Higher Dimensional Gravity, Black
Holes and Brane Worlds

A thesis
submitted in partial fulfilment
of the requirements for the Degree
of
Doctor of Philosophy in Physics
in the

University of Canterbury

by

Benedict Carter

UNIVERSITY OF
CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

University of Canterbury
2006



11



Disclaimer

The work described in this thesis was carried out under the supervision of Dr
D.L. Wiltshire in the Department of Astronomy and Physics, University of Canterbury.
Chapters two—four are comprised of original work except where explicit reference is
made to the work of others. Chapter two is based on work done in collaboration with
Ishwaree Neupane, published in Phys. Rev. D 72 (2005) 043534. Chapter three is based
on work published in Class. Quant. Grav. 22 (2005) 4551. Chapter four is based on
work done in collaboration with Alex Nielsen and David Wiltshire, in hep-th /0602086,
submitted to J. High Energy Physics. No part of this thesis has been submitted for

any degree, diploma or other qualification at any other University.
Acknowledgements

I’d like to thank my supervisor, David Wiltshire for his support and guidance. I am
grateful to Ishwaree Neupane for his collaboration. Many thanks to Matt Visser for his
encouragement and fruitful discussions. I would like to thank Isis and Brad Cartridge,
Alex Nielsen, Ben Leith, Duncan Wright, Kahae Han, Ewan Orr, Marni Sheppeard and
everyone else who has already left (you know who you are) for providing support, com-
radeship, entertainment, intelligent discussion and much needed distractions. Finally,

I would like to thank Wibke Ehlers for her companionship, support and humour.
Dedication

I dedicate this thesis to my parents, Miles and Rosemary Carter, for their unending
encouragement, emotional support, guidance and belief in me throughout the entirety

of my education.

111



v



Contents

1 Introduction
1.1 Pushing the Limits of General Relativity . . . . . ... ... ... ...
1.2 Black Holes in Four Dimensions . . . . . . . .. . ... ... ......
1.2.1  The Schwarzschild Solution . . . . . . .. ... ... ... ...
1.2.2  The Kerr Solution . . . . .. ... ... ... ... ...
1.2.3 Black Hole Thermodynamics . . . . . . .. ... ... ... ...
1.2.4 Alternatives to Black Holes . . . . . .. .. ... .. ... ...
1.3 Higher Dimensional Black Holes . . . . . .. .. ... ... ... ....
1.3.1 Uncompactified Extra Dimensions . . . . . . . . ... ... ...
1.3.2 Compactified Extra Dimensions . . . . . . ... ... ... ...
1.3.3  Analysis of Higher Dimensional Black Holes . . . . . ... ...
1.4 Brane Worlds . . . . . . . ...
1.4.1 Large Extra (Compact) Dimensions . . . . . ... ... ... ..
1.4.2  Warped extra dimensions . . . . . . . . .. ... ... ... ...
1.4.3 Hybrid Brane world Models . . . . . .. ... ... ... ....

1.5 Overview of Thesis . . . . . . . . .

2 Stability of Higher Dimensional Rotating (Kerr) AdS Black Holes
2.1 Higher Dimensional Black Holes and String-Theory . . . . .. ... ..
2.2 AdS and Kerr-AdS metrics . . . . . .. ..o

2.3 Thermodynamics of Kerr AdS Solutions . . . . . . ... ... ... ..

10
11
14
18
18
19
21
23

23

25



2.3.1 Thermal Phase Transition . . . . .. .. ... ... ... ....
2.3.2  The first law of AdS bulk thermodynamics . . . . . . . . .. ..
2.3.3 The specific heat and thermodynamic stability . . . . . . . . ..
2.3.4  The temperature bound for rotating black holes . . . . . . . ..
2.3.5 Rotation and the AdS-CFT correspondence . . . . .. ... ..

2.4 The stability of the background of Kerr—AdS spacetime under gravita-

tional perturbations . . . . . . . ... L Lo
2.4.1 The Lichnerowicz operator . . . . . . .. .. ... ... .....
2.4.2 Dependence on radial coordinate only . . . . . . .. ... .. ..
2.4.3 Anti de-Sitter spacetime in odd dimensions . . . . . .. .. ..
2.4.4 AdS spacetime in even dimensions . . . . . . .. ... ... L.

2.5 Conclusion . . . . . . . .

Gravastars with generalised exteriors

3.1 Gravastars . . . . . ...

3.2 Schwarzschild—(A)dS Gravastar . . . . . ... ... ... ... ... ..
3.2.1 Definitions . . . . . . ..o
3.2.2 Solutions . . . . . ...

3.3 Reissner-Nordstrom gravastar . . . . . . . . .. .. ... ... ... ..

3.4 Conclusion . . . . . . . .,

Hybrid Brane Worlds in the Salam-Sezgin Model

4.1 Hybrid Brane Worlds . . . . . . .. .. ... oo

4.2 Salam-Sezgin fluxbranes . . . . . ... ..o Lo

4.3 Adding a thin brane . . . . . .. .. ... L
4.3.1 Consistency conditions when adding a thin-brane . . . . . . ..

4.4 Static potential of the massless scalar field . . . . .. ... ... .. ..
4.4.1 Scalar propagator . . . . . .. ..

4.4.2 Boundary and matching conditions . . . . . . .. .. ... ...

vi



Vil

4.4.3 Static potential on the brane . . . . . . . .. ... ... ... .. 92
4.4.4 Nonlinear gravitational waves on the brane . . . . . . . . .. .. 98
4.5 The hierarchy problem . . . . . . . .. ... ... 99
4.6 General fluxbrane and dual static black hole-like solutions . . . . . .. 102
4.7 Conclusion . . . . . . . . L 109
Physical Units 111

Series solutions for a static scalar potential in a Salam-Sezgin Super-

gravitational hybrid braneworld 112
B.1 Abstract . . . . . ... 112
B.2 Introduction . . . . . . . ... 113
B.3 The Model . . . . . . . . .. 114
B.4 The Solution . . . . . . . ... 115
B.5 Conclusion . . . . . . . ... 117
B.6 Acknowledgements . . . . . ... ..o L 117

References 118



viil



Abstract

Current research is focussed on extending our knowledge of how gravity behaves
on small scales and near black hole horizons, with various modifications which may
probe the low energy limits of quantum gravity. This thesis is concerned with such

modifications to gravity and their implications.

In chapter two thermodynamic and classical gravitational stability analyses are
performed on higher dimensional Kerr anti-de Sitter black holes. We find conditions
for the black holes to be able to be in thermal equilibrium with their surroundings and

for the background to be stable against classical tensor perturbations.

In chapter three new spherically symmetric gravastar solutions, stable to radial
perturbations, are found by utilising the construction of Visser and Wiltshire. The
solutions possess an anti-de Sitter or de Sitter interior and a Schwarzschild-(anti)-
de Sitter or Reissner—Nordstrom exterior. We find a wide range of parameters which
allow stable gravastar solutions, and present the different qualitative behaviors of the

equation of state for these parameters.

In chapter four a six—dimensional warped brane world compactification of the
Salam-Sezgin supergravity model is constructed by generalizing an earlier hybrid Kaluza—
Klein / Randall-Sundrum construction. We demonstrate that the model reproduces
localized gravity on the brane in the expected form of a Newtonian potential with
Yukawa-type corrections. We show that allowed parameter ranges include values which
potentially solve the hierarchy problem. The class of solutions given applies to Ricci—
flat geometries in four dimensions, and consequently includes brane world realisations
of the Schwarzschild and Kerr black holes as particular examples. Arguments are
given which suggest that the hybrid compactification of the Salam—Sezgin model can

be extended to reductions to arbitrary Einstein space geometries in four dimensions.

This work furthers our understanding of higher dimensional general relativity, which
is potentially interesting given the possibility that higher dimensions may become
observable at the TeV scale, which will be probed in the Large Hadron Collider in

the next few years.






Chapter 1

Introduction

1.1 Pushing the Limits of General Relativity

Black holes are perhaps the most interesting objects in general relativity. A black hole
is a solution to Einstein’s equations which is generically characterized by having at least
one gravitational trapping horizon — a boundary of a region where the gravitational
field is so great that not even light can escape from it. Exact black hole solutions of
Einstein’s field equation are generally found to also contain singularities within the
horizon. In fact, Hawking and Penrose proved that as long as matter in a generic
spacetime satisfies the strong energy condition and there exists a closed trapped sur-
face then the spacetime will be not be geodesically complete, implying the existence
of a singularity. At such singularities the curvature of the manifold typically (but
not necessarily) becomes infinite. While the properties of horizons are taken to be
physically acceptable by the majority of the scientific community, it is assumed that
black hole singularities are unphysical. Hence it is expected that near the singularity
general relativity breaks down and that a theory of quantum gravity will be required
in order to accurately describe the physics [1, 2]. Unfortunately, gravity has proven to
be difficult to directly quantise [3, 4] and as such current work is focussed on extending
our knowledge of how gravity behaves on small scales and near black hole horizons,
with various modifications designed to link up with the suspected low energy limits of
quantum gravity. This thesis is concerned with such modifications to gravity and their

implications.



1.2 Black Holes in Four Dimensions

1.2.1 The Schwarzschild Solution

The simplest example of a black hole is given by the Schwarzschild solution [5] to
Einstein’s vacuum equations. The Schwarzschild metric in Schwarzschild coordinates?

is

ds® = —Ad2 + A~1dr? 4 r2d6? + 12 sin? 0d¢? (1.1)
where
oG M
A(r)y=1- (i : (1.2)

M is the gravitational mass of the system measured at spatial infinity and G is Newton’s
constant. The horizon for the Schwarzschild geometry is located by the condition A = 0
in these coordinates, i.e. at r = 2GM. The Schwarzschild geometry has four Killing

9

, 5; and the three rotational Killing vectors of SO(3), corresponding to spherical

vectors
symmetry. In fact, by Birkhoff’s theorem the existence of the timelike Killing vector

follows as a result of spherical symmetry in vacuum.

The Kretschmann scalar, R®“R .4, measures the curvature in a coordinate inde-

pendent manner, and for Schwarzschild is given by

48G> M?

abcd
R Rabcd - 6
r

(1.3)

It diverges as r — 0, which implies the existence of a curvature singularity at » = 0.
Given that singularities are generally not thought to be physical, and cannot strictly
speaking be described by a point in the manifold, it is clear that the classical the-
ory of general relativity is incomplete and inaccurate in that regime. In some sense
though, the existence of the singularity is moot, since it is trapped behind an event
horizon, and hence any associated problems are unable to classically escape the black
hole. The cosmic censorship hypothesis states that naked singularities cannot form in
gravitational collapse from generic, initially non—singular states in an asymptotically
flat space—time obeying the dominant energy condition. That is, “there are no naked

singularities” [7].

!These are not the coordinates Schwarzschild originally used [6].



Outside of the horizon where theoretical interest is centered, the fundamental im-
portance of the Schwarzschild solution is that the behavior of the planets in our solar
system can be excellently modelled as point particles in the Schwarzschild geometry,
since they are at radial parameter distances r > rg, > 2M,,. For example, by
using the Schwarzschild solution as the background metric and solving for the timelike
geodesics of test particles, one can explain the perihelion precession of Mercury (and
similarly for the other planets). The Schwarzschild solution was also used to calculate
the bending of light due to the sun, correctly giving twice the Newtonian prediction.
Irrespective of theoretical concerns about the nature of the Schwarzschild horizon
and its interior interior, the exterior Schwarzschild solution presents an undeniably

functional description of gravity in our solar system.

1.2.2 The Kerr Solution

The Kerr metric [8] is a simple, explicit, exact solution of the Einstein vacuum equations
describing a rotating black hole in a four-dimensional spacetime, providing a non-trivial
generalization of the Schwarzschild geometry. It has just two Killing vectors as opposed
to the four of Schwarzschild geometry - it is stationary and axisymmetric. In Boyer-

Lindquist coordinates, with ¢ = 1, it is given by:

2GM 2GMar sin® 0
ds* = — (1 - = r> - ‘;Z P2 (dtde + dodt)
P sin? 6
+Zdr2 + p*df* + 5 [(r* + a®)* — a®Asin® 0] d¢? (1.4)
p
where
A(r) = r? = 2GMr + a® (1.5)
and
p2(r,0) = r* + a* cos* 0. (1.6)

The solution is parameterised by the two quantities, M and a = J/M. The mass M
of the spacetime can be evaluated by Stokes’ theorem for a conserved current, K, R*”,

by
1

=— | d*z\/v®n,o, VK", 1.7
4G Jox TV O (L.7)



where n, is the normal to the hypersurface ¥, o, is the normal to the boundary of
the hypersurface 9%, 1/7? is the determinant of the induced metric on the boundary
of the hypersurface and K* is the time-translational Killing vector for the spacetime.

The angular momentum can be similarly calculated,

1

| Ra@n,e, VR 1.
G /o z\/v®n,0,V'R!, (1.8)

where R* is the axisymmetric rotational Killing vector. One can see that the in limit

of @ — 0 in (1.4)-(1.6) leads to the Schwarzschild metric in Schwarzschild coordinates.

Interestingly, the Kerr solution can be written in terms of an exact “distortion” on

a background spacetime giving the Kerr-Schild form of the Kerr solution [9],
2M
ds? = g, drtdx” = n,,detdz” + T(k#dx“f (1.9)

where £, is null and geodesic with respect to both the full metric g, and the flat

metric 7),,,. Explicitly, in Cartesian coordinates x,y, 2, t, one has [10]

r(zde + ydy) + a(xdy — ydx) N zdz

k = kdo* = df + . =, (1.10)
and
U—r+ai§2, (1.11)
where 7 is defined? by
Ay L2 (1.12)

r2ta? 2
The Kerr-Schild form of the Kerr solution naturally generalises to higher dimensions

and background spacetimes.

Generalisation of Schwarzschild and Kerr Solutions in Four Dimensions

The Schwarzschild solution has been generalised in a number of ways by relaxing various
assumptions. For example, it is currently understood that 70% of the energy density
of the universe is due to a repulsive dark energy, namely a fluid with pressure, P, and
energy density, p, related by p = wp, w < —1/3, which violates the strong energy

condition. The most well-known example of such a dark energy is a cosmological

2Note that r is not the usual radial coordinate in flat spacetime.
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constant, A, for which w = —1, i.e. P = —p = —A/87G. The cosmological constant
was first introduced by Einstein with a finely tuned value in order to produce a static
universe in which the repulsive vacuum energy exactly cancelled the gravitational at-
traction of additional pressureless matter. Willem de Sitter shortly thereafter derived
cosmological solutions without any ordinary matter, in which the cosmological constant

was not finely tuned and the Universe expanded forever [11].

Kottler generalised the Schwarzschild solution by including such a cosmological
constant term to find black hole solutions with asymptotic constant curvature geom-
etry [12]. The Schwarzschild (Anti) de Sitter metric is given by (1.1) where A(r) =
1 —2GM/c*r — Ar?/3.

Similarly, Brandon Carter generalised the Kerr solution by adding a cosmological
constant to the background spacetime in Kerr-Schild coordinates, and modifying the
geodesics to find the Kerr-(A)dS solution [13, 14]. We will present this result more
generally later in this chapter. Newman and coworkers [15] also generalised the Kerr
geometry by adding electric and magnetic charge, which can be seen by making the
replacement 2GMr — 2GMr — G(Q* + P?) in (1.4)-(1.6). The associated one-form

electromagnetic potential for the Kerr-Newman solution is

A, = QT—P;LCOSQ7
p
A, = —QarsinZQ—l—];’(rz—i-aQ)cosH' (113)
P

1.2.3 Black Hole Thermodynamics

In the early 1970s it was discovered that black holes obeyed certain laws of black hole

mechanics:

e Zeroth law: A black hole in a stationary state has a constant surface gravity on

the entire horizon <+ A system in thermal equilibrium has constant temperature.

o First law:

SM=-""§A+... . dE=TdA+... (1.14)
8¢

e Second law:

SA >0 dS > 0. (1.15)



e Third law: That the area of a black hole cannot be reduced to zero in a finite
number of steps. This remains as a conjecture which may not actually hold and

in some versions is equivalent to the cosmic censorship hypothesis [16].

Bardeen, Carter and Hawking proved the zeroth and first laws for stationary ax-
isymmetric (electro)vacuum asymptotically flat spacetimes [18]. The analogy to the

thermodynamic laws, which is seen explicitly via the substitutions

E—M, SxA, Txk. (1.16)

Early on Bekenstein suggested that some multiple of the area of the black hole horizon
played the role of entropy due to the form of the second law [17]. However, it was
initially emphasised by Hawking et al. that the laws were at best analogies, as classical
black holes had zero temperature and, in general, non-zero surface gravity [18]. Three
years later, by considering quantum field theory in the background of a Schwarzschild
black hole, Hawking found a non-zero thermal radiation flux at infinity [19]. The
radiation was due to the presence of the black hole horizon, which lead to the concrete

realisation of the proportionality of the temperature and surface gravity,
T =k/27, (1.17)

implying that the laws of black hole mechanics were also the laws of black hole ther-

modynamics.

Due to Hawking radiation, a black hole’s horizon area is able to decrease, leading
to a violation of the classical second law of black hole thermodynamics (the area the-
orem). However, the associated Hawking radiation has entropy, which led Bekenstein

to propose the generalised second law of black hole thermodynamics [17],

A
—)>o0. .
5 (Smatter + 4(;) >0 (1.18)

This has been checked in a variety of model dependant scenarios of widely varying
nature, and has so far been validated [20]. This strongly suggests that the entropy of

a black hole is of a far more generic nature than had been previously thought [21].
Whether black holes are thermodynamically stable is an important issue for quan-

tum gravity. For example, the negative specific heat of Schwarzschild means that
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the black hole cannot come into thermal equilibrium with the background spacetime
and will lead to a runaway evaporation of the black hole into thermal radiation [19].
However, the semi-classical calculation used in a vacuum background, for example in a
Schwarzschild background, must necessarily break down since once sufficient thermal
radiation back reacts onto the geometry, the solution can no longer be considered
vacuum. While the radiation is initially low temperature, because of the negative
specific heat of the black hole the energy associated with the radiation will eventually
become comparable to the energy of the radiating black hole. Additionally, it is not
yet known how to deal with the end point of the evaporation process - it is once again
expected that the physics after the breakdown of the semi—classical approximation will

only be answered within the context of a quantum theory of gravity.

Both general relativity and quantum field theory conserve information. In general
relativity with globally hyperbolic manifolds Cauchy data prescribed on an initial
spacelike hypersurface uniquely determines the evolution of the full spacetime, while
in quantum field theory one has a unitary evolution of quantum states. In both cases
the information required to prescribe a state at early time is directly related to the
information required to prescribe a state at later times [22]. The equations of motion
governing the dynamics of the situation are time-reversible. However, according to the
no hair “theorems” a black hole can be described by just a few parameters (e.g. M,
J and @ for an Einstein electrovacuum black hole in four dimensions), meaning that
any other information which passes over the event horizon becomes hidden. Semi-
classically Hawking radiation given off by such a black hole is almost entirely thermal
at infinity [19], meaning that information trapped behind the horizon does not escape

via this process.

The problem can be illustrated by a thought experiment: Take two states of matter
with the same M, J and @), one a baryon gas and another a lepton gas and collapse
them into identical black holes (of the same mass, charge and angular momentum).
The thermal radiation collected at infinity will be identical in character for both black
holes. The information of the initial states (baryon and lepton number) before they

became black holes has therefore been ‘lost’ [22].



The problem might be attributed to the presence of a singularity, on which all
geodesics entering the event horizon end, thereby destroying information that enters
the horizon (as it cannot reach future infinity). Some suggested ‘resolutions’ to the

information paradox include:

1. Unitarity is violated [23]-[25]. However, the chief proponent of this view, Hawk-
ing, has recently revised his opinion and now favours option two below, namely
that quantum perturbations of the horizon allow information to escape [26].

Unfortunately the details of Hawking’s calculation have yet to appear.

2. The radiation emitted by the black hole is not thermal, but is correlated with
the information that went into the formation of the black hole. This viewpoint

has long been advocated by ’t Hooft, who has provided a number of toy models

to describe this process [27]-[30].

3. The black hole does not radiate away entirely, leaving behind a remnant which

still contains all the information that went into its formation.

4. Due to quantum gravitational effects, gravitational collapse halts before a horizon
forms. The equation of state in the center of the black hole might be similar to
(anti) de Sitter space. One would be left with a super dense object, presumably

more dense than a neutron star.

We will discuss the last ‘resolution’ in more detail with the assumption that a
horizon does not form, as it is similar in character to that of the neutron star model,
which has enjoyed wide success with the discovery of pulsars. We note though that by
removing the horizon, we remove the significance of the elegant black hole thermody-

namic laws.

1.2.4 Alternatives to Black Holes

In chapter 3 we will examine a particular model which avoids the information paradox
by removing the horizon. This can be achieved, for example, by halting gravitational

collapse of the matter at some radius outside of the horizon radius. For this to happen,
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one needs a new state of matter which resists further compression. The equation of
state for the matter, in models considered to date, is that of (anti) de Sitter space, i.e.,

a NNoN-zero pure vacuuim energy.

A simple picture of the models under consideration is that of an (A)dS metric
surrounded by a thin shell of matter. The matter making up the shell is some new
state of matter that obeys the dominant energy condition. The metric exterior to
the thin shell of matter is Kerr-Newman or some special simpler case. This picture,
while speculative, is extremely similar to that of the neutron star and in fact carries
on the long tradition of positing that super-dense stars are formed out of new states

of matter [11],[31]-[37].

Neutron Star

Mass ~ 1.5 times the Sun
~12 miles in diameter

Solid crust
~1 mile thick

Heavy liquid interior
Mostly neutrons,
with other particles

Figure 1.1: A model of Neutron star internal structure. Source: NASA /Marshall Space
Flight Center.

In this scenario, one would need to check that the solution is consistent within the
context of general relativity, resists further gravitational collapse, and is stable to radial
perturbations. In chapter 3 we investigate a model which fits these requirements, the
gravitational vacuum star (gravastar) of Mazur and Mottola [37]. In the simplified
version as envisaged by Visser and Wiltshire [38], we extend the exterior geometry
from Schwarzschild to both Schwarzschild (A)dS and Reissner—Nordstrém, and find

conditions for stability against radial perturbations. This is of course a very simplified

9



model.

By analogy, if the one looks at actual models of neutron stars, one finds that
the matter at the surface of a neutron star is composed of ordinary nuclei as well as
electrons. The “atmosphere” of the star is roughly one meter thick, below which one
encounters a solid “crust” whose thickness is approximately 5%-10% of the radius of

the star [39, 40].

The outer layers of a neutron star are formed of a solid crust composed of a Coulomb
lattice of very neutron rich nuclei immersed in a nearly uniform relativistic electron
gas. In the deeper layers corresponding to densities beyond the drip threshold pgyi, ~
4 x 10" g em ™2, nuclei are embedded in a sea of “free” neutrons which are expected to
become superfluids in mature neutron stars whose temperature has dropped below the
critical temperature for the onset of superfluidity [40]. The core is expected to contain

superfluid neutrons coexisting with electrons and protons [41].

Realistic gravastars would be expected to display equally complex structures de-
pending on the details of the physics governing the gravitational condensate matter

state.

1.3 Higher Dimensional Black Holes

Given that Einstein’s general relativity is a classical theory, it is expected that it will
break down as an accurate model of gravity on small distance scales/high curvature
regions, and that to properly describe gravitational interactions on such small scales
will require a theory of quantum gravity. We currently do not have such a theory, and
so current work is focussed on modifying general relativity to find semi-classical models

which will give rise to experimentally testable corrections to gravity on relevant scales.

One of the theories which is hoped to describe semi-classical gravity is M-theory?;
see [43, 44] for reviews. M-theory is naturally framed in 10+ 1 dimensions, and as such
faces difficulty in being reconciled with current observations which indicate a reality

consisting of 3 + 1 dimensions.

30ne other serious contender is loop quantum gravity; see [42] for a review.
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One of the most important unanswered questions with regard to higher-dimensional
unified models is why does spacetime appear to have three spatial dimensions? General
relativity, and its precursors, special relativity and Galilean relativity do not prescribe
the dimensionality of space. The fact that we observe three spatial and one time dimen-
sion is added into the description of reality within the framework of those mathematical
structures by hand. General relativity is written in the framework of manifolds, spaces
which may be curved and can possess a complicated topology, but in local regions
“appear as” segments of R™. given the generality available to the possible description
of spacetime within this framework, one may ask the question “what is unique about
the nature of three spatial dimensions that naturally selects it as physical reality”?
Alternatively one may ask “assuming there are more than three spatial dimensions,
why do we only observe three”? We will attempt to briefly address the attempts that

have been made to answer both questions in this section.

1.3.1 Uncompactified Extra Dimensions
Why three?

Large extra dimensions were first considered by Ehrenfest [45]. Amongst other results,

he found that for objects bound in a potential of the form

1
rn—2 )

V x (1.19)

where 7 = \/x} 4+ 23 + ... + 22 is the metric in the space R™ with coordinates ;,

t=1...n, that:

e All states were bound in R?,
e Bound states and unbound states were possible in R?,

e There were no bound states for n > 3 in R™ — all states were ingoing or outgoing

spirals.

Similarly one can attempt to generalise 4-dimensional GR models to higher di-

mensions, and investigate the physical consequences. For example, the Schwarzschild

11



solution may be generalised to arbitrary D = n + 1 dimensions in a straightforward

manner. The solution, obtained by Tangherlini [46] is,
2

d
m2=—Aa?+é%+r%Qih (1.20)

where n is the number of spatial dimensions, dQ22_, is the line element of a (n — 1)-
dimensional sphere, and A is given by

_2GM

rn—2 :

A=1

(1.21)

If a D—dimensional cosmological constant and electromagnetic field are included then

one has
2GM GQ? 2A7?

7 = D - 270D () —1)

A=1— (1.22)

A study of the geodesic equations in the background (1.20,1.21) reveals that stable
bound orbits do not exist if n > 3 [46]. Furthermore, if one requires that the effective
potential governing the problem vanishes at infinity then values n < 3 are ruled out.
Thus we are uniquely led to n = 3. An analysis of the Schrodinger equation for

arbitrary D also leads to similar conclusions [46].

From an anthropic point of view then, four dimensional space-time seems to be
favoured for allowing the most complex forms of life, given it allows for the most

complex types of behavior for both classical and quantum orbits.

Higher Dimensional Generalisations of the Kerr—-Newman solution

The Kerr-Newmann geometry was generalised to D dimensions by Myers and Perry
[47]. By assuming Kerr—Schild form they found that, for even—dimensional spacetimes,

D = 2n > 4, the appropriate null one—form which generalises (1.10) is

n—1 i i O T A
K — hydot — dt + Z r(z;de’ + ydy') + a;(z,dy" — y;da’) N zdz

: 1.23
— r? + a? r (1.23)
with . )
1 — @@ +y)\ 10, o
=1 7=1
and

s+ 5 =1 (1.25)



Substituting (1.23) and (1.24) into (1.9), one obtains the generalisation of the vacuum
Kerr metric in 2n spacetime dimensions, with (n — 1) independent rotation parameters
a; in (n — 1) orthogonal spatial 2-planes.

If the number of spacetime dimensions is odd, D = 2n + 1 > 5, then there are
n > 2 pairs of spatial coordinates and no z coordinate, and so the terms involving z
are omitted, while U is then 1/r times the right-hand side of equation (1.24). Thus we

find
xzdmz + yzdyz) + az(xzdyz yzde)

k = k,dz" —dt+; T2 , (1.26)
with 1 - 22 +y -
U=~ ( > Er L > 1;[ r? +a?) (1.27)
and - 2y
> g ~1. (1.28)

i=1
The higher dimensional black hole has a curvature singularity as expected, and (D —2)—
dimensional spherical horizon topology. Remarkably, in higher dimensions there can
still only be up to two horizons. Interestingly, it was found that for D > 6, Kerr black
holes with fixed mass can have arbitrarily large angular momentum [47]. This occurs
since the vanishing of one or two spin parameters is enough to guarantee the existence
of a horizon. The other spin parameters can then take on arbitrary values. Recently,
the Myers—Perry solution given above has been further generalised by Gibbons, Lu,

Page and Pope to include a cosmological constant [10].

The black hole uniqueness theorem as stated by Israel, Penrose and Wheeler asserts
that in vacuum a 4-dimensional stationary Einstein-Maxwell black hole is characterized
solely by its mass, angular momentum and charge. This is consistent with the “no hair
theorems” [48], which rule out regular black hole solutions with other independent
charges, such as scalar charges, on a model by model basis. By now a number of “hairy
black holes” in models with additional exotic forms of matter, such as the Skyrme

black hole [49]-[51], are known.

The proof of the uniqueness theorem does not generalize to vacuum solutions in
higher dimensions. In fact the recent black rings discovered by Emparan and Reall [52]

provide alternatives to 5-dimensional Kerr Newman black holes with the same mass,
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charge and angular momentum, demonstrating that no electrovacuum uniqueness the-
orem holds in five, and presumably higher dimensions. The discovery of the black
ring solutions in five dimensions shows that horizon topologies other than spherical are

allowed in higher dimensions, but it is unclear precisely which topologies are allowed.

1.3.2 Compactified Extra Dimensions
Kaluza—Klein Compactification

While the work of Ehrenfest, Tangherlini and others argued for the naturalness of
three large spatial dimensions, it had nothing to say about the possibility of (4 4+ n)-
dimensional theories which on large scales appear to be four dimensional. One way of
realizing this scenario is by assuming that the extra dimensions form a compact space
of very small volume. Such models are known as Kaluza-Klein theories, on account of

the pioneering work of Kaluza [53] and Klein [54].

One motivation behind Kaluza-Klein theories is that the “internal” gauge symme-
tries of the standard model of particle physics might simply be the manifestation of
spacetime symmetries in extra dimensions. The fact that the internal gauge transforma-
tions are physically distinguishable from ordinary (four-dimensional) spacetime coor-
dinate transformations is due to the fact that the vacuum of the theory is M* x BP—4,
where B" is a compact space of dimension n, rather than MP. Since there is no
evidence for extra dimensions yet at the microscopic level the space B™ must have a
characteristic radius so small that it cannot be probed at the energies which have been
available in particle accelerators to date. The process of going from the manifold MP”
to M* x BP=* is called “spontaneous compactification” if the process is induced by

the structure of the vacuum, in analogy to spontaneous symmetry breaking.

The concepts of Kaluza-Klein theory can be readily understood by considering the
original 5-dimensional theory [53, 54]. Kaluza’s idea was to suppose that the physical

world is described by the standard Einstein action in five dimensions

1
d°z\/g R. (1.29)

TR

Here g = ‘det g AB! and &2 = 47G, where G is Newton’s constant in five dimensions.

S(5)

The 5-metric may be conveniently parameterized in terms of a real scalar field o, a
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4-vector A, and a 4-metric 1g,, (z) as follows:

drko —2K0
ds? = exp | — | (dx® + 2k A, dz")? + ex (
p ( \/§> ( pdzt) P~

where 2% denotes the single extra spatial dimension, the index p runs from 0 to 3 and

) Y datda”, (1.30)

k? = 4@ is the standard gravitational constant in four dimensions.

Compactification is achieved by taking the internal manifold to be S* so that z°
is periodic, being identified modulo 27 R,.. Since the internal manifold is a circle one

may expand the components of o, A, and *g,,, as Fourier series in z°:

O'(:L‘A) _ Z J(”)(x/\)eim5/R“,AM(xA)

n=—oo

n inz® /R,
= Y AP @) e g, ()

n=—oo
o0

= ) gl at)em/ (1.31)

One now makes the ansatz that *g,, is independent of 2, i.e., that 9/92° is a Killing
vector. This is equivalent to considering only the zero modes in (1.31) — the low-energy
limit of the full theory. The restricted 5—dimensional Einstein equations may then be

obtained from the effective 4-dimensional action
4 _R 1 v 1 4 v
Sw = [ doy/=tg (5 — 7 exp(2V3RO)FW P + = g 0,00,0 ) (1.32)
K

If one wishes to identify the actions (1.29) and (1.32) then the 4-dimensional and

5-dimensional gravitational constants must be related by

G =27R,G. (1.33)

However, such an identification is not required at the level of the classical equations.
Coordinate transformations in five dimensions which preserve the symmetry of the

ground state, namely
ot — (), ° — 2% + A(z), (1.34)

give rise to 4-dimensional coordinate transformations and U(1) gauge transformations,

. 1
A= Ay = A+ 0, (1.35)
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in the effective 4-dimensional theory.

To determine the order of magnitude of the radius R, that one could expect in a
realistic theory one can consider coupling a complex scalar field ¢ to the 5-dimensional
theory. If ¢ is expressed by a Fourier series similarly to (1.31) then the 5-dimensional

scalar Lagrangian
Lisye = 99"70,0"050 (1.36)

reduces to an effective 4-dimensional Lagrangian

Ly = Z /_ 4g{(D“q§("))* D#Qb(n) . n2¢(n)*¢(n) exp <—\2/I%0‘> } | (137)

where
9
D,=0,— "4, (1.38)
Ry
It follows that the 4-dimensional electric charge is quantised in units of
2K
= 1.39
€ R,{ ? ( )

and consequently R, ~ 3.78 x 1073*m =~ 23.4 fpiana, which certainly makes it too
small to be observed experimentally.

One can see from (1.37) that the non-zero modes correspond to massive charged

particles when viewed from four dimensions. The particles have masses,

n? —2Kk0
m, = — ex , 1.40
R, P < V3 ) (1.40)

which are of course related to their charges because of (1.39). The coupling to the

dilaton means that the “mass” terms are position dependent. Omne has in effect an
infinite tower of states with charges and masses which are integer multiples of e and
mgy = 2ke respectively. These states have been named “Kaluza—Klein excitations”.
Similar massive states will be present in the theory if the non-zero modes of (1.31) are
included. One finds, in fact, that the massive states of the free 5-dimensional theory are
pure spin two [55]. Of course the 5-dimensional model is by no means realistic. How-
ever, many of its features, such as the presence of Kaluza—Klein excitations, remain in
more sophisticated unified models. If Kaluza—Klein excitations are stable, which seems
reasonable [56, 57|, then they should be present in the universe today as “remnants”

from the compactification era. Thus on one hand Kaluza—Klein excitations are possible
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candidates for the dark matter in the universe, while on the other hand cosmological

arguments could be used to place constraints on Kaluza—Klein excitation masses [56].

The above example is a very simple case of the dimensional reduction procedure.
The 5-dimensional theory may be generalised in a straightforward manner to models
in higher dimensions which yield an effective 4-dimensional action with non-Abelian
Yang-Mills fields when dimensionally reduced [58]-[62]. The D-dimensional spacetime
is taken to be the product of M* and a compact manifold B”~*, where B”~* admits the
Killing vectors &7, ..., &} _, which generate the Lie algebra of the required Yang-Mills

gauge group. In analogy to (1.34) the coordinate transformation

ot —T(x), Yt =y (y) +0%(2)Eq, (1.41)

induce the appropriate non-Abelian gauge transformations. (Here z# and y® are physi-
cal and internal space coordinates respectively.) The dimensional reduction procedure

may be further generalised to include supersymmetry [63]-[66].

In general, one must take care in applying the “Kaluza-Klein ansatz”. In particular,
one must make sure that removal of the massive modes from the higher-dimensional
field equations can be performed consistently, rather than naively setting the massive
modes to zero in the higher-dimensional action and then deriving field equations from
the dimensionally-reduced action. If one takes the second approach then it is possible
that solutions of the truncated theory are not solutions of the full theory. The 5-
dimensional theory is consistent (provided the scalar field ¢ is included) but one cannot
be sure that there is a consistent truncation for an arbitrary Kaluza-Klein theory [67].
This is something which must be checked model by model, although certain criteria

guarantee consistency in some cases [68].

Ideally one would like to have some sort of dynamical mechanism to explain how
compactification took place: there should be some criterion such as a conserved energy-
like quantity, with which different vacua of the theory could be graded. However, it
would require quite a considerable extension of physical concepts to achieve this. As
things stand, one cannot compare the magnitude of physical quantities calculated in one
spacetime with those calculated in another [69]. For example, the definition of energy

in general relativity depends on boundary conditions, which will differ for spacetimes
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of different geometry.

1.3.3 Analysis of Higher Dimensional Black Holes

While the four dimensional Kerr-(A)dS solution is thermodynamically stable [70]-
[72], and gravitational stability has been studied in ref [73], the thermodynamic and
gravitational stability of higher dimensional Kerr—(A)dS black holes has yet to fully
studied. We would like to know how the thermodynamic and gravitational stability
of Kerr-(A)dS spacetimes varies with dimension. Specifically, we are very interested
in modes of instability which are intrinsically higher dimensional in that they do not
exist in four dimensional spacetimes. For example, four dimensional Kerr black holes
can have one rotation parameter, but in higher dimensions they can have more. We
investigate the thermodynamic and gravitational stability properties of these higher

dimensional spacetimes in chapter 2.

1.4 Brane Worlds

Theorists have questioned whether there may be other possibilities for treating the
extra dimensions of unified theories other than in the original Kaluza—Klein scenario,
with the possibility of making testable predictions at energy scales lower than the
Planck scale. For example, one possibility naturally arising in an M-theory context is

that our universe is a 3-(mem)brane?!, embedded in a higher 11-dimensional geometry.

Early attempts at describing the universe as a brane embedded in a higher dimen-
sional geometry were not entirely successful [75]-[78]. Some of the problems encountered
were the possibility of processes like electron—positron annihilation with no visible decay
products at high energies, due to the high energy particles ability to penetrate into the
extra dimensions [75], or the lack of a well-defined graviton zero mode that would

produce an effective four dimensional Newtons law of gravity on the brane [78].

4A membrane, or “brane” [74] is a hypersurface embedded in a higher dimensional “bulk” space-

time.
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1.4.1 Large Extra (Compact) Dimensions

Interest in alternatives to the original Kaluza—Klein scenario took off when Arkani-
Hamed, Dimopolous and Dvali (ADD) introduced the phenomenological idea 5 that
there may be large compact extra dimensions [80]-[82] — potentially as large as 0.1mm.
Since then these bounds have been improved, e.g. see [83]. In order to evade the
Kaluza—Klein bound on electromagnetism, it was suggested that Standard Model par-
ticles were confined to a three—brane, while gravity was free to probe the extra dimen-

sions. This picture is known as the “brane world” scenario; see [84] for a review.

Given that branes are an intrinsic feature of M-theory, studying brane worlds in the
context of M-theory seems natural. In particular, there are a certain type of branes
predicted by M-theory: Dirichlet-branes [85]. D-Branes have the interesting property
that standard model gauge fields are confined to the brane, as those gauge fields are
modelled as open strings whose ends must terminate on a D-brane. Gravity on the
other hand is modelled as closed loops of string which are not confined to D-branes.
D-branes and M-theory therefore provide a natural setting for the ADD brane world

scenario.

The vast difference in energy between the electroweak and Planck scale is difficult
to understand from the viewpoint of theoretical particle physics, and is called the
hierarchy problem. The standard model of particle physics predicts a Higgs boson
(which gives masses to the weak interaction gauge bosons) from electroweak symmetry
breaking. The mass of the Higgs is expected to be near the electroweak symmetry
breaking scale ~ 1 TeV at the 95% confidence level, given the non-observation of the
Higgs and precision measurements of the top quark mass. Perturbation theory in the
standard model suggests that the masses of scalar bosons should be of the order of the
cutoff scale® used when computing quantum corrections. The Planck scale, the scale
at which gravitational interactions become non-negligible, has already been identified

as an obvious potential cutoff scale. Unfortunately since the electroweak and Planck

®An almost identical scenario was proposed earlier by Antoniadis [79)].
5The cutoff scale is the proposed energy scale which provides an upper bound for the validity of

the standard model of particle physics. After this the standard model should be replaced by some

more fundamental theory, for example, a model incorporating supersymmetry.
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energy scales differ in magnitude by about 15 orders of magnitude, picking a Planck
cutoff scale implies that the Higgs boson will have a mass comparable to the Planck
scale, which is much in excess of experimental bounds. This is known as the technical

hierarchy problem.

One resolution of the technical hierarchy problem is supersymmetry. While su-
persymmetry can solve the technical hierarchy problem, it does so by introducing a
massive superpartner for each boson and fermion. The superpartners give quantum
contributions to the mass of the Higgs boson which precisely cancel the contributions of
their partners. Because these superpartners are not observed, supersymmetry is broken
at some scale (the cutoff scale for the standard model of particle physics). Making that
cutoff scale in the TeV range protects the Higgs mass (and other scalar bosons masses)

from quantum corrections above TeV range.

An alternative resolution to the hierarchy problem is that the electroweak scale
1s the Planck scale. This can be accomplished by introducing extra dimensions and
increasing the fundamental strength of gravity, thereby lowering the Planck scale to
that of the electroweak scale. This idea is naturally accommodated within the brane
world scenario, as can be seen by the following simple estimate. Ignoring the back
reaction of the brane tension on the curvature of the embedding spacetime, the basic
idea is to integrate out the extra dimensions in the D dimensional action, leaving an

effective four dimensional theory with action,

— 1 D

S = 167‘[‘GD/d X\/gD(RD), (142)
o VD74 4
= 167-[-GD /d w/g4(R4+£m), (143)

where Gp = M%,_D and Mp is the “real” Planck mass. Therefore

VD,4 1
- 1.44
167TGD 167TG(47 ( )
Vp_4aMBP™? = MZ. (1.45)

Taking a toroidal compactification where all the extra dimensions have the same radius,
R, we find Vp_4 = (2rR)P~*. Therefore we can pick My = 10¥Mp, and choose
the number of extra dimensions to find the size of the extra dimensions. This is no

different to the standard Kaluza—Klein scenario, except that now it has been posited

20



that standard model fields do not propagate in the extra dimensions, thereby leading
to a modification of the calculations involved in determining the spectrum of Kaluza—

Klein excitations.

The mechanical stability of a five dimensional electrostatic spherically symmetric
spacetimes with one toroidally compactified dimension has been most thoroughly con-
sidered in [86], generalising and unifying a number of earlier works. It was found that
black hole solutions are generically stable while regular solutions lead to a stability

condition formulated in terms of an eigenvalue problem.

By introducing more interesting geometries, for example, warped bulk dimensions
[87], one can obtain a finite volume for the bulk even if the extra dimensions are non-
compact [88], leading to new and interesting behaviours for gravity at small scales.
Equivalently, this gives new spectra for the Kaluza—Klein excitations of gravity in
place of the standard Kaluza—Klein excitations. An exciting new possibility in the
brane world scenario is that if extra dimensions exist, and the volume they enclose is
sufficiently large, then due to the changes to the fundamental strength of the gravita-
tional force on small scales, it will be possible to produce “Kaluza—Klein excitations”
of the graviton in particle collider experiments and black holes whose radii are much
smaller than the length scale of the extra dimensions [89]. It is hoped that the Large
Hadron Collider, with TeV (Electroweak) scale events, will be able to probe such
extra dimensions [90]. Additionally, if one were to observe non-conservation of energy,
momentum, charge, etc in future collider events, a brane world scenario would be the

natural explanation, as one would still be able to conserve these quantities in the bulk.

1.4.2 Warped extra dimensions

While one expects a brane to have a non-zero thickness, a huge amount of theoret-
ical work has proceeded by considering distance scales much larger than that of the
thickness of the brane and modelling the brane as a delta-function distribution. The
two most important papers in this scenario were proposed by Randall and Sundrum,;
the Randall-Sundrum I [87] and Randall-Sundrum II [88] models. For an extensive

reference list and review of the Randall-Sundrum models and further developments
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see ref. [89]. The Randall-Sundrum I model introduces two branes with a warped AdS
space in between which acts as a concrete example of the ADD scenario. It additionally
takes into account the tension of the thin branes via the Israel-Lanczos—Sen junctions

conditions, so that the model is gravitationally consistent in the bulk.

The brane we live on in the Randall-Sundrum I model is necessarily negative
tension, in order to solve the hierarchy problem [89]. Negative tension branes are
inherently unstable [91], a feature which is associated with the violation of particular
energy conditions [92, 93]. As a consequence, six-dimensional brane world models have
attracted interest as they are able to naturally incorporate positive tension branes [94].
In the Randall-Sundrum I model, a careful analysis of the effective gravitational equa-
tions on the negative tension brane shows that anti-gravitational general relativity is
recovered in the low energy limit [95] and that it is the positive tension brane which
recovers attractive gravity. Since the extra dimension is compact, one finds a discrete
spectrum of Kaluza—Klein excitations. In order to recover four dimensional general
relativity at low energies, a mechanism is required to stabilise the inter-brane distance,

which corresponds to a scalar field degree of freedom known as the radion [89].

The Randall-Sundrum II model removes the second brane (by moving its position
parameter in the extra dimension to infinity), leaving a single codimension—one brane
with AdS warped space mirrored on either side. Remarkably, even though the extra
dimension is now non-compact and hence the positive Kaluza—Klein mass spectrum
is continuous on the half line, the model gives rise to Newton’s law of gravity with
polynomial corrections on the brane [96]. Unfortunately, the bulk has an AdS Killing
horizon on either side of the brane. This horizon tends to develop curvature singular-
ities upon addition of perturbations, as has been found with black holes [97, 98] and
gravitational waves [99, 100]. This raises questions about boundary conditions that
may need to be imposed in the bulk and about their consequences on the brane. For
example, in the higher-codimension brane world scenarios of [101, 102], the treatment

of a bulk singularity affects the corrections to Newton’s law on the brane [103].
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1.4.3 Hybrid Brane world Models

Louko and Wiltshire [104] proposed a hybrid brane world construction which com-
bines elements of both the Kaluza—Klein and the Randall-Sundrum II models. The
construction works in six dimensions or higher and includes a co-dimension one brane
in addition to a regular Kaluza—Klein direction. Whereas the Randall-Sundrum II
models bulk geometry is closed by an unstable anti-de Sitter horizon, in the Louko—
Whiltshire model the geometry closes at bolts [105]: totally geodesic codimension
two submanifolds at which a rotational Killing vector field vanishes. This provides a
topological, singularity-free boundary condition for gravitational waves or any other
perturbations one may wish to consider. Their model also reproduced Newton’s law
of gravity on the brane, with exponential corrections. However, it did not lead to a
solution of the hierarchy problem since due to parameter restrictions one could not
keep the size of the Kaluza-Klein directions small while simultaneously making the

bulk large enough to accommodate TeV scale gravity.

Brane worlds are most naturally framed within the context of M-theory or one of
its low energy limits. Eleven dimensional supergravity is expected to be the low energy
limit of 11-dimensional M-theory and 6-dimensional Salam-Sezgin supergravity is a
low energy limit of 10—dimensional supergravity. As such, 6-dimensional Salam-Sezgin
supergravity appears to provide a most reasonable framework in which to construct a

6—dimensional brane world model.

It would be desirable to construct a brane world scenario as some low energy limit
of M-theory, in which the hierarchy problem is solved, general relativity /Newton’s law
of gravity is recovered on the brane for large distance scales, and the entire brane world
construction is stable to perturbations. In chapter 4 we present a generalisation of the

Louko—Wiltshire model which appears to have these features.

1.5 Overview of Thesis

In chapter 2 we study the thermodynamic stability of Kerr—AdS black holes in five and

higher dimensions. We also investigate the higher dimensional gravitational stability
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of a background Kerr-(A)dS spacetime under metric perturbations.

In chapter 3 we take the method as outlined by Visser and Wiltshire and analyse the
stability of gravastars that have a Schwarzschild-(anti)-de Sitter or Reissner—Nordstrom
exterior. Given our current understanding, we pick these two types of exterior metrics

as they are physically reasonable, spherically symmetric and static.

In chapter 4 we generalise the hybrid (Kaluza—Klein Randall-Sundrum) brane world
model of Louko and Wiltshire to include a minimally coupled scalar field and an
associated exponential potential as the low energy limit effective action for Salam—

Sezgin six dimensional supergravity.
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Chapter 2

Stability of Higher Dimensional
Rotating (Kerr) AdS Black Holes

2.1 Higher Dimensional Black Holes and String-
Theory

Recently, the study of black holes in a background anti-de Sitter (AdS) spacetime
has been motivated from developments in string/M-theory, which naturally incorpo-
rate black holes as solitonic D-branes, or simply branes as the higher-dimensional
progenitors of black holes. An intriguing example of this is the conjectured anti-
de Sitter/conformal field theory (AdS/CFT) duality [106] between string theory on
AdSs x S® background and N = 2 Super Yang-Mills theory in four dimensions. More
formally, the conjectured AdS/CFT correspondence states that a string/M-theory on
a manifold which can be decomposed into AdS; x Mp_4 is mathematically equivalent

to a conformal field theory (CFT) on the conformal boundary of AdSj.

A vparticularly interesting application of the AdS/CFT conjecture is Witten’s in-
terpretation [107] of the Hawking-Page phase transition between thermal AdS and
an AdS black hole [108] as the confinement-deconfinement phases of the dual gauge
theory defined on the asymptotic boundaries of the AdS space. Much effort has been
put into the weak AdS gravity regime, analyzing the implications of AdS black holes

on dual (gauge) theories at non-zero temperature, using the conjectured AdS/CFT
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correspondence. In this context, the most interesting black hole solutions are pre-
sumably the five dimensional Kerr-AdS solutions for a stationary black hole [71].
The thermodynamics of AdS quantum gravity has been extensively used to infer the
thermodynamics of quantum field theory in the large N (or weak field) limits, with an
AdS gravity dual, such as Schwarzschild-AdS [107], Kerr-Newman-AdS [109]-[112] and
hyperbolic-AdS [113]-[115] black holes.

As noted in the introduction, the generalisation of the arbitrary dimensional Kerr
solution [8] of Myers and Perry [47] to include a cosmological constant has only recently
been given by Hawking et al. [71] and Gibbons et al. [116, 117]. There has also
been recent interest in constructing the analogous charged rotating solutions in gauged
supergravity in four, five and seven dimensions [119], and also on non-uniqueness [120]

of those solutions in five and higher dimensions.

The layout of the chapter is as follows. We begin in section two by outlining the
(anti)—de Sitter background metrics in d dimensions and their generalizations to Kerr-
AdS solutions. In section three we pay special attention to the thermodynamic stability
of Kerr—AdS black holes by studying the behavior of Hawking temperature, free energy
and specific heat in various dimensions. In section four we study the gravitational
stability of background Kerr—(A)dS metrics under linear tensor perturbations. Sepa-
rability of Hamilton-Jacobi and Klein-Gordon equations in the Kerr (anti)-de Sitter
backgrounds was discussed in [121], especially in the limit when all rotation parameters
take the same value, see [122] for a discussion in five dimensions. An earlier work
on separability of the Hamilton-Jacobi equation and quantum radiation from a five
dimensional Kerr black hole with two rotation parameters, but in an asymptotically
flat background, can be found in [123]. However, our analysis in section four is different.
It corresponds not to a separability of the wave equations for a particle but rather to
a separability of radial and angular wave equations under linear tensor perturbations

of the metric.
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2.2 AdS and Kerr-AdS metrics

One of the interesting features of the Kerr metric in (anti)-de Sitter spaces is that it
can be written in the Kerr-Schild form, where the metric g, is given exactly by its

linear approximation around the (anti)-de Sitter metric g, as follows [116, 121]:
2 aj.b _ aq b 2m a\2
ds® = g dz®da’ = gupdx®dz’ + Nia (k,dz®)”, (2.1)

where k, is a null geodesic with respect to both the full metric g4, and the (A)dS metric
Jap- Moreover, the Ricci tensor of g, is related to that of g, by

. . 1/~ - o o
R = R’ = Rahe" + 5 (chahbc VNV e — VOV, b) , (2.2)

where hy, = %”kakb, with m and U being the parameters proportional to the mass and
gravitational potential of a Kerr black hole respectively.
The generalized d-dimensional (anti)-de Sitter metric can be written in a very

compact form:

N+e
~9 dy? A I
ds” = —(1+ cy*)dt* + 1t o +y? E (dui + ,uidqbi) (2.3)
k=1
satisfying
N+e

Z [z =1, (2.4)
i=1

where d = 2N +e+4+1 >4, ¢ =0 when d is even or ¢ = 1 when d is odd. There are
N azimuthal angles ¢; each with period 27 associated with N orthogonal 2—planes
and N + ¢ directional cosines p; where 0 < p; < 1 for 1 < ¢ < N and (for even d)
—1 < puny1 <1, associated with N + ¢ spatial dimensions.

Here we provide parameterisations of n—spheres (with line-element dQ?) for n =

2,3:

e d=4: disevensoec = 1. pu; = sinf, us = cosf, 0 < 6 < 7w, while ¢; = ¢,
0 < ¢ <27 Then
1+1

S d? + p2de? = cos?0d6? + sin® 9d¢? + sin® 06 (2.5)
=1
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= d0? +sin®6 d¢; (2.6)
51xs!
= dO3 (2.7)
S2

e d=5: disevensoe =0. u; =sinf, puy = cosf, 0 <0 < 7T/2, while ¢; = ¢y, ¢y =
$2, 0 < ¢y <27, 0 < 9y < 27m. Then

Z dp? + p2de? = cos® 0d0? + sin 0de? + sin? 0d6? + cos? dg?  (2.8)
= d#* + sin? 0d¢? + cos® 6 dgs (2.9)
\ ~ 3 ~~
T52xs1
= d0; (2.10)
S3

In AdS, spaces the rotation group is SO(d — 1) and the number of independent
rotation parameters for a localized object is equal to the number of Casimir operators,
which is the integer part of (d — 1)/2. Thus in four dimensions the metric of a Kerr
black hole can have only one Casimir invariant of the rotation group SO(3), which
is uniquely defined by an axis of rotation, while in five dimensions it can have two

independent rotation parameters associated with two possible planes of rotation.

One may introduce to (2.3) N rotation parameters, for example, by using the

following coordinate transformation:

N 24 2,2
2 (r” + ai)p;
= ~ 2.11
Y 121 1—ca? ’ (2.11)
where V'€ 2 = 1. The constants a; which are introduced in (2.11) merely as

parameters in a coordinate transformation may be interpreted as genuine rotation
parameters after one adds to (2.3) the square of an appropriate null vector, as in (2.1).

Using the following coordinate transformations [71],

2m dr
V —2m (1+cr?)’

d(ﬁl = d(ﬁl + CCLidT +

dt = dr+

2m a;dr
V —2m(r?+a?)’

(2.12)
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and combining the expressions (2.1), (2.3), (2.11), one can obtain the Kerr (A)dS
metrics in Boyer-Lindquist coordinates. We will not go into details of this construction
but refer the reader to Ref. [116] for an elegant discussion. In five dimensions, the

metric of Kerr-AdS solution is

2
ds* = — W(1+cr?)dr* + % + 2—1&92 + ; f—tﬁé 13 (de; + ca;dr)?
2m 2 aip2de; ’
+ F(dT_;l—cal?) ; (2.13)
where p; = cosf, s = sinf,
p° = r*+alcos’+ aisin®0,
Ay = 1—ca?cos’ — ca3sinb?
Vo= S0+ad) 0?4 @)+ ad)
wo— 2o . Ei=1-ca. (2.14)

(1]

122

In the limit a; — 0, one recovers the standard Schwarzschild-AdS metric. As we
will see shortly, black holes with non-zero rotation parameters, or, in general, Kerr-AdS
black holes, enjoy many interesting properties distinct from Schwarzschild-AdS black

holes.

2.3 Thermodynamics of Kerr AdS Solutions

Using the standard technique of background subtraction, Gibbons et al. [118] have
recently calculated the regularized (Euclidean) actions for the Kerr-AdS black holes in

arbitrary d (> 4) dimensions. The results are

f _ .Ad—2 é Z2N ﬂ(Rz + 042) _ ml2 (215)
87TG Hj Ej l2 paiey !
for odd d(= 2N + 1), and
. Ais B pon T g2 o o2
I=—————|RI R “) —ml 2.16
Seren Gl TR (2.16)
for even d(= 2N + 2), where
o(d-1)/2
== 2.1
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is the volume of the unit (d — 2)-sphere. In the above we have defined ¢ = 1/1%, with
[ being the curvature radius of the (bulk) AdS space. The dimensionless parameters
are: =, =1 — a?, R =ry/l and o = a;/1., where, as usual, r, is the radius of the
horizon, which occurs at the largest root of V' — 2m = 0. The Hawking temperature,

which is the inverse of Euclidean period, T = 1/(, is given by

N
1 € 1
1+ R? S —
( +R)(;R2+a§+2}%2> R?

where € = 0 for odd d and +1 for even d.

ot
27l

, (2.18)

The calculation of total energy in an asymptotically (A)dS background is some-
what trickier (see e.g. [118]), mainly because the analogous Komar integral for the
relevant time-like Killing vector diverges, which then requires a regularization; see
also Ref. [124], which presents a general analysis for the conserved charges and the
first law of thermodynamics for the four dimensional Kerr-Newman-AdS and the five
dimensional Kerr-AdS black holes. In this context, the conserved charges (energies) F
and E’ associated with different Killing vectors, respectively, 9; and 9, + [~'a;0;, are
different. However, the calculation of free energy itself is unambiguous. In fact, one

can always identify the free energy of a Kerr-AdS black hole as F' = I /3, and hence

Ad—2 d 3 2 el
F=1oC(R) — R?) H_JH 1+ . (2.19)

This result is modified from that of a Schwarzschild-AdS black hole by certain terms

in the product which are now functions of R and the rotation parameters «;.

2.3.1 Thermal Phase Transition

Five dimensions

The issue of thermodynamic stability of four dimensional solutions has been well stud-
ied. However, the issue of thermodynamic stability may be raised in five and higher
dimensions. The five-dimensional Kerr-AdS solutions are particularly interesting as

these could be embedded into type IIB supergravity in ten dimensions.

From (2.19), it is readily seen that for R < 1 the free energy, F’, of the background
subtracted Kerr—AdS black hole is greater than zero, F' > 0, while for R > 1, FF < 0. In
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Figure 2.1: (d = 5) The free energy (solid lines) and temperature (dashed lines) as a function
of horizon position, with a1 = ay = «. From top to bottom (free energy) or bottom to top

(temperature): o =1/3, 0.25, 1/8, 0.05. In all plots we have set 4G = 1.

general, when the values of the rotation parameters «; are decreased, the free energy
lowers towards zero at low temperature. For 0 < a < 1, in the small R region, F
nearly approaches but never touches the F' = 0 axis (see Figs. 2.1 and 2.2). That is,

the free energy curve crosses the F' = 0 axis only once, namely when R = 1.

In five dimensions, with a; = as = a > 0, for each non—zero « there is a minimum
R below which the temperature is negative and diverges to negative infinity as R — 0
(see Fig. 2.1). This should be contrasted with (small) Schwarzschild-AdS black holes in
five dimensions, whose temperature diverges to positive infinity as R — 0 which signals
a thermodynamic instability. In fact when T"= 0 a Kerr—AdS black hole simply ceases
to radiate and as such is unable to attain a smaller horizon radius so the limit of R — 0
is physically irrelevant. The minimum radius associated with this freezing can be read
off Fig. 2.1 for a variety of angular momentums. Since the temperature decreases as
the black hole becomes smaller, it can in principle come into thermal equilibrium with
any surrounding thermal radiation. Hence there is a qualitative difference between the

thermodynamic behaviours of Schwarzschild-AdS and Kerr-AdS as R — 0. One can
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Figure 2.2: (d = 5) The free energy (solid lines) and temperature (dashed lines) vs hori-

zon position, with aqy = «, ag = 0. From top to bottom (free energy) or bottom to top

(temperature): o = 0.4, 0.25, 1/6, 0.1.

see that as a — 0 the Kerr—AdS case approximates the Schwarzschild-AdS case for
non—zero R, but in the limit R — 0 there is no smooth transition between the two
behaviours. This is possibly not an issue, as quantum effects may become significant
at such small scales and hence due to the discrete nature of the emitted and absorbed
quanta a smooth transition might not be physically plausible. Additionally, our exterior
vacuum approximation almost certainly breaks down.

We note that the limit of R — 0 is equivalent to fixing r, and sending [ — oo. This
corresponds to reducing the cosmological constant, where the limit R = 0 corresponds

to zero cosmological constant, i.e. we are left with a Myers—Perry higher dimensional

Kerr black hole.
In Fig. 2.3 we show parametric plots of F' vs T for T" > 0. This means that the

limit R — 0 is not shown. However, as can be seen in Fig. 2.1 the physically irrelevant
region in Fig. 2.3 would be characterised by F' — oo, T' — —oo. We also note that the
specific heat is a monotonically increasing function of temperature when a > 0.15, i.e.,

five dimensional Kerr—AdS black holes which rotate sufficiently fast with equal rotation
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Figure 2.3: (d = 5) The free energy, F(R), vs temperature, T (R), with oy = as = « plotted
parametrically as functions of R with fixed a. From top to bottom: o = 1/3, 0.2, 0.1, 0.05.
For all a, F(1) =0 as in Fig. 2.1.

parameters are thermodynamically stable at all horizon radii.

The Hawking temperature of a Kerr-AdS black hole with one non-vanishing rota-
tion parameter approaches zero as R goes to zero. The free energy is still a smooth
relation of both the horizon size and the temperature (see Figs. 2.2 and 2.4). These
imply thermodynamic stability for a small Kerr black hole which conserves its angular

momentum in AdSj space with either one non—zero or two equal rotation parameters.

It should also be noted that while the behaviour of the temperature and free energy
as functions of R appear qualitatively quite different between the one non—zero and
two equal rotation parameter cases, when I’ and T are plotted parametrically against
each other the qualitative behaviours of the two cases are identical and as such the
different cases should not be thought of as having radically different thermodynamic

behaviour.

33



Co0 o000
PN WSO

0.6 0.8

0.2 o.‘4'\
0. 1!

Figure 2.4: (d =5) The free energy vs temperature plotted parametrically as functions of R
with a1 = a, ag = 0. From top to bottom: a = 0.4, 0.25, 1/6, 0.1
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Figure 2.5: (d = 6) The free energy and temperature vs horizon position, with a1 = ag = av.

From top to bottom: o = 0.4, 1/3, 0.25, 0.1.

The thermodynamic behavior found in six—dimensions is similar to that in five
dimensions in the case of two equal rotation parameters as can be seen by comparing
Fig. 2.1 and Fig. 2.5.

As the plots in Figs. 2.5-2.8 show the thermodynamics of single parameter solutions
are quite different from those with equal rotation parameters. Not only do the free
energy and temperature as functions of R behave differently, but when F' and T are
plotted parametrically against each other, the case of one non—zero rotation parameter
behaves quite differently to that of two equal rotation parameters.

We see that the equal rotation parameter case leaves small stable Kerr—AdS black
holes, while the case with one non—zero rotation parameter behaves similarly to the
Schwarzschild-AdS case, in that if the black hole has a radius smaller than [ it is
thermodynamically unstable, and according to this analysis will completely evaporate

leaving an equilibrium solution of thermal-anti de—Sitter space.

35



1.2 4
0.8 A\
04
0. 2! ‘

0.2 0.4 0.6 0.8 ]\\ R
-0. 2!

Figure 2.6: (d = 6) The free energy and temperature vs horizon position, with oy = «,

ag = 0. From top to bottom: a = 0.5, 0.4, 0.25, 0.04.
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Figure 2.7: (d = 6) The free energy vs temperature plotted parametrically as functions of R
with a; = ay = a. From top to bottom: o = 1/3, 0.25, 0.2, 0.12.
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Figure 2.8: (d = 6) The free energy vs temperature plotted parametrically as functions of R
with a1 = «, ag = 0. From left to right: a = 0.5, 0.35, 0.2, 0.05
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Figure 2.9: The free energy vs temperature with a single non-vanishing rotation parameter

a. From left to right d =4 (with « = 0.3) and d = 6, 8, 10 (with o = 0.5).

37



1. 25;
1,
0. 75}
0. 5
0. 25}

- 0. 25;

F

0.2\ 0.4

0.6 0. 1 (1.2

Figure 2.10: The free energy vs temperature with equal rotation parameters, o; = o = 0.4.

From left to right d = 6, 8, 10. Note that on the far left d = 4 has been displayed for

comparison purposes, even though it has only one rotation parameter.
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Figure 2.11: The free energy vs temperature plotted parametrically as functions of R with a

single non-vanishing rotation parameter c. From left to right: d =5, 7, 9, 11 (with o = 0.6).
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Figure 2.12: The free energy vs temperature plotted parametrically as functions of R with

equal rotation parameters, o; = o = 0.5. From left to right d =5, 7, 9, 11.
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2.3.2 The first law of AdS bulk thermodynamics
One of the simplest ways of calculating the energy in an asymptotically AdS background
is to integrate the first law of (bulk) thermodynamics:
dE =T dS+» .J".

(2.20)
where the entropy S and angular momenta (of a rotating black hole) J; are defined via
o . ., OF
S=p—=—-1, J =-—
ﬁa/@ Y
where

o0

(2.21)
QZ‘ = ai(l + R2)l

R+ o2
In Ref. [118], the mass (energy) of Kerr AdS black hole was evaluated, by demanding

(2.22)
as a priori that entropy of the black hole is one-quarter the area, S = A/4, in order to
satisfy (2.20). The results are, for d = 2N + 1 > 5,

N
mAd_g 1 1
FE = [——
47THjEj (zzl = ) ’

Ag o 2N -1 a a?\ 1
S = IR 14+ =)= 2.23
a1+ 55) 5 (223)
and for d = 2N +2 > 4,
N
mAd_Q 1
E = —
47THjEj Z :z’
Ag 2N a ai\ 1
S = IR 1+ = 2.24
This result differs from the expression of energy suggested by Hawking et al. in [71],
both in odd and even dimensions,
E/ mAd*Q

(d-2)

- N =
4T szl = 2

(2.25)
The reason for this is that the energy (2.25) is measured in a frame rotating at infinity
with the angular velocities:

Q/ [0 73] )

(2

- R? + o’

(2.26)
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instead of (2.22). Since the angular velocities differ by Q; — Q) = «; [, the two results
above, (2.23) or (2.24), (2.25), agree only in the limit o; — 0 (i.e. X; — 1).

It should be noted that in the limit of r, — 0, £ — 0. This is expected, as
the infinite energy due to the non-zero value of the cosmological constant has been

subtracted out in the background subtraction procedure.

2.3.3 The specific heat and thermodynamic stability

A black hole as a thermodynamic system is semiclassically unstable if it has negative
specific heat. As is known, small Schwarzschild-AdS black holes (i.e. with a; = 0)
have negative specific heat but large black holes have positive specific heat. There also
exists a discontinuity of the specific heat as a function of temperature at R = 1//2, and
so small and large black holes are found to have different thermodynamic behaviour.
However, this is not the case when some of the a; are non-trivial. For example, we
shall find that a small Kerr black hole in AdS5 space has positive specific heat if its

horizon radius is sufficiently small with respect to the AdS length scale [.

Five dimensions

We shall study the thermodynamic stability of a Kerr-AdS black hole by evaluating its

specific heat, which is given by
_OF
o

Figures 2.13 and 2.14 show the plots of energy and temperature differentials as functions

Cy (2.27)

of the horizon size R with fixed angular momenta. In the case of one non—zero rotation
parameter, Fig. 2.13, dT" = 0 can have two roots for a < 1/4/17, a repeated root at
a = 1/4/17 and no roots for a > 1/4/17. The roots are exactly given by

1—5a2+ 17a% — 18a2 + 1
Ri:\/ 5a \/27a Sa2 + (2.28)

and the repeated root occurs at R = /3/17 = 0.42. As dE > 0 for all « in the one
non—zero rotation parameter case, dE/dT < 0 between the roots in R which means
that the specific heat is negative there and the Kerr—AdS black hole will be locally

thermodynamically unstable. It becomes stable again if it can radiate while conserving
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Figure 2.13: (d =5) The energy and temperature differentials w.r.t. R vs horizon position,
with a1 = a, ag = 0. As R — 0, dE — 0 and dT > 0. From top to bottom (free energy)
or bottom to top (temperature) o = 0.5, 1/3, 0.25, 1/6. It is possible for there to exist an
interval of R where dT < 0 for values of a < 1/+/17.

angular momentum, thereby dropping its horizon radius enough to gain a positive
specific heat, which would eventually allow it to come into thermal equilibrium with
the surrounding thermal radiation. However, it is well known that Kerr black holes
can shed angular momentum while radiating. As such it is plausible that the black
hole will transfer its angular momentum into its radiation, thereby remaining unstable
long enough to eventually become Schwarzschild—AdS and hence evaporate completely.
However, it is also plausible that the black hole can be “spun up” by absorbing radiation
with angular momentum, potentially not only coming into thermal equilibrium, but
also coming into “rotational equilibrium” with the surrounding radiation, making it
semiclassically stable. Further detailed work on the exact evolution of such black holes
in thermal equilibrium with a surrounding radiation fluid would be required to settle

this issue definitively and remains outside the scope of the current work.

As seen in Fig. 2.14, the case of equal rotation parameters in five dimensions d1" = 0

has two roots for a < 0.15, a repeated root for o ~ 0.15, at R ~ 0.4, and no roots
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Figure 2.14: (d = 5) The energy and temperature differentials vs horizon position, with a; =

ag=a. As R — 0, dE — +o0 and dT' — —oo. From left to right: o = 0.1, 1/6, 0.25, 1/3.

for @« 2 0.15. However, in this case dE becomes negative for sufficiently small R
and as such the specific heat becomes negative, implying a thermodynamic instability.
However, it should be noted that this limit cannot be reached by an evaporating black
hole as the temperature also heads towards zero, in a positive specific heat region of
R. That is, the end point of gravitational evaporation in this scenario is a black hole
with zero specific heat and zero temperature of finite size — before this occurs the black

hole will come into thermal equilibrium with its surrounding radiation, subject to the

assumption of it conserving its angular momenta.

Once again, it is potentially plausible that the black hole can shed its angular
momenta, but in doing so it will always have a positive specific heat. It might be
subject to an instability in the form of eventually approximating Schwarzschild-AdS. Tt
is also entirely plausible that this black hole can lose its angular momentum during the
evaporation phase in such a way that it becomes well approximated by the single non—
zero rotation parameter case, i.e., where it loses angular momentum roughly equally
from both rotation parameters until one rotation parameter is exactly zero and the

other is approximately zero due to an appreciable discrete loss of angular momentum.

43



t t t t T
0.5 1 1.5 2 2.5

Figure 2.15: (d = 5) The specific heat vs temperature with a; = as = «; from top
to bottom « = 0.17, 1/3, 0.5, 0.6. When « is < 1/6, then there would appear a new

branch with almost constant specific heat at low temperature.

Via this process, if the single rotation parameter case is stable then the end point of

the equal rotation parameter case would also be stable.

Six dimensions

Similarly, in d > 6 dimensions, the Kerr-AdS black holes become unstable for rotation
parameters below some critical values, at which point a new branch appears. When
d = 6, with equal rotation parameters, the critical value is o ~ 0.22 (see Figs. 2.16—

2.17); it is slightly higher in the case of a single rotation parameter.

However, in the case of equal rotation parameters the same behaviour as the five
dimensional cases is observed, and it is uncertain whether or not the black holes can
completely evaporate. The single rotation parameter case clearly shows an instability
for small R, regardless of angular momentum. In that case the specific heat is negative
for small enough R, and the temperature diverges to positive infinity. In this scenario

it is almost certain that the small black holes will evaporate, leaving thermal AdS as
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the equilibrium solution.

5

Figure 2.16: (d = 6) The energy differential (solid lines) and temperature differential (dashed
lines) vs horizon position, with a; = ag = «. From left to right (dE in the dE > 0 region)
or top to bottom (dT'): o = 0.5, 0.2, 0.1, 1/15

n dimensions

In all odd dimensions, the specific heat has a single branch at high rotation and two
branches or more branches at low rotations: the critical value of o which distinguishes
these two cases increases with the number dimensions, and also with number of non-
trivial rotation parameters. A similar behavior is observed in all even dimensions d > 6,
but in this case an interesting difference is that the specific heat can never be zero with

T>0.

It seems relevant to ask what happens at the critical angular velocity limit, o; = 1.
Apparently, the action as well as the entropy is divergent in this limit. Nevertheless,
as discussed in [71] (see also [125]), there exists a scaling of the mass parameter m — 0
which makes the physical charges of the configuration finite. With equal rotation
parameters, when «; — 1, Kerr-AdS black holes are thermodynamically stable. On

the other hand, in all even dimensions d > 6, small Kerr-AdS black holes with a single
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Figure 2.17: (d = 6) The specific heat vs temperature plotted parametrically as functions
of R with ay = as = a.. From top to bottom a = 0.25, 0.5, 0.6, 0.7

non-vanishing rotation parameter are thermodynamically unstable.

In our plots we have used the energy expressions suggested by Gibbons et al. [118],
which differ from those suggested by Hawking et al. [71] by some overall constant
factors. This itself does not introduce any significant difference in the behavior of the
specific heat and hence the thermodynamic stability of Kerr-AdS solutions. At any
rate, the energy measured in a non-rotating frame can be derived using various other
methods [126, 127, 128, 129, 130] and so is easier to work with; the energy (or total
mass) expressions given in [128], however, disagree with those in [118] in odd spacetime

dimensions.



2.3.4 The temperature bound for rotating black holes

It was recently shown in [131] that at fixed entropy, the temperature of a rotating black
hole is bounded above by that of a non-rotating black hole in four and five dimensions,
but not in six or more dimensions. We verify this claim by plotting temperature as a
function of entropy, in various dimensions; some of the plots are depicted in Figs. 2.18—
2.20. In six dimensions or more, the minimum of the entropy is not always the minimum
of the temperature; the minimum of the entropy actually depends upon the choice
of rotation parameters. This is precisely the case where the inequality Tker-adas >
Ts aqs may be realized with a very small entropy. But in this limit the temperature
actually diverges, so an effect like this might be absent in a physical picture. At
fixed entropy, but S > 0, the Hawking temperature of a rotating black hole is always
suppressed relative to that of a non-rotating black hole and the inequality Tker-ads <
Ts aqs holds in all dimensions. This result, presumably, holds with various charges
and classical matter fields (such as gauge fields, dilaton, etc) and is in accord with the
earlier observation made by Visser while studying a static spherically symmetric case

in four dimensions with no cosmological term [132].

A five dimensional Kerr-AdS black hole with a single non-vanishing rotation para-
meter possesses an interesting (and perhaps desirable) feature; in this case the entropy
vanishes when the temperature becomes zero. A similar feature is present in seven

dimensions, but with two equal rotation parameters: a; = as ~0.33, a3 = 0.

In recent work [133] on the evolution of a five dimensional rotating black hole via
scalar field radiation, Maeda et al. observed that in a flat background (¢ = 0), the
asymptotic state of a five dimensional rotating black hole with a single non-vanishing
parameter is described by a ~ 0.11v/M. It would be interesting to know a similar result

in an anti-de Sitter background, ¢ > 0.
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Figure 2.18: The temperature vs entropy plotted parametrically as functions of R, in various

dimensions with equal rotation parameters, c;; = «. From top to bottom: d =7, 6, 5, 4 with

all «; = 0 (dashed lines); from left to right: d =6, 7, 4, 5 (solid lines) each with o = 0.4.
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Figure 2.19: The temperature vs entropy plotted parametrically as functions of R with a
single rotation parameter «. From top to bottom: d = 7, 6, 5, 4 each with a = 0.4 (solid

lines), and o; = 0 (dashed lines).
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Figure 2.20: The temperature vs entropy plotted parametrically as functions of R, in the
small entropy region. From top to bottom (in the region S > 0.1): d =10, 9, 8, 7 with a; =
<ran—1 = 0.01, ay = 0.9 (solid lines, Kerr-AdS) and «; = 0 (dashed lines, Schwarzschild-
AdS).
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2.3.5 Rotation and the AdS-CFT correspondence

Following [107, 71], one would expect the partition function of a Kerr-AdS black hole
to be related to the partition function of a CF'T in a rotating Einstein universe on the

(conformal) boundary of the AdS space.

A curious observation in Ref. [134] is that the Cardy-Verlinde entropy formula works
more naturally using the bulk thermodynamic variables defined by Hawking et al. [71].
This seems to indicate that the energy expression (2.25) is still relevant in a dual CFT.
The Killing vector is then given by

0 0

= — 4+ Q—, 2.29
X~ 5 Mg, (2.29)
where ¢; are the angular coordinates. This property normally allows the thermal

radiation to rotate with black hole’s angular velocity all the way to conformal infinity.

One could ask whether or not the bulk thermodynamic variables suggested by
Gibbons et al. [118], which were measured with respect to a frame that is non-rotating
at infinity, can be mapped onto the boundary CFT variables by using the usual scaling
argument. This does not seem to be the case as long as the CFT is assumed to be on
a surface of large R in Boyer-Lindquist coordinates. However, such a mapping might
exist when the CFT is assumed to be on a large spherical surface, that is one for
which the coordinate y = constant at large y. That is to say, it is possible that the
set of bulk variables for Kerr-AdS black holes given by Gibbons et al.[118], in some
(modified) form, match onto the boundary CFT variables that satisfy the first law of

thermodynamics. This was indeed shown to be the case in [131].

Let us briefly discuss the role of non-trivial rotation parameters on the existence of
an equilibrium between Kerr-AdS black hole and co-rotating thermal radiation around
it. For this, the requirement of a positive specific heat is a necessary condition. In
five dimensions, the specific heat is always positive and also a monotonically increasing
function of temperature when one (or both) of the rotation parameters takes a value
at least one-quarter the AdS length scale [. It should also be noted that for all values
of the rotation parameters the specific heat is positive for sufficiently small Kerr—AdS
black holes in five dimensions. This means that, unlike in Minkowski (infinite) space,

rotating Kerr-AdS black holes (which conserve their angular momentum) can be in
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equilibrium with their thermal radiation rotating around them, when 0 < «; < 1.

2.4 The stability of the background of Kerr—AdS

spacetime under gravitational perturbations

Gravitational (classical) stability of a spacetime is physically more important than
thermodynamic stability. While it is possible to have a physically reasonable spacetime
which is classically stable but thermodynamically unstable (e.g. 4-D Schwarzschild) it
is more difficult to seriously consider solutions in general relativity as physical without

classical stability.

The Schwarzschild solution has been shown to be stable against small metric per-
turbations by Vishveshwara [135], Zerilli [136, 137] and Chandrasekhar [138]. Similar
efforts have been attempted with the Kerr solution by Press and Teukolsky [139, 140,
141], Hartle and Wilkins [142], Chandrasekhar and Detweiler [143]-[147] and others,
but due to the huge increase in complications when setting up and solving the lin-
earised perturbation equations, they were only able to provide plausibility or numerical
arguments against exponentially growing modes on a Kerr background — no definitive
proofs of gravitational stability are available. However, Press was able to show that
all slowly rotating Kerr black holes are gravitationally stable, as expected since they
are approximately Schwarzschild which is stable. Whiting [148] was able to prove that
normal modes of the Kerr solution grow linearly at most in time. This is consistent
with the study of massive scalar perturbations of Kerr which point to the existence of

unstable modes with growth times similar to the age of the universe [149, 150, 151].

As a precursor to studying Kerr—AdS spacetimes in higher dimensions, in this sec-
tion we study the stability of Kerr-AdS background metrics (with A = 0) in dimensions
five and higher against linearised metric perturbations. For this purpose, it is sufficient

to consider the following d-dimensional (time-independent) metric ansatz:
gap(X)dX X = g, (v)datda” + y(2)2dS ,(2), (2.30)

where the metric g.,(X) is effectively separated into two parts: a diagonal “bulk” line

element and dX? | which is the metric on an n-dimensional “base manifold”, M™,
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whose curvature has not been specified, (so k = 0 or 1), and hence can be replaced
by any Einstein-Kéhler metric with the same scalar curvature. Tilded quantities refer
to base manifold quantities. However, in the present work we study only the k = +1
case. The modes we will study do not exist in stability analyses of, for example,
Schwarzschild, as no suitable restrictions of these modes exist on S? [152]. Hence
the modes we study are intrinsically higher dimensional. A comprehensive classical
stability analysis of metrics of the form (2.30) has been carried out in ref [153], but
the work there does not specifically address modes of instability which are exclusively
higher dimensional. We also note that the form of (2.30) is sufficiently general to
encompass a variety of non-rotating massive black hole solutions, but we will restrict

our attention to the AdS backgrounds of higher dimensional Kerr—AdS black holes.

It should be noted that the rotation parameters which parameterise the angular
momenta of the spacetime become coordinate transformations when the mass para-
meter is zero. This can be seen most simply by considering the Kerr—Schild form of
Kerr—AdS:

ab = Jab + %kakl,dx“dxb. (2.31)
Setting M = 0, the geometry reduces to that of the AdS base space, with whatever
non-trivial topologies one assigns to it. The higher dimensional tensor perturbations
of AdS with non-trivial topologies have already been studied by Gibbons and Hartnoll
[154]. Here we perform the same analysis as in [154] but in a set of coordinates adapted
to a Kerr—AdS spacetime in the hope that some previously unrecognised behaviour,

potentially related to higher dimensional Kerr—AdS spacetimes, becomes apparent.

2.4.1 The Lichnerowicz operator

To study the inherently higher dimension tensor modes of the base manifolds of space-
times of the form 2.30, we will use the Lichnerowicz operator [154]. Under a small

linear metric perturbation,
gab(X) - gab(X) + hab(X) ) (232>
where h is symmetric and |h?| < 1, the variation in the Ricci tensor is given by,

1 1
ORap = §ALhab - §Vavbh2 + V(aVhye, (2.33)
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where the spin-2 Lichnerowicz operator A acting on a rank two symmetric tensor is

defined by (see, for example, [155])
Aphgy = —=V?hay — 2Reaanh®™ + 2R (ah5),. (2.34)

The stability of background metrics of the form (2.30) with n > 2, under certain metric
perturbations, is expected to be specific to tensor perturbations [154]. We therefore

would like to restrict our analysis here to the tensor mode fluctuations that satisfy

hap(X) =0 (2.35)
unless (a,b) = (i,7), where the indices a,b,--- run from 0---(d — 1) and the indices
i, 7, will run from (d—mn) - - - (d—1) for the n-dimensional base manifold. The above

choice of the form of the perturbation tensor does not correspond to a gauge choice,
but instead has the effect of removing the scalar and vector modes of the perturbation

leaving one with just the higher dimensional tensor modes on the base manifold [154].

The Lichnerowicz operator Ay is compatible with the transverse, trace-free (de
Donder) gauge for hu: hy = 0 = hi,,. Applying the transverse tracefree gauge, the

variation of the Ricci tensor with coordinates restricted to the base manifold satisfies
1
0Ri; = 5(ALh)i; = —c(d = 1)hy; , (2.36)

where ¢ is the d-dimensional cosmological constant and

d—n
1 ~ 1 d, ,
Aphi; = ?ALhzj +[=g" 0,0 hij + ) {8"90,, = 597" 0u90p + (4—n) 77 9" hij
v=1
4
-z (9" Oy () 0,7y (2)] hig, (2.37)

where A rhij is the spin-2 Lichnerowicz operator acting on the base manifold M. Tt
should be noted that this expression generalises other results in the literature and is

applicable to a wide range of spacetimes satisfying 2.30.

2.4.2 Dependence on radial coordinate only

Let us first consider a background spacetime where d = n + 2, such that we can write
the metric as

ds® = —a(r)?de® + B(r)2dr? + v (r)2d32. (2.38)
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We can write the Lichnerowicz operator as

1~ 0? af 571 (878 r ar 4 ’772*
ALhij = [?AL + |:Oz_l; - @} + [E - E + (4 - n)7:| @ - ?@} hz](239>

where the subscripts ¢, r denote derivatives w.r.t. ¢, r respectively. In this case we find

it convenient to choose metric perturbations of the form
hij = W (r)e hi;(#), (2.40)

such that
(Arh)ij = Ahij, (2.41)

where z are coordinates on M"™ and A is the eigenvalue of the Lichnerowicz operator

on M". We wish to write the perturbed equations

in the form

(83* — V(r*)) d(r,) = W*®(r,). (2.43)

To do so, consider a second order differential equation of the form
(A8 4+ BO, + C + DO} + EAL)h =0, (2.44)

where A, B, C' are functions of r only. We find it is convenient to choose h = \Il(r)e"til,

such that &Lﬁ = M. We then have
(AD? + BO, + C + Dw? + EN)U(r)e?th = 0. (2.45)
For non-zero fluctuations, e“th # 0, this implies that
(Ad? + B, + C)¥(r) = 0, (2.46)
where C' = C + Dw? + EX. We would like to write this in the form
(02 = V(a(r)] ¢ = P (2.47)
To facilitate this we introduce two transformations:
dr = —dz, ¥ = xp. (2.48)

ox
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The differential equation then takes the form

A, 2Ax" B Arg] AX" B Ar,, !
Sl e L Y et e ¢
r2 2 x T r

2
z Tz X

where 7, =1’ = (9r/0z). Let us define

— = + : 2.50
D x 2Dr, = 2r, ( )
This implies

Tow 1 Ax—i-Dx
r.. 2\A D )

— (2.51)
The differential equation then takes the standard form:

83 — Vi = wo, (2.52)

Therefore to facilitate the transformation of (2.42) to (2.43) we introduce two

where

where C = C + E\.

transformations:
dr = g—;dr*, U(r) = x(r)®(r), (2.54)
with
x(r) = CiyW=m72, (2.55)
We then find

v

M2 n2—10n+8 (. \? —4)
V(r(r,)) ;Jr” 4” (V) +(”2 )%+2(n+1)ca2, (2.56)

- O _a
T = or, or ﬁ%’
a’ a B
Vrare = E |:7rr + (g - E) ’Y?“:| . (257)

The above potential correctly reproduces the result in ref [115] (cf. Eq. (41) with
a? = f(r) and 4% = r?), see also [154, 156]. Apparently, the case n = 4 is special.
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2.4.3 Anti de—Sitter spacetime in odd dimensions

In the case of an odd number of spacetime dimensions d = 2N +1 =n+ 2 > 5, the
AdS background metric may be given in rotating coordinates by

(14 cr?) de? r? dr? N r? + a?
(1 — ca?) (1+cer?)(r2+a?) 1—ca?

ds? = — ds2(M™), (2.58)

where the rotation parameters are set equal (i.e., a; = as = a). The base space .K/lv”,
which is topologically S?V~!, may be parameterized by the metric
N
> (dig + fgdé}) (2.59)
k=1

satisfying
N
dpr=1. (2.60)
i=1

There are N azimuthal angles ¢; each with period 27 associated with N orthogonal
2—planes and N directional cosines p; where 0 < p; < 1 for 1 < ¢ < N associated
with N spatial dimensions. For example, in five dimensions, the metric on base M3 is
ds*(M3) = d6? + sin? d¢? + cos? Odp3.

In the above background, the linear tensor perturbations satisfy

ALhij = —2c (n + 1) hija (261)
where
Aphy = [_ (r* +a*)(1 +cr?) 8_2 X 4—7"2 I 1__@“28_2 y
r2 or?2  (r2+4a?)? 1+ er?2 ot?

afr T2 + a2 (ALh‘)l] (262)

r r3

_ 201 _ 2 o
B ((n—2)cr+n 4 a’(1 cr))@hzj+1 ca

In terms of the Regge-Wheeler type coordinate r,, which may be defined by

2 2 2
ar = YWV tat (2.63)

rv1 — ca?
and using Eqgs. (2.40),(2.54) the differential equation is cast in the standard form:
d?®

T2
dr?

+V(r(r,))® = —w’® = EO, (2.64)

where the potential is

Vot = A U o
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This potential is well behaved around r» = 0 due to the coordinate transformation with
a # 0. Note that one is able to reproduce the relevant result in [154] by making the
substitution

7‘2+a2 9

— Y. (2.66)

1 — ca?

There exists a criterion for stability against exponentially growing modes of the

perturbations in terms of the minimum Lichnerowicz eigenvalue, A,,;,, on the base

manifold M™. In the case of a vanishing cosmological constant (¢ = 0), this criterion
is the same as that for a Schwarzschild-AdS background [154]:

2 _10n +8
A > Ao = —% & stability. (2.67)

A requirement that A. > 0 constrains the spacetime dimensions to n < 9 (or d < 11).
The stability of the potential depends on the eigenvalue A, ensuring that the potential
is positive everywhere and bounded from below. Taking the limit » — 0 in (2.65) and
defining ;1 = ca® where a > 0 we find the criteria for stability,
n*—10n+8+4(3n —2) u
N 4(1 = p) ‘

where p < 1. Setting A, > 0 provides an upper bound on p for each n. Specifically,

A> A = (2.68)

2_10n 4 8 + 4\,
Yo = — OO AA (2.69)
483n —2—X\.)

Increasing n pushes the maximum value of p down, and for n > 9, e < 0. Note

that for p < 0, ¢ < 0, which corresponds to de-Sitter spacetime.
Instead of solving the Schrédinger-like equation directly in terms of r,, one can
solve the radial part of equation (2.61) by expressing it as a hypergeometric equation,

whose solution is given by linear combinations of

T+ p (5—n+2v)/4 /26
v = (THF) (14 1)/ (2.70)
+2v —(n—1 tw 2v+(n+3 Tw T +
2F1< ( )+ ) ( )+ ,:tl/‘f—l,— lu)v
4 2,/c 4 2,/c 1—pu
where = = cr?, and
1
v = 5\/4A + (5 —n)2 — 16. (2.71)

We note that reality of v immediately implies the stability condition (2.67) as it provides

a (slightly) more stringent bound on A.. Reality of the solution also requires w = i@
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which implies that there are no exponentially growing (unstable) modes. Requiring the
solution to be bounded as r — oo fixes one arbitrary constant which leaves ¥ decaying
as 717", Given that U = y® we find that ® decays as r~("*t?/2_ By considering the
large r limit of potential (2.65) we also see that n > 2 so that eq. (2.64) remains
bounded as required to ensure that the total energy is finite; this is automatically

satisfied as n > 3 by construction.

2.4.4 AdS spacetime in even dimensions

Consider a background spacetime where d = n + 3, such that we can write the metric

as

ds* = —a(r,0)*dt* + B(r,0)*dr* + o(r,0)*d6*

+v(r, 0)2dX2. (2.72)

We can write the Lichnerowicz operator as

1~ 82 (93 ag QU ﬁr O Yy arhz
_a9 Py 0w ) dhy AR A2,
+ [ a B + . +(4—-n) 7} o2 2 | + 2 hij, (2.73)

To this end, we shall consider a Kerr-AdS metric with M = 0 (i.e., AdS spacetime)

in even dimensions, n = 2N — 1, by setting the N rotation parameters equal (i.e.

a; = --- = ay = a). The background metric is [116]
1+ cr?)Ag p?
g2 = —LEr)B g0 dr?
§ 1 — ca? i (14 er?)(r? + a?) "
2 2 | 2) 2
p° o (r*+a®)sin®0—, ~
-—df d 2.74
where,
P’ =r*+a*cos’d, Ay=1— ca®cos’0. (2.75)
The Lichnerowicz operator is
1—ca®* 0* (14 (r?*+a?) 0°
(ALh);; = 1+ 2 A, 92 2 Or2
J (1+ cr2)Ay ot p or
Ng 0* 4 [(r*(1+cr?) N Ay
p2 002 p2 \ 1?2+ a2 tan? 6 “
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(1—ca®) ~

* (72 + a?) sin® f vhig
+ /% (2(1 = ca?) — (n — 1)(1 + er?)) B,hy
m (2(1 = ca®) = (n — 2)Ag) Ophy;.
(2.76)
Equation (2.76) may be separated by writing,
hi; = W(r)e“tS(0)hi;(Z), (2.77)
and taking the large r limit. Hence,
0 = (7"25—:2 +(n— 1)7"% —2n + %) 0, (2.78)
0 = Ag% - tajle (2(1 = ca®) = (n — 2)Ap) Z_g
2 201 _ ~n2
(t;lf;e N A(im?cea - <1(;A:a ) _p) 5, (2.79)

where we have defined (ﬁ Lﬁ)ij = /\ﬁij, so that A is the eigenvalue of the Lichnerowicz

operator on Mv”, and p is the separation constant.

The radial equation is easily solved to yield

_ +2 [p _ n+2 [p
U o= (2-ny/2y (T R (2-n)/2y, ). (2.80
cr 1 5\ o2 + cor 1 5 '\ o2 ( )

However, regularity of the radial solution at r = oo requires ¢; = 0 and hence as r — oo

the radial solution behaves as

U(r) ~ L, (2.81)

Equation (2.79), together with boundary conditions of regularity at # = 0 and T,
constitute an eigenvalue problem for the separation constant p. For sinf ~ 6, cosf ~
1, the solution is

S =002 )0 (2) + 2Yim(2)], (2.82)

where

(2.83)



The criterion for gravitational stability, in terms of the minimum Lichnerowicz eigen-
value \,,,;,, on the base manifold Mv”, namely A\in > Ae = 4—(5—n)?/4, now translates
into the requirement that m € R. However we note that ¢ # 0 in this case. In AdS

space, ¢ > 0, for reality of the solution we also require,

W2
0<l—ca®*<1, p<——. (2.84)
c
For real w, p < 0 and hence /p/cr? is imaginary, but this is not allowed by the
radial wave equation. Therefore there are no normalisable solutions with w € R and
hence unstable modes are not allowed. For w — i@, one requires p < @?/c. A useful
inequality for stability of the background AdS metric (2.74) is therefore,

~2

W
0<p<—. (2.85)

c
Instead of considering the large r limit in (2.76), let us now consider the special case
where the angular velocity approaches the critical limit, ca® = 1 (or @ = [). The
eigenfunctions are then the associated Legendre polynomials P*(cosf), Q2 (cosf),

where,

m = A T,

A= %<\/(n—6)(n+2)—1>. (2.86)

An interesting case is n = 7, which allows one to study supergravity solutions in d = 10.
It would be interesting to know what the limit ca? — 1 corresponds to in a dual field

theory. We leave this issue to future work.

Because of the form of the original metric, it is not possible to transform the results
in this section into that of [154] via a coordinate transformation. Specifically, the base
manifold studied here is different to the standard boundary of AdS spacetime, due
to the way the AdS metric in this section has been decomposed into bulk and base

spacetimes.

2.5 Conclusion

In chapter 2 the thermodynamics of higher-dimensional (d > 5) rotating black holes

in a background (anti)-de Sitter spacetime were studied. The thermodynamic quan-
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tities for Kerr-AdS black hole solutions suggested by Gibbons et al. [118] have been
used to study the behavior of the free energy and specific heat (which are defined
unambiguously in all spacetime dimensions d > 4) as functions of temperature and
horizon positions. The two apparently different expressions of energy in the Kerr-AdS
background suggested by Hawking et al. [71] and Gibbons et al. [118] do not introduce
any significant difference in the behavior of bulk thermodynamic quantities (such as
entropy, free energy, specific heat, etc) and therefore the thermodynamic stability of
Kerr-AdS solutions. Nevertheless, the Gibbons et al. bulk variables are more useful as
they map onto the boundary variables with the natural definition of boundary metric,
that is the one for which the coordinate y = constant for large y, and they satisfy the

first law of thermodynamics.

As for thermodynamic stability, most rotating black holes are found to be stable for
all non—zero values of the rotation parameters. The exception to this is for 2n, n > 3
dimensions with one non-zero rotation parameter. Sufficiently small black holes in

those spacetimes are thermodynamically unstable.

We have not attempted to tackle the extremely difficult calculations associated with
the determination of the classical stability of higher dimensional Kerr—AdS black holes,
even for special values of the rotation parameters. A study of the classical stability
of the higher dimensional AdS background in coordinates adapted to the rotating
case does not yield any new information above that already obtained by Gibbons and

Hartnoll [154].
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Chapter 3

Gravastars with generalised

exteriors

3.1 Gravastars

Black holes are widely accepted as physical objects due to their mathematical elegance
and the strong astronomical evidence for their existence. The study of the properties
of black hole horizons is of fundamental importance as horizons appear to provide a
strong link between gravitation, thermodynamics and quantum theory. However, these
horizons when described semi-classically give rise to a number of seemingly paradoxical
theoretical problems which have yet to be satisfactorily resolved (see [20] for a review).
For example, one such topic of current interest is whether a pure quantum state which
passes over the event horizon of a black hole can evolve into a mixed state during
black hole evaporation. This has relevance in the scenario that matter (requiring much
information to describe) can collapse into a black hole (requiring little information to
describe, via a no hair theorem). As discussed in the introduction, this problem is
known as the ‘black hole information paradox’. It is generally accepted that the final
resolution of this issue, and other difficult theoretical problems (such as the ‘blue shift
catastrophe’ [157]) caused by the current description of black hole horizons, will be
achieved using quantum gravity. However, we do not yet have a full theory of quantum

gravity, and therefore, other possible solutions to remove the paradoxes generated by
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black hole horizons should be investigated.

Given the above, it has been suggested that alternative endpoints of gravitational
collapse of a massive star, which do not involve horizons, should also be studied. The
general idea is to prevent the possibility of a horizon forming, by stopping the collapse
of matter at some radius greater than that of the horizon. This prevention of the
formation of a horizon thereby precludes problems like the black hole information

paradox.

There are a variety of proposals including the Mazur—Mottola “gravastar” (gravita-
tional vacuum star) [37]. Mazur and Mottola’s gravastar scenario is a solution of
Einstein’s equations which has a Schwarzschild exterior, a de-Sitter interior, and a rigid
spherical shell of matter whose thickness is of the order of the Planck length, suspended
approximately a couple of Planck lengths outside of the Schwarzschild radius. Due to
their extreme compactness, it seems difficult to observationally distinguish gravastars
from black holes. It has been argued that any star, with a surface, will emit much
more radiation during accretion than black holes (which have no surface) (see [158] for

a review), but it has also been shown that gravastars may be just as ‘black’ as black

holes [159].

Although the gravastar model forwarded by Mazur and Mottola has not gained
much attention by the majority of general relativists, it has led others to construct
similar models. Bili¢ et al. consider a gravastar with a Born-Infeld-phantom inte-
rior geometry [160], while Cattoen et al. generate a method for creating generalised
gravastars with anisotropic continuous pressures [161]. Another scenario envisages the
horizon as an emergent property of a quantum phase transition analogous to liquid-

vapor critical point of a Bose superfluid [36].

Visser and Wiltshire [38] sought to determine whether the Mazur-Mottola gravastar
is dynamically stable against radial perturbations. To do so, rather than considering
the original Mazur—Mottola gravastar, they considered a simplified model with three

layers:

e An external Schwarzschild vacuum, p =0 = P

e A single thin shell [162], with surface density o and surface tension #; with radius
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a>2M.
e A de Sitter (dS) interior, P = —p.

Using this model they found a condition for stability for the thin shell against radial
perturbations in terms of an ‘effective energy equation’ for a non-relativistic particle
with ’energy’ E in a potential’ V(a),

%aQ +V(a)=E. (3.1)

See section 4 from [38] for a precise definition of V(a) and the quantities therein.
The thin shell will be stable against radial perturbations if and only if there exists

some ag such that V(a) satisfies
V(ao) = 0; V'(ag) = 0; V"(ag) > 0. (3.2)

Using Visser and Wiltshire’s method one is able to prescribe the interior matter,
m_(a), exterior matter, m4(a), and the potential V(a) of the gravastar to parametri-
cally find the equation of state for the thin shell. Indeed, as we note below, the mass of
the thin shell, ms(a) = 4wo(a) a?, can be calculated as an explicit function of m (a),
m_(a) and V(a).

Visser and Wiltshire demonstrated that there exist large classes of potentials, and
consequently, equations of state, for which gravastars are stable against spherically
symmetric gravitational perturbations as well as large classes of potentials which are
unstable. Consequently, particular choices of potentials and mass functions need to
be studied on a case by case basis, since more general criteria for stability are not

presently known.

The layout of this chapter is as follows. We begin Section two by briefly review-
ing the Schwarzschild—gravastar formalism set up by Visser and Wiltshire [38], and
generalising it to include a cosmological constant in the exterior geometry. We then
introduce the dominant energy condition criteria for the thin shell and find parameters
for the internal and external geometries which allow the shell to be stable to radial
perturbations. We also present some examples of allowable equations of state for the
thin shell. In Section three we repeat the analysis of section two, but instead of a

cosmological constant the exterior geometry now has electric and/or magnetic charge.
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3.2 Schwarzschild—(A)dS Gravastar

3.2.1 Definitions

Following directly on from the work of Visser and Wiltshire [38], we start with the
general equations, (47) and (49), from their paper. These relate the surface density,
o(a), and surface tension, #(a), of the thin shell which makes up the surface of the

gravastar, to the potential and mass functions via

[\/1 9V (a) - ngm)” | (3.3)

1-2V(a) —m(a)/a —aV'(a) — m/(a)
V1-2V(a) —2m(a)/a ” ' (34)

where m_(a) is the interior mass profile, m (a) is the exterior mass profile, V' (a) is the

o(a) = 1o

O(a) =— [

effective energy potential, and
[X]] =Xy —X_. (3.5)

See [163] for more details on this notation. See [38] for more discussion on the above
expressions and definitions. We now specialise the exterior geometry to Schwarzschild-

(A)dS, the interior to (A)dS, and the potential to zero. We therefore write

my(a) = M — Ad®/6, (3.6)
m_(a) = kad®, (3.7)
V(a) = 0, (3.8)

where A is the asymptotic constant spatial curvature of the exterior geometry and £ is
the curvature of the interior geometry due to a vacuum energy. We note that in this
analysis, for £ = 0 in Eq.(3.1), the choice of V' (a) = 0 provides a stable equilibrium
for the gravastar thin shell, as @ = 0, and hence the radius, a, cannot change to some
other value. Simultaneously, V(a) = V'(a) = V”(a) = 0 for all values of a. This
specialization to V' (a) = 0 closely follows the calculation of [38]. We now convert all

variables to dimensionless parameters, parameterised by M;
A:%,L:AMQ,K:kMQ,p:aM,PzeM. (3.9)
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This leads to

2
VI—2KA? — /1 % ﬂ : (3.10)

1 2L A2
1 — 4K A? 1—z+ g

87TA AV 1 — 2KA2 / + L_A2

Reality of the reparameterised surface density, p, and surface tension, P, requires

P(A) =

(3.11)

1
K < CYER
6 3

3.2.2 Solutions

We first present a detailed analysis of the dominant energy condition, as it provides
the most restrictive conditions on the matter of the thin shell of the gravastar. Given
that the matter is presumed to form through a quantum phase transition, we cannot
specifically state the type of matter that forms the thin shell, but we shall assume
the dominant energy condition continues to hold. For brevity we define the region
satisfying the dominant energy condition by M, and the boundary of M by OM. The
left and right sides of M are defined by the equations

p+P=0, p—P=0, (3.13)

respectively, satisfying the condition that p > 0. Solutions to the above equations
give the points where the equation of state, p(P), enters or exits M. After some

manipulation Egs.(3.13) become,

2 2
g5 A4 VI—2KA? = (3 — 8K A?) 1—3+£, (3.14)
A 3 A 3
and
2 LA2
(A=3VI—2KA = A1 - 2+ =, (3.15)

respectively. Squaring these two expressions can lead to an inclusion of a relative minus
sign between the different sides of the equations, which we account for by placing extra

restrictions on K and L. For K and L satisfying (3.12) we can see that the [.h.s. of
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Figure 3.1: The solution space for stable gravastars with (A)dS interior and Schwarzschild—
(A)dS exterior satisfying p + P = 0 in the left panel, or p — P = 0 in the right panel. The
number of solutions in each graph indicates how many times the equation of state intersects
the part of OM that the equation defining the graph represents. The unshaded parts have

no solutions, and correspondingly have no interval of p(P) which lies in M.

(3.14) is positive. Therefore the r.h.s. is also positive, thereby providing the bound
K < &372 which applies to Eq.(3.16) below. Similarly the r.h.s. of (3.15) is positive,
which implies the [h.s. is positive and hence A > 3 for Eq.(3.17) below. After some

further manipulation we find the multivariate polynomials,
0 = (—32KL*—192LK?) A®+ (16L* — 576K7) A°
+ (240K L + 1152K?) A® + (45L + 270K ) A*
+(—324K — 120L) A® — 450 K A* — 108 A + 225, (3.16)
and,
0=—12A+27 - 6KA* + 36 KA® — 54K A — LA*. (3.17)

The octic equation in A, (3.16), is not analytically solvable in general. We therefore
solve this, and the quartic in A, (3.17), numerically and create a contour plot repre-
senting the number of solutions for A in the phase space parameterised by K and L.
Such solutions will have a number of restrictions placed on them. Specifically, they

must satisfy the inequality (3.12), p > 0, and any other conditions required for the
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0s

Two Solutions

Four Solutions

Figure 3.2: The solution space for stable Gravastars with (A)dS interior and (A)dS Schwarz-
schild exterior satisfying p+ P = 0 or p — P = 0. The unshaded region has no solutions
where p(P) intersects M, and due to continuity of the equation of state, no interval of p(P)
lies in M. The shaded regions with two solutions have one interval of p(P) which lies in M,
while the region with four solutions has two intervals of p(P) satisfying the dominant energy

condition.

consistency of (3.14) and (3.15). Figure 3.1 displays the number of times the equation
of state, p(P), crosses the boundaries of M, p+ P = 0 and p — P = 0, separately.
Figure 3.2 shows the combined results of the two panels in Fig. 3.1. Figure 3.1 is useful
for determining the qualitative behavior of the equation of state, while Fig. 3.2 is useful
for determining the existence of gravastar solutions which have a thin-shell satisfying

the dominant energy condition.

One can see from Fig. 3.2 that there are many different regions of K and L that
have real and finite solutions to the equations that define O M. This means that for
those values of K and L there is always an interval of the equation of state, p(P), which
satisfies the dominant energy condition. This means there can always be gravastars
with thin shells of matter which satisfy the dominant energy condition and are stable to
radial perturbations. Visser and Wiltshire’s gravastar with an exterior Schwarzschild

solution is reproduced as a special case in this diagram when L = 0. The unshaded
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Figure 3.3: The behavior of p(P) for the thin shell of a gravastar with K = —0.01 and a
range of values of L. From left to right, L = {0.1,0.06,0,—0.0435, —0.7, —0.1}.

region has no solutions, implying that the equation of state does not enter or exit M.
One can check that for those parameter ranges p(P) does not lie in M. This means
that for those values of the parameters K and L, it is not possible to form a gravastar
which has a static thin-shell satisfying the dominant energy condition which is stable

under radial perturbations.

One can find the five ‘bounding curves’, which are depicted by L(K) in Fig. 3.2,
by studying the factorised discriminants of Eqgs. (3.16)-(3.17), where (3.16)-(3.17) are
viewed as polynomials in A, and the restrictions on the parameters given by (3.12)
that ensure p and P are real. The ‘bounding curves’ are the relevant parametric curves

which bound the regions of the number of intersections of p(P) with M. They are

given by,
L = -1/9,
L = —-6K,

L = 2K(VT2K - 3), (3.18)
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Figure 3.4: The behavior of p(P) for the thin shell of a gravastar with K = 0 and a range
of values of L. From left to right, L = {0.07,0,—0.0435, —0.07, —0.1}.

and the ninth order polynomial in L, namely Lq(K'), which is found by factorising the

discriminant of (3.16). (The actual expression is too large to fit here.)

There is a small region of the parameter space for K and L, with stable gravastar
solutions when the interior is a de Sitter space, while there exists an infinitely large
region of the parameter space for K and L when the interior is anti—de Sitter space.
The region with a Schwarzschild-de Sitter exterior is much larger than the region with
a Schwarzschild—anti-de Sitter exterior. The most important bounds on K and L,

governing the existence of gravastar solutions, are given by —1/9 < L < Lg(K).

There are different qualitative behaviors that p(P) can take depending on the value
of the parameters K and L, which we present in Figs. (3.3)—(3.5). The various graphs
show the quantitative behavior of p(P) for specific values of K and L, but each graph
is indicative of the qualitative behavior of p(P) for a particular range of values of K
and L. The equation of state exhibits a smooth transition from one type of qualitative

behavior to another as the values of K and L pass over the ‘bounding curves’.
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Figure 3.5: The behavior of p(P) for the thin shell of a gravastar with K = 0.01 and a range
of values of L. From left to right, L = {0.07,0,—0.0435, —0.07, —0.1}.
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3.3 Reissner—Nordstrom gravastar

One Solution \u One Solution

1.24

Two Solutions

0.64 06

[~ Two Solutions

0.4+ 0.4

024 02

K K

Figure 3.6: The solution space for stable Gravastars with (A)dS interior and Reissner—
Nordstrom exterior, satisfying p + P = 0 in the left panel, or p — P = 0 in the right panel.
The number of solutions describes how many times p(P) passes through the left or right side
of OM in the left or right panel respectively. If there are no solutions, then p(P) does not

cross OM, and no interval of p(P) satisfies the dominant energy condition.

We now consider a gravastar with charge ¢ such that the radial electric field is given
by E, = -%. In this case,

q2

ﬂa
m_ = kA®. (3.19)

m+:M—

Following the same procedure as used for the Schwarzschild (A)dS case we find the
dimensionless equations that define the endpoints of the interval of p(P) in M, located

on the left (p+ P = 0) and right (p — P = 0) sides of 9 M, given respectively by,

(3—Z+Z—C§)m:(3—8KA2),/1—%+%, (3.20)
(1_Z+F> V1I—2KA? =4/1— (3.21)
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Figure 3.7: The solution space for stable Gravastars with (A)dS interior and Reissner—
Nordstrom exterior, where p(P) for the thin shell satisfies either p+ P = 0 or p — P = 0.
The regions with solutions have at least one interval of p(P) which lies in M. Therefore,
for these regions, there exist stable gravastar solutions. Conversely, the regions without
solutions do not allow stable gravastar solutions where the thin shell satisfies the dominant

energy condition.

where @) = ]3[—22 > 0. The other dimensionless quantities are as shown in (3.9). These

can be manipulated to give

0 = —64K%A® +128K?A" + (30K — 64QK?) A% — 36 K A® — 20QA + 4Q?
+(24KQ — 50K)A* + (40KQ — 12)A® + (3Q + 25 — 8KQ*)A*,  (3.22)

and,

0 = —2KA° +12KA° + (—8KQ — 18K)A* + (24KQ — 4)A®
+(3Q +9 — 8KQ?*)A? — 12QA + 4Q?, (3.23)

respectively. Once again we demand that p and P be real which leads to

1
Q> 24— A% (3.24)
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Figure 3.8: The behavior of p(P) for the thin shell of a gravastar with K = —0.5 and a
range of values of ). From left to right, Q = {0.9,0.99,1.01,1.1}. The behavior for Q < 1 is
qualitatively different to that of Q > 1.

As before, squaring (3.20) and (3.21) can lead to an inclusion of a relative minus sign
in (3.22) and (3.23) respectively, which we account for by placing extra restrictions on
K and @ so that (3.22) and (3.23) are consistent with (3.20) and (3.21). We present
our findings for the left and right sides of oM, p+ P = 0 and p — P = 0, separately
in the left and right panels of Fig. 3.6, while we combine the panels in Fig. 3.7.

Once again the parametric bounds are given by some of the factors of the discrim-
inants of (3.22) and (3.23) when they are viewed as polynomials in A, the condition
that p > 0, and the inequalities in (3.24). The case studied by Visser and Wiltshire

[38] is recovered here with () = 0. There are five bounding curves. Three of them are

given by,

Q =1, (3.25)

3(2K2)1/3
= —_-— 2
Q —— (3.26)

—14+ 22K

Q = +— (3.27)

2K

The fourth one is given by polynomial which is twelfth order in @), found by factorising
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Figure 3.9: The behavior of p(P) for the thin shell of a gravastar with K = 0 and a range
of values of Q). From left to right, Q = {0.99,0.999,1.01,1.1}. The behavior for Q < 1 is
qualitatively different to that of Q@ > 1.

the discriminant of (3.20). The fifth bound is given by the octic in @ found by
factorising the discriminant of (3.21). The qualitative behaviors of the equation of

state depend on the choice of the parameters { K, Q}, as seen in Figs. 3.8-3.11.

Extending this section to include a magnetic charge is straight forward, via the
substitution ¢> — ¢ + p? where p is the total magnetic charge of the system. It does
not change the results in terms of (), instead it amounts to a redefinition of what
we attribute ) to. We note that including a non-zero charge to the exterior of the
gravastar greatly increases the range of parameter K of the (A)dS interior for which
solutions exist. Gravastars with a charge approximately equal to their mass are ‘most
favored’ for a de Sitter interior in the sense that for such values of () the least amount of
‘fine-tuning’ of K is required. However, when ) = 1, p(P) appears to be discontinuous

for K < 0.423798525400 (13s.£.).
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Figure 3.10: The behavior of p(P) for the thin shell of a gravastar with K = 0.1 and a
range of values of ). From left to right, Q = {0.9,0.99,1.01,1.1}. The behavior for Q < 1 is
qualitatively different to that of Q > 1.
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Figure 3.11: This figure shows the behavior of p(P) for the thin shell of a gravastar with
K = 0.8 and a range of values of ). From top to bottom, @ = {0.945,0.951,1}. The

qualitative behavior of the equation of state is continuous as ) — 1.
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3.4 Conclusion

In this chapter it has been demonstrated that the method presented by Visser and
Wiltshire [38] can be used to generate stable gravastars with a non-trivial exterior
involving either a vacuum energy or an electromagnetic charge. The Schwarzschild case
they studied is retrieved here as a special case. The case with a Schwarzschild-(A)dS
exterior, (see Fig. 3.2), puts bounds on both the interior and exterior values of a vacuum
energy allowable for stable gravastar solutions to exist. The most important bound in

this case is that the exterior vacuum energy satisfies —5 M2 < A < Lo(K)M 2.

The Reissner—Nordstrom solution (Fig. 3.7) is very interesting as it is physically
reasonable to allow massive stellar objects to have a (small) non-zero electric charge.
We find that for a de Sitter interior, the range of the allowable vacuum energy smoothly
increases as one adds charge, until the charge is close to the limit ¢> = M?. At
this point the range of the parameter governing the interior vacuum energy becomes
greatly enlarged by comparison with the ¢ = 0 (Schwarzschild) case. These results are
important as they demonstrate that there exists a wide range of allowable gravastars
with thin shells satisfying the dominant energy condition which are stable to radial

perturbations.

For future research it would be interesting to study the model in [38] with V' (a) # 0
or @ # 0 as these represent a wider class of configurations of potential gravastars. An-
other avenue for furthering this research would be to consider a gravastar with external
Kerr—geometry, although the method provided by [38] would have to be generalised first

to include off-diagonal terms in the metric, and that is likely to be highly non—trivial.

One source of a realistic gravastar interior might be a fundamental scalar field
resulting from Kaluza—Klein compactification of extra dimensions [164] (see [165] or
[166] for a review). Therefore it would be interesting to see what effect a scalar field
has on the stability of the external geometry. Finally, investigating the implications of
transitions in the equation of state from one type of qualitative behavior to another is

of interest (see Figs. 3.8-3.10); we leave this work for a future paper.
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Chapter 4

Hybrid Brane Worlds in the
Salam-Sezgin Model

4.1 Hybrid Brane Worlds

The idea that our universe might be a surface (either a thin or thick “brane”) embedded
in a higher—dimensional spacetime with large bulk dimensions [75]-[168] continues to
be the focus of much interest. While 5-dimensional models based on the Randall-
Sundrum scenarios [167, 168] have attracted the most attention, recently there has

been growing interest in 6-dimensional models [169]-[185].

One reason for investigating 6-dimensional models is to determine whether or
not some of the more interesting features of brane world models in five dimensions
are peculiar to five dimensions. Another reason is that six dimensions allow one
greater freedom in building models with positive tension branes only [94]. Possibly
the strongest motivation for investigating six dimensional models is the possibility
of solving the cosmological constant problem in a natural manner [176, 180]. While
codimension two branes do pose technical problems for the cosmological constant issue
[182], which might be more easily resolved in the model considered here, we will not
address the solution of the cosmological constant problem directly in this chapter; it

remains an interesting possibility for future work.

A common feature of many of the 6-dimensional models currently being investigated
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is that, in order to localize gravity on a 3—-brane, a 4—brane is incorporated into the
model at a finite proper distance from the 3-brane. (See, for example, the work of refs.
[94, 173, 177], which are based on extensions of the AdS soliton [186].) However, due to
the form of the bulk geometry, Einstein’s equations often preclude the insertion of sim-
ple 4-branes of pure tension into these models. Several mechanisms have been proposed
to deal with this, including the addition of a particular configuration of matter fields
to the brane [169] and “delocalization” of a 3-brane around the 4-brane [94]. In this
chapter, we will by contrast discuss a 6—dimensional brane world model with localized
gravity and a single 4-brane with tension coupled to a scalar field, generalizing an
earlier construction by Louko and Wiltshire [172]. The construction is fundamentally
different to those which consider our observed universe to be a codimension two defect;
in particular the physical universe is a codimension one brane in six dimensions with

an additional Kaluza—Klein direction.

The construction of ref. [172] was based on the bulk geometry of fluxbranes in 6-
dimensional Einstein-Maxwell theory with a bulk cosmological constant [78], a model
which continues to attract attention in its own right [187]. However, if one is interested
in 6-dimensional models then a more natural choice might be a supersymmetric model,
such as the chiral, N = 2 gauged supergravity model of Salam and Sezgin [188, 189].
Generally higher-dimensional models of gravity are introduced in the context of super-

gravity models, which are themselves low-energy limits of string— or M—theory.

Supersymmetry has of course played a central role in the recently studied codi-
mension two brane world constructions, and the Salam—Sezgin model has featured in
the supersymmetric large extra dimensions scenario [175, 176, 179, 183, 185]. One
motivation for providing an alternative construction based on codimension one branes
is that discontinuities associated with codimension one surfaces in general relativity
are very well understood and easier to treat mathematically than codimension two or
higher defects [190, 191]. While codimension two defects can be regularised a host of
technical issues are introduced when additional matter fields are added to the brane
[182, 192]. The construction of ref. [172] avoids these problems. Similarly, whereas
the anti-de Sitter horizon in the bulk of the Randall-Sundrum II model [168] can

become singular upon additional of matter fields, the construction of [172] involves
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a geometry which closes in a completely regular fashion in the bulk. Full non—linear
gravitational wave solutions were exhibited in the background of ref. [172], without

additional singularities.

The biggest phenomenological problem faced by the model of [172] was that the
parameter freedom available in 6-dimensional Einstein-Maxwell theory with a cosmo-
logical constant did not seem to allow the proper volume of the compact dimensions to
be made arbitrarily large as compared to the proper circumference of the Kaluza—Klein
circle, as would be required for a solution of the hierarchy problem. It is our aim in
this chapter to demonstrate that a supersymmetric background can solve this problem,

and that an interesting hybrid compactification without singularities arises.

M. M,

Figure 4.1: An embedding of the bulk (r,0) dimensions of M into R3.

The model considered in this article can therefore be viewed as a five dimensional
Kaluza—Klein universe that forms a co-dimension one surface within a six-dimensional
bulk where the codimension has a Z, symmetry across the brane which smoothly
terminates in a totally geodesic submanifold, a “bolt”, which does not suffer a conical
defect. An embedding diagram of the bulk is shown in Fig.4.1 where the bolts are at
ro, the brane at r,, and the bulk geometry has been mirrored across the brane. The
topology of the bulk solution is thus R* x S2. We consider the case where there is
both a magnetic flux in the bulk (the fluxbrane) and a bulk scalar field, the potential
of which is dictated by the form of the Salam-Sezgin action. While the model can in

80



principle support any Einstein space, we limit most of our analysis to the case where the
4-dimensional cosmological constant is zero (i.e. the observed universe is Minkowski)
in order to solve the field equations exactly. Both the bulk magnetic field and the bulk
scalar field will impact the behaviour of gravity on the brane and we show how one
can explicitly calculate the essential features of the gravitational potential between two
test masses on the brane. Since it is assumed that the brane will correspond to our
universe (modulo the Kaluza-Klein dimension) this will indicate how the effects of the

extra dimensions and their fields will modify four dimensional gravity.

The chapter is organized as follows. In Section 2 we introduce the Salam-Sezgin
fluxbrane solution and discuss the structure of the bulk geometry. In Section 3 we go on
to discuss junction conditions arising from the brane and show how the position of this
brane is fixed by the bulk geometry alone. In section 4 we show how this construction
gives rise to a Newton—like gravitational law in the brane, together with the exponential
corrections expected of a model with compact extra dimensions. While the analysis
is made by analogy to the case of a scalar propagator, the calculation contains the
essential features important to the more involved calculation for gravitational pertur-
bations. This is justified by the presentation of nonlinear gravitational wave solutions
in Section 4.4.4. The hierarchy problem is addressed in Section 4.5. In section 4.6
general arguments are presented about the extension to the case of physical universes
with the geometry of general Einstein spaces, which include the phenomenologically

interesting case of de Sitter space.

4.2 Salam-Sezgin fluxbranes

The bosonic sector of N = 2 chiral Einstein-Maxwell supergravity in six dimensions
— the Salam-Sezgin model [188, 189] — may be truncated to the degrees of freedom
described by the action:

Ae_ﬁﬂs

2K2

R
S = /A4d6x\/—g <@ — %186@ 0¢ — 1—126_2“¢Gach“bc — Alle””‘f’FabF“b -
(4.1)
where Fy, is the field strength of a U(1) gauge field, Gy, is the 3-form field strength of
the Kalb-Ramond field, By, ¢ is the dilaton, k* = 47G and A = ¢,?/(k*) > 0, where
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g, is the U(1) gauge constant. Generically, the bosonic action (4.1) is supplemented
by the contribution of additional scalars, ®#, belonging to hypermultiplets. However,

these may be consistently set to zero.

We will also make the additional simplification of setting the Kalb-Ramond field,
By, to zero, as we wish to consider just the simplest non-trivial fluxbrane solutions in

the Salam-Sezgin model. This leaves us with the field equations:

Gab = 2/{26’“;5 (Fach ‘- %gabFCchd) + KJ2 (8a¢ 8b¢ - %8C¢ 8cgb) - gabAe_n¢(4‘2>
D (V=ge"?F*) =0, (4.3)

Ok¢ — L% Fp F** 4+ Ae ™ = 0. (4.4)

Static fluxbrane solutions may be found by assuming a metric ansatz of the form

1)
A(r)

ds,”> = r*gdatds” + + A(r)de?, (4.5)

where 6 is the Kaluza-Klein direction, r is the radion and g,,(z) is the metric on a

4-dimensional Einstein spacetime of signature (— 4 ++), such that

Ruw = 3\ G - (4.6)
Additionally, we assume that ¢ = ¢(r), and that the U(1) gauge field consists purely

of magnetic flux in the bulk

8B fe "¢
F:f_ff

RT

dr Ad6, (4.7)

Rather than solving the field equations directly, fluxbrane solutions are often conve-
niently obtained by double analytic continuation of black hole solutions with a central
electric charge. This double analytic continuation technique was in fact first introduced
when fluxbranes were first constructed [78], in D-dimensional Einstein-Maxwell theory
with a cosmological constant. In the present model, the dual 6-dimensional black hole

spacetime is obtained by the continuation

T, — 1T Ty — T (1=1,2,3); 0 —it; B — —iQ; (4.8)

where it is assumed that 0/0z, is a Killing vector and that the Einstein space metric

is written in coordinates with g,, < 0 and g,, = 0.
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Black hole type solutions are not well-studied in the case of the field equations
(4.2)-(4.4), however, on account of the fact that no conventional black holes exist for
the Einstein-Maxwell scalar with a Liouville potential. There are no solutions with a
regular horizon which are asymptotically flat, asymptotically de Sitter or asymptoti-
cally anti-de Sitter [194]. There do exist black hole type solutions with regular horizons
which possess “unusual asymptotics” at spatial infinity [194, 195]. From the point of
view of the double analytically dual fluxbranes, the asymptotic structure of the black

hole spacetimes is irrelevant, and we are simply interested in the most general solution

to the field equations (4.2)—(4.4) with the ansatz (4.5)—(4.7).

To the best of our knowledge the full solutions of the field equations (4.2)—(4.4)
with arbitrary A and A have not been written down, either for the fluxbranes or the
double analytically dual static black hole type geometries. The A = 0 case has been
given previously [179]. The general case with non-zero A does not appear to readily

yield a closed form analytic solution. Its properties are discussed in section 4.6.

The fluxbrane solution for A = 0 takes the form

f(r) = (4.9)
o) — %ln(r), (4.10)
A = G- (4.11)

where we require that A > 0 so that A(r) has at least one root.

The finite limits of the range of the bulk coordinate r are the points at which
A(r) = 0, since A(r) > 0 is required to preserve the metric signature. There are at

most two positive zeroes of A(r), located at

2
rj[:ﬁ<1i 1 BA). (4.12)

A 242

For A > 0, reality of r implies the condition B2A < 242, For A < 0 there is a single
positive zero of A at r . Our primary interest is of course for A > 0, which is the case

in the Salam-Sezgin model.

We wish the geometry to be regular at points where A(r) = 0 and we therefore
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impose the condition that 6 be periodic with period

47
&A(T) o ’

(4.13)

where 7, is any positive zero of A(r) such that 9,A(r)[,, # 0. In these circumstances
the r = r,, submanifold is totally geodesic, namely a “bolt” in the terminology of [105].
In the case that two zeroes of A(r) exist we can fix the bolt to be at either r_ or r
but not both simultaneously as the fixing of the period of 6 allows the geometry to be

regular at only one of the zeroes of A(r).

4.3 Adding a thin brane

We now follow the construction of [172] and add a thin brane — namely a timelike

and A(r,) > 0.

hypersurface of codimension one — at a point 7, such that . <7, <r_

To do this we add the term

Strane = — / A 5(r — 1) e VI, (4.14)
to the action (4.1) where h;; is the induced metric on the brane, h = det (h;;), Latin
indices i, j, ... run over the five dimensions on the brane (0, z#), T is a nonvanishing
constant proportional to the brane tension, and A is a dimensionless coupling constant.
The tension of the thin brane is coupled to the scalar field in order to make the scalar
field equation consistent at the junction between the two spacetimes: given that the
derivative of the scalar must be discontinuous there the boundary term which was

assumed to vanish in deriving (4.4) will no longer be zero.

In a Gaussian normal coordinate system for the region near the thin brane, with
normal coordinate dn = A~Y?rdr, the induced metric takes the form
A(r) 0
hij = gij — ninj = ) (415>
0 1%g,,

where
o
VA

We then impose Z; symmetry about r, by pasting a second copy of the bulk geometry

on the other side of the thin brane. We label the bulk geometry to the left of the brane
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M _, and the geometry to the right M. A pictorial embedding diagram of the bulk

dimensions is shown in Fig. 4.1.

The field equations (4.2)—(4.4) are modified by terms arising from the variation
of the action (4.14), but can still be satisfied by appropriate junction conditions,
according to the standard thin—shell formalism. In particular, the modification to the
Einstein equation (4.2) is satisfied provided the discontinuity in the extrinsic curvature,

K;j = h* hjg Ving is related to the 4-brane energy-momentum, S;;, according to

1
1K) = —247 (sij s hij) . (417)
Here [[X]] denotes the discontinuity in X across the brane. The modified scalar equa-
tion is satisfied provided that the boundary term arising from the discontinuity in the
derivative of ¢ cancels the variation of (4.14) w.r.t. ¢, leading to

T
-3 —gn“(?u(bJr—\/—heMﬂ =0. (4.18)
K

b

The U(1) gauge field strength, Fy;, can be chosen to be continuous at the junction,
so that the Maxwell-type equation (4.3) is automatically satisfied. As observed in [172]
it should be also possible to choose a gluing which would change the sign of F; across
the junction at the expense of adding a further “cosmological current” action term to
the brane in addition to (4.14). Such a term would now involve a coupling to the scalar
field, and would therefore modify the analysis that follows. We will not pursue that

option here.

On account of (4.10) the solution to (4.18) is
T=X"'r2". (4.19)

This reduces the three unknown parameters, T', A, r,, to two independent ones. Further
restrictions result from (4.17). For a static brane in Gaussian normal coordinates,

K;; = %8;7 . Furthermore, while n does not change sign across the brane, the direction

of r changes sign across the brane as r points from r_ to r,, or 7, to r_, depending on

whether the bolt is at _ or r, . Thus

@@ e
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where € = sign(r, — r,), and the superscripts (£) refer to the two sides of the 4-brane

and are not to be confused with r,_ . Hence the jump in the extrinsic curvature is

VA Oh ~T
Kl = e~ =24 = MPp,. 4.21
sl = ~e X258 = ey, (4.21)
where we have also used S;; = —% e M?h,;;. Using (4.15) to substitute for the induced
metric, eq. (4.21) reduces to the pair of equations
T
0. A(r,) = % o/ A(ry) e Mery) (4.22)
T
A(r,) % r,? e ) (4.23)
or equivalently
0 (A
— | = =0. 4.24
or (r2> r, (4.24)
Solving (4.24) we find
282 2r Ar 4
t= =7 4.25
" A r A4t (4.25)

We note that the brane position does not depend on the value of the scalar potential

A. Combining (4.10), (4.19) and (4.23) we find

b (4.26)

and |

~

T =dey/A(r,)r, VAW (4.27)

where 7, is given by (4.25) and A(r,) by

Afr,) = (?)/é (1-55) 42%)

in terms of A, B and A. The tension is positive if we choose the bolt to be at r, =r_
so that e = 1. We will avoid any potential problems associated with negative tension

branes by henceforth choosing the bolt to be at r_.

4.3.1 Consistency conditions when adding a thin-brane

It is possible to consider models without the restrictions which we have chosen to

place on our parameters so that we could solve the bulk field equations. If we remove
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the restrictions we placed on f, A, ¢ then we may consider what would be required of
the parameters in the bulk to leave the field equations consistent upon addition of a
thin brane at a finite distance from the fluxbrane, without explicitly solving Einstein’s
equations for the bulk or junction conditions. Even solving the Einstein equations
is difficult in the general case, although we present arguments in section 4.6 that a
class of solutions does exist in phenomenologically interesting cases, such as a positive

cosmological constant, A > 0, on the brane.

Consistency conditions of the form given in [94] can be used to further restrict the
parameters of the model. Putting D = 6, p = 3 and ¢ = 4 in equation (2.17) of [94]
and integrating over the boundary of the internal space we get

0 = j{dr dg ro+? (oﬂér‘2 + (B3 —a)R — (a+ 3)Apux

T . m
— K [(9 — a)? e M5(r — 1) — (3= )T — 3(a — )T, ]) (4.29)
Equations (4.5) and (4.6) give
R = 12X, (4.30)
~ O fO.A — fO,0.A
R = 7 : (4.31)
and from (4.7)
8 B* (0.0)*A 2
— K r Ko
1" = /127“10]026 T m ?Ae : (4.32)
4B? A
m o __ K K
" = e ¢K2T10f2 —e" (4.33)
Putting a = 3 and Ay = 0 in (4.29) this becomes
36 . 24 B%e"? ;
O—%drd@ 7 (7—6Te A ¢5(r—rb)+W—GAe ¢> (4.34)

By examining the signs of the various terms we can find the parameter restrictions

given in Table 4.1.

Some further small restrictions on the value of B may result from the junction
conditions once the function A(r) is specified for a particular geometry, as occurs in
the analogous case of ref. [172]. However, as we are only able to specify an exact A(r)
in the A = 0 case (4.11), and not in the general case A # 0 case, we have not considered

these additional restrictions in Table 4.1.
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A <O A=0 A>0
A< 0| none B#0orT <0 B#0orT<0
A=0|T>0 T>0and B#0 B#0orT <0
A>0(T>0 T>0 none

Table 4.1: Restrictions on B and the sign of T' for given \ and A.

4.4 Static potential of the massless scalar field

The phenomenologically important derivation of the Newtonian limit and corrections
should ideally be conducted in the context of a full tensorial perturbation analysis
about the background solution. However, as was observed by Giddings, Katz and
Randall [196] in the case of the Randall Sundrum model, if one is just interested in the
static potential the relevant scalar gravitational mode shares the essential features with
the static potential of a massless scalar field on the background. This approach was
adopted in [172]. In this section we will perform a similar analysis for the background

geometry described by eqgs. (4.5)-(4.11) in the case that g, = 1.

4.4.1 Scalar propagator

Our calculation will closely follow that of section 5 of ref. [172]. We will add a massless

minimally coupled scalar field, ®, to the model, with action

Sp=—1 / & /=g (VD) (VD) (4.35)

on M _. This additional field ® should not be confused with the scalar field, ¢, of the
Salam-Sezgin model (4.1). We will calculate the static potential of a scalar field, ®,

between two points on the thin brane with fixed 6.

Rather than continuing with the coordinate basis of (4.5) it is convenient to intro-

duce a new radial coordinate p by

rd—p 4
p:r‘*——;‘“ (4.36)
Jr

which maps the interval r < r <7, to the interval 0 < p < p,, where

p, = (%)4 , (4.37)



is the position of the brane. In terms of the new radial coordinate p the metric (4.5)

becomes,
sz_l dp2 + '72r_6p d¢92
2A (1 + p)°

T4+T 4
7”2 = w[T;p, (439)

and the constant ~ is defined by

/ AB?
v = §(T+4 . 7,74) = 4A1/1 — YE . (440)

We shall only be interested in the case of a flat lower-dimensional metric, g, = 1.,

d$62 = g, datdz” +

, (4.38)

where by inverting (4.36)

in what follows.

The scalar Green’s function, GG, is determined by the solution of the massless

P

Klein-Gordon equation,

1 5(p— p)3(0 — 8)0"(z — o)
V. VoG, = ——0,(v/—g9™0,Gy) = . 4.41
) \/_—g ( b <I>) \/_—g ( )
To simplify this problem we make the Fourier decomposition
VAT d*k ik, (xH—x'P) 50: in(0—0") /
G¢<I7P7 ¢5I7p7¢) = We g € Gk,n(p;p) (442>

where the indices of k, are raised and lowered by 7),,. We substitute (4.42) in (4.41)

to obtain
2 2 2 /
q n 2p n_ 0p—=/)
9, (0 +———(6+—) Ginlpyp) = 22— P) (443
where ¢* = —k,k* = k3 — k?, and the constant (3 is defined by
r 4 2p
gl P 4.44
Y A(l - Pb) ( )

When p # p' (4.43) is a Sturm-Liouville equation, with the general solution
Grn = CnXn(p) + DY (p), (4.45)
where C,, and D,, are constants and for n = 0,

]2 1—p B z 1—p
XO_\/;P”_l(ler)’ YO_\/;QH(HP)’ (4.46)
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P and Q being Legendre functions of the first and second kind respectively, while for

n # 0,

13 1-v
P (A+p) " 2n 2n
X, = F—— L=yt +2 N
n 2?15’}/ 2F1(|i v+ A + nﬂa -V A + nﬂ’ ’
ns3 2n/A
P (1+p) 2n 2n S
— ——,1—v- 1+ 2np; 4.4
2ny QE({V TR o ARy R
and
1+p)'" 2n 2n
Y, = <2_nﬂp),052}—1<[ —V—l-x,l V—K—Qnﬂ] 1—2715;—,0),
(1+p)2n(/8+1/A) 2n 2n
_ = - —mpB,l—v—-"= =2 ;1 —2np;
o O Ny W] Rl 1+p

(4.48)

where 5 F is a standard hypergeometric function [198], and for all values of n, including

2q 16n2
VE%<1+\/1—|—T+ A2)' (4.49)

For n # 0, as p — 0, the leading two terms in the series expansions for X, (p) and

n =20,

Y, (p) match those of Bessel functions, Jys,5, or modified Bessel functions, I1o,s in the

argument |%(8n%3 — ¢%) p‘l/ ? up to an overall constant of proportionality:

_ 8n?B — ¢?
Xulp) = NGTG [1 + 971 + 2n5)" + 0(02)}

Jons (/30> = 8n28)p ) + O(*9), n? < ¢/(85)

T s (V205 — ) + O, 2 > (s9) .
and
h = o { * 2A<iﬁ—_2qﬂ> o)
Lw @ —807B)p ) + O(* ™), n* < ¢*/(80) .
Lons (y/ aw—q o)+ 0, n?>q2/(s8)
Using (4.46), (4.50) and (4.51) the Wronskian of the linearly independent solutions
satisfies
WX, (p), Yn(p)] = X,0,Y, — Y,0,X,, = ;—; : (4.52)

The overall coefficients in (4.46), (4.47) and (4.48) were chosen to make the r.h.s. of
(4.52) independent of n.
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4.4.2 Boundary and matching conditions

We now wish to solve the inhomogeneous version of (4.43). Without loss of generality,
we pick the brane to be to a distance & = p, —p’ > 0 to the right of the discontinuity. We
will later let & — 0 so that the brane explicitly becomes the source of the discontinuity.

We have general solutions to the left and right of the discontinuity at p = p’, labelled

{ G_(p,p) = A(P)Xn(p) + Ay(p)Ya(p), p </,

G.(p,p") = B, () Xn(p) + By(p)Yulp), p>7r,
We will assume that Gy ,(p, p') is finite at p = 0, and adopt a Neumann boundary
condition at the brane p = p,,

pGrnl ey, = 0, (4.54)

as this is the appropriate boundary condition at the brane for a non-linear gravitational
wave when viewed as a scalar field on this background. We will prove this claim in
the following section. Imposition of regularity of the solution as p — 0 excludes Y,, as

a solution, leading to the choice Ay(p’) = 0. Furthermore, (4.54) applied to G_ (p, p')

implies
Bs(p') Xosh
=— : 4.55
Bl (10/) Yn7b ( )
where
Xow= Xl 0 Xaw= OVl (4.56)
The matching conditions at p = p’ are
(G< - G>) ‘p:pz = 0, (4.57)
1
8,) (G> - G<) ‘pr’ == W . (458)

Combining the boundary conditions, the matching conditions and (4.52) we find

the solution of the boundary value problem,

Xn / / /

oo = B X0, <
Grnlp:p) = X, (7)) (4.59)

G.(p.p) = (Xn(p) Yoo =Yn(p) X ) p >0

Xnab
The scalar Green’s function, G, is now determined by substituting (4.59) into (4.42)
and prescribing the integration as desired at the poles, which in this case correspond

to the zeroes of X, ;.
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4.4.3 Static potential on the brane

Given the brane is the source of the discontinuity for the Green’s function, we set
P’ = py by letting & — 0. With p = p,, and using (4.52), the Green’s function (4.59)

reduces to

Xn(/)b)

ka Py) = — .
(0s) Y0y Xnb

(4.60)

To obtain the static potential, we explicitly integrate the retarded Green’s function
(4.42), (4.60) over the time difference, t — ¢". We note that G is non-zero only for
t —t' > 0, so multiplying it by 6(t — t') leaves it unchanged. We can then perform the
integration over ¢ to find

N N [ dEY Xa(p,)
in(0—0") ik (x—x) LA 4.61
Va(x, ¢, ) Z ¢ / (2 © /_oo i(k° —ie) vp, X o

We are interested in the retarded Green’s function, which requires that we perform the
k° integral by a contour integration with ¢*> — (k" + i€)®> — k? € — 0,. We close the
contour in the upper half plane, to avoid the poles which correspond to the zeroes of
X, on the real line, and which are moved below the real line by the e—procedure. The

only residue is then due to the simple pole at £ = 0, and the integration yields

: d%k /
. _ in(6—0") Zk~(x—x) 2
Vo(x, ¢:x,¢') = n_zooe / (2m)* Gn(—K?),
. (0_p! > dk ksin(k|x _X/|)
[ in(60—0") _k2
n:zooe /0 47T3 |X _ X,| gn( ) 5
— ' Ak k etk
T e 5 Gn(—K° 4.62
n;,oe " </_oo 875 x — x| G >> . (4.62)

where k = |k|, and G,(—k?) = G;@n(pb)‘qQ:_kQ.

The final integral in (4.62) can be performed by a careful choice of contour, subject
to convergence of the integrand, which we have checked numerically. It is found that
for n =0, QO(—kQ) has a second order pole at k = 0, together with first order poles at
k= :I:iqohj, where Qo > 0,7=1,...,00. Forn # 0, all poles occur at k = +iq,, i where
4,; > 0,7 =1,...,00. We close the contour in the upper half plane, but perform a
cut on the Im(k) axis on the interval k € (3iq, 00), where ¢ = inf {g,;[j =1,...,00}.
Integrating back and forth around the cut, first from k = € + 100 to k = € + %i(j in the
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Re(k) > 0 quadrant and then back from k = —e+ 1ig to k = —e+ oo in the Re(k) < 0
quadrant before taking the limit ¢ — 0, has the net effect of circumscribing each of the

poles on the positive imaginary axis once in a clockwise fashion.

We will not analytically determine each coefficient in the sum of terms in (4.62)
which result from the enclosed poles at k& = i, ;> but simply note that the Laurent
expansion of G, (—k?) at each of these poles takes the form

Cnj(Py)

gn(_k2) =
k% + C]Z,j

+0(1), (4.63)

in terms of coefficients C,, ;(p,), and the residue gives a Yukawa correction in each case.

The pole at £ = 0 is not enclosed by the contour, but since it lies on the contour,
taking the principal part gives a net contribution to the static potential, which is
readily determined analytically by applying identities which hold for the Legendre

function solutions (4.46) for n = 0. In particular,

ik|x—x' 2 k1P, _ 1(y)
Res (ke =G (—k )>k:0 = Res (57(1_ 20, P, - 1(y))k:0’p:pb
—2keitx=xID, | (y)
- e (w WPy 1 (y) — Py<y>1)k:o,p:p,,
— lim 4AP,_1(y)
v=1 7 [yd,Pya(y) = 0Py (W)] |-,
_ 20 +p) (4.64)
P,

where in the intermediate steps y is defined implicitly by v = (1 — p)/(1 + p), and
we have used the fact that as k — 0, v ~ 1 — k*/(2A), P,(y) = 1, and the identities
lim, 1 0,P,_1(y) = ln[%(l + )], and lim,_; 9, P, (y) = yln[%(l +y)+y—1

The final expression for the static potential then becomes!

e qn jlx=x']

Vil 01,0 = e 5 3 Gty

4m2yp,|x — x| 8m?|x — /|

(4.65)

n=—oo j=1

which as expected is a Newtonian—type potential supplemented by Yukawa-type cor-

rections. The constant 7 may be re-expressed in terms of r and p, on account of

(4.44).

'Eq. (4.65) corrects a small numerical factor in the Newton-like term given in ref. [199].

93



q/sqrt(2 Lambda)
6 8 10 12 i

0.2

0.4

rho_b
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Figure 4.2: A plot of the denominator of QO/A(q2/2A). The denominator is positive in the
hashed regions, negative in the white regions and zero at the boundaries. The transition

between bands indicates where the poles of Go(q?/2A) lie. Note that Go(0) = 0.

The locations of the poles, ¢, ;, and the coefficients, C,, ;, for the functions, G, (—k?),
have been numerically determined. Fig. 4.2 demonstrates the behaviour of the de-
nominator of Go(¢?/2A). For a given value of p,, one can see that the zeroes of the
denominator are discrete, which implies that the poles of Gy(¢?/2A) are also discrete.
Similar behaviour can be seen for the denominators of Gy s (¢%/2A) and Gs/4(¢%/2A) in
Figs 4.3 and 4.4 respectively. However, one crucial difference between the n = 0 and
n # 0 cases is that the denominator of Gy(0) is zero for all py, while the denominator
of G,,/a(0) is non-zero for all p,. This means that only Go(¢*/2A) contributes to the
1/|x — x'| part of the static potential, while every other term contributes Yukawa type
exponential corrections. This behaviour can be seen most clearly in Fig. 4.5. It should
also be noted that for increasing n, the position of the occurrence of the first pole of
Gn/a (¢?/2M), g1, is increasing, meaning that the exponential corrections to the static
potential, e~91*~* /|x — x/|, coming from higher n are significantly weaker and drop
off significantly faster than those that come from lower n. This can also be seen most

easily in Fig. 4.5.
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Figure 4.3: A plot of the denominator of QI/A(q2/2A). The denominator is positive in the
hashed regions, negative in the white regions and zero at the boundaries. The transition

between bands indicates where the poles of Gy /a (q?/2A) lie.

While the coefficient associated with the Newtonian term has been determined
analytically, the other coefficients have only been determined numerically. We present
plots of the behaviour of the coefficients for p, = 0.5 in Fig. 4.6, and for n =1 in plot
Fig. 4.7. Tt should be noted that while the plots are drawn with continuous lines, the
poles and hence coefficients exist only at discrete places. The figures have been plotted
with continuous lines in order to aid comprehension of the underlying behaviour of the

coefficients.

Fig. 4.6 shows that as n increases the value of the coefficients increase. It also shows
that for each n # 0 as j increases that coefficient C,, ; decreases, while to the numerical
accuracy presented here, Cy; = Cp j41 for all j € ZT. Fig. 4.7 illustrates that for the
n = 1 case, which is similar in behaviour to all n # 0 cases, the effects of modifying
the brane position, py, on the coefficients in the static potential. As p, increases, the
coefficients generically decrease. They also decrease with ¢ as noted above. Picking
successively higher values of n results in similar graphs, but shifts them in accordance

with the results in Fig. 4.6.
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Figure 4.4: A plot of the denominator of Gy, A(q¢%/2M). The denominator is positive in the
hashed regions, negative in the white regions and zero at the boundaries. The transition

between bands indicates where the poles of Gy/a(q*/2A) lie.

denom(G)

Lrs

0 2 4 6 8 10 12 14
a/sqrt(2 Lampda)

-2

Figure 4.5: A plot of the denominator ofgn/A(qz/QA) forn =0,1,2 and p, = 0.5. Note that
denom(G,, /A (0) = 0) only when n = 0. The value of the position of the first pole increases

with n.
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Figure 4.6: A plot of the Cy, /5 ;’s for n = 0 to 6 and p, = 0.5. The values of the coefficients

decrease with increasing q and increase with increasing n.

Cli 44

g/sqrt(2 Lambda)

Figure 4.7: A plot of the Cy, /5 ;’s for n =1 and p, = 0 to 0.7. The values of the coefficients

with decrease with increasing py or q.
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4.4.4 Nonlinear gravitational waves on the brane

We will now further justify the claim that the calculation of the static potential for a
minimally coupled massless scalar field given above reproduces all the essential features
of the corresponding calculation for the graviton. We observe that the construction
of nonlinear gravitational waves which was developed in ref. [172] by a generalization
of the technique of Garfinkle and Vachaspati [197], is unchanged when applied to the
background (4.5). In particular, nonlinear gravitational waves can be constructed on
the background in the case that the geometry, M., generated by the 4-dimensional
metric g,,, admits a hypersurface-orthogonal null Killing vector, k*. If z is a locally
defined scalar such that Jy,k,) = kj, 0,z and k*0,z = 0, where Greek indices are
lowered and raised with g,, and its inverse, then the nonlinear wave spacetime is given

by adding to (4.5) the term

r?He *k,k,dz"dz”, (4.66)

where z is the pullback of z to (4.5), and H is a scalar function on the bulk spacetime
(4.5), which satisfies V*V,H = 0, and ¢“0,H = 0. Here V, is the covariant derivative
in the metric (4.5) and ¢* = (k*,0,0) is the extension of k* to (4.5), with indices
raised and lowered by the full spacetime metric (4.5). The vector, ¢*, is also null and

hypersurface orthogonal, and satisfies 0,y = {04 (2 +21In7) and £°0,(z +2In7r) = 0.

In addition to the junction conditions (4.18), (4.22)—(4.24), we now have the addi-

tional relation

A T
T(Tb> ar(T2H)}rb _ % e—)\mﬁ(rb)T,bQH(,r.b) (467)
b

Using (4.23) we see that (4.67) is equivalent to the Neumann condition

0.H| =0, (4.68)

at the brane, if H is viewed as a massless scalar field on the spacetime without the
term (4.66). In the case that g,, = 1, the field H therefore satisfies the same wave

equation and boundary conditions as were given above for massless scalar field, ®.

To make the correspondence explicit, we take g,, = 7,,, and adopt double null

coordinates, (u,v,x!,z%), on the Minkowski space, Miu,. If we choose k* = (9,)",
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the solution with the gravitational wave term (4.66) reads

2 2
AT Adg?. (469)

ds? = r? [~dudv + H(u, 2%, r, ¢)du® + § , yda!dz ] +

where A is given by (4.11). Note that H does not depend on v but its dependence on

u is arbitrary. The scalar wave equation for H explicitly reads

3 A 7"2H o) 5ABH AB
H -+ =2)H, 4 = =0. 4.70
"rr + (T’ + A ) ) + AQ + A ( )

The general linearized limit of the nonlinear gravitational solution can be discussed

as in [100]. We note that H = hap(u)ziz?, where hy,(u) = —h, (u), is clearly a
solution: it satisfies 4P H, 45 = 0, and its linearized limit is analogous to the famous
normalizable massless mode in the Randall-Sundrum II model [168]. If we transform
the radial parameter to p by (4.36) and make a Fourier decomposition as in (4.42),
then (4.70) becomes equivalent to the homogeneous part of (4.43). Our analysis above

for the massless scalar field therefore applies equally to the graviton mode.

The nonlinear gravitational wave construction also applies firstly to any other Ricci—
flat geometry on M., which admits a hypersurface orthogonal null Killing vector,
and secondly with suitable modifications to other Einstein space geometries for Mg,

provided appropriate solutions can be found.

4.5 The hierarchy problem

One of the principal motivations for studying brane world models is the attempt to
provide a natural solution to the hierarchy problem between the Planck and elec-
troweak scales. The construction of ref. [172] potentially offers a concrete realization of
the phenomenological solution to the hierarchy problem proposed by Antoniadis [79],
Arkani-Hamed, Dimopoulos and Dvali [80, 81]. In particular, if the non-gravitational
forces can be introduced in such a way as to be confined to the brane, then provided
that the distance between the thin brane and the bolt can be made large enough,
higher—dimensional gravitational corrections could become manifest close to the TeV

scale.

Since the construction is a hybrid one, there is an ordinary Kaluza—Klein direction

within the 4-brane in addition to the direction transverse to the brane. A phenom-
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enologically realistic solution to the hierarchy problem can therefore only be obtained
if the distance between the brane and the bolt can be made many orders of magnitude
larger than the circumference of the Kaluza—Klein circle. In the original construction of
ref. [172], based on Einstein-Maxwell gravity with a higher—dimensional cosmological
constant, a natural solution to the hierarchy problem proved to be impossible as the
brane-bolt distance was at most comparable to the circumference of the Kaluza—Klein
circle. The present model has more degrees of freedom, however, and so it is possible

that this problem can be overcome.

In order to make the volume of the internal space, V), sufficiently large to accom-
modate TeV scale gravity, we must be able to find a set of parameters (A, B, A) which
allows the ratio, R = V/C, to be arbitrarily large. The idea is that a particular
value of V fixes gravity to be TeV scale. However, if the related set of parameters
(A, B, A) imply that C is large enough that the associated standard model Kaluza
Klein excitations are noticeable, for example in particle colliders/cosmic ray showers,
then that set of parameters would be unphysical. If we find a set (or sets) of parameters
(A, B, A) which allow the ratio R = V/C, to be arbitrarily large then we can confidently
say that we can pick V to solve the hierarchy problem while hiding the effects of the

Kaluza—Klein dimension.

The proper circumference of the Kaluza—Klein direction is

¢ dmVAl) _ 2y " W)
A'(r) VA YT+, ' '

The volume of the internal space, V =2 [’ f047r/ A qg,de, is

(4.72)

R= M = \/ZT F(p,) (4.73)

where r_ is given by (4.12),

4p, /2 2 1
F(p,) = —1) (4.74)
I —0p, I+p, 2
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and on account of (4.12) and (4.37),

A+ /JA—iB2A

p_A—,/A—%BQA )
\ . .
\/7

F(op)
l,

0. 8;
0. 6¢
0. 4;

0. 2}

1/4

0.2 0.4 0.6 0.8 1 Pb

Figure 4.8: The ratio of volume of the internal space to its circumference is a multiple of

F(p,), as given by (4.73), (4.74). It is plotted here versus p,'/4.

The quantity F(p,) defined by (4.74) is depicted in Fig. 4.8. It is a monotonic

function which increases from F' = 0 to F = 1 on the interval p, € [0,1]. The
limit p, — 1 occurs when 5{% — 1, le, whenr. = r, ~r = %. In this case

C ~ 2rA~Y2 and R = V/C ~ 25/2AA=3/?. The requirement that C must be small
enough to be interpreted as a conventional Kaluza—Klein direction means that A must
be suitably large. Since the parameter A is still free, however, we can still make R
arbitrarily large to overcome its dependence on the A=3/2 factor. Thus it appears that

a solution to the hierarchy problem may be feasible.

For smaller values of p, similar arguments apply. In particular, consider the extreme
limit p, — 0 which corresponds to 0 < 24 < 1. Then r * ~ B?/A, r.* ~8A/A\ and
F(p,) =~ 4(v/2 —1)p,"/%. Hence R ~ 2(v/2 —1)B*?A~%* and C ~ 27%/*rBA~!, which
are both independent of A. Since the constants A and B are not constrained except
by the requirement % < %, we can again make R arbitrarily large while keeping C

small. If we denote R, and C; to be phenomenologically desirable values of R and C,
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we can conversely fix both A and B. We find Ay = 7°R,*2717/2(\/2 — 1)*4(30*6 and
By = w° Ry 273/4(y/2 — 1)7*C,®, while for consistency of the limit 0 < Ag < \/g—éoz
We have demonstrated here that a solution of the hierarchy problem is possible
regardless of the value of p,. We note, however, that once the Newton potential for
the tensor modes, equivalent to the first term of (4.65), is determined then two of the
parameters, r_, A and p, would be fixed phenomenologically via equations similar to
(4.65) and (4.71), in terms of the Newton constant and the energy scale for the ordinary
Kaluza—Klein circle direction. From (4.73) we see that just enough parameter freedom
remains to choose the remaining independent parameter to solve the hierarchy problem

as desired.

4.6 General fluxbrane and dual static black hole-

like solutions

The global properties of certain static solutions of electrically charged dilaton space-
times with a dilaton potential of Liouville form were classified in ref. [194] without
explicitly writing down the general solution. The solutions considered in ref. [194]
include spherically symmetric spacetimes, but in the most general case include geome-
tries for which the spatial sections at spatial infinity consist of an arbitrary Einstein
space, rather than simply a (D — 2)-sphere in the case of D spacetime dimensions.
Electrically charged solutions with these symmetries are of interest, since in cases in
which a regular horizon exists fluxbranes may be obtained from them by the double
analytic continuation technique that was first introduced in [78]. The field equations

considered in ref. [194] include our equations (4.2)—(4.2) as a special case.

At a first glance, it would appear that the Salam-Sezgin model is a special case
of the class of models analysed in ref. [194]. Unfortunately, however, the particular
coupling constants which appear in the exponential coupling of the scalar to the U(1)
gauge field, and the Liouville potential, are in fact a degenerate case of the analysis of

ref. [194].

In this section we will therefore repeat the analysis of [194] in the case of the Salam-
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Sezgin model, but in a slightly more general framework which incorporates fluxbranes
at the outset, in addition to their dual solutions. Rather than simply restricting our
attention to the Salam-Sezgin model in six dimensions, we will investigate relevant
solutions for the whole degenerate case omitted in [194]. The relevant field equations

are those which follow from variation of the D-dimensional action

R 1 1 kg
_ D — o ab - ab
S_/d v 9{4/12 D39 0000 = pexp (D—Q) Fakr

A —4
- e (522}, (1.76)

The field content of (4.76) is the same as that of action (4.1) in the absence of the

Kalb-Ramond field, and the field equations obtained by variation of this action reduce
to (4.2)-(4.2) (4.1) when D = 6. The model of ref. [194] was more general than (4.76)
in allowing for two additional arbitrary coupling constants: one in the dilaton / U(1)
coupling, and one in the Liouville potential. In the notation of ref. [194] our conventions
are the same, but we have chosen g, = —1 and g, = 1: in this case the results of [194]

are degenerate.

The field equations obtained by varying (4.76) are most easily integrated explicitly
for static geometries by using the radial coordinate of Gibbons and Maeda [201], for

which the metric is given by
ds® = ee™ | —e,dt? + R*P79dE? | + R?g;;dz'd, (4.77)

where v = u(§), R = R(§), and g;; is the metric of a (D — 2)-dimensional Einstein
space,

Rap= (D —3)AGap, a,b=1,...,D—2 (4.78)
€g = £1 and ¢ = £1. If €g=+1 and € = 41 one obtains the geometry relevant to the
domain of outer communications of a black hole, or of a naked singularity. The case
€g = T1 and € = —1 would correspond to the interior of a black hole in the case that
regular horizons exist. If we take €o = —1 and € = 41 we have the case of a fluxbrane,

assuming t to be an angular coordinate.

We choose F to be the field of an isolated electric charge,
Ak ) Q

g ) - dende, (4.79)

F =exp (2u —
K
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in the case that €g = T1, and a magnetic field in the case that € =—1.In the later
case the ansatz (4.79) is the same, except that ¢t is now an angular coordinate and )

is the magnetic charge.

With the ansatz (4.77), (4.79) and assuming ¢ = ¢(&), the field equations can be
written [194] as the system

io= e @ (4.80)
g = (D- 3)265\62C — 2e\e*X, (4.81)
X = (D-2)(D - 3)55\62C — 2e\e?X, (4.82)

with the constraint

(D —2) [52 _ 24'“5(} +(D=3)2+ 7+ (D —2)(D — 3)ehe® — 2eAe® — 2e6,Q%> = 0,

(4.83)

where the overdot denotes d/d¢. Eq. (4.80) is readily integrated if we multiply it by 7,
yielding

i’ = 2eQ%" + €,(D — 2)k,?, (4.84)

where k, is an arbitrary constant and e, = +1,0,—1. If €Q = +1 (“black hole”

case) then a further integration yields three possible solutions, distinguished by the

parameter €,:

k 2
2 p—
2@2 sinh? [\/D—2 k2 (5—52)] ’ 62 +17
m_ ) — €, = 0,
D— 26 = (D—2)(5—§2)2 2 (4.85)
2
) k2 9 62 - _]‘7
sin [\/D—Z k, (§—§2)]
where &, is an arbitrary constant. If €g = —1 (“fluxbrane” case) then we must have

€, = +1 and the only solution is

2Q2 2n k22
el = 5 . (4.86)
D -2 cosh’ [v/D =2k, (£ —¢&,)]
Linear combinations of (4.81) and (4.82) yield
¥—C = (D—3)ere®, (4.87)
(D—=3)%x —(D—2)( = 2Ae*, (4.88)
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while the constraint (4.83) becomes

. . D—3 - 2e Ae?x
2 . = v -2 o 2¢
¢ 2Cx+(D_2)X +(D = 3)ede™ — —

+ €,k,” = 0. (4.89)

In the special cases that A = 0, or A = 0, eqs. (4.88)-(4.89), can be further

integrated, as follows:

(i) Special A = 0 solution (as previously given in [194]):

( k2 3
1 E—
sinh2[(D73)k1(§,§1)]7 61 - +1, EN > O7
1 _
72, El = O’ 8)\ > 0,
_ D_312(e_
Aext = { O ] (4.90)
1 P —
2 [(D-8)k, (6-6)]7 L, er>0,
,k12 B 3
\ COShQ[(D_?’)kl(ﬁ—El)]’ € = ‘|‘1, eEA < O7
where &, is and arbitrary constant and
D—3
(D = 3)eyky” = (D = 2)ky" + (m) ¢ (4.91)

with k;, ¢, constants constrained only by the requirement that (4.91) have real solu-

tions.

(ii) Special A = 0 solution:

( —k 2
2 =
sinh?[k, (¢-¢,)]’ €, = +1, eA <O,
~1
e\ 63 = 0, e\ < O’
S (4.92)
3 - —
S DYC A S
k
-5 _
\ cosh2[k3 5_53)]7 €3 ‘f‘l, e > 0,

35 = ek, + ¢, (4.93)

with k;, ¢, constants constrained only by the requirement that (4.93) have real solu-
tions. The solution for the A = 0 Salam-Sezgin fluxbrane (D = 6, € =1, ¢ =+1,
e > 0, A > 0) has been given previously in terms of these variables by Gibbons,
Giiven and Pope [200], and is readily seen to agree with the above upon making the

replacements n — =, x — ¥y, 2(( —x) — 2, k, — %)\1, ky — Xy, ¢y — %)\3, to make

27

contact with their notation.

105



The general solution other than in the special cases (4.90)—(4.93) does not appear
to have an obvious simple analytic form. However, general properties of the solutions
can be gleaned following the method of [194]. The constraint (4.89) may be used to
eliminate eXe® from (4.87), to yield a 3-dimensional autonomous system of first—order

ODEs. If we define X =¢, V =y and W = V2eX/y/D — 2, this system is given by

X = —(D—-3)P —cAW? (4.94)
V = —(D-2)P (4.95)
W = VW (4.96)

where
D -3
D -2

The fact we have a 3—-dimensional system means that the analysis is considerably

szﬂ—zxv+< )vﬁ+%@? (4.97)
simpler than in the 5-dimensional examples of ref. [194], and is closer to the phase
space of a simple spherically symmetric uncharged black hole with a Liouville potential
[202].

Trajectories with W = 0 remain confined to the plane. Consequently, in the full

3—dimensional phase space we can take W > 0 without loss of generality.

As is the case in refs. [194, 202] the only critical points at a finite distance from the
origin are given by the 1-parameter locus of points with W = 0 and P = 0. From (4.97)
it follows that the critical points are: (i) hyperbolae in the first and third quadrants
of the W = 0 plane if €, > 0; (ii) straight lines V =+/D -2 [v/D =2+ 1] X/(D — 3)
if e, = 0; and (iii) hyperbolae which cross all quadrants if €, < 0. The W =0, P =0

curve is described by the locus (X, V;), where

0”70
VD=2
V=Y HD—Lgi¢%%4D—$qj. (4.98)

These critical points are found to correspond to asymptotic regions R — oo, or sin-
gularities with i — 0, except in the special case that X, =V, = v D — 2k,. For the
special case R — const, which represents a horizon in the black hole case, or a bolt in

the fluxbrane case.

The integral curves which lie in the plane W = 0 are the lines

D -2
V= (D——B) X + const, (4.99)

106



and these of course correspond to the special solutions (4.90), (4.91). Such lines cross
the W =0, P = 0 curve once in the first quadrant and once in the third quadrant if
€, = 0,+1.

An analysis of small perturbations about the critical points (4.98) shows that the
eigenvalues are {0,2X,, V;}. Thus points in the first quadrant repel a 2-dimensional
bunch of trajectories out of the W = 0 plane, while points in the third quadrant attract
a 2-dimensional bunch of trajectories out of the W = 0 plane for all values of ¢,. For
€, = —1 the points in the second and fourth quadrants are saddle points with respect
to directions out of the W = 0 plane. Points in the second quadrant each attract one

of the lines (4.99) in W = 0 plane, while points in the fourth quadrants similarly each
eject one of the lines (4.99).

We will henceforth restrict our attention to the case ¢ = +1, so that we are dealing
with the domain of outer communications in the case of a black hole or naked singularity
(eg = +1); or with a fluxbrane (e, = —1).

The following critical points are found at the phase space infinity, and coincide with
a subset of the critical points of the more general system of ref. [194]. We will label

them identically to the notation of ref. [194]. The points are:

o L. . located at X = +o00,V = [D—-2++D —2|X/(D-3), W = 0. These points
are the endpoints of the 1-parameter family of critical points with P = 0 at finite
values of X and V' in the W = 0 plane. The eigenvalues for small perturbations

are again {0,2X, V. }.

e M, located at X = +oo, V = (g—:g) X, W = 0. These points correspond
to asymptotically flat solutions, and have P = —X2/(D — 3) and A > 0. The
eigenvalues for small perturbations are {—1,—1,1/(D—3)}. The two dimensional
set of solutions attracted are simply the integral curves (4.99) which represent

solutions for the system with no scalar potential, i.e., A = 0.

o P, located at X = do00, V =X, W = |X|/y/—(D —2)A. These points only
exist if A < 0, and have P = —X2/(D —2) and A = 0. They are thus are
endpoints for integral curves with all possible signs of A\. The eigenvalues for

small perturbations are {—1,—1,0}. It is quite possible that higher order terms
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would lift the degeneracy of the zero eigenvalue. However, we will not investigate
this further, as the solutions with A < 0 are not our prime concern in this chapter.
The points P, , represent the r — oo asymptotic region for solutions which are
not asymptotically flat, but which have the unusual asymptotics listed in Table

IT of ref. [194] with g, = —1.

Although the present model is a degenerate case of the more general analysis of
ref. [194], all of the possible asymptotic properties of the solutions outlined above are
special cases of the analysis of [194], and thus the general conclusions obtained there
also hold here. In particular, there are no regular black hole solutions with A > 0
apart from a class with unusual asymptotics which exist if A < 0. In the case of the
Salam—Sezgin model, A > 0, and so no regular uncompactified black holes exist in that

case.

For the purposes of the construction of [172], which we generalize in this chapter,
the particulars of the asymptotic solutions are not important, however, since part of
the spacetime is excluded once the thin brane is inserted in the fluxbrane background.
Whether or not dual black holes with standard (or even unusual) asymptotic properties
exist is therefore not of primary importance. What is important is that the spacetime
from the bolt to the thin brane should be regular. Provided a regular horizon exists
in the black hole case, which is dual to a bolt in the fluxbrane, then the construction
of ref. [172] should lead to regular hybrid compactifications. The analysis above shows
that such solutions can be obtained only in the special case that X, =V, = VD —2 k.,
as there then exists a 2-dimensional bunch of trajectories with any sign of A, including

the A > 0 case relevant to a positive cosmological term on the brane.

We therefore believe that the construction used in this chapter can be extended to
a small class of solutions with A > 0 in the case of the Salam-Sezgin model. Since it
appears that such solutions could only be constructed numerically [185], we have not
investigated them in further detail. We have no reason to suspect that the qualitative
properties of the hybrid compactifications on such backgrounds should differ from those

of the A\ = 0 solutions.
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4.7 Conclusion

We have extended the construction of ref. [172] to produce a new hybrid brane world
compactification in six dimensions with a number of desirable features. As is the
case with the earlier model, the observable universe corresponds to a codimension one
brane which has one extra Kaluza—Klein direction and which closes regularly in the
bulk at bolts, namely geodesically complete submanifolds where a rotational Killing
vector 0/00 vanishes. The regularity of the geometry ensures that construction avoids
potential problems that often arise when extra matter is added to models with addi-
tional horizons or singularities in the bulk. The construction of nonlinear gravitational
waves in §4.4 is an explicit demonstration of this. Furthermore, we have demonstrated
that such gravitational wave equations include a mode which may be considered as
a massless minimally coupled scalar field on the unperturbed bulk geometry, with
Neumann boundary conditions at the brane, and that such a mode has a static potential

with a long range Newtonian potential plus Yukawa corrections.

The most significant improvement that the present model has over the earlier
construction of ref. [172], is that the supersymmetric Salam-Sezgin action allows a
hybrid brane world construction in which there appears to be just enough parameter
freedom to make a solution to the hierarchy problem feasible. For those parameter
ranges which achieve this, giving a “deep bulk” direction as compared to the radius of
the Kaluza—Klein circle, it is quite possible that the spacing of the Yukawa levels would
become so close that their sum would approximate inverse powers of |x — x’| rather
than a single Yukawa-like term. Such corrections would then be similar to those of the

Randall-Sundrum IT model [168].

In comparison to brane world models in six dimensions which view the physical
universe as a codimension two topological defect, we note that the position of the four-
brane in the bulk is uniquely determined by the bulk geometry and does therefore not
require the addition of other branes in the bulk, or of special matter field configurations
on them. The degree of naturalness by which the cosmological constant problem might

be solved in this model is an interesting open problem which we have not pursued.

In order to solve the field equations analytically it was necessary to assume that
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the 4—-dimensional cosmological constant was zero. However, our construction does not
seem to preclude the possibility of the model having a non-zero cosmological constant
in four dimensions, similar to the explicit solutions found for the model of [172]. The
analysis of section 4.6 suggests that such solutions exist but are unlikely to have a simple
analytic form. Even though they would be non—singular in the bulk, the existence of
such solutions in not precluded by the recent uniqueness theorem of Gibbons, Giliven
and Pope [200], since the presence of the codimension one brane provides a loophole
to its proof. If analytic solutions with non—zero 4—dimensional cosmological constant
could be found, then the nonlinear gravitational wave construction of §4.4.4 should
generalise directly. Examples of the bulk solutions in question have recently been
given numerically by Tolley et al. [185]. It would also be interesting to consider the
influence that matter sources on the brane would have on such solutions, a question
that has recently been considered at the linearised level in other 6-dimensional models
[192].

Even in the absence of a cosmological constant, the solutions (4.6), (4.7), (4.9)-
(4.11), together with the hybrid construction offer the possibility of generating brane
world black hole solutions as well as the gravitational wave solutions already presented.
Since the solutions given apply to arbitrary Ricci—flat geometries in the physical 4—
dimensions, they include the Schwarzschild and Kerr geometries as particular examples.
The most important open problem is an analysis of gravitational perturbations on such
backgrounds analogous to the case of the 4-dimensional flat background studied in §4.4.
Such an analysis would resolve the important question of the stability of such black
holes in the 6-dimensional setting, and also give some idea of potential signatures of
higher dimensions on black hole physics. Given that the construction of brane world
black holes is generally far from trivial, the hybrid compactifications offer a promising

arena for studying concrete realisations of such solutions.

In conclusion, we believe that the construction of ref. [172] combines some of the
best features of both the Randall-Sundrum and Kaluza—Klein scenarios, and leads
naturally to a class of hybrid compactifications which should be further studied. The
present chapter shows that the extension to bulk geometries of the supersymmetric

Salam—Sezgin background provides further phenomenological reasons for doing so.
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Appendix A

Physical Units

We use rationalised units in which the constants ¢, k, h and p, do not appear,
or equivalently may be considered to have numerical value unity. The constant G
appears explicitly, however. It generally refers to the D-dimensional gravitational
constant, x? = 47G, [G] = L42. One may transform between our natural units and
rationalised practical (SI) units by making the following transformations for the five
SI base dimensions:

Length: z =z

Time: t = cty;
Mass: m = %mSI

k
Temperature: T' = h_cTSI

1/2
Current: i = (%) igp-
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Appendix B

Series solutions for a static scalar
potential in a Salam-Sezgin
Supergravitational hybrid

braneworld

Benedict M.N. Carter and Alex B. Nielsen
gr-qc/0512024
Gen. Rel. Grav. 37 (2005) 1629

B.1 Abstract

The static potential for a massless scalar field shares the essential features of the scalar
gravitational mode in a tensorial perturbation analysis about the background solution.
Using the fluxbrane construction of [203] we calculate the lowest order of the static
potential of a massless scalar field on a thin brane using series solutions to the scalar
field’s Klein Gordon equation and we find that it has the same form as Newton’s Law
of Gravity. We claim our method will in general provide a quick and useful check that
one may use to see if their model will recover Newton’s Law to lowest order on the

brane.
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B.2 Introduction

It has long been a dream to derive the properties of our four-dimensional world from
the symmetries of some higher dimensional spacetime. Randall-Sundrum models use
warped metrics in five dimensions to obtain a low-energy effective Newtonian potential
for four-dimensional gravity. Two models have been proposed: Randall-Sundrum I
[167] and Randall Sundrum II [168]. Randall-Sundrum I contains two branes in a
compact spacetime and Randall-Sundrum II contains only one brane embedded in
a five-dimensional non-compact Anti de-Sitter spacetime. However, while the model
met with a lot of interest, for example it may provide an explanation for the large
energy difference between the weak-unification scale and the Planck scale, it has also
led to some problems. It can be shown for example that under general assumptions
the compact Randall-Sundrum I model must contain a negative tension brane [94].
It has been pointed out that such negative tension branes violate all the standard
energy conditions [92]. Embedding black holes in Randall-Sundrum II-type models
has also led to some problems, although the tension of the single brane can now be
strictly positive. The Einstein equations evaluated across the brane forbid simple black
holes in our universe (on the brane) and black strings extending off the brane develop
Gregory-Laflamme instabilities at the AdS horizon and are unstable far from the brane
[97].

In six (and higher) dimensions however, it is possible to have solutions that contain
only positive tension branes. It may even be possible to have stable black hole solutions
in six-dimensions [104]. Here we present an example of a six-dimensional model based
on a supersymmetric fluxbrane solution of [104] and [78] and give a general argument
to show that its low energy limit is four-dimensional Newtonian gravity. The model
contains a single brane embedded in a six-dimensional spacetime. Scalar and electro-
magnetic fields propagate in the bulk, and we impose regular closure of the geometry

off the brane.

The basic idea is to investigate the behavior of gravity by approximating the full
tensorial analysis with a scalar field argument. To do this we solve the Klein-Gordon

equation on the background spacetime solution. The background solution must obey
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certain boundary conditions, in particular the Einstein equations across the brane must
hold. Solving this equation allows us to derive a static potential for the Newtonian

limit which should qualitatively resemble that of the observed universe.

Further details appear in [203] (also chapter 4).

B.3 The Model

We start with the metric (which equates to the bosonic sector of the model considered

in [189]),

R 1 1 A
_ 6. /g > _ = ey — —e RO Fab T ord ) B.1
o /Md v (452 4@@8 ¢ 1° “ 22" ) (B1)

The metric assumption we use is

7,2

ds* = A(r)d6* + Al

dr?® + r2§ijdxidasj , (B.2)

where g;; will, for simplicity, be taken to be the Minkowski metric. We consequently

find solutions of the form [179]
A(r)= 5 — =5 — g, (B.3)

For later use we define 71 to be the two zeroes of A (there are only two solutions for
r > 0). To this background fluxbrane geometry we add a single brane and interpret
our four-dimensional universe to be restricted to the brane in the usual manner. Note
that in general both the scalar field ¢ and the Maxwell field will exist off the brane.

Further details of the construction appear in [203].

In order to consistently reproduce our four-dimensional universe on the brane, the
gravitational interactions on the brane must reduce, at low energies, to the observed
Newtonian potential. The basic idea here is to use a massless scalar field to model
the behavior of gravity. Therefore we look for solutions to the massless Klein-Gordon

equation

1 v
VG = ——ga” (\/ —g9" ayG@) = N )
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with boundary conditions

G<I>|7‘—>7", < o0 5 (B5)

0,Goler. = 0. (B.6)

B.4 The Solution

To simplify the analysis of (B.4) we perform a change of variables to put the differential
equation into Sturm-Liouville form with the variable p.

R

p=e (r*A(r))"tdr (B?)
which becomes
P
=~ >0 B.8
p S (B.8)

where r, and r_ are the two roots of A(r). We also perform the Fourier decomposition
of the Green’s function
Ak
- ethu (@t —z n(¢—¢’)
Gy = / S E ey n(ps ') (B.9)

n=—oo

This gives a differential equation of the form

T4 2
0, (o)~ & T =do— ), (B10)
POLY n) T Y M + Yqn pP—pP), 10

P pPIq p p+ 1 q (p+ 1)2 q,
where

¢ = k", (B.11)

A
7 = q2§(ri—r4,)2, (B.12)
n = n’rl. (B.13)

An obvious way to investigate the behavior of solutions to this differential equation is
to use the method of Frobenius and expand the solution out as a power series. Provided
the r coordinate is close to r_ the value of p will be small. The two linearly independent

solutions are
oo

yi =Y apt (B.14)
5=0
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Zzozo bkpk+c2 n#0
Yo = (B.15)
log(lpDyr + X e bep® n=0.

where ¢; and ¢y are the solutions of the indicial equation for (B.10),
& — (nr*)* =0. (B.16)

If we impose the requirement that the solution be regular as p — 0, then we must set
the coefficient of the second independent solution to 0 and we are just left with the first
solution. The Einstein equations at the brane also require a Neumann-type boundary
condition for the function G¢ at the brane. This, along with the usual braneworld
matching conditions that the metric should be continuous at the brane and its first
derivative should just be a step function (the stress-energy tensor contains a delta
function source due to the brane), result in the on-brane solution at p = p, =r_/r, <
L,

n (P*)
= B (p) (B17)

The n = 0 mode represents the lowest order of the potential. For n = 0 we find

nilp) = ((—1)'“ Z%w”) ol (B.18)

k=0 j=0
where egg =1, g, = 0 for all £ > 0 and e;; > 0 for all 7 > 0 and k£ > 0. In the case
where this double summation converges absolutely then all rearrangements converge
to the same limit and we can write

yi(ps) = (Z(—l)kej,kpﬂf) g~ (B.19)

i=0 \k=j

Similarly

POy (ps) = (Z(—l)kkej,kpf> q. (B.20)

=0 \k=j
We can then write out (B.17) as

Yoo(ps) = D Qrog™ (B.21)

k=—1

and calculate Q; ¢ (Q;.,, is the general term) order by order in ¢? using the relationship

Y1(p«) = [Wa.0(pa)] 0« 0py1 ()] - (B.22)
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For example,

Q-10 = —%ﬂ. (B.23)

Substituting the series back into the expression for the potential we find

d3k —ik.(x—x' > dkO Q*l,o - 24
Ve = / (27T)5€ | )/ i(kO — ie) ( e + ZQj,Oq T (B.24)
oo g

The term proportional to g2 just gives a contribution of

Q—l 0 / 3k e—z’k.(x—x’)
Ve = : B.25
® 27 (2m)3 k2 ( )
and thus the potential to lowest order becomes
14+p)A 1
Vp = — 1) (B.26)

Am2p, |x —x|’

which has the desired 1/x dependence of the familiar Newtonian gravitational potential.

B.5 Conclusion

The basic model outlined here is capable of reproducing Newton’s law of gravity at low
energies, and our method demonstrated here provides a method for quickly checking
this. Our method does not in general allow one to easily calculate the correction
to the lowest order of the static gravitational potential on the brane. Reproduction
of Newton’s law of gravity to lowest order seems to be a generic property of (6D)
models constructed in this manner. Several other models have achieved the same
result although often without the added feature of regularity in the bulk and with
added restrictions on the brane [179]. It is the regular closure of the bulk geometry at
the totally geodesic submanifolds (bolts) that gives hope to the idea that perturbations
of black holes and gravitational waves will not grow without limit and thus further study

should be carried out in this direction.
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