radiate away entirely, leaving behind a remnant which

still contains all the information that went into its formation.

4. Due to quantum gravitational effects, gravitational collapse halts before a horizon

forms. The equation of state in the center of the black hole might be similar to

(anti) de Sitter space. One would be left with a super dense object, presumably

more dense than a neutron star.

We will discuss the last ‘resolution’ in more detail with the assumption that a

horizon does not form, as it is similar in character to that of the neutron star model,

which has enjoyed wide success with the discovery of pulsars. We note though that by

removing the horizon, we remove the significance of the elegant black hole thermody-

namic laws.

1.2.4 Alternatives to Black Holes

In chapter 3 we will examine a particular model which avoids the information paradox

by removing the horizon. This can be achieved, for example, by halting gravitational

collapse of the matter at some radius outside of the horizon radius. For this to happen,

8



one needs a new state of matter which resists further compression. The equation of

state for the matter, in models considered to date, is that of (anti) de Sitter space, i.e.,

a non-zero pure vacuum energy.

A simple picture of the models under consideration is that of an (A)dS metric

surrounded by a thin shell of matter. The matter making up the shell is some new

state of matter that obeys the dominant energy condition. The metric exterior to

the thin shell of matter is Kerr-Newman or some special simpler case. This picture,

while speculative, is extremely similar to that of the neutron star and in fact carries

on the long tradition of positing that super-dense stars are formed out of new states

of matter [11],[31]–[37].

Figure 1.1: A model of Neutron star internal structure. Source: NASA/Marshall Space

Flight Center.

In this scenario, one would need to check that the solution is consistent within the

context of general relativity, resists further gravitational collapse, and is stable to radial

perturbations. In chapter 3 we investigate a model which fits these requirements, the

gravitational vacuum star (gravastar) of Mazur and Mottola [37]. In the simplified

version as envisaged by Visser and Wiltshire [38], we extend the exterior geometry

from Schwarzschild to both Schwarzschild (A)dS and Reissner–Nordström, and find

conditions for stability against radial perturbations. This is of course a very simplified

9



model.

By analogy, if the one looks at actual models of neutron stars, one finds that

the matter at the surface of a neutron star is composed of ordinary nuclei as well as

electrons. The “atmosphere” of the star is roughly one meter thick, below which one

encounters a solid “crust” whose thickness is approximately 5%–10% of the radius of

the star [39, 40].

The outer layers of a neutron star are formed of a solid crust composed of a Coulomb

lattice of very neutron rich nuclei immersed in a nearly uniform relativistic electron

gas. In the deeper layers corresponding to densities beyond the drip threshold ρdrip '
4× 1011 g cm−3, nuclei are embedded in a sea of “free” neutrons which are expected to

become superfluids in mature neutron stars whose temperature has dropped below the

critical temperature for the onset of superfluidity [40]. The core is expected to contain

superfluid neutrons coexisting with electrons and protons [41].

Realistic gravastars would be expected to display equally complex structures de-

pending on the details of the physics governing the gravitational condensate matter

state.

1.3 Higher Dimensional Black Holes

Given that Einstein’s general relativity is a classical theory, it is expected that it will

break down as an accurate model of gravity on small distance scales/high curvature

regions, and that to properly describe gravitational interactions on such small scales

will require a theory of quantum gravity. We currently do not have such a theory, and

so current work is focussed on modifying general relativity to find semi-classical models

which will give rise to experimentally testable corrections to gravity on relevant scales.

One of the theories which is hoped to describe semi-classical gravity is M-theory3;

see [43, 44] for reviews. M-theory is naturally framed in 10+1 dimensions, and as such

faces difficulty in being reconciled with current observations which indicate a reality

consisting of 3 + 1 dimensions.

3One other serious contender is loop quantum gravity; see [42] for a review.
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One of the most important unanswered questions with regard to higher-dimensional

unified models is why does spacetime appear to have three spatial dimensions? General

relativity, and its precursors, special relativity and Galilean relativity do not prescribe

the dimensionality of space. The fact that we observe three spatial and one time dimen-

sion is added into the description of reality within the framework of those mathematical

structures by hand. General relativity is written in the framework of manifolds, spaces

which may be curved and can possess a complicated topology, but in local regions

“appear as” segments of Rn. given the generality available to the possible description

of spacetime within this framework, one may ask the question “what is unique about

the nature of three spatial dimensions that naturally selects it as physical reality”?

Alternatively one may ask “assuming there are more than three spatial dimensions,

why do we only observe three”? We will attempt to briefly address the attempts that

have been made to answer both questions in this section.

1.3.1 Uncompactified Extra Dimensions

Why three?

Large extra dimensions were first considered by Ehrenfest [45]. Amongst other results,

he found that for objects bound in a potential of the form

V ∝ 1

rn−2
, (1.19)

where r =
√

x2
1 + x2

2 + . . . + x2
n is the metric in the space Rn with coordinates xi,

i = 1 . . . n, that:

• All states were bound in R2,

• Bound states and unbound states were possible in R3,

• There were no bound states for n > 3 in Rn – all states were ingoing or outgoing

spirals.

Similarly one can attempt to generalise 4-dimensional GR models to higher di-

mensions, and investigate the physical consequences. For example, the Schwarzschild
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solution may be generalised to arbitrary D = n + 1 dimensions in a straightforward

manner. The solution, obtained by Tangherlini [46] is,

ds2 = −∆dt2 +
dr2

∆
+ r2dΩ2

n−1, (1.20)

where n is the number of spatial dimensions, dΩ2
n−1 is the line element of a (n − 1)–

dimensional sphere, and ∆ is given by

∆ = 1− 2GM

rn−2
. (1.21)

If a D–dimensional cosmological constant and electromagnetic field are included then

one has

∆ = 1− 2GM

rn−2
+

GQ2

2π(n− 1)(n− 2)r2(n−2)
− 2Λr2

(n)(n− 1)
. (1.22)

A study of the geodesic equations in the background (1.20,1.21) reveals that stable

bound orbits do not exist if n > 3 [46]. Furthermore, if one requires that the effective

potential governing the problem vanishes at infinity then values n < 3 are ruled out.

Thus we are uniquely led to n = 3. An analysis of the Schrödinger equation for

arbitrary D also leads to similar conclusions [46].

From an anthropic point of view then, four dimensional space-time seems to be

favoured for allowing the most complex forms of life, given it allows for the most

complex types of behavior for both classical and quantum orbits.

Higher Dimensional Generalisations of the Kerr–Newman solution

The Kerr-Newmann geometry was generalised to D dimensions by Myers and Perry

[47]. By assuming Kerr–Schild form they found that, for even–dimensional spacetimes,

D = 2n ≥ 4, the appropriate null one–form which generalises (1.10) is

k = kµdxµ = dt +
n−1∑
i=1

r(xidxi + yidyi) + ai(xidyi − yidxi)

r2 + a2
i

+
zdz

r
, (1.23)

with

U =
1

r

(
1−

n−1∑
i=1

a2
i (x2

i + y2
i )

(r2 + a2
i )

2

)
n−1∏
j=1

(r2 + a2
j) , (1.24)

and
n−1∑
i=1

x2
i + y2

i

r2 + a2
i

+
z2

r2
= 1 . (1.25)
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Substituting (1.23) and (1.24) into (1.9), one obtains the generalisation of the vacuum

Kerr metric in 2n spacetime dimensions, with (n−1) independent rotation parameters

ai in (n− 1) orthogonal spatial 2-planes.

If the number of spacetime dimensions is odd, D = 2n + 1 ≥ 5, then there are

n ≥ 2 pairs of spatial coordinates and no z coordinate, and so the terms involving z

are omitted, while U is then 1/r times the right-hand side of equation (1.24). Thus we

find

k = kµdxµ = dt +
n−1∑
i=1

r(xidxi + yidyi) + ai(xidyi − yidxi)

r2 + a2
i

, (1.26)

with

U =
1

r2

(
1−

n−1∑
i=1

a2
i (x2

i + y2
i )

(r2 + a2
i )

2

)
n−1∏
j=1

(r2 + a2
j) , (1.27)

and
n−1∑
i=1

x2
i + y2

i

r2 + a2
i

= 1 . (1.28)

The higher dimensional black hole has a curvature singularity as expected, and (D−2)–

dimensional spherical horizon topology. Remarkably, in higher dimensions there can

still only be up to two horizons. Interestingly, it was found that for D ≥ 6, Kerr black

holes with fixed mass can have arbitrarily large angular momentum [47]. This occurs

since the vanishing of one or two spin parameters is enough to guarantee the existence

of a horizon. The other spin parameters can then take on arbitrary values. Recently,

the Myers–Perry solution given above has been further generalised by Gibbons, Lu,

Page and Pope to include a cosmological constant [10].

The black hole uniqueness theorem as stated by Israel, Penrose and Wheeler asserts

that in vacuum a 4-dimensional stationary Einstein-Maxwell black hole is characterized

solely by its mass, angular momentum and charge. This is consistent with the “no hair

theorems” [48], which rule out regular black hole solutions with other independent

charges, such as scalar charges, on a model by model basis. By now a number of “hairy

black holes” in models with additional exotic forms of matter, such as the Skyrme

black hole [49]–[51], are known.

The proof of the uniqueness theorem does not generalize to vacuum solutions in

higher dimensions. In fact the recent black rings discovered by Emparan and Reall [52]

provide alternatives to 5-dimensional Kerr Newman black holes with the same mass,
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charge and angular momentum, demonstrating that no electrovacuum uniqueness the-

orem holds in five, and presumably higher dimensions. The discovery of the black

ring solutions in five dimensions shows that horizon topologies other than spherical are

allowed in higher dimensions, but it is unclear precisely which topologies are allowed.

1.3.2 Compactified Extra Dimensions

Kaluza–Klein Compactification

While the work of Ehrenfest, Tangherlini and others argued for the naturalness of

three large spatial dimensions, it had nothing to say about the possibility of (4 + n)-

dimensional theories which on large scales appear to be four dimensional. One way of

realizing this scenario is by assuming that the extra dimensions form a compact space

of very small volume. Such models are known as Kaluza-Klein theories, on account of

the pioneering work of Kaluza [53] and Klein [54].

One motivation behind Kaluza-Klein theories is that the “internal” gauge symme-

tries of the standard model of particle physics might simply be the manifestation of

spacetime symmetries in extra dimensions. The fact that the internal gauge transforma-

tions are physically distinguishable from ordinary (four-dimensional) spacetime coor-

dinate transformations is due to the fact that the vacuum of the theory is M4×BD−4,

where Bn is a compact space of dimension n, rather than MD. Since there is no

evidence for extra dimensions yet at the microscopic level the space Bn must have a

characteristic radius so small that it cannot be probed at the energies which have been

available in particle accelerators to date. The process of going from the manifold MD

to M4 × BD−4 is called “spontaneous compactification” if the process is induced by

the structure of the vacuum, in analogy to spontaneous symmetry breaking.

The concepts of Kaluza-Klein theory can be readily understood by considering the

original 5-dimensional theory [53, 54]. Kaluza’s idea was to suppose that the physical

world is described by the standard Einstein action in five dimensions

S(5) =
1

4κ2

∫
d5x

√
g R. (1.29)

Here g ≡
∣∣det gAB

∣∣ and κ2 = 4πḠ, where Ḡ is Newton’s constant in five dimensions.

The 5-metric may be conveniently parameterized in terms of a real scalar field σ, a
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4-vector Aµ and a 4-metric 4gµν(x
λ) as follows:

ds2 = exp

(
4κσ√

3

)
(dx5 + 2κAµdxµ)2 + exp

(−2κσ√
3

)
4gµνdxµdxν , (1.30)

where x5 denotes the single extra spatial dimension, the index µ runs from 0 to 3 and

κ2 = 4πG is the standard gravitational constant in four dimensions.

Compactification is achieved by taking the internal manifold to be S1 so that x5

is periodic, being identified modulo 2πRκ. Since the internal manifold is a circle one

may expand the components of σ, Aµ and 4gµν as Fourier series in x5:

σ(xA) =
∞∑

n=−∞
σ(n)(xλ)einx5/Rκ , Aµ(xA)

=
∞∑

n=−∞
A(n)

µ (xλ)einx5/Rκ ,4 gµν(x
A)

=
∞∑

n=−∞

4g(n)
µν (xλ)einx5/Rκ . (1.31)

One now makes the ansatz that 4gµν is independent of x5, i.e., that ∂/∂x5 is a Killing

vector. This is equivalent to considering only the zero modes in (1.31) – the low-energy

limit of the full theory. The restricted 5−dimensional Einstein equations may then be

obtained from the effective 4-dimensional action

S(4) =

∫
d4x

√
−4g

(−R

4κ2
− 1

4
exp(2

√
3κσ)FµνF

µν +
1

2
4gµν∂µσ∂νσ

)
. (1.32)

If one wishes to identify the actions (1.29) and (1.32) then the 4-dimensional and

5-dimensional gravitational constants must be related by

Ḡ = 2πRκG. (1.33)

However, such an identification is not required at the level of the classical equations.

Coordinate transformations in five dimensions which preserve the symmetry of the

ground state, namely

xµ → x̄µ(xλ), x̄5 → x5 + Λ(xλ), (1.34)

give rise to 4-dimensional coordinate transformations and U(1) gauge transformations,

Aµ → Āµ = Aµ +
1

2κ
∂µΛ, (1.35)
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in the effective 4-dimensional theory.

To determine the order of magnitude of the radius Rκ that one could expect in a

realistic theory one can consider coupling a complex scalar field φ to the 5-dimensional

theory. If φ is expressed by a Fourier series similarly to (1.31) then the 5-dimensional

scalar Lagrangian

L(5)φ =
√

ggAB∂Aφ∗∂Bφ (1.36)

reduces to an effective 4-dimensional Lagrangian

L(4)φ =
∞∑

n=−∞

√
− 4g

{(
Dµφ(n)

)∗
Dµφ

(n) − n2φ(n)∗φ(n) exp

(−2κσ√
3

)}
, (1.37)

where

Dµ = ∂µ − 2iκn

Rκ

Aµ. (1.38)

It follows that the 4-dimensional electric charge is quantised in units of

e =
2κ

Rκ

, (1.39)

and consequently Rκ ' 3.78 × 10−34 m ' 23.4 `Planck, which certainly makes it too

small to be observed experimentally.

One can see from (1.37) that the non-zero modes correspond to massive charged

particles when viewed from four dimensions. The particles have masses,

mn =
n2

Rκ

exp

(−2κσ√
3

)
, (1.40)

which are of course related to their charges because of (1.39). The coupling to the

dilaton means that the “mass” terms are position dependent. One has in effect an

infinite tower of states with charges and masses which are integer multiples of e and

m0 = 2κe respectively. These states have been named “Kaluza–Klein excitations”.

Similar massive states will be present in the theory if the non-zero modes of (1.31) are

included. One finds, in fact, that the massive states of the free 5-dimensional theory are

pure spin two [55]. Of course the 5-dimensional model is by no means realistic. How-

ever, many of its features, such as the presence of Kaluza–Klein excitations, remain in

more sophisticated unified models. If Kaluza–Klein excitations are stable, which seems

reasonable [56, 57], then they should be present in the universe today as “remnants”

from the compactification era. Thus on one hand Kaluza–Klein excitations are possible
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candidates for the dark matter in the universe, while on the other hand cosmological

arguments could be used to place constraints on Kaluza–Klein excitation masses [56].

The above example is a very simple case of the dimensional reduction procedure.

The 5-dimensional theory may be generalised in a straightforward manner to models

in higher dimensions which yield an effective 4-dimensional action with non-Abelian

Yang-Mills fields when dimensionally reduced [58]–[62]. The D-dimensional spacetime

is taken to be the product ofM4 and a compact manifold BD−4, where BD−4 admits the

Killing vectors ξa
1 , . . . , ξ

a
D−4 which generate the Lie algebra of the required Yang-Mills

gauge group. In analogy to (1.34) the coordinate transformation

xµ → x̄µ(x), ya → ȳa(y) + θα(x)ξa
α, (1.41)

induce the appropriate non-Abelian gauge transformations. (Here xµ and ya are physi-

cal and internal space coordinates respectively.) The dimensional reduction procedure

may be further generalised to include supersymmetry [63]-[66].

In general, one must take care in applying the “Kaluza-Klein ansatz”. In particular,

one must make sure that removal of the massive modes from the higher-dimensional

field equations can be performed consistently, rather than näıvely setting the massive

modes to zero in the higher-dimensional action and then deriving field equations from

the dimensionally-reduced action. If one takes the second approach then it is possible

that solutions of the truncated theory are not solutions of the full theory. The 5-

dimensional theory is consistent (provided the scalar field σ is included) but one cannot

be sure that there is a consistent truncation for an arbitrary Kaluza-Klein theory [67].

This is something which must be checked model by model, although certain criteria

guarantee consistency in some cases [68].

Ideally one would like to have some sort of dynamical mechanism to explain how

compactification took place: there should be some criterion such as a conserved energy-

like quantity, with which different vacua of the theory could be graded. However, it

would require quite a considerable extension of physical concepts to achieve this. As

things stand, one cannot compare the magnitude of physical quantities calculated in one

spacetime with those calculated in another [69]. For example, the definition of energy

in general relativity depends on boundary conditions, which will differ for spacetimes
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of different geometry.

1.3.3 Analysis of Higher Dimensional Black Holes

While the four dimensional Kerr-(A)dS solution is thermodynamically stable [70]–

[72], and gravitational stability has been studied in ref [73], the thermodynamic and

gravitational stability of higher dimensional Kerr–(A)dS black holes has yet to fully

studied. We would like to know how the thermodynamic and gravitational stability

of Kerr-(A)dS spacetimes varies with dimension. Specifically, we are very interested

in modes of instability which are intrinsically higher dimensional in that they do not

exist in four dimensional spacetimes. For example, four dimensional Kerr black holes

can have one rotation parameter, but in higher dimensions they can have more. We

investigate the thermodynamic and gravitational stability properties of these higher

dimensional spacetimes in chapter 2.

1.4 Brane Worlds

Theorists have questioned whether there may be other possibilities for treating the

extra dimensions of unified theories other than in the original Kaluza–Klein scenario,

with the possibility of making testable predictions at energy scales lower than the

Planck scale. For example, one possibility naturally arising in an M-theory context is

that our universe is a 3-(mem)brane4, embedded in a higher 11-dimensional geometry.

Early attempts at describing the universe as a brane embedded in a higher dimen-

sional geometry were not entirely successful [75]-[78]. Some of the problems encountered

were the possibility of processes like electron–positron annihilation with no visible decay

products at high energies, due to the high energy particles ability to penetrate into the

extra dimensions [75], or the lack of a well-defined graviton zero mode that would

produce an effective four dimensional Newtons law of gravity on the brane [78].

4A membrane, or “brane” [74] is a hypersurface embedded in a higher dimensional “bulk” space-

time.
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1.4.1 Large Extra (Compact) Dimensions

Interest in alternatives to the original Kaluza–Klein scenario took off when Arkani–

Hamed, Dimopolous and Dvali (ADD) introduced the phenomenological idea 5 that

there may be large compact extra dimensions [80]-[82] – potentially as large as 0.1mm.

Since then these bounds have been improved, e.g. see [83]. In order to evade the

Kaluza–Klein bound on electromagnetism, it was suggested that Standard Model par-

ticles were confined to a three–brane, while gravity was free to probe the extra dimen-

sions. This picture is known as the “brane world” scenario; see [84] for a review.

Given that branes are an intrinsic feature of M-theory, studying brane worlds in the

context of M-theory seems natural. In particular, there are a certain type of branes

predicted by M-theory: Dirichlet–branes [85]. D-Branes have the interesting property

that standard model gauge fields are confined to the brane, as those gauge fields are

modelled as open strings whose ends must terminate on a D-brane. Gravity on the

other hand is modelled as closed loops of string which are not confined to D-branes.

D-branes and M-theory therefore provide a natural setting for the ADD brane world

scenario.

The vast difference in energy between the electroweak and Planck scale is difficult

to understand from the viewpoint of theoretical particle physics, and is called the

hierarchy problem. The standard model of particle physics predicts a Higgs boson

(which gives masses to the weak interaction gauge bosons) from electroweak symmetry

breaking. The mass of the Higgs is expected to be near the electroweak symmetry

breaking scale ∼ 1 TeV at the 95% confidence level, given the non-observation of the

Higgs and precision measurements of the top quark mass. Perturbation theory in the

standard model suggests that the masses of scalar bosons should be of the order of the

cutoff scale6 used when computing quantum corrections. The Planck scale, the scale

at which gravitational interactions become non-negligible, has already been identified

as an obvious potential cutoff scale. Unfortunately since the electroweak and Planck

5An almost identical scenario was proposed earlier by Antoniadis [79].
6The cutoff scale is the proposed energy scale which provides an upper bound for the validity of

the standard model of particle physics. After this the standard model should be replaced by some

more fundamental theory, for example, a model incorporating supersymmetry.
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energy scales differ in magnitude by about 15 orders of magnitude, picking a Planck

cutoff scale implies that the Higgs boson will have a mass comparable to the Planck

scale, which is much in excess of experimental bounds. This is known as the technical

hierarchy problem.

One resolution of the technical hierarchy problem is supersymmetry. While su-

persymmetry can solve the technical hierarchy problem, it does so by introducing a

massive superpartner for each boson and fermion. The superpartners give quantum

contributions to the mass of the Higgs boson which precisely cancel the contributions of

their partners. Because these superpartners are not observed, supersymmetry is broken

at some scale (the cutoff scale for the standard model of particle physics). Making that

cutoff scale in the TeV range protects the Higgs mass (and other scalar bosons masses)

from quantum corrections above TeV range.

An alternative resolution to the hierarchy problem is that the electroweak scale

is the Planck scale. This can be accomplished by introducing extra dimensions and

increasing the fundamental strength of gravity, thereby lowering the Planck scale to

that of the electroweak scale. This idea is naturally accommodated within the brane

world scenario, as can be seen by the following simple estimate. Ignoring the back

reaction of the brane tension on the curvature of the embedding spacetime, the basic

idea is to integrate out the extra dimensions in the D dimensional action, leaving an

effective four dimensional theory with action,

S =
1

16πGD

∫
dDX

√
gD(RD) , (1.42)

=
VD−4

16πGD

∫
d4√g4(R4 + Lm) , (1.43)

where GD = M2−D
D and MD is the “real” Planck mass. Therefore

VD−4

16πGD

=
1

16πG4

, (1.44)

VD−4M
D−2
D = M2

4 . (1.45)

Taking a toroidal compactification where all the extra dimensions have the same radius,

R, we find VD−4 = (2πR)D−4. Therefore we can pick M4 = 1015MD, and choose

the number of extra dimensions to find the size of the extra dimensions. This is no

different to the standard Kaluza–Klein scenario, except that now it has been posited
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that standard model fields do not propagate in the extra dimensions, thereby leading

to a modification of the calculations involved in determining the spectrum of Kaluza–

Klein excitations.

The mechanical stability of a five dimensional electrostatic spherically symmetric

spacetimes with one toroidally compactified dimension has been most thoroughly con-

sidered in [86], generalising and unifying a number of earlier works. It was found that

black hole solutions are generically stable while regular solutions lead to a stability

condition formulated in terms of an eigenvalue problem.

By introducing more interesting geometries, for example, warped bulk dimensions

[87], one can obtain a finite volume for the bulk even if the extra dimensions are non-

compact [88], leading to new and interesting behaviours for gravity at small scales.

Equivalently, this gives new spectra for the Kaluza–Klein excitations of gravity in

place of the standard Kaluza–Klein excitations. An exciting new possibility in the

brane world scenario is that if extra dimensions exist, and the volume they enclose is

sufficiently large, then due to the changes to the fundamental strength of the gravita-

tional force on small scales, it will be possible to produce “Kaluza–Klein excitations”

of the graviton in particle collider experiments and black holes whose radii are much

smaller than the length scale of the extra dimensions [89]. It is hoped that the Large

Hadron Collider, with TeV (Electroweak) scale events, will be able to probe such

extra dimensions [90]. Additionally, if one were to observe non-conservation of energy,

momentum, charge, etc in future collider events, a brane world scenario would be the

natural explanation, as one would still be able to conserve these quantities in the bulk.

1.4.2 Warped extra dimensions

While one expects a brane to have a non-zero thickness, a huge amount of theoret-

ical work has proceeded by considering distance scales much larger than that of the

thickness of the brane and modelling the brane as a delta-function distribution. The

two most important papers in this scenario were proposed by Randall and Sundrum;

the Randall–Sundrum I [87] and Randall–Sundrum II [88] models. For an extensive

reference list and review of the Randall–Sundrum models and further developments
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see ref. [89]. The Randall–Sundrum I model introduces two branes with a warped AdS

space in between which acts as a concrete example of the ADD scenario. It additionally

takes into account the tension of the thin branes via the Israel–Lanczos–Sen junctions

conditions, so that the model is gravitationally consistent in the bulk.

The brane we live on in the Randall–Sundrum I model is necessarily negative

tension, in order to solve the hierarchy problem [89]. Negative tension branes are

inherently unstable [91], a feature which is associated with the violation of particular

energy conditions [92, 93]. As a consequence, six-dimensional brane world models have

attracted interest as they are able to naturally incorporate positive tension branes [94].

In the Randall–Sundrum I model, a careful analysis of the effective gravitational equa-

tions on the negative tension brane shows that anti-gravitational general relativity is

recovered in the low energy limit [95] and that it is the positive tension brane which

recovers attractive gravity. Since the extra dimension is compact, one finds a discrete

spectrum of Kaluza–Klein excitations. In order to recover four dimensional general

relativity at low energies, a mechanism is required to stabilise the inter-brane distance,

which corresponds to a scalar field degree of freedom known as the radion [89].

The Randall–Sundrum II model removes the second brane (by moving its position

parameter in the extra dimension to infinity), leaving a single codimension–one brane

with AdS warped space mirrored on either side. Remarkably, even though the extra

dimension is now non-compact and hence the positive Kaluza–Klein mass spectrum

is continuous on the half line, the model gives rise to Newton’s law of gravity with

polynomial corrections on the brane [96]. Unfortunately, the bulk has an AdS Killing

horizon on either side of the brane. This horizon tends to develop curvature singular-

ities upon addition of perturbations, as has been found with black holes [97, 98] and

gravitational waves [99, 100]. This raises questions about boundary conditions that

may need to be imposed in the bulk and about their consequences on the brane. For

example, in the higher-codimension brane world scenarios of [101, 102], the treatment

of a bulk singularity affects the corrections to Newton’s law on the brane [103].
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1.4.3 Hybrid Brane world Models

Louko and Wiltshire [104] proposed a hybrid brane world construction which com-

bines elements of both the Kaluza–Klein and the Randall–Sundrum II models. The

construction works in six dimensions or higher and includes a co-dimension one brane

in addition to a regular Kaluza–Klein direction. Whereas the Randall–Sundrum II

models bulk geometry is closed by an unstable anti–de Sitter horizon, in the Louko–

Whiltshire model the geometry closes at bolts [105]: totally geodesic codimension

two submanifolds at which a rotational Killing vector field vanishes. This provides a

topological, singularity-free boundary condition for gravitational waves or any other

perturbations one may wish to consider. Their model also reproduced Newton’s law

of gravity on the brane, with exponential corrections. However, it did not lead to a

solution of the hierarchy problem since due to parameter restrictions one could not

keep the size of the Kaluza–Klein directions small while simultaneously making the

bulk large enough to accommodate TeV scale gravity.

Brane worlds are most naturally framed within the context of M-theory or one of

its low energy limits. Eleven dimensional supergravity is expected to be the low energy

limit of 11–dimensional M-theory and 6–dimensional Salam-Sezgin supergravity is a

low energy limit of 10–dimensional supergravity. As such, 6–dimensional Salam-Sezgin

supergravity appears to provide a most reasonable framework in which to construct a

6–dimensional brane world model.

It would be desirable to construct a brane world scenario as some low energy limit

of M-theory, in which the hierarchy problem is solved, general relativity/Newton’s law

of gravity is recovered on the brane for large distance scales, and the entire brane world

construction is stable to perturbations. In chapter 4 we present a generalisation of the

Louko–Wiltshire model which appears to have these features.

1.5 Overview of Thesis

In chapter 2 we study the thermodynamic stability of Kerr–AdS black holes in five and

higher dimensions. We also investigate the higher dimensional gravitational stability
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of a background Kerr-(A)dS spacetime under metric perturbations.

In chapter 3 we take the method as outlined by Visser and Wiltshire and analyse the

stability of gravastars that have a Schwarzschild-(anti)-de Sitter or Reissner–Nordström

exterior. Given our current understanding, we pick these two types of exterior metrics

as they are physically reasonable, spherically symmetric and static.

In chapter 4 we generalise the hybrid (Kaluza–Klein Randall–Sundrum) brane world

model of Louko and Wiltshire to include a minimally coupled scalar field and an

associated exponential potential as the low energy limit effective action for Salam–

Sezgin six dimensional supergravity.
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Chapter 2

Stability of Higher Dimensional

Rotating (Kerr) AdS Black Holes

2.1 Higher Dimensional Black Holes and String-

Theory

Recently, the study of black holes in a background anti–de Sitter (AdS) spacetime

has been motivated from developments in string/M-theory, which naturally incorpo-

rate black holes as solitonic D-branes, or simply branes as the higher-dimensional

progenitors of black holes. An intriguing example of this is the conjectured anti–

de Sitter/conformal field theory (AdS/CFT) duality [106] between string theory on

AdS5 × S5 background and N = 2 Super Yang-Mills theory in four dimensions. More

formally, the conjectured AdS/CFT correspondence states that a string/M-theory on

a manifold which can be decomposed into AdSd×MD−d is mathematically equivalent

to a conformal field theory (CFT) on the conformal boundary of AdSd.

A particularly interesting application of the AdS/CFT conjecture is Witten’s in-

terpretation [107] of the Hawking-Page phase transition between thermal AdS and

an AdS black hole [108] as the confinement-deconfinement phases of the dual gauge

theory defined on the asymptotic boundaries of the AdS space. Much effort has been

put into the weak AdS gravity regime, analyzing the implications of AdS black holes

on dual (gauge) theories at non-zero temperature, using the conjectured AdS/CFT
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correspondence. In this context, the most interesting black hole solutions are pre-

sumably the five dimensional Kerr-AdS solutions for a stationary black hole [71].

The thermodynamics of AdS quantum gravity has been extensively used to infer the

thermodynamics of quantum field theory in the large N (or weak field) limits, with an

AdS gravity dual, such as Schwarzschild-AdS [107], Kerr-Newman-AdS [109]–[112] and

hyperbolic-AdS [113]–[115] black holes.

As noted in the introduction, the generalisation of the arbitrary dimensional Kerr

solution [8] of Myers and Perry [47] to include a cosmological constant has only recently

been given by Hawking et al. [71] and Gibbons et al. [116, 117]. There has also

been recent interest in constructing the analogous charged rotating solutions in gauged

supergravity in four, five and seven dimensions [119], and also on non-uniqueness [120]

of those solutions in five and higher dimensions.

The layout of the chapter is as follows. We begin in section two by outlining the

(anti)–de Sitter background metrics in d dimensions and their generalizations to Kerr-

AdS solutions. In section three we pay special attention to the thermodynamic stability

of Kerr–AdS black holes by studying the behavior of Hawking temperature, free energy

and specific heat in various dimensions. In section four we study the gravitational

stability of background Kerr–(A)dS metrics under linear tensor perturbations. Sepa-

rability of Hamilton-Jacobi and Klein-Gordon equations in the Kerr (anti)–de Sitter

backgrounds was discussed in [121], especially in the limit when all rotation parameters

take the same value, see [122] for a discussion in five dimensions. An earlier work

on separability of the Hamilton-Jacobi equation and quantum radiation from a five

dimensional Kerr black hole with two rotation parameters, but in an asymptotically

flat background, can be found in [123]. However, our analysis in section four is different.

It corresponds not to a separability of the wave equations for a particle but rather to

a separability of radial and angular wave equations under linear tensor perturbations

of the metric.
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2.2 AdS and Kerr-AdS metrics

One of the interesting features of the Kerr metric in (anti)–de Sitter spaces is that it

can be written in the Kerr-Schild form, where the metric gab is given exactly by its

linear approximation around the (anti)-de Sitter metric g̃ab as follows [116, 121]:

ds2 = gab dxadxb = g̃abdxadxb +
2m

U
(kadxa)2 , (2.1)

where ka is a null geodesic with respect to both the full metric gab and the (A)dS metric

g̃ab. Moreover, the Ricci tensor of gab is related to that of g̃ab by

Ra
b = R̃a

b − R̃a
chc

b +
1

2

(
∇̃c∇̃ah

bc + ∇̃c∇̃bhac − ∇̃c∇̃cha
b
)

, (2.2)

where hab = 2m
U

kakb, with m and U being the parameters proportional to the mass and

gravitational potential of a Kerr black hole respectively.

The generalized d–dimensional (anti)-de Sitter metric can be written in a very

compact form:

d̃s
2

= −(1 + cy2)dt2 +
dy2

1 + cy2
+ y2

N+ε∑

k=1

(
dµ̂2

k + µ̂2
kdφ̂2

k

)
(2.3)

satisfying
N+ε∑
i=1

µ̂2
i = 1, (2.4)

where d = 2N + ε + 1 ≥ 4, ε = 0 when d is even or ε = 1 when d is odd. There are

N azimuthal angles φi each with period 2π associated with N orthogonal 2−planes

and N + ε directional cosines µi where 0 ≤ µi ≤ 1 for 1 ≤ i ≤ N and (for even d)

−1 ≤ µN+1 ≤ 1, associated with N + ε spatial dimensions.

Here we provide parameterisations of n−spheres (with line-element dΩ2
n) for n =

2, 3:

• d=4: d is even so ε = 1. µ1 = sin θ, µ2 = cos θ, 0 ≤ θ ≤ π, while φ1 = φ,

0 ≤ φ ≤ 2π. Then

1+1∑
i=1

dµ2
i + µ2

i dφ2
i = cos2 θdθ2 + sin2 θdφ2 + sin2 θdθ2 (2.5)

27



= dθ2︸︷︷︸
1
2

S1

+ sin2 θ dφ2
1︸︷︷︸

S1

︸ ︷︷ ︸
1
2

S1nS1

(2.6)

= dΩ2
2︸︷︷︸

S2

(2.7)

• d=5: d is even so ε = 0. µ1 = sin θ, µ2 = cos θ, 0 ≤ θ ≤ π/2, while φ1 = φ1, φ2 =

φ2, 0 ≤ φ1 ≤ 2π, 0 ≤ φ2 ≤ 2π. Then

2∑
i=1

dµ2
i + µ2

i dφ2
i = cos2 θdθ2 + sin2 θdφ2

1 + sin2 θdθ2 + cos2 θdφ2
2 (2.8)

= dθ2 + sin2 θdφ2
1︸ ︷︷ ︸

1
2

S2

+ cos2 θ dφ2
2︸︷︷︸

S1

︸ ︷︷ ︸
1
2

S2nS1

(2.9)

= dΩ2
3︸︷︷︸

S3

(2.10)

In AdSd spaces the rotation group is SO(d − 1) and the number of independent

rotation parameters for a localized object is equal to the number of Casimir operators,

which is the integer part of (d − 1)/2. Thus in four dimensions the metric of a Kerr

black hole can have only one Casimir invariant of the rotation group SO(3), which

is uniquely defined by an axis of rotation, while in five dimensions it can have two

independent rotation parameters associated with two possible planes of rotation.

One may introduce to (2.3) N rotation parameters, for example, by using the

following coordinate transformation:

y2 =
N∑

i=1

(r2 + a2
i )µ

2
i

1− ca2
i

, (2.11)

where
∑N+ε

i=1 µ2
i = 1. The constants ai which are introduced in (2.11) merely as

parameters in a coordinate transformation may be interpreted as genuine rotation

parameters after one adds to (2.3) the square of an appropriate null vector, as in (2.1).

Using the following coordinate transformations [71],

dt = dτ +
2m

V − 2m

dr

(1 + cr2)
,

dφ̂i = dφi + caidτ +
2m

V − 2m

aidr

(r2 + a2
i )

, (2.12)
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and combining the expressions (2.1), (2.3), (2.11), one can obtain the Kerr (A)dS

metrics in Boyer-Lindquist coordinates. We will not go into details of this construction

but refer the reader to Ref. [116] for an elegant discussion. In five dimensions, the

metric of Kerr-AdS solution is

ds2 = − W (1 + cr2)dτ 2 +
ρ2dr2

V − 2m
+

ρ2

∆θ

dθ2 +
2∑

i=1

r2 + a2
i

1− ca2
i

µ2
i (dφi + caidτ)2

+
2m

ρ2

(
dτ −

2∑
i=1

aiµ
2
i dφi

1− ca2
i

)2

, (2.13)

where µ1 = cos θ, µ2 = sin θ,

ρ2 = r2 + a2
1 cos2 θ + a2

2 sin2 θ,

∆θ = 1− ca2
1 cos2 θ − ca2

2 sin θ2,

V =
1

r2
(1 + cr2)(r2 + a2

1)(r
2 + a2

2),

W =
∆θ

Ξ1Ξ2

, Ξi = 1− ca2
i . (2.14)

In the limit ai → 0, one recovers the standard Schwarzschild-AdS metric. As we

will see shortly, black holes with non-zero rotation parameters, or, in general, Kerr-AdS

black holes, enjoy many interesting properties distinct from Schwarzschild-AdS black

holes.

2.3 Thermodynamics of Kerr AdS Solutions

Using the standard technique of background subtraction, Gibbons et al. [118] have

recently calculated the regularized (Euclidean) actions for the Kerr-AdS black holes in

arbitrary d (≥ 4) dimensions. The results are

Î = − Ad−2

8πG
∏

j Ξj

β

l2

(
l2N

N∏
i=1

(R2 + α2
i )−ml2

)
(2.15)

for odd d(= 2N + 1), and

Î = − Ad−2

8πG
∏

j Ξj

β

l

(
R l2N

N∏
i=1

(R2 + α2
i )−ml

)
(2.16)

for even d(= 2N + 2), where

Ad−2 =
2π(d−1)/2

Γ[(d− 1)/2]
, (2.17)
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is the volume of the unit (d − 2)-sphere. In the above we have defined c ≡ 1/l2, with

l being the curvature radius of the (bulk) AdS space. The dimensionless parameters

are: Ξj ≡ 1 − α2
j , R ≡ r+/l and αi ≡ ai/l., where, as usual, r+ is the radius of the

horizon, which occurs at the largest root of V − 2m = 0. The Hawking temperature,

which is the inverse of Euclidean period, T ≡ 1/β, is given by

T =
R

2πl

[
(1 + R2)

(
N∑

i=1

1

R2 + α2
i

+
ε

2R2

)
− 1

R2

]
, (2.18)

where ε = 0 for odd d and +1 for even d.

The calculation of total energy in an asymptotically (A)dS background is some-

what trickier (see e.g. [118]), mainly because the analogous Komar integral for the

relevant time-like Killing vector diverges, which then requires a regularization; see

also Ref. [124], which presents a general analysis for the conserved charges and the

first law of thermodynamics for the four dimensional Kerr-Newman-AdS and the five

dimensional Kerr-AdS black holes. In this context, the conserved charges (energies) E

and E ′ associated with different Killing vectors, respectively, ∂t and ∂t + l−1αi∂φi
are

different. However, the calculation of free energy itself is unambiguous. In fact, one

can always identify the free energy of a Kerr-AdS black hole as F = Î/β, and hence

F =
Ad−2

16πG
(l R)d−3

(
1−R2

)∏
j

Ξj

N∏
i=1

(
1 +

α2
i

R2

)
. (2.19)

This result is modified from that of a Schwarzschild-AdS black hole by certain terms

in the product which are now functions of R and the rotation parameters αi.

2.3.1 Thermal Phase Transition

Five dimensions

The issue of thermodynamic stability of four dimensional solutions has been well stud-

ied. However, the issue of thermodynamic stability may be raised in five and higher

dimensions. The five-dimensional Kerr-AdS solutions are particularly interesting as

these could be embedded into type IIB supergravity in ten dimensions.

From (2.19), it is readily seen that for R < 1 the free energy, F , of the background

subtracted Kerr–AdS black hole is greater than zero, F > 0, while for R > 1, F < 0. In
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Figure 2.1: (d = 5) The free energy (solid lines) and temperature (dashed lines) as a function

of horizon position, with α1 = α2 ≡ α. From top to bottom (free energy) or bottom to top

(temperature): α = 1/3, 0.25, 1/8, 0.05. In all plots we have set 4G = 1.

general, when the values of the rotation parameters αi are decreased, the free energy

lowers towards zero at low temperature. For 0 < α ¿ 1, in the small R region, F

nearly approaches but never touches the F = 0 axis (see Figs. 2.1 and 2.2). That is,

the free energy curve crosses the F = 0 axis only once, namely when R = 1.

In five dimensions, with α1 = α2 ≡ α > 0, for each non–zero α there is a minimum

R below which the temperature is negative and diverges to negative infinity as R → 0

(see Fig. 2.1). This should be contrasted with (small) Schwarzschild–AdS black holes in

five dimensions, whose temperature diverges to positive infinity as R → 0 which signals

a thermodynamic instability. In fact when T = 0 a Kerr–AdS black hole simply ceases

to radiate and as such is unable to attain a smaller horizon radius so the limit of R → 0

is physically irrelevant. The minimum radius associated with this freezing can be read

off Fig. 2.1 for a variety of angular momentums. Since the temperature decreases as

the black hole becomes smaller, it can in principle come into thermal equilibrium with

any surrounding thermal radiation. Hence there is a qualitative difference between the

thermodynamic behaviours of Schwarzschild–AdS and Kerr–AdS as R → 0. One can
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Figure 2.2: (d = 5) The free energy (solid lines) and temperature (dashed lines) vs hori-

zon position, with α1 ≡ α, α2 = 0. From top to bottom (free energy) or bottom to top

(temperature): α = 0.4, 0.25, 1/6, 0.1.

see that as α → 0 the Kerr–AdS case approximates the Schwarzschild–AdS case for

non–zero R, but in the limit R → 0 there is no smooth transition between the two

behaviours. This is possibly not an issue, as quantum effects may become significant

at such small scales and hence due to the discrete nature of the emitted and absorbed

quanta a smooth transition might not be physically plausible. Additionally, our exterior

vacuum approximation almost certainly breaks down.

We note that the limit of R → 0 is equivalent to fixing r+ and sending l →∞. This

corresponds to reducing the cosmological constant, where the limit R = 0 corresponds

to zero cosmological constant, i.e. we are left with a Myers–Perry higher dimensional

Kerr black hole.

In Fig. 2.3 we show parametric plots of F vs T for T > 0. This means that the

limit R → 0 is not shown. However, as can be seen in Fig. 2.1 the physically irrelevant

region in Fig. 2.3 would be characterised by F →∞, T → −∞. We also note that the

specific heat is a monotonically increasing function of temperature when α ≥ 0.15, i.e.,

five dimensional Kerr–AdS black holes which rotate sufficiently fast with equal rotation
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Figure 2.3: (d = 5) The free energy, F (R), vs temperature, T (R), with α1 = α2 ≡ α plotted

parametrically as functions of R with fixed α. From top to bottom: α = 1/3, 0.2, 0.1, 0.05.

For all α, F (1) = 0 as in Fig. 2.1.

parameters are thermodynamically stable at all horizon radii.

The Hawking temperature of a Kerr-AdS black hole with one non-vanishing rota-

tion parameter approaches zero as R goes to zero. The free energy is still a smooth

relation of both the horizon size and the temperature (see Figs. 2.2 and 2.4). These

imply thermodynamic stability for a small Kerr black hole which conserves its angular

momentum in AdS5 space with either one non–zero or two equal rotation parameters.

It should also be noted that while the behaviour of the temperature and free energy

as functions of R appear qualitatively quite different between the one non–zero and

two equal rotation parameter cases, when F and T are plotted parametrically against

each other the qualitative behaviours of the two cases are identical and as such the

different cases should not be thought of as having radically different thermodynamic

behaviour.
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Figure 2.4: (d = 5) The free energy vs temperature plotted parametrically as functions of R

with α1 ≡ α, α2 = 0. From top to bottom: α = 0.4, 0.25, 1/6, 0.1

34



Six dimensions

0.2 0.4 0.6 0.8 1
R

-0.25

0.25

0.5

0.75

1

1.25

F, T

Figure 2.5: (d = 6) The free energy and temperature vs horizon position, with α1 = α2 = α.

From top to bottom: α = 0.4, 1/3, 0.25, 0.1.

The thermodynamic behavior found in six–dimensions is similar to that in five

dimensions in the case of two equal rotation parameters as can be seen by comparing

Fig. 2.1 and Fig. 2.5.

As the plots in Figs. 2.5–2.8 show the thermodynamics of single parameter solutions

are quite different from those with equal rotation parameters. Not only do the free

energy and temperature as functions of R behave differently, but when F and T are

plotted parametrically against each other, the case of one non–zero rotation parameter

behaves quite differently to that of two equal rotation parameters.

We see that the equal rotation parameter case leaves small stable Kerr–AdS black

holes, while the case with one non–zero rotation parameter behaves similarly to the

Schwarzschild–AdS case, in that if the black hole has a radius smaller than l it is

thermodynamically unstable, and according to this analysis will completely evaporate

leaving an equilibrium solution of thermal–anti de–Sitter space.
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Figure 2.6: (d = 6) The free energy and temperature vs horizon position, with α1 ≡ α,

α2 = 0. From top to bottom: α = 0.5, 0.4, 0.25, 0.04.
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Figure 2.7: (d = 6) The free energy vs temperature plotted parametrically as functions of R

with α1 = α2 ≡ α. From top to bottom: α = 1/3, 0.25, 0.2, 0.12.
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Figure 2.8: (d = 6) The free energy vs temperature plotted parametrically as functions of R

with α1 = α, α2 = 0. From left to right: α = 0.5, 0.35, 0.2, 0.05
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Figure 2.9: The free energy vs temperature with a single non-vanishing rotation parameter

α. From left to right d = 4 (with α = 0.3) and d = 6, 8, 10 (with α = 0.5).
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Figure 2.10: The free energy vs temperature with equal rotation parameters, αi = α = 0.4.

From left to right d = 6, 8, 10. Note that on the far left d = 4 has been displayed for

comparison purposes, even though it has only one rotation parameter.
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Figure 2.11: The free energy vs temperature plotted parametrically as functions of R with a

single non-vanishing rotation parameter α. From left to right: d = 5, 7, 9, 11 (with α = 0.6).
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Figure 2.12: The free energy vs temperature plotted parametrically as functions of R with

equal rotation parameters, αi = α = 0.5. From left to right d = 5, 7, 9, 11.
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2.3.2 The first law of AdS bulk thermodynamics

One of the simplest ways of calculating the energy in an asymptotically AdS background

is to integrate the first law of (bulk) thermodynamics:

dE = T dS +
∑

i

ΩiJ
i. (2.20)

where the entropy S and angular momenta (of a rotating black hole) Ji are defined via

S = β
∂Î

∂β
− Î , J i = − ∂F

∂Ωi

, (2.21)

where

Ωi ≡ αi(1 + R2)l

R2 + α2
i

. (2.22)

In Ref. [118], the mass (energy) of Kerr AdS black hole was evaluated, by demanding

as a priori that entropy of the black hole is one-quarter the area, S = A/4, in order to

satisfy (2.20). The results are, for d = 2N + 1 ≥ 5,

E =
mAd−2

4πΠjΞj

(
N∑

i=1

1

Ξi

− 1

2

)
,

S =
Ad−2

4
(l R)2N−1

N∏
i=1

(
1 +

α2
i

R2

)
1

Ξi

, (2.23)

and for d = 2N + 2 ≥ 4,

E =
mAd−2

4πΠjΞj

N∑
i=1

1

Ξi

,

S =
Ad−2

4
(l R)2N

N∏
i=1

(
1 +

α2
i

R2

)
1

Ξi

. (2.24)

This result differs from the expression of energy suggested by Hawking et al. in [71],

both in odd and even dimensions,

E ′ =
mAd−2

4π
∏N

j=1 Ξj

(d− 2)

2
. (2.25)

The reason for this is that the energy (2.25) is measured in a frame rotating at infinity

with the angular velocities:

Ω′
i =

αiΞi l

R2 + α2
i

, (2.26)
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instead of (2.22). Since the angular velocities differ by Ωi − Ω′
i = αi l, the two results

above, (2.23) or (2.24), (2.25), agree only in the limit αi → 0 (i.e. Σi → 1).

It should be noted that in the limit of r+ → 0, E → 0. This is expected, as

the infinite energy due to the non–zero value of the cosmological constant has been

subtracted out in the background subtraction procedure.

2.3.3 The specific heat and thermodynamic stability

A black hole as a thermodynamic system is semiclassically unstable if it has negative

specific heat. As is known, small Schwarzschild-AdS black holes (i.e. with ai = 0)

have negative specific heat but large black holes have positive specific heat. There also

exists a discontinuity of the specific heat as a function of temperature at R = 1/
√

2, and

so small and large black holes are found to have different thermodynamic behaviour.

However, this is not the case when some of the ai are non-trivial. For example, we

shall find that a small Kerr black hole in AdS5 space has positive specific heat if its

horizon radius is sufficiently small with respect to the AdS length scale l.

Five dimensions

We shall study the thermodynamic stability of a Kerr-AdS black hole by evaluating its

specific heat, which is given by

Cv =
∂E

∂T
. (2.27)

Figures 2.13 and 2.14 show the plots of energy and temperature differentials as functions

of the horizon size R with fixed angular momenta. In the case of one non–zero rotation

parameter, Fig. 2.13, dT = 0 can have two roots for α < 1/
√

17, a repeated root at

α = 1/
√

17 and no roots for α > 1/
√

17. The roots are exactly given by

R± =

√
1− 5a2 ±√17a4 − 18a2 + 1

2
(2.28)

and the repeated root occurs at R =
√

3/17 ≈ 0.42. As dE > 0 for all α in the one

non–zero rotation parameter case, dE/dT < 0 between the roots in R which means

that the specific heat is negative there and the Kerr–AdS black hole will be locally

thermodynamically unstable. It becomes stable again if it can radiate while conserving
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Figure 2.13: (d = 5) The energy and temperature differentials w.r.t. R vs horizon position,

with α1 = α, α2 = 0. As R → 0, dE → 0 and dT > 0. From top to bottom (free energy)

or bottom to top (temperature) α = 0.5, 1/3, 0.25, 1/6. It is possible for there to exist an

interval of R where dT < 0 for values of α < 1/
√

17.

angular momentum, thereby dropping its horizon radius enough to gain a positive

specific heat, which would eventually allow it to come into thermal equilibrium with

the surrounding thermal radiation. However, it is well known that Kerr black holes

can shed angular momentum while radiating. As such it is plausible that the black

hole will transfer its angular momentum into its radiation, thereby remaining unstable

long enough to eventually become Schwarzschild–AdS and hence evaporate completely.

However, it is also plausible that the black hole can be “spun up” by absorbing radiation

with angular momentum, potentially not only coming into thermal equilibrium, but

also coming into “rotational equilibrium” with the surrounding radiation, making it

semiclassically stable. Further detailed work on the exact evolution of such black holes

in thermal equilibrium with a surrounding radiation fluid would be required to settle

this issue definitively and remains outside the scope of the current work.

As seen in Fig. 2.14, the case of equal rotation parameters in five dimensions dT = 0

has two roots for α . 0.15, a repeated root for α ≈ 0.15, at R ≈ 0.4, and no roots
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Figure 2.14: (d = 5) The energy and temperature differentials vs horizon position, with α1 =

α2 ≡ α. As R → 0, dE → +∞ and dT → −∞. From left to right: α = 0.1, 1/6, 0.25, 1/3.

for α & 0.15. However, in this case dE becomes negative for sufficiently small R

and as such the specific heat becomes negative, implying a thermodynamic instability.

However, it should be noted that this limit cannot be reached by an evaporating black

hole as the temperature also heads towards zero, in a positive specific heat region of

R. That is, the end point of gravitational evaporation in this scenario is a black hole

with zero specific heat and zero temperature of finite size – before this occurs the black

hole will come into thermal equilibrium with its surrounding radiation, subject to the

assumption of it conserving its angular momenta.

Once again, it is potentially plausible that the black hole can shed its angular

momenta, but in doing so it will always have a positive specific heat. It might be

subject to an instability in the form of eventually approximating Schwarzschild–AdS. It

is also entirely plausible that this black hole can lose its angular momentum during the

evaporation phase in such a way that it becomes well approximated by the single non–

zero rotation parameter case, i.e., where it loses angular momentum roughly equally

from both rotation parameters until one rotation parameter is exactly zero and the

other is approximately zero due to an appreciable discrete loss of angular momentum.
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Figure 2.15: (d = 5) The specific heat vs temperature with α1 = α2 = α; from top

to bottom α = 0.17, 1/3, 0.5, 0.6. When α is . 1/6, then there would appear a new

branch with almost constant specific heat at low temperature.

Via this process, if the single rotation parameter case is stable then the end point of

the equal rotation parameter case would also be stable.

Six dimensions

Similarly, in d ≥ 6 dimensions, the Kerr-AdS black holes become unstable for rotation

parameters below some critical values, at which point a new branch appears. When

d = 6, with equal rotation parameters, the critical value is α ≈ 0.22 (see Figs. 2.16–

2.17); it is slightly higher in the case of a single rotation parameter.

However, in the case of equal rotation parameters the same behaviour as the five

dimensional cases is observed, and it is uncertain whether or not the black holes can

completely evaporate. The single rotation parameter case clearly shows an instability

for small R, regardless of angular momentum. In that case the specific heat is negative

for small enough R, and the temperature diverges to positive infinity. In this scenario

it is almost certain that the small black holes will evaporate, leaving thermal AdS as

44



the equilibrium solution.

0.25 0.5 0.75 1 1.25 1.5 1.75
R

-4

-2

2

4

dE, dT

Figure 2.16: (d = 6) The energy differential (solid lines) and temperature differential (dashed

lines) vs horizon position, with α1 = α2 ≡ α. From left to right (dE in the dE > 0 region)

or top to bottom (dT ): α = 0.5, 0.2, 0.1, 1/15

n dimensions

In all odd dimensions, the specific heat has a single branch at high rotation and two

branches or more branches at low rotations: the critical value of α which distinguishes

these two cases increases with the number dimensions, and also with number of non-

trivial rotation parameters. A similar behavior is observed in all even dimensions d ≥ 6,

but in this case an interesting difference is that the specific heat can never be zero with

T > 0.

It seems relevant to ask what happens at the critical angular velocity limit, αi = 1.

Apparently, the action as well as the entropy is divergent in this limit. Nevertheless,

as discussed in [71] (see also [125]), there exists a scaling of the mass parameter m → 0

which makes the physical charges of the configuration finite. With equal rotation

parameters, when αi → 1, Kerr-AdS black holes are thermodynamically stable. On

the other hand, in all even dimensions d ≥ 6, small Kerr-AdS black holes with a single
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Figure 2.17: (d = 6) The specific heat vs temperature plotted parametrically as functions

of R with α1 = α2 = α. From top to bottom α = 0.25, 0.5, 0.6, 0.7

non-vanishing rotation parameter are thermodynamically unstable.

In our plots we have used the energy expressions suggested by Gibbons et al. [118],

which differ from those suggested by Hawking et al. [71] by some overall constant

factors. This itself does not introduce any significant difference in the behavior of the

specific heat and hence the thermodynamic stability of Kerr-AdS solutions. At any

rate, the energy measured in a non-rotating frame can be derived using various other

methods [126, 127, 128, 129, 130] and so is easier to work with; the energy (or total

mass) expressions given in [128], however, disagree with those in [118] in odd spacetime

dimensions.
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2.3.4 The temperature bound for rotating black holes

It was recently shown in [131] that at fixed entropy, the temperature of a rotating black

hole is bounded above by that of a non-rotating black hole in four and five dimensions,

but not in six or more dimensions. We verify this claim by plotting temperature as a

function of entropy, in various dimensions; some of the plots are depicted in Figs. 2.18–

2.20. In six dimensions or more, the minimum of the entropy is not always the minimum

of the temperature; the minimum of the entropy actually depends upon the choice

of rotation parameters. This is precisely the case where the inequality TKerr-AdS ≥
TS-AdS may be realized with a very small entropy. But in this limit the temperature

actually diverges, so an effect like this might be absent in a physical picture. At

fixed entropy, but S À 0, the Hawking temperature of a rotating black hole is always

suppressed relative to that of a non-rotating black hole and the inequality TKerr-AdS <

TS-AdS holds in all dimensions. This result, presumably, holds with various charges

and classical matter fields (such as gauge fields, dilaton, etc) and is in accord with the

earlier observation made by Visser while studying a static spherically symmetric case

in four dimensions with no cosmological term [132].

A five dimensional Kerr-AdS black hole with a single non-vanishing rotation para-

meter possesses an interesting (and perhaps desirable) feature; in this case the entropy

vanishes when the temperature becomes zero. A similar feature is present in seven

dimensions, but with two equal rotation parameters: α1 = α2∼ 0.33, α3 = 0.

In recent work [133] on the evolution of a five dimensional rotating black hole via

scalar field radiation, Maeda et al. observed that in a flat background (c = 0), the

asymptotic state of a five dimensional rotating black hole with a single non-vanishing

parameter is described by a∼ 0.11
√

M . It would be interesting to know a similar result

in an anti-de Sitter background, c > 0.
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Figure 2.18: The temperature vs entropy plotted parametrically as functions of R, in various

dimensions with equal rotation parameters, αi ≡ α. From top to bottom: d = 7, 6, 5, 4 with

all αi = 0 (dashed lines); from left to right: d = 6, 7, 4, 5 (solid lines) each with α = 0.4.
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Figure 2.19: The temperature vs entropy plotted parametrically as functions of R with a

single rotation parameter α. From top to bottom: d = 7, 6, 5, 4 each with α = 0.4 (solid

lines), and αi = 0 (dashed lines).
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Figure 2.20: The temperature vs entropy plotted parametrically as functions of R, in the

small entropy region. From top to bottom (in the region S > 0.1): d = 10, 9, 8, 7 with α1 =

· · ·αN−1 = 0.01, αN = 0.9 (solid lines, Kerr-AdS) and αi = 0 (dashed lines, Schwarzschild-

AdS).
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2.3.5 Rotation and the AdS-CFT correspondence

Following [107, 71], one would expect the partition function of a Kerr-AdS black hole

to be related to the partition function of a CFT in a rotating Einstein universe on the

(conformal) boundary of the AdS space.

A curious observation in Ref. [134] is that the Cardy-Verlinde entropy formula works

more naturally using the bulk thermodynamic variables defined by Hawking et al. [71].

This seems to indicate that the energy expression (2.25) is still relevant in a dual CFT.

The Killing vector is then given by

χ =
∂

∂τ
+ Ωi

∂

∂φi

, (2.29)

where φi are the angular coordinates. This property normally allows the thermal

radiation to rotate with black hole’s angular velocity all the way to conformal infinity.

One could ask whether or not the bulk thermodynamic variables suggested by

Gibbons et al. [118], which were measured with respect to a frame that is non-rotating

at infinity, can be mapped onto the boundary CFT variables by using the usual scaling

argument. This does not seem to be the case as long as the CFT is assumed to be on

a surface of large R in Boyer-Lindquist coordinates. However, such a mapping might

exist when the CFT is assumed to be on a large spherical surface, that is one for

which the coordinate y = constant at large y. That is to say, it is possible that the

set of bulk variables for Kerr-AdS black holes given by Gibbons et al.[118], in some

(modified) form, match onto the boundary CFT variables that satisfy the first law of

thermodynamics. This was indeed shown to be the case in [131].

Let us briefly discuss the role of non-trivial rotation parameters on the existence of

an equilibrium between Kerr-AdS black hole and co–rotating thermal radiation around

it. For this, the requirement of a positive specific heat is a necessary condition. In

five dimensions, the specific heat is always positive and also a monotonically increasing

function of temperature when one (or both) of the rotation parameters takes a value

at least one-quarter the AdS length scale l. It should also be noted that for all values

of the rotation parameters the specific heat is positive for sufficiently small Kerr–AdS

black holes in five dimensions. This means that, unlike in Minkowski (infinite) space,

rotating Kerr-AdS black holes (which conserve their angular momentum) can be in
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equilibrium with their thermal radiation rotating around them, when 0 < αi . 1.

2.4 The stability of the background of Kerr–AdS

spacetime under gravitational perturbations

Gravitational (classical) stability of a spacetime is physically more important than

thermodynamic stability. While it is possible to have a physically reasonable spacetime

which is classically stable but thermodynamically unstable (e.g. 4–D Schwarzschild) it

is more difficult to seriously consider solutions in general relativity as physical without

classical stability.

The Schwarzschild solution has been shown to be stable against small metric per-

turbations by Vishveshwara [135], Zerilli [136, 137] and Chandrasekhar [138]. Similar

efforts have been attempted with the Kerr solution by Press and Teukolsky [139, 140,

141], Hartle and Wilkins [142], Chandrasekhar and Detweiler [143]–[147] and others,

but due to the huge increase in complications when setting up and solving the lin-

earised perturbation equations, they were only able to provide plausibility or numerical

arguments against exponentially growing modes on a Kerr background – no definitive

proofs of gravitational stability are available. However, Press was able to show that

all slowly rotating Kerr black holes are gravitationally stable, as expected since they

are approximately Schwarzschild which is stable. Whiting [148] was able to prove that

normal modes of the Kerr solution grow linearly at most in time. This is consistent

with the study of massive scalar perturbations of Kerr which point to the existence of

unstable modes with growth times similar to the age of the universe [149, 150, 151].

As a precursor to studying Kerr–AdS spacetimes in higher dimensions, in this sec-

tion we study the stability of Kerr-AdS background metrics (with M = 0) in dimensions

five and higher against linearised metric perturbations. For this purpose, it is sufficient

to consider the following d-dimensional (time-independent) metric ansatz:

gab(X)dXadXb = gµν(x)dxµdxν + γ(x)2dΣ̃2
k,n(x̃), (2.30)

where the metric gab(X) is effectively separated into two parts: a diagonal “bulk” line

element and dΣ̃2
k,n, which is the metric on an n-dimensional “base manifold”, M̃n,
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whose curvature has not been specified, (so k = 0 or ±1), and hence can be replaced

by any Einstein-Kähler metric with the same scalar curvature. Tilded quantities refer

to base manifold quantities. However, in the present work we study only the k = +1

case. The modes we will study do not exist in stability analyses of, for example,

Schwarzschild, as no suitable restrictions of these modes exist on S2 [152]. Hence

the modes we study are intrinsically higher dimensional. A comprehensive classical

stability analysis of metrics of the form (2.30) has been carried out in ref [153], but

the work there does not specifically address modes of instability which are exclusively

higher dimensional. We also note that the form of (2.30) is sufficiently general to

encompass a variety of non–rotating massive black hole solutions, but we will restrict

our attention to the AdS backgrounds of higher dimensional Kerr–AdS black holes.

It should be noted that the rotation parameters which parameterise the angular

momenta of the spacetime become coordinate transformations when the mass para-

meter is zero. This can be seen most simply by considering the Kerr–Schild form of

Kerr–AdS:

gab = g̃ab +
2M

U
kakbdxadxb . (2.31)

Setting M = 0, the geometry reduces to that of the AdS base space, with whatever

non–trivial topologies one assigns to it. The higher dimensional tensor perturbations

of AdS with non–trivial topologies have already been studied by Gibbons and Hartnoll

[154]. Here we perform the same analysis as in [154] but in a set of coordinates adapted

to a Kerr–AdS spacetime in the hope that some previously unrecognised behaviour,

potentially related to higher dimensional Kerr–AdS spacetimes, becomes apparent.

2.4.1 The Lichnerowicz operator

To study the inherently higher dimension tensor modes of the base manifolds of space-

times of the form 2.30, we will use the Lichnerowicz operator [154]. Under a small

linear metric perturbation,

gab(X) → gab(X) + hab(X) , (2.32)

where h is symmetric and |hb
a| ¿ 1, the variation in the Ricci tensor is given by,

δRab =
1

2
∆Lhab − 1

2
∇a∇bh

c
c +∇(a∇chb)c, (2.33)
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where the spin-2 Lichnerowicz operator ∆L acting on a rank two symmetric tensor is

defined by (see, for example, [155])

∆Lhab = −∇2hab − 2Rcadbh
cd + 2Rc(ah

c
b). (2.34)

The stability of background metrics of the form (2.30) with n > 2, under certain metric

perturbations, is expected to be specific to tensor perturbations [154]. We therefore

would like to restrict our analysis here to the tensor mode fluctuations that satisfy

hab(X) = 0 (2.35)

unless (a, b) = (i, j), where the indices a, b, · · · run from 0 · · · (d − 1) and the indices

i, j, · · · will run from (d−n) · · · (d−1) for the n-dimensional base manifold. The above

choice of the form of the perturbation tensor does not correspond to a gauge choice,

but instead has the effect of removing the scalar and vector modes of the perturbation

leaving one with just the higher dimensional tensor modes on the base manifold [154].

The Lichnerowicz operator ∆L is compatible with the transverse, trace-free (de

Donder) gauge for hab: ha
a = 0 = ha

b;a. Applying the transverse tracefree gauge, the

variation of the Ricci tensor with coordinates restricted to the base manifold satisfies

δRij =
1

2
(∆Lh)ij = −c(d− 1)hij , (2.36)

where c is the d-dimensional cosmological constant and

∆Lhij =
1

γ2
∆̃Lhij + [−gµν∂µ∂ν ] hij +

d−n∑
ν=1

[
∂σgσν − 1

2
gσρ∂νgσρ + (4− n)

∂νγ

γ

]
∂νhij

− 4

γ2
[gµν∂µγ(x)∂νγ(x)] hij, (2.37)

where ∆̃Lhij is the spin-2 Lichnerowicz operator acting on the base manifold M̃n. It

should be noted that this expression generalises other results in the literature and is

applicable to a wide range of spacetimes satisfying 2.30.

2.4.2 Dependence on radial coordinate only

Let us first consider a background spacetime where d = n + 2, such that we can write

the metric as

ds2 = −α(r)2dt2 + β(r)2dr2 + γ(r)2dΣ̃2
n. (2.38)
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We can write the Lichnerowicz operator as

∆Lhij =

[
1

γ2
∆̃L +

[
∂2

t

α2
− ∂2

r

β2

]
+

[
βr

β
− αr

α
+ (4− n)

γr

γ

]
∂r

β2
− 4

γ2

γ2
r

β2

]
hij,(2.39)

where the subscripts t, r denote derivatives w.r.t. t, r respectively. In this case we find

it convenient to choose metric perturbations of the form

hij = Ψ(r)eωth̃ij(x̃), (2.40)

such that

(∆̃Lh̃)ij = λh̃ij, (2.41)

where x̃ are coordinates on M̃n and λ is the eigenvalue of the Lichnerowicz operator

on M̃n. We wish to write the perturbed equations

(∆Lh)ij + 2c(d− 1)hij = 0 , (2.42)

in the form
(
∂2

r∗ − V (r∗)
)
Φ(r∗) = ω2Φ(r∗). (2.43)

To do so, consider a second order differential equation of the form

(A∂2
r + B∂r + C + D∂2

t + E∆̃L)h = 0, (2.44)

where A, B, C are functions of r only. We find it is convenient to choose h ≡ Ψ(r)eωth̃,

such that ∆̃Lh̃ = λh̃. We then have

(A∂2
r + B∂r + C + Dω2 + Eλ)Ψ(r)eωth̃ = 0. (2.45)

For non-zero fluctuations, eωth̃ 6= 0, this implies that

(A∂2
r + B∂r + C̃)Ψ(r) = 0, (2.46)

where C̃ ≡ C + Dω2 + Eλ. We would like to write this in the form

[
∂2

x − V (x(r))
]
ϕ = ω2ϕ. (2.47)

To facilitate this we introduce two transformations:

dr =
∂r

∂x
dx, Ψ = χϕ. (2.48)
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The differential equation then takes the form

A

r2
x

ϕ′′ +
[
2A

r2
x

χ′

χ
+

B

rx

− Arxx

r3
x

]
ϕ′ +

[
A

r2
x

χ′′

χ
+

(
B

rx

− Arxx

r3
x

)
χ′

χ
+ C̃

]
ϕ = 0, (2.49)

where rx ≡ r′ = (∂r/∂x). Let us define

r2
x = −A

D
,

χ′

χ
=

B

2Drx

+
rxx

2rx

. (2.50)

This implies

rxx

rx

=
1

2

(
Ax

A
+

Dx

D

)
. (2.51)

The differential equation then takes the standard form:

∂2
xϕ− V ϕ = ω2ϕ, (2.52)

where

V = −
(

χ′

χ

)′
+

(
χ′

χ

)2

+
C̄

D
, (2.53)

where C̄ ≡ C + Eλ.

Therefore to facilitate the transformation of (2.42) to (2.43) we introduce two

transformations:

dr =
∂r

∂r∗
dr∗, Ψ(r) = χ(r)Φ(r) , (2.54)

with

χ(r) = C1γ
(4−n)/2. (2.55)

We then find

V (r(r∗)) =
λα2

γ2
+

n2 − 10n + 8

4

(
γr∗

γ

)2

+
(n− 4)

2

γr∗r∗

γ
+ 2(n + 1)cα2, (2.56)

where

γr∗ ≡ ∂r

∂r∗

∂γ

∂r
=

α

β
γr,

γr∗r∗ =
α2

β2

[
γrr +

(
αr

α
− βr

β

)
γr

]
. (2.57)

The above potential correctly reproduces the result in ref [115] (cf. Eq. (41) with

α2 = f(r) and γ2 = r2), see also [154, 156]. Apparently, the case n = 4 is special.
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2.4.3 Anti de–Sitter spacetime in odd dimensions

In the case of an odd number of spacetime dimensions d = 2N + 1 = n + 2 ≥ 5, the

AdS background metric may be given in rotating coordinates by

ds2 = −(1 + cr2) dt2

(1− ca2)
+

r2 dr2

(1 + cr2)(r2 + a2)
+

r2 + a2

1− ca2
ds2(M̃n), (2.58)

where the rotation parameters are set equal (i.e., a1 = a2 = a). The base space M̃n,

which is topologically S2N−1, may be parameterized by the metric

N∑

k=1

(
dµ̂2

k + µ̂2
kdφ̂2

k

)
(2.59)

satisfying
N∑

i=1

µ̂2
i = 1 . (2.60)

There are N azimuthal angles φi each with period 2π associated with N orthogonal

2−planes and N directional cosines µi where 0 ≤ µi ≤ 1 for 1 ≤ i ≤ N associated

with N spatial dimensions. For example, in five dimensions, the metric on base M3 is

ds2(M3) = dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2.

In the above background, the linear tensor perturbations satisfy

∆Lhij = −2c (n + 1) hij, (2.61)

where

∆Lhij =
[
− (r2 + a2)(1 + cr2)

r2

(
∂2

∂r2
+

4r2

(r2 + a2)2

)
+

1− ca2

1 + cr2

∂2

∂t2

]
hij

−
(

(n− 2)cr +
n− 4

r
− a2(1− cr2)

r3

)
∂hij

∂r
+

1− ca2

r2 + a2
(∆̃Lh)ij. (2.62)

In terms of the Regge-Wheeler type coordinate r∗, which may be defined by

dr =
(1 + cr2)

√
r2 + a2

r
√

1− ca2
dr∗, (2.63)

and using Eqs. (2.40),(2.54) the differential equation is cast in the standard form:

−d2Φ

dr2∗
+ V (r(r∗))Φ = −ω2Φ ≡ EΦ, (2.64)

where the potential is

V (r(r∗)) =
λ(1 + cr2)

r2 + a2
+

(n2 − 10n + 8)(1 + cr2)2

4(1− ca2)(r2 + a2)
+

(3n− 2)c(1 + cr2)

1− ca2
.(2.65)
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This potential is well behaved around r = 0 due to the coordinate transformation with

a 6= 0. Note that one is able to reproduce the relevant result in [154] by making the

substitution
r2 + a2

1− ca2
→ y2 . (2.66)

There exists a criterion for stability against exponentially growing modes of the

perturbations in terms of the minimum Lichnerowicz eigenvalue, λmin, on the base

manifold M̃n. In the case of a vanishing cosmological constant (c = 0), this criterion

is the same as that for a Schwarzschild-AdS background [154]:

λmin ≥ λc = −n2 − 10n + 8

4
⇔ stability. (2.67)

A requirement that λc ≥ 0 constrains the spacetime dimensions to n ≤ 9 (or d ≤ 11).

The stability of the potential depends on the eigenvalue λ, ensuring that the potential

is positive everywhere and bounded from below. Taking the limit r → 0 in (2.65) and

defining µ ≡ ca2 where a > 0 we find the criteria for stability,

λ ≥ λc = −n2 − 10n + 8 + 4(3n− 2) µ

4(1− µ)
. (2.68)

where µ < 1. Setting λ̃c ≥ 0 provides an upper bound on µ for each n. Specifically,

µmax = −n2 − 10n + 8 + 4λc

4(3n− 2− λc)
. (2.69)

Increasing n pushes the maximum value of µ down, and for n > 9, µmax < 0. Note

that for µ < 0, c < 0, which corresponds to de–Sitter spacetime.

Instead of solving the Schrödinger–like equation directly in terms of r∗, one can

solve the radial part of equation (2.61) by expressing it as a hypergeometric equation,

whose solution is given by linear combinations of

Ψ±(x, µ) =

(
x + µ

c

)(5−n±2ν)/4

(1 + µ)i ω/2
√

c × (2.70)

2F1

(±2ν − (n− 1)

4
+

i ω

2
√

c
,
±2ν + (n + 3)

4
+

i ω

2
√

c
,±ν + 1;−x + µ

1− µ

)
,

where x ≡ cr2, and

ν =
1

2

√
4λ + (5− n)2 − 16. (2.71)

We note that reality of ν immediately implies the stability condition (2.67) as it provides

a (slightly) more stringent bound on λc. Reality of the solution also requires ω = iω̃
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which implies that there are no exponentially growing (unstable) modes. Requiring the

solution to be bounded as r →∞ fixes one arbitrary constant which leaves Ψ decaying

as r1−n. Given that Ψ = χΦ we find that Φ decays as r−(n+2)/2. By considering the

large r limit of potential (2.65) we also see that n ≥ 2 so that eq. (2.64) remains

bounded as required to ensure that the total energy is finite; this is automatically

satisfied as n ≥ 3 by construction.

2.4.4 AdS spacetime in even dimensions

Consider a background spacetime where d = n + 3, such that we can write the metric

as

ds2 = −α(r, θ)2dt2 + β(r, θ)2dr2 + σ(r, θ)2dθ2

+γ(r, θ)2dΣ2
n. (2.72)

We can write the Lichnerowicz operator as

∆Lhij =
1

γ2
∆̃Lhij +

[
∂2

t

α2
− ∂2

r

β2
− ∂2

θ

σ2

]
hij +

[
−αr

α
+

βr

β
− σr

σ
+ (4− n)

γr

γ

]
∂rhij

β2

+

[
−αθ

α
− βθ

β
+

σθ

σ
+ (4− n)

γθ

γ

]
∂θhij

σ2
− 4

γ2

[
γ2

r

β2
+

γ2
θ

σ2

]
hij, (2.73)

To this end, we shall consider a Kerr-AdS metric with M = 0 (i.e., AdS spacetime)

in even dimensions, n = 2N − 1, by setting the N rotation parameters equal (i.e.

a1 = · · · = aN = a). The background metric is [116]

ds2 = −(1 + cr2)∆θ

1− ca2
dt2 +

ρ2

(1 + cr2)(r2 + a2)
dr2

+
ρ2

∆θ

dθ2 +
(r2 + a2) sin2 θ

1− ca2
ds

2
(M̃n), (2.74)

where,

ρ2 ≡ r2 + a2 cos2 θ, ∆θ = 1− ca2 cos2 θ. (2.75)

The Lichnerowicz operator is

(∆Lh)ij =

[
1− ca2

(1 + cr2)∆θ

∂2

∂t2
− (1 + cr2)(r2 + a2)

ρ2

∂2

∂r2

− ∆θ

ρ2

∂2

∂θ2
− 4

ρ2

(
r2(1 + cr2)

r2 + a2
+

∆θ

tan2 θ

) ]
hij
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+
(1− ca2)

(r2 + a2) sin2 θ
∆̃Lhij

+
r

ρ2

(
2(1− ca2)− (n− 1)(1 + cr2)

)
∂rhij

+
1

ρ2 tan θ

(
2(1− ca2)− (n− 2)∆θ

)
∂θhij.

(2.76)

Equation (2.76) may be separated by writing,

hij = Ψ(r)eωtS(θ)h̃ij(x̃), (2.77)

and taking the large r limit. Hence,

0 =

(
r2 ∂2

∂r2
+ (n− 1)r

∂

∂r
− 2n +

p

cr2

)
Ψ, (2.78)

0 = ∆θ
∂2S

∂θ2
− 1

tan θ

(
2(1− ca2)− (n− 2)∆θ

) ∂S

∂θ

+

(
4∆θ

tan2 θ
− λ(1− ca2)

sin2 θ
− ω2(1− ca2)

c∆θ

− p

)
S, (2.79)

where we have defined (∆̃Lh̃)ij = λh̃ij, so that λ is the eigenvalue of the Lichnerowicz

operator on M̃n, and p is the separation constant.

The radial equation is easily solved to yield

Ψ = c1 r(2−n)/2J1

(
n + 2

2
,

√
p

cr2

)
+ c2 r(2−n)/2 Y1

(
n + 2

2
,

√
p

cr2

)
. (2.80)

However, regularity of the radial solution at r = ∞ requires c2 = 0 and hence as r →∞
the radial solution behaves as

Ψ(r) ∼ c1

rn
. (2.81)

Equation (2.79), together with boundary conditions of regularity at θ = 0 and π,

constitute an eigenvalue problem for the separation constant p. For sin θ ≈ θ, cos θ ≈
1, the solution is

S = θ(5−n)/2 [c1Jm(z) + c2Ym(z)] , (2.82)

where

m =

√
λ− 4 +

(5− n)2

4
,

z =

√
− pc + ω2

c(1− ca2)
θ. (2.83)
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The criterion for gravitational stability, in terms of the minimum Lichnerowicz eigen-

value λmin on the base manifold M̃n, namely λmin ≥ λc = 4−(5−n)2/4, now translates

into the requirement that m ∈ R. However we note that c 6= 0 in this case. In AdS

space, c > 0, for reality of the solution we also require,

0 < 1− ca2 < 1, p < −ω2

c
. (2.84)

For real ω, p < 0 and hence
√

p/cr2 is imaginary, but this is not allowed by the

radial wave equation. Therefore there are no normalisable solutions with ω ∈ R and

hence unstable modes are not allowed. For ω → iω̃, one requires p < ω̃2/c. A useful

inequality for stability of the background AdS metric (2.74) is therefore,

0 < p <
ω̃2

c
. (2.85)

Instead of considering the large r limit in (2.76), let us now consider the special case

where the angular velocity approaches the critical limit, ca2 = 1 (or a = l). The

eigenfunctions are then the associated Legendre polynomials Pm
ñ (cos θ), Qm

ñ (cos θ),

where,

m =
1

2

√
4p− (7− n)(n + 1),

ñ =
1

2

(√
(n− 6)(n + 2)− 1

)
. (2.86)

An interesting case is n = 7, which allows one to study supergravity solutions in d = 10.

It would be interesting to know what the limit ca2 → 1 corresponds to in a dual field

theory. We leave this issue to future work.

Because of the form of the original metric, it is not possible to transform the results

in this section into that of [154] via a coordinate transformation. Specifically, the base

manifold studied here is different to the standard boundary of AdS spacetime, due

to the way the AdS metric in this section has been decomposed into bulk and base

spacetimes.

2.5 Conclusion

In chapter 2 the thermodynamics of higher-dimensional (d ≥ 5) rotating black holes

in a background (anti)-de Sitter spacetime were studied. The thermodynamic quan-
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tities for Kerr-AdS black hole solutions suggested by Gibbons et al. [118] have been

used to study the behavior of the free energy and specific heat (which are defined

unambiguously in all spacetime dimensions d ≥ 4) as functions of temperature and

horizon positions. The two apparently different expressions of energy in the Kerr-AdS

background suggested by Hawking et al. [71] and Gibbons et al. [118] do not introduce

any significant difference in the behavior of bulk thermodynamic quantities (such as

entropy, free energy, specific heat, etc) and therefore the thermodynamic stability of

Kerr-AdS solutions. Nevertheless, the Gibbons et al. bulk variables are more useful as

they map onto the boundary variables with the natural definition of boundary metric,

that is the one for which the coordinate y = constant for large y, and they satisfy the

first law of thermodynamics.

As for thermodynamic stability, most rotating black holes are found to be stable for

all non–zero values of the rotation parameters. The exception to this is for 2n, n ≥ 3

dimensions with one non–zero rotation parameter. Sufficiently small black holes in

those spacetimes are thermodynamically unstable.

We have not attempted to tackle the extremely difficult calculations associated with

the determination of the classical stability of higher dimensional Kerr–AdS black holes,

even for special values of the rotation parameters. A study of the classical stability

of the higher dimensional AdS background in coordinates adapted to the rotating

case does not yield any new information above that already obtained by Gibbons and

Hartnoll [154].
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Chapter 3

Gravastars with generalised

exteriors

3.1 Gravastars

Black holes are widely accepted as physical objects due to their mathematical elegance

and the strong astronomical evidence for their existence. The study of the properties

of black hole horizons is of fundamental importance as horizons appear to provide a

strong link between gravitation, thermodynamics and quantum theory. However, these

horizons when described semi-classically give rise to a number of seemingly paradoxical

theoretical problems which have yet to be satisfactorily resolved (see [20] for a review).

For example, one such topic of current interest is whether a pure quantum state which

passes over the event horizon of a black hole can evolve into a mixed state during

black hole evaporation. This has relevance in the scenario that matter (requiring much

information to describe) can collapse into a black hole (requiring little information to

describe, via a no hair theorem). As discussed in the introduction, this problem is

known as the ‘black hole information paradox’. It is generally accepted that the final

resolution of this issue, and other difficult theoretical problems (such as the ‘blue shift

catastrophe’ [157]) caused by the current description of black hole horizons, will be

achieved using quantum gravity. However, we do not yet have a full theory of quantum

gravity, and therefore, other possible solutions to remove the paradoxes generated by
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black hole horizons should be investigated.

Given the above, it has been suggested that alternative endpoints of gravitational

collapse of a massive star, which do not involve horizons, should also be studied. The

general idea is to prevent the possibility of a horizon forming, by stopping the collapse

of matter at some radius greater than that of the horizon. This prevention of the

formation of a horizon thereby precludes problems like the black hole information

paradox.

There are a variety of proposals including the Mazur–Mottola “gravastar” (gravita-

tional vacuum star) [37]. Mazur and Mottola’s gravastar scenario is a solution of

Einstein’s equations which has a Schwarzschild exterior, a de–Sitter interior, and a rigid

spherical shell of matter whose thickness is of the order of the Planck length, suspended

approximately a couple of Planck lengths outside of the Schwarzschild radius. Due to

their extreme compactness, it seems difficult to observationally distinguish gravastars

from black holes. It has been argued that any star, with a surface, will emit much

more radiation during accretion than black holes (which have no surface) (see [158] for

a review), but it has also been shown that gravastars may be just as ‘black’ as black

holes [159].

Although the gravastar model forwarded by Mazur and Mottola has not gained

much attention by the majority of general relativists, it has led others to construct

similar models. Bilić et al. consider a gravastar with a Born-Infeld-phantom inte-

rior geometry [160], while Cattoen et al. generate a method for creating generalised

gravastars with anisotropic continuous pressures [161]. Another scenario envisages the

horizon as an emergent property of a quantum phase transition analogous to liquid-

vapor critical point of a Bose superfluid [36].

Visser and Wiltshire [38] sought to determine whether the Mazur-Mottola gravastar

is dynamically stable against radial perturbations. To do so, rather than considering

the original Mazur–Mottola gravastar, they considered a simplified model with three

layers:

• An external Schwarzschild vacuum, ρ = 0 = P

• A single thin shell [162], with surface density σ and surface tension θ; with radius
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a ≥ 2M .

• A de Sitter (dS) interior, P = −ρ.

Using this model they found a condition for stability for the thin shell against radial

perturbations in terms of an ‘effective energy equation’ for a non-relativistic particle

with ’energy’ E in a ’potential’ V (a),

1

2
ȧ2 + V (a) = E . (3.1)

See section 4 from [38] for a precise definition of V (a) and the quantities therein.

The thin shell will be stable against radial perturbations if and only if there exists

some a0 such that V (a) satisfies

V (a0) = 0; V ′(a0) = 0; V ′′(a0) ≥ 0 . (3.2)

Using Visser and Wiltshire’s method one is able to prescribe the interior matter,

m−(a), exterior matter, m+(a), and the potential V (a) of the gravastar to parametri-

cally find the equation of state for the thin shell. Indeed, as we note below, the mass of

the thin shell, ms(a) ≡ 4πσ(a) a2, can be calculated as an explicit function of m+(a),

m−(a) and V (a).

Visser and Wiltshire demonstrated that there exist large classes of potentials, and

consequently, equations of state, for which gravastars are stable against spherically

symmetric gravitational perturbations as well as large classes of potentials which are

unstable. Consequently, particular choices of potentials and mass functions need to

be studied on a case by case basis, since more general criteria for stability are not

presently known.

The layout of this chapter is as follows. We begin Section two by briefly review-

ing the Schwarzschild–gravastar formalism set up by Visser and Wiltshire [38], and

generalising it to include a cosmological constant in the exterior geometry. We then

introduce the dominant energy condition criteria for the thin shell and find parameters

for the internal and external geometries which allow the shell to be stable to radial

perturbations. We also present some examples of allowable equations of state for the

thin shell. In Section three we repeat the analysis of section two, but instead of a

cosmological constant the exterior geometry now has electric and/or magnetic charge.
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3.2 Schwarzschild–(A)dS Gravastar

3.2.1 Definitions

Following directly on from the work of Visser and Wiltshire [38], we start with the

general equations, (47) and (49), from their paper. These relate the surface density,

σ(a), and surface tension, θ(a), of the thin shell which makes up the surface of the

gravastar, to the potential and mass functions via

σ(a) = − 1

4πa

[[√
1− 2V (a)− 2m(a)

a

]]
, (3.3)

θ(a) = − 1

8πa

[[
1− 2V (a)−m(a)/a− aV ′(a)−m′(a)√

1− 2V (a)− 2m(a)/a

]]
. (3.4)

where m−(a) is the interior mass profile, m+(a) is the exterior mass profile, V (a) is the

effective energy potential, and

[[X]] ≡ X+ −X− . (3.5)

See [163] for more details on this notation. See [38] for more discussion on the above

expressions and definitions. We now specialise the exterior geometry to Schwarzschild-

(A)dS, the interior to (A)dS, and the potential to zero. We therefore write

m+(a) = M − Λa3/6 , (3.6)

m−(a) = ka3 , (3.7)

V (a) = 0 , (3.8)

where Λ is the asymptotic constant spatial curvature of the exterior geometry and k is

the curvature of the interior geometry due to a vacuum energy. We note that in this

analysis, for E = 0 in Eq.(3.1), the choice of V (a) = 0 provides a stable equilibrium

for the gravastar thin shell, as ȧ = 0, and hence the radius, a, cannot change to some

other value. Simultaneously, V (a) = V ′(a) = V ′′(a) = 0 for all values of a. This

specialization to V (a) = 0 closely follows the calculation of [38]. We now convert all

variables to dimensionless parameters, parameterised by M ;

A =
a

M
, L = ΛM2 , K = kM2 , ρ = σM , P = θM . (3.9)
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This leads to

ρ(A) =
1

4πA

[√
1− 2KA2 −

√
1− 2

A
+

LA2

3

]
, (3.10)

P (A) =
1

8πA


 1− 4KA2

√
1− 2KA2

− 1− 1
A

+ 2LA2

3√
1− 2

A
+ LA2

3


 . (3.11)

Reality of the reparameterised surface density, ρ, and surface tension, P , requires

K <
1

2A2
,

L >
6

A3
− 3

A2
. (3.12)

3.2.2 Solutions

We first present a detailed analysis of the dominant energy condition, as it provides

the most restrictive conditions on the matter of the thin shell of the gravastar. Given

that the matter is presumed to form through a quantum phase transition, we cannot

specifically state the type of matter that forms the thin shell, but we shall assume

the dominant energy condition continues to hold. For brevity we define the region

satisfying the dominant energy condition by M, and the boundary of M by ∂M. The

left and right sides of ∂M are defined by the equations

ρ + P = 0 , ρ− P = 0 , (3.13)

respectively, satisfying the condition that ρ ≥ 0. Solutions to the above equations

give the points where the equation of state, ρ(P ), enters or exits M. After some

manipulation Eqs.(3.13) become,

(
3− 5

A
+

4LA2

3

)√
1− 2KA2 = (3− 8KA2)

√
1− 2

A
+

LA2

3
, (3.14)

and

(A− 3)
√

1− 2KA2 = A

√
1− 2

A
+

LA2

3
, (3.15)

respectively. Squaring these two expressions can lead to an inclusion of a relative minus

sign between the different sides of the equations, which we account for by placing extra

restrictions on K and L. For K and L satisfying (3.12) we can see that the l.h.s. of
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Figure 3.1: The solution space for stable gravastars with (A)dS interior and Schwarzschild–

(A)dS exterior satisfying ρ + P = 0 in the left panel, or ρ − P = 0 in the right panel. The

number of solutions in each graph indicates how many times the equation of state intersects

the part of ∂M that the equation defining the graph represents. The unshaded parts have

no solutions, and correspondingly have no interval of ρ(P ) which lies in M.

(3.14) is positive. Therefore the r.h.s. is also positive, thereby providing the bound

K < 3
8A2 which applies to Eq.(3.16) below. Similarly the r.h.s. of (3.15) is positive,

which implies the l.h.s. is positive and hence A > 3 for Eq.(3.17) below. After some

further manipulation we find the multivariate polynomials,

0 =
(−32KL2 − 192LK2

)
A8 +

(
16L2 − 576K2

)
A6

+
(
240KL + 1152K2

)
A5 + (45L + 270K) A4

+ (−324K − 120L) A3 − 450KA2 − 108A + 225 , (3.16)

and,

0 = −12A + 27− 6KA4 + 36KA3 − 54KA2 − LA4 . (3.17)

The octic equation in A, (3.16), is not analytically solvable in general. We therefore

solve this, and the quartic in A, (3.17), numerically and create a contour plot repre-

senting the number of solutions for A in the phase space parameterised by K and L.

Such solutions will have a number of restrictions placed on them. Specifically, they

must satisfy the inequality (3.12), ρ > 0, and any other conditions required for the
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Figure 3.2: The solution space for stable Gravastars with (A)dS interior and (A)dS Schwarz-

schild exterior satisfying ρ + P = 0 or ρ − P = 0. The unshaded region has no solutions

where ρ(P ) intersects ∂M, and due to continuity of the equation of state, no interval of ρ(P )

lies in M. The shaded regions with two solutions have one interval of ρ(P ) which lies in M,

while the region with four solutions has two intervals of ρ(P ) satisfying the dominant energy

condition.

consistency of (3.14) and (3.15). Figure 3.1 displays the number of times the equation

of state, ρ(P ), crosses the boundaries of M, ρ + P = 0 and ρ − P = 0, separately.

Figure 3.2 shows the combined results of the two panels in Fig. 3.1. Figure 3.1 is useful

for determining the qualitative behavior of the equation of state, while Fig. 3.2 is useful

for determining the existence of gravastar solutions which have a thin-shell satisfying

the dominant energy condition.

One can see from Fig. 3.2 that there are many different regions of K and L that

have real and finite solutions to the equations that define ∂M. This means that for

those values of K and L there is always an interval of the equation of state, ρ(P ), which

satisfies the dominant energy condition. This means there can always be gravastars

with thin shells of matter which satisfy the dominant energy condition and are stable to

radial perturbations. Visser and Wiltshire’s gravastar with an exterior Schwarzschild

solution is reproduced as a special case in this diagram when L = 0. The unshaded
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Figure 3.3: The behavior of ρ(P ) for the thin shell of a gravastar with K = −0.01 and a

range of values of L. From left to right, L = {0.1, 0.06, 0,−0.0435,−0.7,−0.1}.

region has no solutions, implying that the equation of state does not enter or exit M.

One can check that for those parameter ranges ρ(P ) does not lie in M. This means

that for those values of the parameters K and L, it is not possible to form a gravastar

which has a static thin-shell satisfying the dominant energy condition which is stable

under radial perturbations.

One can find the five ‘bounding curves’, which are depicted by L(K) in Fig. 3.2,

by studying the factorised discriminants of Eqs. (3.16)-(3.17), where (3.16)-(3.17) are

viewed as polynomials in A, and the restrictions on the parameters given by (3.12)

that ensure ρ and P are real. The ‘bounding curves’ are the relevant parametric curves

which bound the regions of the number of intersections of ρ(P ) with ∂M. They are

given by,

L = −1/9 ,

L = −6K ,

L = 2K

(√
600K

3
− 3

)
,

L = 2K(
√

72K − 3) , (3.18)
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Figure 3.4: The behavior of ρ(P ) for the thin shell of a gravastar with K = 0 and a range

of values of L. From left to right, L = {0.07, 0,−0.0435,−0.07,−0.1}.

and the ninth order polynomial in L, namely L9(K), which is found by factorising the

discriminant of (3.16). (The actual expression is too large to fit here.)

There is a small region of the parameter space for K and L, with stable gravastar

solutions when the interior is a de Sitter space, while there exists an infinitely large

region of the parameter space for K and L when the interior is anti–de Sitter space.

The region with a Schwarzschild–de Sitter exterior is much larger than the region with

a Schwarzschild–anti–de Sitter exterior. The most important bounds on K and L,

governing the existence of gravastar solutions, are given by −1/9 < L < L9(K).

There are different qualitative behaviors that ρ(P ) can take depending on the value

of the parameters K and L, which we present in Figs. (3.3)–(3.5). The various graphs

show the quantitative behavior of ρ(P ) for specific values of K and L, but each graph

is indicative of the qualitative behavior of ρ(P ) for a particular range of values of K

and L. The equation of state exhibits a smooth transition from one type of qualitative

behavior to another as the values of K and L pass over the ‘bounding curves’.
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Figure 3.5: The behavior of ρ(P ) for the thin shell of a gravastar with K = 0.01 and a range

of values of L. From left to right, L = {0.07, 0,−0.0435,−0.07,−0.1}.
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3.3 Reissner–Nordström gravastar

Figure 3.6: The solution space for stable Gravastars with (A)dS interior and Reissner–

Nordström exterior, satisfying ρ + P = 0 in the left panel, or ρ − P = 0 in the right panel.

The number of solutions describes how many times ρ(P ) passes through the left or right side

of ∂M in the left or right panel respectively. If there are no solutions, then ρ(P ) does not

cross ∂M, and no interval of ρ(P ) satisfies the dominant energy condition.

We now consider a gravastar with charge q such that the radial electric field is given

by Er = q
r2 . In this case,

m+ = M − q2

2A
,

m− = kA3 . (3.19)

Following the same procedure as used for the Schwarzschild (A)dS case we find the

dimensionless equations that define the endpoints of the interval of ρ(P ) in M, located

on the left (ρ + P = 0) and right (ρ− P = 0) sides of ∂M, given respectively by,

(
3− 5

A
+

2Q

A2

)√
1− 2KA2 = (3− 8KA2)

√
1− 2

A
+

Q

A2
, (3.20)

and (
1− 3

A
+

2Q

A2

)√
1− 2KA2 =

√
1− 2

A
+

Q

A2
, (3.21)

72



Figure 3.7: The solution space for stable Gravastars with (A)dS interior and Reissner–

Nordström exterior, where ρ(P ) for the thin shell satisfies either ρ + P = 0 or ρ − P = 0.

The regions with solutions have at least one interval of ρ(P ) which lies in M. Therefore,

for these regions, there exist stable gravastar solutions. Conversely, the regions without

solutions do not allow stable gravastar solutions where the thin shell satisfies the dominant

energy condition.

where Q = q2

M2 ≥ 0. The other dimensionless quantities are as shown in (3.9). These

can be manipulated to give

0 = −64K2A8 + 128K2A7 + (30K − 64QK2)A6 − 36KA5 − 20QA + 4Q2

+(24KQ− 50K)A4 + (40KQ− 12)A3 + (3Q + 25− 8KQ2)A2 , (3.22)

and,

0 = −2KA6 + 12KA5 + (−8KQ− 18K)A4 + (24KQ− 4)A3

+(3Q + 9− 8KQ2)A2 − 12QA + 4Q2, (3.23)

respectively. Once again we demand that ρ and P be real which leads to

K <
1

2A2

Q > 2A− A2. (3.24)
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Figure 3.8: The behavior of ρ(P ) for the thin shell of a gravastar with K = −0.5 and a

range of values of Q. From left to right, Q = {0.9, 0.99, 1.01, 1.1}. The behavior for Q < 1 is

qualitatively different to that of Q > 1.

As before, squaring (3.20) and (3.21) can lead to an inclusion of a relative minus sign

in (3.22) and (3.23) respectively, which we account for by placing extra restrictions on

K and Q so that (3.22) and (3.23) are consistent with (3.20) and (3.21). We present

our findings for the left and right sides of ∂M, ρ + P = 0 and ρ − P = 0, separately

in the left and right panels of Fig. 3.6, while we combine the panels in Fig. 3.7.

Once again the parametric bounds are given by some of the factors of the discrim-

inants of (3.22) and (3.23) when they are viewed as polynomials in A, the condition

that ρ ≥ 0, and the inequalities in (3.24). The case studied by Visser and Wiltshire

[38] is recovered here with Q = 0. There are five bounding curves. Three of them are

given by,

Q = 1 , (3.25)

Q =
3(2K2)1/3

4K
, (3.26)

Q =
−1 + 2

√
2K

2K
. (3.27)

The fourth one is given by polynomial which is twelfth order in Q, found by factorising

74



-0.075 -0.05 -0.025 0.025 0.05 0.075
P

0.02

0.04

0.06

0.08

Ρ

Figure 3.9: The behavior of ρ(P ) for the thin shell of a gravastar with K = 0 and a range

of values of Q. From left to right, Q = {0.99, 0.999, 1.01, 1.1}. The behavior for Q < 1 is

qualitatively different to that of Q > 1.

the discriminant of (3.20). The fifth bound is given by the octic in Q found by

factorising the discriminant of (3.21). The qualitative behaviors of the equation of

state depend on the choice of the parameters {K, Q}, as seen in Figs. 3.8–3.11.

Extending this section to include a magnetic charge is straight forward, via the

substitution q2 → q2 + p2 where p is the total magnetic charge of the system. It does

not change the results in terms of Q, instead it amounts to a redefinition of what

we attribute Q to. We note that including a non-zero charge to the exterior of the

gravastar greatly increases the range of parameter K of the (A)dS interior for which

solutions exist. Gravastars with a charge approximately equal to their mass are ‘most

favored’ for a de Sitter interior in the sense that for such values of Q the least amount of

‘fine-tuning’ of K is required. However, when Q = 1, ρ(P ) appears to be discontinuous

for K < 0.423798525400 (13s.f.).
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Figure 3.10: The behavior of ρ(P ) for the thin shell of a gravastar with K = 0.1 and a

range of values of Q. From left to right, Q = {0.9, 0.99, 1.01, 1.1}. The behavior for Q < 1 is

qualitatively different to that of Q > 1.
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Figure 3.11: This figure shows the behavior of ρ(P ) for the thin shell of a gravastar with

K = 0.8 and a range of values of Q. From top to bottom, Q = {0.945, 0.951, 1}. The

qualitative behavior of the equation of state is continuous as Q → 1.
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3.4 Conclusion

In this chapter it has been demonstrated that the method presented by Visser and

Wiltshire [38] can be used to generate stable gravastars with a non-trivial exterior

involving either a vacuum energy or an electromagnetic charge. The Schwarzschild case

they studied is retrieved here as a special case. The case with a Schwarzschild-(A)dS

exterior, (see Fig. 3.2), puts bounds on both the interior and exterior values of a vacuum

energy allowable for stable gravastar solutions to exist. The most important bound in

this case is that the exterior vacuum energy satisfies −1
9
M−2 < Λ < L9(K)M−2.

The Reissner–Nordström solution (Fig. 3.7) is very interesting as it is physically

reasonable to allow massive stellar objects to have a (small) non-zero electric charge.

We find that for a de Sitter interior, the range of the allowable vacuum energy smoothly

increases as one adds charge, until the charge is close to the limit q2 = M2. At

this point the range of the parameter governing the interior vacuum energy becomes

greatly enlarged by comparison with the q = 0 (Schwarzschild) case. These results are

important as they demonstrate that there exists a wide range of allowable gravastars

with thin shells satisfying the dominant energy condition which are stable to radial

perturbations.

For future research it would be interesting to study the model in [38] with V (a) 6= 0

or ȧ 6= 0 as these represent a wider class of configurations of potential gravastars. An-

other avenue for furthering this research would be to consider a gravastar with external

Kerr–geometry, although the method provided by [38] would have to be generalised first

to include off–diagonal terms in the metric, and that is likely to be highly non–trivial.

One source of a realistic gravastar interior might be a fundamental scalar field

resulting from Kaluza–Klein compactification of extra dimensions [164] (see [165] or

[166] for a review). Therefore it would be interesting to see what effect a scalar field

has on the stability of the external geometry. Finally, investigating the implications of

transitions in the equation of state from one type of qualitative behavior to another is

of interest (see Figs. 3.8–3.10); we leave this work for a future paper.
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Chapter 4

Hybrid Brane Worlds in the

Salam-Sezgin Model

4.1 Hybrid Brane Worlds

The idea that our universe might be a surface (either a thin or thick “brane”) embedded

in a higher–dimensional spacetime with large bulk dimensions [75]–[168] continues to

be the focus of much interest. While 5–dimensional models based on the Randall–

Sundrum scenarios [167, 168] have attracted the most attention, recently there has

been growing interest in 6–dimensional models [169]–[185].

One reason for investigating 6–dimensional models is to determine whether or

not some of the more interesting features of brane world models in five dimensions

are peculiar to five dimensions. Another reason is that six dimensions allow one

greater freedom in building models with positive tension branes only [94]. Possibly

the strongest motivation for investigating six dimensional models is the possibility

of solving the cosmological constant problem in a natural manner [176, 180]. While

codimension two branes do pose technical problems for the cosmological constant issue

[182], which might be more easily resolved in the model considered here, we will not

address the solution of the cosmological constant problem directly in this chapter; it

remains an interesting possibility for future work.

A common feature of many of the 6–dimensional models currently being investigated
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is that, in order to localize gravity on a 3–brane, a 4–brane is incorporated into the

model at a finite proper distance from the 3–brane. (See, for example, the work of refs.

[94, 173, 177], which are based on extensions of the AdS soliton [186].) However, due to

the form of the bulk geometry, Einstein’s equations often preclude the insertion of sim-

ple 4–branes of pure tension into these models. Several mechanisms have been proposed

to deal with this, including the addition of a particular configuration of matter fields

to the brane [169] and “delocalization” of a 3–brane around the 4–brane [94]. In this

chapter, we will by contrast discuss a 6–dimensional brane world model with localized

gravity and a single 4–brane with tension coupled to a scalar field, generalizing an

earlier construction by Louko and Wiltshire [172]. The construction is fundamentally

different to those which consider our observed universe to be a codimension two defect;

in particular the physical universe is a codimension one brane in six dimensions with

an additional Kaluza–Klein direction.

The construction of ref. [172] was based on the bulk geometry of fluxbranes in 6–

dimensional Einstein–Maxwell theory with a bulk cosmological constant [78], a model

which continues to attract attention in its own right [187]. However, if one is interested

in 6–dimensional models then a more natural choice might be a supersymmetric model,

such as the chiral, N = 2 gauged supergravity model of Salam and Sezgin [188, 189].

Generally higher-dimensional models of gravity are introduced in the context of super-

gravity models, which are themselves low-energy limits of string– or M–theory.

Supersymmetry has of course played a central role in the recently studied codi-

mension two brane world constructions, and the Salam–Sezgin model has featured in

the supersymmetric large extra dimensions scenario [175, 176, 179, 183, 185]. One

motivation for providing an alternative construction based on codimension one branes

is that discontinuities associated with codimension one surfaces in general relativity

are very well understood and easier to treat mathematically than codimension two or

higher defects [190, 191]. While codimension two defects can be regularised a host of

technical issues are introduced when additional matter fields are added to the brane

[182, 192]. The construction of ref. [172] avoids these problems. Similarly, whereas

the anti–de Sitter horizon in the bulk of the Randall–Sundrum II model [168] can

become singular upon additional of matter fields, the construction of [172] involves

79



a geometry which closes in a completely regular fashion in the bulk. Full non–linear

gravitational wave solutions were exhibited in the background of ref. [172], without

additional singularities.

The biggest phenomenological problem faced by the model of [172] was that the

parameter freedom available in 6–dimensional Einstein–Maxwell theory with a cosmo-

logical constant did not seem to allow the proper volume of the compact dimensions to

be made arbitrarily large as compared to the proper circumference of the Kaluza–Klein

circle, as would be required for a solution of the hierarchy problem. It is our aim in

this chapter to demonstrate that a supersymmetric background can solve this problem,

and that an interesting hybrid compactification without singularities arises.

r
b

r0r0

M+M-

Figure 4.1: An embedding of the bulk (r, θ) dimensions of M into R3.

The model considered in this article can therefore be viewed as a five dimensional

Kaluza–Klein universe that forms a co-dimension one surface within a six-dimensional

bulk where the codimension has a Z2 symmetry across the brane which smoothly

terminates in a totally geodesic submanifold, a “bolt”, which does not suffer a conical

defect. An embedding diagram of the bulk is shown in Fig.4.1 where the bolts are at

r0, the brane at rb, and the bulk geometry has been mirrored across the brane. The

topology of the bulk solution is thus R4 × S2. We consider the case where there is

both a magnetic flux in the bulk (the fluxbrane) and a bulk scalar field, the potential

of which is dictated by the form of the Salam-Sezgin action. While the model can in
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principle support any Einstein space, we limit most of our analysis to the case where the

4–dimensional cosmological constant is zero (i.e. the observed universe is Minkowski)

in order to solve the field equations exactly. Both the bulk magnetic field and the bulk

scalar field will impact the behaviour of gravity on the brane and we show how one

can explicitly calculate the essential features of the gravitational potential between two

test masses on the brane. Since it is assumed that the brane will correspond to our

universe (modulo the Kaluza-Klein dimension) this will indicate how the effects of the

extra dimensions and their fields will modify four dimensional gravity.

The chapter is organized as follows. In Section 2 we introduce the Salam-Sezgin

fluxbrane solution and discuss the structure of the bulk geometry. In Section 3 we go on

to discuss junction conditions arising from the brane and show how the position of this

brane is fixed by the bulk geometry alone. In section 4 we show how this construction

gives rise to a Newton–like gravitational law in the brane, together with the exponential

corrections expected of a model with compact extra dimensions. While the analysis

is made by analogy to the case of a scalar propagator, the calculation contains the

essential features important to the more involved calculation for gravitational pertur-

bations. This is justified by the presentation of nonlinear gravitational wave solutions

in Section 4.4.4. The hierarchy problem is addressed in Section 4.5. In section 4.6

general arguments are presented about the extension to the case of physical universes

with the geometry of general Einstein spaces, which include the phenomenologically

interesting case of de Sitter space.

4.2 Salam-Sezgin fluxbranes

The bosonic sector of N = 2 chiral Einstein-Maxwell supergravity in six dimensions

– the Salam-Sezgin model [188, 189] – may be truncated to the degrees of freedom

described by the action:

S =

∫

M

d6x
√−g

( R
4κ2

− 1
4
∂aφ ∂aφ− 1

12
e−2κφGabcG

abc − 1
4
eκφFabF

ab − Λ

2κ2
e−κφ

)

(4.1)

where Fab is the field strength of a U(1) gauge field, Gabc is the 3-form field strength of

the Kalb-Ramond field, Bab, φ is the dilaton, κ2 = 4πG6 and Λ = g1
2/(κ2) > 0, where
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g1 is the U(1) gauge constant. Generically, the bosonic action (4.1) is supplemented

by the contribution of additional scalars, ΦA, belonging to hypermultiplets. However,

these may be consistently set to zero.

We will also make the additional simplification of setting the Kalb-Ramond field,

Bab, to zero, as we wish to consider just the simplest non-trivial fluxbrane solutions in

the Salam-Sezgin model. This leaves us with the field equations:

Gab = 2κ2eκφ
(
FacFb

c − 1
4
gabF

cdFcd

)
+ κ2

(
∂aφ ∂bφ− 1

2
∂cφ ∂cφ

)− gabΛe−κφ,(4.2)

∂a

(√−geκφF ab
)

= 0, (4.3)

κφ− 1
2
κ2eκφFabF

ab + Λe−κφ = 0. (4.4)

Static fluxbrane solutions may be found by assuming a metric ansatz of the form

ds6
2 = r2ḡµνdxµdxν +

f(r)2dr2

∆(r)
+ ∆(r)dθ2, (4.5)

where θ is the Kaluza-Klein direction, r is the radion and ḡµν(x) is the metric on a

4–dimensional Einstein spacetime of signature (−+ ++), such that

R̄µν = 3λ̄ ḡµν . (4.6)

Additionally, we assume that φ = φ(r), and that the U(1) gauge field consists purely

of magnetic flux in the bulk

F =

√
8Bfe−κφ

κr4
dr ∧ dθ , (4.7)

Rather than solving the field equations directly, fluxbrane solutions are often conve-

niently obtained by double analytic continuation of black hole solutions with a central

electric charge. This double analytic continuation technique was in fact first introduced

when fluxbranes were first constructed [78], in D-dimensional Einstein-Maxwell theory

with a cosmological constant. In the present model, the dual 6-dimensional black hole

spacetime is obtained by the continuation

x0 → ix̃1; xi → x̃i+1 (i = 1, 2, 3); θ → it; B → −iQ; (4.8)

where it is assumed that ∂/∂x0 is a Killing vector and that the Einstein space metric

is written in coordinates with ḡ00 < 0 and ḡ0i = 0.
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Black hole type solutions are not well-studied in the case of the field equations

(4.2)–(4.4), however, on account of the fact that no conventional black holes exist for

the Einstein-Maxwell scalar with a Liouville potential. There are no solutions with a

regular horizon which are asymptotically flat, asymptotically de Sitter or asymptoti-

cally anti-de Sitter [194]. There do exist black hole type solutions with regular horizons

which possess “unusual asymptotics” at spatial infinity [194, 195]. From the point of

view of the double analytically dual fluxbranes, the asymptotic structure of the black

hole spacetimes is irrelevant, and we are simply interested in the most general solution

to the field equations (4.2)–(4.4) with the ansatz (4.5)–(4.7).

To the best of our knowledge the full solutions of the field equations (4.2)–(4.4)

with arbitrary λ̄ and Λ have not been written down, either for the fluxbranes or the

double analytically dual static black hole type geometries. The λ̄ = 0 case has been

given previously [179]. The general case with non-zero λ̄ does not appear to readily

yield a closed form analytic solution. Its properties are discussed in section 4.6.

The fluxbrane solution for λ̄ = 0 takes the form

f(r) = r, (4.9)

φ(r) =
2

κ
ln(r), (4.10)

∆(r) =
A

r2
− B2

r6
− Λ

8
r2 , (4.11)

where we require that A > 0 so that ∆(r) has at least one root.

The finite limits of the range of the bulk coordinate r are the points at which

∆(r) = 0, since ∆(r) > 0 is required to preserve the metric signature. There are at

most two positive zeroes of ∆(r), located at

r4
± =

4A

Λ

(
1±

√
1− B2Λ

2A2

)
. (4.12)

For Λ > 0, reality of r implies the condition B2Λ ≤ 2A2. For Λ < 0 there is a single

positive zero of ∆ at r−. Our primary interest is of course for Λ > 0, which is the case

in the Salam-Sezgin model.

We wish the geometry to be regular at points where ∆(r) = 0 and we therefore
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impose the condition that θ be periodic with period

4π

∂r∆(r)

∣∣∣
r0

, (4.13)

where r0 is any positive zero of ∆(r) such that ∂r∆(r)|r0 6= 0. In these circumstances

the r = r0 submanifold is totally geodesic, namely a “bolt” in the terminology of [105].

In the case that two zeroes of ∆(r) exist we can fix the bolt to be at either r− or r+

but not both simultaneously as the fixing of the period of θ allows the geometry to be

regular at only one of the zeroes of ∆(r).

4.3 Adding a thin brane

We now follow the construction of [172] and add a thin brane – namely a timelike

hypersurface of codimension one – at a point rb such that r− ≤ rb ≤ r+ and ∆(rb) > 0.

To do this we add the term

Sbrane = −
∫

d6x δ(r − rb)
T

κ2
e−λκφ

√
−h , (4.14)

to the action (4.1) where hij is the induced metric on the brane, h = det (hij), Latin

indices i, j, . . . run over the five dimensions on the brane (θ, xµ), T is a nonvanishing

constant proportional to the brane tension, and λ is a dimensionless coupling constant.

The tension of the thin brane is coupled to the scalar field in order to make the scalar

field equation consistent at the junction between the two spacetimes: given that the

derivative of the scalar must be discontinuous there the boundary term which was

assumed to vanish in deriving (4.4) will no longer be zero.

In a Gaussian normal coordinate system for the region near the thin brane, with

normal coordinate dη = ∆−1/2rdr, the induced metric takes the form

hij = gij − ninj =

(
∆(r) 0

0 r2gµν

)
, (4.15)

where

ni = ∂iη =
r√
∆

δr
i . (4.16)

We then impose Z2 symmetry about rb by pasting a second copy of the bulk geometry

on the other side of the thin brane. We label the bulk geometry to the left of the brane
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M−, and the geometry to the right M+. A pictorial embedding diagram of the bulk

dimensions is shown in Fig. 4.1.

The field equations (4.2)–(4.4) are modified by terms arising from the variation

of the action (4.14), but can still be satisfied by appropriate junction conditions,

according to the standard thin–shell formalism. In particular, the modification to the

Einstein equation (4.2) is satisfied provided the discontinuity in the extrinsic curvature,

Kij = hi
k hj

`∇kn` is related to the 4–brane energy–momentum, Sij, according to

[[Kij]] = −2κ2

(
Sij − 1

4
S hij

)
. (4.17)

Here [[X]] denotes the discontinuity in X across the brane. The modified scalar equa-

tion is satisfied provided that the boundary term arising from the discontinuity in the

derivative of φ cancels the variation of (4.14) w.r.t. φ, leading to

[
−1

2

√−g nµ∂µφ +
λT

κ

√
−h e−λκφ

]

rb

= 0 . (4.18)

The U(1) gauge field strength, Fab, can be chosen to be continuous at the junction,

so that the Maxwell–type equation (4.3) is automatically satisfied. As observed in [172]

it should be also possible to choose a gluing which would change the sign of Fab across

the junction at the expense of adding a further “cosmological current” action term to

the brane in addition to (4.14). Such a term would now involve a coupling to the scalar

field, and would therefore modify the analysis that follows. We will not pursue that

option here.

On account of (4.10) the solution to (4.18) is

T = λ−1rb
2λ−1 . (4.19)

This reduces the three unknown parameters, T, λ, rb, to two independent ones. Further

restrictions result from (4.17). For a static brane in Gaussian normal coordinates,

Kij = 1
2

∂hij

∂η
. Furthermore, while η does not change sign across the brane, the direction

of r changes sign across the brane as r points from r− to rb, or rb to r+, depending on

whether the bolt is at r− or r+. Thus

ε

(
dr

dη

)(−)

= −ε

(
dr

dη

)(+)

=

√
∆

r
(4.20)
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where ε = sign(rb − r0), and the superscripts (±) refer to the two sides of the 4–brane

and are not to be confused with r±. Hence the jump in the extrinsic curvature is

[[Kij]] = −ε

√
∆

r

∂hij

∂r

∣∣∣
r=rb

=
−T

2
e−λκφ hij , (4.21)

where we have also used Sij = − T
κ2 e−λκφhij. Using (4.15) to substitute for the induced

metric, eq. (4.21) reduces to the pair of equations

∂r∆(rb) =
εT

2
rb

√
∆(rb) e−λκφ(rb) (4.22)

√
∆(rb) =

εT

4
rb

2 e−λκφ(rb) (4.23)

or equivalently
∂

∂r

(
∆

r2

) ∣∣∣
rb

= 0 . (4.24)

Solving (4.24) we find

rb
4 =

2B2

A
=

2r+
4r−

4

r+
4 + r−

4
. (4.25)

We note that the brane position does not depend on the value of the scalar potential

Λ. Combining (4.10), (4.19) and (4.23) we find

λ =
ε

4

rb√
∆(rb)

, (4.26)

and

T = 4ε
√

∆(rb) rb

 
εrb

2
√

∆(rb)
−2

!

, (4.27)

where rb is given by (4.25) and ∆(rb) by

∆(rb) =

(
A

2

)3/2
1

B

(
1− B2Λ

2A

)
, (4.28)

in terms of A, B and Λ. The tension is positive if we choose the bolt to be at r0 = r−

so that ε = 1. We will avoid any potential problems associated with negative tension

branes by henceforth choosing the bolt to be at r−.

4.3.1 Consistency conditions when adding a thin-brane

It is possible to consider models without the restrictions which we have chosen to

place on our parameters so that we could solve the bulk field equations. If we remove
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the restrictions we placed on f, λ̄, φ then we may consider what would be required of

the parameters in the bulk to leave the field equations consistent upon addition of a

thin brane at a finite distance from the fluxbrane, without explicitly solving Einstein’s

equations for the bulk or junction conditions. Even solving the Einstein equations

is difficult in the general case, although we present arguments in section 4.6 that a

class of solutions does exist in phenomenologically interesting cases, such as a positive

cosmological constant, λ̄ > 0, on the brane.

Consistency conditions of the form given in [94] can be used to further restrict the

parameters of the model. Putting D = 6, p = 3 and q = 4 in equation (2.17) of [94]

and integrating over the boundary of the internal space we get

0 =

∮
dr dθ rα+2

(
αR̄r−2 + (3− α)R̃ − (α + 3)ΛBulk

−κ2
[
(9− α)

T

κ2
e−λκφδ(r − rb)− (3− α)T µ

µ − 3(α− 1)T m
m

])
. (4.29)

Equations (4.5) and (4.6) give

R̄ = 12λ̄ , (4.30)

R̃ =
∂rf∂r∆− f∂r∂r∆

f 3
, (4.31)

and from (4.7)

T µ
µ =

8B2

κ2r10f 2
eκφ − (∂rφ)2∆

f 2
− 2

κ2
Λeκφ , (4.32)

T m
m = eκφ 4B2

κ2r10f 2
− eκφ Λ

κ2
. (4.33)

Putting α = 3 and ΛBulk = 0 in (4.29) this becomes

0 =

∮
dr dθ r5

(
36λ̄

r2
− 6T e−λκφδ(r − rb) +

24B2eκφ

r10f 2
− 6Λeκφ

)
(4.34)

By examining the signs of the various terms we can find the parameter restrictions

given in Table 4.1.

Some further small restrictions on the value of B may result from the junction

conditions once the function ∆(r) is specified for a particular geometry, as occurs in

the analogous case of ref. [172]. However, as we are only able to specify an exact ∆(r)

in the λ̄ = 0 case (4.11), and not in the general case λ̄ 6= 0 case, we have not considered

these additional restrictions in Table 4.1.
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Λ < 0 Λ = 0 Λ > 0

λ̄ < 0 none B 6= 0 or T < 0 B 6= 0 or T < 0

λ̄ = 0 T > 0 T > 0 and B 6= 0 B 6= 0 or T < 0

λ̄ > 0 T > 0 T > 0 none

Table 4.1: Restrictions on B and the sign of T for given λ̄ and Λ.

4.4 Static potential of the massless scalar field

The phenomenologically important derivation of the Newtonian limit and corrections

should ideally be conducted in the context of a full tensorial perturbation analysis

about the background solution. However, as was observed by Giddings, Katz and

Randall [196] in the case of the Randall Sundrum model, if one is just interested in the

static potential the relevant scalar gravitational mode shares the essential features with

the static potential of a massless scalar field on the background. This approach was

adopted in [172]. In this section we will perform a similar analysis for the background

geometry described by eqs. (4.5)-(4.11) in the case that ḡµν = ηµν .

4.4.1 Scalar propagator

Our calculation will closely follow that of section 5 of ref. [172]. We will add a massless

minimally coupled scalar field, Φ, to the model, with action

SΦ = −1
2

∫

M−
d6x

√−g (∇aΦ)(∇aΦ) . (4.35)

on M−. This additional field Φ should not be confused with the scalar field, φ, of the

Salam-Sezgin model (4.1). We will calculate the static potential of a scalar field, Φ,

between two points on the thin brane with fixed θ.

Rather than continuing with the coordinate basis of (4.5) it is convenient to intro-

duce a new radial coordinate ρ by

ρ =
r4 − r−

4

r+
4 − r4

, (4.36)

which maps the interval r− < r < rb to the interval 0 < ρ < ρb, where

ρb =

(
r−
r+

)4

, (4.37)
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is the position of the brane. In terms of the new radial coordinate ρ the metric (4.5)

becomes,

ds6
2 = r2ḡµνdxµdxν +

r2ρ−1 dρ2 + γ2r−6ρ dθ2

2Λ (1 + ρ)2 , (4.38)

where by inverting (4.36)

r2 =

√
r−

4 + r+
4ρ

1 + ρ
, (4.39)

and the constant γ is defined by

γ =
Λ

2
(r+

4 − r−
4) = 4A

√
1− ΛB2

2A2
. (4.40)

We shall only be interested in the case of a flat lower–dimensional metric, ḡµν = ηµν ,

in what follows.

The scalar Green’s function, GΦ, is determined by the solution of the massless

Klein-Gordon equation,

∇a∇aGΦ =
1√−g

∂a(
√−ggab∂bGΦ) =

δ(ρ− ρ′)δ(θ − θ′)δ4(x− x′)√−g
. (4.41)

To simplify this problem we make the Fourier decomposition

GΦ(x, ρ, φ; x′, ρ′, φ′) =

∫
d4k

(2π)5 eikµ(xµ−x′µ)

∞∑
n=−∞

ein(θ−θ′)Gk,n(ρ, ρ′) (4.42)

where the indices of kµ are raised and lowered by ηµν . We substitute (4.42) in (4.41)

to obtain
{

∂ρ (ρ∂ρ) +
q2

2Λ (1 + ρ)2 −
n2

ρ

(
β +

2ρ

Λ(1 + ρ)

)2
}

Gk,n(ρ, ρ′) =
δ(ρ− ρ′)

γ
. (4.43)

where q2 = −kµk
µ = k2

0 − k2, and the constant β is defined by

β =
r−

4

γ
=

2ρb

Λ(1− ρb)
. (4.44)

When ρ 6= ρ′ (4.43) is a Sturm-Liouville equation, with the general solution

Gk,n = CnXn(ρ) + DnYn(ρ), (4.45)

where Cn and Dn are constants and for n = 0,

X0 =

√
2

γ
Pν−1

(
1− ρ

1 + ρ

)
, Y0 =

√
2

γ
Qν−1

(
1− ρ

1 + ρ

)
, (4.46)
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P and Q being Legendre functions of the first and second kind respectively, while for

n 6= 0,

Xn =
ρnβ (1 + ρ)1−ν

√
2nβγ

2F1

([
1− ν +

2n

Λ
+ 2nβ, 1− ν − 2n

Λ

]
; 1 + 2nβ;−ρ

)
,

=
ρnβ (1 + ρ)2n/Λ

√
2nβγ

2F1

([
ν − 2n

Λ
, 1− ν − 2n

Λ

]
; 1 + 2nβ;

ρ

1 + ρ

)
, (4.47)

and

Yn =
(1 + ρ)1−ν

√
2nβγ ρnβ 2F1

([
1− ν +

2n

Λ
, 1− ν − 2n

Λ
− 2nβ

]
; 1− 2nβ;−ρ

)
,

=
(1 + ρ)2n(β+1/Λ)

√
2nβγ ρnβ 2F1

([
ν − 2n

Λ
− 2nβ, 1− ν − 2n

Λ
− 2nβ

]
; 1− 2nβ;

ρ

1 + ρ

)
,

(4.48)

where 2F1 is a standard hypergeometric function [198], and for all values of n, including

n = 0,

ν ≡ 1
2

(
1 +

√
1 +

2q2

Λ
+

16n2

Λ2

)
. (4.49)

For n 6= 0, as ρ → 0, the leading two terms in the series expansions for Xn(ρ) and

Yn(ρ) match those of Bessel functions, J±2nβ, or modified Bessel functions, I±2nβ in the

argument
∣∣ 2
Λ
(8n2β − q2)ρ

∣∣1/2
up to an overall constant of proportionality:

Xn(ρ) =
ρnβ

√
2nβ

[
1 +

8n2β − q2

2Λ(1 + 2nβ)
ρ + O(ρ2)

]

∝




J2nβ

(√
2
Λ
(q2 − 8n2β)ρ

)
+ O(ρ2+nβ), n2 < q2/(8β)

I2nβ

(√
2
Λ
(8n2β − q2)ρ

)
+ O(ρ2+nβ), n2 > q2/(8β)

, (4.50)

and

Yn(ρ) =
ρ−nβ

√
2nβ

[
1 +

8n2β − q2

2Λ(1− 2nβ)
ρ + O(ρ2)

]

∝




J−2nβ

(√
2
Λ
(q2 − 8n2β)ρ

)
+ O(ρ2−nβ), n2 < q2/(8β)

I−2nβ

(√
2
Λ
(8n2β − q2)ρ

)
+ O(ρ2−nβ), n2 > q2/(8β)

. (4.51)

Using (4.46), (4.50) and (4.51) the Wronskian of the linearly independent solutions

satisfies

W [Xn(ρ), Yn(ρ)] ≡ Xn∂ρYn − Yn∂ρXn =
−1

γρ
. (4.52)

The overall coefficients in (4.46), (4.47) and (4.48) were chosen to make the r.h.s. of

(4.52) independent of n.
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4.4.2 Boundary and matching conditions

We now wish to solve the inhomogeneous version of (4.43). Without loss of generality,

we pick the brane to be to a distance ξ = ρb−ρ′ > 0 to the right of the discontinuity. We

will later let ξ → 0 so that the brane explicitly becomes the source of the discontinuity.

We have general solutions to the left and right of the discontinuity at ρ = ρ′, labelled

Gk,n =

{
G<(ρ, ρ′) = A1(ρ

′)Xn(ρ) + A2(ρ
′)Yn(ρ), ρ < ρ′,

G>(ρ, ρ′) = B1(ρ
′)Xn(ρ) + B2(ρ

′)Yn(ρ), ρ > ρ′,
(4.53)

We will assume that Gk,n(ρ, ρ′) is finite at ρ = 0, and adopt a Neumann boundary

condition at the brane ρ = ρb,

∂ρGk,n|ρ=ρb
= 0 , (4.54)

as this is the appropriate boundary condition at the brane for a non-linear gravitational

wave when viewed as a scalar field on this background. We will prove this claim in

the following section. Imposition of regularity of the solution as ρ → 0 excludes Yn as

a solution, leading to the choice A2(ρ
′) = 0. Furthermore, (4.54) applied to G>(ρ, ρ′)

implies
B2(ρ

′)
B1(ρ′)

= −Xn,b
Yn,b

. (4.55)

where

Xn,b≡ ∂ρXn|
ρ=ρb

, Xn,b≡ ∂ρYn|
ρ=ρb

. (4.56)

The matching conditions at ρ = ρ′ are

(
G< −G>

)∣∣
ρ=ρ′

= 0 , (4.57)

∂ρ

(
G> −G<

)∣∣
ρ=ρ′

=
1

γρ′
. (4.58)

Combining the boundary conditions, the matching conditions and (4.52) we find

the solution of the boundary value problem,

Gk,n(ρ, ρ′) =





G<(ρ, ρ′) =
Xn(ρ)

Xn,b
(Xn(ρ′)Yn,b−Yn(ρ′)Xn,b ) , ρ < ρ′,

G>(ρ, ρ′) =
Xn(ρ′)
Xn,b

(Xn(ρ)Yn,b−Yn(ρ)Xn,b ) , ρ > ρ′.
(4.59)

The scalar Green’s function, GΦ, is now determined by substituting (4.59) into (4.42)

and prescribing the integration as desired at the poles, which in this case correspond

to the zeroes of Xn,b.
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4.4.3 Static potential on the brane

Given the brane is the source of the discontinuity for the Green’s function, we set

ρ′ = ρb by letting ξ → 0. With ρ = ρb, and using (4.52), the Green’s function (4.59)

reduces to

Gk,n(ρb) = − Xn(ρb)

γρbXn,b
. (4.60)

To obtain the static potential, we explicitly integrate the retarded Green’s function

(4.42), (4.60) over the time difference, t − t′. We note that GΦ is non-zero only for

t− t′ > 0, so multiplying it by θ(t− t′) leaves it unchanged. We can then perform the

integration over t to find

VΦ(x, φ;x′, φ′) = −
∞∑

n=−∞
ein(θ−θ′)

∫
d3k

(2π)5
eik·(x−x′)

∫ ∞

−∞

dk0

i(k0 − iε)

Xn(ρb)

γρbXn,b
, (4.61)

We are interested in the retarded Green’s function, which requires that we perform the

k0 integral by a contour integration with q2 → (k0 + iε)2 − k2, ε → 0+. We close the

contour in the upper half plane, to avoid the poles which correspond to the zeroes of

Xn,b on the real line, and which are moved below the real line by the ε–procedure. The

only residue is then due to the simple pole at k0 = 0, and the integration yields

VΦ(x, φ;x′, φ′) = −
∞∑

n=−∞
ein(θ−θ′)

∫
d3k

(2π)4
eik·(x−x′) Gn(−k2),

= −
∞∑

n=−∞
ein(θ−θ′)

∫ ∞

0

dk

4π3

k sin(k|x− x′|)
|x− x′| Gn(−k2) ,

= −
∞∑

n=−∞
ein(θ−θ′)Im

(∫ ∞

−∞

dk

8π3

k eik|x−x′|

|x− x′| Gn(−k2)

)
, (4.62)

where k = |k|, and Gn(−k2) ≡ Gk,n(ρb)
∣∣
q2=−k2 .

The final integral in (4.62) can be performed by a careful choice of contour, subject

to convergence of the integrand, which we have checked numerically. It is found that

for n = 0, G0(−k2) has a second order pole at k = 0, together with first order poles at

k = ±iq0,j, where q0,j > 0, j = 1, . . . ,∞. For n 6= 0, all poles occur at k = ±iqn,j, where

qn,j > 0, j = 1, . . . ,∞. We close the contour in the upper half plane, but perform a

cut on the Im(k) axis on the interval k ∈ (1
2
iq̄,∞), where q̄ = inf {qn,j|j = 1, . . . ,∞}.

Integrating back and forth around the cut, first from k = ε + i∞ to k = ε + 1
2
iq̄ in the
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Re(k) > 0 quadrant and then back from k = −ε+ 1
2
iq̄ to k = −ε+ i∞ in the Re(k) < 0

quadrant before taking the limit ε → 0, has the net effect of circumscribing each of the

poles on the positive imaginary axis once in a clockwise fashion.

We will not analytically determine each coefficient in the sum of terms in (4.62)

which result from the enclosed poles at k = iqn,j, but simply note that the Laurent

expansion of Gn(−k2) at each of these poles takes the form

Gn(−k2) =
Cn,j(ρb)

k2 + q2
n,j

+ O(1) , (4.63)

in terms of coefficients Cn,j(ρb), and the residue gives a Yukawa correction in each case.

The pole at k = 0 is not enclosed by the contour, but since it lies on the contour,

taking the principal part gives a net contribution to the static potential, which is

readily determined analytically by applying identities which hold for the Legendre

function solutions (4.46) for n = 0. In particular,

Res
(
k eik|x−x′|G0(−k2)

)
k=0

= Res

( −keik|x−x′|Pν−1(y)
1
2
γ(1− y2)∂yPν−1(y)

)

k=0,ρ=ρb

= Res

( −2keik|x−x′|Pν−1(y)

γν [yPν−1(y)− Pν(y)]

)

k=0,ρ=ρb

= lim
ν→1

4ΛPν−1(y)

γ [y∂νPν−1(y)− ∂νPν(y)]

∣∣∣∣
ρ=ρb

=
2Λ(1 + ρb)

γρb

, (4.64)

where in the intermediate steps y is defined implicitly by y = (1 − ρ)/(1 + ρ), and

we have used the fact that as k → 0, ν ' 1 − k2/(2Λ), P0(y) = 1, and the identities

limν→1 ∂νPν−1(y) = ln[1
2
(1 + y)], and limν→1 ∂νPν(y) = y ln[1

2
(1 + y)] + y − 1.

The final expression for the static potential then becomes1

VΦ(x, φ;x′, φ′) =
−(1 + ρb)Λ

4π2γρb|x− x′| −
∞∑

n=−∞

∞∑
j=1

Cn,j(ρb)e
−qn,j |x−x′|

8π2|x− x′| . (4.65)

which as expected is a Newtonian–type potential supplemented by Yukawa–type cor-

rections. The constant γ may be re-expressed in terms of r− and ρb on account of

(4.44).

1Eq. (4.65) corrects a small numerical factor in the Newton–like term given in ref. [199].
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Figure 4.2: A plot of the denominator of G0/Λ(q2/2Λ). The denominator is positive in the

hashed regions, negative in the white regions and zero at the boundaries. The transition

between bands indicates where the poles of G0(q2/2Λ) lie. Note that G0(0) = 0.

The locations of the poles, qn,j, and the coefficients, Cn,j, for the functions, Gn(−k2),

have been numerically determined. Fig. 4.2 demonstrates the behaviour of the de-

nominator of G0(q
2/2Λ). For a given value of ρp, one can see that the zeroes of the

denominator are discrete, which implies that the poles of G0(q
2/2Λ) are also discrete.

Similar behaviour can be seen for the denominators of G2/Λ(q2/2Λ) and G3/Λ(q2/2Λ) in

Figs 4.3 and 4.4 respectively. However, one crucial difference between the n = 0 and

n 6= 0 cases is that the denominator of G0(0) is zero for all ρb, while the denominator

of Gn/Λ(0) is non-zero for all ρb. This means that only G0(q
2/2Λ) contributes to the

1/|x−x′| part of the static potential, while every other term contributes Yukawa type

exponential corrections. This behaviour can be seen most clearly in Fig. 4.5. It should

also be noted that for increasing n, the position of the occurrence of the first pole of

Gn/Λ(q2/2Λ), qn,1, is increasing, meaning that the exponential corrections to the static

potential, e−qn,1|x−x′|/|x− x′|, coming from higher n are significantly weaker and drop

off significantly faster than those that come from lower n. This can also be seen most

easily in Fig. 4.5.
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Figure 4.3: A plot of the denominator of G1/Λ(q2/2Λ). The denominator is positive in the

hashed regions, negative in the white regions and zero at the boundaries. The transition

between bands indicates where the poles of G1/Λ(q2/2Λ) lie.

While the coefficient associated with the Newtonian term has been determined

analytically, the other coefficients have only been determined numerically. We present

plots of the behaviour of the coefficients for ρb = 0.5 in Fig. 4.6, and for n = 1 in plot

Fig. 4.7. It should be noted that while the plots are drawn with continuous lines, the

poles and hence coefficients exist only at discrete places. The figures have been plotted

with continuous lines in order to aid comprehension of the underlying behaviour of the

coefficients.

Fig. 4.6 shows that as n increases the value of the coefficients increase. It also shows

that for each n 6= 0 as j increases that coefficient Cn,j decreases, while to the numerical

accuracy presented here, C0,j = C0,j+1 for all j ∈ Z+. Fig. 4.7 illustrates that for the

n = 1 case, which is similar in behaviour to all n 6= 0 cases, the effects of modifying

the brane position, ρb, on the coefficients in the static potential. As ρb increases, the

coefficients generically decrease. They also decrease with q as noted above. Picking

successively higher values of n results in similar graphs, but shifts them in accordance

with the results in Fig. 4.6.
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Figure 4.4: A plot of the denominator of G2/Λ(q2/2Λ). The denominator is positive in the

hashed regions, negative in the white regions and zero at the boundaries. The transition

between bands indicates where the poles of G2/Λ(q2/2Λ) lie.
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Figure 4.5: A plot of the denominator of Gn/Λ(q2/2Λ) for n = 0, 1, 2 and ρb = 0.5. Note that

denom(Gn/Λ(0) = 0) only when n = 0. The value of the position of the first pole increases

with n.
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Figure 4.6: A plot of the Cn/Λ,j ’s for n = 0 to 6 and ρb = 0.5. The values of the coefficients

decrease with increasing q and increase with increasing n.
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Figure 4.7: A plot of the Cn/Λ,j ’s for n = 1 and ρb = 0 to 0.7. The values of the coefficients

with decrease with increasing ρb or q.
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4.4.4 Nonlinear gravitational waves on the brane

We will now further justify the claim that the calculation of the static potential for a

minimally coupled massless scalar field given above reproduces all the essential features

of the corresponding calculation for the graviton. We observe that the construction

of nonlinear gravitational waves which was developed in ref. [172] by a generalization

of the technique of Garfinkle and Vachaspati [197], is unchanged when applied to the

background (4.5). In particular, nonlinear gravitational waves can be constructed on

the background in the case that the geometry, Mlow, generated by the 4–dimensional

metric ḡµν admits a hypersurface–orthogonal null Killing vector, kµ. If z̄ is a locally

defined scalar such that ∂[µkν] = k[ν∂µ]z̄ and kµ∂µz = 0, where Greek indices are

lowered and raised with ḡµν and its inverse, then the nonlinear wave spacetime is given

by adding to (4.5) the term

r2He−zkµkνdxµdxν , (4.66)

where z is the pullback of z̄ to (4.5), and H is a scalar function on the bulk spacetime

(4.5), which satisfies ∇a∇aH = 0, and `a∂aH = 0. Here ∇a is the covariant derivative

in the metric (4.5) and `a = (kµ, 0, 0) is the extension of kµ to (4.5), with indices

raised and lowered by the full spacetime metric (4.5). The vector, `a, is also null and

hypersurface orthogonal, and satisfies ∂[a`b] = `[b∂a](z + 2 ln r) and `a∂a(z + 2 ln r) = 0.

In addition to the junction conditions (4.18), (4.22)–(4.24), we now have the addi-

tional relation √
∆(rb)

rb

∂r(r
2H)

∣∣
rb

=
εT

2
e−λκφ(rb)rb

2H(rb) (4.67)

Using (4.23) we see that (4.67) is equivalent to the Neumann condition

∂rH|rb
= 0, (4.68)

at the brane, if H is viewed as a massless scalar field on the spacetime without the

term (4.66). In the case that ḡµν = ηµν the field H therefore satisfies the same wave

equation and boundary conditions as were given above for massless scalar field, Φ.

To make the correspondence explicit, we take ḡµν = ηµν , and adopt double null

coordinates, (u, v, x1
⊥, x2

⊥), on the Minkowski space, Mlow. If we choose kµ = (∂v)
µ,
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the solution with the gravitational wave term (4.66) reads

ds2 = r2
[−dudv + H(u, xk

⊥, r, φ)du2 + δABdxA
⊥dxB

⊥
]
+

r2dr2

∆
+ ∆dφ2 , (4.69)

where ∆ is given by (4.11). Note that H does not depend on v but its dependence on

u is arbitrary. The scalar wave equation for H explicitly reads

H,rr +

(
3

r
+

∆,r
∆

)
H,r +

r2H,φφ

∆2
+

δABH,AB

∆
= 0. (4.70)

The general linearized limit of the nonlinear gravitational solution can be discussed

as in [100]. We note that H = hAB(u)xA
⊥xB

⊥, where h22(u) = −h11(u), is clearly a

solution: it satisfies δABH,AB = 0, and its linearized limit is analogous to the famous

normalizable massless mode in the Randall–Sundrum II model [168]. If we transform

the radial parameter to ρ by (4.36) and make a Fourier decomposition as in (4.42),

then (4.70) becomes equivalent to the homogeneous part of (4.43). Our analysis above

for the massless scalar field therefore applies equally to the graviton mode.

The nonlinear gravitational wave construction also applies firstly to any other Ricci–

flat geometry on Mlow which admits a hypersurface orthogonal null Killing vector,

and secondly with suitable modifications to other Einstein space geometries for Mlow,

provided appropriate solutions can be found.

4.5 The hierarchy problem

One of the principal motivations for studying brane world models is the attempt to

provide a natural solution to the hierarchy problem between the Planck and elec-

troweak scales. The construction of ref. [172] potentially offers a concrete realization of

the phenomenological solution to the hierarchy problem proposed by Antoniadis [79],

Arkani-Hamed, Dimopoulos and Dvali [80, 81]. In particular, if the non-gravitational

forces can be introduced in such a way as to be confined to the brane, then provided

that the distance between the thin brane and the bolt can be made large enough,

higher–dimensional gravitational corrections could become manifest close to the TeV

scale.

Since the construction is a hybrid one, there is an ordinary Kaluza–Klein direction

within the 4–brane in addition to the direction transverse to the brane. A phenom-
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enologically realistic solution to the hierarchy problem can therefore only be obtained

if the distance between the brane and the bolt can be made many orders of magnitude

larger than the circumference of the Kaluza–Klein circle. In the original construction of

ref. [172], based on Einstein–Maxwell gravity with a higher–dimensional cosmological

constant, a natural solution to the hierarchy problem proved to be impossible as the

brane–bolt distance was at most comparable to the circumference of the Kaluza–Klein

circle. The present model has more degrees of freedom, however, and so it is possible

that this problem can be overcome.

In order to make the volume of the internal space, V , sufficiently large to accom-

modate TeV scale gravity, we must be able to find a set of parameters (A,B, Λ) which

allows the ratio, R = V/C, to be arbitrarily large. The idea is that a particular

value of V fixes gravity to be TeV scale. However, if the related set of parameters

(A,B, Λ) imply that C is large enough that the associated standard model Kaluza

Klein excitations are noticeable, for example in particle colliders/cosmic ray showers,

then that set of parameters would be unphysical. If we find a set (or sets) of parameters

(A,B, Λ) which allow the ratio R = V/C, to be arbitrarily large then we can confidently

say that we can pick V to solve the hierarchy problem while hiding the effects of the

Kaluza–Klein dimension.

The proper circumference of the Kaluza–Klein direction is

C =
4π

√
∆(rb)

∆′(r−)
=

23/4πρb
1/2

√
Λ 4

√
1 + ρb

. (4.71)

The volume of the internal space, V = 2
∫ rb

r−

∫ 4π/∆′(r−)

0
d`θd`r is

V = (rb
2 − r−

2)
4π

∆′(r−)
(4.72)

The ratio, R = V/C is then simply

R =
(rb

2 − r−
2)√

∆(rb)
=

√
2

Λ
r− F (ρb) (4.73)

where r− is given by (4.12),

F (ρb) =
4ρb

1/2

1− ρb

(√
2

1 + ρb

− 1

)
4

√
1 + ρb

2
, (4.74)
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and on account of (4.12) and (4.37),

ρb =
A−

√
A− 1

2
B2Λ

A +
√

A− 1
2
B2Λ

. (4.75)
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Figure 4.8: The ratio of volume of the internal space to its circumference is a multiple of

F (ρb), as given by (4.73), (4.74). It is plotted here versus ρb
1/4.

The quantity F (ρb) defined by (4.74) is depicted in Fig. 4.8. It is a monotonic

function which increases from F = 0 to F = 1 on the interval ρb ∈ [0, 1]. The

limit ρb → 1 occurs when B2Λ
2A2 → 1, i.e., when r− ≈ r+ ≈ rb ≈ 4A

Λ
. In this case

C ≈ √
2πΛ−1/2, and R = V/C ≈ 25/2AΛ−3/2. The requirement that C must be small

enough to be interpreted as a conventional Kaluza–Klein direction means that Λ must

be suitably large. Since the parameter A is still free, however, we can still make R

arbitrarily large to overcome its dependence on the Λ−3/2 factor. Thus it appears that

a solution to the hierarchy problem may be feasible.

For smaller values of ρb similar arguments apply. In particular, consider the extreme

limit ρb → 0 which corresponds to 0 < B2Λ
2A2 ¿ 1. Then r−

4 ≈ B2/A, r+
4 ≈ 8A/Λ and

F (ρb) ≈ 4(
√

2 − 1)ρb
1/2. Hence R ≈ 2(

√
2 − 1)B3/2A−5/4 and C ≈ 2−3/4πBA−1, which

are both independent of Λ. Since the constants A and B are not constrained except

by the requirement B
A
¿

√
2
Λ
, we can again make R arbitrarily large while keeping C

small. If we denote R0 and C0 to be phenomenologically desirable values of R and C,
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we can conversely fix both A and B. We find A0 = π6R0
4 2−17/2(

√
2 − 1)−4C−6

0
and

B0 = π5R0
4 2−31/4(

√
2 − 1)−4C−5

0
, while for consistency of the limit 0 < Λ0 ¿ π2√

2C02 .

We have demonstrated here that a solution of the hierarchy problem is possible

regardless of the value of ρb. We note, however, that once the Newton potential for

the tensor modes, equivalent to the first term of (4.65), is determined then two of the

parameters, r−, Λ and ρb would be fixed phenomenologically via equations similar to

(4.65) and (4.71), in terms of the Newton constant and the energy scale for the ordinary

Kaluza–Klein circle direction. From (4.73) we see that just enough parameter freedom

remains to choose the remaining independent parameter to solve the hierarchy problem

as desired.

4.6 General fluxbrane and dual static black hole-

like solutions

The global properties of certain static solutions of electrically charged dilaton space-

times with a dilaton potential of Liouville form were classified in ref. [194] without

explicitly writing down the general solution. The solutions considered in ref. [194]

include spherically symmetric spacetimes, but in the most general case include geome-

tries for which the spatial sections at spatial infinity consist of an arbitrary Einstein

space, rather than simply a (D − 2)-sphere in the case of D spacetime dimensions.

Electrically charged solutions with these symmetries are of interest, since in cases in

which a regular horizon exists fluxbranes may be obtained from them by the double

analytic continuation technique that was first introduced in [78]. The field equations

considered in ref. [194] include our equations (4.2)–(4.2) as a special case.

At a first glance, it would appear that the Salam-Sezgin model is a special case

of the class of models analysed in ref. [194]. Unfortunately, however, the particular

coupling constants which appear in the exponential coupling of the scalar to the U(1)

gauge field, and the Liouville potential, are in fact a degenerate case of the analysis of

ref. [194].

In this section we will therefore repeat the analysis of [194] in the case of the Salam-
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Sezgin model, but in a slightly more general framework which incorporates fluxbranes

at the outset, in addition to their dual solutions. Rather than simply restricting our

attention to the Salam-Sezgin model in six dimensions, we will investigate relevant

solutions for the whole degenerate case omitted in [194]. The relevant field equations

are those which follow from variation of the D-dimensional action

S =

∫
dDx

√−g
{ R

4κ2
− 1

D − 2
gab∂aφ ∂bφ− 1

4
exp

(
4κφ

D − 2

)
FabF

ab

− Λ

2κ2
exp

(−4κφ

D − 2

)}
, (4.76)

The field content of (4.76) is the same as that of action (4.1) in the absence of the

Kalb-Ramond field, and the field equations obtained by variation of this action reduce

to (4.2)–(4.2) (4.1) when D = 6. The model of ref. [194] was more general than (4.76)

in allowing for two additional arbitrary coupling constants: one in the dilaton / U(1)

coupling, and one in the Liouville potential. In the notation of ref. [194] our conventions

are the same, but we have chosen g0 = −1 and g1 = 1: in this case the results of [194]

are degenerate.

The field equations obtained by varying (4.76) are most easily integrated explicitly

for static geometries by using the radial coordinate of Gibbons and Maeda [201], for

which the metric is given by

ds2 = εe2u
[
−εQdt2 + R2(D−2)dξ2

]
+ R2ḡijdx̃idx̃j, (4.77)

where u = u(ξ), R = R(ξ), and ḡij is the metric of a (D − 2)-dimensional Einstein

space,

R̄ab = (D − 3)λ̄ ḡab, a, b = 1, . . . , D − 2, (4.78)

εQ = ±1 and ε = ±1. If εQ = +1 and ε = +1 one obtains the geometry relevant to the

domain of outer communications of a black hole, or of a naked singularity. The case

εQ = +1 and ε = −1 would correspond to the interior of a black hole in the case that

regular horizons exist. If we take εQ = −1 and ε = +1 we have the case of a fluxbrane,

assuming t to be an angular coordinate.

We choose F to be the field of an isolated electric charge,

F = exp

(
2u− 4κφ

D − 2

)
Q

κ
dt ∧ dξ , (4.79)
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in the case that εQ = +1, and a magnetic field in the case that εQ = −1. In the later

case the ansatz (4.79) is the same, except that t is now an angular coordinate and Q

is the magnetic charge.

With the ansatz (4.77), (4.79) and assuming φ = φ(ξ), the field equations can be

written [194] as the system

η̈ = 2εεQQ2e2η (4.80)

ζ̈ = (D − 3)2ελ̄e2ζ − 2εΛe2χ, (4.81)

χ̈ = (D − 2)(D − 3)ελ̄e2ζ − 2εΛe2χ, (4.82)

with the constraint

(D− 2)
[
ζ̇2 − 2ζ̇χ̇

]
+ (D− 3)χ̇2 + η̇2 + (D− 2)(D− 3)ελ̄e2ζ − 2εΛe2χ− 2εεQQ2e2η = 0,

(4.83)

where the overdot denotes d/dξ. Eq. (4.80) is readily integrated if we multiply it by η̇,

yielding

η̇2 = 2εQQ2e2η + ε2(D − 2)k2
2, (4.84)

where k2 is an arbitrary constant and ε2 = +1, 0,−1. If εQ = +1 (“black hole”

case) then a further integration yields three possible solutions, distinguished by the

parameter ε2:

2Q2

D − 2
e2η =





k 2
2

sinh2[
√

D−2 k2(ξ−ξ2)]
, ε2 = +1,

1

(D−2)(ξ−ξ2)
2 , ε2 = 0 ,

k 2
2

sin2[
√

D−2 k2(ξ−ξ2)]
, ε2 = −1,

(4.85)

where ξ2 is an arbitrary constant. If εQ = −1 (“fluxbrane” case) then we must have

ε2 = +1 and the only solution is

2Q2

D − 2
e2η =

k 2
2

cosh2
[√

D − 2 k
2

(
ξ − ξ

2

)] . (4.86)

Linear combinations of (4.81) and (4.82) yield

χ̈− ζ̈ = (D − 3)ελ̄e2ζ , (4.87)

(D − 3)χ̈− (D − 2)ζ̈ = 2εΛe2χ, (4.88)
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while the constraint (4.83) becomes

ζ̇2 − 2ζ̇χ̇ +

(
D − 3

D − 2

)
χ̇2 + (D − 3)ελ̄e2ζ − 2εΛe2χ

D − 2
+ ε2k2

2 = 0. (4.89)

In the special cases that Λ = 0, or λ̄ = 0, eqs. (4.88)–(4.89), can be further

integrated, as follows:

(i) Special Λ = 0 solution (as previously given in [194]):

ελ̄e2ζ =





k 2
1

sinh2[(D−3)k1(ξ−ξ1)]
, ε1 = +1, ελ̄ > 0,

1

(D−3)2(ξ−ξ1)
2 , ε1 = 0, ελ̄ > 0,

k 2
1

sin2[(D−3)k1(ξ−ξ1)]
, ε1 = −1, ελ̄ > 0,

−k 2
1

cosh2[(D−3)k1(ξ−ξ1)]
, ε1 = +1, ελ̄ < 0,

(4.90)

where ξ1 is and arbitrary constant and

(D − 3)ε1k1
2 = ε2(D − 2)k2

2 +

(
D − 3

D − 2

)
c1

2, (4.91)

with k1, c1 constants constrained only by the requirement that (4.91) have real solu-

tions.

(ii) Special λ̄ = 0 solution:

2εΛe2χ =





−k 2
3

sinh2[k3(ξ−ξ3)]
, ε3 = +1, εΛ < 0,

−1

(ξ−ξ3)
2 , ε3 = 0, εΛ < 0,

−k 2
3

sin2[k3(ξ−ξ3)]
, ε3 = −1, εΛ < 0,

k 2
3

cosh2[k3(ξ−ξ3)]
, ε3 = +1, εΛ > 0,

(4.92)

where ξ3 is and arbitrary constant and

ε3k3
2

D − 2
= ε2k2

2 + c3
2, (4.93)

with k3, c3 constants constrained only by the requirement that (4.93) have real solu-

tions. The solution for the λ̄ = 0 Salam–Sezgin fluxbrane (D = 6, εQ = −1, ε2 = +1,

ε > 0, Λ > 0) has been given previously in terms of these variables by Gibbons,

Güven and Pope [200], and is readily seen to agree with the above upon making the

replacements η → x, χ → y, 2(ζ − χ) → z, k2 → 1
2
λ1, k3 → λ2, c2 → 1

2
λ3, to make

contact with their notation.
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The general solution other than in the special cases (4.90)–(4.93) does not appear

to have an obvious simple analytic form. However, general properties of the solutions

can be gleaned following the method of [194]. The constraint (4.89) may be used to

eliminate ελ̄e2ζ from (4.87), to yield a 3–dimensional autonomous system of first–order

ODEs. If we define X ≡ ζ̇, V ≡ χ̇ and W ≡ √
2 eχ/

√
D − 2, this system is given by

Ẋ = −(D − 3)P − εΛW 2 (4.94)

V̇ = −(D − 2)P (4.95)

Ẇ = V W (4.96)

where

P ≡ X2 − 2XV +

(
D − 3

D − 2

)
V 2 + ε2k2

2. (4.97)

The fact we have a 3–dimensional system means that the analysis is considerably

simpler than in the 5–dimensional examples of ref. [194], and is closer to the phase

space of a simple spherically symmetric uncharged black hole with a Liouville potential

[202].

Trajectories with W = 0 remain confined to the plane. Consequently, in the full

3–dimensional phase space we can take W ≥ 0 without loss of generality.

As is the case in refs. [194, 202] the only critical points at a finite distance from the

origin are given by the 1–parameter locus of points with W = 0 and P = 0. From (4.97)

it follows that the critical points are: (i) hyperbolae in the first and third quadrants

of the W = 0 plane if ε2 > 0; (ii) straight lines V =
√

D − 2
[√

D − 2± 1
]
X/(D − 3)

if ε2 = 0; and (iii) hyperbolae which cross all quadrants if ε2 < 0. The W = 0, P = 0

curve is described by the locus (X0, V0), where

V0 =

√
D − 2

D − 3

[√
D − 2 X0 ±

√
X0

2 − (D − 3) ε2k2
2

]
. (4.98)

These critical points are found to correspond to asymptotic regions R → ∞, or sin-

gularities with R → 0, except in the special case that X0 = V0 =
√

D − 2 k2. For the

special case R → const, which represents a horizon in the black hole case, or a bolt in

the fluxbrane case.

The integral curves which lie in the plane W = 0 are the lines

V =

(
D − 2

D − 3

)
X + const, (4.99)
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and these of course correspond to the special solutions (4.90), (4.91). Such lines cross

the W = 0, P = 0 curve once in the first quadrant and once in the third quadrant if

ε2 = 0, +1.

An analysis of small perturbations about the critical points (4.98) shows that the

eigenvalues are {0, 2X0, V0}. Thus points in the first quadrant repel a 2-dimensional

bunch of trajectories out of the W = 0 plane, while points in the third quadrant attract

a 2-dimensional bunch of trajectories out of the W = 0 plane for all values of ε2. For

ε2 = −1 the points in the second and fourth quadrants are saddle points with respect

to directions out of the W = 0 plane. Points in the second quadrant each attract one

of the lines (4.99) in W = 0 plane, while points in the fourth quadrants similarly each

eject one of the lines (4.99).

We will henceforth restrict our attention to the case ε = +1, so that we are dealing

with the domain of outer communications in the case of a black hole or naked singularity

(εQ = +1); or with a fluxbrane (εQ = −1).

The following critical points are found at the phase space infinity, and coincide with

a subset of the critical points of the more general system of ref. [194]. We will label

them identically to the notation of ref. [194]. The points are:

• L5−8 located at X = ±∞, V = [D−2±√D − 2]X/(D−3), W = 0. These points

are the endpoints of the 1–parameter family of critical points with P = 0 at finite

values of X and V in the W = 0 plane. The eigenvalues for small perturbations

are again {0, 2X0, V0}.

• M1,2 located at X = ±∞, V =
(

D−2
D−3

)
X, W = 0. These points correspond

to asymptotically flat solutions, and have P = −X2/(D − 3) and λ̄ > 0. The

eigenvalues for small perturbations are {−1,−1, 1/(D−3)}. The two dimensional

set of solutions attracted are simply the integral curves (4.99) which represent

solutions for the system with no scalar potential, i.e., Λ = 0.

• P1,2 located at X = ±∞, V = X, W = |X|/
√
−(D − 2)Λ. These points only

exist if Λ < 0, and have P = −X2/(D − 2) and λ̄ = 0. They are thus are

endpoints for integral curves with all possible signs of λ̄. The eigenvalues for

small perturbations are {−1,−1, 0}. It is quite possible that higher order terms
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would lift the degeneracy of the zero eigenvalue. However, we will not investigate

this further, as the solutions with Λ < 0 are not our prime concern in this chapter.

The points P1,2 represent the r → ∞ asymptotic region for solutions which are

not asymptotically flat, but which have the unusual asymptotics listed in Table

II of ref. [194] with g1 = −1.

Although the present model is a degenerate case of the more general analysis of

ref. [194], all of the possible asymptotic properties of the solutions outlined above are

special cases of the analysis of [194], and thus the general conclusions obtained there

also hold here. In particular, there are no regular black hole solutions with λ̄ > 0

apart from a class with unusual asymptotics which exist if Λ < 0. In the case of the

Salam–Sezgin model, Λ > 0, and so no regular uncompactified black holes exist in that

case.

For the purposes of the construction of [172], which we generalize in this chapter,

the particulars of the asymptotic solutions are not important, however, since part of

the spacetime is excluded once the thin brane is inserted in the fluxbrane background.

Whether or not dual black holes with standard (or even unusual) asymptotic properties

exist is therefore not of primary importance. What is important is that the spacetime

from the bolt to the thin brane should be regular. Provided a regular horizon exists

in the black hole case, which is dual to a bolt in the fluxbrane, then the construction

of ref. [172] should lead to regular hybrid compactifications. The analysis above shows

that such solutions can be obtained only in the special case that X0 = V0 =
√

D − 2 k2,

as there then exists a 2-dimensional bunch of trajectories with any sign of λ̄, including

the λ̄ > 0 case relevant to a positive cosmological term on the brane.

We therefore believe that the construction used in this chapter can be extended to

a small class of solutions with λ̄ > 0 in the case of the Salam–Sezgin model. Since it

appears that such solutions could only be constructed numerically [185], we have not

investigated them in further detail. We have no reason to suspect that the qualitative

properties of the hybrid compactifications on such backgrounds should differ from those

of the λ̄ = 0 solutions.
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4.7 Conclusion

We have extended the construction of ref. [172] to produce a new hybrid brane world

compactification in six dimensions with a number of desirable features. As is the

case with the earlier model, the observable universe corresponds to a codimension one

brane which has one extra Kaluza–Klein direction and which closes regularly in the

bulk at bolts, namely geodesically complete submanifolds where a rotational Killing

vector ∂/∂θ vanishes. The regularity of the geometry ensures that construction avoids

potential problems that often arise when extra matter is added to models with addi-

tional horizons or singularities in the bulk. The construction of nonlinear gravitational

waves in §4.4 is an explicit demonstration of this. Furthermore, we have demonstrated

that such gravitational wave equations include a mode which may be considered as

a massless minimally coupled scalar field on the unperturbed bulk geometry, with

Neumann boundary conditions at the brane, and that such a mode has a static potential

with a long range Newtonian potential plus Yukawa corrections.

The most significant improvement that the present model has over the earlier

construction of ref. [172], is that the supersymmetric Salam-Sezgin action allows a

hybrid brane world construction in which there appears to be just enough parameter

freedom to make a solution to the hierarchy problem feasible. For those parameter

ranges which achieve this, giving a “deep bulk” direction as compared to the radius of

the Kaluza–Klein circle, it is quite possible that the spacing of the Yukawa levels would

become so close that their sum would approximate inverse powers of |x − x′| rather

than a single Yukawa–like term. Such corrections would then be similar to those of the

Randall–Sundrum II model [168].

In comparison to brane world models in six dimensions which view the physical

universe as a codimension two topological defect, we note that the position of the four-

brane in the bulk is uniquely determined by the bulk geometry and does therefore not

require the addition of other branes in the bulk, or of special matter field configurations

on them. The degree of naturalness by which the cosmological constant problem might

be solved in this model is an interesting open problem which we have not pursued.

In order to solve the field equations analytically it was necessary to assume that
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the 4–dimensional cosmological constant was zero. However, our construction does not

seem to preclude the possibility of the model having a non-zero cosmological constant

in four dimensions, similar to the explicit solutions found for the model of [172]. The

analysis of section 4.6 suggests that such solutions exist but are unlikely to have a simple

analytic form. Even though they would be non–singular in the bulk, the existence of

such solutions in not precluded by the recent uniqueness theorem of Gibbons, Güven

and Pope [200], since the presence of the codimension one brane provides a loophole

to its proof. If analytic solutions with non–zero 4–dimensional cosmological constant

could be found, then the nonlinear gravitational wave construction of §4.4.4 should

generalise directly. Examples of the bulk solutions in question have recently been

given numerically by Tolley et al. [185]. It would also be interesting to consider the

influence that matter sources on the brane would have on such solutions, a question

that has recently been considered at the linearised level in other 6–dimensional models

[192].

Even in the absence of a cosmological constant, the solutions (4.6), (4.7), (4.9)–

(4.11), together with the hybrid construction offer the possibility of generating brane

world black hole solutions as well as the gravitational wave solutions already presented.

Since the solutions given apply to arbitrary Ricci–flat geometries in the physical 4–

dimensions, they include the Schwarzschild and Kerr geometries as particular examples.

The most important open problem is an analysis of gravitational perturbations on such

backgrounds analogous to the case of the 4–dimensional flat background studied in §4.4.

Such an analysis would resolve the important question of the stability of such black

holes in the 6–dimensional setting, and also give some idea of potential signatures of

higher dimensions on black hole physics. Given that the construction of brane world

black holes is generally far from trivial, the hybrid compactifications offer a promising

arena for studying concrete realisations of such solutions.

In conclusion, we believe that the construction of ref. [172] combines some of the

best features of both the Randall–Sundrum and Kaluza–Klein scenarios, and leads

naturally to a class of hybrid compactifications which should be further studied. The

present chapter shows that the extension to bulk geometries of the supersymmetric

Salam–Sezgin background provides further phenomenological reasons for doing so.
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Appendix A

Physical Units

We use rationalised units in which the constants c, k, ~ and µ0 do not appear,

or equivalently may be considered to have numerical value unity. The constant G

appears explicitly, however. It generally refers to the D-dimensional gravitational

constant, κ2 = 4πG, [G] = Ld−2. One may transform between our natural units and

rationalised practical (SI) units by making the following transformations for the five

SI base dimensions:

Length: x = xSI

Time: t = ctSI

Mass: m =
c

~
mSI

Temperature: T =
k

~c
TSI

Current: i =
(µ0

~c

)1/2

iSI.
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Appendix B

Series solutions for a static scalar

potential in a Salam-Sezgin

Supergravitational hybrid

braneworld

Benedict M.N. Carter and Alex B. Nielsen

gr-qc/0512024

Gen. Rel. Grav. 37 (2005) 1629

B.1 Abstract

The static potential for a massless scalar field shares the essential features of the scalar

gravitational mode in a tensorial perturbation analysis about the background solution.

Using the fluxbrane construction of [203] we calculate the lowest order of the static

potential of a massless scalar field on a thin brane using series solutions to the scalar

field’s Klein Gordon equation and we find that it has the same form as Newton’s Law

of Gravity. We claim our method will in general provide a quick and useful check that

one may use to see if their model will recover Newton’s Law to lowest order on the

brane.
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B.2 Introduction

It has long been a dream to derive the properties of our four-dimensional world from

the symmetries of some higher dimensional spacetime. Randall-Sundrum models use

warped metrics in five dimensions to obtain a low-energy effective Newtonian potential

for four-dimensional gravity. Two models have been proposed: Randall-Sundrum I

[167] and Randall Sundrum II [168]. Randall-Sundrum I contains two branes in a

compact spacetime and Randall-Sundrum II contains only one brane embedded in

a five-dimensional non-compact Anti de-Sitter spacetime. However, while the model

met with a lot of interest, for example it may provide an explanation for the large

energy difference between the weak-unification scale and the Planck scale, it has also

led to some problems. It can be shown for example that under general assumptions

the compact Randall-Sundrum I model must contain a negative tension brane [94].

It has been pointed out that such negative tension branes violate all the standard

energy conditions [92]. Embedding black holes in Randall-Sundrum II-type models

has also led to some problems, although the tension of the single brane can now be

strictly positive. The Einstein equations evaluated across the brane forbid simple black

holes in our universe (on the brane) and black strings extending off the brane develop

Gregory-Laflamme instabilities at the AdS horizon and are unstable far from the brane

[97].

In six (and higher) dimensions however, it is possible to have solutions that contain

only positive tension branes. It may even be possible to have stable black hole solutions

in six-dimensions [104]. Here we present an example of a six-dimensional model based

on a supersymmetric fluxbrane solution of [104] and [78] and give a general argument

to show that its low energy limit is four-dimensional Newtonian gravity. The model

contains a single brane embedded in a six-dimensional spacetime. Scalar and electro-

magnetic fields propagate in the bulk, and we impose regular closure of the geometry

off the brane.

The basic idea is to investigate the behavior of gravity by approximating the full

tensorial analysis with a scalar field argument. To do this we solve the Klein-Gordon

equation on the background spacetime solution. The background solution must obey
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certain boundary conditions, in particular the Einstein equations across the brane must

hold. Solving this equation allows us to derive a static potential for the Newtonian

limit which should qualitatively resemble that of the observed universe.

Further details appear in [203] (also chapter 4).

B.3 The Model

We start with the metric (which equates to the bosonic sector of the model considered

in [189]),

S =

∫

M

d6x
√−g

( R
4κ2

− 1

4
∂µφ∂µφ− 1

4
e−κφFabF

ab − Λ

2κ2
eκφ

)
. (B.1)

The metric assumption we use is

ds2 = ∆(r)dθ2 +
r2

∆(r)
dr2 + r2gijdxidxj , (B.2)

where gij will, for simplicity, be taken to be the Minkowski metric. We consequently

find solutions of the form [179]

∆(r) =
A

r2
− B2

r6
− 1

8
Λr2. (B.3)

For later use we define r± to be the two zeroes of ∆ (there are only two solutions for

r > 0). To this background fluxbrane geometry we add a single brane and interpret

our four-dimensional universe to be restricted to the brane in the usual manner. Note

that in general both the scalar field φ and the Maxwell field will exist off the brane.

Further details of the construction appear in [203].

In order to consistently reproduce our four-dimensional universe on the brane, the

gravitational interactions on the brane must reduce, at low energies, to the observed

Newtonian potential. The basic idea here is to use a massless scalar field to model

the behavior of gravity. Therefore we look for solutions to the massless Klein-Gordon

equation

∇2GΦ =
1√−g

∂µ

(√−ggµν∂νGΦ

)
=

δ(r − r′)δ(θ − θ′)δ(x− x′)√−g
, (B.4)
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with boundary conditions

GΦ|r→r− < ∞ , (B.5)

∂rGΦ|r=r∗ = 0 . (B.6)

B.4 The Solution

To simplify the analysis of (B.4) we perform a change of variables to put the differential

equation into Sturm-Liouville form with the variable ρ.

ρ = e
R
(r4∆(r))−1dr (B.7)

which becomes

ρ =
r4 − r4

−
r4
+ − r4

≥ 0 , (B.8)

where r+ and r− are the two roots of ∆(r). We also perform the Fourier decomposition

of the Green’s function

GΦ =

∫
d4k

(2π)5
eikµ(xµ−x′µ)

∞∑
n=−∞

ein(φ−φ′)yq,n(ρ, ρ′). (B.9)

This gives a differential equation of the form

∂ρ (ρ∂ρyq,n)− n2

ρ


ρ +

r4
−

r4
+

ρ + 1




2

yq,n +
q2

(ρ + 1)2yq,n = δ(ρ− ρ′) , (B.10)

where

q2 = −kµk
µ , (B.11)

q2 = q2 Λ

8
(r4

+ − r4
−)2 , (B.12)

n2 = n2r8
+ . (B.13)

An obvious way to investigate the behavior of solutions to this differential equation is

to use the method of Frobenius and expand the solution out as a power series. Provided

the r coordinate is close to r− the value of ρ will be small. The two linearly independent

solutions are

y1 =
∞∑

k=0

akρ
k+c1 (B.14)

115



y2 =





∑∞
k=0 bkρ

k+c2 n 6= 0

log(|ρ|)y1 +
∑∞

k=0 bkρ
k n = 0 .

(B.15)

where c1 and c2 are the solutions of the indicial equation for (B.10),

c2 − (nr4
−)2 = 0. (B.16)

If we impose the requirement that the solution be regular as ρ → 0, then we must set

the coefficient of the second independent solution to 0 and we are just left with the first

solution. The Einstein equations at the brane also require a Neumann-type boundary

condition for the function GΦ at the brane. This, along with the usual braneworld

matching conditions that the metric should be continuous at the brane and its first

derivative should just be a step function (the stress-energy tensor contains a delta

function source due to the brane), result in the on-brane solution at ρ = ρ∗ = r−/r+ <

1,

yq,n =
y1(ρ∗)

ρ∗∂ρy1(ρ∗)
(B.17)

The n = 0 mode represents the lowest order of the potential. For n = 0 we find

y1(ρ∗) =
∞∑

k=0

(
(−1)k

k∑
j=0

ej,kq
2j

)
ρk
∗ , (B.18)

where e0,0 = 1, e0,k = 0 for all k > 0 and ej,k ≥ 0 for all j > 0 and k > 0. In the case

where this double summation converges absolutely then all rearrangements converge

to the same limit and we can write

y1(ρ∗) =
∞∑

j=0

( ∞∑

k=j

(−1)kej,kρ
k
∗

)
q2j. (B.19)

Similarly

ρ∗∂ρy1(ρ∗) =
∞∑

j=0

( ∞∑

k=j

(−1)kkej,kρ
k
∗

)
q2j. (B.20)

We can then write out (B.17) as

yq,0(ρ∗) =
∞∑

k=−1

Qk,0q
2k (B.21)

and calculate Qi,0 (Qi,n is the general term) order by order in q2 using the relationship

y1(ρ∗) = [yq,0(ρ∗)][ρ∗∂ρy1(ρ∗)] . (B.22)
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For example,

Q−1,0 = −(1 + ρ∗)2Λ

ρ∗
. (B.23)

Substituting the series back into the expression for the potential we find

VΦ =

∫
d3k

(2π)5
e−ik.(x−x′)

∫ ∞

−∞

dk0

i(k0 − iε)

(
Q−1,0

q2
+

∞∑
j=0

Qj,0q
2j

)
. (B.24)

The term proportional to q−2 just gives a contribution of

VΦ =
Q−1,0

2π

∫
d3k

(2π)3
e−ik.(x−x′)

k2
(B.25)

and thus the potential to lowest order becomes

VΦ = −(1 + ρ∗)Λ
4π2ρ∗

1

|x− x′| , (B.26)

which has the desired 1/x dependence of the familiar Newtonian gravitational potential.

B.5 Conclusion

The basic model outlined here is capable of reproducing Newton’s law of gravity at low

energies, and our method demonstrated here provides a method for quickly checking

this. Our method does not in general allow one to easily calculate the correction

to the lowest order of the static gravitational potential on the brane. Reproduction

of Newton’s law of gravity to lowest order seems to be a generic property of (6D)

models constructed in this manner. Several other models have achieved the same

result although often without the added feature of regularity in the bulk and with

added restrictions on the brane [179]. It is the regular closure of the bulk geometry at

the totally geodesic submanifolds (bolts) that gives hope to the idea that perturbations

of black holes and gravitational waves will not grow without limit and thus further study

should be carried out in this direction.
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