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Introduction

Thermodynamics was originally developed in the 19th century to optimize steam engines
[28, 30]. In this context, work is defined as useful energy, namely mechanical energy, that
can be used to set trains into motion for example. Work exchanges corresponds concretely
to pushing a piston or lifting a weight. Conversely, heat is energy exchanged with a bath,
which is not a mechanical system. Heat may corresponds to energy losses, for instance due
to friction. The sum of the work and heat equals the internal energy variation of the studied
system, which constitutes the first law of thermodynamics.

At the time, thermodynamics was an engineering science aiming at using the cyclic
transformation of a working substance S to extract heat from baths and convert it into
work, possibly stored in a battery, as depicted in Fig. 1a. This applied science especially
focused on engine efficiency which led to the study of the more fundamental concept of
irreversibility [30]. Indeed, the Carnot efficiency, which is the maximum efficiency of an
engine operating between two baths, can only be reached when all the transformations in
the cycle are reversible. Reversible transformations are always quasi-static, that is very
slow. Conversely, irreversibility corresponds to a decrease in efficiency caused by a too
fast operation of the thermal machine. Work is always exchanged reversibly with the bat-
tery while heat exchanges with the baths are not necessarily reversible.

(a)

W Q
5| €>(s) €> 4 /5

Battery Working substance Bath

(b) Hg(t)
0| €>(s)€e>|r

Operator System Reservoir

Figure 1: (a) Typical framework in thermodynamics: a working substance S exchanges
work with a battery B and heat with one or more thermal baths. (b) Typical framework in
stochastic thermodynamics: a small system & is driven by an external operator O, imposing
the time-dependent Hamiltonian Hs(t), and randomly disturbed by a thermal reservoir.



2 Introduction

Besides, irreversibility is quantified by entropy production, the entropy of a system
being a measure of its statistical disorder. The second law states that the entropy of an
isolated system always increases. Therefore, we can distinguish the past from the future
by measuring the entropy, i.e. the entropy production gives us the direction of the arrow of
time.

Stochastic thermodynamics

These results from the 19th century give access to average values only, which is sufficient
for very large systems, with a number of particles of the order of Avogadro’s number, such
that energy fluctuations are negligible. However, when the system S is small, with only a
few microstates, fluctuations have an important impact and need to be taken into account.
Stochastic thermodynamics [109], developed in the 20th century [16, 59], addresses this
new paradigm. This framework, represented in Fig. 1b, uses the microscopic description
of the system provided by statistical mechanics and models the heat bath as a reservoir R
exerting random forces on the system [96]. Conversely, the external operator O applies a
deterministic force on the system. In this perspective, work is defined as controlled / de-
terministic energy exchanges while heat is identified with uncontrolled / stochastic energy
exchanges [112]. Therefore the operator O provides work to the system and plays the role
of the battery. As the system is randomly disturbed by the bath, it follows a stochastic
trajectory in phase space, different for each realization of the same transformation. A well
known example is the motion of a Brownian particle in a fluid. It is possible to extend
thermodynamic variables at the scale of single trajectories: These are the stochastic heat,
work and entropy production [111]. The macroscopic quantities as defined by 19th-century
thermodynamics are recovered by averaging over all possible microscopic trajectories.

Stochastic thermodynamics also gives an operational interpretation of the apparent
paradox of the observation of irreversibility at the macroscopic scale despite the time-
reversibility of the laws of physics at the microscopic scale: Irreversibility comes from the
lack of control. After applying some transformation, we can imagine that the operator O
tries to reverse the dynamics of the system to make it go back to its initial state. However,
O can only revert Hgs and this is insufficient to make S follow the time-reversed trajectory
in phase space because of the random perturbation caused by the bath. Therefore, an en-
tropy production can be associated with a single trajectory by comparing the probability
of this trajectory to occur during the direct transformation to the one of the time-reversed
trajectory during the reversed transformation [33].

Another asset of stochastic thermodynamics is that it applies to out-of-equilibrium sys-
tems. Especially, many fluctuation theorems linking equilibrium quantities with out-of-
equilibrium quantities have been derived [113]. One of the most well known is Jarzynski
equality [71] which allows to calculate the variation in equilibrium free energy from the
statistics of the work received by a system driven out of equilibrium. Furthermore, in
stochastic thermodynamics, the origin of the randomness of the trajectories does not mat-
ter, though it was historically thermal. This framework is therefore particularly suitable
to investigate thermodynamics at the quantum scale where new sources of randomness
appear.
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Quantum thermodynamics

On the one hand, stochastic thermodynamics started to consider smaller and smaller sys-
tems, especially when checking fluctuation theorems: macroscopic oscillators [41], col-
loidal particles [26, 119, 120], single molecules [68], ... Once the systems with quantized
energy levels were reached, the question of the extension of fluctuation theorems to quan-
tum systems naturally arose. Another fundamental question raised by the stochastic ther-
modynamic community is the interpretation of irreversibility in the presence of genuinely
quantum sources of randomness, such as quantum measurement and more generally quan-
tum noise.

On the other hand, quantum technologies are booming in the wake of the second quan-
tum revolution. The first one occurred at the beginning of the 20th century, describing
the rules of physics at the atomic scale and below, discovering the quantization of energy
levels and formulating the concept of wave-particle duality. It lead to the understanding
of the structure and properties of materials which have allowed the development of elec-
tronics and informatics. The second quantum revolution emerged with the tremendous im-
provement of nanotechnologies which now allows the manipulation and control of single
quantum systems. This is about engineering quantum systems to have selected properties
and designing quantum circuits with the aim of achieving quantum supremacy, i.e. outper-
forming classical computers. Coherence and entanglement are at the heart of this second
revolution. The quantum information community thus naturally became interested in using
them as a fuel in quantum engines to outperform classical ones. Another key question that
arose is the one of the energy footprints of quantum computations, for instance the cost to
create and maintain entanglement or fight against quantum noise.

The recent quantum thermodynamics community results from the merging of scientists
from both the stochastic thermodynamics and quantum information communities. The
typical framework is the same as in classical stochastic thermodynamics (Fig. 1b), except
that the working substance, the battery and / or the reservoir are quantum systems, which
makes it more difficult to distinguish between work and heat. Therefore, this calls for
extensions of the definitions of work, heat and entropy production in this new scenery.
There is now a relative consensus about the definition of average work and heat for a
quantum system in contact with a thermal bath and driven by a classical operator [2]:
work is identified with the energy exchanges induced by the operator, i.e. the work rate
corresponds to the variation of Hg, while heat is the energy exchanged with the bath,
associated with the Lindbladian term L[pg| in the equation of evolution of the density
operator ps. As measurements have stochastic outcomes, recent efforts focused on the
reconstruction of stochastic thermodynamics with a “quantum dice”, i.e. replacing the
thermal source of randomness by the quantum randomness caused by measurement [45].
Especially, the definition of a new kind of heat, named “Quantum heat”, which is provided
by the measurement device, has been introduced recently.

Issues arise when trying to formulate a general definition of work. For instance, when
the battery is quantum then the ensemble {S + B} is described by a time-independent
Hamiltonian which makes the definition of work used for driven systems inapplicable.
Furthermore, work, unlike internal energy, is not a quantum observable [117], i.e. it cannot
be associated with a Hermitian operator. Therefore, work has to be defined operatively,
by describing the scheme used to measure it. Several such definitions have been proposed
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[12, 116], sometimes giving rise to contradictory results [49]. One of the first proposed
schemes was to perform two projective energy measurements (TPM), one at the beginning
and one at the end of the transformation, defining work as the difference between the two
outcomes. This definition is consistent with the classical definition of work [72, 140] but
its extension to open quantum systems requires to perform a TPM on the bath as well [25,
50], making this scheme complicated experimentally. Furthermore, the use of projective
energy measurements destroys all coherences in the system, preventing the exploration of
the role of coherences in thermodynamics.

To sum up, in classical physics, a trajectory is unambiguously defined by the temporal
sequence of coordinates of the system in phase space and the way the system is monitored
does not alter it. On the contrary, for quantum systems, this monitoring alters the trajec-
tory because measurement disturbs the system and contributes to the energy and entropy
exchanges. Therefore alternative strategies to measure energy flows need to be developed.
As direct measurements are excluded, there were several proposals to use ancillary systems
to measure work [36]. Another proposal is to measure heat exchanges by monitoring the
bath and use the first law of thermodynamics to obtain the work [43], the key idea being to
engineer the bath so that a photon absorption is associated with a photon emission which
can be detected. In this thesis, we propose a different alternative, which is to measure work
in situ, directly inside a quantum battery.

Measuring work in the quantum realm: two possible plat-
forms

In the usual thermodynamic setup, the battery is a classical operator driving the system,
so the system’s evolution is described by a time-dependent Hamiltonian while the operator
is not included in the quantum description of the setup. Therefore, replacing this classical
operator by a quantum battery allows a more self-consistent description that takes into ac-
count the back-action of the system on the battery. In addition, our proposal in Chapters 2
and 3 only requires to measure the battery at the beginning and at the end of the thermo-
dynamic transformation which is far easier than a time resolved monitoring of the system
and / or the bath. More precisely, we investigate the work exchanges between a qubit,
that is a two-level system, and a quantum battery. Two different platforms are considered:
optomechanical devices and one-dimensional atoms.

Optomechanical devices

Hybrid optomechanical systems [17, 121] consist of a qubit parametrically coupled to a
nanomechanical resonator. This kind of device can be implemented in various platforms,
e.g. superconducting qubits embedded in oscillating membranes [80, 98], nanowires cou-
pled to diamond nitrogen vacancies [7], or to semiconductor quantum dots [136]. The
physical origin of the coupling depends on the platform: capacitive coupling, magnetic
field gradient and strain-mediated coupling respectively for the cited devices. In any case,
the effect of this optomechanical coupling is the same: The motion of the resonator induces
a modulation of the qubit’s transition frequency. The resonator therefore plays the role of
the battery, applying the transformation on the qubit. But, unlike for a classical operator, its
energy is small enough to be noticeably impacted by work exchanges, making it possible to
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measure work directly inside the battery. The mechanical frequency is orders of magnitude
smaller than the transition frequency of the qubit, so there is no resonance between the two
systems. Therefore, in hybrid optomechanical systems, the battery is dispersive.

The bath is the electromagnetic environment of the qubit, that is a reservoir of pho-
tons with a thermal distribution. The qubit may also interact with a laser which can be
considered as an additional non-thermal bath.

One-dimensional atoms

The second studied platform are the so-called “one-dimensional atoms” [15, 122]. The
qubit is an artificial atom embedded in a one-dimensional waveguide. It can be driven
by injecting a coherent light field in the waveguide. In the classical limit of large photon
numbers, this corresponds to classical Rabi oscillations [31]. The mode of the waveguide
of same frequency as the qubit’s transition plays the role of the battery, which is resonant
unlike in optomechanical systems. Therefore this platform is promising to explore the im-
pact of coherence on thermodynamics, especially on engine efficiency. This kind of device
can be implemented in superconducting [42, 69] or semiconducting [39, 60] circuits. The
work rate is directly obtained through the difference between the outgoing and incoming
photon rates which can be measured with a heterodyne detection setup [32]. In this case,
the bath is the environment of the qubit.

These devices can be highly sensitive to single-photon effects [130], such as stimulated
emission [124]. Moreover, the qubit’s decoherence channels can be monitored, enabling
the reconstruction of the stochastic trajectory followed by the qubit [53].

Outline

This thesis consists of five parts. Chapter 1 presents the theoretical framework of open
quantum systems used in the following chapters and summarizes the definitions and re-
sults of the thermodynamics of such systems when the battery is a classical operator and the
bath is thermal. Chapters 2 to 4 deal with hybrid optomechanical systems, evidencing that
these devices are promising platforms to experimentally explore quantum thermodynamics.
Namely, Chapter 2 focuses on the average thermodynamics of such systems, showing that
the mechanical resonator acts as a dispersive battery and can be used to directly measure
average work exchanges. In Chapter 3, we go one step further and show that the battery’s
energy fluctuations equal work fluctuations. We then use this result to access entropy pro-
duction and probe fluctuation theorems. Chapter 4 studies hybrid optomechanical systems
as autonomous thermal machines and proves that they can perform optomechanical energy
conversion. More precisely, shining a red-detuned laser on the qubit leads to a cooling
down of the mechanics in a similar way to evaporative cooling. Conversely, if the laser is
blue-detuned, the mechanical motion is amplified and we evidence that a coherent phonon
state can be built starting from thermal noise. Finally, Chapter 5 is devoted to a different
kind of quantum machines where the battery is resonant with the qubit’s transition. We
demonstrate that a two-stroke engine, cyclically extracting work from a single non-thermal
bath, can be made from a one-dimensional atom. We also evidence that coherence plays a
key role in heat-to-work conversion.
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Thermodynamics of open quantum
systems
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Many situations studied in quantum thermodynamics involve open quantum systems.
Indeed, as shown in Fig. 1.1, the typical framework of such systems is very similar to the
one of stochastic thermodynamics: a quantum system S is driven by an external operator
O and weakly coupled to a thermal reservoir R. Before tackling more complex situations,
like quantum batteries or non-thermal reservoir, we need to lay out the key definitions and
concepts of quantum thermodynamics in this simpler case where the bath is thermal and
the battery is a classical operator.

This chapter therefore summarizes the thermodynamics of a quantum driven system
weakly coupled to a single thermal reservoir. First, brief reminders about the theory of
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Figure 1.1: (a) Typical framework in quantum open systems: a system S is driven by a
classical operator O and coupled to a reservoir R. Due to the external drive, the system’s
Hamiltonian is time-dependent. The interaction with the reservoir result in a non-unitary
evolution, described by the superoperator £ applied on the density operator ps of the sys-
tem. (b) Typical situation in thermodynamics: a system S receives work from an operator

0.

open quantum systems are given, introducing the notations. Then, the definitions and key
laws of quantum thermodynamics in this context are presented.

1.1 Reminders about open quantum systems

This part aims at providing the few definitions and equations needed to define thermody-
namic quantities. The system S is a possibly driven quantum system interacting with a
reservoir R. We further assume that R is Markovian, i.e. that its correlation time 7, is neg-
ligible compared to the other relevant time scales and that the coupling is weak, meaning
that the influence of S on R is small. We discretize time using a time step At, chosen to be
a lot longer than 7, but smaller than the characteristic timescale of the system’s evolution.
Because of our assumptions, the dynamics is Markovian and we can picture the system
as interacting with a fresh copy of the reservoir every At, like in collisional models or
repeated interaction schemes [100, 141], S and R being in a product state at the beginning
of each time step and the state of R being reset.

1.1.1 Markovian master equation
1.1.1.1 Kraus sum representation

S is not isolated, therefore the evolution of its density operator ps over a time step At is
not Hamiltonian but given by a dynamical map M a; such that

ps(t + At) = Mad[ps(t)]. (1.1)

The relationship between the unitary evolution of the closed system {S + R} and the non-
unitary evolution of the subsystem S is represented in Fig. 1.2. The density operator of S
(resp. R) is obtained by tracing over the degrees of freedom of the other subsystem, i.e.
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ps/r = Trr/s(por), Where py is the density operator of the whole system. To be physical,
M has to transform a density operator into another density operator. Mathematically
this translates into M, being a convex-linear, completely positive and trace-preserving
quantum operation [21, 66]. Any map fulfilling these requirements can be written in the
so-called Kraus sum representation [79]

Madps(8)] =Y M (At)ps(t) M (A1), (1.2)

I

where {M,,(At)},, is a collection of operators satisfying the normalization condition
> Mi(At)M,(At) =1. (1.3)
“w

This representation is not unique, but there always exists one with a finite number of oper-
ators, not greater than the dimension of the Hilbert space of S squared.

Unitary evolution

ptot(t) = ps(t) ® pR(t) > pot(t + At) = Utot<At)ptot(t)UtLt(At)
TrRl Tre
t > t+At) =M t
ps(t) CPTP map ps(t+ At) atlps(t)]

Figure 1.2: Schematic representation of the dynamics of the total system and of the subsys-
tem of interest S. The ensemble {S+ R} evolves unitarily under the action of the evolution
operator U (At). The density operator of the subsystem S is obtained by tracing over the
reservoir’s degrees of freedom and therefore, its evolution is not unitary in general but de-
scribed by a completely positive and trace preserving map (CPTP) M ;. The fact that
the total system is taken in a product state at time ¢ comes from the assumption of weak
coupling [21].

1.1.1.2 Lindblad master equation

Given that the reservoir is weakly coupled to the system, in addition to the Kraus sum
representation, the evolution of S can be given in the form of a Lindblad master equation
[21, 66]: .

) i

ps(t) = —ﬁ[HS(t),Ps(t)] + L[ps(t)]. (1.4)

This equation is a coarse-grained approximation of the evolution of the density operator,
the derivative of the density operator ps being approximated by

o ps(t+AL) — ps(t)
ps(t) = A . (1.5)

The Lindblad superoperator £ reads

N
Llps(t)] = > D[L,]ps(t), (1.6)

p=1
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and we have used the notation

1
D[X]p:= XpXt - 5(XTXp + pXTX). (1.7)
The discrete set of operators {Lu}ﬁle, called jump operators (See Section 1.1.2.1), is not

unique and is related to the following choice of Kraus sum representation:

. N
1At At
Mo(At) =1 = ==Hs(t) — > LiLy, (1.8)
pn=1
My (At) = VAtL,p=1,.,N. (1.9)

The Lindblad master equation (1.4) gives us the average evolution of S. However, to access
energy fluctuations, we need to describe the evolution of S in more details and to be able to
define the trajectory followed by S during the transformation. The next section therefore
explains how to unravel a master equation into quantum trajectories.

1.1.2 Quantum trajectories

As the set of operators { M, (At)},, fulfills the normalization condition (1.3), it can be seen
as a generalized quantum measurement [134]. The indices i corresponds to the possible
outcomes. Eq. (1.2) can therefore be interpreted as the state of the system after such a
measurement when the outcome is not read. The Lindblad master equation (1.4) therefore
gives the evolution of ps as if the environment was measuring the system every At but
without reading the outcome.

Conversely, if the measurement outcome is read, then ps (¢ + At) is no longer given by
Eq. (1.1) but by
MrpS (t)M:

Tr (pg(t)M:Mr) ’

where 7 is the measurement outcome. Since this measurement process is stochastic, the dy-
namics of the system is no longer deterministic but takes the form of a stochastic quantum
trajectory 5 depending on the measurement outcomes. Nevertheless, the same evolution
as given by the Lindblad master equation is recovered when averaging over all possible
trajectories.

ps(t + At) = (1.10)

This quantum trajectory picture of the dynamics of the system was originally devel-
oped as a numerical simulation tool to overcome computational issues arising when trying
to integrate the master equation for large Hilbert spaces [88]. Therefore, the trajectories
obtained by this method were seen as virtual paths. Interestingly, with the improvement of
nanotechnologies, it is now possible to experimentally keep track of these trajectories [23,
63, 94, 128], evidencing there physical relevance.

An unraveling of a Lindblad master equation is the choice of a particular generalized
quantum measurement, i.e. of a set of Kraus operators {,(At)},,, that will allow us to
gather information on the system without changing its average evolution. In the following,
we will focus on the two kinds of unravelings that are used in this thesis: the quantum jump
unraveling and the quantum state diffusion. In both cases, we assume that the system S is
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always initially prepared in a pure state. Time is discretized using the time step At, which
corresponds to the interval between two measurements, and we define ¢, = = nAt. There-
fore, a trajectory 3. is a sequence of pure state {|s(t,))}_, where N is the total number
of measurements performed. Denoting {rs(t,)}. =, the measurement record associated
with the trajectory Y., the state of the system at time ¢,,.1, with n € {0,.., N — 1}, reads

MT‘Z(tn)
1)) = —= b (£,)) 1.11
Vs (tni1)) P |5 (tn)) (L.11)

where

Prsten) = (Us(ta) M\ My [0 (t0)) (1.12)

is the probability to obtain the outcome rx(¢,) when measuring |15 (¢,)). The density
operator pgs as given by the Lindblad master equation (1.4) is then recovered by averaging
over the trajectories:

ps(tn) = (s () X¥s(ta) )5
—ZPi\wz ) X5 (t)] (1.13)

P[i] is the probability that the system follows the stochastic trajectory 5.

It is important to note that unlike their classical counterparts, quantum trajectories are
closely related to the chosen measurement scheme. Indeed, in classical physics, a trajectory
is unambiguously defined by the temporal sequence of coordinates of the system in phase
space and the way the system is monitored does not alter it. On the contrary, for quantum
systems, different choices of measurement schemes result in totally different trajectories.

1.1.2.1 Quantum jump unraveling

For this specific unraveling, the chosen generalized quantum measurement is the discrete
set of operators { M } _, defined by Egs. (1.8) and (1.9) from the Lindblad master equa-
tion. Therefore, at each time step n, the system will evolve in one of two very different
ways. If the measurement outcome r(t,,) is 0, the system evolves under the action of the
operator M. Since M, is of order unity, the system’s state changes very little during the
time At and this evolution can be seen as the infinitesimal change in a continuous evolution
described by the non-Hermitian Hamiltonian [66]

Hew(t,) =

o] o

N
isY LiL,. (1.14)
pn=1
On the contrary, if 75;(¢,,) > 0, then the system undergoes an important change and “jumps”
from state |¢5(t,)) to the very different state L, ., |¢x(t,)) (up to a normalization),

hence the name “jump operators” to designate the operators {Lu}ﬁle in Section 1.1.1.2.
This unraveling will be used in Chapters 3 and 4.

To give a concrete example of quantum trajectories, we apply the quantum jump un-
raveling to the master equation of a non-driven qubit in contact with a reservoir at zero
temperature [66]:

fat) = —[hwo el py(0)] +7Dlopy(1). (115
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— PX(1)
- . (PF(t))s
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Figure 1.3: Evolution of the population of the excited state of the qubit P, in the case where
the qubit is initially in state |e). The solid lines are two examples of trajectories > while
the dashed line is the evolution of P, averaged over 10 such trajectories.

pq is the density operator of the qubit of excited (resp. ground) state |e) (resp. |g)) and
transition frequency wy. We have defined o = |g)e|. There is a single jump operator
L = \/y0_ corresponding to the emission of one photon at frequency wy. This unraveling
corresponds to the replacement of the environment by a single-photon detector. At each
time step At, either the detector clicks, indicating the emission of a photon, i.e. there was a
jump and the qubit ends in the ground state, or there is no click and the qubit evolves under
the action of the effective non-Hermitian Hamiltonian Her = A(wy — i7/2) |e)(e|. These
two alternatives for the n-th time step sum up to:

e Click with probability p = yAt| (¢¥s(t,)|e) |*:
Vs (tnir)) = l9) (1.16)

e No click with probability 1 — p:

1 — (i +7/2) At [e
Vi-p

i (tas)) = Uit (1.17)

The evolution of the population P, of the excited state can then be reconstructed from
the detector’s click record and will look like the curves in Fig. 1.3 if we initially prepare
the qubit in state |e). Though during a trajectory (solid lines) the qubit is always in one
of its energy eigenstates, we recover the exponentially decaying population predicted by
the master equation (1.15) by averaging P. over all possible trajectories (dashed line).
This kind of trajectories have been observed experimentally, for instance for a microwave
photon in superconducting cavity [63] or a superconducting artificial atom [128].

1.1.2.2 Quantum state diffusion

Quantum state diffusion is another often used kind of unraveling. In this case, the mea-
surement outcome rx(t,) takes continuous values, i.e. there is an infinite number of Kraus
operators in the chosen representation. This unraveling corresponds to a situation where
the environment is weakly measuring the system, thus the evolution of the system at each
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time step is always infinitesimal. Eq. (1.4) is typically unraveled into [62]

sttnrn)) = (1 pHs(t) ) 1osttn)) At

N 1

1
+ 3 (B L = 5L — SIS R ) lsta)) A¢

=1

+ (Lu - lu[za tn]) |7vb2(tn>> d@u (1.18)

1

I

where [,,[X,t,] = (Us(t,)|L,|Ys(t,)). The d€, are N independent complex Wiener in-
crements, i.e. Gaussian random variables of zero mean and variance At. This unraveling
will be used in Chapter 4. The typical experimental methods to obtain quantum state diffu-
sion unravelings are homodyne and heterodyne detection schemes [134]. For instance, the
trajectories of a superconducting qubit were reconstructed from the heterodyne detection
of its fluorescence [23].

1.2 Average thermodynamics

As previously, we consider a quantum driven system S in contact with a thermal bath
‘R at temperature 7". The Hamiltonian of the system is therefore time-dependent and the
thermodynamic transformation is performed by the external operator that drives the system
from Hs(to) to Hs(t). In the rest of this chapter, we assume that the drive preserves the
energy eigenstates of the bare system, changing only the energy eigenvalues. This excludes
coherent driving like the Rabi oscillations of a two-level system driven by a resonant laser.
In this part we will use the results from Section 1.1.1 to define the average thermodynamic
quantities and assume that the evolution of the density operator ps is described by the
Lindblad master equation (1.4). The system is initially prepared in a mixed state ps(to).
We denote p2°(H ) the equilibrium state of the system associated with the time-independent
Hamiltonian /, defined by

p (i) = ST,

(1.19)
where
Zs(H) =Tr (exp(—H/kgT)) (1.20)

is the partition function of the system and kg is the Boltzmann constant.

1.2.1 First law

At any time t, the internal energy of the system is defined as the expectation value of the
Hamiltonian [2]:
Es(t) = Tr(ps(t) Hs(1)). (121)

Looking at the system’s infinitesimal energy variation over one time step d€s(t), we get

d€s(t) = Es(t + At) — Es(t)
= Tr(dps(t) Hs(t)) + Tr(ps(t)dHs(1)). (1.22)
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Tr(ps(t)dHs(t)) is an energy change induced by the operator, i.e. corresponding to con-
trolled energy exchanges. On the other hand, using Eq. (1.4), we can write

Tr(dps(t)Hs(t)) = Tr(AtL]ps (1) Hs(t)) (1.23)

and associate this term with uncontrolled energy exchanges with the reservoir. Therefore,
in accordance with classical thermodynamics, we define the infinitesimal work and heat
received by S during one time step by [2]

SW(t) := Tr(ps(t)dHs(t)) (1.24)
5Q(t) := Tr(dps(t) Hs(t)) (1.25)

Integrating these equations over time, we obtain the total work and heat received by S
during the transformation:

W:/to dtTr(pg(t)Hg(t)>, (1.26)
Q= [ dts(psts(o) (1.27)

The first law of thermodynamics clearly follows from these definitions, both at the in-
finitesimal and whole transformation scales:

dEs(t) = SW () + 6Q(1), (1.28)
AEs = Eslty) — Es(te) = W + Q. (1.29)

1.2.2 Second law

The Von Neumann entropy of the mixed state ps is defined by

Sw(ps) = = Tr(pslog(ps))- (1.30)

This entropy vanishes for pure states. The entropy change due to the thermodynamic trans-
formation is given by the change in the Von Neumann entropy of the system

ASs = Syn(ps(tr)) — Sun(ps(to)). (1.31)

The irreversibility of the transformation is quantified by the entropy production Si;,
defined as the total entropy variation of the ensemble {S + R} which is isolated. The
entropy production obeys the second law of thermodynamics

Siee > 0. (1.32)

For an isothermal transformation, at temperature 7', the entropy change of the system is
given by [38]
Q

A = Oirr P L.
Ss =S5 +k‘BT (1.33)
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like in classical thermodynamics. Therefore, the infinitesimal entropy production during
one time step is

§Sim(t) = dSs(t) — 5]2 (jf)
= dSS(t) —Tr (dpg(t)ii—(j?), (1.34)

where we have used Eq. (1.25). The Hamiltonian can be expressed as
Hs(t) = —kgT log(p:°) — kg1 log(Z;), (1.35)

where p° = p>(Hs(t)), given by Eq. (1.19), is the equilibrium state the system would
relax into if its Hamiltonian was set to the constant value Hgs(t) and Z, = Z(Hg(t)) is the
corresponding partition function, given by Eq. (1.20). Therefore, we obtain

5Sirr(t) = _S(dps(t)nptoo)a (136)

where we have defined the relative entropy

S(pllp") == Tr(plog(p) — plog(p')), (1.37)

which as the mathematical property of a distance between p and p’ [126, 132]. The in-
finitesimal entropy production can thus be interpreted as the variation in the distance be-
tween the state of the system and the local equilibrium state. For a quasi-static transforma-
tion, the variation of Hg(t) are so slow that the system is always in the local equilibrium
state p;° and therefore the entropy production vanishes.

In the case of a simple relaxation, i.e. we have prepared the system in some out-of-
equilibrium state ps(y) then put it in contact with the reservoir without driving it, Hs and
therefore p3 are time-independent. As a consequence, integrating Eq. (1.36), we obtain

Sirr = S(PS(tO)HP%O)a (138)

assuming that ¢; is large enough to have ps(t;) = p&. This result means that the total
entropy production is given by the distance to the equilibrium state.

1.3 Stochastic thermodynamics

To access the fluctuations of the thermodynamic quantities defined in the previous section,
we need to go beyond the Lindblad master equation and use the quantum trajectory picture
from Section 1.1.2. In the following we will therefore assume that an unraveling has been
chosen. In practice, this unraveling will be determined by the experimental detection setup
(e.g. photo-detection, homodyne detection, ...). During the same transformation as previ-
ously, of duration t; = NA¢, the system now follows a trajectory 3 = {|ts;(£,))}\_,. The
system is initially in the mixed state

ps(to) = > pa AL, (1.39)
A

therefore |1/s;(to)) is randomly chosen among the eigenstates {|\) }  of the density operator
with probability p, [66].
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1.3.1 Firstlaw

The internal energy of the system along the trajectory 5 is defined by [45]

Es[E,ta] == (Ws(ty)|Hs(ta)[¥s(ta)) - (1.40)

This definition is similar to the average one (Eq. (1.21)), except that the density operator
ps(t,) has been replaced by the pure state |5 (¢, )¢5 (t,)|. The energy variation during
the n-th time step reads

ng[iv tn] = ES[iu tn+1] - 58[i7 tn]
= (Us(tne1)[Hs(tn) [Us (tni1)) — (Ws(ta) [Hs(tn1) [Us(t0))
+ Wst)Hs(tas)[Ws(tn)) — Wst)|Hs(t)Ws(ta)) . (1.41)

As previously, we identify work with the energy injected by the drive in the system. There-
fore, the work increment during the n-th time step is defined by

SWIE, ta] i= (s (ta) Hs(b1) s (t)) — (@ (tn) | Hs(t) |8 (£0)) - (1.42)

To ensure that the first law is fulfilled for a single time step, the heat increment is defined
by

SQIE, tn] := dES[S, tn] — OWIE, t,]
= (Us(tni1)|Hs(tn1) [¥s(tnrn)) — Ws(ta)|Hs(tos1)[Us(tn)) . (1.43)

These definitions are also similar to the average ones (Eqs (1.24) and (1.25)) since the work
increment is given by the variation of the Hamiltonian while the heat increment is given by
the variation of the system’s state. The total work and heat received by the system along
the trajectory 3 is then given by summing up the increments:

N—-1
WS =Y WIS, t,], (1.44)
0
QR = Q[ t,]. (1.45)
n=0

Finally, the first law can be written for a complete trajectory:
AES[S] = Es[5, tn] — Es[5, to] = WIE] + Q[5]. (1.46)

All these definitions are consistent with the averaged thermodynamic quantities defined
in the previous section. Indeed, using Eq. (1.13) we obtain

( (Vs () Hs(t)[¢s(t' ZP | Tr(Hs (1) s (t)Xebs (£)])
=T1“(Hs( )ps(t)). (1.47)

Then, we can check that <53[i, tn]>i = Es(tn), <5W[i t"]>i = oW (t,) and <5Q[i, tn]>i =
dQ(ty).
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1.3.2 Second law and fluctuation theorems
1.3.2.1 Entropy

The entropy of the initial state is defined as

Ss[Z, to] == — log(pi(¥s(to))). (1.43)

pi(1s(tp)) is the probability that the system starts in ¢x(to) and is equal to the eigenvalue
pa of ps(to) associated with the eigenstate |\) = |¢x(to)) (See Eq. (1.39)). This definition
is consistent with the Von Neumann entropy of the initial state:

(Ss[S,t0]) = Sux(ps(to))- (1.49)

Entropy production quantifies irreversibility, i.e. how impossible it is to time-reverse
the transformation. Because of the stochastic nature of the quantum trajectories, an en-
tropy production sm[E] can therefore be associated to the trajectory 5 by comparing the
probability P[%] that the system follows the trajectory & = {|¢s;(t,))}Y_, during the di-
rect transformation to the probability ﬁ[f] that the system follows the reversed trajectory
> = {5 (t,))}°_ during the time-reversed transformation [110]:

s3] = log (Jf@) . (1.50)

P[S]

A more precise definition of the time-reversed transformation will be given for specific
cases.

1.3.2.2 Second law and absolute irreversibility

The ratio of the probabilities of the reversed and direct trajectories is given by the expo-
nential of the entropy production:

- exp(—sirr[iD. (1.51)

Therefore, by averaging over all possible direct trajectories, this expression is reduced to

Z P[] = <exp<—sirr[i])>i, (1.52)

ZeZd

where 34 = {%|P[X] > 0} is the set of reversed trajectories that have a direct counterpart.
This sum is equivalent to the one denoted by > _s: but explicitly ensures that P[E] is posmve

so that Eq. (1.51) is finite. P is a probability distribution, therefore 0 < 3 €5y P[E] <1
and we can define the non negative number ¢ such that

Z P[¥] = exp(—o). (1.53)
YETy

As a consequence,

<exp(—sirr[i]> >i = exp(—o), (1.54)
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which is an example of integral fluctuation theorem (IFT). By convexity of the exponential,
we obtain

<exp(—sirr[i])>i >0 >0, (1.55)

so the definition of entropy production for single trajectory is consistent with the second
law.

If all possible trajectories generated by the reversed protocol have a direct counterpart,
o = 0, so the IFT (1.54) takes the more usual form

<exp<—sirr[i]>>i =1, (1.56)

and we recover the second law exactly. This is typically true when the system is initially in
an equilibrium state at the start of both the direct and reversed protocols, which is the case
considered in next section. On the contrary, when there exists at least one reversed trajec-
tory without a direct counterpart, then ¢ > 0 and the transformation is strictly irreversible.
This kind of irreversibility is named absolute irreversibility [91]. It typically arises when
the system is not initially prepared in an equilibrium state. For instance, we can consider a
single gas particle in a box at temperature 7' (this is one of the examples given in Ref. [91]).
This box is separated in two by a wall and the particle is always initially put in the left part.
Then the wall is removed and the particle moves freely in between the two parts due to its
thermal motion. For the reversed process, the particle is initially in thermal equilibrium,
i.e. with a position randomly chosen with a thermal distribution, then the wall is put back.
If the particle is on the left, this reversed trajectory as a direct counterpart, whereas if the
particle is on the right, the associated direct trajectory has a zero probability to occur. A
more complex case where absolute irreversibility arises is presented in Chapter 3.

1.3.2.3 Jarzynski equality for a driven qubit

This part aims at proving Jarzynski equality [71]

WIS B AF
<exp (— T >>i = exp (_k:B—T) (1.57)

in the specific case of driven qubit in contact with a thermal reservoir. To do so, we will
first express the probabilities of the direct and reversed trajectories, then compute the ratio
of the two and eventually average it over the trajectories.

We assume that the drive only affects the qubit’s transition frequency, namely the

qubit’s Hamiltonian reads
Hy(t) = hw(t) le)e]| . (1.58)

The qubit is initially prepared in the equilibrium state pg> at the start of the transformation.
The equilibrium state p;*° is given by

pr” = v (1) leXel +pg (1) laXal (1.59)
where p2°(t), € € {e, g} is the Boltzmann probability

pE(t) = exp(_ng(f)/ BT (1.60)
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We have denoted £, (¢) the energy of the state |)
Eq(€) = hw(t)dc.e, (1.61)
where J. . is the Kronecker delta, and Z, the partition function
Zy =1+ exp(—hw(t)/kgT). (1.62)

Moreover, we assume the evolution of the transition frequency w(t) is such that the master
equation

i

o = — 3 [Hu(0), p(0)] + 1070 + DDl Jpg(t) + 1AM DloJog(t) (163

holds (this is for instance true for an adiabatic driving [1, 35]). Because of the drive, the
spontaneous emission rate «y of the qubit and the average number of photons 7 at frequency

w in the bath )
hw(t B
n(t) = <exp< k:B(T)) - 1) (1.64)

We now apply the quantum jump unraveling to this master equation using the following
Kraus sum representation:

are time-dependent.

Mo(t,) =1— %Heff(tn), (1.652)
M_(t,) = /7 (tn) At(A(tn) +1)o_, (1.65b)

M. (t) = /() Ata(ty)o (1.65¢)

with ¢, = nAt, o_ = |g)Xe| and o, = |e)g|. M_(t,,) and M (t,) respectively correspond
to the emission and absorption of one photon of frequency w(t,) by the qubit. M(t,) was
obtained from Eq. (1.8) and corresponds to the no-jump evolution, given by the effective
Hamiltonian (Eq. (1.14))

Herlt,) = heo(t) el — 20 (e, 1) el + (k) oMol ). (1.66)

The initial state of the qubit |ex;(¢,)) for a given trajectory % is drawn among |e) and |g)
with probability p2° o (to) (o). The jumps occur in between energy eigenstates which are also
the eigenstates of H., therefore at any time ¢,,, the state of the qubit, denoted |ex(¢,)), is
either |e) or |g). The probability of the trajectory 3 can be expressed as [66]

P[S] = p2 ) (to) Ples (t1) lex (to)]... Ples (tn) les (tx-1)], (1.67)

where
Ples(tni1)les(ta)] = (es(tn)| M, (tn) Mg, (tn)les(tn)) (1.68)

is the probability that the qubit ends in state |ex(t,+1)) after the n-th time step knowing
that it was in state |ex(t,,)) at time ¢,,. ry(t,) = 0, —, + denotes the kind of event that took
place during the time step (no-jump, emission or absorption).
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The time-reversed transformation in this case consist in preparing the system in the
equilibrium state p;7, then to apply the time-reversed drive ﬁq(t) = Hy(to +ty — 1)
between times t( and ¢y while the interaction with the bath remains unchanged. This leads
to the following time-reversed Kraus operators [34, 45, 83, 84]:

My(t,) =1+ ?Hgﬁ(tn), (1.69a)
M_(t,) = M (t), (1.69b)
M, (t,) = M_(t,), (1.69¢)

Therefore, the probability of the reversed trajectory 3 can be expressed as

P[] = pZ ) (tn) Ples(ty-1)les(tn)]... Ples(to)es(t1)], (1.70)
where
Ples(tn)|es(ta1)] = (es(tar) M, (tn) My, (t)es(tnin)) (1.71)

is the reversed transition probability. Using Egs. (1.67) and (1.70), the expression of the
ratio of the trajectories probabilities read

~ 00 N ~
P[Z] — pEZ(tN H P |EZ n“l‘l)] (1 72)
P[Y] peg(to) "0 Ples(tni1)]es(tn)]

From the expressions of the transition probabilities (1.68), (1.71) and of the Kraus opera-
tors (1.65), (1.69), we obtain

ﬁ[ez(tn)kz(tml)] — exp (M)j (1.73)

Ples(tni)les(tn)] kT

where 5Q[i, t,] is the heat received by the qubit during the time step, as defined by (1.43).
As for the ratio of the initial probabilities, it gives, using (1.60),

Peyien)(tN) <5q(€2(t0)) — gq(Ez(tN))) Zty 174
7}92@0)@0) = exp T ZtN. (1.74)

Then, Eq. (1.72) becomes, using the first law (1.46),

PE exp —A& Y] + AF + Q[X)
P[3] kT
~WI[E] + AF
= exp (%) , (1.75)
where AF' denotes the equilibrium free energy variation defined by
— Zty
AF = kgT log . (1.76)
Ziy

Therefore, using Eq. (1.50), the entropy production reads

= 1

sl %] = R (WIS] = AF). (1.77)
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Any reversed trajectory is of the form ¥ = {|ex(£,))}0_y. with ex(t,) € {e, g}, and

corresponds to the direct trajectory 3 = {|ex;(£,)) N_, which clearly has a non-zero prob-
ability to occur, given the expression of the transition probabilities (1.68) and the prepared
initial state py°. Therefore, the IFT (1.56) holds and finally, injecting the expression of the
entropy production (1.77), we obtain Jarzynski equality (1.57).

1.4 Summary

In this chapter, we have recapitulated the key results of the theory of open quantum systems
that will be used in this dissertation: the description of the average evolution of a system in
contact with a Markovian reservoir by a Lindblad master equation and the quantum trajec-
tory picture giving access to single realizations. Then we have given the definitions of the
main thermodynamic quantities for a quantum system driven by a classical operator and in
contact with a thermal bath.

First, we have defined the average internal energy of the system and used the Lindblad
master equation to identify the average heat and work exchanged during the transforma-
tion. The first law of thermodynamics naturally follows from these definitions. We have
defined the average entropy of the system and given, in the specific case of an isothermal
transformation, the expression of the entropy production that quantifies irreversibility. For
a simple relaxation toward equilibrium, this entropy production can be interpreted as the
distance between the initial state of the system and its equilibrium state.

Secondly, we used the quantum trajectory picture to apply the results of stochastic
thermodynamics to a quantum system. We defined heat, work and entropy production for
a single trajectory. We showed that the average thermodynamic quantities are recovered by
averaging the stochastic ones over the trajectories. Finally, we derived a generic integral
fluctuation theorem for the entropy production and applied it to the specific case of a driven
qubit to obtain Jarzynski equality.
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Optomechanical coupling was first achieved in optical cavities with one moving-end
mirror coupled to a mechanical oscillator (MO)[18, 40] (See Fig. 2.1a). These devices
have paved the way for many applications including sensing [106, 127], cooling the MO
down close to its ground state [6, 61, 87] and preparing the MO in quantum states [104,
129]. Besides, some features of phonon lasing were observed [64, 76] and there were pro-
posals to make phonon lasers using cavity optomechanics [73, 74, 139].

More recently, hybrid optomechanical systems, in which the cavity is replaced by a
qubit, have been developed (See Fig. 2.1b). Unlike in cavity optomechanics, these devices
are non-linear because the qubit saturates at one excitation. The mechanical motion mod-
ulates the qubit’s transition frequency which makes the MO play the role of the battery
[48]. Therefore these devices are particularly promising test-beds for the thermodynamics
of quantum systems, as shown in this chapter and the next two. Physical implementations
of such devices have been realized on various platforms [121]. For instance:

¢ A superconducting qubit, based on Josephson junctions, is capacitively coupled to a
nanomechanical resonator. The mechanical motion modulates the capacitance which
in turn changes the qubit’s frequency [80, 98].
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e The qubit is a nitrogen vacancy center hosted inside a diamond nanocrystal. The
nanocrystal is placed at the extremity of a nanowire. The optomechanical coupling
is then achieved with a magnetic field gradient that affects the qubit’s frequency
depending on the nanowire’s position by Zeeman effect [7].

e The qubit is a semiconductor quantum dot situated at the bottom of a conical shaped
nanowire whose top can oscillate [136]. The qubit is not centered in the nanowire
so that the mechanical strain applied on it varies with the position of the tip of the
nanowire (See Fig. 2.1c¢).
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Figure 2.1: Optomechanical systems. (a) Cavity optomechanics: the light in an optical
cavity is coupled to a MO via a moving-end mirror. (b) Hybrid optomechanical system
under study: a qubit is dispersively coupled to a nanomechanical oscillator. The qubit can
be driven by a laser and is also coupled to an electromagnetic reservoir R of temperature
T'. (c) Experimental realization of a hybrid optomechanical system consisting of a quantum
dot (qubit) embedded in a nanowire (MO). In this device, the optomechanical coupling is
mediated by the mechanical strain field around the quantum dot location. Image from the
Nanophysics and Semiconductors team of the Institut Néel — CNRS / Université Grenoble
Alpes, and the Institute for Nanoscience and Cryogenics of the CEA (Grenoble, France).

Several experimental implementations[7, 98, 136] are close to reaching the ultra-strong
coupling regime where a single photon emission or absorption by the qubit has a noticeable
impact on the mechanics. This regime is the one that will be considered in this thesis.

In this chapter, we apply the theory and definitions from Chapter 1 to a hybrid optome-
chanical system. First, we present the microscopic model of such systems and derive the
master equation for the optomechanical density operator when the qubit is in contact with
a thermal reservoir. Then, we study the thermodynamics of the qubit, demonstrating that
the mechanical oscillators plays the role of a battery and that average work exchanges can
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be directly obtained by measuring the oscillator. This last result is particularly interesting
since it offers an alternative to the direct measurement of the system to measure work in
quantum thermodynamics.

2.1 Dynamics: master equation for the hybrid optome-
chanical system

2.1.1 Microscopic model
2.1.1.1 Hybrid optomechanical system

We consider a hybrid optomechanical system which consists of a qubit of bare transition
frequency wy coupled to a MO of frequency (2, as depicted in Fig. 2.1b. The Hamiltonian
describing such systems reads

Hyn = Hy + Hy + Vi (2.1)
where
Hq = hwo |€><€| ® 1, (2.2)
Hy = 14 ® RQb'Y, (2.3)

are the free Hamiltonians of the qubit and MO respectively. We have denoted |e) (resp.
|g)) the excited (resp. ground) state of the qubit, b the phonon annihilation operator and
1, (resp. 1) the identity on the Hilbert space of the qubit (resp. MO). The coupling
Hamiltonian is [121]

Vam = higm €)e] (0T + b) 2.4)

where g, is the optomechanical coupling strength. As a consequence, the qubit’s effective
transition frequency & depends on the mechanical position & = @,f(b" + b):

A~

R X
w=wo+ gm——, (2.5)
zpf

where ., is the zero-point position fluctuation of the MO. We will denote pgy, the density
operator of the hybrid optomechanical system and pq = Try(pgm) (resp. pm = Trq(pgm))
the density operator of the qubit (resp. MO).

The Hamiltonian (2.1) can be rewritten

Hym = |gXg| ® HI + |e)e| ® Hy, (2.6)
where

HI = hQb'b, (2.7a)

2

HE = WQB'B + 1 <w0 — %‘“) 1o, (2.7b)
and we have defined

_p Ime A (_9m\,p (Im

B_b+le_D< Q)bD<Q). (2.8)
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D is the displacement operator, defined by
D(a) = exp(ab’ — a*b),a € C. (2.9)

Interestingly, we can see from Eq. (2.6) that if the qubit is in either state |e) or state |g),
then the MO evolves like a free harmonic oscillator. However, when the qubit is in the
excited state, the rest position of the MO is shifted by —2z,,g, /2. The energy eigenbasis
of Hyn is therefore {|g) ® |n), |e) ® |n) 5 }n>0, Where |n) is the n-phonon Fock state and
In)  is the displaced n-phonon state, |n) ; = D (=) |n). |g) ® |n) is associated with the
energy hQdn and |e) ® |n) 5 with h(Qn + wy — g2 /).

Coherent states of the MO are particularly interesting because they remain coherent
states under the action of both H¢ and HY. A coherent state |5), with 5 € C, is defined by

18) = D(5)10) (2.10)
with |0) the vacuum state, and is an eigenstate of the phonon annihilation operator:
b|B) = B18). 2.11)

If the qubit is in state |¢), with € € {e, g}, and the MO is in the coherent state |5,) at time
t = 0, then the state of the MO at time ¢ reads

Bu(t) = (50 n %’“5@6) exp(—iQt) — %’“56,@. (2.12)

2.1.1.2 Qubit’s bath

As shown in Fig 2.1b, the qubit can be driven by a laser, but this situation will be considered
in Chapter 4 only. The qubit also interacts with an electromagnetic reservoir R, i.e. a
photon reservoir in a thermal state. The Hamiltonian describing the bath reads

Hp, = Y hwpalay, (2.13)
k

where ay, is the annihilation operator of the k-th electromagnetic mode of frequency wy.
R4 is in a thermal state, therefore, it contains on average 7, photons at any frequency w,

with .
T, = (exp (%) _ 1) (2.14)

and 7" the temperature of the reservoir.

The coupling Hamiltonian between the qubit and the bath, in the rotating wave approx-
imation, equals

V:ZRI@WI (2.15)
=%

where R, = ), hgray, R_ = RL and gy, is the coupling strength between the qubit and
the k-th mode of the reservoir. We denote

Yo=Y grd(w —wp), (2.16)
k

in particular, v = 7, is the spontaneous emission rate of the bare qubit in contact with the
bath.
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2.1.2 Studied regime

In the remaining of this chapter and in Chapters 3 and 4, we will consider the following
regime:

e Dispersive coupling: The qubit and the MO are far from resonance, i.e.

wo > €. (2.17)

e Ultra-strong coupling: A single photon emission or absorption by the qubit induces
a shift in the mechanical rest position larger than the zero-point position fluctuations
of the MO, i.e.

Im = L. (2.18)

~Y

e R, is a Markovian thermal bath of temperature 7" and therefore,
wo>vyand 7. <yt gt QL (2.19)
where 7, is the correlation time of the bath.

These requirements are met by the experimental implementations cited in the introduction
of this chapter, except the one from Ref. [80] (See Table 2.1).

Variable Platform [80] [98] [7] [136]
Frequency Q/2m 58 MHz 72MHz |1MHz | 530 kHz
MO | Quality factor Q/T'| 3-10*-6.10% 5500 >10* | 3-108
Zero-point fluctuations Tpf 13 fm 4 fm 0.7pm | 11fm
Qubit Frequency wo/2m ~ 10 GHz ~ 1GHz |18 GHz|333 THz
Spontaneous emission rate /27| 170 - 800 MHz 3MHz |7 MHz |157 GHz
Optomechanical coupling strength ¢y, /2|5 - 1073-40 - 1073 ]0.063 - 0.35| 0.1 0.849

Table 2.1: Parameters for state-of-the art implementations of hybrid optomechanical sys-
tems (Table adapted from [44]).

In experimental devices, the MO is also coupled to a phononic thermal reservoir R,
giving rise to a mechanical damping rate I'. However, state-of-the art experimental im-
plementations reach very large quality factors (See Table 2.1) so we can safely neglect
the influence of R, on the time scales considered in this chapter and in Chapter 3. This
thermal reservoir will be taken into account in Chapter 4.

2.1.3 Microscopic derivation of the master equation

We now derive the master equation describing the evolution of the optomechanical system
when the qubit is in contact with the reservoir R. The total Hamiltonian describing this
situation reads

Hit = Hym + Hr, + V. (2.20)
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Given the considered regime, we can define a coarse-graining time step At, fulfilling
To,wyt K At <<y Q7 gt (2.21)

We assume that the optomechanical system and the bath are initially uncorrelated, therefore
the density operator of the total system is of the form

ptot(o) = pqm(o) ® qu(O)' (222)
The hybrid optomechanical system is itself initially prepared in a factorized state
pam(0) = pq(0) @ |5o) ol (2.23)

where pq(0) is diagonal in the bare qubit energy basis {|e),|g)} and |53,) is a coherent
mechanical state.

The total system is isolated, therefore, the evolution of its density operator is given by

the equation
i

Prot(t) = h[Htotu Prot(t)]; (2.24)
which becomes in the interaction picture
) i
Prar(t) = = [V(2): pran(1)] (2.25)
Any operator A(¢) in the Schrodinger picture becomes in the interaction picture
Al(t) = exp (%Hot) A(t) exp (— %Hot) , (2.26)
with Hy = Hym + Hg,, in particular V() = >~,_, Rj(t) ® o}(t) with
RL(t) = Z hgray, exp(—iwgt), (2.27)
k
o (1) = exp (%qut) o4 exp (—%qut) . (2.28)

Because of the presence of Vi (Eq. (2.4)) in Hy, o)y also acts on the MO. Integrating
Eq. (2.25) over one time step yields

i t+At
p{0t<t + At) = p{0t<t) - ﬁ/ dt/[vl(t/)a p{ot(t/)]' (229)
t
Replacing pi (') in the same way inside the integral gives
Ap{ot(t) = p{ot(t + At) - p{ot(t)

i

t+At
S /t At V() ol (1))

1 t+At t
-7 dt’ / dt" [V, V"), po E)]]- (2.30)
t t
The total density operator at time t” writes
Piot(") = P (") @ pry (") + peon(t”) (2.31)

To derive the master equation for the optomechanical system, we trace over the reservoir’s
Hilbert and apply the Born-Markov approximations:
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e Born approximation: The coupling between the qubit and the reservoir is weak there-
fore the state of R, is only negligibly modified by the interaction and 7. < At so
the correlations vanish quickly and have a negligible impact on the evolution of the
optomechanical system. py (t') can thus be replaced by pf,, (t') ® pr, Where the state
of the reservoir is time-independent in the interaction picture.

e Markov approximation: The time step is a lot shorter than the characteristic evolu-
tion time of the optomechanical system (Eq. (2.21)), so we can neglect its evolution
between ¢ and ¢'.

Moreover, the reservoir is in a thermal state, i.e. diagonal in the Fock state basis so
Trg, (RL (t)pr,) = 0. The precursor of the master equation therefore reads

Aph(t) = Trr, (Apky (1))

1

t+At t’
— / 4t Tre, ([V'(E), V'), dh) @ pr ]]) . (232)

where we have used that the first order term vanishes.

Then, expanding the commutators, the trace over the bath’s degrees of freedom can be
computed. It yields terms of the form

g (u,v) == Trg, (quR}(u)TRI, (v)), (2.33)

where u and v are two times, and [, !’ € {4, —}. If [ # I the trace vanishes, otherwise, we
get the two correlation functions:

g—(u,v) = h* Y gh (R, + 1)e ), (2.34)
k

Gir(u,0) = B~ ging, e ), (2.35)
k

where n,,, is the average number of photons of frequency wy, in the bath. As a result, only
1

the terms containing one o' and one ¢, remain. The integral ftt dt” can then be changed

into an integral over 7 = t' — t": Ot/_t dr. As gu(u,v) = gy(u — v) is non zero only for
|lu — v| < 7. < At, the upper bound can be set to infinity [31]:

1 t+At )
M) = =35 [ 3 [ ar D)l = )
¢ I=+

—ol(t' = 7) pgm(t)a1(t)T) +hc. (2.36)
In addition, 7, < g;l, so at the first order in g,,7,

oL (' —7) =l (t)e ™, (2.37a)
ol (' —71)=e“d (V), (2.37b)

where the operator w is defined by

@ = wolm + gm (D& + ble™") . (2.38)
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As At < vt g1, Q7L integrating over ¢’ approximately gives

Ap}
-1 _ qm
pqm(t) - A

(1)
- 7 [0 (1) (0 (00 (D (1) — 0L (el ()0 (1)

+ h.c. (2.39)

The coupling to the bath solely induces transitions between the qubit bare energy states,
such that the hybrid system naturally evolves into a classically correlated state of the form

Pam(t) = Pe(t) [eXe] @ [Be(t)NBe()] + Py(t) |gXgl @ |By(1)){By(t)|- The state mechanical
Be(t), € € {e, g}, given by Eq. (2.12), can be rewritten

Be = Boe M + 6B.(t), (2.40)

where the mechanical fluctuations have no influence on the qubit frequency as long as
|0B:(t)] < |Bol, i.e. t < |Bo|lgnt. Therefore, as long as ¢t < |Bolgnt, w(Be(t)) =~
W(By(1)) = w(Bo(1)), where

w(B) = wo + gm(B + 57) (2.41)

is the effective qubit’s frequency when the MO is in state |5) and

Bo(t) = Boe™ ™ (2.42)
corresponds to the free evolution of the MO. Denoting
20)) = exp( 1 Hant ) 1) @ 1.0, .43)
|G1(t)) = exp (%qut) 19) ® 185(1)) (2.44)
then, exp (i) verifies
(G'(t)|e“ 0" (2) }E (1)) ~ ewlPo®)r (2.45)
(G'()|e“ oL (1)|G (1)) = (E'(t)][e“ 0L ()| E'(t))
< } 1(1.)7'0_ t)‘GI(t)>
=0. (2.46)

Pym(t) can then be decomposed over the states | E'(¢)), |G"(t)) and the integral over 7 make
the system interacts only with bath photons of frequency w(Sy(t)).

The master equation describing the relaxation of the hybrid system in the bath, in the
Schrodinger picture, can finally be written as

) i _
Pam(t) = — ;L[qu Pam ()] + Vo (B0 (1)) Peo(Bo (1)) P[0+ @ 1in] pgm ()

+ Yoo (Mw(gowy) +1) Do @ L] pgm(t). (2.47)
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This equation is valid in the semi-classical regime ¢ < |Sy|g,,'. The spontaneous emission
rate 7,(s,(1)) of the qubit, given by Eq. (2.16), and the average number of photons 7, (¢))>
given by Eq. (2.14), depend on the effective transition frequency of the qubit w(f5y(t)).
Furthermore, the Hamiltonian (2.4) is a linear approximation [121] of the optomechanical
coupling, so to remain in the domain of validity of this approximation we will consider
mechanical amplitudes /3 such that

|w(B) — wo| < wo. (2.48)

and assume in the rest of this dissertation that

Vo) = Voo = V- (2.49)

2.2 Thermodynamics

This section presents the average thermodynamics of the qubit.First, we study adiabatic
transformations, i.e. an isolated hybrid optomechanical system, because there is no heat
exchanged which makes it easier to identify work. Secondly, we consider isothermal trans-
formations, using the master equation derived above.

2.2.1 Adiabatic transformations

Here we consider an adiabatic transformation in the thermodynamic sense of the term. We
will therefore use the definitions and results from Section 2.1.1.1. Using Eq. (1.21), we
define the energy of the hybrid optomechanical system

Eqm(t) = Trqm(pqm () Hym)- (2.50)
The evolution of the isolated hybrid optomechanical system is given by

i

pqm(t) = _ﬁ[quapqm(t)]' (2.51)
Taking the partial trace over the mechanics, we obtain the evolution of the qubit

i

Pa(t) = == [H" (1), pa(1)), (2.52)
where we have introduced the effective Hamiltonian
eff x(t)
H' () == Trn(pm(t) (Hy + Vam)) = B { wo + gm Tt leXel, (2.53)

with z(t) = Trn(pm(t)Z). The motion of the MO thus results in an effective time-
dependent Hamiltonian acting on the qubit, which is reminiscent of the action of the battery
described in Chapter 1. Therefore we use Eq. (1.24) to define the work rate received by the
qubit
; eff (1)
W (t) := Trq(pg(t)Hy (1)) = hgmx—fPe. (2.54)
zp

We have defined the population of the excited state

P. := Try(py(t) lelel), (2.55)
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which is time-independent in the adiabatic case because |e)(¢| commutes with H"(¢). The
total work received by the qubit is therefore

W = hgm&Pe = hAwP.,, (2.56)

Lypf
with Az = z(t;) — x(to) and Aw the variation of the qubit’s transition frequency. The
physical interpretation of this work is the following: When the qubit is in the ground state,
its energy is always zero, so it does not cost any work to change the frequency of the qubit’s
transition. However, when the qubit is excited, increasing the frequency of the qubit’s tran-
sition requires to increase the qubit’s energy so an equivalent amount of work has to be

provided.

In addition, using Eq. (2.51), we get En(t) = 0, as expected due to energy conserva-
tion. Therefore, splitting the Hamiltonian H,, we obtain
0 = Try(pu(t)Ho) + Tra(pun(t) Huw) + Trg Py (£) Vi)

C(t
=04 Trn(pm(t)Hn) + hgmee

Lypf
=En(t) + W (2), (2.57)
where we have used Eq. (2.54) and defined the mechanical energy as
En(t) := Trn(pm(t) Hyp). (2.58)
Finally, the integration of Eq. (2.57) between ¢, and t; yields
W = En(ty) — Enlty) = —A&y. (2.59)

Therefore, the MO provides work to the qubit during the transformation and clearly plays
the role of the battery. Moreover, since the MO is not a large classical system but a nanome-
chanical resonator, its energy change A&, is non negligible and therefore potentially mea-
surable, as explained below. This gives us a direct way to access work by measuring the
energy of the MO at the start and end of the transformation.

To get a clearer picture of the MO as both a battery and a work meter, we will now
focus on the simple case were the hybrid optomechanical system is initially prepared in the
state pgm(0) = |€, Bo)e, Bol, with |€, Bo) = |€) ® |By) and € € {e, g}. So, at time ¢, the state
of the optomechanical system reads

Pam(t) = l€, Be(t))e, Be(t)] , (2.60)

namely the qubit’s state does not change while the MO evolves according to Eq. (2.12).
The evolution of the MO is represented in phase space defined by the mean quadratures
X = (b+0")/2and P = —i(b—b') /2 in Fig. 2.2b. The qubit’s transition frequency is
w(Be(t)), so as long as |By| > gm/€2, both frequencies are almost identical: w(5.(t)) ~
w(fy(t)). Therefore, the transformation undergone by the qubit, represented in Fig. 2.2a,
does not depend on its state, as with an external drive. On the other hand, the mechanical
energy is given by Ey(t) = hQ|B:(t)|?. After a quarter of a mechanical period, |3.(t) —
By (tr)] = V2gm/ with t; = /2. In the ultra-strong coupling regime, we have |3 (t;) —
Bg(te)] > 1, ie. this difference is larger than the zero-point fluctuations, therefore it is
measurable. As a consequence, the work received by the qubit can be directly obtained
by measuring the mechanical energy variation. In practice, the mechanical energy can be
computed from a time resolved measurement of the position z(¢) of the MO [86, 102].
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Figure 2.2: (a) Modulation of the frequency of the qubit by the MO. (b) Evolution of the
MO for each energy eigenstate of the qubit (|e) in red and |g) in blue).

2.2.2 Isothermal transformations

We now add the qubit’s bath R,. The transformation is therefore isothermal. In the fol-
lowing, we restrict ourselves to the regime in which the master equation (2.47) is valid,
i.e. on transformations whose duration f; fulfill #; < |5o|g,'. Product states of the form
pam(t) = pq(t) ® pm(t) are natural solutions of Eq. (2.47), giving rise to two reduced
coupled equations respectively governing the dynamics of the qubit and the mechanics:

palt) = = TIHENO), pa(0)] + Loy )] @.61)
m(t) = = £ HET(E), pu (D), (2.62)

where the Lindbladian of the qubit reads

Lylpa(t)] = 11u(soe) Dlo+1pa(t) + 7 (Rwiorey + 1) Dlo-lpg(t).  (2.63)

These equations are identical to the ones that were derived in Ref. [48] in the regime wy >
v > gm > §2. We have introduced the effective time-dependent Hamiltonians

Hg'(t) = Tra(pu(8) (Hy + Vam)) = hw(Bo(1)) e)el | (2.64)
HE(t) = Trg(pg(t) (Ham + Vim))- (2.65)

These semi-classical equations physically mean that the qubit exerts a force on the MO, re-
sulting in the effective Hamiltonian HE"(¢) while the MO modulates the frequency w(3y(t))
of the qubit (Eq. (2.41)), which makes the coupling parameters of the qubit to the bath
time-dependent. This is similar to the situation described in the previous section, except
that there are now heat exchanges between the qubit and its bath.

Like in Section 1.2.1, we define the internal energy of the qubit and the heat rate as

Eq(t) == Tr(pqg(t)HS" (1)), (2.66)
Q(t) == Tr(pg(t) H(1)). (2.67)
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The work rate received by the qubit is still given by Eq. (2.54), therefore the work and heat
received by the qubit during the transformation read

ty (1
W = / dt hgmMPe(t), (2.68)
0 xzpf
ty
Q= /0 dt Tr (LY [pq ()] H (1)) (2.69)
They fulfill the first law
A& =W+ Q. (2.70)
We also define the internal energy of the whole hybrid optomechanical system as
Ean(t) = Tr(py(t) © pu(t) Hom), 2.71)

which naturally splits into Eqy (t) = & (t) + Em(t). The total energy variation reads
Algn = A&+ A&y = Q, (2.72)

where we have used Eq. (2.69). From this result and the first law for the qubit (2.70), we
obtain
W =—-A&,, (2.73)

like in the adiabatic case and in Ref. [48]. This confirms that the MO provides all the
work received by the qubit and therefore behaves as a proper battery. The result (2.73) is
important because it means that the average work received by the system, which depends
on the full evolution, can be directly read out by measuring the energy of the MO at the
beginning and at the end of the transformation, there is no need to monitor either the system
or the bath.

2.3 Summary

We presented the hybrid optomechanical systems that will be investigated further in Chap-
ters 3 and 4. They consist of a qubit coupled to a nanomechanical oscillator (MO). We
focused on the ultra-strong coupling regime which is within reach of state-of-the-art ex-
perimental implementations. We first presented the Hamiltonian description of the system
and of the qubit’s bath which is a collection of harmonic oscillators in thermal equilibrium.
We derived the master equation for the optomechanical system from this microscopic de-
scription.

Secondly, we studied the thermodynamics of the qubit. We considered first the adia-
batic case where there are no heat exchanges, then the isothermal case, with the qubit’s
bath, in the semi-classical regime were the qubit and MO states can be factorized. We
showed that in both cases, the MO behaves like a battery, providing work to the qubit.
Besides, the finite size of the MO allows a direct measurement of the work received by
the qubit by measuring the mechanical energy variation. This kind of measurement is not
possible for a classical battery that is not impacted by its coupling to the system due to
its large size. Furthermore, the Hamiltonian of the total hybrid optomechanical system is
time-independent, therefore this device can be seen as an autonomous thermal machine.
All these results evidence that hybrid optomechanical systems are promising test-beds to
experimentally explore the thermodynamics of a single qubit.
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The ability to define and measure entropy production in the quantum regime is key to
optimizing quantum heat engines and minimizing the energetic cost of quantum informa-
tion technologies [54, 81, 82, 103]. Many fluctuations theorems, like Jarzynski equality
(JE) [50, 117], have been generalized to quantum systems. However, measuring a quantum
fluctuation theorem can be problematic in the genuinely quantum situation of a coherently
driven quantum system, because of the fundamental and practical issues to define and mea-
sure quantum work mentioned in introduction [12, 25, 49, 116].

In particular, JE has been experimentally verified only for quantum closed systems, that
is systems that are driven but otherwise isolated, for instance trapped ions [5, 135], ensem-
ble of cold atoms [29], and spins in Nuclear Magnetic Resonance (NMR) [11]. Therefore,
new experimentally realistic strategies need to be developed to measure the fluctuations
of entropy production for quantum open systems. Since work is usually provided by a
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classical operator, like in Chapter 1, most proposals are based on the measurement of heat
fluctuations, obtained by monitoring the bath. This requires to engineer the bath and to
develop high efficiency detection schemes [43, 70, 97] and no experimental demonstration
has been conducted so far.

In this chapter, we propose an alternative, and experimentally feasible, strategy to mea-
sure the thermodynamic arrow of time for a quantum open system in Jarzynski’s protocol.
This strategy is based on the direct measurement of work fluctuations. In Chapter 2, we
have seen that hybrid optomechanical systems are promising platforms for experimental
quantum thermodynamics because the average work exchanges can be obtained by mea-
suring the mechanical oscillator (MO). We now go one step further and show that work
fluctuations equal the mechanical energy fluctuations, providing a direct way to access the
stochastic entropy production. We first focus on the qubit and prove that its work fluctu-
ations verify JE. Then, we consider the whole hybrid system which verifies a generalized
integral fluctuation theorem (IFT) involving the information encoded in the battery. This
work is published in [89].

3.1 Quantum trajectories

We consider the same situation as in the previous chapter: a hybrid optomechanical system
whose qubit is also coupled to a thermal reservoir R, as depicted in Fig. 3.1a, in the
regime detailed in Section 2.1.2. To go the single realization level, we will unravel the
master equation (2.47). In this chapter, the hybrid optomechanical system is initially in the

state pgm(to) = Pf{o(ﬁo) ® |Bo)Bo, with

pa(Bo) = p3,lel leXel + p3lgl l9)gl - 3.1
pq(Bo) is the thermal equilibrium state of the qubit at frequency w( /), defined by Eq. (2.41),
with
1 hw(ﬁ)éee)
3le] = == exp| —F—— |, 3.2
and Z () the partition function of the qubit, that reads
hw ()
Z(B)=1 - . .
(5 =1+ exp (2200 (33)

We study the evolution of the optomechanical system between times ¢, and ¢; and, to stay
in the regime of validity of the master equation, we assume that gty < |So|-

3.1.1 Direct protocol

To obtain quantum trajectories, we apply a quantum jump unraveling to the master equation
(2.47). The evolution of the hybrid optomechanical system between the times ¢y and t; =
N At is therefore described by a stochastic trajectory & = {|Us(£,)) }2_,, where | U (t,,))
is a vector in the optomechanical Hilbert space and t,, = nAt where At is the same time
increment as in the previous chapter, fulfilling the criterion (2.21). The Kraus operators
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Figure 3.1: (a) Situation under study: A qubit exchanges work W with a MO and heat ()
with a thermal reservoir R at temperature 7'. The ensemble of the qubit and mechanics,
i.e. the hybrid optomechanical system, constitutes an autonomous machine. (b) Stochastic
trajectories of the MO 5 [€] in phase space. The MO is initially prepared in the coherent
state ’i|ﬂo|> and the qubit state is drawn from thermal equilibrium. Inset: Distribution
of final states |Ox(ty)) within an area of typical width g,,/2. The blue and red squares
indicates /3,(¢y) and (.(ty) respectively. Parameters: 7' = 80 K, hwo = 1.2kgT, Q1/21 =
100 kHz, v/Q = 5, gn/Q = 100, | 50| = 1000.

associated to this unraveling are

1At
MO(tn) - 1qm - ?Heff(tn)a (343-)
M+(tn) = \/’YAtﬁw(ﬁo(tn)) oL ® 1y, (3.4b)
M_(t,) = Wm(m(ﬁo(tn)) +1) o ® 1. (3.4c)

14m = 14 ® 1., denotes the identity operator in the optomechanical Hilbert space. [3y(t)
is the free evolution of the MO, given by Eq. (2.42). M_ and M, are the jump operators.
They experimentally correspond to the emission or absorption of a photon in the bath, as-
sociated with the transition of the qubit in the ground or excited state respectively while the
state of the MO remains unchanged. Reciprocally, the no-jump operator M corresponds
to the absence of detection event in the bath, i.e. a continuous, non-Hermitian evolution
governed by the effective Hamiltonian (Eq. (1.14))

a2
5

He(tn) = Hy ((Patangenr) + D) leXel + atautenn l9¥l ) @ T (3:5)

The initial state is randomly chosen from the product state pq(5y) ® |Bo){5o|. Therefore,
the initial state of the optomechanical system is | V) = |eg, By) where ¢y € {e, g}. Then,
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the trajectory S is fully defined by the stochastic sequence of jump / no-jump {rs(, )}

, with r5;(¢,,) € {0, +, —}, and the final state reads [66]

|Us(tn)) = H o) Vo) (3.6)
\/ [E‘\IIO n=0
where
B N-1
P[X[¥o] = H PlUs(t,41)|¥s(tn)], (3.7)
n=0

is the probability of the trajectory 3 knowing that the initial state is |Us(fo)) = |¥o). We
have introduced

PUs(tn )| Wss(t)] = (Us(tn) M)\ My 0| Us(t) (3.8)

the probability of the transition from |Wyx(¢,)) to |¥s(t,41)) during the n-th time step
(Eq. (1.12)). The probability of the trajectory X reads

N-1

P[S] = pleo) [] PI¥s(tosn)|Ps(tn)], (3.9)

n=0

and the density operator of the optomechanical system, solution of (2.47), is recovered by
averaging over the trajectories:

Pam(tN) ZP s ()W ()] - (3.10)

During the n-th time step, either a jump occurs or the system evolves under the action
of the no-jump operator My(t,,). In the former case, the mechanical state is preserved while
the qubit is projected on either |e) or |g). In the latter case, the evolution of the system is
governed by the effective Hamiltonian H.(t,,), which can be split into the Hermitian part
Hgm and the non-Hermitian part Hy(t,) = Her(tn) — Hqm. Hes(t,,) is diagonal in the
qubit’s energy eigenbasis (See Eq. (3.5)), so if the qubit is in an energy eigenstate, its state
will not change. H,(t,) is the identity over the mechanical Hilbert space, therefore the
MO will evolve under the sole action of Hgy, which preserves the coherent nature of the
mechanical field (See Section 2.1.1.1). As the initial state of the system is |¢y, 5o) , the total
system always remains in a product state |Ux(t,,)) = |es (), Bx(t,)), withex(t,) € {e, g}
and |fx(t,,)) is the coherent state of the MO given by

n—1
B (tn)) = [ [ exp(—iAtHFZ™) |5,) (3.11)
k=0

where H, is defined by Eq. (2.7). As a consequence, we can split the optomechanical
trajectory into the trajectory of the qubit € = {les(t,)) }2, and the trajectory of the MO
B = {|Bs(ta))}Y N so Y = {¢ S|¢]}. This is a key result of this chapter because, thanks
to the product state, there will be no ambiguity to define the energies of the qubit and the
MO. We have used the notation ﬁ [€] because the mechanical trajectory can be fully re-
constructed from the trajectory of the qubit using Eq. (3.11). In the semi-classical regime
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considered here, the jump probabilities only depends on w(/3y(t)) so that the reduced evo-
lution of the qubit is Markovian. Conversely, the state of the MO at any time ¢,, depends
on the full trajectory of the qubit up to time ¢,,. Therefore, by measuring the state of the
MO at time ¢y, we obtain information on the whole trajectory of the qubit.

At the end of the protocol, the state of the optomechanical system, averaged over
the trajectories, is given by Eq. (3.10). So, the reduced mechanical average state, de-
fined by pm(tn) = Trq(pgm(tn)), is a discrete distribution of the final mechanical states
{|Bs(tn))}s. Denoting py || the probability that the MO ends in the coherent state |fy),
we can express the reduced mechanical average state as

pm(tn) =D pulBe] BB (3.12)
Br
where
> ol =1 (3.13)
Bt

Examples of numerically generated trajectories ﬁ [€] are plotted in the phase space de-
fined by the mean quadratures X = (b+b') /2 and P = —i(b—b') /2 in Fig. 3.1b.
These trajectories were obtained by sampling the ensemble of possible direct trajectories
using the jump and no-jump probabilities given by Eq. (3.8) [66]. The final mechanical
amplitude can be split into

Bs(tn) = Bo(tn) + 0Bs(tn), (3.14)

where 00y (ty) corresponds to the mechanical fluctuations caused by the interaction with
the qubit. As visible in the inset of the figure, the final mechanical states are contained
inside an area of typical size g, /{2, so these fluctuations are of the order of g,,/€2. The
semi-classical regime ensures that |6 35 (t,,)| < |Bo(t,)]. so that the qubit’s transition fre-
quency is not sensitive to the mechanical fluctuations and the reduced evolution of the qubit
is Markovian. On the other hand, the ultra-strong coupling regime g, /€2 > 1 makes these
fluctuations large enough to be measurable. Both regimes are compatible, which is the key
to our proposal to measure work fluctuations, as detailed below.

Interestingly, the stochastic trajectory model described above can be extended beyond
the semi-classical regime ¢t < |(y|g,!. In this quantum jump picture, at any time ,,, the
system is in a product state |ex(t,,), Oxs(t,)), where |Ox(t,)) is a coherent mechanical state.
We can therefore derive a master equation describing the evolution of the system over the
next time step of the form of Eq. (2.47), and unravel it with a set of trajectory depen-
dent Kraus operators similar to Eq. (3.4), but where the effective frequency of the qubit
is w(Px(t,)) instead of w(fy(ty,)). In this more general situation, the mechanical fluctua-
tions can no longer be neglected compared to |5y(t,)|, therefore Eq. (3.10) is no longer a
solution of the semi-classical master equation. Furthermore the frequency modulation of
the qubit is now trajectory dependent, which means that the jump probabilities are as well.
Therefore the reduced trajectory of the qubit is no longer Markovian. As shown below the
Markovianity of the reduced trajectory of the qubit is key to our proposal of measurement
of JE, which is therefore limited to the semi-classical regime.
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3.1.2 Reversed protocol

Our goal is to study fluctuation theorems in the hybrid optomechanical system, so we
will need to compute the entropy production, given by Eq. (1.50) which requires to define
the time-reversed protocol. This protocol, defined between ¢y and %j, consists in time-
reversing the unitaries while keeping the same stochastic map. This leads to the following
time-dependent reversed Kraus operators [34, 45, 83, 84]:

1At

My(t,) = 1gm + 7ijf(tn), (3.15a)
M_(tn) = My (tn), (3.15b)
M, (t,) = M_(t,), (3.15¢)

The initial state of the reversed trajectory is obtained in the following way. The mechanical
state |Ox,(tx)) is drawn from the final distribution of states {|J;)} generated by the direct
protocol with probability pn,[5;] while the state of the qubit |ex(¢y)) is drawn from the
thermal equilibrium corresponding to Bs(tx), with probability p3, , (e (tn)] (Eq. (3.2)).

Therefore, the probability of the reversed trajectory > reads

0
P[E] = pulBr (ta) 05, e [es (E8)] H t) Tt )] (3.16)

n=N—

We have introduced the reversed transition probability at time ¢,,

PlUs(t,)[Us(tar)] = (Us(tur) M Mrgie) [ Us(tas)) (G.17)

3.2 Stochastic thermodynamics

In the rest of this chapter, we focus on the following protocol: At time ¢, the optomechan-
ical system is prepared in the state pgm (to) = p3°(5o) ® [B0)(Bo|- An energy measurement
of the qubit is performed, preparing the initial state of the trajectory |¥x (o)) = |€o, 5o)-
Then, the qubit is coupled to the bath and the evolution of the optomechanical system is
studied over a mechanical quarter period, i.e. ty = 7/2Q. This situation can be studied
from two different perspectives depending on the choice of thermodynamic system, defin-
ing two distinct transformations. If the studied thermodynamic system is the whole hybrid
optomechanical system, then the transformation is a thermal relaxation toward equilibrium.
The initial state pgm (o) is not an equilibrium state of optomechanical system and Hgy, is
time-independent, so the energy exchanges are reduced to heat exchanges with the bath.
On the other hand, if the considered thermodynamic system is the qubit, the transforma-
tion consist in driving the qubit out of equilibrium. The qubit evolves under the action
of the time-dependent effective Hamiltonian gff(t), the driving work being provided by
the MO. In the semi-classical regime, H:"(t) = hw(Bo(t)) [e)(e| does not depend on the
trajectory and this situation corresponds to Jarzynski’s protocol. In this section, we define
the stochastic thermodynamic quantities involved in both transformations.

3.2.1 Energy exchanges

Applying the definition (1.40), the stochastic energy of the optomechanical system reads
Eqnl S ta] = (es(tn), B(tw) | Hamles(ta), Be(tn)) | (3.18)
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which naturally split into the sum of the qubit’s energy &, [i, t,] and the mechanical energy
Em[S, ], given by

—

gq[zatn] = hw(ﬂz(tn))éez(tn),e |6><6| ) (319)
Em[Etn] = BOQBs(t,)[. (3.20)

During the n-th time step, these internal energies can change in two different ways depend-
ing on the nature of the stochastic event, jump or no-jump. If a quantum jump occurs, the
mechanical state remains unchanged. Therefore, the mechanical energy variation is zero
while the energies of the qubit and total optomechanical system vary by the same amount:
65qm[i,tn] = 5€q[i, tn]. Following the definitions from Section 1.3.1, this energy ex-
change corresponds to heat provided by the bath and denoted 5Q[i, tn]. Conversely, the
no-jump evolution preserves the state of the qubit while its energy eigenvalues evolve due
to the optomechanical coupling. This energy change is thus identified with work, denoted
SWIS, t,], and verifies 0 [Z t,] = 0W|[Z, t,,]. During this time step, the optomechanical
system is energetically isolated, therefore 55qm[i, t,] = 0 and the work increment com-
pensates the mechanical energy variation: &[5, t,] = —0W S, £].

Finally, the total work W [%] and heat Q[%] received by the qubit along the trajectory
are obtained by summing up the increments (Eqs. (1.44) and (1.45)). By construction of
the work and heat increment, the first law for the qubit is verified,

AE[E] = WIE] + Q3] (3.21)
while the total optomechanical energy variation corresponds to the heat exchanged,
AémlY] = QX (3.22)
As a consequence, the work received by the qubit is fully provided by the MO:
WIS = —A&[S], (3.23)

which extends to the single trajectory level the results from Section 2.2.2. This last equation
is the second key result of this chapter, evidencing that the MO behaves like a battery and
an ideal work meter at the single trajectory level.

3.2.2 Entropy production

We now derive the expression of the entropy production, defined by Eq. (1.50). Using
Egs. (3.9) and (3.16), we write

s oo PIE]

Slrr[z] - log (p[i])
Ples(to)] HNAP[‘I’E( tns1) | U (tn)]

=1 . 3.24

o8 <pm[ﬁ2(tN)]pﬁg(tN)[EE(tN>] 1o 0 Pl¥s(tn)|Ws(tn)] 20
Then, from the expressions of the jump and no-jump operators, we obtain
PUs(tn)|Ws(ta)] _ (Vs £) [ M) gy i) [ 955 ()

PlUs(ta)[¥s(turt)]  (Ts(tus)] rz(tn)Mrz<tn>\‘I’z(n+1)>

5Q[S, tn
= exp <—%> , (3.25)
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and, using the expression of the thermal distribution (Eq. (3.2)), we get

piles(to)] e <A5q[i] — AF@]) (3.26)

Phs(in e (tn)] kT

The initial and final thermal distributions respectively depend on [y and fx(ty), which
leads to a trajectory-dependent free energy variation

AF[Y] = kBTlog<M). (3.27)

Z(Bs(tn))

In the semi-classical regime, the partition function can be approximated by Z (s (txn)) ~
Z(Bo(tn)), so we recover the usual trajectory-independent free energy variation AF. In-
jecting all the above results in Eq. (3.24), we get

A&, (5] - AF[S] - QIS

sm[i] = —log(pm[Bs(tn)]) + kT

(3.28)

Finally, using Eqgs. (3.21) and (3.23), we obtain the following expression for the stochastic
entropy produced along >:

si[%] = o[%] + Isn[%], (3.29)

where o[3] and Ig,[%] are defined as

. A&L[S] + AF[S
Sl ]]C:T =] (3.30)

Isn[2] := — log(pm[Bs(tn)])- (3.31)

—

As shown below, in the semi-classical regime, o[>] can be interpreted as the entropy pro-
duction along the reduced trajectory of the qubit, giving rise to a reduced JE. On the other

hand, Is,[>] corresponds to the stochastic increase in entropy of the MO and is involved in
a generalized IFT. Next section is dedicated to the study of these two theorems.

3.3 Fluctuation theorems

3.3.1 Jarzynski equality

We first focus on the transformation undergone by the qubit which corresponds to Jarzyn-
ski’s protocol in the semi-classical regime, as mentioned previously: The qubit is driven
out of equilibrium by the Hamiltonian H:"(t) = fiw(So(t)) le)(e|. We therefore expect the
mechanical energy fluctuations to obey the reduced JE

AE[Y] B AF
<exp< T ) >i = exp (_k:B—T)' (3.32)
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3.3.1.1 Derivation

This equation is derived by starting from the sum over all reversed trajectories of the whole
optomechanical system. Using Eq. (3.16), we obtain

1:}2?@]

- me Pr(tn) pﬁz (tw) 62 (tn)] H )| Vs (tng1)]- (3.33)

n=N-1

In the semi-classical limit |5y > gm/S2, the action of the MO on the qubit is similar to
an external operator imposing the evolution of the qubit frequency w(5y(t)). As a con-
sequence, the reversed jump probability at time ¢, (Eq. (3.17)) does not depend on the
exact MO state Ox(t,), but only on f3y(t,), which corresponds to the free MO dynamics.
Therefore, we can get rid of the trajectory dependencies in the MO state:

P[Us(tn)[Us(tai1)] = Ples(tn)les(tni)], (3.34)
Pown)es ()] = P les(tn)]. (3.35)
Injecting these approximations in Eq. (3.33), we obtain

0

L= Y palba(tn)] Z%mqm [ Ples(ta)les(tar)]  (3.36)

B=(tn) n=N-1

N—
= Zpﬁ()(tzv es(tn)] H tn)les(tns1)]; (3.37)
! (3.38)

where we have used Eq. (3.13). Moreover, assuming that the temperature in the bath is
finite, then all transition probabilities between the qubit’s states are non zero and so is the
probability P[€] of the reduced trajectory of the qubit. Therefore, we can write

1= 3™ g T Plesttles(tn)) 530

7 P les(to)] TIN ) Ples(tus1)les(tn)]

Since the trajectory of the MO E [€] is completely determined by the one of the qubit, we

can restore the sum over the trajectories 3 of the whole optomechanical system. Then,
from Egs. (3.26), (3.23) and (3.25), we get

1 = Z P[i] exp (_ AEQ[Z] _kATF — Q[E]>

B

< (AE[]+AF>>
= ( exp T E

Finally, in the semi-classical limit, the reduced entropy production o[%] obeys the reduced

IFT
<exp(—a[i]>>i =1, (3.40)

analogous to the IFT (1.56) from Chapter 1.
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3.3.1.2 Discussion

—

Eq. (3.32) corresponds to the usual JE but where the stochastic work W [X] have been re-
placed by the mechanical energy variation Aé’m[i]. This is the third key result of this chap-
ter because it suggests a new strategy to measure JE in a quantum open system. Instead
of monitoring the complete trajectory of the system to reconstruct the stochastic work,
we propose to simply measure the stochastic mechanical energy at the beginning and at
the end of the transformation. This can be achieved with time resolved measurement of
the mechanical amplitude through optical deflection techniques [86, 102]. Therefore, the
mechanical states |(x(fx)) have to be distinguishable, which requires the ultra-strong cou-
pling regime. As mentioned in Chapter 2 (See Table 2.1), this regime is experimentally
reachable. This strategy is very different from former proposals to probe JE in a quantum
open system which used bath engineering techniques [43, 70] or fine thermometry [97] to
monitor heat exchanges.

We have simulated the reduced JE using experimentally realistic parameters. The re-
sults are displayed in Fig. 3.2. The plots in this figure and in Fig. 3.3 were obtained by
approximating the average value of the plotted quantity A[Y] by
N

A%, (3.41)

=1

1

A)e ~
< >E Ntraj

where Ny,; = 5 - 10° is the number of numerically generated trajectories and 3% denotes
the ¢-th simulated trajectory. a[ii] was computed using Eq. (3.30), i.e. from the complex
mechanical amplitudes (3, and S%(ty). As expected, JE is verified in the semi-classical
limit (Fig. 3.2a), in which we have checked that the MO action is equivalent to the one
of a classical external operator imposing the modulation w(5y(¢)) to the qubit’s transition
frequency (Fig. 3.2b). Reciprocally, the Markovian approximation for the reduced trajec-
tory of the qubit and JE break down in the regime (g, /2)/|80| > 10~2. Therefore, in the

following we only consider parameters such that (g, /Q)/|3| < 1072

Up to now, we have assumed that the mechanical states could be measured with an
infinite precision. To take into account both the quantum uncertainties and the experimental
sources of imprecision, we assume that the measured complex amplitude 3™ corresponds
to the mechanical amplitude with a finite precision 0 3. This finite precision is quantified by
the mutual information between the probability distribution of the final mechanical states
PmlB], introduced in Section 3.1.1, and the probability distribution of the measured states
Pm[BM], defined by

Pul5dPalP] (.42

p(B, BM) is the joint probability to measure M while the mechanical amplitude is ;. For
a perfect measurement, the mutual information is equal to the Shannon entropy

SalBi) == pmlBi] log(pm[B1]) (3.43)
Bt

I(Bt, M) =Y p(Br, B™) log<

Br,BM

p(Br, BM) ) '

that characterize the final distribution of mechanical states. Conversely, the mutual infor-
mation vanishes when the two distributions are totally uncorrelated.
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Figure 3.2: Jarzynski equality for the qubit. Parameters: 7' = 80 K, hwy = 1.2kgT,
v/2 = 5. (a) Deviation from JE as a function of (%) /|5| (/27 = 100 kHz,
|Bo| = 5000). The points were computed by increasing the opto-mechanical coupling
strength ¢,,/27 from 1 MHz to 20 MHz, keeping the other parameters constant. (b) Devi-
ation from JE as a function of |/5y| with g,/Q = 10 and 2/27 = 100 kHz. Red squares:
Case of a classical external drive imposing the qubit frequency modulation w(/3y(t)). Blue

dots: Eq. (3.32). Green diamonds: exp(— <a[i]>ﬂ) — 1. These green points demon-
5

strate that JE is not trivially reached because the considered transformations are reversible.
(c) Error model. The initial mechanical state is randomly drawn in the square of width
203 around the targeted state |/3) then the MO evolves for a quarter period. The final
states |Jf) obtained for different trajectories are plotted in the inset. The grid represent
precision of the measurement device. When measuring |J;), instead of obtaining the ex-
act mechanical amplitude, we obtain 8™ which is the center of the grid cell containing
|5¢). (d) Impact of finite precision readout of the mechanical amplitude for §5 = 2 and
Q/2m = 1 kHz. 2g,,| 50| was kept constant (2g,|5o|/2m = 600 GHz) while increasing g,
such that each point corresponds to the same mean reduced entropy production <0’[i]>i
Left axis, blue dots: Deviation from measured JE. Right axis, orange squares: Mutual in-
formation I[3;, M]. Orange dashed line: Shannon’s entropy of the final distribution of
mechanical states Ss,[¢]. The error bars in (b) and (d) represent the standard error of the
mean o // Ny, Where o is the standard deviation and Ny,j = 5 - 10° is the number of
numerically generated trajectories. See Appendix A.1 for more details about the numerical
simulations.

To be more specific about the finite precision protocol, we first consider that the prepa-
ration of the initial MO state is not perfect. Instead of starting from exactly |5,), the
mechanical trajectories start from |fx (%)) with By (ty) uniformly distributed in a square of
width 263, centered on 5, (See Fig. 3.2c). Then, we let the optomechanical system evolve
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for a mechanical quarter period and measure the final state. The measuring apparatus has
a finite precision, modeled by a grid of cell width 207 in the phase plane (Re ¢, Im f).
Instead of obtaining the exact value of fx(ty), we get SM(ty), the center of the grid cell
in which fx(ty) is. The value used to compute the thermodynamic quantities are not the
exact fx(ty) and Bx(ty) but B = By and M (tx). As a result, the measured work and
reduced entropy production reads

WME] = —AENE] = h (1832 — [B¥(tw)]?) (3.44)
WMS] — AF
kgl

The deviation from JE for the measured work WM[%] and the mutual information
I[B, BM] are plotted in Fig. 3.2d as a function of g,,/€2. For the numerical simulations,
we have chosen the measurement precision 03 = 2, which is a reachable experimental
value [86, 102]. For small values of g, /2, the spread of the final mechanical states is
barely larger than the measurement precision, leading to a poor ability to distinguish the
mechanical states and therefore to measure work. As a consequence, the mutual informa-
tion is much smaller than the Shannon entropy and WM[X] does not verify JE. Conversely,
increasing the coupling ratio g,/{2 increases the spread of the final mechanical states.
Therefore, the amount of information extracted during the measurement increases making
I[5, BM] converge towards Sg[3f]. JE equality is recovered for g,/ ~ 50 despite the
finite precision. Such high optomechanical coupling ratios are within experimental reach,
for instance by engineering lower mechanical frequency or by changing the geometry of
the MO [137].

M) = (3.45)

3.3.2 Generalized integral fluctuation theorem

Finally, we consider the hybrid optomechanical system as the thermodynamic system. The
entropy production for the whole system s;[>] (Eq. (3.29)) obeys the generalized IFT

<exp(—sirr[i]> >Z —1- (3.46)
As in Refs. [55, 85, 91, 92], we have defined the parameter \ € [0, 1] as
Z P[Yl=1- (3.47)

3.3.2.1 Derivation

To derive this theorem, we start from the sum over all reversed trajectories, making appear
the ratio P[%.]/P[%]. Therefore, we need to ensure that P[3] # 0, which requires to split
the ensemble of the reversed trajectories into the set $q = { P[S]|P[%] # 0} of reversed
trajectories with a direct counterpart and the set without:

1= Z P[E] =) P| ; (3.48)

Sexy S¢Sy

Only the reversed trajectories Y = {|es(ty), Bs(tn))}O_y such that Bx(t,) = S, verify
P[% ] # 0. Fig. 3.3a and b give examples of both kinds of trajectories. Denoting

A=Y P[] (3.49)

PIEHIM
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and using Eqgs. (3.9) and (3.16) we obtain:

1= Z (P[f]pm[ﬁz(tfv)]p/};g]v[)e: (ZtE)t)J]V)]% lj

; < A&[Y] - AF[S] - QY]
= %P[Z] exp (—ISh[Z] - T ) + A

- <exp(—(o—[i] + ISh[i])) >E Y (3.50)

Thus, we have derived Eq. (3.46).

3.3.2.2 Discussion

A > 0 signals the existence of reversed trajectories without a direct counterparts and quan-
tifies absolute irreversibility [91]. From Eq. (3.46) and the convexity of the exponential,
absolute irreversibility clearly characterizes transformations associated to a strictly posi-
tive entropy production, as stated in Chapter 1. This is the case for the transformation
under study here, which is the relaxation of the optomechanical system towards a thermal
equilibrium state. Indeed, such transformation is never reversible, unless for 7" = 0, as
confirmed by Fig 3.3d.

Both sides of the IFT (Eq. (3.46)) are plotted in Fig. 3.3c as a function of the bath
temperature 7°, the left hand side (blue dots) was computed with Eq. (3.29) and the right
hand side (red squares) with Eq. (3.47) from the probabilities of the reversed trajectories.
One value of By () can be generated by a single direct trajectory 3, 50 using the equality
pmlBs(tn)] = P[5], we obtain

N—-1
STPE] =D R lesEn)Ipn B tn)] [T Pl¥s () s (tns)
3 n=0
> Z . ~
= <p§<;(tw)[52(tN)]HP[‘I’E(tn—l)|‘1’z(tn)]> , (3.51)
n=1 i

which is then approximated by Eq. (3.41). The average entropy production is plotted in
Fig. 3.3d as a function of the bath temperature 7". It was numerically computed with two
methods: by taking the average of Eq. (3.29) (blue dots), approximated by Eq. (3.41),
and directly from the definition Eq. (1.50) (red squares), i.e from the probabilities of the
trajectories:

N P[5
<Ais[2]>i - <log<p[i]> >Z (3.52)

= <— log (pg;(m)kz(tN)] 1:[ ﬁ[q’z(tnﬂ‘l’z(tnﬂ)]) >ﬂ’ (3.53)

3

where we have used the expression (3.16) of the probability of the reversed trajectory and
pm|Bs(tn)] = P[X]. Fig. 3.3c and d show that both sets of points match, however only
the blue dots, obtained from the final distribution of mechanical states {|fx(tx))}s are
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Figure 3.3: Illustration of absolute irreversibility with trajectories of (a) the qubit and (b)
the MO. The solid (resp. dashed) arrows correspond to the direct (resp. reversed) protocol.
For the sake of simplicity, only the trajectories without any jump are represented. [, is the
final state of the MO after the direct protocol when the qubit is in state |¢), with € = e, g.
The expressions of the MO evolution operators are: U, (t) = exp(—itH¢,) and U.(t) =
UT(t). The reversed trajectories that do not have a direct counterpart are plotted in red and
the corresponding qubit states with dashed lines. The final MO states for these trajectories
are 8") = Uy(tn) |3.) and |8') = Uy(tw) |8,), where 87 # By and B # By. pi°(t)
(resp. pm(t)) is the qubit thermal state (resp. the MO average state) at time ¢. (c) Integral
fluctuation theorem and (d) mean entropy production for the complete optomechanical
system. Parameters: wy/2m = 2 THz (amounts to hwy/kgT = 1.2 for T = 80 K used in
Fig. 3.2), /27 = 100 kHz, v/Q = 5, g/ = 10 and |/5y| = 5000. In both cases, two
different expressions were used. The blue dots are computed using the final distribution
of mechanical states {|0x(tx))} and mimic an experiment. The red squares involve the
probability of the reversed trajectory, which can only be the result of a theoretical treatment.
See Appendix A.1 for more details about the numerical simulations.

experimentally accessible. In the limit Awy > kg, the bath contains no photons at the
qubit’s frequency, therefore there is single reversible trajectory characterized by a null en-
tropy production and A — 0. In the opposite limit, kgT' > hwy, most reversed trajectories
have no direct counterpart. Indeed, a given mechanical state |J;) of the final distribution
can only be reached by a single direct trajectory, while it provides a starting point for a
large number of reversed trajectories. As a consequence, a mean entropy is produced while
A= 1
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Refs. [83, 85, 91] show that absolute irreversibility can also appear in IFTs character-
izing the entropy produced by a measurement process. In particular, A > 0 can signal a
perfect information extraction. This typically corresponds to the present situation which
describes the creation of classical correlations between the qubit reduced trajectory € and
the distributions of final mechanical states {|3x(tx))}s. Interestingly, the two fluctua-
tion theorems (3.32) and (3.46) are thus deeply related. To be experimentally checked,
Eq. (3.32) requires the MO to behave as a perfect quantum work meter, which is signaled
by absolute irreversibility in Eq. (3.46). Therefore absolute irreversibility is constitutive of
the protocol, and a witness of its success.

3.4 Summary

We studied the hybrid optomechanical system in the quantum trajectory picture. We ob-
tained the stochastic evolution of the system by unraveling the master equation derived in
the previous chapter. First, we showed that when the optomechanical system is prepared
in a tensor product of an energy eigenstate of the qubit and a coherent mechanical state, it
remains in a state of the same form all along the trajectory. This result allowed us to define
without ambiguity the qubit’s energy and the mechanical energy.

Secondly, we defined the thermodynamic quantities at the single trajectory level. Go-
ing one step further than in Chapter 2, we evidenced that work fluctuations equal the me-
chanical energy fluctuations, which are measurable in the ultra-strong coupling regime.
Therefore, stochastic work exchanges can be directly obtained by measuring the energy
of the battery at the beginning and at the end of the thermodynamic transformation. This
method of work measurement based on the direct readout of work exchanges within an
autonomous machine offers a promising alternative to proposals involving system and / or
bath monitoring. Based on this result, we proposed a new protocol to measure stochastic
entropy production and the thermodynamic time arrow in a quantum open system.

Finally, we investigated fluctuations theorems both in the perspective of the qubit and of
the whole optomechanical system. When the thermodynamic system is the qubit, the trans-
formation is an out-of-equilibrium driving and, in the Markovian limit, the reduced entropy
production along the qubit’s trajectory obeys Jarzynski equality. We then evidenced that
our protocol can be used to experimentally probe this fluctuation theorem in state-of-the-
art optomechanical devices. In the perspective of the whole optomechanical system, the
transformation is a relaxation toward equilibrium which is therefore strictly irreversible.
We showed that the total entropy production obeys a generalized integral fluctuation theo-
rem, shedding new light on absolute irreversibility, which quantifies information extraction
within the quantum work meter and therefore signals the success of the protocol.

Generalizing our formalism to other kind of autonomous machines would open ways
to investigate genuinely quantum situations where a battery coherently drives a quantum
open system into coherent superpositions. Such situations are especially appealing for
quantum thermodynamics since they lead to entropy production and energetic fluctuations
of quantum nature [45, 47], related to the erasure of quantum coherences [54, 103].
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In this chapter, we analyze the hybrid optomechanical system as a reversible thermal
machine, like three-level masers [107], and, like the two level maser from Ref. [58], this
machine operates autonomously. Unlike in Chapters 2 and 3, a laser is shone on the qubit.
We consider the saturated regime of the Rabi oscillations, so that the coupling between the
laser and the qubit is incoherent and we can identify the laser with the hot bath. The cold
bath is the electromagnetic reservoir at zero temperature coupled to the qubit.

19th-century thermal machines are called reversible because they can operate as en-
gines or refrigerators, as illustrated in Fig. 4.1a and b. In the former operating mode, heat
flows from the hot bath to the cold bath through the system that provides work to the bat-
tery. In the latter operating mode, all energy flows are reversed. The battery provides work
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to the system which makes the heat flow from the cold bath to the hot bath. What we mean
by reversible in the case of the hybrid optomechanical system is different from this usual
definition, because the heat always flows from the hot bath to the cold bath, only the work
flow is reversed.

The optomechanical coupling results in a modulation of the frequency of the qubit, mak-
ing it enter in and out of resonance with the laser which enables optomechanical energy
conversion. When the laser is blue-detuned (Fig. 4.1c¢), the qubit receives energy from the
hot bath, in the form of high energy photons, gives part of it to the MO as work and dumps
the remaining energy inside the cold bath, in the form of lower energy photons. Therefore
optical energy is converted into mechanical energy and the hybrid optomechanical system
operates as an engine. Conversely, when the laser is red-detuned (Fig. 4.1d), it provides
low energy photons to the qubit, which emits higher energy photons in the cold bath, the
energy difference is provided by the MO in the form of work. Therefore, the optomechan-
ical system operates as an accelerator, facilitating heat flow from the hot bath to the cold
bath and the direction of the optomechanical energy conversion is reversed.

(a) Classical thermal engine (b) Classical refrigerator

OO O0-€
g X
© ©

(c) Blue detuned laser : engine (d) Red detuned laser : not a refrigerator

w W
N N (o)
@ N> Cold EOId MWW
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Figure 4.1: (a) and (b) Classical reversible thermal machine: (a) When heat flows from
the hot bath to the cold bath through the system, work is provided to the battery. The
thermal machine operates as an engine. (b) Reciprocally, when the battery provides work
to the system, the heat flow is reversed and goes from the cold bath to the hot bath. The
thermal machine operates as a refrigerator. (c) and (d) Hybrid optomechanical system
analyzed as a reversible thermal machine: (¢) When the laser is blue-detuned, it provides
high energy photons to the qubit, which emits lower energy photons in the cold bath, the
energy difference is given to the MO in the form of work. The optomechanical system
operates as an engine. (¢) When the laser is red-detuned, it provides low energy photons
to the qubit, which emits higher energy photons in the cold bath, the energy difference
is provided by the MO in the form of work. The optomechanical system operates as an
accelerator, facilitating heat flow from the hot bath to the cold bath.

We look at longer time scales than in the previous chapters and, therefore, we take into
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account the environment of the MO. We demonstrate that, with a blue detuning, a coher-
ent phonon state can be built starting from thermal fluctuations, which exhibits laser-like
signatures. There have already been a few proposals to make phonon lasers using cav-
ity optomechanics [73, 74, 139] and hybrid optomechanical systems [75]. In particular,
Ref. [75] proposes to amplify the mechanical motion by driving the qubit with a laser, but
in this chapter we enter more into the details of the conversion mechanism using a quantum
trajectory approach. Unlike in Ref. [75], we also investigates the other direction of energy
conversion, when the laser is red-detuned. We evidence that the average phonon number
in the MO can be reduced below the thermal level.

In this chapter, we first sketch the energy conversion principle. Secondly, we describe
the dynamics of the hybrid optomechanical system: We derive a master equation that takes
into account the bath of the MO, unravel it into stochastic trajectories and finally include
an effective modeling of the interaction between the qubit and the laser. Then, we present
a simple coarse-grained model of the evolution of the phonon number in the MO, allowing
us to estimate the steady-state phonon number and to identify interesting regimes. Finally,
we use numerically generated quantum trajectories of the MO to characterize both energy
conversion processes.

4.1 Principle of optomechanical energy conversion

If the MO is in a coherent state, the optomechanical coupling results in a sinusoidal modu-
lation of the transition frequency of the qubit (See Chapter 2, Eq. (2.41)). This modulation
can be used to convert optical energy into mechanical energy. We first present an ideal
optomechanical energy converter and then we explain the principle of an autonomous one.

4.1.1 Ideal converter

(a) (b) . (b—bl)

NANAW

Ll9) Ny

S
S
T

Figure 4.2: Ideal energy converter. (a) Time evolution of the transition frequency of the
qubit. (b) Mechanical motion in the phase space. The orange dots corresponds to the times
when the qubit is excited while the dark red dots corresponds to the times when the qubit
is de-excited.

Assuming the hybrid optomechanical system is isolated and has been prepared in the
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state |eq, [p) at time to, with €9 € {e, g} and |5y) a coherent state of the MO, then at time

t, the state of the system is

0, B (1)) = [eo (Bo+ 0.0 ) 7120 — S5, ) .0
Then, the ideal energy conversion protocol, schematized in Fig. 4.2, is the following: When
the qubit’s frequency reaches its maximum, the qubit is excited, i.e. put in the |e) state, so
that the rest position of the MO is shifted by —2x,pgm, /€. Then, we let the system evolve
for a half mechanical period, according to Eq. (4.1). When the qubit’s frequency reaches
its minimum, the qubit is de-excited, i.e. put in the |g) state, so the rest position of the
MO goes back to 0. Again, we let the system evolve for a half period, then we start again.
At each half-period, the radius of the half-circle described by the MO in the phase space
(X, P) increases, as shown in Fig. 4.2b.

We can physically analyze this evolution in term of work exchanges using Eq. (2.56):
W = hAwP,. When the qubit’s frequency decreases, Aw < 0 and P. = 1 so an amount
of work h|Aw| is provided to the MO. On the contrary, when the qubit’s frequency in-
creases P, = 0, so no work is provided by the MO. Therefore, every mechanical period,
the mechanical energy increase by /| Aw|, which translates into an increase in the mechan-
ical amplitude. This ideal energy conversion protocol is reversible. If we excite the qubit
when its frequency is minimal and de-excite it when it is maximal, then P, = 1 while the
qubit’s frequency increases. Therefore, the MO provides an amount of work 7| Aw| every
mechanical period, which results in a decrease in the mechanical amplitude.

This protocol could be realized using for instance m-pulses with a Rabi frequency
g > () so that they would be instantaneous compared to the mechanical evolution. An al-
ternative described in Ref. [48], analyzes this protocol as a heat engine, using thermal baths
at infinite temperature to excite the qubit and at zero temperature to de-excite the qubit. In
this latter case, the average work received by the MO over one period is —hAw/2. How-
ever both cases require a perfect synchronization of the excitation and de-excitation of the
qubit with the mechanical motion. In this chapter we propose an autonomous alternative
to this ideal energy converter.

4.1.2 Autonomous converter

The situation under study, a non-isolated hybrid optomechanical system, is represented in
Fig. 4.3a. A laser of frequency wy. is shone on the qubit which is also in contact with an
electromagnetic reservoir R at zero temperature. We assume that the pure dephasing rate
of the qubit is very large and chose the Rabi frequency g so that the qubit sees the laser as
an incoherent source. Therefore, when interacting with the laser, the qubit ends in a mixed
energy state and the laser can be assimilated to a hot bath with filtered frequency. Unlike
the previous two chapters, we will study the evolution of the MO on time scales longer that
the characteristic time of the mechanical damping I'~! and, therefore, take into account the
reservoir R, of the MO.

The energy conversion principle is illustrated in Fig. 4.3b. The optomechanical fre-
quency modulation makes the qubit periodically enter in resonance with the blue-detuned
laser of frequency wy,, at which point it can absorb a photon of energy /i . Then, by spon-
taneous emission, the qubit will emit a lower energy photon and the energy difference is
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Figure 4.3: Setup and principle of the energy conversion. (a) System under study: a qubit
of frequency w is parametrically coupled to a MO of frequency €2 with a coupling strength
Jgm- The MO is also coupled to a thermal bath R, of finite temperature 7" with a damping
rate ['. The qubit interacts with a laser of frequency wy and an electromagnetic reservoir at
zero temperature . g is the Rabi frequency and ~y the spontaneous emission rate of the
qubit. (b), (c) Energy conversion principle for a blue-detuned laser and a red-detuned laser
respectively. wy is the transition frequency of the bare qubit. (b) Amplification principle:
The qubit absorbs a high-energy photon from the laser and spontaneously emits a lower-
energy one. The energy difference is transferred to the MO. (¢) Cooling principle: the
qubit absorbs a low-energy photon from the laser and emits a higher-energy one. The
energy difference is provided by the MO.

given to the MO. In a similar way to three-level masers [107], the whole system can be seen
as an autonomous thermal machine: the qubit receives heat from a hot source (the laser),
gives part of this energy to the MO, which plays the role of the battery, and dumps the
remaining energy in the cold bath (the electromagnetic reservoir). The direction of the en-
ergy conversion is reversible: Using a red-detuned laser (Fig. 4.3c) results in the emission
of higher energy photons by the qubit and the energy difference is provided by the MO
which is therefore cooled down. As there is no need to connect / disconnect the qubit’s
baths, this energy converter is autonomous, unlike the ideal converter. The connection /
disconnection of the hot bath happens by itself when the qubit’s frequency moves in / out
of resonance with the laser due to the optomechanical modulation.

Note that what we mean by cooling in the red detuning case is that the average phonon
number in the MO decreases, but this not the usual thermodynamic definition of cooling.
Indeed, as show in Fig. 4.1d, the heat is not flowing from the cold bath to the hot bath like
in a classical refrigerator. Furthermore, we cannot associate a temperature to the MO, since
it is not in a thermal state, as shown in Section 4.4.2.
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4.2 Dynamics of the mechanical oscillator

To be able to understand more in detail the energy conversion process, we first study the
dynamics of the MO. The evolution of the hybrid optomechanical system can be divided
in two parts: when the emitter’s frequency is too detuned to interact with laser and when
the emitter is in resonance with the laser. The former part of the evolution, of characteristic
time Q~1, is a lot longer than the latter which will be considered as instantaneous. We first
derive a master equation for the hybrid optomechanical system and unravel it into quantum
trajectories. Finally including the interaction between the qubit and the laser, we can study
the stochastic evolution of the MO from these trajectories.

4.2.1 Evolution of the hybrid optomechanical system without the laser

In this section we do not take into account the interaction between the laser and the qubit.
This corresponds to the first part of the evolution, the slowest one during which work is
exchanged.

4.2.1.1 Microscopic model

As in the previous chapters, the hybrid optomechanical system is described by the Hamil-
tonian (Eq. (2.1))

Hym = hwg le)e| @ 1, +1q @ BOD'D + hgm |e)e| (b7 + b). 4.2)

The qubit is coupled to an electromagnetic reservoir R at zero temperature characterized
by the Hamiltonian (Eq. (2.13))

Hr, = Y hwpalay. (4.3)
k

The coupling between the qubit and R, denoted Vz, = >, | R; ® oy, with R, =
> whgrar, R_ = Rl. Reciprocally, the MO is coupled to a phonon reservoir R,,, but
at finite temperature 7', characterized by the Hamiltonian Hy_ that reads

Hg,, =Y hQcloy. (4.4)
k

¢k 1s the annihilation operator of the k-th phononic mode of frequency 2. R, is in a
thermal state, therefore, it contains on average Ng, phonons at any frequency €, with

-1
]\_ka, = <exp<%) — 1) . 4.5)

The coupling Hamiltonian between the MO and R,,, in the rotating wave approximation,
equals

Ve, =Y Ciab (4.6)
=%

where C} = ), hGye, C- = er and G, is the coupling strength between the MO and
the k-th mode of the reservoir. For notation convenience, we have defined b_ := b and
b, := b'. We denote

D= Gi(Q— Q) (4.7
k
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the mechanical damping rate. Finally, the Hamiltonian for the total system writes
H = qun + H’Rq =+ H’Rm =+ V’Rq =+ V'Rm (4.8)
It can be split in two terms: Hy, = Hy + V, with

Hy = Hym + Hg, + Hg,,, 4.9)
V.= VRq + VRm- (410)

In the interaction picture with respect to H, the density operator pl, of the total systems
evolves according to

fant) = =2 V! (0), Pl (1), @.11)

with V(t) = Vg, (t)+V4, (). Defining Uy(t) = e~"**°/", any operator A in the Schrédinger
picture becomes A'(t) = Ul (t)AUy(t). In particular, the two coupling Hamiltonians be-
come:

Va, () Z Ri(t) ® o)(t (4.12)
Vi (1) Z CI(t) ® bi(t) (4.13)
with

= Z hgrage, (4.14)
ol (t) =e ‘“’Ota exp (1QbTbt) exp( i(QTD + g (b + bT))t), (4.15)
' () ZhG Kl el (4.16)
b(t) = e_‘mqu - %‘“ leXe] . 4.17)

We have defined
bam = bg)gl + (b+ ) leXel (4.18)

4.2.1.2 Derivation of the master equation

We now derive the master equation describing the evolution of the optomechanical system.
In the following, we consider the regime

wo, (1L (1) > gm, Q7 > T, (4.19)

where 7 and 7" are the correlation times of Ry and R, respectively. This regime is
fulfilled by the experimental implementations cited in Chapter 2 (See Table 2.1). We can
therefore chose a time step At such that

wo L, T TN < At << g QT T T (4.20)

c)'¢c
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Applying the Born-Markov approximation, like in Section 2.1.3, the precursor of the
master equation, derived from Eq. (4.11), reads

Apim(t) = Trryr, (Apig(t))
i

t+At
-1 / A Trg, z, (V(1), Al ® PR, pr,))
t

1 t+At

) / dt" Trry r, ([VI(), [VI(E"), Pl (1) © PR, @ pR,]]) 5 (4.21)

As the reservoirs are in thermal states, Trg, (RY (¢)pr,) = 0 and Trg,, (CL(t)pr,) = 0.
Therefore, all terms containing a single Vg, (t) or Vx, (t) vanish, giving

1 t+At

Artn(®) = =35 | / at" (Tor, [V, (1), [VA, (). phut) © p2,]])
+ Te, ([Va, (1), VA, (1), h(®) @ pr,]])) - 422)

Expanding the commutators, the trace over the Hilbert space of R, gives correlation func-
tions gy (u,v), defined by Eq. (2.33), where u, v are two times and [,I’ € {4, —}. This
reservoir is at zero temperature so all these functions equal zero except g__(u,v) which
reads

__(u,v) = hQZgZ ~iwg(u=v) (4.23)
Similarly, the trace over the Hilbert space of R, yields terms of the form
Gur(u,v) = Trr, (pr, ClH () CL(v)). (4.24)
If [ # I’ this trace vanishes, otherwise, we get the two correlation functions:
=1*) gi(No, + 1)e ), (4.25)
k
Gii(u,v) =h*)  giNg, ), (4.26)
k
The integral ftt/ dt” can then be changed into an integral over 7 = ' — ¢”: fotlft dr. As

g——(u,v) = g__(u—w)is non zero only for [u—v| < 78 < At, and Gy (u,v) = Gy(u—v)
for |u — v| < 7™ <« At, the upper bound can be set to infinity [31]:

t+At

Apém(t) = — % t dt’ /000 dr [g__(T) (Ui(t/)O{ (t' — T)p(llm(t)
— L (' = 7) Pl ()0 (1))

- Z Gu(r) (B ()10t — 7)phn(2)

— bt — 7)ok (1)B}()T)

+ h.c. (4.27)
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Using Eqgs. (2.37), that is

ot (' —71) =o' (t)e ™, (4.28)
ol (' —71) =0l (), (4.29)
with _ _
@ = wolm + gm (be 7 + bTe) (4.30)
and Eq. (4.17), we obtain
t+At
Apha(t) = — /<h (A () ()l (1)

— 0L (1) pgm (1), (1))

+ Z Gll 71[97— bl )Tbémpam(w - bémp}]m@)(b(l]m)T)

+Z@ )X — [e)e] byt

+he. (4.31)

We have defined by, := bym, bl = bf]m for notation convenience. The extra terms coming
from Eq. (4.17) do not depend on 7, except for the G (7) factor, so the integral over G (7)
gives zero since there are no phonons at zero frequency. As At < ¢! Q7!, integrating

over t’ approximately gives

A 1
Pralt) = =)
::—%Omwpvx&www1@%aw—a@mm@1@»
+ Z Gll o bl )Tbémpam(t) - bfqrnp}qrn(t)(bém)f)
+—§{j<9 1T (o) el Byl (1) + (1) €l )
+ h.c. (4.32)

Assuming that the frequency variation of the qubit due to the optomechanical coupling
does not change the spontaneous emission rate like in Chapter 2 (Eq. (2.49)), the first term
gives rise to the usual Lindbladian £, for a qubit in contact with a zero temperature bath
and does not affect the mechanical state,

Ly[pgm(t)] = ¥D[o- @ L] pgm(t). (4.33)

The second term yields a Lindbladian £,, similar to the one of a harmonic oscillator in
contact with a thermal bath, except that the annihilation operator is replaced by bym,

Ln[pgm(t)] = TNa Dbl ] pgm () + T (N + 1) D[bgm] o (1), (4.34)
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with Ny, := Ng. Because of the last term, Eq. (4.31) cannot be put in the form of a
Lindblad master equation. However, this last term only contributes to the evolution of the
off-diagonal terms of the qubit’s density operator in the {|e),|g)} basis and, due to the
form of the Hamiltonian H,, (Eq. (2.6)) and of the couplings to the bath, in the absence of
coherence in the initial state, none will be built. Since in the following we will always start
with the qubit in a mixed energy state containing no coherence and since the excitation by
the laser in performed incoherently, we can safely neglect this contribution. Finally the
evolution of the optomechanical system, in the Schrodinger picture, can be written in the
form of the Lindblad master equation
i

Pam(t) = _ﬁ[ququm(t)] + Lg[pgm(t)] + Lin[ogm (1)]. (4.35)

4.2.1.3 Quantum trajectories

The master equation (4.35) can be unraveled using quantum jumps (See Section 1.1.2.1) for
L, which amounts to detect the photons emitted by the qubit, and quantum state diffusion
for £, (See Section 1.1.2.2). Indeed, the Kraus operator corresponding to spontaneous
emission is M, = v/yAto_ and the no-jump part is My = 1 — iAtHym/h — yAt/2 |e)e].
Since the quantum state diffusion Kraus operators M., such that

/derpqm = Lon[pgm] At (4.36)

obeys the normalization condition Eq. (1.3), the no-jump part can be further decomposed

as
iAt At
My = /der(l . %qu . 77 leXel). 4.37)

Therefore the set of Kraus operators composed of My, and { M, (1—iAt Hym/h—yAt/2 le)e]) }»
is a well defined Kraus decomposition and can be used to unravel the master equation.
Denoting ¥ a trajectory and |Ws(t)) the state of the hybrid system at time t, either the

qubit emits a photon during the time step [¢, ¢ + d¢[ and

1

e+ i) = Ty

|9) ® (e[ ¥x (), (4.38)

with probability ydt| (e|[¥x(t))|? or, with probability 1 — ~dt| (e|[¥x(t))|?, the system
evolves according to the quantum state diffusion equation (in It6 form [57]):
i I'Ni
d|Us(t)) = {—ﬁqudt - (qubgm + 1 gm) gy [* = 2 (am) g1 bIlm> di

P(Nth + ].)
—— (bTmqu + 1 (Dgm) g 1 22 <b$m>qu(t) qu> dt

VTN (bl = (Blm) g, )4+ (1)
/T (No 1) (bgn = (Bm) g )46 (1) } 125 (8)) (4.39)

where () ) = (Us(?)].|¥x(¢)) is the expectation value of the operator at time ¢, d{_
and d¢, are two independent complex Wiener increments.
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We now show that the optomechanical system is always in a factorized state along
a given trajectory 5, consisting of an energy eigenstate of the qubit and a coherent me-
chanical state. Let’s assume that at time ¢, the system is in state |Wx(¢)) = |e, ) where
e € {e, g} and |B) is a coherent state of the MO. Then during the next time step dt, either
the qubit emits a photon and |Ux (¢ + dt)) = |g, 5) with probability vdtd, ., or with proba-
bility 1 — ydtd, ¢, the system evolves according to Eq. (4.39) which can be rewritten at the
first order in d¢:

I' Ny
2

2
|WUx(t +dt)) = exp (—i (wo - g_m) dtde . —

I 2
0 dt+§|ﬁe\ dt)

X exp (x/rzvthwzm — B (1) - (iﬂ ¥ g) dtbgmqu) &, 8)

2 TN,
— exp (—i <w0 — %“) dtd., — 2‘*‘dt>

% exp (VI Na (Bl — 5106 (1)) |6, B (2 8)0 — 25 ) 4.40)

where . = 8 + %0, . is the eigenvalue of by, associated with the eigenstate |e, 5). From
this expression, it can be checked that

b|Ws(t+ dt)) = (ﬁgef(m*%)dt - %“‘56,@ + \/FNthd§+(t)> U(t+dt)). (441

Therefore, the MO remains in a coherent state while the qubit’s state is unchanged. As a
consequence, if at time ¢ = 0 the hybrid system is prepared in state |ex;(0), 55(0)), then
at any time ¢, its state is still of the same form and can be denoted |ex(t), Sx(¢)). In the
absence of spontaneous emission, the state of the MO at time ¢ + d¢ is related to the one at
time ¢ by the equation

Bt +t) = (Bs(t) + o) e (BT = T+ VTNGdEs (1) (442)

Therefore, at all times, the MO remains in a coherent state and the whole hybrid optome-
chanical system is in a pure product state, denoted |ex (), Ox(t)). This generalizes the
proof from Chapter 3 (Section 3.1.1) to the case where the environment of the MO is taken
into account in the form of quantum state diffusion.

4.2.2 Interaction between the qubit and the laser

So far, the qubit was only in contact with a bath at zero temperature, thus at most one quan-
tum jump could happen per trajectory. We now take into account the interaction between
the laser and qubit. We assume that we are in the saturated regime of the Rabi oscillations,
so that the laser can be considered as an incoherent source. Therefore, after its interaction
with the laser, the qubit is prepared in a mixed state

pa(0) = O le)el + (1 —0)|g)gl, (4.43)

where 6 € [0,1] is called the excitation rate in the following. In the quantum trajectory
framework, this translates into the qubit being in the excited state (resp. ground state) with
probability 6 (resp. 1 — ) after each interaction with the laser.
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To summarize, when w(fx(t)) = wi, the qubit enters in resonance with the laser and
can absorb a photon with probability 6. In between resonances, apart from spontaneous
emission, the qubit state remains the same while the MO evolves according to Eq. (4.42).
This evolution can be numerically simulated. As it involves many different parameters, we
first identify the interesting regimes by studying a simple coarse-grained model in the next
section.

4.3 Coarse-grained model

This model describes the coarse-grained evolution of the average phonon number N () in
the MO. It enables us to determine the phonon number in the steady state by a fixed point
study, as explained below.

4.3.1 Evolution of the phonon number

We derive this model by studying the variations of /V over one mechanical period. The MO
interacts with a thermal bath and the qubit, therefore, the variations of N () can be split in
two contributions:

N = —fu(N) + aw(N). (4.44)

The thermal contribution fi,(/N) is defined by
fu(N) :=T(N — Nu), (4.45)

and o, (V) denotes the optomechanical contribution. —I'V corresponds to the losses
caused by the mechanical damping and I' Vy, is the thermal source term, namely the phonons
coming from the bath.

By analogy with lasers [65], we define the gain per mechanical period

1 AN,
Gp = ———, 4.46

N T. (4.46)
where T}, = 27 /) is the mechanical period and AV, is the variation of the phonon number
during one period in the absence of thermal bath. Therefore, the optomechanical contribu-
tion reads

am(N) = Gn(N)N. (4.47)

The mechanical energy variation over one period is approximately given by A&, ~ AQAN,
because I' < 2. As the energy balance gives A&, = W (Eq. (2.73)), where WV the average
work received by the MO, the gain can be expressed as

_lag, 1w
" NRQT, Nh2r

(4.48)

Therefore, ay, (V) can be obtained by calculating the amount of work exchanged between
the MO and the qubit over one mechanical period. Over this time scale, the qubit transition
frequency can be approximated by

w(t) = wo + 2gm/ N (to) sin(Q(t — tg)), (4.49)
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where ¢ is the start of the considered mechanical period and t € [tg, to + 27/$2]. We will
now compute the average work, using that W = <W[i]> _, where W/[%] is the work re-
5

ceived by the MO over one period for one given trajectory 3 of the optomechanical system.

As in Chapter 3, at the single trajectory level, the energy of the hybrid system &y, [i t],
given by Eq. (3.18), naturally splits into two distinct components respectively quantifying
the qubit and the mechanical energies: &, [Z t] (Eq. (3.19)) and &, [Z t] (Eq. (3.20)).
Since we are modeling the interaction between the qubit and the laser in an effective way,
the variation of &, due to this interaction is identified with heat exchanges with the hot bath.
Similarly, the variation of &, due to spontaneous emission corresponds to heat exchanges
with the cold bath. In between such events, the state of the qubit does not change, only
its effective frequency changes, therefore the variation of &; corresponds to work, given by
Eq. (1.42). Integrating the work increment, W[] reads

t3
W] = — / Aty (1) i (1), (4.50)
t

1

where we have defined ¢;, + = 1, 2, 3, as the times at which the qubit enters in resonance
with the laser (See Fig. 4.3b and c):

1 A
t; = — arcsin , 4.51
0 (QQmVN ) (>
T
= — — 4.52
ts 0 t1, (4.52)
27
ts =t + O (4.53)
We have denoted
A= WL, — Wo (4—54)

the detuning between the laser and the frequency of the bare qubit. The work can be split
in two parts: W, [%] and W5[S], where W;[%], with i = 1,2, is the work received by the
MO between t; and ¢;,,. To obtain the average work W = W; 4+ W5, we average on the
state of the qubit after its interaction with the laser and, if the qubit is in the excited state,
on the spontaneous emission time Z,, therefore

tit1
W, =0 / Aty ve T R(w () — wlty))- (4.55)
t;

Finally, we obtain

an(N) = (QA (1 — e /% cosh(27t1)) — 72¢m /N — Ny e~ 7™/ sinh(27t1)>

A9/
—————O(N — Nuin), 4.56
* Ol ) (456
where © is the Heaviside function. We have defined the phonon number
A 2
Nuin 1= (—) , (4.57)
20m

which is a threshold of a,,(N). Indeed, when N < N, the qubit is never in resonance
with the laser (See Fig. 4.3b and c) so there is no optomechanical energy conversion and
am(N) = 0. Conversely, if N > Ny, am(V) is non zero because of the work exchanges
between the qubit and the MO.
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4.3.2 Discussion
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Figure 4.4: Fixed point study: The thermal contribution fy,(/N) (in red) and the optome-
chanical one oy, (V) (in green) are plotted in order to determine the sign of N, hence the
direction of the flow (gray arrows). Left column: Blue detuning. (a) Ny, < Ny, and oy, 1S
always below fy: a single fixed point at the thermal phonon number. (b) Ny, < Npi, and
o intersects fy,: two stable fixed points, one at Vy, and the other above, at Ny, and a flow
separation line at N = Npy. (€) Ny > Niin, SO vy intersects fi: a single stable fixed point
N above the thermal phonon number. Right column: Red detuning. (d) Ny, > Ny, and
ay, intersects fy,: a single fixed point N below the thermal phonon number. (€) Ny, > Npin
and ay, does not intersect fy, due to the discontinuity in Ny,;,: no fixed point, but the flows
go towards Npi,. (F) Ny < Npin: a single fixed point at the thermal phonon number.

Using Egs. (4.44) and (4.56), we can find the fixed points of /N and determine the inter-
esting values of the parameters for both the amplification and the cooling. Fig. 4.4 presents
the results of this fixed point study. The three possible situations for blue detuning, A > 0,
are represented in Fig. 4.4a, b and c. If the gain term o, is too weak or Ny, too large, then
the damping dominates and there is a single stable fixed point corresponding to the thermal
phonon number Ny, (Fig. 4.4a). Otherwise, a stable fixed point with a larger phonon num-
ber Ny exists (Fig. 4.4b, ¢) and the mechanical amplification is possible. However, the (c)
case does not give access to large phonon numbers for the fixed point so in the following
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we will target the case (b). This latter case exhibits two stable fixed points on both side of a
flow separation line in NVy,;,. The energy conversion process can be reversed by using a red
detuning, A < 0. The graphical study in Fig. 4.4d, e and f shows that there is at most one
fixed point whose position mostly depends on how N,;, compares to the thermal phonon
number Ny,. More precisely, we need to have N, < Ny, to be able to cool down the MO.

We also studied the impact of v on the energy conversion. We determined that outside
the regime v ~ (2, the energy conversion does not work. This can be understood from
Fig. 4.3 b and c: If the spontaneous emission rate is too large, the emission takes place
right after the absorption and barely no work is exchanged with the MO, so the conversion
efficiency is too low to overcome thermal noise. Conversely, if the spontaneous emission
rate is too small, the emission often does not occur before the qubit interacts with the
laser again, therefore the total work is zero. Amplification of the mechanical motion in
the regime v > () was proposed in Ref. [9], but it requires a modulation of the optical
drive at the mechanical frequency. On the contrary, having v ~ 2 gives rise to an au-
tonomous modulation: The qubit enters in and out of resonance with the laser due to the
optomechanical coupling and the spontaneous emission occurs most of the time near the
targeted extremal frequency. More precisely, for a blue detuning, in the case corresponding
to Fig. 4.4b, the value of v maximizing N is 7 ~ €2/2, regardless of the other parameters.
The value of 7 has less influence on N, for red detunings, but v ~ 2/2 is also in the range
of values that give the lowest phonon numbers. We will therefore chose 7 = {2/2 in the
following. The spontaneous emission rates of the qubit in the devices mentioned in Table
2.1 are not close to this value. However in Ref. [98], + is smaller than {2 so it should be
possible to make the lifetime of the transmon qubit shorter. In Ref. [136] it should also be
possible to have v ~ €) by replacing the InAs quantum dot by one with a longer lifetime,
such as the ones in Refs. [37, 114].

Finally, having a large optomechanical coupling ratio g, /€2 is less crucial than in Chap-
ter 3, gn ~ (2 is sufficient to get a noticeable change in the phonon number in the MO.
Nevertheless, for blue detunings, Ny increases with g,,. After identifying the interesting
regimes for both the cooling and the amplification, in the next section, we use numeri-
cally generated trajectories of the optomechanical system to characterize more precisely
the behavior of the MO.

4.4 Characterization of the energy conversion

We first explore the blue detuning case, evidencing a laser-like behavior. Then we consider
the red detuning case and investigate the mechanism for reducing the mechanical energy.
Finally, we study the energy conversion efficiency.

4.4.1 Blue-detuned laser: laser-like behavior

In this part, we consider a blue detuning, A > 0. To investigate further the amplification
predicted by the fixed point study (Fig. 4.4, left column), we numerically generated quan-
tum trajectories for different excitation rates §. Examples of obtained trajectories [x(t)
are given in Fig. 4.5a,b and c. For the smallest value of § (blue curve in Fig. 4.5b), the
amplification is dominated by the thermal noise and nothing happens, as predicted by the
coarse-grained model (Fig. 4.4d). For larger values of # (corresponding to Fig. 4.4¢), the
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amplification is visible. However, for § = 0.1, the phonon number fluctuates in between
the two fixed points (orange curve in Fig. 4.5b). This is because the distance between the
fixed point and the flow separation line is small enough to be crossed by thermal fluctua-
tions. Conversely, if the detuning is very large, the thermal fluctuations will never cross the
flow line and the MO will remain at the thermal fixed point.

The phase ¢x(t) of fx(t), after taking out the part rotating at the effective mechanical
frequency ()., is represented in Fig. 4.5¢. The effective mechanical frequency 2. is not
exactly equal to the bare mechanical frequency 2 because, when the amplification mech-
anism is active, the qubit is more often excited during a specific part of the mechanical
oscillation, shifting the rest position by —2z,,¢gm /€). Therefore, the MO does not describe
a perfect circle in the phase space which alters its apparent frequency. When the thermal
noise dominates, this phase evolves randomly whereas, interestingly, its fluctuations are
suppressed when the system is in the steady state above thermal noise. This is also visible
in the trajectories of the MO in the phase space, in the frame rotating at the effective me-
chanical frequency, plotted in Fig. 4.5a. Indeed, the complex mechanical amplitude for the
large values of 6 (in green and red) are more or less contained in a limited area of the phase
space defined by the average amplitude and phase.

This decrease in the phase fluctuations is reminiscent of lasers. A laser is a device that
amplifies light starting from noise: a pump excites atoms in an amplifying medium inside
a cavity, so photons from the incident incoherent light field trigger stimulated emission,
eventually leading to the creation of a coherent light field. The gain G of the laser is
defined as the factor by which the intensity of the light field is multiplied when going
through the amplifying medium once, i.e. an initial intensity / becomes G/ after going
through the medium. One of the characteristics of lasers is that the gain exhibits a threshold
such that if GG is below the threshold, there is no amplification while above the threshold,
a coherent light field is generated and the intensity is proportional to Gy [65]. Therefore,
above the threshold, the light field has a stabilized amplitude and phase. Another signature
of laser behavior is given by the classical second-order correlation function:

4D(r) = {4+ n)I) (4.58)

(1))

where [ is the intensity of the light. For a laser, ¢(®(0) is strictly larger than 1 below the
threshold (equals to 2 if the light field is thermal) and goes to 1 above threshold because the
light field is coherent. In the case of the hybrid optomechanical system, we have phonons
instead of photons and the input field is thermal noise coming from the environment of the
MO. We now look for more signatures of laser-like behavior in the steady-state of the MO.

We first evaluate the coherence of the phonon field in the MO through its correlation
time. The absolute value of the normalized autocorrelation of 3, that is |Rg(7)/Rz(0)], is
represented in Fig. 4.5d. The autocorrelation of Sy, has been approximated by the expres-
sion .

f
Rp (1) := / dtBs(t)se(t — 7). (4.59)
to
The initial time ¢, is chosen large enough to ensure that the amplification mechanism has
started and that the MO has reached the steady state with the largest phonon number (ex-
cept for § = 0.1 due to the bistability). The final time is such that ¢; — ¢, = 100/T". Then,
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Figure 4.5: Amplification with a blue-detuned laser. Left column. Time evolution of the
MO for different values of the excitation rate §: (a) trajectory in phase space, (b) amplitude
and (c) phase. Right column. Threshold characterization: (d) autocorrelation of [ for
different values of 6, (e) average phonon number N in the steady state as a function of
the excitation rate and (f) classical second-order correlation function g (0) as a function
of the excitation rate. The legend in (a) also applies to (b), (¢) and (d). The error bars
in (e) and (f) represent the standard error of the mean. Parameters: 2/2m = 600 kHz,
gm/27m = 800 kHz, v/ = 0.5, T = 20 Hz, T = 80 K and A/2¢g,, = 3v/Np. See
Appendix A.2 for more details about the numerical simulations.

Rs(7) is obtained by averaging Rg,, (7) over 16 trajectories. The figure evidences that the
correlation time of the MO complex amplitude 3 increases with 6, therefore when 6 is
larger than 0.1, the phonon field in the MO is more coherent than thermal noise.

The average phonon number reached by the MO in the steady state, N, is analogous to
the intensity of a light field. Fig. 4.5e shows that N increases with # and exhibits a thresh-
old like for a laser [65], around # = 0.1. For the quantum trajectories, it was computed by
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first averaging | (s (t)|? between ¢, and ¢, then taking the mean over 16 trajectories:

te
Nst:<t lt / dt|ﬁg(t)|2> : (4.60)
f— L0 Jtg 5

The values of the largest fixed point computed from the coarse-grained model (orange cir-
cles) are in good agreement with the results obtained with quantum trajectories (blue dots).
This agreement is less good around the threshold because the fluctuations neglected in this
model matter more around this point.

Furthermore, the classical second-order correlation function also exhibits a laser-like
behavior. For the phonon field, it is defined as

) o N, o)
with , N
e+ Ny = ([ ass+oRIBsOF) . @6

Fig. 4.5f shows that ¢ (0) starts from close to 2 in § = 0, the expected value for a thermal
state, then it has an erratic behavior around the threshold and finally goes toward 1, the
expected value for a coherent state, when 6 increases. The behavior of the MO exhibited
in Fig. 4.5d,e, f is consistent with phonon lasing, the excitation rate # being the equivalent
of the laser gain G.

4.4.2 Red-detuned laser: decrease in the phonon number

If we change the sign of the detuning to A < 0, the fixed point study of the phonon num-
ber N (Fig. 4.4, right column) predicts that the energy conversion process is reversed, so
that the mechanical energy can be reduced. These results are confirmed by the numerical
simulation of quantum trajectories Oy (¢). Indeed, as shown in Fig 4.6b, when N, < Ny,
(in blue), the mechanical amplitude is smaller than the thermal noise (dotted red line) and
corresponds to the case represented in Fig. 4.4e. Conversely, when N, is a lot larger
than Ny, (in orange), the qubit never interacts with the laser and there is no decrease in
the average phonon number, like in Fig. 4.4f. Therefore the amplitude stays around /Ny,
and the orange line represents only thermal noise. The decrease in the phonon number is
also visible in the trajectory in the phase plane (in blue in Fig. 4.6a) which is almost con-
tained inside the circle of radius v/ Ny,;,. Indeed, when the phonon number exceeds Ny,
the cooling mechanism is turned on because the qubit starts interacting with the laser. As
mentioned before, what we call a cooling mechanism is really a mechanism that reduces
mechanical energy, hence the average phonon number.

The absolute value of the normalized autocorrelation of 3, |Rg(7)/R3(0)|, is repre-
sented in Fig. 4.6c. Rg(T) is computed in the same way as in the previous part and the
initial time ¢, is chosen so that the mechanical amplitude has reached its steady state, i.e.
we are not taking into account the initial decrease in |3| visible in Fig. 4.6b. The figure
shows that the correlation time of the mechanics for N;, < Ny (in blue) is decreased
compared to the noise’s. For Ny, > Ny, (in orange), the correlation time is identical to the
thermal noise’s.
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Figure 4.6: Cooling with a red-detuned laser. Time evolution of the MO for different
detunings: (a) trajectory of the MO in phase space and (b) amplitude of the MO. Cooling
characterization: (c¢) absolute value of the normalized autocorrelation of 3 for different
detunings, (d) probability distributions of |3|? for different detunings, (e) average phonon
number Ny in the steady state as a function of the detuning and (f) classical second-order
correlation function ¢(®(0) as a function of the detuning. The legend of (a) also applies
to (b) and (c). The error bars in (e) and (f) represent the standard error of the mean.
Parameters: )/2m = 600 kHz, ¢,,/2m = 800 kHz, v/Q = 0.5, = 20 Hz, T = 80 K and
6 = 0.5, except in (e) and (f) where # = 0.1 has been chosen to to better see the return to
the thermal state when the detuning goes to zero. See Appendix A.2 for more details about
the numerical simulations.

The average phonon number in the steady state /Ny, given by Eq. (4.60), depends on
the detuning, as shown in Fig. 4.6e. For large values of |A|, the qubit never interacts with
the laser (like in Fig. 4.4a) so Ny remains equal to the thermal phonon number. Then,
Ny decreases with |A| until the detuning gets to close to zero and the cooling efficiency
becomes too small to counteract the thermal noise. The predictions of the coarse-grained
model (orange circles) have the same general trend as the results obtained with the numer-
ical simulation of quantum trajectories (blue dots). However, the start-up of the cooling
mechanism happens for smaller values of |A|. This is because this simple model does not
take thermal fluctuations into account whereas they can trigger the cooling mechanism.
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The classical second-order correlation function ¢(?(0), given by Eq. (4.61) is plotted
in Fig. 4.6f as a function of the detuning. It is close to 2 for large |A|, as expected for a
thermal state. Then it slightly decreases with |A| before increasing to reach a maximum
around the optimal |A| (the one corresponding to the minimal phonon number). This
indicates that the phonon distribution is neither thermal nor coherent. This is confirmed by
Fig. 4.6d which shows the probability distribution of |3|? for different detunings. These
distributions have a cut-off at |3|> = Ny, which makes this cooling process very similar
to evaporative cooling.

4.4.3 Energy conversion efficiency

One energy conversion event consists of the absorption by the qubit of one photon of energy
hwy, from the laser, followed later on by the emission of a photon of energy hwen, Where
wem 18 the effective frequency of the qubit at the time of the emission. The conversion
efficiency of the i-th absorption - emission stochastic event along a trajectory therefore

reads . y
e = M) (4.63)
th
With this definition, a negative 7); corresponds to energy taken from the MO. The total
energy ey, received by the MO over a time t,,, = 10/T, in units of fwy is obtained by

summing these elementary contributions:

Crot = Z ;- (4.64)

The average energy conversion rate e, /t is plotted in Fig. 4.7 (orange squares) as a func-
tion of the detuning. For red detunings, e is negative since the MO is being cooled down
and —ey /1o corresponds to the average cooling power in units of fwy.. The same drop in
the energy conversion rate as in Fig. 4.6e is noticed when the detuning goes to zero. As
expected, when the detuning is zero, the energy conversion rate goes to zero since there
are as many cooling events as amplifying ones. Finally, for blue detunings, the average en-
ergy conversion rate is positive and increase with the detuning. However, this increase in
the average energy conversion, as well as the increase in the phonon number in the steady
state) comes with a trade-off: The larger the detuning, the longer the average amplification
start-up time (i.e. the first time the noise makes the phonon number greater than Ny;,).

The conversion efficiency, averaged over the stochastic events and normalized to
_hQ

FLCUL ’

Mo : (4.65)
is represented in Fig. 4.7 (blue dots) as a function of the detuning. 7y corresponds to the
efficiency of the resolved-sideband cooling scheme in which each photon that is absorbed
by the lower sideband removes one quantum of energy from the MO [8]. Note that we are
not in the resolved-sideband regime v < €2 but in the regime v ~ ). The figure shows
that the average conversion efficiency of a single event is orders of magnitude larger than
the one of resolved-sideband cooling. Unlike the energy conversion rate, the conversion
efficiency does not go to zero for large negative values of A. Indeed, though cooling events
are really rare in this case, they are very efficient and the conversion efficiency does not
take into account their rarity, which account for the larger error bars.
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Figure 4.7: Energy conversion efficiency. Left axis: Average conversion efficiency (7;),
normalized to 1y = A$2/hwy (in blue) as a function of the detuning. 7; is the fraction of the
laser photon’s energy received by the MO. It quantifies the efficiency of the energy con-
version for the i-th stochastic event: absorption of a laser photon followed by spontaneous
emission. Right axis: Average energy conversion rate e, /t.(in orange) as a function of the
laser detuning. e, is the total energy received by the MO over a time ¢,,, = 100/I" in units
of the laser energy. The error bars in both plots represent the standard error of the mean.
Parameters: ti ' = 10, wy/2m = 500 THz, 0 = 0.2, /27 = 600 kHz, g,,/2m = 800 kHz,
v/Q=0.5,T =20Hzand T" = 80 K.

4.5 Summary

In this chapter, we evidenced that hybrid optomechanical systems can be seen as au-
tonomous machines operating between two baths. The qubit corresponds to the working
substance, the MO plays the role of the battery, the cold bath is a thermal bath at zero
temperature and the hot bath is a “colored” bath (a monochromatic laser). We can choose
whether the MO provides or extract work via the sign of the detuning between the laser
and the qubit.

We first derived the master equation for the optomechanical system, taking into ac-
count the thermal baths of both the qubit and the mechanical oscillator (MO), in the regime
wo > 7, gm, 2 > T'. Then, we unraveled this equation into quantum trajectories. The in-
teraction between the laser and the qubit was modeled in an effective way and added in the
trajectories in the form of a probability ¢ that the qubit ends in the excited state after being
in resonance with the laser. Finally, we were able to simulated numerically the stochastic
evolution of the MO which always remains in a coherent state.

We also elaborated a simpler model by coarse-graining the evolution of the phonon
number in the MO over one mechanical period. This model allowed us to determine that
the optimal value of the spontaneous emission rate of the qubit is v ~ €2/2. We also studied
the fixed points of the phonon number, estimating the average phonon number in the steady
states, and determined the interesting regimes for energy conversion. This study showed
that hybrid optomechanical systems can be considered as autonomous and reversible ther-
mal machines allowing to amplify or reduce the mechanical motion. The direction of the
energy conversion is determined by the sign of the detuning between the laser and the fre-
quency of the bare qubit. When the laser is blue-detuned, the qubit absorbs a high energy
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photon from the laser and emits a lower energy one, the energy difference being given to
the MO. When the laser is red-detuned, the qubit absorbs a low energy photon from the
laser and emits a higher energy one, the energy difference being provided by the MO.

Then, we studied the evolution of the MO using the numerically generated quantum
trajectories, using experimentally realistic parameters. We evidenced that, with a blue de-
tuning, if the excitation rate 6 is large enough, a coherent phonon state is built starting
from thermal noise. The behavior of the MO in this regime exhibits several signatures of
phonon lasing, including a threshold in 8, which plays the role of the gain. However, unlike
in usual lasers, no population inversion is required and the system is bistable, so if € is not
a lot larger than the threshold, thermal fluctuations can bring back the MO in its thermal
state fixed point. Conversely, with a red detuning, the average phonon number can be re-
duced below the thermal number and this process is similar to evaporative cooling, with a
cut-off for mechanical amplitude larger than the threshold amplitude triggering the cooling
mechanism. Moreover, on a single cooling event, this process is orders of magnitude more
efficient than resolved-sideband cooling.

As a perspective, it would be interesting to investigate further the cooling process, and
especially determine whether the MO eventually thermalizes. We could also study the
entropy of the MO , as cooling in the thermodynamic sense is associated with a decrease
in entropy. Finally, it would be interesting to determine the cooling limit, which would
require a more detailed modeling of the interaction between the qubit and the laser.
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Coherence plays a key role in quantum information, which is why it has been consid-
ered as a potential resource for quantum machines, with the aim of surpassing classical
ones [77, 78, 95, 101, 108, 123]. In Refs. [78, 123], the quantum coherence in the work-
ing substance is injected by the drive while in Ref. [108] it comes from the bath which is
non-thermal. However there has been no experimental implementation of such a quantum
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machine using a single qubit as working substance so far.

Until now, we have only studied cases where no coherence in the qubit energy eigen-
basis was ever involved. While Chapters 2 to 4 focused on hybrid optomechanical sys-
tems where the MO acts as a battery dispersively coupled to the qubit, in this chapter, we
consider a resonant battery that coherently drives the qubit. This situation is particularly
suitable for the study of the impact of coherence in quantum machines.

We use an engineered bath to prepare the qubit in an arbitrary superposition of energy
eigenstates. This bath acts as a source of energy and coherence, allowing us to make a two-
stroke quantum engine extracting work from a single bath. As the bath is non-thermal, this
engine does not violate the laws of thermodynamics. It consists of a resonantly driven qubit
embedded in a waveguide, usually called “one-dimensional atom” and can be implemented
with state-of-the-art artificial atoms coupled to superconducting [42, 69] or semiconduct-
ing circuits [39, 60].

We derive the evolution of the state of the qubit in contact first with the engineered
bath and secondly with the battery and show that these two situations can be combined
to create a two-stroke quantum engine. Then, we focus on the regime of strong driving
where the battery is loaded with a large number of photons, which corresponds to classical
Rabi oscillations, and evidence that coherence boosts the engine’s power. Finally, we study
arbitrary driving strengths down to the spontaneous regime where the battery is not loaded.
In this latter regime, coherence determines the amount of energy coherently emitted in the
waveguide. This study is presented in [90].

5.1 Microscopic description of the engine

The setup under study, represented in Fig. 5.1a, is a qubit embedded in a one-dimensional
waveguide. This qubit can be, on the one hand, coupled to an engineered bath and, on
the other hand, coherently driven by an engineered battery. This battery corresponds to
the modes of the waveguide resonant with the qubit’s transition. We derive separately the
evolution of the qubit first in contact with the engineered bath, secondly when driven by
the battery. Then, we combine the two to make a two-stroke engine.

5.1.1 Engineered bath: Modeling and interaction

Reservoir engineering techniques [99] allow the preparation of arbitrary quantum states by
non-unitary operations. This ability to shape dissipation provides new kinds of baths, open-
ing the way for various applications in quantum thermodynamics, like measuring stochastic
heat exchanges [43], creating steady-state entanglement [115] or charging a quantum bat-
tery [10]. In this chapter, we use an engineered bath to prepare the qubit in a coherent
superpositions of energy eigenstates during the engine’s first stroke. This bath consists of
a pump, which is quasi-resonant with the qubit’s frequency, and an electromagnetic reser-
voir whose mode density is engineered, for example, by using a cavity [93] or a photonic
crystal [67]. We first derive the master equation describing the evolution of the qubit when
coupled to this bath. Then, we explain how an arbitrary state can be prepared.
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Figure 5.1: Engine’s schematic. (a) Situation under study: a qubit of transition frequency
wy 1s coupled to a waveguide. v denotes the spontaneous emission rate of the qubit, by, the
mean amplitude of the coherent input drive, vV;, the photon input rate and b,,, the mean
amplitude of the output field. Work corresponds to the coherent fraction of the energy
radiated by the qubit in the waveguide. The modes of the waveguide thus play the role of
the battery whose load is defined by V;,. (b) and (¢) Two-stroke engine when the battery
is classical (N, > 1). (b) Evolution of the state of the qubit in the Bloch sphere. First
stroke: Attime t = 0, the qubit is put in contact with the engineered bath that prepares it in
Poo Of eigenstates |+4) and energy E,. Second stroke: For t € [0, 7], the bath is decoupled
and the qubit unitarily evolves from p, to p(7) of energy £(7). (¢) Time evolution of the
energy of the qubit. During the second stroke, an amount of work W = &(7) — £ is
extracted in the battery, that corresponds to the energy &, provided by the engineered bath.

5.1.1.1 Derivation of the master equation for the driven qubit

The qubit is coupled both to a quasi-resonant pump at frequency wp, and whose amplitude
produces the Rabi frequency (), and to a reservoir of electromagnetic modes at tempera-
ture T". Note that this pump is much stronger than the input drive used as a battery. The
evolution of the total system is governed by the Hamiltonian

H(t) = Hy(t) + Hr +V (5.1
where 5O
HE(t) = Hy — TR(eiWPta_ +e g, ) (5.2)

is the qubit’s Hamiltonian, Hx (Eq. (2.13)) is the Hamiltonian of the reservoir and V' =
> -4 Rio; (Eq. (2.15)) is the coupling Hamiltonian in the rotating wave approximation.
We have denoted Hy = hwy |e)(e|, the bare Hamiltonian of the qubit. In the frame rotating
at the frequency wp, the Hamiltonian becomes

H=H(t)+ Hr + V(t), (5.3)
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with
~ hQ
P o R
Hy(t) = hA |e)e| — —5 Oa (5.4
V(t) =Y Roe"". (5.5)
1=+
We have defined
A = wy — wp, (5.6)
the pump detuning and o, := |e)}g| + |g)e|. ﬁ;’ can be rewritten in the form
~ hQp hA
HP = —=»9 4 — .
q 5 e T 5 (5.7)
where

Qp = /O + A2 (5.8)

is the generalized Rabi frequency and

27 = o) —ol — [+o)+al - (5.9)
The two eigenstates of H, 5 reads
. (0 0
|+¢) := sin 3 le) + cos 3 lg) (5.10a)
0 . (0
|—g) := — cos 3 le) + sin 3 lg), (5.10b)

with = arctan(Qr /A) (See Fig. 5.1b).

Following [21, 44] and applying the Born-Markov approximation, in the interaction
picture, the precursor of the qubit’s master equation reads

Api(t) = p'(t + At) — p(1)

1

- tHAt dt’ /OOO dr e [V, [V = 7). 0 @ pr]]) . 61D

We have chosen the time step At such that
Te,wy wp QR <At <y (5.12)

p(t) is the density operator of the qubit and the exponent I denotes the interaction picture
such that

Vl(t) _ e%(ﬁg—l—HR)tV(t)e—%(Hg—i—HR)t

= Rj(t)oj(t)e""", (5.13)
=%+

and

Ri(t) = hgrage ™"+, (5.14)
k

o} (1) :exp<%ﬁ§t)crl exp(—%ﬁ;’t). (5.15)
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The trace over the reservoir gives terms of the form gy (u, v) = 75 Trr((R}(u)) R} (v)pr),
which are zero if [ # [, therefore

st == [ at [T ar ottt =0 (el -

ol — T)pl(t)(a;(t'))T) +he (5.16)

Then, we use the decomposition

o)=Y &we™, (5.17)
w=0,+0p
where we have defined
in(6
54(0) = &2()22 (5.18)
+1 0
G4 (—) == — +QCOS( ) ‘. (5.18b)
1 0
Gi(Qp) = — +QC°S( 5 (5.18¢)
and X% := |—¢)}+4|, 8% := |[+9)}—p|. Therefore, Eq. (5.16) becomes
t+At . WY 0 s
Apl(t) = _/ dtlzzel(ww ! / dr gu(t', ' — 7)el@ e
¢ =% ww’ 0

x (5] @a()e) - a(w)e (15] ()
+ h.c. (5.19)
gu(t',t' — 1) only depends on 7 and

o - 1
/ dr gu(t',t = 7)e! =07 = Sa(wp — 1) (R(wp — ') + 1), (5.20)
0

v(w) = v, (Eq. (2.16)) is the spontaneous emission rate of the qubit at frequency w and
n(w) := n, (Eq. (2.14)) is the mean number of photons at the frequency w in the reservoir.
To put the master equation in the Lindblad form we use the secular approximation [31],
that consists in neglecting the terms evolving in w — w’ # 0. Indeed, integrating them over
t’ gives terms in sinc((w — w’)At/2) and |w — w'|At > QpAt > 1. Finally, we obtain

pH(t) = (Lo+ L1+ L2)p\(1), (5.21)
with
Lo = (o1 +700) D[¥7], (5.22)
L;=v4D[X]] +7, D[], i=1,2. (5.23)
L corresponds to the pure-dephasing in the dressed basis, with the rates
Yor = sz(e)fy(wp)ﬁ(wp), (5.24)
sin?(9)

Yoo =" v(wp) (Ai(wp) + 1). (5.25)
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L, and £, correspond to thermal relaxation with respective rates

0
iy = cos’ (5)7(“13 + Op) (R(we + Op) + 1), (5.26)
Y1) = €Os <§>’Y(WP + Qp)n(wp + Qp), (5.27)
40 _
Yor = SlIl4 (5)7((,013 — Qp)ﬂ((ﬂp — Qp), (528)
7
Yo, = sin? (5)7@@ — Qp)(n(wp — Qp) + 1). (5.29)
(@ b |
" |—o(np)) ! CaYlty
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Figure 5.2: (a) Jaynes-Cummings ladder formed by the eigenstates of the qubit-pump sys-
tem when the pump field is quantized. (b) Emission spectrum of the qubit in the classical
limit where the pump is a coherent field containing a large number of photons. The po-
sition of the cavity used to enhance the transition rate y(wp + 2p) is indicated by a gray
dashed line.

Eq. (5.21) can be interpreted in the radiative cascade picture [31], modeling the pump
as a quantized field. The eigenstates of the qubit-pump system read

oo (%) 1+ cx () )
o)) = = cos( 3 ) fecnw = 1) s (5) g,

where np is the number of photons in the field. These states form the Jaynes-Cummings
ladder, depicted in Fig. 5.2a. The frequency of the transition between |+¢(np)) and |—¢(np))
scales like /np. In the classical limit considered here, the pump is a coherent field |ap)
containing a large number of photons 7ip = |ap|* > 1. Therefore /fip + 1 ~ /fip and
the levels in the ladder can be considered as equally spaced. Therefore, the transition
|—¢) — |+4), associated with the jump operator %9 , consists of an ensemble of transitions
|—g(np)) — |+¢(np —1)). It is characterized by the spontaneous emission of a blue-
shifted photon of frequency wp + 2p. Similarly, the transition |+y) — |—4) consists of
an ensemble of transitions |+4(np)) — |—¢(np — 1)) and is characterized by the emission
of a red-shifted photon of frequency wp — {2p. Pure dephasing is induced by the transi-
tions |+4(n)) — |+¢(n — 1)) and signaled by photons emitted at the pump frequency. The
emitted photons build a spectrum forming the Mollow triplet represented in Fig. 5.2b.

(5.30a)

(5.30b)
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5.1.1.2 Arbitrary state preparation

In the rest of this chapter, we will assume that the reservoir is at zero temperature, so
n(w) = 0 for any w. The master equation (5.21) thus becomes, in the Schrodinger picture,

cos®(0)

i

p(t) = — £ [H, p(1)] + 7(wp) D[X2p(t)

+ cos? (g)y(wp + Qp)D[2%p(t) + sin (g)y(wp — Qp)D[X Jp(t).  (5.31)

The equilibrium state corresponding to this equation is

Poo = P |—0)X—o| + (1 —p) [+o)X+al, (5.32)

where
sin' (8)(wr — )
P= 7175 7 . (5.33)
sin' (4)v(wp — Qp) + cos* () (wp + Qp)

It is therefore possible to tune p € [0, 1/2] by changing the transitions rates 7 (wp £ 2p).
One possibility is to use the Purcell effect by putting a narrow cavity resonant with the
wp + (2p transition [93], as represented Fig. 5.1b. Another option is to engineer the density
of modes in the environment, for instance with a photonic crystal [67]. Furthermore, the
angle 6 € [0, 7] fixing the relaxation basis of the engineered bath can be tuned by playing
on the pump detuning.

This engineering of modes also greatly enhances the relaxation time of the qubit in the
bath, which is given by the fastest transition rate (wp & Qp). Therefore, in this chapter
we will neglect the relaxation time, namely the duration of the first stroke, compared to the
duration 7 of the work extraction.

To summarize, we have shown that we can control both the position of the relaxation
basis {|—¢) , |+4)} on the Bloch sphere and the purity of the state p,, of the qubit. Besides,
this bath engineering strategy is compatible with the properties of the one-dimensional
atom, which solely requires the reservoir of modes to be flat around the transition frequency
of the qubit. It was experimentally implemented in Ref. [67].

5.1.2 [Engineered battery: Modeling and interaction
5.1.2.1 Derivation of the evolution of the qubit

During the second stroke, the engineered bath is decoupled from the qubit. Therefore the
qubit only interacts with a one-dimensional reservoir of electromagnetic modes indexed,
in the continuum limit, by their frequency w and characterized by the normalized density
of modes p(w). We will use the input-output formalism to describe the field propagating in
the waveguide [56, 57]. The total Hamiltonian reads

H = Hy+ Hg,, + Vr,,, (5.34)

where

Hg,, = / dwhewp(w)bi by, (5.35)
0

VRe = i/OO dwp(w)hg(w) (b, + b,) (0 — 0y, (5.36)
0
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are respectively the bare Hamiltonian of the qubit, the bare Hamiltonian of the one-dimensional
reservoir and the coupling Hamiltonian. We have denoted b,, the annihilation operator of
the mode of frequency w and g(w) the coupling strength between this mode and the qubit.

In the rotating wave approximation, Vz,, can be rewritten

VR = i/ dwp(w)hg(w)(blo_ — oyb,). (5.37)
Only the quasi-resonant terms contribute significantly to the evolution of the system, so we
have dropped the rapidly oscillating terms in b} o', and b,,o_. Similarly, we have extended
the integral down to —oo because the added terms are all non resonant, but this will allow
mathematical simplifications [57].

In the Heisenberg picture, the equations of evolution of b,,(¢) and any observable Og(?)
of the qubit are

b, (t) = —i‘wbw(t) + g(w)o_(t), (5.38)
Oyt) = = 3104(1), Ho(t)
+ /_ ) dwp(w)g(w) (0L, (1)[Og(t), o ()] = [O4(1), o4 ()] (F)).  (5.39)

Formally integrating Eq. (5.38) yields, for any time ¢ > 0,
t
by (t) = b,(0)e ™™ + g(w) / dt'o_(t)e w1, (5.40)
0
Injecting this result in Eq. (5.39), we obtain

Oy(t) = — {0y, Holt)) ~ (04(0). 04 (0] (Lo—(1) + Abu())  5:41)
+ (3040 + VAL M) [0(8),0- (1) (5.42)

We have denoted by, (¢) the input operator, defined by

~ 1 o0 .
(1) = = /_ du/p(0)bu (0)e—t, (5.43)

which describes the field at time ¢ in the waveguide before its interaction with the qubit,
and
7 = 2mg*(wo)p(wo), (5.44)

which is the damping rate undergone by the qubit’s observables. We have further assumed
that the modes of the waveguide constitute a large reservoir, so that we could approximate

Vp(w)g(w) by \/v/2m [57].

The mean value b;, () of the input operator is expressed in units of the square root of a
photon rate. Defining the dimensionless mode

Bi(t) = — (5.45)
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allows introducing the input field state

|Bin(2)) := D, 1y (Bin) 0}, (5.46)
where

Di(a) := exp(a*a — aa) (5.47)
is the displacement operator in the mode a by the amount o € C and |0) is the vacuum
state. The number of injected photons reads N;,(t) = <Efn(t)éin(t)>, while the rate of

photons impinging on the qubit is <l§;rn(t)lgm(t)> = ~yNin(t). The input drive is a coherent
field, resonant with the qubit’s frequency and we choose the phase of the input drive so that

bin(t) = |bin ()60 (5.48)

We have left a dependence in time in |b;,(¢)| because in the last part of this chapter we will
study the impact of pulse shaping. We obtain the equations of evolution of the population
of the excited state P.(¢) and the coherence s(t), defined as the expectation value of the
operator o_, by replacing Oq by |e)(e| and o_ respectively in Eq. (5.42) and taking the
average:

P.(t) = —yP.(t) — Q(t) Re(s(t)e""), (5.49a)

§(t) = — (iwo + %) s(t) + Q(t)e ot (Pe(t) - —) , (5.49b)

The Rabi frequency is defined as
Q) == 2/7]bin(1)]. (5.50)

5.1.2.2 Input and output relations

The output operator Eout(t), describing the field in the waveguide after its interaction with
the qubit, is related to the input operator by the so-called input-output equation [56]

bou (t) = bin(t) + \/Y0_(1). (5.51)

The operator accounting for the rate of propagating photons in the output field is by, () bou (£).
Using Eq. (5.51), it can be expressed as

B (bou () = B ()b(t) + 70 (Do (1) + V7 (B0 (1) + 0 (Dhal0)) . (5.52)
yielding
<Bim(t)l30ut(t)> = YNn(t) + YPu(t) + 24/ Re(bin(£) (1)) (5.53)

The input and output powers are defined as

Pasou (1) 1= Tty (B (Dbiwom (1)) (5.54)

From the system of equations (5.49), we can determine that the effective Hamiltonian
describing the evolution of the qubit is
RQ(t)

Hy(t) = huwg |e)e| + iT(a,eW — oy e Wty (5.55)
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Using Eq. (1.21), the mean energy of the qubit is given by
E(t) = hwoP,(t) — hQ(t) Im(s(t)e™0"). (5.56)

By integrating the imaginary part of Eq. (5.49b), we obtain Im(s(#)e!“°t) = Im(s(0))e™*/2.
Since the initial state p., is such that s(0) is real (See Eq. (5.32)), we have Im(s(t)e“0!) = 0
at any time ¢ and, therefore

E(t) = hwoP.(t). (5.57)
Then, using Egs. (5.51) and (5.49a), we get the following input-output relations

bout(t) = bin(t) + \/As(2), (5.58)
Pou(t) = Pa(t) — £(1), (5.59)

with boy(t) = <l§0ut(t)>. As a consequence, the power emitted by the qubit can be directly
accessed by measuring the difference between the output and input powers.

From now on, except in the last part of this chapter, we assume that the rate of incoming
photons v NV, is constant and, therefore, so is the Rabi frequency Q = 2v+/N,,. In this case,
we recover the usual Hamiltonian for a driven qubit and the system of equations (5.49)
giving the evolution of the population and coherence become the usual Bloch equations
[31].

5.1.3 Two-stroke engine

We now combine the two evolutions described above to create a two-stroke engine (See
Fig. 5.1b and ¢):

(1) The qubit is put in contact with the engineered bath that makes it relax in state po.
(Eq. (5.32)).

(2) The bath is disconnected and the qubit is coherently driven during a time 7, ending
in the state p(7), obtained from the equations of evolution (5.49).
5.1.3.1 First stroke

During the first stroke, the qubit receives an energy &, from the bath. This energy plays a
similar role to heat since it is exchanged during a non-unitary process. The stroke is long
enough so that the qubit reaches the steady state p, that contains the energy

Eoo = Tr(pooHo) = %(1 + (2p — 1) cos(6)), (5.60)

and, unusually, also contains the coherence

1

Soo 1= Tr(pooo_) = (5 — p) sin(0), (5.61)

in the qubit’s energy eigenbasis {|e) , |g) }. Therefore part of £, can be directly extracted
by unitary processes, i.e. in the form of work, which is a major difference with respect to
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Figure 5.3: (a) Ergotropy divided by energy as a function of the state p., in the Bloch rep-
resentation. (b) Mean extracted power as a function of the cycle’s duration and coherence
Sso Of the state po, for @ = m/2. Both plots correspond to the stimulated regime (/V;, > 1)
where all the energy provided by the bath is converted into work.

thermal baths. The maximal amount of such extractable work, called ergotropy [4], equals
in the present case

Wao = hwy(1 — 2p) sin® (g) (5.62)

The ratio W, /€ is represented in Fig. 5.3a in the Bloch representation. This figure
shows that the thermal states, corresponding to (o,) € [—1,0],(0,) = (o,) = 0 in the
Bloch sphere, contain no ergotropy, while reciprocally the energy contained by a pure state
can be fully extracted as work. The typical protocol to fully extract this ergotropy would
be to perform a classical Rabi oscillation to bring the qubit back in a thermal state. Indeed,
such an evolution is unitary, so, from a thermodynamic point of view, the qubit’s energy
changes while its entropy remains constant, which characterizes the exchange of work.
Since the engineered bath prepares the qubit in a non-passive state, i.e. a state with a non
zero ergotropy, it is possible to extract work cyclically from this single non-thermal bath.

5.1.3.2 Second stroke

The second stroke is the one during which the work is extracted. The qubit evolves during
a time 7 according to Egs. (5.49a) and (5.49b). In the stimulated regime €2 > ~ and in the
limit ¢ < 7!, these equations are reduced to a classical Rabi oscillation. Therefore, the
qubit’s dipole does not fluctuate and the emitted field reduces to its coherent component,
that coherently adds to the input drive. That is why we have treated the electromagnetic
mode propagating in the waveguide as a resonant battery. It stores the work released by the
working substance in the form of a coherent state, the stimulated regime being equivalent
to a large initial load, /Vj, > 1. So far, most quantum engines were studied in this regime
[32, 47,78, 107].

Interestingly, the one-dimensional geometry also allows driving the qubit in the regime
of small V,, i.e. tuning the “load" of the battery to eventually bring it in the quantum
regime. The system of equations (5.49) now involves non-unitary energy exchanges. The
output power, given by (5.59) can be split into a coherent part and an incoherent part [31,
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32]:
Pou(t) = Fiwg (\bw(m? + <5z§j,m<t)5zsom<t)>) , (5.63)

where 5130m corresponds to the quantum fluctuations of the output field, such that <5i)0ut> =

0. By analogy with the stimulated regime, the work rate W is identified with the coherent
fraction of the emitted power £, while the heat rate () accounts for the power dissipated by
the dipole’s fluctuations [32]:

W (#) := hwo(|bou(t)* — [bin(1)[*)

= hwo (7|s(t)]” + QRe(s(t)e“"")), (5.64)
O(t) = Fwy <5Blut(t)5130m(t)
= hwoy(Pe(t) — [s(t)]*), (5.65)

with —&(t) = W (t) + Q(t) and where we have used Eq. (5.58).

The expression of the work rate, Eq. (5.64), shows that part of the spontaneous emis-
sion of the qubit is coherent. This spontaneous component scales like v and can be detected
using one-dimensional atoms where the field radiated by the qubit can be collected with
high efficiency, and analyzed by using standard homodyning or heterodyning techniques as
experimentally demonstrated in Ref. [32]. The coherent fraction of the field in the waveg-
uide provides a new implementation of a resonant quantum battery [10, 13, 14, 24, 52].
The battery not only acts as a work repository, but also drives the system, therefore the
modeling of the work extraction step does not involve any external operator, like in the
previous chapters, though the battery was dispersive.

5.1.3.3 Summary

To summarize the energy exchanges, during the first stroke, an energy &, is provided by
the bath to the qubit. During the second stroke, ¢ € [0, 7], the bath is switched off and the
qubit’s state evolves following Egs. (5.49a) and (5.49b), such that p, — p(7). An amount
of work

W = /T dthw (v|s(t)]” + QRe(s(t)e“"")) (5.66)
is extracted in the drive while (t)he heat
Q= [ dthan (P~ 150 (5.67
is dissipated in the waveguide. Energy conservation yields

En=W+Q. (5.68)

By playing on the parameters of the engineered bath, the first stroke can be made ar-
bitrarily short, so that its duration is negligible compared to the other relevant time scales
v~1, Q71 and 7. Moreover, the input drive used during the second stroke is always on
and its action can be neglected during the first stroke provided that the coupling strength
between the qubit and the engineered bath is strong enough.
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5.2 Classical battery

We study the engine’s performances when the battery is classical, i.e. N, > 1, starting
with an energetic analysis. Then we analyze this engineered bath powered engine (EBE) as
an autonomous version of the measurement powered engine (MPE) proposed in Ref. [47].
We finally focus on the entropy production over one cycle.

5.2.1 Energetic analysis

In this regime, the work exchanged during one cycle reduces to its stimulated component,

W = hwg / dt Q Re(s(t)e“"). (5.69)
0

The extracted power, P, := W/, is plotted in Fig. 5.3b as a function of the cycle’s dura-
tion 7 and input state coherence s, for § = 7/2. P, increases with s., and decreases with
7. In the limit of infinitely short cycles, we have P, — Py = Qhwgss. Naturally, F is
maximal when s, = 1/2, i.e. for p,, = HW /2 ><+7T /2’ since this state gives rise to the max-
imal slope of the Rabi oscillation (See Fig. 5.1c). This effect is the origin of “coherence
induced power boosts" predicted in [123] and [47] and reported for an ensemble of qubits
in [78]. Using a one-dimensional atom holds the promise of observing such power boosts
in the single qubit regime, which has remained elusive so far.

For such classical battery the engine’s yield 7 is usually defined by comparing the
extracted work to the resource consumed, that is the energy provided by the bath. Thus,
na = |W/E|, which yields here 1y = 1 (See Fig. 5.1c): All the energy input by the bath
is coherently added to the classical field. Note that 7 does not involve any temperature
since the bath is not thermal. The present situation strikingly illustrates that yield and
reversibility are independent figures of merit when engines are fueled by non-thermal re-
sources [95]: This engine operates at maximal yield even though it involves an irreversible
relaxation step, as detailed in Section 5.2.3.

5.2.2 Comparison with a measurement powered engine

We now analyze this device as an autonomous version of the MPE proposed in Ref. [47].
This engine is a four-stroke engine (Fig. 5.4c and d) whereas the EBE is a two-stroke
engine ( Fig. 5.4a and b) that does not require a state dependent feedback to close the cycle.
Nevertheless, both engines are very similar. In order to make a full analogy, we generalized
the MPE to the case where the demon’s memory, modeled by a two-level system of energy
eigenstates |0) and |1), is not prepared in a perfectly pure state but in the thermal mixture

p%, = pp [1)(1] + (1 — pp) [0)0] . (5.70)

pp is the equilibrium population of the excited state for a temperature 7’». The states and
operators relating to the qubit (resp. demon) are denoted by the label S (resp. D).

For the MPE, {|—) , |+¢)} is the measurement basis while for the EBE, it is the ba-
sis imposed by the engineered bath. The first stroke of the EBE (relaxation of the qubit
in contact with the engineered bath) is equivalent to the three first strokes (measurement,



86 Chapter 5. Coherent quantum engine

(@) @ Decoherence (b) A

@ @ f/pd(f) )

!

Work Relaxation °, -
. * -7
extraction Lot
- \d °
@ Thermalization
(0
® Measurement

@

Feedback

Figure 5.4: Cycles of (a) the engine proposed in this chapter (EBE) and of (c¢) the measure-
ment powered engine (MPE) from [47]. See Table 5.1 for the expressions of the density
operators. (b) and (d) represent the same cycles as (a) and (c) respectively, but in the Bloch
sphere. The dashed arrows in (a) and (b) represent the effective decomposition of the first
stroke into a decoherence step and a thermalization step (See Section 5.2.3.2).

feedback and erasure) of the MPE. For both engines, the work extraction is performed dur-
ing the last stroke by driving the qubit during a time 7. The temperature of the demon’s
memory corresponds to the effective temperature of the engineered bath, which can be
defined from the equilibrium populations of the states |44). The limit of infinitely short
cycles for the EBE is equivalent to the Zeno regime for the MPE.

The analogy between the two engines, detailed in Table 5.1, is even stronger when
decomposing the relaxation step of the EBE into a decoherence step and a thermalization
step. This decomposition is motivated by the expression of entropy production which can
be split into a decoherence term and a thermalization term, as shown below.

5.2.3 Entropic analysis

In this part, we study the entropy produced during the first stroke. We generalize the
expression of the entropy production in the thermal case, given by Eq. (1.38), to the case
where the qubit relaxes in contact with the engineered bath

Sie = S(p(7) | pc) (5.71)
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Engineered bath powered engine (EBE)

Measurement powered engine (MPE)

Decoherence p(7) — pq(7)
The qubit, initially in state
p(7) = p Yo | + (1 = p) [ )],

loses its coherences in the {|+¢),|—¢)}
basis:

pa(T) = (1 —q) [+o)+o| + q|—0)X—0

q = (—olp(7)]=p) and 1 — ¢ =
(+olp(T)[+0)

(1’) Measurement o5 ® p2 — pSP

The qubit, initially in state

P‘TS =pp [P XY_| + (1 —pp) [V Xy |,

is measured in the {|+¢),|—p)} basis and
correlated to the demon’s memory via a
controlled-NOT operation:

pal = (1= pp)(1 = q) [+o, 1){+4, 1|
+ ppq |—o, 1{—0, 1|
+ pp(1 — q) |44, 0)(+4, 0|
+ (1 = pp)q|—0,0X—0, 0]

q= (—o|pS|—p) and 1 — g = (+¢[p%|+0)

Thermalization p4(7) — poo

The populations of states |14)(+y| go to
their equilibrium values.

(2) Feedback pSP — pSP

The transformation 1° ® |[1)(1] + US ® |0X0
is applied, where 1° is the identity and U? is
a m-pulse. Therefore,

pE” = (1= pp)(1 = q) [+o, 1){+4, 1|
+ ppq | =0, 1){—0, 1|
+pp(1 = q) [0, 0X—0, 0]
+ (1 = pp)q |+, 0)X+o, 0|

and Trp(pPP) = p§ where

p5 = pp |—o)—o| + (1 — pp) [+o)+ol -

@ Erasure of the memory p°? — o5 ®pl

The demon’s memory is put in contact with
a bath at temperature 7p for long enough to
thermalize.

(2) Work extraction p., — p(7)

Work extraction p§ ® pL — pS ® pZ

Table 5.1: Step by step analogy between the EBE and MPE. We have used the notations
|th1) = U(7) | L) where U is the evolution operator of the driven qubit.
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where S(p(7)||pso) s the relative entropy, defined by Eq. (1.37). In the thermal case, the
entropy production can be split into a decoherence part and a thermalization part. Based on
this decomposition, we will first show that a thermal relaxation is equivalent to the concate-
nation of a decoherence map and a thermalization map. Then, by analogy with the thermal
case, we will use the same decomposition to compute the entropy production during the
relaxation of the qubit in contact with the engineered bath.

5.2.3.1 Effective map for thermal relaxation

In this part, we consider a qubit coupled to a thermal bath at finite temperature. The qubit
is initially prepared in the state

po = po [UX®| + (1 — po) |0 )X¥], (5.72)

where
) = ale) + Blg), (5.73)
[) = —=B%le) + " |g) . (5.74)

« and /3 are two complex numbers such that |«|*> + |3]* = 1 and p, € [0, 1]. The qubit is
put in contact with the thermal bath and relaxes toward the equilibrium state

Peq = Degq le)e] + (1 — peq) |gXg] - (5.75)

We assume that the duration ¢; of the transformation is long enough (¢ > ~~!) for the
qubit to reach the equilibrium state. The average entropy production during this relaxation
is thus given by Eq. (1.38),

Sirr = S(PO ||peq)7 (576)

which can be split in a decoherence part and a thermalization part
Sir = S + St (5.77)
These two parts respectively read Sg. = S(pol|pa) and S = S(pal| peq), Where

pa = (elpole) le)e| + (glpolg) [gXgl - (5.78)

We want to show that this relaxation can be effectively described by the concatenation
of a decoherence map £9 and a thermalization map £". The decoherence and thermaliza-
tion maps are respectively defined by

LYp] = gXgl plgXgl + leXel pleXel , (5.79)
Lo = > MipMy, (5.80)
1,j=e,g

with
Mij = 1/ (il peq|i) [iXJ] - (5.31)
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Figure 5.5: All possible trajectories for (a) the direct protocol and (b) the reversed protocol
when modeling the thermal relaxation as the concatenation of a decoherence map and a
thermalization map.

We will use the definition of entropy production at the single trajectory level, sm[i] given
by Eq. (1 50) to prove that L™ o £4 gives the same average entropy | productlon Si- P2 ]
(resp. P[% ]) is the probability that the qubit follows the trajectory % (resp. %) during the
direct (resp. reversed) protocol. The trajectories Y = (30, 21, X2), where X € {|v),
and 1,35 € {|g),|e)}, are obtained by performing a quantum jump unraveling of the
map concatenation. The direct protocol consists in projecting the initial state py in the
{0y, ¥ , then applying the maps £¢ and £™ successively and finally projecting in
the {|g),|e)} basis. The reverse protocol consists in applying the same ~operations in the
reverse order with the qubit initially in p,. Reading the probabilities P[%] (resp. P[3]) of
the direct (resp. reversed) trajectories in Fig. 5.5a (resp. Fig. 5.5b), we obtain the average
entropy production:

<Sirr[i]>i = pologpo + (1 — po) log(1 — po)

— (polal® + (1 = po)|B|*) log peq — ((1 — po)|al? + po| B]%) log(1 — peq)
_ S (5.82)

Therefore this effective decomposition of the relaxation can be used to compute the average
entropy production.

5.2.3.2 Entropy production over one engine’s cycle

During the first stroke of the engine’s cycle, the qubit is put in contact with an engineered
bath. Since {|—y),|+o)} is the energy eigenbasis of the qubit in contact with the engi-
neered bath (See Section 5.1.1.1), by analogy with the thermal bath case discussed above,
the transformation can be split into a decoherence step and a thermalization step (See
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Fig. 5.4a and b), but in the basis {|—), |+¢)} instead of {|e),[g)}. These steps corre-
spond respectively to the maps £ and L™, defined by

Lp] = [+o)+al p | +o)+ol + [—oX—ol p1—0)—0l, (5.83)
L%p) = > MypMj,, (5.84)
ij==e

with
M =/ (il pooli) |9)3] - (5.85)

The probabilities P[%] and P[%] of the direct and reversed trajectories can be read from
diagrams similar to Fig. 5.5a and b, but replacing py by p(7) and peq by poo, therefore py
and pe, are replaced by p. Then, the average entropy production reads

<sm[i]>i — (1 — 2p) sin? (%) 1og(1p%p), (5.86)

which can be rewritten as a relative entropy, giving Eq. (5.71).

(a) () (.5 (c)
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2 ().5) 9
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Figure 5.6: Entropy production: (a) over one engine’s cycle, (b) decoherence contribution
and (c) thermalization contribution. The entropy production is plotted as a function of the
duration 7 of the cycle for different values of p.

Since we consider the case where 7! >> 7, the second stroke is reversible and the
entropy production over one cycle is given by Eq. (5.71). Like previously, we have

Sie = St + Sy, (5.87)
where S¢ = S(p(7)||pa(7)) is the decoherence contribution, with
pa(T) = (Folp(T)[+0) [Fa)+ol + (=alp(T)|=0) [=0)—0l (5.88)

and St = S(pa(7)||pso) is the thermalization contribution. The entropy production is
plotted as a function of the cycle duration 7 for different values of p in Fig. 5.6a and the
decoherence and thermal contributions are respectively plotted in Fig. 5.6b and c. As ex-
pected, there is no entropy production when p = 0.5 because p, is in the center of the
Bloch sphere and therefore the qubit’s state does not evolve during the second stroke. On
the contrary, the thermal contribution, and thus the total entropy production, diverge when
p goes to 0 with 7 > 0 because the qubit is in a pure state. This behavior is analogous to
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what would be obtained for a thermal relaxation in a thermal bath at zero temperature.

The entropic study presented above invites to draw an analogy between the energy &,
provided by the bath and the quantum heat introduced in Ref. [47], defined as the energy
fluctuations induced by the measurement channel. It can indeed be shown that &, is pro-
vided to the qubit during the decoherence step, i.e. the measurement performed by the bath
on the system. The complete thermodynamic analysis of the energy exchanges between
the qubit and the engineered bath is beyond the scope of this chapter, which focuses on the
impact of coherence on work extraction, and will be treated in a different project [46].

5.3 Quantum battery

We now study the engine for arbitrary driving strengths. For the sake of clarity we assume
that the bath prepares pure states po, = |+4 )+

5.3.1 Work and efficiency

The extracted work is given by Eq. (5.64) and is plotted in Fig. 5.7a as a function of €2/~
and 6. At each point we have chosen the duration 7 of the cycle that maximizes . For
fixed 6, W increases with 2/~ because stimulated emission allows for the funneling of
energy in the coherent driving mode. Maximal work extraction is reached in the classical
limit €2 > v, when 6 = 7, i.e. full population inversion. This situation is typical of single
qubit lasers and masers [107]. Since stimulated emission has a favorable impact on work
extraction, we will now include the energetic cost of loading the battery into the resources
used to run the engine, bringing a modified expression of the yield

S
4 gin + fOT dt Rn(t)

1q is plotted in Fig. 5.7b. It vanishes in the limit {2 >> ~, evidencing that the classical regime
is not thermodynamically efficient when the battery’s preparation is considered in the bal-
ance. Conversely the case where () < v gives rise to the largest yields and non-negligible
work extraction, but requires some coherence to be initially injected in the qubit: Quantum
coherence thus acts as a genuinely quantum resource, that plays a similar role as stimulated
emission.

(5.89)

5.3.2 Spontaneous regime

To single out the effect of quantum coherence on work extraction, we focus on the sponta-
neous regime (2 = 0) in the limit 7 > ~~1. The bath prepares p., = |+¢)+g|, providing
the energy &£, to the qubit. A fraction of £, is then released as spontaneous work. In the
end of the cycle the qubit has relaxed in |g). Integrating Eq. (5.64) with Q = 0 yields

W = hwos>,, (5.90)

revealing a fundamental and so far overlooked relation between work and coherence. Con-

versely, the engine’s yield reads
2
S
Mg = hwog;’o. (5.91)
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Figure 5.7: (a) Work and (b) efficiency as functions of the driving strength and the angle
0. The parameters we used are v = 1 GHz, p = 0 and the cycle time 7 maximizing the
amount of work extracted for each value of () and 6. (¢) Extracted work and efficiency in
the spontaneous regime ({2 = 0) as functions of the angle 6.

Both quantities are plotted in Fig.5.7c as a function of . They decrease with § > 7 /2, and
vanish when 6§ = 7. Conversely for § < /2, W and 7, cannot be optimized simultane-

ously.

These behaviors acquire an intuitive interpretation by invoking the nature of the quan-
tum state of light spontaneously emitted in the waveguide during the process. It reads

(0 = cos( 5 ) 0)-+sin 5 ) 11, 592

where

In) = 10) (5.93)

is the n-photon Fock state in the mode defined as

b=y /0 Y bout(t). (5.94)
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The state |1,y (6)) partially overlaps with the coherent field |3y) of amplitude
Bo = (our(0)] b |t (6)) - (5.95)

This coherent field carries the energy

sin?(0)

hw0|ﬁ9‘2 = hwo 1 s

(5.96)

which corresponds to the extracted work. Conversely, the yield quantifies the overlap be-
tween |(p) and the emitted quantum field [, (0)). It reads
1+ cos(0)
=y

We have plotted as insets of Fig. 5.7c the Husimi Q function of |14, (6)) for @ = {0, 7 /2, 7 }.
It is defined as [27]

(5.97)

Q(a) = = [{thu(®)]0) (5.98)

and characterizes its overlap with a coherent field |a). Qgy(8y) and 7y vanish for § = 7
where 3y = 0. This is consistent with the fact that single photons have no phase. Therefore
a single photon source gives rise to no work extraction. Conversely Qy(y) and 74 reach
1 when 6 goes to 0. This characterizes that |10, (6)) is fully coherent, however the work
extracted vanishes in this limit. The case § = /2, where the coherence is maximal, offers
an interesting trade-off since it maximizes the work extraction W = hw,/4, keeping a
finite value of the yield ny = 1/2.

5.3.3 Pulse shape optimization

The above study explains why quantum coherence and stimulated emission both contribute
to work extraction. In the stimulated regime, the classical phase of the coherent field par-
tially radiated by the dipole is fixed by the classical phase of the drive. In the spontaneous
regime, it is fixed by the quantum phase of the initial qubit’s state, which requires the initial
injection of coherence. To investigate further the interplay between the load of the battery
and the coherence injected by the bath, we now consider the following scenario: Att = 0
the qubit is prepared in the state p., with § = 7/2. It is then coupled to a coherent pulsed
field giving rise to the Rabi frequency €2(t) (Eq. (5.50)). The pulse contains a fixed mean
number of photons

1 o0
Ny, = —/ dt Q%(t). (5.99)
4y Jo ( )

Work and heat are collected until the qubit has fully relaxed, i.e. during a time 7 > v~ 1.

The extracted work 1/ and the yield

W

T+ hwoy 6100

Tl
are plotted in Fig. 5.8a and b respectively as functions of /Vj, and s, in the case of a rect-
angular pulse of duration v~ !, for NV;, < 1. Both plots evidence that the energy initially

contained in the battery and the quantum coherence injected in the qubit act as complemen-
tary resources potentially enhancing the engine’s performances. While maximal coherence
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Figure 5.8: Influence of the pulse shape. (a) Yield and (b) work extracted as a function
of Ni, and s for § = /2 and a pulsed square drive of duration 7, = ~v~1. (c) Pulse
shapes and (d) corresponding extracted work (solid lines) and coherence 5(t) = s(t)el~o?
(dashed lines) as functions of time. The color of the curves in (d) indicate the pulse shape:
rectangular in blue and decaying exponential in orange. Parameters: N, = 1 and the
T, maximizing work extraction for the decaying exponential (y7, ~ 0.17). (e) Yield as
a function of the duration of the pulse for different pulse shapes, with N, = 0.1. (f)
Comparison between the optimal pulse shape numerically computed by the software Bocop
(solid orange) and the exponentially decaying pulse of optimal characteristic time 7, ~
0.41/~ (dashed blue). Parameters: Ny, = 0.1 and p = 0. We took v = 1 GHz for all plots.

maximizes both figures of merit, the work extraction (resp. the yield) is maximal with
Nip ~ 1 (resp. Ny, ~ 1/10). We have then fixed Vi, = 1/10 and studied the impact of the
shape of the pulse on the performance. A rectangular pulse and an exponentially decaying
pulse of identical characteristic time 7, ~ 0.17/~ are plotted in Fig. 5.8c. This value of
T is the one maximizing the amount of work extracted with an exponentially decaying
pulse. The corresponding temporal evolution of the work and coherence are represented in
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Fig. 5.8d. These plots evidence that the exponentially decaying pulse allows a faster and
slightly larger work extraction. Furthermore, the exponentially decaying pulse also give
rise to a larger yield than rectangular and Gaussian pulses, as shown in Fig. 5.8e.

After studying three specific pulse shapes, we want to find the pulse shape that max-
imizes the yield 74, which is equivalent to maximizing the extracted work W since the
number of photons is fixed. This is an optimal control problem where the quantity to
maximize is

W = /0 dt(Q(t) Re(s(t)e"") + ~|s(t)]?) (5.101)

and the constraints are Egs. (5.99), (5.49a) and (5.49b). We solved this problem numeri-
cally using Bocop [118] and found that the yield is optimized for a decaying exponential
of typical duration 7, < !, as shown in Fig. 5.8f. This effect was already observed in the
context of optimal irreversible stimulated emission [125] and corresponds to the optimal
mode matching between the drive and the qubit. The search for mode matching here finds
a new application in the field of quantum thermodynamics.

5.4 Summary

In this chapter, we have evidenced that exploiting advanced tools of quantum optics like
engineered baths and batteries opens a new regime for the study of quantum engines, where
stimulated emission and quantum coherence behave as complementary resources. We have
more specifically studied a two-stroke engine extracting work cyclically from a single non-
thermal bath.

First, we derived the evolution of the qubit during the first stroke, the relaxation of the
qubit in contact with an non-thermal bath. We showed how the bath can be engineered to
prepare the qubit in an arbitrary state containing coherence in the energy eigenbasis. Sec-
ondly, we focused on the second stroke, and described the evolution of the qubit embedded
in a one-dimensional waveguide using the input-output formalism. We evidenced that the
modes of the waveguide resonant with the qubit’s transition can be used as a resonant bat-
tery to drive the qubit. Importantly, the load of this battery which corresponds to the input
photon rate, is tunable and our description is valid for any photon number Nj,, from the
classical regime N, > 1 to the spontaneous regime N;, = 0. In this framework, work
is the coherent fraction of the energy emitted by the qubit in the waveguide, while heat is
dissipated through the dipole fluctuations. Work can be directly accessed in the battery by
measuring the output field using homodyning or heterodyning techniques.

Then, we studied the stimulated regime {2 >> ~ which also corresponds to the classical
regime /V;, > 1. We demonstrated that coherence boosts power extraction, which is maxi-
mal when the duration of cycle goes to zero. Furthermore, in this regime, the engine always
operates at the maximal classical yield even though it involves an irreversible relaxation.
We showed that this device can be seen as an autonomous version of the measurement
driven engine proposed in Ref. [47].

Finally, we explored arbitrary driving strengths, redefining the yield to take into ac-
count the initial load of the battery. We demonstrated that the stimulated regime is thermo-
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dynamically inefficient due to the cost of loading the battery. Conversely, the weak driving
limit gives rise to the largest yields but requires some initial coherence. In the spontaneous
regime, i.e. in the total absence of driving, coherence allows controlling the engine’s yield,
acting as a genuinely quantum resource. Lastly, we studied the impact of the pulse shape
on work extraction. We evidenced that the optimal pulse shape is a decaying exponential,
which corresponds to the optimal mode matching between the drive and the qubit.
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Conclusion

The concept of work is essential to extend thermodynamics to quantum systems and its
measurement is a key to the understanding and the experimental exploration of energy
exchanges at the quantum scale. However, work measurement is particularly challenging
due to the specificities of the quantum world, especially because measurement contributes
to energy and entropy exchanges. In this thesis, we have proposed to measure work in
situ, directly inside a quantum battery. For this purpose, we have studied two particularly
promising platforms to explore the thermodynamics of a qubit: hybrid optomechanical
systems and one-dimensional atoms.

First, we have evidenced that in hybrid optomechanical systems, the mechanical res-
onator plays the role of a “dispersive” battery, providing work to the qubit by modulating
its frequency. We have shown that this work can be identified with measurable mechanical
energy variations. Furthermore, this method still holds at the quantum trajectory level, al-
lowing to access work fluctuations and therefore to probe fluctuation theorems in an open
quantum system. We have demonstrated that shining a detuned laser on the qubit enables
optomechanical energy conversion. The direction of this conversion is determined by the
sign of the detuning. With a blue detuning, a coherent phonon state can be built starting
from thermal noise and the mechanism exhibits laser-like signatures. Reciprocally, with
a red detuning, the average phonon number in the resonator can be decreased below the
thermal number with a mechanism reminiscent of evaporative cooling. Therefore hybrid
optomechanical systems can be seen autonomous thermal machines.

In a second step, we have investigated one-dimensional atoms, consisting of a qubit em-
bedded in a waveguide. We have shown that the modes of the waveguide resonant with the
qubit’s transition can be seen as a battery allowing both to drive the qubit and to store work,
which corresponds here to the coherent fraction of the light emitted by the qubit. Unlike
for hybrid optomechanical systems, this battery is resonant, enabling the exploration of the
role of coherence in heat-to-work conversion. Exploiting the advanced toolbox of quantum
optics, we have suggested to engineer a bath that prepares the qubit in an arbitrary super-
position of energy eigenstates and, thus, is a source of both energy and coherence. We have
evidenced that a two-stroke quantum engine extracting work from a single, non-thermal,
bath can be made by combining these engineered bath and battery. The extracted work
can be directly measured in the battery, using homodyning or heterodyning techniques.
We have finally demonstrated that in the stimulated regime of driving, quantum coherence
boosts power extraction, while in the spontaneous regime, it allows to control the engine’s
yield, acting as a genuinely quantum resource.

The two platforms studied in this thesis open new perspectives for quantum thermo-
dynamics. First, all the numerical simulations in this thesis have been made using experi-
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mentally realistic parameters, showing that our proposals are within reach of state-of-the-
art experimental devices, allowing for instance to check Jarzynski equality for a quantum
open system.

As hinted in Chapter 3, the quantum trajectory picture used to define thermodynamic
quantities allows to go beyond the regime of validity of Lindblad master equations, broad-
ening the scope of quantum thermodynamics. Especially, trajectory-based approach have
been successfully used to describe non-Markovian processes [20] for which new thermo-
dynamic behaviors are expected [105, 133], for instance due to memory effects [22].

A straightforward follow-up of Chapter 4 would be to investigate further the energy
conversion with the hybrid optomechanical system, especially the red-detuned regime. We
have evidenced that in this regime the mechanical energy is reduced but we have not shown
that the resonator is cooled down in the thermodynamic sense. So the next step would be
to check whether the resonator thermalizes and to study the entropy during the process. In
addition, a more detailed modeling of the interaction between the qubit and the laser would
allow to determine the limit of the mechanical energy reduction. Besides, the laser, used
as a hot bath, is a typical example of colored bath. This kind of baths are frequently used
in quantum optics and it would be interesting to explore their thermodynamics and derive
fluctuation theorems in this context.

As we saw in Chapter 5, bath engineering opens new perspectives in quantum ther-
modynamics, allowing to explore negative effective temperatures [115] or cases were the
bath provides coherence to the system [67]. But this make the definition of thermodynamic
quantities like heat less obvious. It would be interesting to analyze more in detail the na-
ture of the energy provided by the bath to the qubit, which requires to study the energy
flows inside the specific setup used to engineer the bath, as will be done in Ref. [46]. It
would therefore be useful to develop a more generic approach to study engineered bath and
evaluate the cost of this engineering.

One of the key features of the two studied platforms is that the battery is quantum and
therefore fully integrated in our quantum description of the system. This is a clear depar-
ture with respect to the state of the art, where most proposals and realizations are based
on classical external operators as work sources. The way we identified work, in the ab-
sence of explicit time dependence in the global Hamiltonian, could be generalized to more
platforms, paving the way for the thermodynamic analysis of experimental devices whose
thermodynamic potential have been overlooked so far.

Our thermodynamic analysis of two specific platforms could be extended to most ex-
perimental achievements in optomechanics and solid state quantum optics, providing new
insights on energy and information exchanges. This is especially appealing for quantum
information, to evaluate the energetic footprint of quantum computing and to determine
the resources necessary to generate and maintain either coherence or entanglement. This
is all the more relevant in view of the proposals of thermal machines [19] and quantum
engines [115] to generate steady state entanglement. A thermodynamic analysis also pro-
vides interesting insights on error correction [51]. Besides, entanglement is a resource in
quantum information and therefore as been considered as a fuel for quantum engines [3,
131, 138]. In the future, it will be interesting to investigate further the relationship between
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entanglement and the amount of extractable work, namely the ergotropy.

We have proposed two methods to directly measure work inside a quantum battery. The
first one allows to access work fluctuations, but in a situation where there is no coherence
in the energy eigenbasis of the qubit. In the second one, the battery is resonant, allowing
to explore the impact of quantum coherence on work extraction, however we only have ac-
cess to average energy exchanges. A particularly interesting extension of this thesis would
be to identify a platform and protocol allowing the direct measurement of work fluctua-
tions in a genuinely quantum situation where a battery coherently drives a quantum open
system into coherent superpositions. In this way, it would be possible to measure entropy
production and energetic fluctuations of quantum nature [45, 47], related to the erasure of
quantum coherences [54, 103]. Relating measurable work fluctuations to quantum entropy
production, would open a new chapter in the study of quantum fluctuation theorems.
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Résumé en francais

Introduction

La thermodynamique a été initialement développée au XIX¢ siecle pour optimiser les ma-
chines a vapeur [28, 30]. Dans ce contexte, le travail est défini comme de 1’énergie utile,
c’est-a-dire typiquement de 1’énergie mécanique, qui peut étre utilisée pour faire avancer
des trains par exemple. Les échanges de travail correspondent concrétement a pousser un
piston ou soulever un poids. Au contraire, la chaleur est de I’énergie échangée avec un bain
qui n’est pas un systeme mécanique. La chaleur peut correspondre a des pertes d’énergie,
par exemple liées a des frottements. La somme du travail et de la chaleur est égale a la
variation d’énergie interne du systeme étudié, ce qui constitue la premiere loi de la ther-
modynamique.

A cette époque, la thermodynamique était une science de I’ingénieur, visant & exploiter
les transformations cyclique d’un fluide calorifique S pour extraire de la chaleur de bains
et la convertir en travail, potentiellement stocké dans une batterie. Cette science appli-
quée s’intéressait particulierement au rendement des moteurs, ce qui a conduit a I’étude du
concept plus fondamental d’irréversibilité [30]. En effet, le rendement de Carnot, qui est le
rendement maximal d’un moteur opérant entre deux bains thermiques, ne peut €tre atteint
que si toutes les transformations du cycles sont réversibles. Les transformations réversibles
sont toujours quasi-statiques, ¢’est-a-dire infiniment lente. A I'inverse, I’ irréversibilité cor-
respond a une diminution du rendement causée par un fonctionnement trop rapide de la
machine thermique. Le travail est toujours échangé de maniere réversible avec la batterie,
tandis que les échanges de chaleurs avec les bain ne sont pas nécessairement réversibles.

Par ailleurs, I’irréversibilité est quantifiée par la production d’entropie, I’entropie d’un
systeme étant une mesure de son désordre statistique. La deuxiéme loi de la thermodyna-
mique affirme que I’entropie d’un systeme isolé ne peut qu’augmenter. De ce fait, il est
possible de distinguer le passer du futur en mesurant I’entropie, la production d’entropie
indique la direction de la fleche du temps.

Thermodynamique stochastique

Ces résultats du XIX¢ siecle ne donnent acces qu’aux valeurs moyennes, ce qui est suf-
fisant pour de trés grands systemes, avec un nombre de particules de 1’ordre du nombre
d’ Avogadro, de sorte que les fluctuations d’énergie sont négligeables. Cependant, lorsque
le systtme S est petit, avec seulement quelques micro-états, les fluctuations ont un im-
pact important et doivent étre prises en compte. La thermodynamique stochastique [109],
développée au XX¢ siecle [16, 59], traite ce nouveau paradigme. Elle utilise la descrip-
tion microscopique du systeme, fournie par la mécanique statistique, et modélise le bain
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thermique comme un réservoir ‘R exercant des forces aléatoires sur le systeme [96]. Inver-
sement, I’opérateur externe O applique une force déterministe sur le systeme. Dans cette
perspective, le travail est défini comme des échanges d’énergie contrdlés / déterministes
tandis que la chaleur est identifiée a des échanges d’énergie non contrdlés / stochastiques
[112]. Par conséquent, I’opérateur O fournit le travail au systeéme et joue le role de la
batterie. Comme le systeme est perturbé aléatoirement par le bain, il suit une trajectoire
stochastique dans I’espace de phase, différente pour chaque réalisation de la méme trans-
formation. Un exemple bien connu est le mouvement d’une particule brownienne dans un
fluide. Il est possible d’étendre la définition des grandeurs thermodynamiques a 1’échelle
des trajectoires individuelles : Il s’agit de la chaleur, du travail et de la production d’entro-
pie stochastiques [111]. Les grandeurs macroscopiques définies par la thermodynamique
du XIXe¢ siecle sont retrouvées en faisant la moyenne sur toutes les trajectoires microsco-
piques possibles.

La thermodynamique stochastique donne également une interprétation opérationnelle
du paradoxe apparent de 1’observation d’irréversibilité a 1’échelle macroscopique malgré
la réversibilité dans le temps des lois de la physique a 1I’échelle microscopique : L’irré-
versibilité vient du manque de contrdle. Apres avoir appliqué une certaine transformation,
nous pouvons imaginer que I’opérateur O essaie d’inverser la dynamique du systeme pour
le faire revenir dans son état initial. Cependant, O ne peut inverser que sa propre action sur
le systéme et cela est insuffisant pour lui faire suivre la trajectoire inversée dans 1’espace
de phase a cause de la perturbation aléatoire causée par le bain. Par conséquent, une pro-
duction d’entropie peut étre associée a une trajectoire unique en comparant la probabilité
que cette trajectoire se produise pendant la transformation directe a celle de la trajectoire
inversée dans le temps pendant la transformation inversée [33].

Un autre atout de la thermodynamique stochastique est qu’elle s’applique aux systémes
hors équilibre. En particulier, de nombreux théoremes de fluctuation reliant les quantités
d’équilibre aux quantités hors équilibre ont été dérivés [113]. L'un des plus connus est
I’égalité de Jarzynski [71] qui permet de calculer la variation de 1’énergie libre d’équi-
libre a partir des statistiques du travail recu par le systeme lors d’une transformation hors
équilibre. De plus, en thermodynamique stochastique, 1’origine du caractere aléatoire des
trajectoires n’a pas d’importance, bien qu’elle ait été historiquement thermique. Ce cadre
est donc particulierement adapté pour étudier la thermodynamique a 1’échelle quantique ou
de nouvelles sources de stochasticité apparaissent.

Thermodynamique quantique

D’une part, la thermodynamique stochastique a commencé a considérer des systemes de
plus en plus petits, en particulier lors de la vérification expérimentale de théoremes de
fluctuation : oscillateurs macroscopiques [41], particules colloidales [26, 119, 120], mo-
lécules uniques [68], ... Une fois que les systemes a niveaux d’énergie quantifiés ont été
atteints, la question de I’extension des théorémes de fluctuation aux systémes quantiques
s’est naturellement posée. Une autre question fondamentale soulevée par la communauté
de thermodynamique stochastique est celle de I'interprétation de I'irréversibilité en pré-
sence de sources de stochasticité véritablement quantiques, telles que la mesure quantique
et plus généralement le bruit quantique.



Résumé en francais 103

D’autre part, les technologies quantiques sont en plein essor dans le sillage de la deuxieme
révolution quantique. La premiere s’est produite au début du XX¢ siecle, établissant les
regles de la physique a 1’échelle atomique et inférieure, découvrant la quantification des
niveaux d’énergie et formulant le concept de dualité onde-particule. Elle a mené a la com-
préhension de la structure et des propriétés des matériaux qui ont permis le développement
de I’électronique et de I'informatique. La seconde révolution quantique est apparue avec
I’impressionnante amélioration des nanotechnologies qui permet maintenant la manipu-
lation et le contrdle de systeémes quantiques uniques. Elle a pour objet la fabrication de
systeémes quantiques ayant des propriétés choisies et la conception de circuits quantiques
dans le but d’atteindre la suprématie quantique, c’est-a-dire de dépasser les performances
des ordinateurs classiques. Cohérence et intrication sont au cceur de cette seconde révo-
lution. La communauté de I’'information quantique les a donc naturellement considérées
comme carburant potentiel pour des moteurs quantiques, dans le but de surpasser les mo-
teurs classiques. Une autre question clé qui s’est posée est celle de I’empreinte énergétique
des calculs quantiques, par exemple le coiit de la création et du maintien de I’intrication ou
la lutte contre le bruit quantique.

La récente communauté de thermodynamique quantique résulte de la fusion de cher-
cheurs des communautés de thermodynamique stochastique et de I’information quantique.
Le cadre typique est le méme qu’en thermodynamique stochastique classique, mais le sys-
teme thermodynamique, la batterie et/ou le réservoir sont des systemes quantiques, ce qui
rend plus difficile la distinction entre travail et chaleur. Il est donc nécessaire d’élargir les
définitions du travail, de la chaleur et de la production entropique dans ce nouveau paysage.
Il y a maintenant un consensus relatif sur la définition du travail moyen et de la chaleur pour
un systéme quantique en contact avec un bain thermique et piloté par un opérateur classique
[2] : le travail est identifié aux échanges d’énergie induits par I’opérateur, c’est-a-dire que
le taux de travail correspond a la variation du hamiltonien, alors que la chaleur est 1’énergie
échangée avec le bain, associée au terme lindbladien L[ps| dans I’équation d’évolution de
I’opérateur densité pg. Les mesures ayant des résultats stochastiques, les efforts récents
se sont concentrés sur la reconstruction de la thermodynamique stochastique avec un “dé
quantique”, c’est-a-dire en remplagant la source thermique d’aléatoire par la stochasticité
quantique provenant de la mesure [45]. En particulier, la définition d’un nouveau type de
chaleur, appelé “chaleur quantique” et fournie par 1’appareil de mesure, a été introduite
récemment.

Des difficultés apparaissent lorsque 1’on tente de formuler une définition générale du
travail. Par exemple, lorsque la batterie est quantique, I’ensemble {systeéme + batterie} est
décrit par un hamiltonien indépendant du temps, ce qui rend inapplicable la définition du
travail utilisée pour les systemes pilotés par un opérateur classique. De plus, le travail,
contrairement a 1’énergie interne, n’est pas une observable quantique [117], c’est-a-dire
qu’il ne peut étre associé a un opérateur hermitien. Par conséquent, le travail doit étre dé-
fini de maniere opérationnelle, en décrivant la méthode utilisé pour le mesurer. Plusieurs
définitions de ce type ont été proposées [12, 116], donnant parfois lieu a des résultats
contradictoires [49]. L’une des premieres méthodes proposées consiste a effectuer deux
mesures projectives de I’énergie, I’une au début et I'autre a la fin de la transformation,
définissant le travail comme la différence entre les deux résultats. Cette définition est co-
hérente avec la définition classique du travail [72, 140] mais son extension aux systeémes
quantiques ouverts nécessite d’effectuer une procédure similaire sur le bain [25, 50], ren-
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dant cette méthode complexe a mettre en ceuvre expérimentalement. De plus, I’utilisation
de mesures d’énergie projectives détruit toute cohérence dans le systeme, empéchant I’ex-
ploration du rdle des cohérences dans la thermodynamique.

En résumé, en physique classique, une trajectoire est définie sans ambiguité par la sé-
quence temporelle des coordonnées du systeme dans I’espace des phases et la facon dont
I’état du systeme est suivi ne la modifie pas. Au contraire, pour des systemes quantiques,
ce suivi modifie la trajectoire car la mesure perturbe le systeme et contribue aux échanges
d’énergie et d’entropie. C’est pourquoi des stratégies alternatives pour mesurer les flux
d’énergie doivent étre développées. Les mesures directes étant exclues, plusieurs proposi-
tions utilisant des systémes auxiliaires pour mesurer le travail ont été faites [36]. Une autre
proposition est de mesurer les échanges de chaleur en surveillant le bain et d’utiliser la
premiere loi de la thermodynamique pour obtenir le travail [43], I’idée clé étant de conce-
voir le bain de sorte qu’une absorption de photon soit associée a une émission de photon
détectable. Dans cette these, nous proposons une autre alternative, qui consiste a mesurer
le travail directement dans une batterie quantique.

Mesures de travail a I’échelle quantique : deux plateformes possibles

En thermodynamique, la batterie est habituellement un opérateur classique qui pilote le sys-
teme, de sorte que son évolution est décrite par un hamiltonien dépendant du temps, tandis
que I’opérateur n’est pas inclus dans la description quantique du dispositif. Par conséquent,
le remplacement de cet opérateur classique par une batterie quantique permet une descrip-
tion plus cohérente qui tient compte de la rétroaction du systeme sur la batterie. De plus,
notre proposition dans les chapitres 2 et 3 ne nécessite de mesurer la batterie qu’au début et
a la fin de la transformation thermodynamique, ce qui est beaucoup plus facile qu’un suivi
résolu en temps du systeme et / ou du bain. Plus précisément, nous étudions les échanges
de travail entre un qubit, ¢’est-a-dire un systéme a deux niveaux, et une batterie quantique.
Deux plateformes différentes sont considérées : les systemes optomécaniques et les atomes
unidimensionnels.

Systemes optomécaniques

Les systemes hybrides optomécaniques [17, 121] se composent d’un qubit paramétrique-
ment couplé a un résonateur nanomécanique. Ce type de dispositif peut €tre mis en ceuvre
sur différentes plateformes, par exemple des qubits supraconducteurs intégrés a des mem-
branes oscillantes [80, 98], des nanofils couplés a des centre azote-lacune (centre NV)
[7], ou des boites quantiques semi-conductrices [136]. L’origine physique du couplage dé-
pend de la plateforme : couplage capacitif, gradient de champ magnétique et couplage par
contrainte respectivement pour les dispositifs cités. Dans tous les cas, 1’effet de ce couplage
optomécanique est le méme : le mouvement du résonateur induit une modulation de la fré-
quence de transition du qubit. Le résonateur joue donc le role de la batterie, en appliquant
la transformation sur le qubit. Mais, contrairement a un opérateur classique, son énergie
est suffisamment faible pour étre sensiblement modifiée par les échanges de travail, ce qui
permet de mesurer le travail directement dans la batterie. La fréquence mécanique est plu-
sieurs ordres de grandeur inférieure a la fréquence de transition du qubit, il n’y a donc pas
de résonance entre les deux systemes. Par conséquent, dans les systemes hybrides optomé-
caniques, la batterie est dispersive.
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Le bain correspond a 1’environnement électromagnétique du qubit, c’est-a-dire un ré-
servoir de photons avec une distribution thermique. Le qubit peut également interagir avec
un laser pouvant étre considéré comme un bain non thermique supplémentaire.

Atomes unidimensionnels

La deuxieme plateforme étudiée est celle dite des "atomes unidimensionnels" [15, 122]. Le
qubit est un atome artificiel incorporé dans un guide d’ondes unidimensionnel. Il peut étre
piloté par injection d’un champ lumineux cohérent dans le guide d’ondes. Dans la limite
classique des grands nombres de photons, cela correspond aux oscillations classiques de
Rabi [31]. Le mode du guide d’ondes de méme fréquence que la transition du qubit joue
le role de la batterie, qui est résonante contrairement au cas des systemes optomécaniques.
Cette plateforme donc prometteuse pour 1’exploration de I’impact de la cohérence sur la
thermodynamique, en particulier sur le rendement des moteurs. Ce type de dispositif peut
étre réalisé dans des circuits supraconducteurs [42, 69] ou semi-conducteurs [39, 60]. Le
taux de travail est directement obtenu en faisant la différence entre les débits de photons
sortants et entrants, qui peuvent étre mesurés avec un dispositif de détection hétérodyne
[32]. Dans ce cas, le bain est I’environnement du qubit.

Ces dispositifs ont I’avantage de pouvoir étre tres sensibles aux effets a I’échelle du
photon unique [130], comme I’émission stimulée [124]. De plus, les canaux de décohé-
rence du qubit peuvent €tre surveillés, permettant la reconstruction sa trajectoire stochas-
tique [53].

Plan du manuscrit

Cette these se compose de cinq parties. Le chapitre 1 présente le cadre théorique des sys-
témes quantiques ouverts utilisé dans les chapitres suivants. Il résume les définitions et
les résultats de la thermodynamique de ces systemes lorsque la batterie est un opérateur
classique et le bain est thermique. Les chapitres 2 a 4 traitent des systemes hybrides op-
tomécaniques, démontrant que ces dispositifs sont des plateformes prometteuses pour ex-
plorer expérimentalement la thermodynamique quantique. Plus précisément, le chapitre 2
se concentre sur la thermodynamique en valeur moyenne de ces systemes, montrant que le
résonateur mécanique agit comme une batterie dispersive et peut étre utilisé pour mesurer
directement les échanges de travail moyens. Dans le chapitre 3, nous allons plus loin et
montrons que les fluctuations d’énergie de la batterie sont égales aux fluctuations de tra-
vail. Nous utilisons ensuite ce résultat pour accéder a la production d’entropie et sonder des
aux théoremes de fluctuation. Le chapitre 4 étudie les systemes hybrides optomécaniques
en tant que machines thermiques autonomes et prouve qu’ils peuvent étre utiliser pour ef-
fectuer de la conversion d’énergie optomécanique. Plus précisément, éclairer le qubit avec
un laser désaccordé vers le rouge conduit a un refroidissement du résonateur mécanique
similaire a un refroidissement par évaporation. Inversement, si le laser est désaccordé vers
le bleu, le mouvement mécanique est amplifié et nous démontrons qu’un état phononique
cohérent peut étre construit a partir du bruit thermique. Enfin, le chapitre 5 est consacré a
un autre type de machines quantiques ou la batterie est résonante avec la transition du qu-
bit. Nous démontrons qu’un moteur a deux temps, extrayant cycliquement du travail d’un
seul bain non thermique, peut étre fabriqué a partir d’un atome unidimensionnel. Nous
montrons également que la cohérence joue un rdle clé dans la conversion de la chaleur en
travail.
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Thermodynamique des systemes quantiques ouverts

Beaucoup de situations étudiées en thermodynamique quantique impliquent des systemes
quantiques ouverts. Le cadre typique de ces systemes est tres similaire a celui de la ther-
modynamique stochastique : un systeme quantique S est piloté par un opérateur externe O
et faiblement couplé a un réservoir thermique R. Ce chapitre résume la thermodynamique
d’un tel systeme. Tout d’abord, de brefs rappels sur la théorie des systemes quantiques ou-
verts sont donnés, introduisant les notations. Ensuite, les définitions et les principales lois
de la thermodynamique quantique dans ce contexte sont présentées.

L’évolution de I’opérateur densité systeme, ps, dans la situation considérée peut étre

décrite sous la forme d’une équation maitresse de Lindblad [21] :

) i

ps(t) = —ﬁ[Hs(t)a ps(t)] + Llps(t)]. (5.102)
ol Hs(t) est le hamiltonien du systéme et L£[ps(t)] le superopérateur de Lindblad. Cette
évolution peut étre interprétée comme résultant d’'une mesure généralisée effectuée par
I’environnement sur le systéme tous les At, mais sans lire le résultat de la mesure. Le pas
de temps At est supérieur au temps de corrélation de I’environnement mais petit devant le
temps caractéristique d’évolution du systeéme.

Au contraire, si les résultats de mesure sont lu, 1I’évolution du systeme prend la forme
d’une trajectoire quantique stochastique. Le type des trajectoires obtenues dépend du choix
des opérateurs de mesures. L’ évolution prédite par I’équation maitresse est retrouvée en fai-
sant la moyenne sur toutes les trajectoires possibles.

Les grandeurs thermodynamiques moyennes sont obtenues a partir de 1’équation mai-
tresse :

Es(t) := Tr(ps(t) Hs(1)), (5.103)
W(t) = r(ps(t)HS(t)>, (5.104)
Q(t) = Tr()Lps(t)| Hs(t)). (5.105)

L’énergie interne Esdu systeme est la valeur moyenne du hamiltonien, le travail W est asso-
cié a une variation du hamiltonien, c’est-a-dire a des échanges d’énergie déterministe avec
la batterie et la chaleur () correspond a des échanges d’énergie avec le bain. La premiere
loi de la thermodynamique s’applique : AEs = W + Q. L'entropie de Von Neumann du
systeme est définie par

Svn(ps) = — Tr(pslog(ps))- (5.106)

L’entropie créée durant la transformation Sj, obéit a la seconde loi de la thermodynamique
Sir > 0 et dans le cas d’une relaxation vers 1’équilibre, elle correspond a la distance entre
I’état initial et I’état d’équilibre thermique.

Les grandeurs thermodynamiques stochastiques sont obtenues a partir des trajectoires
quantiques et dépendent donc du choix des opérateurs de mesure. L’énergie interne sto-
chastique du systeme s’écrit

Es[E, 1] == (Us(t)| Hs(t) s (t)) (5.107)
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oll [ (t)) est I’état du systéme a I'instant ¢ le long de la trajectoire 3. Comme dans le cas
des grandeurs moyennes, I’incrément de travail correspond a une variation du hamiltonien.
L’incrément de chaleur est défini de sorte que la premiere loi soit respectée. L’entropie
créée peut elle aussi étre définie pour une trajectoire,

S b
sw[X] =1 g<15[i]>. (5.108)

Elle s’obtient en comparant la probabilité P[f] que le systeme suive la trajectoire >} durant
la transformation directe a celle P[X] que le systéme suivent la trajectoire renversée Y lors
de la transformation renversée dans le temps. L’égalité de Jarzynski

WIS B AF
<exp <— T > >i = exp(—kB—T), (5.109)

ol W] est le travail recu par le systeme le long de la trajectoire et AF la variation
d’énergie libre, est encore valide lorsque S est un qubit dont I’énergie varie dans le temps
et les trajectoires sont obtenues par la méthode des sauts quantiques. Il s’agit du cas ou le
bain détecte les absorptions et émissions de photons par le qubit.

Thermodynamique en valeur moyenne des systemes hybrides
optomécaniques

Le couplage optomécanique a d’abord été réalisé dans des cavités optiques avec un miroir
mobile couplé a un oscillateur mécanique (OM) [18, 40]. Ces dispositifs ont ouvert la voie
a de nombreuses applications, en particulier la détection [106, 127], le refroidissement de
1’0OM pres de son état fondamental [6, 61, 87] et la préparation de I’OM en €tats quantifiés
[104, 129]. En outre, certaines caractéristiques du laser phononique ont été observées [64,
76] et il a été proposé de fabriquer des lasers phononiques utilisant I’optomécanique de
cavité [73, 74, 139].

Plus récemment, des systemes hybrides optomécaniques, dans lesquels la cavité est
remplacée par un qubit, ont été développés. Contrairement a 1’optomécanique en cavité,
ces dispositifs ne sont pas linéaires car le qubit sature a une excitation. Le mouvement
mécanique module la fréquence de transition du qubit ce qui fait que I’OM joue le role de
la batterie [48]. Ces dispositifs sont donc des bancs d’essai particulierement prometteurs
pour la thermodynamique des systemes quantiques, comme le montrent ce chapitre et les
deux suivants. Des implémentations physiques ont été réalisées sur diverses plateformes
[121]. Par exemple :

e Un qubit supraconducteur, basé sur des jonctions de Josephson, est couplé capa-
citivement a un résonateur nanomécanique. LLe mouvement mécanique module la
capacité qui a son tour modifie la fréquence du qubit [80, 98].

e Le qubit est un centre NV hébergé dans un nanocristal de diamant. Le nanocristal est
placé a I'extrémité d’un nanofil. Le couplage optomécanique est alors réalisé avec
un gradient de champ magnétique qui affecte la fréquence du qubit en fonction de la
position du nanofil par effet Zeeman [7].
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e Le qubit est une boite quantique en semi-conducteur située en bas d’un nanofil co-
nique dont le sommet peut osciller [136]. Le qubit n’est pas centré dans le nanofil,
de sorte que la contrainte mécanique qui lui est appliquée varie en fonction de la
position de I’extrémité du nanofil.

Le hamiltonien décrivant le systéeme optomécanique est
Hym = hwg e)e| @ 1, +1q @ BQD'D + hgm |e)e| (b + b). (5.110)

Nous avons noté |e) et |g) I’état excité et 1’état fondamental du qubit, wy la fréquence du
qubit isolé, €2 la fréquence mécanique, b I’opérateur annihilation de phonons et gy, le coef-
ficient de couplage optomécanique. Nous nous intéressons au régime de couplage ultra-fort
gm 2, € qui est la portée des plateformes expérimentales de pointe. Le qubit est également
en contact avec un bain thermique, modélisé par une collection d’oscillateurs harmoniques
en équilibre thermique. Nous avons dérivé I’équation maitresse pour le systeme optoméca-
nique de cette description microscopique :

. 1 _
panl®) = = 5 (Ham pan ()] + V7500) DI © L)1)

+ 9 (Rugoy) + 1) D]o— @ L) pgm(t). (5.111)

Nous avons défini o_ = [g)e|, o = |e)Mg]|, Bo(t) = |Bole ¥ I’évolution libre de I’'OM
préparé initialement dans 1’état cohérent |f;) et «y le taux d’émission spontanée du qu-
bit. Cette équation est valable dans le régime semi-classique ¢ < |Bo|gm’. Mu(ao(r)» €St
le nombre moyen de photons dans le bain a la fréquence effective du qubit w(Fy(t)) =

wo + gm(Fo(t) + B5(t))-

Dans un deuxieme temps, nous étudions la thermodynamique du qubit. Nous consi-
dérons d’abord le cas adiabatique ou il n’y a pas d’échanges thermiques, puis le cas iso-
therme, avec le bain du qubit, dans le régime régime semi-classique ot les états du qubit et
de I’OM peuvent €tre factorisés. Nous montrons que, dans les deux cas, I’OM se comporte
comme une batterie, fournissant du travail au qubit. De plus, la taille finie de I’OM permet
une mesure directe du travail I/ recu par le qubit en mesurant la variation de 1’énergie
mécanique.

W =—-A&,. (5.112)

L’énergie mécanique est définie par
En(t) == Try(pm(t)Hyp), (5.113)

ot H,, = hQb'b et py, est I’ opérateur densité de I'OM. Ce type de mesure n’est pas possible
pour une batterie classique qui n’est pas impactée par son couplage au systéme en raison
de sa grande taille. De plus, le Hamiltonien du systeme hybride optomécanique total est in-
dépendant du temps, donc ce dispositif peut étre considéré comme une machine thermique
autonome. Tous ces résultats démontrent que les systemes hybrides optomécaniques sont
des bancs d’essai prometteurs pour explorer expérimentalement la thermodynamique d’un
seul qubit.

Thermodynamique stochastique des systémes hybrides op-
tomécaniques

La capacité de définir et de mesurer la production d’entropie dans le régime quantique est
essentielle pour optimiser les moteurs thermiques quantiques et minimiser le cofit énergé-
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tique des technologies de 1’'information quantique [54, 81, 82, 103]. De nombreux théo-
remes de fluctuations, comme 1’égalité de Jarzynski (JE) [50, 117], ont été généralisés aux
systemes quantiques. Cependant, la mesure d’un théoreme de fluctuation quantique peut
étre problématique dans la situation d’un systeme quantique piloté de maniere cohérente,
en raison des problemes fondamentaux et pratiques pour définir et mesurer le travail quan-
tique mentionnées dans I’introduction [12, 25, 49, 116].

En particulier, JE n’a été vérifiée expérimentalement que pour les systémes quantiques
fermés, c’est-a-dire les systemes qui sont pilotés mais autrement isolés, par exemple les
ions piégés [5, 135], ensemble des atomes froids [29] et des spins en résonance magné-
tique nucléaire (RMN) [11]. Par conséquent, de nouvelles stratégies expérimentalement
réalistes doivent etre développées pour mesurer les fluctuations de la production d’entro-
pie pour les systemes ouverts quantiques. Comme le travail est généralement fourni par un
opérateur classique, comme dans le chapitre 1, la plupart des propositions sont basées sur
la mesure des fluctuations thermiques, obtenues par la surveillance du bain. Cela nécessite
de concevoir le bain et de développer des schémas de détection a haute efficacité [43, 70,
97] et aucune démonstration expérimentale n’a été effectuée jusqu’a présent.

Dans ce chapitre, nous proposons une stratégie alternative, et expérimentalement fai-
sable, pour mesurer la fleche du temps thermodynamique pour un systéme ouvert quantique
suivant le protocole de Jarzynski. Cette stratégie repose sur la mesure directe des fluctua-
tions du travail. Au chapitre 2, nous avons vu que les systemes hybrides optomécaniques
sont des plateformes prometteuses pour la thermodynamique quantique expérimentale car
les échanges de travail moyens peuvent étre obtenus en mesurant I’oscillateur mécanique
(OM). Nous allons maintenant plus loin et montrons que les fluctuations du travail sont
égales aux fluctuations de 1’énergie mécanique, ce qui permet d’accéder directement a la
production d’entropie stochastique. Nous nous concentrons d’abord sur le qubit et prou-
vons que ses fluctuations de travail vérifient JE. Ensuite, nous considérons I’ensemble du
systeme hybride qui vérifie un théoréme de fluctuation intégral généralisé (IFT) impliquant
I’information codée dans la batterie. Ce travail est publié dans [89].

Nous obtenons les trajectoires stochastiques 3 = {|Ux(¢,))}Y_, du systeme a partir
de I’équation maitresse obtenue au chapitre précédent par la méthode des sauts quantiques.
Tout d’abord, nous montrons que lorsque le syst¢tme optomécanique est préparé dans un
produit tenseur d’un état propre d’énergie du qubit et d’un état mécanique cohérent |¢g, o),
il reste dans un état de méme forme |Vx(t,)) = |ex(tn), Os(t,)) tout au long de la trajec-
toire. Ce résultat nous a permis de définir sans ambiguité 1’énergie du qubit et 1’énergie
mécanique :

Eq[Z, tn] = hw(Bs(tn))dey(en).e l€Xel | (5.114)
EnlS, ta] = Q| Bs(t)]?, (5.115)
ol w(Bs(tn)) = wo + gn(Bs(t,) + Bs(t,)*). 1l est intéressant de noter que cette approche

de trajectoire quantique est valable au dela du domaine de validité de 1’équation maitresse,
c’est-a-dire hors du régime semi-classique.

Deuxiemement, nous définissons les grandeurs thermodynamiques au niveau de la tra-
jectoire unique. Allant plus loin que dans le chapitre 2, nous démontrons que les fluctua-
tions de travail sont égales aux fluctuations d’énergie mécanique, qui sont mesurables dans
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le régime de couplage ultra-fort :
W] = —A&n[Z]. (5.116)

Ainsi, les échanges stochastiques de travail peuvent étre obtenus directement en mesurant
I’énergie de la batterie au début et a la fin de la transformation thermodynamique. Cette
méthode de mesure du travail basée sur la lecture directe des échanges de travail au sein
d’une machine autonome offre une alternative prometteuse aux propositions impliquant
une surveillance du systeme et/ou du bain. Ce résultat permet de mesurer la production
d’entropie stochastique . . .

Sirr[z] = O'[E] + ISh[E], (5117)

— —

ol o[X] et Isy[X] sont définies par

o[ = _ B [EIL:TAF [Z], (5.118)
Isn[S] := —log(pm[Bs(tn)])- (5.119)

AF est la variation d’énergie libre du qubit et p,[5x (¢ )] la distribution des états finaux

de I’OM. Dans la limite semi-classique, o[3] correspond a la production d’entropie le long
de la trajectoire du qubit.

Enfin, nous étudions les théorémes de fluctuations a la fois dans la perspective du qubit
et de I’ensemble du systeme optomécanique. Lorsque le systeme thermodynamique est le
qubit, la transformation est un entratlnement hors équilibre et, dans la limite semi-classique,
la production d’entropie réduite le long de la trajectoire du qubit obéit a I’égalité de Jar-

zynski :
A[% AF
exp A =exp| ———= |. (5.120)

kgT -

s

Nous démontrons ensuite, en tenant compte des incertitudes de mesures, que notre proto-
cole peut étre utilisé pour sonder expérimentalement ce théoreme de fluctuation dans des
dispositifs optomécaniques de pointe. Dans la perspective de I’ensemble du systéme opto-
mécanique, la transformation est une relaxation vers 1’équilibre, qui est donc strictement

irréversible. Nous montrons que la production d’entropie totale obéit a un théoreme de
fluctuation intégrale généralisée :

<exp(—31rr[i]>>d —1-x (5.121)
5
Comme dans les articles [55, 85, 91, 92], nous avons défini le parametre A € [0, 1] a partir
de I’équation

Y P =1-\ (5.122)
5

Ce parametre signale la présence d’irréversibilité absolue, c’est-a-dire de trajectoires ren-
versées sans contrepartie directe. Ce théoreme apporte un éclairage nouveau sur l’irréver-
sibilité absolue, qui quantifie I’extraction d’informations dans le plan de travail quantique
et donc signale le succes du protocole.

En perspective, généraliser notre formalisme a d’autres types de machines autonomes
ouvrirait la voie a I’étude de situations véritablement quantiques ol une batterie pilote
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de maniere cohérente un systeme ouvert quantique, le mettant dans des superpositions
cohérentes d’états d’énergie. De telles situations sont particulicrement intéressantes pour
la thermodynamique quantique puisqu’elles conduisent a la production d’entropie et aux
fluctuations énergétiques de nature quantique [45, 47], liées a la suppression des cohérences
quantiques [54, 103].

Conversion d’énergie optomécanique

Dans ce chapitre, nous analysons le systeme hybride optomécanique en tant que machine
thermique réversible, comme les masers a trois niveaux [107], et, comme le maser a deux
niveaux dans [58], cette machine fonctionne de maniere autonome. Contrairement aux cha-
pitres 2 et 3, un laser éclaire le qubit. Nous considérons le régime saturé des oscillations
de Rabi, de sorte que le couplage entre le laser et le qubit est incohérent et nous pouvons
identifier le laser avec le bain chaud coloré. Le bain froid est le réservoir électromagnétique
a température nulle couplé au qubit.

Les machines thermiques du XIXe¢ siecle sont dites réversibles parce qu’elles peuvent
fonctionner comme des moteurs ou des réfrigérateurs. Dans le mode de fonctionnement
moteur, la chaleur est transférée du bain chaud au bain froid en passant par le systeme qui
fournit du travail a la batterie. Dans le mode de fonctionnement réfrigérateur, tous les flux
d’énergie sont inversés. La batterie fournit le travail au systéme qui fait circuler la chaleur
du bain froid au bain chaud. Ce que nous entendons par réversible dans le cas du systeme
hybride optomécanique est différent de cette définition habituelle, car la chaleur circule
toujours du bain chaud au bain froid, seul le flux de travail est inversé.

Le couplage optomécanique entraine une modulation de la fréquence du qubit, le fai-
sant entrer et sortir de résonance avec le laser, ce qui permet la conversion d’énergie op-
tomécanique. Lorsque le laser est désaccordé vers le bleu, le qubit regoit I’énergie du bain
chaud, sous forme de photons de haute énergie, en donne une partie a I’OM sous forme
de travail et décharge 1’énergie restante dans le bain froid, sous forme de photons de basse
énergie. L’énergie optique est donc convertie en énergie mécanique et le systeme hybride
optomécanique fonctionne comme un moteur. Inversement, lorsque le laser est désaccordé
vers le rouge, il fournit des photons de faible énergie au qubit, qui émet des photons de plus
haute énergie dans le bain froid, la différence d’énergie étant fournie par I’OM sous forme
de travail. Par conséquent, le systeme optomécanique fonctionne comme un accélérateur,
facilitant le flux de chaleur du bain chaud au bain froid et la direction de la conversion
d’énergie optomécanique est inversée.

Nous examinons des échelles de temps plus longues que dans les chapitres précédents
et, par conséquent, nous prenons en compte 1’environnement de I’OM. Nous démontrons
qu’avec un désaccord vers le bleu, un état phononique cohérent peut étre construit a par-
tir de fluctuations thermiques et qu’il présente des signatures de type laser. Il y a déja eu
quelques propositions pour fabriquer des lasers phononiques utilisant 1’optomécanique a
cavité [73, 74, 139] et des systemes hybrides optomécaniques [75]. En particulier, 1’article
[75] propose d’amplifier le mouvement mécanique en pilotant le qubit avec un laser, mais
dans ce chapitre nous entrerons plus en détail dans le mécanisme de conversion en utilisant
une approche par trajectoire quantique. Contrairement a I’article [75], nous étudions éga-
lement 1’autre direction de la conversion d’énergie, lorsque le laser est désaccordé vers le
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rouge. Nous prouvons que le nombre moyen de phonons dans le mode opératoire peut €tre
réduit en dessous du niveau thermique.

Nous commengons par dériver I’équation maitresse pour le systéme optomécanique, en
tenant compte des bains thermiques du qubit et de I’ oscillateur mécanique, dans le régime
wo > 7, gm, §2 > I'. Ensuite, nous décomposons cette équation en trajectoires quantiques
par une méthode de sauts quantiques pour le qubit (détection des émissions spontanées)
et par une méthode de diffusion d’état quantique pour I’OM (mesure faible de I’amplitude
mécanique complexe). L’interaction entre le laser et le qubit a été modélisée de maniere
effective et ajoutée dans les trajectoires sous la forme d’une probabilité f que le qubit soit
dans I’état excité apres son interaction avec le laser. Cela nous permet de simuler numéri-
quement I’évolution stochastique de I’OM qui reste toujours dans un état cohérent.

Nous avons également élaboré un modele simple en moyennant I’évolution du nombre
de phonons N dans I’OM sur une période mécanique. Cette évolution se décompose en une
contribution thermique fy,(N) = I'(N — Ny,) et d’une contribution optomécanique oy, (V)
proportionnelle au travail fournit par le qubit :

N = —fu(N) + an(N). (5.123)

[ est le taux d’amortissement mécanique et Ny, le nombre moyen de phonons dans le bain
a la fréquence de I’OM. Ce modele nous permet de déterminer la valeur optimale du taux
d’émission spontanée du qubit : v ~ /2. Nous avons également étudié les points fixes
du nombre de phonons, estimant le nombre moyen de phonons dans 1’état stationnaire,
et déterminé les régimes intéressants pour la conversion d’énergie. Cette étude a montré
que les systemes hybrides optomécaniques peuvent étre considérés comme des machines
thermiques autonomes et réversibles permettant d’amplifier ou de réduire le mouvement
mécanique. La direction de la conversion d’énergie est déterminée par le signe du désac-
cord entre le laser et la fréquence du qubit nu.

Ensuite, nous étudions I’évolution de I’OM en utilisant les trajectoires quantiques géné-
rées numériquement, en utilisant des parametres expérimentalement réalistes. Nous avons
démontrons qu’avec un désaccord vers le bleu, si le taux d’excitation € est assez grand,
un état phononique cohérent est construit a partir du bruit thermique. Le comportement de
I’OM dans ce régime présente plusieurs signatures de laser phononique, dont un seuil en
0, qui joue le role du gain. Cependant, contrairement aux lasers habituels, aucune inver-
sion de population n’est nécessaire et le systeme est bistable, donc si # n’est pas beaucoup
plus grand que le seuil, les fluctuations thermiques peuvent ramener I’OM a son point fixe
thermique. Inversement, avec un désaccord vers le rouge, le nombre moyen de phonons
peut étre réduit en dessous du nombre thermique et ce processus est similaire au refroidis-
sement par évaporation, avec une coupure pour les amplitudes mécaniques supérieures a
I’amplitude seuil qui déclenche le mécanisme de refroidissement. De plus, lors d’un seul
événement de refroidissement, ce processus est plusieurs ordres de grandeur plus efficace
que le refroidissement a bande latérale résolue.

En perspective, il serait intéressant d’étudier plus en détails le processus de refroidis-
sement, et surtout de déterminer si I’OM finit par thermaliser. Nous pourrions également
étudier I’entropie de I’OM, car le refroidissement au sens thermodynamique est associé a
une diminution de I’entropie. Enfin, il serait intéressant de déterminer la limite de refroidis-
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sement, ce qui nécessiterait une modélisation plus détaillée de 1’interaction entre le qubit
et le laser.

Moteur quantique cohérent

La cohérence joue un role clé en information quantique, ¢’est pourquoi elle a été€ considérée
comme une ressource potentielle pour les machines quantiques, dans le but de dépasser les
machines classiques [77, 78, 95, 101, 108, 123]. Dans les articles [78, 123], la cohérence
quantique est injectée dans le systeme par la batterie tandis que dans I’article [108] elle
vient du bain qui est non thermique. Cependant, il n’y a pas eu de mise en ceuvre expéri-
mentale d’une telle machine quantique utilisant une seul qubit pour I’instant.

Jusqu’a présent, nous n’avons étudié que des cas ou aucune cohérence dans la base
propre d’énergie du qubit n’est impliquée. Alors que les chapitres 3 a 5 portent sur les
systemes hybrides optomécaniques ou le MO agit comme une batterie couplée de fagon
dispersive a la qubit, dans ce chapitre, nous considérons une batterie résonante qui conduit
la qubit de facon cohérente. Cette situation est particulierement appropriée pour 1’étude de
I’impact de la cohérence dans les machines quantiques.

Nous utilisons un bain ingéniéré pour préparer le qubit dans une superposition arbi-
traire d’états propres d’énergie. Ce bain agit comme une source d’énergie et de cohérence,
nous permettant de réaliser un moteur quantique a deux temps, extrayant du travail cycli-
quement d’un seul bain. Comme le bain n’est pas thermique, ce moteur ne viole pas les
lois de la thermodynamique. Il se compose d’un qubit inclus dans un guide d’ondes, gé-
néralement appelé “atome unidimensionnel”, et peut étre mis en ceuvre avec des atomes
artificiels couplés a des circuits supraconducteurs [42, 69] ou semi-conducteurs [39, 60].
Cette étude est présentée dans [90].

Tout d’abord, nous dérivons I’évolution du qubit lors de la premiere étape du cycle mo-
teur : la relaxation du qubit au contact d’un bain non thermique. Nous montrons comment
le bain peut étre congu pour préparer le qubit dans un état arbitraire contenant de la cohé-
rence dans la base des énergies du qubit. Puis, nous nous concentrons sur la deuxi¢me étape
du cycle moteur et nous décrivons 1I’évolution du qubit incorporé dans le guide d’ondes a
I’aide du formalisme d’entrée-sortie. Nous démontrons que les modes du guide d’onde ré-
sonant avec la transition du qubit peuvent €tre utilisés comme une batterie pour piloter le
qubit. Il est important de noter que la charge de cette batterie, qui correspond au taux de
photons entrant dans le guide d’ondes, est modifiable et notre description est valable pour
tout nombre de photons N, du régime classique N;, > 1 au régime spontané N;, = 0.
Dans ce cadre, le travail est la fraction cohérente de 1’énergie émise par le qubit dans le
guide d’ondes, tandis que la chaleur est dissipée par les fluctuations du dipdle. Il est pos-
sible d’accéder directement au travail dans la batterie en mesurant le champ en sortie a
I’aide de techniques de détection homodyne ou hétérodyne.

Ensuite, nous étudions le régime stimulé {2 >>>> 7 qui correspond aussi au régime clas-
sique Vi, > 1. Nous démontrons que la cohérence stimule I’extraction de puissance, qui
est maximale lorsque la durée du cycle tend vers zéro. De plus, dans ce régime, le moteur
fonctionne toujours au rendement classique maximal bien qu’il implique une relaxation
irréversible. Ce dispositif peut étre considéré comme une version autonome du moteur a
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mesure proposé dans I’article [47], le bain ingéniéré remplacant la mesure et la boucle de
rétroaction.

Enfin, nous explorons les nombres de photons entrant Ny, arbitraires, redéfinissant le
rendement pour tenir compte de la charge initiale de la batterie. Nous démontrons que le
régime stimulé est thermodynamiquement inefficace en raison du cofit de chargement de la
batterie. Inversement, la limite des petits nombres de photons donne lieu aux rendements
les plus élevés, mais nécessite une certaine cohérence initiale. En régime spontané, c’est-a-
dire en I’absence totale de photons entrants, la cohérence permet de controler le rendement
du moteur, agissant comme une ressource véritablement quantique. Enfin, nous étudions
I’impact de la forme des impulsions entrante sur I’extraction de travail. Nous démontrons
que la forme d’impulsion optimale est une exponentielle décroissante, ce qui correspond a
la correspondance optimale entre le mode entrant et le mode émit par le qubit.

Conclusion

Le concept de travail est essentiel pour étendre la thermodynamique aux systemes quan-
tiques et sa mesure est indispensable a la compréhension et a 1’exploration expérimentale
des échanges énergétiques a 1’échelle quantique. Cependant, la mesure du travail est par-
ticulierement difficile en raison des spécificités du monde quantique, notamment parce
que la mesure contribue aux échanges énergétiques et entropiques. Dans cette theése, nous
avons proposé de mesurer le travail in sifu, directement dans une batterie quantique. A
cette fin, nous avons étudié deux plateformes particuliecrement prometteuses pour explorer
la thermodynamique d’un qubit : les systemes hybrides optomécaniques et les atomes uni-
dimensionnels.

Tout d’abord, nous avons démontré que dans les systemes hybrides optomécaniques,
le résonateur mécanique joue le role d’une batterie "dispersive", fournissant du travail au
qubit en modulant sa fréquence. Nous avons montré que ce travail peut étre identifié par
des variations mesurables de 1’énergie mécanique. De plus, cette méthode tient toujours
au niveau de la trajectoire quantique, ce qui permet d’accéder aux fluctuations du travail
et donc de sonder les théoremes de fluctuation dans un systeme quantique ouvert. Nous
avons démontré que le fait d’éclairer le qubit avec un laser désaccordé permet une conver-
sion d’énergie optomécanique. Le sens de cette conversion est déterminé par le signe du
désaccord. Avec un désaccord vers le bleu, un état phononique cohérent peut étre construit
a partir du bruit thermique et le mécanisme présente des signatures de type laser. Récipro-
quement, avec un désaccord vers le rouge, le nombre moyen de phonons dans le résonateur
peut étre réduit en dessous du nombre thermique avec un mécanisme qui rappelle le refroi-
dissement par évaporation. Par conséquent, les systemes hybrides optomécaniques peuvent
étre considérés comme des machines thermiques autonomes.

Dans un deuxiéme temps, nous avons étudié les atomes unidimensionnels, constitués
d’un qubit incorporé dans un guide d’ondes. Nous avons montré que les modes du guide
d’onde résonants avec la transition du qubit peuvent étre considérés comme une batterie
permettant a la fois de piloter le qubit et de stocker le travail, qui correspond ici a la fraction
cohérente de la lumiere émise par le qubit. Contrairement aux systeémes hybrides optomé-
caniques, cette batterie est résonante et permet d’explorer le role de la cohérence dans la
conversion chaleur-travail. Exploitant la boite a outils avancée de I’optique quantique, nous
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avons proposé de concevoir un bain qui prépare le qubit dans une superposition arbitraire
d’états propres d’énergie et, ainsi, est une source d’énergie et de cohérence. Nous avons
démontré qu’un moteur quantique a deux temps extrayant le travail d’un seul bain non ther-
mique peut étre réalisé en combinant ce bain et cette batterie. Le travail extrait peut étre
mesuré directement dans la batterie, en utilisant des techniques de détection homodyne ou
hétérodyne. Nous avons enfin démontré que dans le régime stimulé, la cohérence quantique
favorise I’extraction d’énergie, alors que dans le régime spontané, elle permet de contrdler
le rendement du moteur, agissant comme une véritable ressource quantique.

Les deux plateformes étudiées dans cette these ouvrent de nouvelles perspectives pour
la thermodynamique quantique. Tout d’abord, toutes les simulations numériques de cette
these ont été réalisées en utilisant des parametres expérimentalement réalistes, montrant
que nos propositions sont a la portée de dispositifs expérimentaux de pointe, permettant
par exemple de vérifier I’égalité Jarzynski pour un systeme ouvert quantique.

Comme nous 1’avons vu au chapitre 3, ’'image de trajectoire quantique utilisée pour
définir les grandeurs thermodynamiques permet d’aller au-dela du régime de validité des
équations maitresses de Lindblad, élargissant ainsi la portée de la thermodynamique quan-
tique. En particulier, I’approche basée sur les trajectoires a été utilisée avec succes pour
décrire des processus non markoviens [20] pour lesquels de nouveaux comportements ther-
modynamiques sont attendus [105, 133], par exemple dus aux effets mémoire [22].

Un prolongement direct du chapitre 4 serait d’étudier plus avant la conversion d’éner-
gie avec le systeme optomécanique hybride, en particulier le régime du désaccord vers le
rouge. Nous avons démontré que dans ce régime I’énergie mécanique est réduite mais nous
n’avons pas démontré que le résonateur est refroidi au sens thermodynamique. L.’ étape sui-
vante serait donc de vérifier si le résonateur thermalise et d’étudier 1’entropie pendant le
processus. De plus, une modélisation plus détaillée de 1’interaction entre le qubit et le laser
permettrait de déterminer la limite de réduction de 1’énergie mécanique. De plus, le laser,
utilis€é comme bain chaud, est un exemple typique de bain coloré. Ce type de bains est
fréquemment utilisé en optique quantique et il serait intéressant d’explorer leur thermody-
namique et d’en tirer des théoremes de fluctuation dans ce contexte.

Comme nous I’avons vu au chapitre 5, I’ingénierie du bain ouvre de nouvelles pers-
pectives en thermodynamique quantique, permettant d’explorer les températures efficaces
négatives [115] ou des cas ou le bain fournit de la cohérence au systeme [67]. Mais cela
rend la définition des quantités thermodynamiques comme la chaleur moins évidente. 11 se-
rait intéressant d’analyser plus en détail la nature de I’énergie fournie par le bain au qubit,
ce qui nécessite d’étudier les flux d’énergie a I'intérieur du dispositif spécifique utilisé pour
réaliser le bain, comme le fera I’article [46]. Il serait donc utile d’élaborer une approche
plus générique pour étudier les bains ingéniéré et évaluer leur cofit.

L’une des principales caractéristiques des deux plateformes étudiées est que la batterie
est quantique et donc entierement intégrée dans notre description quantique du systeme. 11
s’agit d’une nette différence par rapport a I’état de I’art, ot la plupart des propositions et des
réalisations sont basées sur des opérateurs externes classiques comme sources de travail.
La facon dont nous avons identifié le travail, en I’absence d’une dépendance temporelle
explicite dans le hamiltonien global, pourrait étre généralisée a d’autres plateformes, ou-



116 Résumé en francais

vrant la voie a ’analyse thermodynamique de dispositifs expérimentaux dont le potentiel
thermodynamique a été négligé jusqu’ici.

Notre analyse thermodynamique de deux plateformes spécifiques pourrait étre étendue
a la plupart des réalisations expérimentales en optomécanique et en optique quantique, ap-
portant de nouvelles perspectives sur les échanges d’énergie et d’informations. Ceci est
particulicrement intéressant pour I’information quantique, pour évaluer I’empreinte éner-
gétique de I’informatique quantique et pour déterminer les ressources nécessaires pour
générer et maintenir la cohérence ou I’intrication. Ceci est d’autant plus pertinent au vu
des propositions de machines thermiques [19] et de moteurs quantiques [115] pour générer
de I’intrication en régime stationnaire. Une analyse thermodynamique fournirait également
des informations intéressantes sur la correction d’erreurs quantique [51]. En outre, 1’intri-
cation est une ressource en information quantique et a donc été considérée comme un car-
burant pour les moteurs quantiques [3, 131, 138]. A D’avenir, il serait intéressant d’étudier
plus avant la relation entre I’enchevétrement et la quantité de travail extractible, a savoir
I’ergotropie.

Nous avons proposé deux méthodes pour mesurer directement le travail dans une bat-
terie quantique. La premiere permet d’accéder aux fluctuations du travail, mais dans une
situation ou il n’y a pas de cohérence dans la base propre de 1’énergie du qubit. Dans
le second, la batterie est résonante, permettant d’explorer I’impact de la cohérence quan-
tique sur I’extraction de travail, mais nous n’avons acces qu’a des échanges €nergétiques
moyens. Une extension particulierement intéressante de cette thése serait d’identifier une
plateforme et un protocole permettant la mesure directe des fluctuations de travail dans une
situation véritablement quantique ou une batterie pilote de maniere cohérente un systeme
quantique ouvert dans des superpositions cohérentes. Il serait ainsi possible de mesurer la
production d’entropie et les fluctuations énergétiques de nature quantique [45, 47], liées
a I’effacement des cohérence quantiques [54, 103]. Relier les fluctuations mesurables du
travail a la production d’entropie quantique ouvrirait un nouveau chapitre dans 1’étude des
théorémes de fluctuation quantique.
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Appendix A

Numerical simulations

A.1 Numerical simulations in Chapter 3

The numerical results presented in Chapter 3 were obtained using the jump and no-jump
probabilities given by Eq. (3.8) to sample the ensemble of possible direct trajectories [66].
I used the following algorithm to obtain the stochastic trajectories:

1. Att = ty, randomly draw the qubit’s state |ey) using the equilibrium probability
distribution (3.2) while the MO is in state |(y).

2. While tk-thjump < tn, where tk-thjurnp is the time of the k-th ]ump (tO-thjump =tp):

(1) At = tj-th jump> randomly draw a number r € [0, 1] with a uniform distribution.

(2) Integrate, using a Riemann sum, the probability that a jump occurs until the
cumulative sum reaches 7:

t(k+1)-thjl1mp
r :/ Pro-jump (%) Yjump (w)du. (A.1)

tk-thjump

The jump rate at time u, Yjump(%) = V(Nu(8w)) T Oc(tyinjump)sc)» 1S Obtained from
the Kraus operators (3.4). It depends on the state of the qubit after the k-th
jump and the state of the MO at time u. Phojump(u) denotes the probability
that no jump occurred between ¢y jump and u, therefore Py jump(u + du) =
Prosjump (1) (1 —"jump (w)dw). The time ¢ (j11)-¢ jump Such that the integral equals r
is the time of the next jump. The evolution of the hybrid system’s state between
jumps is governed by the effective Hamiltonian H.¢ (Eq. (3.5)), therefore the
qubit’s state remains unchanged, e(u) = €(t5.t jump), While the mechanical state

evolves with Hi ) (Eq. (2.7)).

I first coded this algorithm in python but then rewrote it in C++ to increase the computation
speed.

The average value of a quantity A[i] is then approximated by

<A[i]>i ~ Ni S A5, (A2)
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where Ny,j = 5 x 10° is the number of numerically generated trajectories and 5% denotes
the 7-th trajectory.

The reduced entropy production U[i] used in Fig. 3.2 was calculated with the expres-
sion (3.30), using the numerically generated values of 5y and fx(ty) in the trajectory 5.
One value of fOx(ty) can be generated by a single direct trajectory 3%: Below we use the
equality pn[Bs(tx)] = P[X]. Using the expression (3.16) of the probability of the reversed
trajectory, the average entropy production becomes:

_ P[3]
(@)= ({75,
= <— log <p?3;(tN)[€z(tN)] H 15[‘1’2(%1)\\1’2(%)0 > )

1 Nirgj N
ZN ZlOg(pﬁz(t H n— 1|\IIZ( )])7

and,

N
Zpi = Zpﬁz (tn) 62(15]\[ Pm ﬁz tN H \IIE n—1 ‘\IIE< )]
b)) b)) n=1

<p52(tN)[€z (tv) H (s (tn—1)[Ps(t )]>

ZPBZ (in) € H t) [ W5(t0)]

—

by

To obtain Fig. 3.3, we considered that the preparation of the initial MO state was not
perfect. So instead of starting from exactly |5y), the MO trajectories start from |S5x (%))
with the [Bx(to) uniformly distributed in a square of width 23, centered on (3. Similarly,
the measuring apparatus has a finite precision, modeled by a grid of cell width 205 in the
phase plane (Re 3, Im 3;). Instead of obtaining the exact value of Bx(ty), we get SM(ty),
namely the center of the grid cell in which By (fy) is. The value used to compute the
thermodynamical quantities are not the exact f3x,(¢o) and Bx(tx) but S = By and SM(ty).

A.2 Numerical simulations in Chapter 4

The numerical trajectories plotted in Figs. 4.5 and 4.6 in Chapter 4 were obtained with the
following algorithm, obtained from the unraveling described in Sec. 4.2.1.3:

1. The qubit is initialized in |¢g) and the MO’s state y = r, + ir, is drawn from a
thermal distribution. More precisely, 7, and r, are two random numbers drawn from
independent Gaussian distributions of zero mean and standard deviation /Ny, /2.

2. For each time step n between 1 and /V:



(1) Att = t,, draw the random numbers r, and r, from independent Gaussian
distributions of zero mean and standard deviation \/I'’At Ny, /2. r, + ir, corre-
sponds to the Wiener increment /I' Vi d& ., (¢,,) from Eq. (4.42).

(2) Compute [x(t,) using Eq. (4.42):

Ym —(io+L Im .

Bs(tn) = (52(%71) + 55@(%71)@) e (Q+2)dt—§5eg(tn71),e+m+”“y- (A.3)

(3) Check whether the qubit interacts with the laser, i.e. whether w(/x(t)) crossed
the frequency wy, during the n-th time step:

e If the qubit interacts with the laser, draw the state of the qubit after the
interaction (probability € to be excited). Then, if the qubit is in the ex-
cited state, randomly draw the time of the spontaneous emission from an
exponential distribution of decay rate .

e Otherwise, check whether the spontaneous emission occurred during this
time step and change the qubit’s state accordingly.

I first coded this algorithm in python, then rewrote it in C++ for speed reasons.
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Summary

Thermodynamics was developed in the 19th century to study steam engines using the cyclical transformations of a
working substance to extract heat from thermal baths and convert it into work, possibly stored in a battery. This applied
science eventually led to the development of fundamental concepts such as irreversibility. Quantum thermodynamics
aims at revisiting these results when the working substances, baths and batteries become quantum systems. Its results
are still mainly theoretical. This thesis therefore propose methods to measure work in situ, directly inside the battery,
and demonstrate the potential of two platforms to pave the way to the experimental exploration of this fast-growing
field.

First, I studied hybrid optomechanical systems which consist of a qubit coupled to the electromagnetic field on
the one hand, and to a mechanical resonator on the other hand. The qubit’s transition frequency is modulated by the
vibrations of the mechanical system that exerts in this way a force on the qubit. The mechanical degree of freedom
exchanges work with the qubit and therefore behaves like a dispersive battery, i.e. whose natural frequency is very
different from the one of the qubit’s transition. Finally, the electromagnetic field plays the role of the bath. I showed
that the fluctuations of the mechanical energy are equal to the fluctuations of work, which allows the direct measurement
of entropy production. As a result, hybrid optomechanical systems are promising for experimentally testing fluctuation
theorems in open quantum systems. In addition, I studied optomechanical energy conversion. I showed that a hybrid
optomechanical system can be considered as an autonomous and reversible thermal machine allowing either to cool the
mechanical resonator or to build a coherent phonon state starting from thermal noise.

Secondly, I showed that a two-stroke quantum engine extracting work from a single, non-thermal, bath can be made.
The qubit is embedded in a one-dimensional waveguide and the battery is the waveguide mode of same frequency as
the qubit’s transition. Therefore, this is a resonant battery, unlike in the previous case. First, the qubit is coupled to the
engineered bath, source of energy and coherence, that makes it relax in a experimentally controllable superposition of
energy states. Secondly, the bath is disconnected and work is extracted by driving the qubit with a resonant coherent
field. This kind of system, called one-dimensional atom, can be implemented in superconducting or semiconducting
circuits. The coherence of the qubit’s state improves the performances of this engine both in the regime of classical
drive, where a large number of photons is injected in the battery, and in the quantum drive regime of low photon
numbers.

This thesis evidences the potential of hybrid optomechanical systems and one-dimensional atoms to explore exper-
imentally on the one hand, irreversibility and fluctuation theorems, and on the other hand, the role of coherence in work
extraction.

Résumé

La thermodynamique a été développée au XIXeme siecle pour étudier les machines a vapeur exploitant les transforma-
tions cycliques d’un fluide calorifique pour extraire de la chaleur de bains thermiques et la convertir en travail, éventuel-
lement stocké dans une batterie. Cette discipline appliquée a finalement permis d’élaborer des concepts fondamentaux
tels que I'irréversibilité. La thermodynamique quantique vise a revisiter ces résultats lorsque les fluides calorifiques,
bains et batteries deviennent des systémes quantiques. Ses résultats sont encore essentiellement théoriques. Cette thése
propose donc des méthodes de mesure in situ du travail, directement dans la batterie, et démontre le potentiel de deux
plateformes pour ouvrir la voie a I’exploration expérimentale de ce domaine en plein essor.

J’ai tout d’abord étudié les systemes hybrides optomécaniques qui se composent d’un qubit couplé au champ
électromagnétique d’une part, et a un résonateur mécanique d’autre part. La fréquence de transition du qubit est modulée
par les vibrations du syst¢tme mécanique, qui exerce ainsi une force sur le systeéme. Le degré de liberté mécanique
échange du travail avec le qubit et se comportant donc comme une batterie dispersive, c’est-a-dire dont la fréquence
propre est tres différente de celle de la transition du qubit. Enfin, le champ électromagnétique joue le rdle du bain.
Jai d’abord montré que les fluctuations d’énergie mécanique de la batterie sont égales aux fluctuations du travail,
ce qui permet de mesurer directement I’entropie produite. En conséquence, les systemes hybrides optomécaniques
sont prometteurs pour tester expérimentalement les théoremes de fluctuations dans un systeme quantique ouvert. Par
ailleurs, j’ai étudié la conversion d’énergie optomécanique. J’ai montré qu’un systeéme hybride optomécanique peut
étre considéré comme une machine thermique autonome et réversible permettant aussi bien de refroidir le résonateur
mécanique que de construire un état cohérent de phonons en partant du bruit thermique.

Par ailleurs, j’ai montré qu’il est possible de réaliser un moteur quantique a deux temps extrayant du travail d’un
bain unique, non thermique. Le qubit se trouve dans un guide d’ondes unidimensionnel et la batterie est le mode
du guide de méme fréquence que la transition du qubit. Il s’agit donc d’une batterie résonante, contrairement au cas
précédent. Premierement, le qubit est couplé au bain ingéniéré, source d’énergie et de cohérence, qui le fait relaxer
dans une superposition expérimentalement controlable d’états d’énergie. Deuxieémement, le bain est déconnecté et du
travail est extrait en couplant qubit & un champ cohérent résonant. Ce type de systeme, appelé atome unidimensionnel,
peut étre réalisé avec des circuits supraconducteurs ou semi-conducteurs. La cohérence de I’état du qubit améliore les
performances de ce moteur a la fois dans le régime classique, ou un grand nombre de photons est injecté dans la batterie,
et dans le régime quantique des petits nombres de photons.

Cette these met en évidence le potentiel des systeémes hybrides optomécaniques et des atomes unidimensionnels
pour explorer expérimentalement d’une part, I’irréversibilité et les théoréemes de fluctuations dans les systemes quan-
tiques ouverts, et d’autre part, le role de la cohérence dans 1’extraction de travail.
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