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per T <Tch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Spettro di massa . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Condensato chirale e suscettività topologica . . . . . . 41
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per T >Tch nel caso L ≥ 3 . . . . . . . . . . . . . . . . . . . . 43
2.6.1 Spettro di massa . . . . . . . . . . . . . . . . . . . . . 43

i



ii INDICE

2.6.2 Condensato chirale e suscettività topologica . . . . . . 47
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Introduzione

Nel limite in cui le masse di L quarks vengono poste uguali a zero (i casi
fisicamente rilevanti essendo L = 2 ed L = 3), la Lagrangiana della Cromo-
Dinamica Quantistica (QCD) è invariante sotto le trasformazioni del gruppo
chirale U(1)V ⊗U(1)A⊗SU(L)V ⊗SU(L)A dei campi di questi quarks. Tut-
tavia, la struttura dei multipletti adronici osservata in natura ci fa concludere
che questa simmetria non sia realizzata in maniera esatta (ossia ”alla Wigner-
Weyl”) ma sia spontaneamente rotta sul vuoto al suo sottogruppo vettoriale
U(1)V ⊗ SU(L)V .

E’ ben noto che la rottura spontanea della simmetria SU(L) chirale è
dovuta alla ”condensazione” sul vuoto di coppie quark-antiquark che rende
non nullo il cosiddetto ”condensato chirale” ⟨qq⟩ [1, 2]. Tutto questo avviene
a temperatura zero (T = 0). Tuttavia, ad una certa temperatura finita
Tch le fluttuazioni termiche sono tali da ”rompere” tali coppie restaurando
cos̀ı la simmetria a temperature superiori a Tch . Questa restaurazione della
simmetria SU(L)V ⊗ SU(L)A è associata ad una transizione di fase detta
”transizione chirale”. I dati ottenuti mediante simulazioni numeriche della
teoria su reticolo indicano per la temperatura di tale transizione un valore
Tch∼ 150 MeV che sembra coincidere (sebbene non sia ancora affatto chiaro
il perchè) con quello della temperatura di deconfinamento Td (si veda, ad
esempio, [3])

Il comportamento della simmetria U(1) assiale è, invece, di più difficile
interpretazione [4, 5]. Sappiamo, infatti, che a livello quantistico essa è rotta
da una anomalia [6, 7] la quale, tramite il valore non nullo della ”suscettività
topologica” (dovuto a effetti non perturbativi [8]), riveste un ruolo fondamen-
tale nel ”meccanismo di Witten-Veneziano” [9, 10] per giustificare la grande
massa del mesone η′. Ora, in maniera analoga a quanto accade per la simme-
tria SU(L) chirale, ci si aspetta che ad una certa temperatura TU(1) anche la
simmetria U(1) assiale sia (di fatto) restaurata. Tuttavia, non è ancora ben
chiaro quale sia (se c’è!) il legame tra Tch e TU(1) . Alcuni risultati ottenuti su
reticolo per le cosiddette ”suscettività chirali” (nel caso L = 2) [11, 12, 13, 14]
sembrano indicare che TU(1)>Tch (più precisamente: TU(1)≃ 1.3Tch ).

vii



viii Introduzione

In [15, 16, 17, 18] (e anche in [19]) era già stata avanzata l’ipotesi che la
simmetria U(1) assiale potesse essere rotta indipendentemente dalla SU(L)
chirale ed era stato introdotto un nuovo parametro d’ordine U(1) assiale.
Questo è dato dal valore di aspettazione sul vuoto di un operatore a 2L
fermioni dello stesso tipo di quello proposto inizialmente da Kobayashi e
Maskawa [20], come vertice efficace in un’estensione del modello di Nambu–
Jona-Lasinio, e successivamente introdotto da ’tHooft [5] nello studio della
Lagrangiana efficace dei quark nel campo di un istantone.

Gli effetti di questo condensato sulla dinamica dei gradi di libertà mesoni-
ci possono essere descritti mediante una Lagrangiana efficace introdotta in
[15, 17] (si veda anche la Ref.[21]), ottenuta generalizzando opportunamente
quella proposta all’inizio degli anni ’80 da Witten, Di Vecchia, Veneziano et
al. [22, 23, 24]. Facendo uso di questa Lagrangiana efficace si è cercato di
determinare, negli ultimi anni, quali potessero essere le implicazioni a livel-
lo fenomenologico dell’esistenza del condensato U(1) assiale. In particolare,
sono state studiate le conseguenze sullo spettro di massa della teoria per
L = 3, sia a temperatura zero, sia a temperatura finita [15, 17, 25]; sono
stati studiati gli effetti sui decadimenti radiativi dei mesoni pseudoscalari,
sia a temperatura zero che finita [26, 27]; infine, sono state studiate le con-
seguenze sui decadimenti forti degli stessi mesoni a T = 0 [25]. Un primo
raffronto tra le predizioni teoriche e i dati sperimentali, relativi a T = 0,
sembra effettivamente supportare l’ipotesi di un valore non nullo di questo
condensato. Dati sperimentali relativi a T ̸= 0 non sono ancora disponibili,
sebbene si speri nel prossimo futuro di ricavare informazioni utili dai risultati
degli esperimenti condotti con ioni pesanti.

Tuttavia, come si è detto, esistono dei risultati ottenuti su reticolo per
la teoria con L = 2 flavours leggeri che sembrano indicare il persistere della
simmetria U(1) assiale sopra la transizione chirale, fino ad una temperatura
critica TU(1)≃ 1.3Tch , dove anche la simmetria U(1) assiale viene (di fatto)
restaurata. In questa tesi, pertanto, abbiamo voluto analizzare in dettaglio le
predizioni del suddetto modello di Lagrangiana chirale efficace nel caso L = 2
per temperature sopra la transizione chirale (T >Tch ), per poi confrontare
(almeno qualitativamente) tali predizioni con i risultati ottenuti su reticolo.

La tesi è cos̀ı strutturata.
Nel Capitolo 1, dopo aver richiamato la Lagrangiana fondamentale del-

la QCD e aver riassunto brevemente le ”tappe” che hanno portato alla sua
formulazione, saranno analizzate nel dettaglio le sue proprietà di simmetria,
ponendo particolare attenzione al problema della simmetria U(1) assiale e
alle soluzioni proposte da ’tHooft e Witten. Sarà quindi introdotto il con-
densato chirale ⟨qq⟩ come parametro d’ordine per la simmetria SU(L) chirale
e sarà analizzata la struttura di fase della QCD in funzione della tempera-



Introduzione ix

tura. Infine si introdurrà il nuovo condensato U(1) assiale e si richiamerà
la sua ”costruzione” dettagliata nel caso di maggiore interesse per noi, ossia
per L = 2.

Il Capitolo 2 si apre con una introduzione di carattere generale al meto-
do delle Lagrangiane chirali efficaci. Dopo aver illustrato le motivazioni che
rendono necessario tale approccio per lo studio della dinamica dei mesoni,
introdurremo dapprima la Lagrangiana proposta da Witten, Di Vecchia,
Veneziano et al. [22, 23, 24], dopodichè presenteremo la Lagrangiana efficace
modificata con l’inclusione del condensato U(1) assiale [15, 17, 21]. Illustre-
remo brevemente i risultati ottenuti ad oggi dal modello in esame riguardo i)
alle predizioni sullo spettro di massa, sul condensato chirale e sulla suscettiv-
ità topologica per L generico a T <Tch [15, 17, 25], ii) ai decadimenti radiativi
e forti dei mesoni pseudoscalari [26, 27, 25]. Il capitolo si conclude con l’e-
sposizione dei risultati relativi allo spettro di massa, al condensato chirale
e alla suscettività topologica per L = 3 a T >Tch inizialmente ricavati nella
Ref.[15].

Nel Capitolo 3 (che contiene il lavoro originale di questa tesi) saran-
no presentate in dettaglio le predizioni del modello riguardo alle masse dei
mesoni, al condensato chirale e alla suscettività topologica nel caso di L = 2
flavours leggeri e per temperature maggiori di Tch . Faremo vedere, in partico-
lare, che il nostro modello prevede che stati mesonici dello stesso multipletto
SU(2) chirale hanno masse uguali per T >Tch , mentre le masse di canali
mesonici appartenenti a diversi multipletti U(1) assiali si mantengono diffe-
renti al di sopra di Tch , proprio come osservato nelle già citate simulazioni
di reticolo. Inoltre determineremo le espressioni del condensato chirale e
della suscettività topologica per T >Tch e verificheremo che esse soddisfano
un’identità di Ward già ricavata e discussa in Ref. [16] (si veda anche [21]).

Il Capitolo 4 contiene le osservazioni conclusive sui risultati ottenuti con
una analisi delle differenze e delle analogie tra il caso L = 2 e L = 3 e un
accenno al problema (ancora aperto) dell’ordine della transizione chirale.
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Capitolo 1

Le simmetrie chirali della QCD

1.1 La Lagrangiana della

Cromo-Dinamica Quantistica

La QCD (Cromo-Dinamica Quantistica) è la teoria quantistica di campo me-
diante la quale descriviamo le interazioni forti. E’ una teoria di gauge del
gruppo (non abeliano) SU(3)c di colore le cui variabili dinamiche fondamen-
tali sono i campi di materia dei quarks che si presentano nei sei sapori (o
”flavours”) up, down, strange, charm, bottom, top e le cui caratteristiche
sono riportate qui di seguito:

u d s c b t
m ∼1.7−3.3MeV ∼4.1−5.8MeV ∼101+29

−21 MeV ∼1.27+0.07
−0.09 GeV ∼4.19+0.18

−0.06 GeV ∼172.0+2.2
−0.4 GeV

q +2
3

−1
3

−1
3

+2
3

−1
3

+2
3

Tabella 1.1: Famiglie di quark. ”m” è la massa [28] e ”q” è la carica elettrica
in unità di e.

Ognuno di questi sapori esiste a sua volta in tre stati di carica di colore:

qf =

q1f
q2f
q3f

 (1.1)

dove ”f” si riferisce al flavour del quark. Le componenti dei campi qf si
trasformano sotto l’azione del gruppo di colore come la rappresentazione
fondamentale di SU(3), ossia come

qf → U(x)qf (1.2)

1



2 1. Le simmetrie chirali della QCD

con

U(x) = eiθ
a(x)Ta

(1.3)

dove θa(x) sono i parametri (dipendenti dallo spazio-tempo) della trasfor-
mazione, mentre con T a indichiamo gli 8 generatori nella rappresentazione
fondamentale del gruppo SU(3). Questi generatori soddisfano le regole di
commutazione

[T a, T b] = ifabcT c (1.4)

dove i coefficienti fabc sono detti costanti di struttura del gruppo. I generatori
T a sono inoltre normalizzati imponendo che

Tr[T aT b] =
1

2
δab. (1.5)

Se poniamo

q =


qu
qd
qs
...

 (1.6)

dove ogni elemento del vettore è dato da (1.1) , la densità di Lagrangiana
della teoria, è

LQCD = −1

4
Tr(FµνF

µν) + qiγµDµq − qMq. (1.7)

dove si è indicato con M la matrice di massa dei quarks:

M =


mu

md

ms

. . .

 . (1.8)

Dµ prende il nome di ”derivata covariante” ed è definita come

Dµ ≡ ∂µ + igAµ (1.9)

dove g è la costante di accoppiamento della QCD e Aµ è chiamato ”campo
(matriciale) di gauge” ed è definito come

Aµ =
8∑

a=1

Aa
µT

a (1.10)
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dove i campi Aa
µ sono detti ”campi di gauge” o anche ”campi gluonici”. Il

termine Fµν prende il nome di ”tensore di curvatura” (o anche di ”intensità
del campo”) ed è definito come

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] (1.11)

che, ponendo
F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν , (1.12)

può essere scritto nella forma

Fµν = F a
µνT

a. (1.13)

Perchè la Lagrangiana (1.7) sia invariante sotto le trasformazioni (1.2)
sui qf , i campi Aµ e Fµν devono trasformarsi secondo la legge

Aµ → UAµU † + i
g
(∂µU)U †

Fµν → UFµνU †.
(1.14)

In vista dei futuri sviluppi, scomponiamo la Lagrangiana (1.7) nella
somma di due contributi

LQCD = L0
QCD + δLM (1.15)

dove
L0

QCD ≡ −1
4
F a
µνF

µν
a + qiγµDµq

δLM ≡ −qMq
(1.16)

Il ”modello a quark” fu proposto all’inizio degli anni ’60 da Gell-Mann e
Ne’eman [29, 30]. Questi, analizzando la particolare struttura dei multipletti
adronici, avanzarono l’ipotesi che la teoria delle interazioni forti possedesse
una simmetria SU(3) che generalizza quella SU(2) di isospin proposta negli
anni ’20 da Heisenberg. Essi si resero conto, infatti, che per giustificare
l’organizzazione in multipletti degli stati adronici allora noti era sufficiente
assumere che questi fossero stati legati di più particelle di spin 1

2
detti

quark e presenti in tre ”sapori” (o ”flavours”) up, down e strange. Gli
adroni che comunemente osserviamo in natura sono costituiti da tre quarks
o antiquarks (barioni o antibarioni) oppure da una coppia quark-antiquark
(mesoni). Tali sono, per esempio, l’ottetto dei mesoni pseudoscalari 0−

(π±, π0, K±, K0, K
0
, η) con masse dell’ordine del centinaio di MeV, quello dei

barioni 1
2

+
(p, n,Σ±,Σ0,Λ,Ξ−,Ξ0) e il decupletto dei barioni 3

2

+
(Ω−,Ξ⋆−,Ξ⋆0,

Σ⋆±,Σ⋆0,∆±,∆0,∆++) con masse dell’ordine del GeV. La simmetria SU(3)
di Gell-Mann, essendo una generalizzazione della simmetria di isospin di
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Heisenberg, risulta essere ancora più approssimata di questa. Tuttavia, en-
tro certi limiti che vedremo a breve, rappresenta una valido approccio allo
studio delle interazioni forti.

L’ipotesi che gli stati adronici osservati in natura fossero particelle com-
poste era anche suggerito dagli studi di scattering profondamente anelastico
(Deep Inelastic Scattering, in breve DIS): lo studio delle collisioni ad alta
energia tra elettroni e particelle nucleari suggeriva infatti che queste ultime
avessero una struttura interna e non fossero affatto oggetti puntiformi, come
fino ad allora si credeva.

Tuttavia, il modello di Gell-Mann, pur semplificando notevolmente la
descrizione delle interazioni forti, lasciava ancora irrisolte diverse questioni.
Per esempio non si riusciva a risolvere i problemi connessi al teorema di
spin-statistica per la funzione d’onda della ∆++ e anche i dati sperimen-
tali non sembravano essere in completo accordo con le previsioni teoriche.
Per risolvere queste incongruenze, Han, Nambu, Greenberg e Gell-Mann [31]
avanzarono l’ipotesi che ogni sapore di quark potesse esistere in più stati di
carica, detta di colore, che però è complessivamente nulla per gli stati fisici
che osserviamo. Per avere un accordo con i dati sperimentali per le sezioni
d’urto per i processi e+ e− → adroni e per la larghezza di decadimento per
il processo π0 → γ γ si deve allora assumere che questi stati di carica siano
tre. Si ipotizzò quindi che tale carica fosse associata alle proprietà di trasfor-
mazione dei quarks sotto un gruppo di gauge (non abeliano) SU(3)c detto
”di colore”.

Il fatto che in natura osserviamo soltanto gli adroni (che non mostrano al-
cuna carica di colore) e non quark o gluoni liberi è una caratteristica peculiare
delle interazioni forti che va sotto il nome di ”confinamento”: formalmente,
essa stabilisce che tutti gli stati adronici devono presentarsi sotto forma di
singoletti di SU(3)c. Sebbene manchi ancora una dimostrazione rigorosa
di tale proprietà della QCD, i risultati ottenuti mediante le simulazioni su
reticolo sembrano supportare tale assunzione.

Un’altra importante caratteristica delle interazioni forti è la cosiddetta
”libertà asintotica”. Dagli esperimenti di DIS citati sopra si è visto, infatti,
che esse divengono estremamente deboli a piccole distanze (nonchè ad alte
energie), crescendo di intensità all’aumentare della separazione tra i quark
(per cui, a volte, si parla anche di ”schiavitù infrarossa”). Gross e Wilczek
[32] e Politzer [33] hanno infatti mostrato che per la teoria descritta dalla
Lagrangiana (1.7) la funzione β di Gell-Mann-Low, definita come

β ≡ µ
dgR(µ)

dµ
(1.17)
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dove gR è la costante di accoppiamento rinormalizzata e µ è la scala di ri-
normalizzazione, è negativa in un intorno di gR = 0. Ad un loop si ha infatti
che

β(gR) = −β0g
3
R + . . . con β0 =

1

(4π)2

(
11Nc − 2Nf

3

)
(1.18)

con Nc e Nf rispettivamente numero di colori e di sapori: per Nc = 3 si ha
che β0 > 0 fintanto che Nf < 33

2
. Pertanto, per la (1.17) , all’aumentare della

scala di energia µ la costante di accoppiamento rinormalizzata gR decresce
fino ad annullarsi asintoticamente; viceversa gR cresce per µ che tende a zero.
In maniera più esplicita, dopo aver sostituito la (1.18) in (1.17) ed integrato

quest’ultima, troviamo che la costante di interazione forte αs =
g2R
4π

dipende
dall’energia come segue:

αs(µ) =
g2R(µ)

4π
=

1

4πβ0 ln
(

µ2

Λ2
QCD

) (1.19)

dove il parametro ΛQCD è detto parametro di scala della QCD ed ha un valore
pari a ΛQCD ∼ 0.5GeV. Da quanto fin qui detto, risulta evidente che uno
studio perturbativo della QCD non rappresenta un metodo corretto quando
le energie caratteristiche dei fenomeni che osserviamo sono basse. Questa
limitazione, tuttavia, ha stimolato lo sviluppo di nuove tecniche di indagine,
quali simulazioni numeriche della teoria formulata su reticolo e la teoria delle
Lagrangiane chirali efficaci che saranno l’oggetto dei prossimi capitoli.

1.2 Simmetrie chirali della QCD

Si può facilmente vedere che la Lagrangiana (1.7) è simmetrica sotto l’insieme
delle trasformazioni globali del gruppo G′ = U(1)u ⊗ U(1)d ⊗ U(1)s ⊗ . . . la
cui azione sui campi dei quarks è

qu → eiαuqu
qd → eiαdqd
qs → eiαsqs

. . .

Come noto, il teorema di Noether garantisce l’esistenza di un insieme di
correnti a divergenza nulla, una per ogni generatore della trasformazione di
simmetria 

Jµ
u = quγ

µqu
Jµ
d = qdγ

µqd
Jµ
s = qsγ

µqs
. . .
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e ad ognuna di queste corrisponde una carica conservata Ql =
∫
d3x⃗J0

l (x)
(l = u, d, s, . . . ).

Se assuminamo, tuttavia, che le masse di L sapori siano nulle [tipica-
mente L = 2 (u, d) oppure L = 3 (u, d, s)] è facile vedere che il gruppo di
simmetria G′ si allarga. Questo accade perchè L0

QCD non contiene nessun ter-
mine che accoppia le componenti ”left”e ”right” dei campi dei quarks definite
rispettivamente come (γ5 ≡ −iγ0γ1γ2γ3):

qL ≡ 1

2
(1 + γ5)q, qR ≡ 1

2
(1− γ5)q. (1.20)

Infatti, in termini dei campi qR e qL, la Lagrangiana (1.7) si esprime come 1:

LQCD = −1

4
Tr(FµνF

µν)+qRiγµDµqR+qLiγµDµqL−qRMqL−qLMqR (1.21)

e da questa espressione è semplice vedere che se M = 0 la (1.21) è invariante
sotto rotazioni indipendenti dei campi qL e qR:

qL → ṼLqL, qR → ṼRqR (1.22)

dove le matrici ṼL e ṼR sono elementi del gruppo U(L), ossia matrici unitarie
L× L:

ṼL = eiαLeiT
aθaL , ṼR = eiαReiT

aθaR (1.23)

e T a sono gli L2−1 generatori nella rappresentazione fondamentale del gruppo
SU(L) (con la normalizzazione (1.5) ). Pertanto, nel limite chirale (ossia
quando M = 0) il gruppo di simmetria ”allargato” sarà

G = U(L)L ⊗ U(L)R ⊗ · · · = SU(L)L ⊗ SU(L)R ⊗ U(1)L ⊗ U(1)R ⊗ . . . .

Ora, è possibile dimostrare che la trasformazione del campo q sotto l’azione
di un elemento del gruppo SU(L)L ⊗ SU(L)R si può sempre esprimere come
la composizione di una trasformazione vettoriale (per la quale VL = VR ≡ V )
e di una assiale (per cui VL = V †

R ≡ A). Per provarlo dobbiamo fare vedere
che, data una generica trasformazione SU(L)L ⊗ SU(L)R:{

qL → q′L = VLqL
qR → q′R = VRqR

(1.24)

è sempre possibile trovare due trasformazioni V e A tali che (1.24) si scrivono
nella forma: {

qL → q′L = AV qL
qR → q′R = A†V qR

. (1.25)

1Nel seguito trascureremo i gradi di libertà pesanti interessandoci soltanto alla dinamica
dei flavours leggeri: porremo quindi q ≡ (qu, qd, . . . , qL).
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Confrontando queste due espressioni troviamo che deve aversi 2

{
A = (VLV

†
R)

1
2

V = (VLV
†
R)

1
2VR

. (1.26)

In maniera analoga (anzi, più semplice!) si può provare che una trasfor-
mazione U(1)L⊗U(1)R si può esprimere come la combinazione di una trasfor-
mazione vettoriale (per la quale αL = αR) e di una assiale (per la quale,
invece, αL = −αR). Pertanto d’ora innanzi ci riferiremo al gruppo G nella
”forma”:

G = U(1)V ⊗ U(1)A ⊗ SU(L)V ⊗ SU(L)A ⊗ . . .

Sui campi dei quarks una trasformazione del gruppo G agirà come segue
U(1)V : q → eiαV q
U(1)A : q → eiγ5αAq
SU(L)V : q → eiθ

a
V Taq

SU(L)A : q → eiγ5θ
a
ATaq

(1.27)

Ad ogni generatore di questo gruppo sarà quindi associata una corrente di
Noether data da 

U(1)V : Jµ = qγµq
U(1)A : Jµ

5 = qγµγ5q
SU(L)V : V µ

a = qγµTaq
SU(L)A : Aµ

a = qγµγ5Taq

(1.28)

che, almeno a livello classico, sono conservate nel limite di masse nulle in
virtù delle equazioni del moto della teoria.

Il termine di massa dei quarks più leggeri

δLM = qMq = −qRMqL−qLMqR = muququ−mdqdqd−msqsqs+ . . . (1.29)

ha l’effetto di rompere esplicitamente la simmetria di L0
QCD sotto trasfor-

mazioni di G. In particolare si può mostrare che, al livello classico, le
quadri-divergenze delle correnti (1.28) dipendono dalle masse nella maniera

2Essendo VL e VR due elementi del gruppo SU(L) anche i loro hermitiani coniugati

apparterranno a SU(L) cos̀ı come il prodotto (VLV
†
R); in quanto tale esso potrà essere

espresso nella forma eiθ
aTa

per opportuni θa; l’operatore (VLV
†
R)

1
2 sarà quello definito dai

parametri θa

2 .
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seguente: 

∂µJ
µ = 0

∂µJ
µ
5 = 2i

L∑
f=1

mfqfγ5qf

∂µV
µ
a = i

L∑
i,j=1

(mi −mj)qi(Ta)ijqj

∂µA
µ
a = i

L∑
i,j=1

(mi +mj)qiγ5(Ta)ijqj

(1.30)

Vediamo pertanto che:

• la simmetria U(1)V è esatta indipendentemente dal fatto che le masse
dei quarks siano o meno nulle: la corrispondente carica conservata è
essenzialmente il numero barionico;

• la corrente associata alla simmetria SU(L)V è conservata anche in pre-
senza di masse non nulle se queste sono tutte uguali tra i vari sapori:
abbiamo cos̀ı la simmetria SU(2) di isospin nel caso in cui mu = md, o
quella SU(3) di Gell-Mann se mu = md = ms;

• la corrente di SU(L)A è conservata soltanto se tutte le masse sono nulle.

Una sezione a parte sarà dedicata all’analisi della simmetria U(1)A.

1.3 Simmetrie esatte e spontaneamente rotte

Come noto, una simmetria globale continua della Lagrangiana può essere
realizzata sullo stato di vuoto in due maniere differenti, che si manifestano
in diverse proprietà dello spettro degli stati della teoria:

• simmetria esatta, i.e. ”alla Wigner-Weyl”: tutti i generatori del grup-
po di simmetria annichilano il vuoto che, pertanto, è invariante sotto
trasformazioni del gruppo di simmetria. In questo caso gli stati fisi-
ci costituenti lo spettro delle particelle della teoria si organizzano in
rappresentazioni irriducibili del gruppo;

• simmetria spontaneamente rotta ”alla Nambu-Goldstone”: il vuoto è
annichilato solo dagli elementi di un sottoinsieme h̃ dell’insieme di tut-
ti i generatori h del gruppo di simmetria. Lo stato di vuoto risulta
quindi invariante solamente sotto le trasformazioni generate dagli ele-
menti di h̃ (si può provare, in particolare, che questo sottoinsieme ha la
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struttura di un gruppo, e viene pertanto chiamato sottogruppo esatto).
Il teorema di Goldstone garantisce che per ogni generatore rotto ap-
partenente a {h}\{h̃} (tale, cioè, che non annichila il vuoto) esiste una
particella a massa nulla di spin zero, detta ”bosone di Goldstone”con i
numeri quantici di questo generatore; inoltre l’insieme di questi stati si
trasforma come una rappresentazione irriducibile del sottogruppo non
rotto.

Cerchiamo adesso di capire in che maniera sono realizzate in natura le
simmetrie sopra elencate. Possiamo affermare che l’invarianza U(1)V sia
realizzata alla maniera di Wigner-Weyl e si manifesta, come già osservato,
nella conservazione del numero barionico.

Per quanto riguarda la simmetria chirale SU(L)V ⊗ SU(L)A, essa non
può essere realizzata come la precedente. Infatti, se |h⟩ è un generico stato
adronico, troveremo che il nuovo stato QA

a |h⟩ ≡ |h′⟩, ottenuto applicando a
|h⟩ una delle cariche assiali QA

a che generano la simmetria SU(L)A

QA
a =

∫
d3x⃗A0

a(x) con Aµ
a = qγµγ5Taq, (1.31)

avrebbe la stessa massa di |h⟩ ma parità opposta. Questo perchè, sfruttando
il fatto che [H,QA

i ] = 0, dove H è l’Hamiltoniana delle interazioni forti,
abbiamo che (essendo H|h⟩ = mh|h⟩ per uno stato |h⟩ a riposo)

H|h′⟩ = HQA
a |h⟩ = QA

aH|h⟩ = mh|h′⟩ (1.32)

e
P |h′⟩ = PQA

a |h⟩ = PQA
a P

†P |h⟩ = −QA
a P |h⟩ (1.33)

avendo sfruttato il fatto che

PQA
i P

† =

∫
d3x⃗PA0

a(x⃗, 0)P
† = −

∫
d3x⃗A0

a(−x⃗, 0) = −QA
i (1.34)

Se, quindi, la simmetria SU(L)V ⊗SU(L)A fosse realizzata alla Wigner-Weyl
dovremmo osservare in natura multipletti adronici di dimensioni maggiori di
quelle che invece vediamo sperimentalmente. In particolare ogni multipletto
adronico dovrebbe essere accompagnato da un altro multipletto degenere in
massa ma di parità opposta. Abbiamo quindi buoni motivi per credere che la
simmetria sotto trasformazioni SU(L)V ⊗SU(L)A sia spontaneamente rotta
sul vuoto.

Tuttavia, proprio l’esistenza dei multipletti ci fa supporre che rimane una
simmetria ”residua” del vuoto sotto il sottogruppo vettoriale SU(L)V . Pos-
siamo quindi avanzare l’ipotesi che la simmetria della Lagrangiana L0

QCD sia
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spontaneamente rotta secondo lo schema

G = SU(L)V ⊗ SU(L)A → H = SU(L)V (1.35)

Tale ipotesi è in effetti supportata dall’esistenza, tra i multipletti adronici,
di quello dei mesoni pseudoscalari JP = 0−, costituito da particelle molto
più leggere rispetto a tutti gli altri stati dello spettro adronico. Questa
caratteristica fa dei suddetti mesoni dei buoni ”candidati” per rivestire il
ruolo di bosoni di Goldstone di una simmetria spontaneamente rotta. Se
a questa proprietà aggiungiamo il fatto che questi stati hanno proprio gli
stessi numeri quantici degli operatori di carica assiale QA

a definita in (1.31)
(proprio come previsto dal teorema di Goldstone per gli stati a massa nulla
generati dal pattern di rottura (1.35) ) possiamo effettivamente identificare
queste particelle con i bosoni di Goldsone generati dalla rottura spontanea
della simmetria chirale SU(L)V ⊗ SU(L)A.

In realtà, sebbene le masse di questi stati siano molto minori rispetto a
quelle di tutti gli altri stati adronici, esse non sono esattamente nulle. Ciò si
spiega col fatto che la simmetria chirale è esplicitamente rotta, come abbiamo
visto, dal termine di massa dei quarks. Questo, però, nel limite in cui le
masse di un certo numero di quarks sono sufficientemente piccole rispetto
a ΛQCD ∼ 0.5 GeV, può essere considerato come una piccola perturbazione
rispetto a L0

QCD facendo s̀ı che la simmetria in esame non vada del tutto
persa ma sia soltanto approssimata. Pertanto, la rottura spontanea di questa
simmetria approssimata genererà dei ”pseudo-bosoni” di Goldstone di massa
piccola ma non rigorosamente nulla.

Quello che ci chiediamo adesso è quale deve essere il numero di flavours
da assumere leggeri perchè il nostro modello sia aderente alle osservazioni
sperimentali. Poichè, come abbiamo visto, gli adroni più leggeri apparten-

gono all’ottetto dei mesoni pseudoscalari (π±, π0, K±, K0, K
0
, η) dobbiamo

assumere, come fecero anche Gell-Mann e Ne’eman, che i sapori leggeri siano
3: u, d e s. Inoltre l’esistenza di un tripletto (quello dei tre pioni π± e π0)
particolarmente leggero anche rispetto a tutti gli altri stati dell’ottetto dei
mesoni pseudoscalari ci porta a concludere che la simmetria di isospin (ossia
con L = 2) sia meno approssimata di quella di Gell-Mann valida per L = 3.
La ragione di ciò è dovuta al fatto che in natura non solo mu ed md sono
molto minori della scala di massa ΛQCD, ma sono anche considerevolmente
più piccole di ms, come si evince dalla Tabella 1.1.
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1.4 La simmetria U(1) assiale

Con ragionamenti analoghi a quelli fino adesso esposti possiamo dire che
la simmetria U(1)A non è realizzata alla Wigner-Weyl: questo infatti com-
porterebbe che, nel limite chirale in cui mi = 0 per i = 1, 2, . . . , L, ogni
adrone deve comparire in un doppietto con un partner di uguale massa ma
parità opposta. Se invece questa simmetria fosse spontaneamente rotta sul
vuoto dovremmo avere un ulteriore bosone di Goldstone nel limite chirale, con
numeri quantici JP = 0− e scalare sotto trasformazioni di isospin generate
dal gruppo SU(L)V ; a causa del termine di massa che rompe esplicitamente
la simmetria U(1)A, questo bosone dovrebbe avere una massa dello stesso
ordine di grandezza di quelle possedute dagli stati dell’ottetto dei mesoni
pseudoscalari (questo perchè il termine di rottura è uguale per entrambe le
simmetrie).

In particolare Weinberg [34] ha stimato un limite superiore per tale mas-
sa nel caso L = 3. Assumendo il pattern di rottura U(L)L ⊗ U(L)R →
U(L)V , Weinberg ha analizzato una Lagrangiana chirale efficace (per mag-
giori dettagli si rimanda al Capitolo 2) che descrive gli 8 pseudo-bosoni
di Goldstone ”πi”, con i = {1, 2, . . . , 8}, provenienti dalla rottura spon-
tanea SU(L)L ⊗ SU(L)R → SU(L)V , più un nono bosone ”S”, singoletto di
SU(3)V , generato dalla rottura spontanea U(1)V ⊗U(1)A → U(1)V . Trascu-
rando gli effetti dovuti alle quantità proporzionali alla differenza ”mu −md”
(che parametrizza la rottura di SU(2) e che abbiamo visto essere molto pic-
cola) si trova che il campo S è mescolato al campo π8 con I = 0, a differenza
di quanto avviene per i rimanenti pseudo-bosoni ”πi”, con i = {1, 2, . . . , 7},
per i quali non compaiono nella Lagrangiana efficace termini misti ∼ πiπj. In
particolare si trova che l’autovalore più piccolo della matrice di mescolamento
dovrebbe soddisfare la relazione m

(I=0)
light ≤

√
3mπ.

Tra le particelle dello spettro adronico le uniche che hanno i numeri quan-
tici di questo bosone di Goldstone sono η(547) e η′(958). Tuttavia entrambe
violano il limite fissato da Weinberg e la prima di esse è ben descritta al-
l’interno dell’ottetto dei pioni per L = 3. Questa apparente contraddizione
prende il nome di ”problema U(1)”.

1.4.1 Il problema U(1): la soluzione di ’tHooft

Dai risultati (1.30) sulla divergenza delle correnti in presenza delle masse non
nulle dei quarks potremmo supporre che, cos̀ı come accade per la simmetria
SU(L)A, anche la corrente associata alla simmetria U(1)A sia conservata nel
limite in cui le masse degli L quarks siano nulle. In realtà il risultato trovato
per ∂µJ

µ
5 è vero soltanto a livello classico: a livello quantistico la simmetria



12 1. Le simmetrie chirali della QCD

sotto trasformazioni del gruppo U(1)A è affetta da una anomalia [6, 7, 5] nel
senso che la divergenza della corrente ad essa associata, sebbene si annulli
a livello classico, è diversa da zero a causa delle correzioni quantistiche. In
maniera esplicita si trova che l’espressione per ∂µJ

µ
5 va corretta come segue

[6]:

∂µJ
µ
5 = 2i

L∑
f=1

mfqfγ5qf + 2LQ (1.36)

dove

Q ≡ g2

64π2
εµνρσF a

µνF
a
ρσ (1.37)

prende il nome di ”densità di carica topologica” mentre l’integrale di Q(x)
sul quadrivolume q[F ] =

∫
d4xQ(x) (visto come funzionale del campo F a

µν) è
detto ”carica topologica”. L’espressione (1.36) mostra che la carica associata
alla corrente assiale Q5 ≡

∫
d3xJ0

5 non è conservata perchè

∆Q5 =

∫ +∞

−∞
dt
dQ5

dt
= 2Lq[F ]. (1.38)

E’ noto, tuttavia, che il termine anomalo Q presente in ∂µJ
µ
5 può essere

espresso come la quadri-divergenza della corrente o ”classe” di Chern-Simons
definita come

Q = ∂µK
µ con Kµ ≡ g2

16π2
εµαβγA

α
a (∂

βAγ
a +

1

3
gfabcA

β
bA

γ
c ). (1.39)

Sostituendo (1.39) in (1.38) ci aspetteremmo che ∆Q5 sia nulla, essendo
l’integrale di una quadri-divergenza totale. La carica assiale, nonostante il
carattere anomalo della simmetria U(1)A, sarebbe cos̀ı effettivamente con-
servata. In realtà, l’integrale in (1.38) è non nullo a causa dell’esistenza di
soluzioni delle equazioni del moto per la teoria di pura gauge, dette istantoni
[8], che interpolano tra configurazioni che hanno cariche topologiche differen-
ti (nel caso particolare in cui F sia l’intensità del campo di un istantone si
ha q[F ] = 1 [5]), violando cos̀ı la conservazione della carica assiale.

Quanto fin qui detto potrebbe apparire come la soluzione del problema
U(1): se la simmetria assiale non è più tale a livello quantistico, non c’è
motivo di aspettarsi l’esistenza di un bosone (o pseudo-bosone) di Goldstone
ad essa associato. In realtà le cose non sono affatto cos̀ı semplici. Infatti,
proprio grazie al risultato (1.39) , potremmo definire una corrente

J̃µ
5 = Jµ

5 − 2LKµ (1.40)

che sia a divergenza nulla nel limite chirale, e quindi trovare una carica Q̃5

che sia realmente conservata. Il problema connesso a questa scelta sta nel
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fatto che la corrente (1.40) non è gauge invariante3 e pertanto la carica Q̃5

non può creare, quando viene applicata al vuoto, nessuno stato fisicamente
osservabile 4.

Ad oggi la soluzione più semplice per il problema U(1) sembra essere
quella proposta da Witten [9] e Veneziano [10]: questi hanno cercato di
interpretare la grande massa dell’ η′(958) come conseguenza del carattere
anomalo della simmetria U(1).

1.4.2 Meccanismo di Witten

Assumendo che la simmetria assiale sia spontaneamente rotta sul vuoto della
QCD, Witten avanzò l’ipotesi che il relativo bosone di Goldstone (ossia l’η′

nel caso L = 3) acquisti una massa non nulla nel limite chirale a causa
dell’anomalia. Questa affermazione ha tuttavia senso solo se riusciamo a
individuare certi ”buoni” parametri della teoria che, in un qualche limite,
permettano di sopprimere l’anomalia. Soltanto dopo aver fatto ciò possiamo
provare a capire come la presenza del termine anomalo nella divergenza della
corrente assiale generi una massa per il bosone di Goldstone.

Un valido aiuto in tale direzione è dato dall’espansione 1/Nc proposta da
’tHooft in [36]. Come da questi suggerito, infatti, nel considerare il limite
Nc → ∞ dobbiamo imporre che il prodotto g

√
Nc si mantenga costante al

crescere di Nc, ossia che

g
√

Nc = g0 (1.41)

con g0 fissato. Tale scelta può essere giustificata se consideriamo le equazioni
del gruppo di rinormalizzazione della QCD, in particolare la (1.19) , dalla
quale, a µ e ΛQCD fissati, troviamo che g2 ∼ 1

Nc
.

Witten osservò che è proprio nel limite in cui Nc diviene molto grande che
riusciamo a sopprimere tutti i contributi anomali alle varie grandezze fisiche.
Per esempio, usando la (1.41) , vediamo che la densità di carica topologica
(1.37) si annulla per Nc → ∞, avendosi che

Q ≡ g20
64π2Nc

εµνρσF a
µνF

a
ρσ ∼ 1

Nc

. (1.42)

Riassumiamo ora brevemente il ragionamento proposto da Witten per
spiegare la ”grande” massa dell’ η′. Un ruolo cruciale è svolto dalla funzione

3Lo è, però, nel caso in cui il gruppo di gauge è abeliano, grazie al fatto che, in questo
caso, la carica topologica è sempre nulla.

4Le implicazioni di questa ipotesi, che comporta una rottura spontanea della simmetria
U(1) assiale tramite un ”dipolo di Goldstone”, sono state analizzate in [35]; una review
completa la si trova anche in [2, pag. 307-327].
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χ(k) definita dalla relazione

χ(k) = −i⟨QQ⟩(k) (1.43)

dove con ⟨QQ⟩(k) abbiamo indicato la trasformata di Fourier nello spazio
degli impulsi della funzione a due punti della densità di carica topologica
Q(x):

⟨QQ⟩(k) ≡
∫

d4xeikx⟨TQ(x)Q(0)⟩ (1.44)

dove, per fissare la notazione, per un insieme di generici campi Oi definiamo

⟨TO1O2 . . .⟩ ≡
∫
[dΨ]O1O2 . . . e

iSQCD[Ψ]∫
[dΨ]eiSQCD[Ψ]

, (1.45)

essendo [Ψ] l’insieme di tutti i campi della teoria e [dΨ] la misura funzionale.
Il valore a k = 0 della (1.43) è chiamato ”suscettività topologica” e viene

solitamente indicato con χ:

χ ≡ −i⟨QQ⟩(k = 0) = −i

∫
d4x⟨TQ(x)Q(0)⟩. (1.46)

Se scriviamo χ nella forma 5

χ =
1

V T

i

Zθ

d2Zθ

dθ2
|θ=0 (1.47)

dove

Zθ ≡
∫
[dAµ][dq][dq]

× exp{i
∫

d4x[−1

4
F a
µνF

µν
a + qiγµDµq − qMq + θQ(x)]}

(1.48)

è la funzione di partizione della teoria che include il termine θQ(x), si vede
che se la teoria contiene quarks a massa nulla 6 (i.e., M = 0) allora Zθ

risulta essere indipendente da θ. Se, infatti, eseguiamo una rotazione U(1)
assiale dei campi dei quark q′ → e−iαγ5q e q′ → qe−iαγ5 , con α del tutto
generico, abbiamo che, quando M = 0, L0

QCD è invariante mentre la misura

funzionale sarà data da (si veda la Ref.[7]) [dq′][dq′] = [dq][dq]eαi2L
∫
d4xQ(x);

quindi avremo che

Zθ =

∫
[dA][dq][dq]ei

∫
d4x[LM=0

QCD+(θ+α2L)Q(x)]; (1.49)

5V T =
∫
d4x è un quadri-volume infinito che va fattorizzato nelle funzioni di

correlazione.
6In realtà per provare quanto segue basterebbe che un solo sapore fosse a massa nulla.



1. Le simmetrie chirali della QCD 15

se ora scegliamo un valore particolare per α, ossia α = − θ
2L
, troviamo che

Zθ = Z0. Questo significa che Z è indipendente da θ e pertanto, per la (1.47),
χ si annulla.

Esprimiamo adesso χ(k) come somma di contributi A0, A1, A2, . . . prove-
nienti rispettivamente da diagrammi con 0, 1, 2 . . . loops di quarks, i.e.

χ(k) = A0(k) + A1(k) + A2(2) + . . . (1.50)

e assumiamo che A0(0) ̸= 0 (ossia χ sia non nulla in un mondo senza quarks).
Ognuno di questi contributi è soppresso di 1/Nc rispetto al precedente [36]
e A0 risulta essere di ordine g4N2

c = N0
c . Di conseguenza A1 ∼ 1/Nc, A2 ∼

1/N2
c e via dicendo. Ci chiediamo ora come può χ(k) annullarsi a k = 0

se, come abbiamo assunto, A0(0) ̸= 0 e i termini successivi dello sviluppo
sono soppressi di potenze 1/Nc? Per capire come ciò può avvenire è utile
riscrivere χ(k) come somma sugli stati intermedi: in questo modo avremo
(almeno all’ordine più basso in 1/Nc) che (1.46) sarà una somma sui poli
generati dagli stati di singola particella:

χ(k) = χ(1P ) +
∑

glueballs

a2n
k2 −M2

n

+
∑

mesoni

c2n/Nc

k2 −m2
n

+ . . . (1.51)

dove abbiamo indicato con Mn e mn rispettivamente le masse dell’ nsima-
glueball e dell’ nsimo-mesone e abbiamo posto

an = ⟨0|Q(0)|nsima − glueball⟩

cn/
√
N c = ⟨0|Q(0)|nsimo −mesone⟩

(1.52)

Rispetto all’espansione a grandi Nc, an e cn risultano essere entrambi di
ordine O(N0

c ).
χ(1P ) è un ”termine di contatto” (cioè ”ad un punto”) generato da un

commutatore a tempi uguali ed è necessario per eliminare le ambiguità nella
definizione del prodotto T -ordinato nel limite in cui x → 0 (per una trat-
tazione più dettagliata si vedano le appendici di [9, 37]): esso è necessario
per risolvere un problema di positività che si manifesta quando k = 0. χ(1P )

risulta essere di ordine zero in uno sviluppo in 1/Nc perchè i quark non pos-
sono ”influenzare”, all’ordine dominante in 1/Nc , tale termine 7. Dal punto
di vista del conteggio in potenze di Nc, χ

(1P ) è quindi dello stesso ordine
della somma sugli stati di glueball e la loro somma va quindi identificata con
il termine A0(k) della (1.50) . La somma sugli stati mesonici è, invece di

7Infatti, come ha osservato Witten in [9], non vi sono poli di Goldstone (generati dai
loop fermionici) nelle funzioni ad un punto.
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ordine O
(

1
Nc

)
e va identificata con il contributo dei loop dei quarks A1(k).

[Altri termini sono poi generati dalla somma dei diagrammi con topologia
più complessa e vanno identificati con gli ordini successivi nello sviluppo
(1.50) ]. Dall’espressione (1.51) risulta semplice capire come può avvenire la
cancellazione di A0(0): tutto quello che bisogna fare è assumere l’esistenza
di uno stato mesonico η′ la cui massa quadra sia di ordine 1/Nc . Inoltre
questo stato, poichè accoppia col campo Q(x), deve essere un isosingoletto
pseudoscalare. Per trovare l’espressione di m2

η′ notiamo che deve aversi

c2η′

Ncm2
η′

= A0(0); (1.53)

ricordando che 2LQ = ∂µJ
µ
5 , che ⟨0|∂µJµ

5 |η′(p⃗)⟩ = −ipµ⟨0|Jµ
5 |η′(p⃗)⟩ e che,

per definizione, ⟨0|Jµ
5 |η′(p⃗)⟩ = i

√
2LpµFη′ troviamo che

m2
η′ =

2LA

F 2
π

(1.54)

essendo, all’ordine più basso in 1/Nc , Fη′ ≃ Fπ ≃ 92MeV e avendo indicato
con A ≡ A0(0) la suscettività topologica nella teoria di pura gauge (e nel
limite di grandi Nc). Come vediamo, essendo Fπ = O(

√
Nc) [38] e A =

O(N0
c ), m

2
η′ è di ordine 1/Nc , e quindi si annulla nel limite Nc → ∞.

1.5 I condensati chirali

La realizzazione o meno (alla Wigner-Weyl) di una certa simmetria è legata
all’annullarsi o meno di un parametro d’ordine: questo assume il valore nullo
quando la simmetria è realizzata in maniera esatta mentre assume valori
diversi da zero quando questa è rotta spontaneamente. I valori assunti dal
parametro d’ordine nelle diverse fasi in cui può ”trovarsi” il sistema sono
invarianti sotto trasformazioni del gruppo di simmetria non rotto.

Come abbiamo visto nella sezione precedente, le simmetrie vettoriali sono
realizzate in natura in maniera esatta mentre abbiamo diversi motivi per
credere che l’invarianza sotto trasformazioni assiali sia spontaneamente rotta
(oltre alle violazioni esplicite dovute al termine di massa dei quarks). Per lo
studio della struttura di fase della QCD risulta quindi fondamentale capire
quali siano i parametri d’ordine per queste simmetrie.

1.5.1 Il condensato chirale

Facendo uso delle regole di anticommutazione per i campi dei quarks q,
è possibile mostrare che vale la seguente regola di commutazione a tempi
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uguali:

[QA
a (0), qγ

5Tbq(0)] = −q{Ta, Tb}q(0) =

− 1

L
δabqq(0)− dabcqTcq(0).

(1.55)

Se consideriamo il valore di aspettazione dell’equazione (1.55) sul vuoto |Ω⟩
troviamo che, assumendo SU(L)V realizzata alla Wigner-Weyl:

⟨[QA
a (0), qγ

5Tbq(0)]⟩ = − 1

L
δab⟨qq⟩. (1.56)

Un valore non nullo per il ”condensato chirale” ⟨qq⟩ segnala una rottura
spontanea della simmetria SU(L)A, in quanto per la (1.56) avremmo che
QA

a |Ω⟩ ̸= 0; viceversa, se ⟨qq⟩ = 0 troveremmo che QA
a |Ω⟩ = 0. Viene per-

tanto naturale assumere come parametro d’ordine per la simmetria SU(2)
chirale l’operatore ⟨qq⟩.

Ora, si può facilmente vedere che sotto la trasformazione U(1) assiale

qiR → eiαqiR , qiL → e−iαqiL (1.57)

con, per esempio, α = π
2
, il condensato chirale subisce la trasformazione

⟨qq⟩ = ⟨qiRqiL⟩+ ⟨qiLqiR⟩ → e−iπ⟨qiRqiL⟩+ eiπ⟨qiLqiR⟩ = −⟨qq⟩ (1.58)

ossia non è invariante sotto trasformazioni U(1)A a meno che ⟨qq⟩= 0. Il
condensato chirale rappresenta quindi un parametro d’ordine anche per la
simmetria U(1)A: finchè è diverso da zero anche quest’ultima deve essere
spontaneamente rotta. Non dobbiamo dimenticare, tuttavia, che entrambe
queste simmetrie sono rotte esplicitamente dal termine di massa δLM , per-
tanto il condensato chirale della teoria completa definita da LQCD sarà sempre
diverso da zero. Noi parleremo di rottura spontanea della simmetria chirale
se ⟨qq⟩ è diverso da zero anche quando le masse degli L quarks ”leggeri” sono
nulle.

1.5.2 Restaurazione della simmetria chirale e
U(1) assiale a temperatura finita

Nel precedente paragrafo abbiamo definito il parametro d’ordine come il va-
lore di aspettazione di un certo operatore sullo stato di vuoto. Nel fare
ciò abbiamo assunto che la temperatura fisica T fosse nulla. L’effetto della
temperatura sul calcolo dei valori di aspettazione di operatori quantistici è
quello di restringere l’insieme delle configurazioni dei campi su cui calcolare
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l’integrale funzionale a quelle periodiche all’interno di un intervallo di tempo
euclideo di ampiezza tE = β = 1

kT
.

In particolare, il valore d’aspettazione sul vuoto alla temperatura T di un
generico operatore O è dato da

⟨O⟩T =
Tr[Oe−βH ]

Tr[e−βH ]
(1.59)

dove H è l’hamiltoniana del sistema. L’espressione (1.59) altro non è che
l’espressione quantistica della media sull’ensemble di Gibbs.

Accade che, all’aumentare della temperatura, il valore di aspettazione
del condensato chirale che abbiamo definito nella precedente sezione varia e,
in particolare, si annulla per un certo valore di T , e rimane uguale a zero
sopra di esso, segnalando cos̀ı la restaurazione della simmetria a temperature
superiori.

Per studiare le proprietà di simmetria della QCD al variare di T definiamo
quindi le seguenti temperature:

• Tch : la temperatura alla quale si annulla il condensato chirale ⟨qq⟩ .
La simmetria chirale è spontaneamente rotta al di sotto di Tchmentre
è restaurata al di sopra di essa. Simulazioni numeriche di reticolo
indicano per tale temperatura il valore Tch∼ 150 MeV.

• TU(1) : la temperatura alla quale la simmetria assiale è restaurata (quan-
tomeno in maniera efficace). Come abbiamo visto, essendo ⟨qq⟩un
parametro d’ordine anche per la simmetria assiale, dobbiamo avere che
TU(1)≥Tch ;

• Tχ : la temperatura alla quale la suscettività topologica della teoria
di pura gauge A si annulla. Il meccanismo di Witten implica che
TU(1)≥Tχ .

.
Nello studiare la struttura di fase della QCD dobbiamo quindi valutare i

seguenti possibili scenari:

• SCENARIO I: Tχ<Tch . In questo caso avremo che tra le temperature
Tχ e Tch la simmetria U(1) assiale è ancora rotta dal condensato chirale,
ma gli effetti dell’anomalia sono assenti. In altre parole, in questo
intervallo di temperatura la simmetria assiale è realizzata alla Nambu-
Goldstone e l’η′ è il bosone di Goldstone associato. Questo sarebbe a
massa nulla nel limite chirale o, qualora gli effetti di rottura esplicita
del termine di massa dei quarks fossero tenuti in considerazione, con
una massa prossima a quella del pione [34].
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• SCENARIO II: Tch≤TU(1) , con Tch∼Tχ∼TU(1) . In questo caso, se
L = 2, la simmetria restaurata con la transizione è U(1)A ⊗ SU(2)A ⊗
SU(2)V ∼ O(2) ⊗ O(4) e avremmo una transizione del primo ordine
[39];

• SCENARIO III: Tch≪TU(1) . Con L = 2 la restaurazione della sim-
metria chirale SU(2)A ⊗ SU(2)V ∼ O(4) sarebbe associata ad una
transizione del secondo ordine, con gli esponenti critici di O(4). Al-
cuni dati di reticolo supportano parzialmente questa ipotesi (si veda,
per esempio, la Ref.[40]) mentre altri, sembrano smentirla (si veda, per
esempio, la Ref.[41]): allo stato attuale, quindi, la questione è ancora
controversa.

I dati di reticolo sul comportamento della suscettività topologica A(T )
della teoria di pura gauge [42, 43, 44] mostrano che A(T ) si mantiene all’in-
circa costante fino alla temperatura Tch e subisce una forte soppressione solo
sopra Tch (i.e. Tχ≥Tch ). Come abbiamo visto, nel meccanismo di Witten
la suscettività topologica riveste un ruolo fondamentale, in quanto il suo an-
nullarsi o meno implica l’esistenza di un bosone di Goldstone con gli stessi
numeri quantici dell’ η′. I risultati di reticolo ci portano quindi a escludere
lo SCENARIO I.

Per poter scegliere tra lo SCENARIO II e lo SCENARIO III, DeTar e
Kogut [45] e Shuryak [19] proposero di guardare al comportamento delle
masse dei vari canali mesonici (ossia i bilineari 8 M = qΓq) scalari e pseu-
doscalari in funzione della temperatura T . Infatti, sotto una generica trasfor-
mazione del gruppo di simmetria (esatto o spontaneamente rotto) sui campi
dei quarks i vari mesoni si trasformano tra di loro. Poichè ad ogni sim-
metria realizzata alla Wigner-Weyl è associato un multipletto di particelle
con masse uguali, dovremo avere che stati mesonici ”legati” da una trasfor-
mazione del gruppo non rotto avranno masse uguali; viceversa, stati ottenuti
applicando trasformazioni di simmetria del gruppo rotto ad uno stato in-
iziale avranno masse differenti. L’uguaglianaza o meno delle masse si ri-
flette nell’uguaglianza o meno delle suscettività associate ai suddetti canali
mesonici:

χf =

∫
d4x⟨TMf (x)M†

f (0)⟩. (1.60)

Consideriamo, quindi, i canali mesonici mostrati nella Tabella 1.2 relativi
al caso L = 2.

Per trasformazioni SU(2)A, σ si mescola con il multipletto dei π, mentre
η con quello dei δ. Infatti sotto una trasformazione SU(2)A, i campi dei

8Γ è una matrice che contiene indici di Dirac, flavour e isospin.
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Mesone Operatore interpolante I JP

σ (f0) Oσ = qq 0 0+

δ (a0) O⃗δ = q τ⃗
2
q 1 0+

π O⃗π = iqγ5 τ⃗
2
q 1 0−

η Oη = iqγ5q 0 0−

Tabella 1.2: Canali mesonici per L = 2. Con τ⃗ abbiamo indicato le matrici
di Pauli.

quark si trasformano come{
q → eiγ5θ

a τa

2 q ≃ (1 + iγ5θ
a τa

2
+ . . . )q

q → qeiγ5θ
a τa

2 ≃ q(1 + iγ5θ
a τa

2
+ . . . )

(1.61)

da cui si trova, per esempio, che

qq →q(1 + iγ5θ
a τ

a

2
+ . . . )(1 + iγ5θ

a τ
a

2
+ . . . )q ≃

≃ qq + iθaqγ5τ
aq + . . .

(1.62)

La restaurazione della simmetria chirale a Tch comporta una degenerazione
delle masse di questi canali e quindi correlatori identici. D’altra parte, sotto
trasformazioni U(1)A si ha che η si mescola con σ mentre il π mescola con
il δ. Se costruiamo le ”suscettività chirali” per ognuno dei suddetti canali
mesonici

χl =

∫
d4x⟨TOl(x)O†

l (0)⟩ (1.63)

possiamo definire i seguenti parametri d’ordine relativi, rispettivamente, alla
simmetria SU(L) chirale e U(1) assiale:

χSU(2) ≡ χσ − χπ , χU(1) ≡ χδ − χπ. (1.64)

Se esprimiamo χU(1)A in termini dei campi left e right dei quarks troviamo
che

χU(1) =

∫
d4xDU(1)(x) (1.65)

dove

DU(1)(x) ≡⟨TOδ+(x)O†
δ+(0)⟩ − ⟨TOπ+(x)O†

π+(0)⟩ =
2[⟨TuRdL(x)× dRuL(0)⟩+ ⟨TuLdR(x)× dLuR(0)⟩].

(1.66)
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Quando siamo a temperature minori di Tch il condensato chirale (che ”con-
nette” i campi left e right di un dato sapore) fa s̀ı che la grandezza DU(1)

sia diversa da zero (si veda la Figura 1.1). Risultati ottenuti mediante si-
mulazioni numeriche su reticolo, in cui sono state determinate le masse (di
”screening”) dei mesoni π e δ per L = 2 e T >Tch sembrano indicare che
Mπ ̸= Mδ e χU(1) ̸= 0 fino ad una temperatura TU(1)≃ 1.3 Tch [11, 12, 13, 14],
ovvero che la simmetria U(1) assiale rimane rotta anche sopra la transizione
chirale. Tuttavia, a temperature superiori a Tch il condensato chirale si an-
nulla: un modo per rendere diversa da zero la (1.66) è assumere che esi-
sta un altro condensato locale (si veda la Figura 1.2) che connette 4 campi
fermionici. Questo condensato, che rappresenta un parametro d’ordine per
la simmetria U(1) assiale, deve mantenersi non nullo anche a temperature
superiori a Tch fino a TU(1) .

Figura 1.1: Rappresentazione diagrammatica del contributo a DU(1) dovuto
al condensato chirale.

Figura 1.2: Rappresentazione diagrammatica del contributo a DU(1) dovuto
al condensato U(1) assiale.

1.5.3 Il condensato U(1) assiale

Le osservazioni appena fatte su DU(1)(x) forniscono delle valide indicazioni

per individuare quale sia il condensato assiale C(L)
U(1) (per L generico) che

segnali la rottura spontanea di U(1) assiale. Seguendo le Ref. [15, 16, 17, 18],
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adottiamo per C(L)
U(1) il valore d’aspettazione sul vuoto dell’operatore a 2L

fermioni:

O(L)
U(1) ∼ det

ij

[
qi(

1 + γ5

2
)qj

]
+ h.c. = det

ij
(qiRqjL) + det

ij
(qiLqjR) (1.67)

Assumeremo quindi che

C(L)
U(1) = ⟨O(L)

U(1)⟩ (1.68)

L’operatoreOL
U(1) è stato proposto inizialmente da Kobayashi e Maskawa [20],

come vertice efficace in un’estensione del modello di Nambu–Jona-Lasinio,
e successivamente introdotto da ’tHooft [5] nello studio della Lagrangiana
efficace dei quark nel campo di un istantone

Sotto una generica trasformazione U(L)V ⊗ U(L)A i campi dei quark si

trasformano come in (1.22) e, quindi, il campo O(L)
U(1) si trasforma come

O(L)
U(1) → det(ṼL) det(ṼR)

⋆ det
ij
(qiRqjL) + h.c. (1.69)

da cui vediamo cheO(L)
U(1) è invariante sotto trasformazioni SU(L)V⊗SU(L)A⊗

U(1)V mentre sotto una trasformazione U(1)A

q → e−iαγ5

q

si trasforma come

O(L)
U(1) → e−2iLα det

ij
(qiRqjL) + h.c. (1.70)

Nella (1.67) gli indici i e j si riferiscono al flavour dei quarks; gli indici di
colore non sono esplicitamente indicati, ma devono essere tali che l’operatore
O(L)

U(1) sia un singoletto di colore. Tuttavia, anche imponendo l’invarianza
sotto le trasformazioni del gruppo di gauge rimane una arbitrarietà residua
nell’arrangiare gli indici di colore. Questa può essere completamente rimossa
se si impone che il condensato C(L)

U(1) sia indipendente dal condensato ⟨qq⟩ . Per
far ciò è sufficiente imporre che la parte disconnessa di CL

U(1) (proporzionale

a potenze di ⟨qq⟩ ) sia nulla.

Vediamo, come esempio, quale è l’espressione dettagliata di C(L)
U(1) nel caso

di maggiore interesse per noi, quello in cui L = 2. Per generalità assumeremo
che il gruppo di gauge sia SU(Nc). Il più generale operatore hermitiano locale
senza derivate che sia un singoletto di colore , invariante sotto trasformazioni
di parità e che goda delle proprietà di trasformazione chirale (1.70) è dato
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da (usando le relazioni di Fierz per i campi spinoriali e per i generatori di
SU(Nc) nella rappresentazione fondamentale):

O(L=2)
U(1) (α0, β0) = F ac

bd (α0, β0)ϵ
st
(
q̄a1Rq

b
sL · q̄c2RqdtL + q̄a1Lq

b
sR · q̄c2LqdtR

)
(1.71)

dove a, b, c, d = 1, 2, . . . , Nc sono gli indici di colore e s, t = 1, 2 sono quelli di
sapore 9. Il tensore di colore F ac

bd (α0, β0), funzione di due arbitrari parametri
reali α0 e β0, è dato da

F ac
bd (α0, β0) = α0δ

a
b δ

c
d + β0δ

a
dδ

c
b , (1.72)

mentre ϵst = −ϵts con ϵ12 = 1. Come detto, per ottenere un parametro
d’ordine per la simmetria U(1) assiale, prendiamo il valore d’aspettazione
sul vuoto dell’operatore OU(1), ossia

C(L=2)
U(1) (α0, β0) ≡ ⟨O(L=2)

U(1) (α0, β0)⟩. (1.73)

I parametri α0 e β0 vengono fissati dalla richiesta che il condensato (1.71) sia
indipendente dall’usuale condensato chirale 10 ⟨qq⟩ . Come è stato osservato
da Shifman, Vainshtein e Zakharov in [46], un generico elemento di matrice
nella forma 11 ⟨q̄Γ1q · q̄Γ2q⟩ riceve un considerevole contributo da ⟨q̄q⟩2 gene-
rato dall’inserzione dello stato di vuoto tra tutti i canali; questo contributo
altro non è che la parte disconnessa dell’elemento di matrice iniziale. Più in
particolare avremo che

⟨q̄Γ1q · q̄Γ2q⟩disc =
1

G2
[(TrΓ1 · TrΓ2)− Tr(Γ1Γ2)] ⟨q̄q⟩2; (1.74)

il fattore di normalizzazione G è definito da

⟨q̄AqB⟩ =
δAB

G
⟨q̄q⟩, i.e., G = δAA (1.75)

dove q̄q =
∑

A q̄AqA e A e B sono indici collettivi che includono spin, colore
e flavour (avremo in sostanza che G = 4 · L · Nc). In termini del nostro
operatore OU(1) troviamo che

⟨O(L=2)
U(1) (α0, β0)⟩disc =

1

16Nc

[Nc(2α0 + β0) + (α0 + 2β0)]⟨q̄q⟩2 (1.76)

9Gli indici di Dirac sono invece contratti tra i primi e i secondi campi dei quark e i
terzi e i quarti.

10In realtà risulterà fissato soltanto il loro rapporto.
11Γ1 e Γ2 sono generiche matrici che contengono indici di Dirac, colore e sapore.
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che si annulla se prendiamo α0 e β0 come segue:

β0

α0

= −2Nc + 1

Nc + 2
. (1.77)

In definitiva, abbiamo trovato che la scelta più corretta per il condensato
U(1) assiale (nel senso che è indipendente dal condensato chirale ⟨qq⟩ ) è
data da (a parte un fattore moltiplicativo):

⟨(δab δcd −
2Nc + 1

Nc + 2
δadδ

c
b)ϵ

st
(
q̄a1Rq

b
sL · q̄c2RqdtL + q̄a1Lq

b
sR · q̄c2LqdtR

)
⟩. (1.78)

che nel caso di interesse fisico (Nc = 3) diventa:

C(L=2)
U(1) = ⟨(δab δcd −

7

5
δadδ

c
b)ϵ

st
(
q̄a1Rq

b
sL · q̄c2RqdtL + q̄a1Lq

b
sR · q̄c2LqdtR

)
⟩. (1.79)

Dal risultato (1.78) vediamo una caratteristica non banale del condensato
U(1) assiale: esso risulta essere di ordine O(Nc) rispetto ad una espansione
a grandi Nc (in quanto la parte disconnessa, proporzionale a ⟨qq⟩2 e quindi
a N2

c , è stata posta uguale a zero). A questo stesso risultato si può giungere,
come fatto in Ref.[17], richiedendo che le identità di Ward rilevanti per la
simmetria U(1) assiale siano valide anche con l’aggiunta del condensato U(1)
assiale.

La forma dettagliata del condensato U(1) assiale per L = 3 è stata deter-

minata in [25]. Anche in questo caso, la richiesta che C(L=3)
U(1) sia indipendente

da ⟨qq⟩determina in maniera univoca (a meno di un fattore moltiplicativo)
l’espressione per il condensato chirale.



Capitolo 2

Lagrangiane chirali efficaci

2.1 I gradi di libertà efficaci della QCD

Abbiamo detto nel capitolo precedente che una delle caratteristiche peculiari
della QCD è il cosiddetto ”confinamento”, secondo cui tutti gli stati adroni-
ci osservabili devono essere dei singoletti di colore, cioè stati neutri sotto
l’azione del gruppo SU(3)c. La conseguenza più immediata di tale proprietà
è l’impossibilità di isolare (e quindi osservare direttamente) i singoli gradi di
libertà fondamentali della QCD, che sono i quark e i gluoni. Come abbia-
mo già detto nel Capitolo 1, gli stati fisici della teoria (gli ”adroni”) sono
stati legati di quarks, antiquarks e gluoni, invarianti sotto SU(3) di colo-
re. I gradi di libertà ”efficaci” della QCD possono quindi essere considerati
come operatori composti multilineari nei campi fondamentali e la dinamica
di questi gradi di libertà può essere descritta mediante una Lagrangiana effi-
cace L di bassa energia. Questa deve possedere le stesse proprietà di trasfor-
mazione della Lagrangiana fondamentale (1.7) quando le trasformazioni del
gruppo agiscono sui campi da cui essa dipende. In particolare, per quanto
visto nel capitolo precedente, la Lagrangiana efficace dovrà essere invariante
(nel limite chirale mu = · · · = mL = 0) sotto le trasformazioni del gruppo
G = SU(L)V ⊗ SU(L)A ⊗ U(1)V , mentre sotto trasformazioni U(1)A:

qR → eiαqR , qL → e−iαqL (2.1)

dovrà trasformarsi come [si veda la (1.49) ]:

L → L+ α2LQ(x) (2.2)

25
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2.2 La Lagrangiana chirale efficace di Witten-

Di Vecchia-Veneziano et al.

Una Lagrangiana efficace con cui descrivere la dinamica dei mesoni (detta
”di Witten-Di Vecchia-Veneziano et al.”) che include gli effetti generati dal-
l’anomalia (in uno sviluppo a grandi Nc) e considera gli effetti al primo ordine
delle masse dei quark leggeri è stata proposta in [22, 23, 24] ed ha la forma:

L(U,U †, Q) =L0(U,U
†) +

Bm

2
√
2
Tr[MU +M †U †]+

+
1

2
iQ(x)Tr[logU − logU †] +

1

2A
Q2(x)

(2.3)

dove L0(U,U
†) è la lagrangiana del modello σ:

L0(U,U
†) =

1

2
Tr(∂µU∂µU †)− 1

4
λ2
πTr[(UU † − ρπ · I)2] (2.4)

essendo I la matrice identità. A volte conviene integrare via la variabile
Q nella (2.3) (che equivale ad eseguire la sostituzione Q → − iA

2
Tr[logU −

logU †]) e si trova l’espressione

L(U,U †) =L0(U,U
†) +

Bm

2
√
2
Tr[MU +M †U †]

+
1

8
A
{
Tr[logU − logU †]

}2 (2.5)

Nella (2.3) abbiamo indicato con

• M la matrice di massa dei quarks che entra in δLM ;

• Q(x) = g2

64π2 ε
µνρσF a

µν(x)F
a
ρσ(x) la densità di carica topologica;

• ”A” un coefficiente costante positivo dato dalla suscettività topologica
della teoria di pura gauge:

A = −i

∫
d4x⟨TQ(x)Q(0)⟩|YM (2.6)

La lagrangiana (2.3) è scritta in termini del campo mesonico Uij rappre-
sentato sotto forma di una matrice complessa L× L, le cui parti reali e im-
maginarie costituiscono l’insieme delle 2L2 variabili dinamiche fondamentali
descritte dal modello.
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In termini dei campi dei quarks si ha che:

Uij ∼ qj

(
1 + γ5

2

)
qi = qjRqiL. (2.7)

Sotto la trasformazione di inversione spaziale (x0, x⃗)
P→ (x0,−x⃗) i campi

qiL(x
0, x⃗) e qiR(x

0, x⃗) si trasformano come:{
qiL(x

0, x⃗)
P→ qiR(x

0,−x⃗)

qiR(x
0, x⃗)

P→ qiL(x
0,−x⃗)

(2.8)

Questo implica che il campo mesonico si trasforma secondo la legge

Uij(x
0, x⃗) = qjRqiL(x

0, x⃗)
P→ qjLqiR(x

0,−x⃗) = U †
ij(x

0,−x⃗) (2.9)

ossia
U(x0, x⃗)

P→ U †(x0,−x⃗). (2.10)

Da questa espressione vediamo che le parti reali degli elementi della matrice
U descrivono i gradi di libertà scalari (per esempio, nel caso L = 2, gli stati
σ e δ introdotti nella Tabella 1.2), mentre le parti immaginarie descrivono
gli stati pseudoscalari (sempre nel caso L = 2, gli stati η e π della Tabella
1.2).

Invece, sotto una trasformazione del gruppo chirale U(L)L ⊗ U(L)R

qL → ṼLqL, qR → ṼRqR

il nostro campo efficace mesonico si trasformerà come

U → ṼLUṼ †
R. (2.11)

Vediamo quindi che L0(U,U
†) è invariante sotto il gruppo U(L)V ⊗ U(L)A.

Invece, nel limite chirale (mi = 0), L(U,U †, Q) risulta invariante solo sotto
il sottogruppo SU(L)V ⊗ SU(L)A ⊗ U(1)V , mentre si trasforma come in
Eq.(2.2) sotto la trasformazione U(1) assiale (2.1) . Infatti, per la legge di
trasformazione (2.11) , il campo mesonico U varia secondo la legge U →
e−i2αU ed è immediato verificare che il termine anomalo

1

2
iQ(x)Tr[logU − logU †] +

1

2A
Q2(x) (2.12)

fa s̀ı che la Lagrangiana efficace (2.3) riproduca esattamente la legge di
trasformazione (2.2) . Rispetto ad una espansione a grandi Nc abbiamo vi-
sto che tale termine anomalo risulta essere di ordine 1/Nc essendo tale la Q:
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questa è l’espressione formale del fatto che gli effetti generati dall’anomalia
devono annullarsi nel limite Nc → ∞. Vediamo qui il ruolo di primo piano
che riveste l’espansione 1/Nc se vogliamo avere la possibilità di ”spegnere”
l’anomalia.

Nel modello di Lagrangiana efficace (2.3) -(2.4) , le proprietà di simmetria
dello stato di vuoto sono determinate dal segno del parametro ρπ che compare
nel termine di potenziale V (U,U †) = 1

4
λ2
πTr[(UU †−ρπ ·I)2] della Lagrangiana

(2.4) : a seconda del suo valore, infatti, il punto di minimo di V (che altro
non è che il valore d’aspettazione sul vuoto U del campo mesonico U) as-
sume valori invarianti sotto tutto il gruppo chirale o solamente sotto un suo
sottogruppo. In particolare, se ρπ > 0 la simmetria chirale è spontaneamente
rotta da un valore di U diverso da zero, che si può scegliere essere

U |ρπ>0 =
√
ρπ · I (2.13)

e che è invariante solamente sotto il sottogruppo SU(L)V ; se invece ρπ < 0
allora avremo che

U |ρπ<0 = 0 (2.14)

che è invariante sotto tutto il gruppo SU(L)V ⊗SU(L)A, segnalando cos̀ı che
la simmetria chirale è realizzata alla Wigner-Weyl.

Poichè, come abbiamo visto nel precedente capitolo, la restaurazione o
meno della simmetria chirale è legata alla temperatura T , possiamo includer-
ne gli effetti sul modello che stiamo studiando assumendo che il parametro ρπ
da cui dipende V (U,U †) sia una funzione di T . E’ quindi chiaro che la tempe-
ratura Tρπ alla quale esso si annulla rappresenta, almeno in questo modello,
proprio la temperatura critica Tch alla quale avviene la transizione chirale.
Per riprodurre la struttura di fase della QCD dobbiamo quindi assumere che
il parametro ρπ vari con la temperatura secondo la seguente tabella:

T < Tch T = Tch T > Tch
1
2
F 2
π > 0 0 −1

2
B2

π < 0

Tabella 2.1: Dipendenza del parametro ρπ dalla temperatura

Parametrizzazioni lineari e non lineari. Come abbiamo visto nel Capi-
tolo 1, il teorema di Goldstone ci dice che se una simmetria continua e globale
della Lagrangiana è spontaneamente rotta, allora nello spettro degli stati fisi-
ci compaiono particelle a massa nulla. Oltre a questi bosoni di Goldstone, che
nel nostro caso sono rappresentati dal tripletto dei π (se prendiamo L = 2)
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o dall’ottetto dei mesoni JP = 0− (se L = 3), sono presenti nello spettro
mesonico anche stati ”pesanti”, nel senso che le loro masse risultano essere
dell’ordine di ΛQCD. Tuttavia, a basse energie, questi stati ”pesanti” possono
essere considerati come dei campi statici che sono disaccoppiati da tutti gli
altri e la dinamica della teoria sarà dominata soltanto dai bosoni di Gold-
stone. Un siffatto scenario può essere riprodotto tramite il modello σ (2.4)
se esprimiamo il campo U nella forma non lineare (detta ”decomposizione
polare”):

U(x) = H(x)Γ(x) (2.15)

dove H(x) è una matrice hermitiana L×L e Γ(x) è un elemento generico del
gruppo SU(L).

Se nella (2.4) poniamo ρπ = F 2
π

2
> 0, rompendo cos̀ı spontaneamente la

simmetria chirale, possiamo esprimere U nella forma:

U(x) =

(
Fπ√
2
· I+ H̃(x)

)
ei

√
2

Fπ
Φ(x) (2.16)

dove:

• Fπ√
2
è il valore d’aspettazione sul vuoto del campo U ;

• H̃(x) è una matrice hermitiana che è nulla al minimo di V e descrive
le fluttuazioni dei campi mesonici scalari;

• Φ(x) = 1√
2

∑L2−1
a=1 πa(x)τa + Sπ(x)√

L
I, dove τa sono i generatori dell’al-

gebra di SU(L) nella rappresentazione fondamentale e sono norma-
lizzati secondo la relazione Tr(τaτ b) = 2δab (ovvero: τa = 2T a; per
L = 2, τa (a = 1, 2, 3) sono le matrici di Pauli, mentre, per L = 3, τa

(a = 1, 2, . . . , 8) sono le matrici di Gell-Mann). Questa matrice descrive
le eccitazioni pseudoscalari πa e Sπ, aventi un valore d’aspettazione sul
vuoto uguale a zero.

Sostituendo l’espressione (2.16) nella Lagrangiana (2.4) troviamo che

L0 =
1

2
Tr[∂µH̃∂µH̃] +

1

2

L2−1∑
a=1

∂µπ
a∂µπa

+
1

2
∂µSπ∂

µSπ −
λ2
π

2
F 2
πTr[H̃

2] + . . .

(2.17)

dove i punti di sospensione si riferiscono a termini costanti oppure di ordine
tre o superiore nei campi. Da questa espressione vediamo che:
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• i campi πa(x) e Sπ sono a massa nulla: essi descrivono proprio i bosoni
di Goldstone generati rispettivamente dalla rottura spontanea della
simmetria SU(L) chirale e U(1) assiale;

• le fluttuazioni descritte dal campo H̃(x) hanno masse quadre uguali a
λ2
πF

2
π .

Cos̀ı, finchè la simmetria della Lagrangiana (2.4) sotto le trasformazioni
(2.11) è spontaneamente rotta (i.e. ci troviamo a T < Tch) e noi siamo
interessati a descrivere la dinamica dei gradi di libertà efficaci a bassa ener-
gia (ossia i campi πa e Sπ che sono a massa nulla) possiamo disaccoppiare
gli stati massivi H̃ considerando il limite λ2

π → ∞; cos̀ı facendo, infatti,
queste fluttuazioni avranno una massa infinita e i campi H̃(x) tendono a
zero (limite ”statico”). Per T < Tch potremo, quindi, trascurare in partenza
le fluttuazioni descritte da H̃ ed esprimere il campo mesonico U nella forma

U =
Fπ√
2
ei

√
2

Fπ
Φ (2.18)

essendo Φ la matrice in Eq.(2.16) . Parleremo in questo caso di ”modello-σ
non lineare”.

Questa scelta, tuttavia, eliminando dalla dinamica della teoria i gradi
di libertà massivi, è utile solo finchè la simmetria di L0 è realizzata alla
Nambu-Goldstone. Invece, quando l’invarianza sotto trasformazioni chirali
di L0 è realizzata alla Wigner-Weyl (i.e. ci troviamo a T > Tch) non avremo
più i bosoni di Goldstone (pseudoscalari) che dominano la dinamica a bassa
energia e pertanto non potremo più trascurare i gradi di libertà scalari. In
questo caso dovremo utilizzare per il campo U una parametrizzazione che
tenga in considerazione tutte le variabili dinamiche della teoria (sia scalari
che pseudoscalari), come ad esempio quella lineare (di cui faremo uso nei
successivi capitoli) dove il campo U è espresso nella forma

Uij = aij + ibij (2.19)

essendo aij e bij dei generici coefficienti reali, dipendenti dalle coordinate
spazio-temporali x. Questi coefficienti sono proprio i campi scalari (aij) e
pseudoscalari (bij) della teoria.

Una forma differente di Lagrangiana efficace rispetto a quella in Eq.(2.3)
è stata proposta da ’tHooft e Raby in Ref.[5, 47] e ampiamente studiata (si
veda, ad esempio, la Ref.[39]) in diversi contesti. Per riprodurre in termi-
ni della teoria efficace la rottura della simmetria U(1) assiale della teoria
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fondamentale generata dagli istantoni, ’tHooft [5] sugger̀ı di considerare la
Lagrangiana

L̃(U,U †) = L0(U,U
†) +

Bm

2
√
2
Tr[MU +M †U †] + LI(U,U

†) (2.20)

dove L0(U,U
†) è la solita Lagrangiana del modello σ definita in Eq. (2.4) ,

mentre LI(U,U
†) è un termine della forma

LI = cI [detU + detU †]. (2.21)

che rappresenta, in termini delle nostre variabili efficaci, il vertice di intera-
zione a 2L fermioni generato dal campo di un istantone 1. Con tale termine
si riesce, in effetti, a rompere l’invarianza della (2.20) sotto trasformazioni
U(1)A e a dare una giustificazione della grande massa dell’η′ (si veda, ad
esempio, la Ref.[48]).

Tuttavia, questo termine di rottura della simmetria U(1) assiale non
risulta soddisfacente per due motivi:

• il termine LI non varia ”correttamente” sotto la trasformazione U(1)A
(2.1) : per l’espressione (2.7) del il campo mesonico U si ha infatti che

cI [detU + detU †] → cI [e
−2iLα detU + e2iLα detU †] (2.22)

che non riproduce in alcun modo la legge di trasformazione (2.2) ;

• come ha osservato Witten nella Ref.[22], esso risulta insoddisfacente
anche dal punto di vista dell’espansione 1/Nc : il termine (2.21) quando
viene sviluppato in potenze del campo di singoletto η′ = Sπ, contiene
potenze arbitrariamente grandi del campo η′; tuttavia come spiegato
nelle Ref. [9, 10, 49] le interazioni indotte dall’anomalia devono essere,
all’ordine dominante in 1/Nc , solamente quadratiche in η′.

L’interazione che gode delle corrette proprietà rispetto alle suddette richieste
è invece un termine nella forma (2.12) che, come abbiamo visto, riproduce
la corretta legge di trasformazione (2.2) e, se integriamo la variabile Q dal-
la Lagrangiana (2.3) , troviamo la forma (2.5) che risulta essere soltanto
quadratica nel campo η′, proprio come richiesto dal conteggio in potenze di
Nc.

1Più precisamente il termine ”detU” è generato dal campo di un istantone mentre
”detU†” da quello di un anti-istantone.
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2.3 La Lagrangiana chirale efficace con

l’inclusione del condensato U(1) assiale

La Lagrangiana efficace (2.3) definita nella precedente sezione considera come
parametro d’ordine per le simmetrie SU(L) chirale e U(1) assiale l’usuale con-
densato chirale ⟨qq⟩ : quando questo è diverso da zero sia SU(L)×SU(L) che
U(1)A sono spontaneamente rotte sul vuoto. Tuttavia, se assumiamo che la
restaurazione della simmetria assiale avvenga a temperature superiori di quel-
la alla quale viene ripristinata quella chirale sorge la necessità, come abbiamo
visto nel capitolo precedente, di introdurre un parametro d’ordine relativo
alla sola simmetria U(1)A. Gli effetti di questo condensato sulla dinamica
dei gradi di libertà efficaci possono essere descritti usando una Lagrangiana
efficace che include una variabile di campo X associata al condensato U(1)
assiale.

Per identificare quale debba essere questa variabile è utile richiamare le
identità di Ward derivate dall’invarianza sotto trasformazioni U(1) assiali di
L0

QCD . Si trova che quelle rilevanti sono date da [16]∫
d4x⟨T∂µJ

(L)
5,µ (x)iqγ5q(0)⟩ = 2i⟨qq⟩ (2.23)∫

d4x⟨T∂µJ
(L)
5,µ (x)F

(L)
U(1)(0)⟩ = 2Li⟨O(L)

U(1)(0)⟩ (2.24)

dove J5,µ = qγµγ5q, O(L)
U(1) ∼ [detst(qsRqtL) + detst(qsLqtR)] è l’operatore a 2L

fermioni definito nel precedente capitolo e F (L)
U(1) è un operatore (hermitiano!)

il cui contenuto in termini dei quarks è dato da

F (L)
U(1) ∼ i[det

st
(qsRqtL)− det

st
(qsLqtR)] (2.25)

Se ⟨qq⟩ = 0 ̸= 0 allora la prima di queste identità ci dice che deve esistere
uno stato mesonico interpolato dall’operatore iqγ5q(x). Allo stesso modo,

se ⟨O(L)
U(1)(0)⟩ ̸= 0, la (2.24) implica l’esistenza di uno stato mesonico a 2L

quarks interpolato dall’operatore F (L)
U(1).

Ora, è facile vedere che l’operatore iqγ5q(x) e il condensato chirale ⟨qq⟩
possono essere espressi in funzione di U tramite le relazioni{

iqγ5q ∼ i(TrU − TrU †)
qq ∼ (TrU + TrU †)

(2.26)

In maniera del tutto analoga, definiamo la variabile di campo X (a meno di
costanti moltiplicative) come

X ∼ det
st
(qsRqtL). (2.27)
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Cos̀ı facendo gli operatori F (L)
U(1) e O(L)

U(1) si esprimono in funzione di X come
segue: {

F (L)
U(1) ∼ i(X −X†)

OL
P ∼ (X +X†)

(2.28)

Sotto la trasformazione di parità (2.8) , il campoX si trasformerà secondo
la legge:

X(x0, x⃗)
P→ X†(x0,−x⃗) (2.29)

Invece, come abbiamo già visto nel capitolo precedente, la legge di trasfor-
mazione del campo X sotto l’azione di un elemento del gruppo U(L)⊗U(L)
è data da

X → det(ṼL) det(ṼR)
⋆X. (2.30)

X è quindi invariante sotto il gruppo SU(L)A⊗SU(L)V ⊗U(1)V , mentre sot-
to una trasformazione U(1)A (q → e−iαγ5

q) si trasforma come X → e−2iLαX.

La Lagrangiana chirale L(U,U †, X,X†, Q) che vogliamo costruire deve
godere delle stesse proprietà di simmetria della Lagrangiana fondamentale
anche con l’aggiunta del campo X. In particolare dovrà:

• essere invariante sotto trasformazioni del gruppo U(L)⊗ U(L) trascu-
rando i termini di massa dei quarks e gli effetti generati dall’anomalia
U(1);

• trasformarsi come in Eq.(2.2) sotto l’azione del gruppo U(1)A.

E’ quindi naturale cercare L(U,U †, X,X†, Q) come un’estensione di (2.3) .
La più semplice estensione della (2.3) che tiene conto di quanto appena detto
è data da (si veda la Ref.[15]):

L(U,U †, X,X†, Q) =
1

2
Tr(∂µU∂µU †) +

1

2
∂µX∂µX†

− V (U,U †, X,X†) +
1

2
iQ(x)ω1Tr[logU − logU †]

+
1

2
iQ(x)(1− ω1)[logX − logX†] +

1

2A
Q2(x)

(2.31)
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dove

V (U,U †, X,X†) =
1

4
λ2
πTr[(UU † − ρπ)

2] +
1

4
λ2
X [XX† − ρX ]

2

− Bm

2
√
2
Tr[MU +M †U †]− c1

2
√
2
[X† detU +X detU †].

(2.32)

Nel seguito sarà a volte utile integrare la variabile Q(x) in (2.31) (cos̀ı come
era stato fatto per la (2.3) ) ponendo Q = − iA

2
{ω1Tr[logU − logU †] + (1 −

ω1)[logX − logX†]}. Otteniamo cos̀ı che

L(U,U †, X,X†) =
1

2
Tr(∂µU∂µU †) +

1

2
∂µX∂µX†

− Ṽ (U,U †, X,X†)
(2.33)

avendo posto

Ṽ (U,U †, X,X†) =V (U,U †, X,X†)

− 1

8
A{ω1Tr[logU − logU †] + (1− ω1)[logX − logX†]}2

(2.34)

Tutti i parametri che compaiono in (2.31) e (2.32) sono da considerarsi,
come già detto in precedenza, funzioni della temperatura T . In particolare ci
aspettiamo che il parametro ρX determini il valore d’aspettazione sul vuo-
to del campo X e sia quindi responsabile della realizzazione o meno della
simmetria U(1) assiale. Per riprodurre lo scenario a cui noi siamo interes-
sati, ossia dove TU(1)>Tch , dobbiamo assumere che i suddetti parametri si
comportino in funzione della temperatura come mostrato nella Tabella 2.2.

T < Tρπ Tρπ < T < TU(1) T > TU(1)

ρπ > 0 ρπ < 0 ρπ < 0
ρX > 0 ρX > 0 ρX < 0

Tabella 2.2: Dipendenza dei parametri ρπ e ρX dalla temperatura

Vedremo, nella Sezione 2.6, che nel caso L ≥ 3 si ha sempre Tch=Tρπ . In-
vece, nel Capitolo 3, vedremo che nel caso L = 2 la situazione è più complessa,
avendosi, in tal caso, che Tρπ <Tch<TU(1) .

Per quanto riguarda il parametro ω1, esso deve essere tale da evitare
un comportamento divergente del termine contenente l’anomalia. Nel limite
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chirale, infatti, il valore di aspettazione per il campo U a T >Tch è nullo. Se
A(T ) > 0 per T = Tch l’unico modo per evitare un comportamento singolare
del termine proporzionale a logU e logU † in (2.34) è imporre che

ω1(T ≥ Tch) = 0. (2.35)

Per finire osserviamo che il termine

Lint =
c1

2
√
2
[X† detU +X detU †] (2.36)

ha una forma simile a quello (2.21) proposto da ’tHooft. Tuttavia, nel nos-
tro caso, esso non è stato introdotto per implementare nella Lagrangiana
efficace gli effetti dell’anomalia, in quanto questi sono già stati tenuti in con-
siderazione nella (2.3) . Esso è stato inserito nella Lagrangiana (2.31) perchè
è invariante sotto l’azione delle trasformazioni U(1)A, al contrario di (2.21)
che invece variava secondo la legge (2.22) . Nel nostro modello, il termine
(2.36) rappresenta piuttosto una interazione tra l’usuale campo mesonico e
la variabile X, e in quanto tale esso è invariante sotto tutte le trasformazioni
del gruppo U(L)⊗ U(L).

Tuttavia dal termine (2.36) è possibile ritrovare LI nel caso in cui il campo
X abbia un valore d’aspettazione sul vuoto X diverso da zero, sviluppando
X = Xeiβ in potenze dell’eccitazione β attorno aX (e si trova che: cI =

c1X
2
√
2
).

Possiamo quindi dire che la Lagrangiana (2.31) rappresenta una genera-
lizzazione non solo del modello di Witten-Di Vecchia-Veneziano et al., ma
anche di quello proposto da ’tHooft. Infatti l’introduzione del campo X è
quantomeno utile se vogliamo introdurre il termine a 2L fermioni di ’tHooft
nella Lagrangiana efficace mantenendo le corrette proprietà di trasformazione
richieste dalla teoria fondamentale.

2.4 Spettro di massa, condensato chirale e

suscettività topologica per T <Tch

Le caratteristiche della teoria definita dalla Lagrangiana (2.31) sono state
studiate in [15, 17, 25, 21]. Riassumiamo qui brevemente i risultati trovati
per T <Tch .

2.4.1 Spettro di massa

Trovandoci a T <Tch , per quanto detto nella Sezione 2.2, possiamo eliminare
i campi scalari del modello σ lineare prendendo il limite λπ → ∞ e λX → ∞.
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In questo modo dai termini di potenziale troviamo che i campi U e X devono
soddisfare i seguenti vincoli:

UU † =
√
ρπ · I =

1

2
F 2
π · I , XX† =

√
ρX ≡ 1

2
F 2
X . (2.37)

In virtù di queste relazioni possiamo utilizzare le seguenti parametrizzazioni
non lineari per i campi U e X:

U =
Fπ√
2
e

i
√
2

Fπ
Φ , X =

FX√
2
e

i
√

2
FX

SX (2.38)

dove il campo Φ è quello definito nella (2.18) .
Vediamo quindi che abbiamo due diversi campi di singoletto:

• il campo Sπ che è l’usuale campo di singoletto del gruppo SU(L), che
in termini dei campi dei quarks è dato da

Sπ ∼ i

L2−1∑
i=1

(qiRqiL − qiLqiR) (2.39)

• il campo SX che è uno stato ”esotico” il cui contenuto in quarks è dato
da

SX ∼ i[det
st
(qsLqtR)− det

st
(qsRqtL)]. (2.40)

Sostituendo le parametrizzazioni (2.38) in (2.33) troveremo per la parte
quadratica nei campi della Lagrangiana la seguente espressione

L2 =
1

2
∂µπa∂

µπa +
1

2
∂µSπ∂

µSπ +
1

2
∂µSX∂

µSX − 1

2

(
1

2

∑
il

µ2
i τ

a
ilτ

b
li

)
πaπb

−1

2

(√
2

L

∑
i

µ2
i τ

a
ii

)
πaSπ −

1

2L

∑
i

µ2
iS

2
π

−1

2
c

(√
2L

Fπ

Sπ −
√
2

FX

SX

)2

− 1

2
A

[√
2L

Fπ

ω1Sπ +

√
2

FX

(1− ω1)SX

]2
,

dove si è posto

µ2
i ≡

Bm

Fπ

mi (2.41)

c ≡ c1√
2

(
FX√
2

)(
Fπ√
2

)L

(2.42)
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Dalla (2.41) si può vedere che, nel limite chirale (in cui poniamo mi = 0
con i = 1, 2, . . . , L) lo spettro degli stati fisici è costituito da L2 − 1 stati
di non-singoletto a massa nulla e due stati di singoletto massivi (anche nel
limite non chirale!) le cui masse sono date dagli autovalori della seguente
matrice di mescolamento dei campi Sπ e SX :(

2L(Aω2
1+c)

F 2
π

2
√
L[Aω1(1−ω1)−c]

FπFX

2
√
L[Aω1(1−ω1)−c]

FπFX

2[A(1−ω1)2+c]

F 2
X

)
. (2.43)

Gli autovalori di questa matrice sono uguali a

λ± =
ZL ±

√
Z2

L − 4QL

2
(2.44)

dove abbiamo definito ZL e QL nella seguente maniera:

ZL ≡ 2A[F 2
π(1−ω1)2+LF 2

Xω2
1 ]+2c(F 2

π+LF 2
X)

F 2
πF

2
X

QL ≡ 4ALc
F 2
πF

2
X
.

(2.45)

Tenendo presente che (si vedano le Ref.[15, 21])

Fπ = O(N1/2
c ), FX = O(N1/2

c ), A = O(1), c = O(Nc), (2.46)

questi autovalori risultano, all’ordine più basso in 1/Nc , uguali a{
m2

S1
= 2LA

F 2
π+LF 2

X
= O( 1

Nc
)

m2
S2

=
2c(F 2

π+LF 2
X)

F 2
πF

2
X

= O(1)
(2.47)

mentre i relativi autovettori sono dati daS1 =
1√

F 2
π+LF 2

X

(FπSπ +
√
LFXSX)

S2 =
1√

F 2
π+LF 2

X

(
√
LFXSπ − FπSX)

(2.48)

Gli stati S1 e S2 hanno gli stessi numeri quantici (JP = 0−) e sono
entrambi singoletti di SU(L)V ma hanno un diverso contenuto in quarks.
Infatti, assumendo che FX ≪ Fπ, troviamo che lo stato S1 è essenzialmente
uguale a Sπ, ossia è essenzialmente un bilineare nei campi dei quark; invece
lo stato S2 risulta essere essenzialmente uguale a SX che invece è uno stato
”esotico” costituito da 2L fermioni.

Inoltre anche le loro masse hanno proprietà differenti rispetto all’espan-
sione a grandi Nc. Vediamo infatti che il campo S2 ha una massa non nulla
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O(1) per Nc → ∞, mentre quella del campo S1 si annulla nel limite di grandi
Nc, essendo di ordine O( 1

Nc
). Più in particolare, facciamo adesso vedere che

la particella associata a tale campo è l’η′, ossia il mesone la cui esistenza è
richiesta dal meccanismo di Witten-Veneziano per annullare la suscettività
topologica quando si introducono nella teoria i quarks a massa nulla e ri-
solvere cos̀ı il problema U(1). Facendo uso delle leggi di trasformazione dei
campi U e X sotto trasformazioni U(1) assiali si trova che

J
(L)
5,µ = i[Tr(U †∂µU − U∂µU

†) + L(X†∂µX −X∂µX
†)] (2.49)

che, una volta sostituite le (2.38) , assume la forma

J
(L)
5,µ = −

√
2L∂µ(FπSπ +

√
LFXSX) (2.50)

Facendo uso dei risultati (2.48) possiamo scrivere la (2.50) nella forma

J
(L)
5,µ = −

√
2LFS1∂µS1 (2.51)

dove FS1 =
√

F 2
π + LF 2

X . Dal fatto che la corrente assiale J
(L)
5,µ ha la forma

(2.51) , se ne deduce che essa accoppia soltanto con il campo S1. Come
sappiamo, la costante di decadimento del singoletto è definita dall’elemento di
matrice ⟨0|J (L)

5,µ |S1⟩ e rappresenta l’intensità dell’accoppiamento tra il campo

S1 e la corrente J
(L)
5,µ . Usando la (2.51) troviamo che

⟨0|J (L)
5,µ |S1⟩ = i

√
2LpµFS1 . (2.52)

Abbiamo visto nel capitolo precedente che la massa del singoletto η′ richiesto
dal meccanismo di Witten deve soddisfare la formula di Witten (1.54) , che
lega tra di loro la suscettività topologica A della teoria di pura gauge, la
massa mη′ dello stato η′ e la sua costante di decadimento Fη′ . Come si
vede dalla (2.47) lo stato S1 soddisfa proprio questa relazione e può quindi
essere identificato a tutti gli effetti con l’η′. Lo stato ”esotico” S2 sarà invece
indicato con ηX .

Quanto fin qui detto è valido per L generico. Vediamo però adesso di
capire nel dettaglio cosa succede nel caso ”reale”, in cui, cioè, abbiamo L = 3
sapori leggeri (mu,md ≪ ms ≪ ΛQCD). In questo caso il campo Φ avrà la
forma

Φ =
1√
2

8∑
a=1

πa(x)λ
a +

Sπ√
3
I (2.53)

dove λa (a = 1, 2, . . . , 8) sono le matrici di Gell-Mann. In termini dei gradi di
libertà fisici, avremo che i πa descrivono i mesoni dell’ottetto mentre Sπ è un
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campo di singoletto di SU(3)V bilineare nei campi dei quarks. Sostituendo
l’espressione (2.53) nella (2.41) troviamo che gli stati πi con i = 1, 2, . . . , 7
sono diagonali e hanno masse

m2
π1,2

= m2
π± = B(mu +md) (2.54)

m2
π4,5

= m2
K± = B(mu +ms) (2.55)

m2
π6,7

= m2

K0,K
0 = B(md +ms) (2.56)

dove abbiamo posto B ≡ Bm

2Fπ
; invece gli stati π3, π8, Sπ, SX sono mescolati

dalla matrice

Ã =


B(mu +md)

B∆√
3

√
2
3
B∆ 0

B∆√
3

2
3
B(m̃+ 2ms)

2
√
2

3
B(m̃−ms) 0√

2
3
B∆ 2

√
2

3
B(m̃−ms)

6(Aω2
1+c)

F 2
π

+m2
0

2
√
3[Aω1(1−ω1)−c]

FπFX

0 0 2
√
3[Aω1(1−ω1)−c]

FπFX

2[A(1−ω1)2+c]

F 2
X


(2.57)

dove si è posto m2
0 ≡ 2

3
B(mu +md +ms), m̃ ≡ mu+md

2
e ∆ ≡ mu −md è il

parametro che misura la violazione della simmetria SU(2)V di isospin. Poichè
sperimentalmente la violazione della simmetria di isospin è molto piccola in
natura, possiamo semplificare un pò il problema ponendo ∆ = 0. In questo
limite troviamo che il π3 diventa diagonale e con massa quadra pari a

m2
π3

= m2
π0 = B(mu +md). (2.58)

I rimanenti campi π8, Sπ, SX si mescolano quindi tramite la seguente matrice
di massa quadra:

A =


2
3
B(m̃+ 2ms)

2
√
2

3
B(m̃−ms) 0

2
√
2

3
B(m̃−ms)

6(Aω2
1+c)

F 2
π

+m2
0

2
√
3[Aω1(1−ω1)−c]

FπFX

0 2
√
3[Aω1(1−ω1)−c]

FπFX

2[A(1−ω1)2+c]

F 2
X

 (2.59)

Possiamo determinare gli autovalori della matriceA cercandoli sotto forma di
uno sviluppo in potenze di mi e 1/Nc . Utilizzando i risultati (2.46) troviamo
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che

m2
η =

2

3
B(m̃+ 2ms),

m2
η′ =

6A

F 2
π + 3F 2

X

+
F 2
π

F 2
π + 3F 2

X

· 2
3
B(2m̃+ms),

m2
ηX

=
2c(F 2

π + 3F 2
X)

F 2
πF

2
X

+
3F 2

X

F 2
π + 3F 2

X

· 2
3
B(2m̃+ms) +

+
2A[F 2

π (ω1 − 1) + 3F 2
Xω1]

2

F 2
πF

2
X(F

2
π + 3F 2

X)
. (2.60)

Dalle equazioni (2.54) , (2.58) e (2.60) possiamo vedere che la formula di
Gell-Mann–Okubo (GMO) [29, 50]

3m2
η +m2

π = 4m2
K (2.61)

con m2
K ≡ 1

2
(m2

K± + m2

K0,K
0) = B(m̃ + ms), non è modificata dall’intro-

duzione del campo SX . Questo è dovuto al fatto che la relazione (2.61) è
una conseguenza della rottura del gruppo SU(3)V ⊗ SU(3)A al sottogruppo
SU(3)V ; pertanto l’introduzione di un condensato che rompe la sola simme-
tria U(1)A non può modificare questa relazione. Al contrario, la presenza del
parametro d’ordine U(1) assiale cambia la formula di Witten-Veneziano per
la massa dell’η′ (originariamente derivata in [9, 10]) nella seguente maniera
[17] (

1 + 3
F 2
X

F 2
π

)
m2

η′ +m2
η − 2m2

K =
6A

F 2
π

. (2.62)

Come si vede, l’introduzione del condensato U(1) assiale apporta delle cor-

rezioni di ordine
F 2
X

F 2
π
che tendono a zero quando tale condensato tende a zero,

ossia quando FX → 0. (Naturalmente, se questo condensato fosse assente,
ossia FX = 0, allora il campo ηX acquisterebbe massa infinita e diventerebbe
quindi un campo ”statico”: detto altrimenti, in questo limite SX sarebbe
forzato ad essere zero).

La ”formula generalizzata di Witten-Veneziano” può essere utilizzata per
dare una stima di FX . Usando i valori sperimentali per le masse dei mesoni
[28] e i risultati di reticolo per la suscettività topologica della teoria di pura
gauge A della teoria SU(3) di Yang-Mills [51, 43]:

A ≃ (180± 5MeV)4 (2.63)

troviamo, nei limiti della precisione ad oggi raggiunta, che un valore non
nullo per FX non è da escludere ed ha un limite superiore di

|FX | . 20MeV (2.64)
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a fronte di un valore di Fπ di 92.2(4)MeV. Non ci dimentichiamo, tuttavia,
che questi risultati sono stati ottenuti da un modello che considera solo gli
effetti all’ordine più basso dell’espansione 1/Nc e pertanto può aversi che gli
effetti agli ordini superiori non possono essere trascurati quando prendiamo
il valore reale Nc = 3.

Un’ultima osservazione va fatta a proposito delle relazioni (2.61) e (2.62) :
è stato mostrato in [17] che queste due relazioni non dipendono dal particolare
modello utilizzato e pertanto acquistano il valore di ”teoremi”.

2.4.2 Condensato chirale e suscettività topologica

Per determinare il condensato chirale sfruttiamo il fatto che la derivata di
LQCD rispetto alla massa mi del quark del sapore i, è l’operatore −qiqi. Di

conseguenza la derivata dell’energia di vuoto (ossia V (U,U
†
, X,X

†
) ≡ Vmin)

rispetto alle masse dei quark leggeri darà proprio il valore di aspettazione
⟨qq⟩ :

⟨qiqi⟩ =
∂Vmin

∂mi

(2.65)

essendo V il potenziale in (2.32) . In questo modo troveremo che nella regione
T <Tch (all’ordine dominante nelle masse dei quark e in 1

λ2
π
e 1

λ2
X
)

⟨qiqi⟩ ≃ −1

2
BmFπ, (2.66)

La suscettività topologica va determinata invertendo la matrice di massa
quadra definita dalla Lagrangiana (2.31) dove la densità di carica topologica
Q(x) non è stata integrata. Infatti, ricordando la definizione (1.46) avremo
che χ = −i⟨QQ⟩(k = 0) dove la funzione a due punti di Q(x) è data da

⟨QQ⟩(k) = i(A−1(k))11 (2.67)

e A−1(k) è la matrice inversa di A(k) associata alla parte quadratica nei
campi (Q,SX , Sπ, π1, . . . ) della Lagrangiana (2.31) nello spazio degli impulsi.

Per esempio, nel caso L = 2, si trova che [21]

⟨QQ⟩(k = 0) = iA
µ2
1µ

2
2

A(1−ω1)2+c
c

µ2
1µ

2
2 +

2A
F 2
π
(µ2

1 + µ2
2)

(2.68)

Facendo uso della (2.66) troviamo che nel limite mi → 0,

χ = −i⟨QQ⟩(k = 0) →
sup(mi)→0

−mi⟨qiqi⟩. (2.69)
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2.5 Effetti del condensato U(1) assiale sui

decadimenti dei mesoni pseudoscalari

Gli effetti del condensato U(1) assiale sono stati analizzati anche riguardo
ai decadimenti dei mesoni pseudoscalari. In particolare, in Ref.[26] sono
stati studiati gli effetti sui decadimenti radiativi dell’η e dell’η′ a T = 0 e
in Ref.[27] gli stessi decadimenti a T finita, mentre in Ref.[25] sono stati
analizzati i decadimenti forti di η, η′ e ηX a T = 0. Un confronto tra i dati
sperimentali e le previsioni mostrate in Ref.[26, 27] sembra effettivamente
avvalorare l’ipotesi dell’esistenza di un condensato U(1) assiale; informazioni
sperimentali sul comportamento a T finita non sono ancora disponibili, ma
si spera di ottenerle dallo studio delle collisioni tra ioni pesanti.

Anche l’accordo tra i risultati teorici trovati in Ref.[25] coi dati speri-
mentali per i decadimenti η, η′ → 3π sembra confermare l’esistenza di un
condensato assiale, di intensità FX ≃ 24MeV, che corregge nella giusta ”di-
rezione” i risultati già noti; tuttavia le correzioni apportate dal valore non
nullo di FX alle precedenti previsioni (vedi Ref.[52]) riguardanti i decadimen-
ti η′ → ηπ0π0 e η′ → ηπ+π− non sono in grado di dare l’accordo sperato. Le
correzioni trovate, infatti, abbassano ulteriormente il valore previsto in [52],
già sensibilmente minore del risultato sperimentale 2.

L’analisi dei decadimenti dello stato ηX ha invece permesso di determi-
nare delle relazioni tra la sua massa e la sua larghezza di decadimento che
potrebbero essere utilizzate per identificare questo nuovo stato. I possibili
”candidati” per lo stato ηX , che hanno gli stessi numeri quantici dell’η′ ma
con masse più grandi, sono [28]:

η(1295) : Γtot = 55(5)MeV
η(1405) : Γtot = 51(3)MeV
η(1475) : Γtot = 85(9)MeV
η(1760) : Γtot = 96(70)MeV
η(2225) : Γtot = 185+70

−40 MeV

(2.70)

Tuttavia, per nessuno di questi stati è noto ad oggi con sufficiente precisione
il valore della larghezza di decadimento in, per esempio, tre pioni e pertanto
non si possono ancora avanzare ipotesi concrete su quale potrebbe essere lo
stato ηX .

2Probabilmente la discrepanza tra le previsioni teoriche e le osservazioni sperimen-
tali rispetto a questi ultimi decadimenti è dovuta al fatto che il modello che si utilizza
è piuttosto semplice, essendo un’approssimazione all’ordine più basso in mi e 1/Nc , e
può fornire, quindi, predizioni qualitative o, al massimo, semiquantitative; probabilmente
previsioni migliori si trovano, come già osservato, considerando gli ordini superiori dello
sviluppo 1/Nc .
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2.6 Spettro di massa, condensato chirale e

suscettività topologica per T >Tch nel caso

L ≥ 3

Lo spettro di massa della teoria e le espressioni del condensato chirale e della
suscettività topologica per T >Tch e nel caso L ≥ 3 sono stati ricavati e ana-
lizzati inizialmente in Ref. [15] (si veda anche la Ref. [21]). In questa sezione
vogliamo rifare tale analisi in maniera dettagliata, per poter poi confrontare
i risultati con quelli che ricaveremo nel prossimo capitolo, relativi al caso
L = 2.

2.6.1 Spettro di massa

Abbiamo visto nella Sezione 2.2, che nel modello di Lagrangiana efficace di
Witten-Di Vecchia-Veneziano et al. (2.3) la temperatura di transizione chi-
rale coincide con quella Tρπ alla quale il parametro ρπ cambia segno, passando
da valori positivi (per temperature minori) a valori negativi (per temperature
maggiori). Verificheremo che la stessa cosa vale (almeno per L ≥ 3) anche
nel nostro caso, in cui si considera anche il condensato U(1) assiale.

Secondo la Tabella 2.2 si ha che, per Tρπ < T <TU(1) , ρπ ≡ −1
2
B2

π < 0 e
ρX ≡ 1

2
F 2
X > 0. Per determinare i punti di minimo in questo intervallo di

temperatura parametrizziamo i campi U e X nella forma seguente:

Uij = aij + ibij , X = αeiβ. (2.71)

con (in maniera analoga alla (2.37) ) β = SX

α
, essendo α il valore di aspetta-

zione sul vuoto (diverso da zero!) di α.
Se trascuriamo per un attimo i contributi generati dall’anomalia (ossia

consideriamo l’ordine O(N0
c ) delle quantità di nostro interesse), il potenziale

da minimizzare è quello dato in (2.32) . Con la parametrizzazione (2.71) tale
potenziale è uguale a

V =
1

4
λ2
πTr[(UU †)(UU †)] +

1

4
λ2
πB

2
π(a

2
ij + b2ij)−

Bm√
2
(mijaji − nijbji)

+
1

4
λ2
X

(
α2 − 1

2
F 2
X

)2

− c1

2
√
2
[α cos β(detU + detU †) + iα sin β(detU − detU †)]

(2.72)

dove abbiamo assunto, per generalità, che la matrice di massa M sia com-
plessa: Mij = mij + inij con mij e nij numeri reali. Indicando con U e X
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i valori dei campi U e X nel generico punto stazionario S, troveremo che
questo è determinato dal seguente sistema di equazioni.

∂V
∂aij

|S = 1
2
λ2
πB

2
πaij − Bm√

2
mji + · · · = 0

∂V
∂bij

|S = 1
2
λ2
πB

2
πbij +

Bm√
2
nji + · · · = 0

∂V
∂α

|S = λ2
X

[
α2 − F 2

X

2

]
α− c1

2
√
2
[cos β(detU + detU

†
)

+i sin β(detU
† − detU)] = 0

∂V
∂β

|S = c1
2
√
2
α cos β[tanβ(detU + detU

†
)− i(detU

† − detU)] = 0

(2.73)
dove i puntini di sospensione si riferiscono a termini di ordine due o supe-
riore nei campi. Dai primi due gruppi di equazioni troviamo che all’ordine
dominante in mi, il valore del campo U al punto stazionario è dato da

U =
2Bm√
2λ2

πB
2
π

M † + . . . . (2.74)

dove i puntini di sospensione si riferiscono a termini di ordine due o superiore
nelle masse. L’aver trovato che U ∼ O(m) giustifica, a posteriori, il fatto
di aver trascurato nel sistema (2.73) i termini di ordine superiore a uno nei
campi.

Dall’ultima equazione del sistema (2.73) , troviamo invece che

tan β = i
detU † − detU

detU † + detU
. (2.75)

Se ora assumiamo che la matrice di massa M sia reale e diagonale avremo

che M = M †, e quindi, per la (2.74) , che U = U
†
. Questa uguaglianza

comporta, in virtù della (2.75) , che il valore del campo SX = αβ nel punto
stazionario S è dato da

SX = 0. (2.76)

Facendo uso dei risultati (2.76) e (2.74) , troviamo per α l’equazione

λ2
X

[
α2 − F 2

X

2

]
α =

c1√
2

(
2Bm√
2λ2

πB
2
π

)L

detM (2.77)

Possiamo cercare le soluzioni di questa equazione sotto forma di uno sviluppo
in potenze dim. Se consideriamo, per esempio, il caso L = 3, possiamo porre:

α =α0 + α1mu + α2md + α3ms+

α11m
2
u + α12mumd + α22m

2
d + α33m

2
s + α13mums + α23mdms+

α123mumdms + . . .

(2.78)
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troviamo le seguenti equazioni per i coefficienti α0, α1, α2, . . . :

λ2
Xα0

[
α2
0 −

F 2
X

2

]
= 0 ⇒ α0 = 0 , FX√

2

λ2
X2α

2
0(α1mu + α2md) = 0 ⇒

⇒ α1 = α2 = α3 = 0 (se α0 ̸= 0)

λ2
X2α

2
0(α11m

2
u + α12mumd + α22m

2
d + . . . ) = 0 ⇒

⇒ αij = 0 (se α0 ̸= 0)

λ2
X2α

2
0(α123mumdms + . . . ) = c1√

2

(
2Bm√
2λ2

πB
2
π

)L
detM ⇒

⇒ α0 ̸= 0 , α123 =
c1

λ2
XF 2

X

√
2

(
2Bm√
2λ2

πB
2
π

)L
, αijk = 0 se i = j o i = k o j = k.

(2.79)
Una volta noto il valore dei campi sul punto stazionario possiamo studiare

la matrice delle derivate seconde del potenziale (2.32) per stabilire se si tratta
o meno di un minimo: in questo caso le masse quadre dei vari mesoni sono
proprio gli autovalori della matrice hessiana. Per le derivate seconde del
potenziale (2.32) troviamo che al punto stazionario in esame si ha

∂2V
∂alm∂aij

|S = 1
2
λ2
πB

2
πδilδjm + . . .

∂2V
∂blm∂bij

|S = 1
2
λ2
πB

2
πδilδjm + . . .

∂2V
∂α2 |S = λ2

X

[
3α2

0 −
F 2
X√
2

]
+ . . .

∂2V
∂S2

X
|S = c1√

2α
detU + · · · = c1

FX

(
2Bm√
2λ2

πB
2
π

)L
detM + . . .

(2.80)

dove i puntini di sospensione si riferiscono a ordini superiori in m; le derivate
non indicate risultano essere di ordine O(m) o superiore nel punto S. Vedia-
mo quindi che il punto stazionario definito dalle Eq. (2.74) ,(2.76) e (2.79) è
un minimo per il potenziale V e gli autovalori della forma hessiana sono, al
primo ordine non banale in m, pari a

1

2
λ2
πB

2
π , λ2

XF
2
X , m2

0 ≡
c1
FX

(
2Bm√
2λ2

πB
2
π

)L

detM. (2.81)

che risultano essere tutti positivi per T >Tρπ . Pertanto il punto stazionario
definito dalle (2.74) , (2.76) , (2.79) è effettivamente un punto di minimo e
questi autovalori rappresentano proprio le masse degli stati descritti rispet-
tivamente dai campi aij e bij, α e SX .

Come vediamo, nell’intervallo di temperatura Tρπ < T <TU(1) e nel limite
mi → 0, il valore d’aspettazione sul vuoto del campo U è nullo. I risultati
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trovati ci portano quindi a concludere, come avevamo inizialmente supposto,
che (almeno per L ≥ 3!) nel limite chirale la simmetria SU(L) ⊗ SU(L) è
restaurata per T ≥Tρπ (essendo ⟨UU †⟩ = 0): possiamo quindi porre Tch=Tρπ .
Invece la simmetria U(1) assiale è ancora spontaneamente rotta da un valore
di aspettazione non nullo sullo stato di vuoto del campo X (avendo ⟨XX†⟩ =
1
2
F 2
X) che si mantiene tale per T <TU(1) .
La presenza dell’anomalia comporta, prendendo ω1 = 0 (si veda la dis-

cussione alla fine della Sezione 2.3), l’aggiunta di un termine

A

2α2S
2
X (2.82)

al potenziale (2.72) (o, più in generale, al potenziale (2.32) ). Tuttavia, è
immediato verificare che il punto di minimo che abbiamo determinato per
V minimizza anche Ṽ , essendo SX = 0. L’effetto del termine anomalo è
soltanto quello di ”modificare” la massa quadra del campo SX nella seguente
maniera:

M2
SX

= m2
0 +

2A

F 2
X

. (2.83)

dovem2
0 è definito nella (2.81) . Dal conteggio in potenze di 1/Nc vediamo che

il termine anomalo di questa massa è di ordine O( 1
Nc
): per T >Tch il campo

SX descrive, quindi, il bosone di Goldstone che sarebbe generato dalla rot-
tura della simmetria U(1) assiale nel limite chirale e trascurando l’anomalia;
considerando l’effetto dell’anomalia, esso acquista una massa quadra pro-
porzionale alla suscettività topologica A(T ). In altre parole, esso è proprio
l’η′ per T >Tchma ha un contenuto in quark del tutto differente dall’η′ per
T <Tch , essendo essenzialmente SX ∼ i[detst(qsLqtR)− detst(qsRqtL)].

Una osservazione importante riguarda le proprietà di simmetria dello

stato di vuoto sotto la trasformazione di inversione spaziale P : x⃗
P→ −x⃗.

Abbiamo visto, infatti, che sotto P i campi U e X si trasformano come:{
U(x0, x⃗)

P→ U †(x0,−x⃗)

X(x0, x⃗)
P→ X†(x0,−x⃗)

(2.84)

Vediamo, quindi, che la scelta di una matrice di massa reale e diagonale 3

comporta l’invarianza sotto trasformazioni di parità dello stato di vuoto della

teoria, avendosi che U = U
†
e X = X

†
.

3Più in generale, per quanto appena visto, basterebbe richiedere soltanto che M fosse
hermitiana.
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In effetti, questa è una proprietà del tutto generale di cui faremo uso
nel capitolo successivo per analizzare il modello nel caso L = 2. Infatti, il
termine di massa δLM che rompe esplicitamente la simmetria di LQCD può
essere interpretato come un vero e proprio termine di interazione tra un
campo esterno ”M” e i gradi di libertà del nostro sistema. L’effetto di tale
interazione è quello di rimuovere la degenerazione degli stati di minimo per il
potenziale forzando la ”scelta” su quel particolare vuoto che possiede le stesse
proprietà di simmetria del termine di rottura esplicita (si parla di condizione
di ”allineamento del vuoto” [53]).

Cos̀ı, se avessimo avuto una matrice M non hermitiana, il termine di
massa in LQCD sarebbe stato della forma

δLM = −qRMqL − qLM
†qR = −q[A+ iγ5B]q (2.85)

con A e B definiti come

A ≡ M +M †

2
, B ≡ i

M † −M

2
. (2.86)

Come vediamo, se M ̸= M †, il termine B (che viola P ) sarebbe non nullo e
δLM avrebbe portato ad una scelta del vuoto non P -invariante.

Un’ultima osservazione va fatta a proposito della temperatura Tχ alla
quale si annulla la suscettività topologica della teoria di pura gauge A(T ).
Onde evitare un comportamento singolare di m2

SX
per T →TU(1) , dobbiamo

avere che la temperatura Tχ (alla quale la suscettività topologica A(Tχ) si
annulla) sia minore di (o al più uguale a) TU(1) . Questa osservazione ci por-
ta a concludere che potrebbe quindi esistere, se fosse proprio Tχ<TU(1) , un
intervallo di temperatura che ha per estremi Tχ e TU(1) in cui, essendo nul-
la A(T ), lo stato SX (ovvero l’η′) sarebbe proprio il bosone di Goldstone
generato dalla rottura di U(1)A, a massa nulla nel limite chirale.

2.6.2 Condensato chirale e suscettività topologica

Facendo uso della espressione (2.65) e dei risultati (2.74) , (2.76) e (2.79) ,
possiamo determinare il condensato chirale per L ≥ 3 a temperature T >Tch .
All’ordine più basso nelle masse si trova che

⟨qiqi⟩ ≃ − B2
m

λ2
πB

2
π

mi −
1

2
c1FX

(
2Bm√
2λ2

πB
2
π

)L∏
k ̸=i

mk + . . . . (2.87)
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Come vediamo, il condensato si annulla nel limite chirale segnalando la
restaurazione della simmetria chirale: la violazione di questa simmetria è,
quindi, generata solamente alla rottura esplicita dovuta alla presenza del
termine di massa δLM . L’espressione (2.87) è la somma di due contributi

⟨qiqi⟩ = O1(mi) +O2(
∏
k ̸=i

mk), (2.88)

la cui interpretazione diagrammatica è piuttosto semplice: il primo di questi
(mostrato in Figura 2.1) è dato da un diagramma con una inserzione del
termine di massa, mentre il secondo termine è generato da una inserzione del

Figura 2.1: Diagramma corrispondente al termine O1(mi) nella (2.88) .

vertice efficace a 2L fermioni associato al condensato U(1) assiale (Figura
2.2).

Figura 2.2: Diagramma per il termine O2(
∏

k ̸=i mk).

Per trovare la suscettività topologica si procede come è stato fatto nel
Paragrafo 2.4.2 tenendo presente che, nell’intervallo di temperatura di nostro
interesse, la matrice A(k) per l’insieme dei campi (Q(x), SX , b11, . . . ) sarà
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data da 4

A(k) =


1
A

−
√
2

FX
0 . . .

−
√
2

FX
k2 −m2

0 O(mL−1) . . .

0 O(mL−1) k2 − 1
2
λ2
πB

2
π . . .

...
...

...
. . .

 (2.89)

Eseguendo i calcoli troviamo che

⟨QQ⟩(k) = i(A−1(k))11 = iA
k2 −m2

0

k2 −m2
SX

(2.90)

per cui

⟨QQ⟩(k = 0) = iA
m2

0

m2
SX

= iA
m2

0

m2
0 +

2A
F 2
X

. (2.91)

Nel limite mi → 0 troveremo quindi che

χ ≡ −i⟨QQ⟩(k = 0) ≃ F 2
X

2
m2

0 =
1

2
c1FX

(
2Bm√
2λ2

πB
2
π

)L

detM. (2.92)

Confrontando questa espressione per la suscettività topologica con quella
per il condensato chirale (2.87) si ricava la seguente relazione

χ = −mlO2(
∏
k ̸=l

mk). (2.93)

Questa relazione è stata ottenuta sia in [15] (con il procedimento appe-
na illustrato) che in [16] in maniera più generale, come conseguenza della
saturazione delle identità di Ward per la simmetria U(1) assiale all’ordine
dominante in m e 1/Nc . Vedremo nel prossimo capitolo che questa relazione
risulterà (correttamente) verificata anche nel caso L = 2.

4La matrice A(k) risulta essere diagonale a blocchi, in quanto i settori scalare e pseu-
doscalare della teoria sono del tutto disaccoppiati. Questa è una delle implicazioni della
P -invarianza del vuoto.
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Capitolo 3

Predizioni del modello nel caso
di 2 flavours leggeri per T >Tch

Nel presente capitolo studieremo la lagrangiana efficace (2.31) nel caso par-
ticolare in cui L = 2. In questo caso i quark leggeri sono quelli up e down
e pertanto assumeremo che mu ∼ md ∼ 0. La teoria con 2 flavours leggeri
a T >Tch riveste un interesse particolare per noi dal momento che possiamo
confontare le previsioni del modello che stiamo esaminando con i risultati
delle simulazioni su reticolo [11, 12, 13, 14]. Come vedremo, questi risultati
sembrano essere in accordo con le previsioni derivate dal nostro modello.

Come è già stato fatto nel capitolo precedente, anche qui ricaveremo i
nostri risultati dapprima all’ordine dominante in uno sviluppo in potenze
di 1/Nc , s̀ı da vedere quali sarebbero le predizioni nel nostro modello nel
limite in cui possiamo trascurare l’anomalia. In un secondo momento, quindi,
cercheremo gli ordini successivi in 1/Nc generati dai contributi anomali.

Dopo aver fissato la notazione e definito le variabili di campo che de-
scrivono gli stati mesonici per L = 2 (già introdotti nel Capitolo 1), cer-
cheremo i punti di minimo del potenziale. La conoscenza di tali punti ci
permetterà non solo di determinare le masse dei mesoni descritti dalle nostre
variabili di campo efficaci ma anche di comprendere meglio la struttura di
fase della teoria nel caso L = 2.

Per finire, determineremo le espressioni per il condensato chirale e la
suscettività topologica.

3.1 La lagrangiana efficace per Tch < T < TU(1)

Abbiamo visto nel precedente capitolo che per L ≥ 3 il valore U del campo
mesonico U che rende minimo il potenziale (2.32) (o, nel caso in cui conside-

51
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riamo l’anomalia, il potenziale (2.34) ) dipende essenzialmente dal segno del
parametro ρπ. Infatti, quando questo è negativo si ha che U = 0 nel limite
chirale mi = 0, i = 1, 2, . . . , L (segnalando che la simmetria chirale è rea-
lizzata alla Wigner-Weyl), mentre se ρπ è positivo abbiamo che U ̸= 0 (che
indica una rottura spontanea della simmetria chirale). Questo ci ha portati
a identificare la temperatura di transizione chirale Tch con la temperatura
Tρπ alla quale ρπ = 0.

Analizziamo, quindi, anche per L = 2, la Lagrangiana efficace del nostro
modello nell’intervallo di temperatura Tρπ < T <TU(1) . Come detto, iniziamo
la nostra analisi trascurando tutti i contributi generati dall’anomalia.

Secondo la tabella (2.1) , nel suddetto intervallo di temperatura, si avrà
che

ρπ ≡ −1

2
B2

π < 0 , ρX ≡ 1

2
F 2
X > 0 (3.1)

Pertanto il termine di potenziale (2.32) della nostra Lagrangiana efficace sarà
dato da

V (U,U †, X,X†) =
1

4
λ2
πTr

[(
UU † +

1

2
B2

π · I
)2
]
+

1

4
λ2
X

(
XX† − 1

2
F 2
X

)2

− Bm

2
√
2
Tr[M(U + U †)]− c1

2
√
2
[X† detU +X detU †].

(3.2)

Integrando il campoQ(x) in Eq.(2.31) troviamo (ponendo ω1 = 0) la seguente
espressione per il potenziale:

Ṽ (U,U †, X,X†) =
1

4
λ2
πTr

[(
UU † +

1

2
B2

π · I
)2
]
+

1

4
λ2
X

(
XX† − 1

2
F 2
X

)2

− Bm

2
√
2
[M(U + U †)]− c1

2
√
2
[X† detU +X detU †]

− 1

8
A[logX − logX†]2

= V (U,U †, X,X†)− 1

8
A[logX − logX†]2.

(3.3)

Per i nostri scopi dobbiamo esprimere U come la più generale matrice
complessa 2 × 2, che sarà quindi parametrizzata da 8 parametri reali. La



3. Predizioni del modello nel caso di 2 flavours leggeri per T >Tch 53

forma per U di più immediata interpretazione fisica (in un senso che sarà
meglio precisato a breve) è quella nella forma

U =
1√
2
(σ + iη)I+

1√
2
(δ⃗ + iπ⃗) · τ⃗ (3.4)

dove ”τa” (a = 1, 2, 3) sono le matrici di Pauli (Tr(τaτ b) = 2δab) e il fattore
moltiplicativo ” 1√

2
” è stato introdotto per normalizzare correttamente il ter-

mine cinetico della lagrangiana efficace (2.31) . In maniera esplicita la (3.4)
si scrive

U =
1√
2

(
σ + δ3 + i(η + π3) δ1 + π2 + i(π1 − δ2)
δ1 − π2 + i(π1 + δ2) σ − δ3 + i(η − π3)

)
. (3.5)

Il vantaggio di utilizzare la parametrizzazione (3.4) rispetto ad una più
generica del tipo

Uij = aij + ibij

con aij, bij ∈ R, sta nel fatto che i parametri della forma (3.4) rappre-

sentano proprio i gradi di libertà mesonici scalari σ (I = 0), δ⃗ (I = 1) e
pseudoscalari η (I = 0) e π⃗ (I = 1), introdotti nella Tabella 1.2 nel Capitolo
1.

Per il campo X useremo invece la forma esponenziale

X = αeiβ (3.6)

dove

β =
SX

α
(3.7)

essendo α il valore di aspettazione sul vuoto (diverso da zero!) di α.
La matrice di massa M sarà invece data da

M =

(
mu 0
0 md

)
(3.8)

I vari termini che compaiono nel potenziale (3.2) si scrivono, in funzione
delle variabili che parametrizzano i campi U e X secondo le espressioni (3.4)
e (3.6) , nella seguente maniera:

•
Tr[M(U + U †)] =

√
2[(mu +md)σ + (mu −md)δ3] (3.9)

•
Tr[UU †] = σ2 + η2 + δ⃗2 + π⃗2 (3.10)
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•

Tr[(UU †)2] = [
1

2
(σ2 + η2 + δ⃗2 + π⃗2)2 + 2(σδ⃗ + ηπ⃗)2 + 2(π⃗ ∧ δ⃗)2] (3.11)

•

detU =
1

2
[σ2 − η2 + π⃗2 − δ⃗2 + 2i(ση − δ⃗ · π⃗)]

detU † =
1

2
[σ2 − η2 + π⃗2 − δ⃗2 − 2i(ση − δ⃗ · π⃗)]

(3.12)

Facendo uso di questi risultati, si trova che il potenziale (3.2) si esprime
in funzione delle nostre variabili come

V =
1

8
λ2
πB

4
π +

1

8
λ2
π(σ

2 + η2 + π⃗2 + δ⃗2)2 +
1

2
λ2
π(σ

2δ⃗2 + 2σηδ⃗ · π⃗ + η2π⃗2)

+
1

2
λ2
π[π⃗

2δ⃗2 − (π⃗ · δ⃗)2] + 1

4
λ2
πB

2
π[σ

2 + η2 + δ⃗2 + π⃗2] +
1

4
λ2
X

[
α2 − F 2

X

2

]2
− Bm

2
[(mu +md)σ + (mu −md)δ3]

− c1

2
√
2
[α cos β(σ2 − η2 − δ⃗2 + π⃗2) + 2α sin β(ση − δ⃗ · π⃗)].

(3.13)

Il potenziale Ṽ definito nella (3.3) , sarà dato, invece, da

Ṽ (U,U †, X,X†) = V (U,U †, X,X†) +
1

2
Aβ2. (3.14)

3.2 Studio del potenziale e dello spettro di

massa per T >Tch

Ovviamente, i punti di minimo del potenziale (3.13) vanno cercati tra i
”punti stazionari” dove le derivate prime rispetto ai vari campi si annullano:
questo significa che dobbiamo risolvere un sistema di 10 equazioni. Tra le
soluzioni cercheremo quelle corrispondenti a punti di minimo studiando la
matrice hessiana delle derivate seconde. Come noto, da un punto di vista
fisico, gli autovalori di tale matrice (se positivi!) non sono altro che le masse
quadre degli stati fisici descritti dal modello.
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3.2.1 Equazioni per i punti stazionari

Le derivate di (3.2) rispetto ai campi della teoria sono date da

∂V

∂α
= λ2

X [α
2−F 2

X

2
]α− c1

2
√
2
[cos β(σ2−η2−δ⃗2+π⃗2)+2 sin β(ση−δ⃗ ·π⃗)] (3.15)

∂V

∂β
=

c1

2
√
2
α[sin β(σ2 − η2 − δ⃗2 + π⃗2)− 2 cos β(ση − δ⃗ · π⃗)]

=
c1

2
√
2
α cos β[tanβ(detU + detU †)− i(detU † − detU)]

(3.16)

∂V

∂σ
=
1

2
λ2
π(σ

2 + η2 + δ⃗2 + π⃗2)σ + λ2
πσδ⃗

2 ++λ2
πηδ⃗ · π⃗ +

1

2
λ2
πB

2
πσ

− Bm

2
(mu +md)−

c1√
2
α[σ cos β + η sin β]

(3.17)

∂V

∂η
=
1

2
λ2
π(σ

2 + η2 + δ⃗2 + π⃗2)η + λ2
πηπ⃗

2

+ λ2
πσδ⃗ · π⃗ +

1

2
λ2
πB

2
πη +

c1√
2
α[η cos β − σ sin β]

(3.18)

∂V

∂πi

=
1

2
λ2
π(σ

2 + η2 + δ⃗2 + π⃗2)πi + λ2
πσηδi + λ2

ππiη
2

+ λ2
π[πiδ⃗

2 − (π⃗ · δ⃗)δi] +
1

2
λ2
πB

2
ππi −

c1√
2
α[πi cos β − δi sin β]

(3.19)

∂V

∂δi
=
1

2
λ2
π(σ

2 + η2 + δ⃗2 + π⃗2)δi + λ2
πσηπi + λ2

πσ
2δi + λ2

π[π⃗
2δi − (π⃗ · δ⃗)πi]

+
1

2
λ2
πB

2
πδi +

c1√
2
α[δi cos β + πi sin β]−

Bm

2
(mu −md)δi3.

(3.20)

Imponendo che ognuna di queste derivate sia uguale a zero troviamo il
sistema di equazioni per i punti stazionari del nostro potenziale. Tuttavia,
la soluzione di un siffatto sistema risulta niente affatto agevole a causa del-
l’elevato numero di incognite in gioco. Sarebbe quindi auspicabile avanzare
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delle ipotesi che permettano di ridurre il numero di incognite e di equazioni
da risolvere, e di semplificare la risoluzione di quelle rimanenti.

Per prima cosa, richiamiamo brevemente quanto già osservato, analizzan-
do il caso L ≥ 3, a proposito delle proprietà di simmetria del vuoto sotto
l’inversione spaziale P . Poichè la matrice di massa dei quark (3.8) è her-
mitiana, il termine di massa δLM , che rompe esplicitamente le simmetrie
SU(L) chirale e U(1) assiale, risulta essere P -invariante. Quindi lo stato
di vuoto, dovendo, per cos̀ı dire, ”allinearsi” al campo esterno M , risulterà
anch’esso invariante sotto trasformazioni di parità. Vedremo tra breve che
questa proprietà del vuoto permette di dimezzare il numero di incognite e,
quindi, di equazioni da risolvere, in quanto lascia indeterminati soltanto i
valori di minimo dei campi scalari.

Le implicazioni della P -invarianza del vuoto sulla forma della Lagrangiana
sviluppata attorno al suo punto di minimo sono di non secondaria importan-
za: in particolare, le derivate seconde miste del potenziale rispetto ad un
campo scalare ed uno pseudoscalare calcolate al punto di minimo di V risul-
tano nulle. Vediamo quindi che l’invarianza dello stato di vuoto sotto parità
comporta che i settori scalare e pseudoscalare della teoria sono del tutto di-
saccoppiati nella matrice di massa.

Poichè, come abbiamo visto nella (2.84) , l’operazione di parità agisce sui
nostri campi U e X nella seguente maniera:

U
P→ U † , X

P→ X†,

possiamo affermare che i campi η e πi si devono annullare al punto di minimo

del potenziale (affinchè si abbia che U = U
†
). Per motivi analoghi, dovendosi

avere che X = X
†
, troveremo che β = 0. Osserviamo che, in realtà, questo

risultato può essere ricondotto, in virtù dell’Eq. (2.75) , al fatto che U = U
†
.

Infatti, per risolvere le equazioni (2.73) per α e β non si è fatto in alcun
modo uso dell’ipotesi L ≥ 3 ma soltanto dell’invarianza del vuoto sotto P e
quindi l’equazione (2.75) per β è valida per L generico.

Ponendo uguale a zero la derivata (3.20) vediamo che, essendo1 c1 > 0,
anche i valori d’aspettazione sul vuoto dei campi δ1 e δ2 sono nulli. In questo
caso, il fatto che δ1 e δ2 siano uguali a zero sul punto di minimo di V è dovuto
direttamente alla nostra scelta della matrice di massa dei quarks (3.8) reale
e diagonale.

1In caso contrario avremmo che l’autovalore m2
S2

in (2.47) della matrice di massa
quadra (2.43) sarebbe negativo .
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In definitiva, rimangono da risolvere le seguenti tre equazioni per i valori
α, σ e δ3:

1
2
λ2
π(σ

2 + δ
2

3)σ + λ2
πσδ

2

3 +
1
2
λ2
πB

2
πσ − c1√

2
ασ − Bm

2
(mu +md) = 0

1
2
λ2
π(σ

2 + δ
2

3)δ3 + λ2
πσ

2δ3 +
1
2
λ2
πB

2
πδ3 +

c1√
2
αδ3 − Bm

2
(mu −md) = 0

(3.21)

λ2
X

[
α2 − F 2

X

2

]
α− c1√

2
detU = 0. (3.22)

Osserviamo, per iniziare, che nel limite di simmetria SU(2)V (isospin)
esatta (ossia nel limite in cui mu = md) anche il campo δ3 si annulla sul
vuoto nonostante le masse dei quarks siano non nulle. Vedremo che questo
rimarrà vero anche nel caso più generale se ci si limita alle correzioni lineari
in mu e md.

Sommando e sottraendo le prime due equazioni e utilizzando l’espressione
(3.12) per riscrivere detU nell’equazione per α, troviamo il seguente sistema2:

1
2
λ2
π(σ + δ)3 + 1

2
λ2
πB

2
π(σ + δ)− 1√

2
c1α(σ − δ) = Bmmu

1
2
λ2
π(σ − δ)3 + 1

2
λ2
πB

2
π(σ − δ)− 1√

2
c1α(σ + δ) = Bmmd

c1
2
√
2
(σ − δ)(σ + δ) = λ2

Xα
[
α2 − F 2

X

2

] (3.23)

Se adesso poniamo
a ≡ σ + δ

b ≡ σ − δ
(3.24)

le equazioni (3.23) si scrivono nella forma

1
2
λ2
πa

3 + 1
2
λ2
πB

2
πa− 1√

2
c1αb = Bmmu

1
2
λ2
πb

3 + 1
2
λ2
πB

2
πb− 1√

2
c1αa = Bmmd

c1
2
√
2
ab = λ2

Xα
[
α2 − F 2

X

2

] (3.25)

Fino a questo momento abbiamo sfruttato soltanto la proprietà di inva-
rianza dello stato di vuoto sotto l’inversione spaziale. Tuttavia, nonostante

2Nel seguito, per non appesantire la notazione, indicheremo con δ il valore di
aspettazione del campo δ3 sullo stato di vuoto, ossia δ ≡ δ3.



58 3. Predizioni del modello nel caso di 2 flavours leggeri per T >Tch

questo ci abbia permesso di semplificare notevolmente l’insieme di equazioni
da risolvere, il sistema (3.25) manifesta ancora una certa complessità che
lo rende di non facile risoluzione. Tale complessità è essenzialmente dovu-
ta alla presenza di termini non omogenei generati dal termine di massa nel
potenziale (3.2) . Questo, come abbiamo visto, contribuisce al potenziale e
alle nostre equazioni per il punto stazionario con termini proporzionali alle
masse mu e md. Nel caso che stiamo esaminando, però, tali termini possono
essere considerati come delle piccole perturbazioni. Possiamo, quindi, cercare
le soluzioni del nostro sistema sotto forma di uno sviluppo in potenze di tali
masse. Da un punto di vista ”pratico”, questo corrisponde a determinare
le grandezze di nostro interesse cercando in un primo momento le soluzioni
nel limite chirale e, successivamente, determinando le correzioni (in genere
al primo o al secondo ordine) apportate dalle masse.

Tenendo presenti le osservazioni appena fatte, possiamo quindi procedere
cercando le soluzioni del sistema (3.25) nel limite in cui mu = md = 0:

1
2
λ2
πa

3 + 1
2
λ2
πB

2
πa− 1√

2
c1αb = 0

1
2
λ2
πb

3 + 1
2
λ2
πB

2
πb− 1√

2
c1αa = 0

c1
2
√
2
ab = λ2

Xα[α
2 − F 2

X

2
]

(3.26)

La soluzione più immediata e, in certo senso, anche più ovvia (dato che
è analoga a quella trovata per L ≥ 3) è data da

a = b = 0

α = FX√
2

(3.27)

cioè 
σ = 0

δ = 0
α = FX√

2

(3.28)

I valori in (3.28) individuano un punto stazionario del potenziale per
qualsiasi temperatura nell’intervallo Tρπ < T <TU(1) , proprio come avveniva
per L ≥ 3. Tuttavia, a differenza di quest’ultimo caso (per cui U = 0 era
di fatto un minimo per qualsiasi temperatura [e quindi Tρπ =Tch ]), faremo
vedere che nel nostro caso (L = 2) questa soluzione sarà un punto di minimo
solamente al di sopra di un ben determinato valore di T =Tch strettamente
più grande di Tρπ , mentre per Tρπ < T <Tch essa corrisponderà ad un ”punto
di sella” del potenziale.
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3.2.2 Ordini successivi dello sviluppo

Come detto, possiamo adesso provare a determinare le correzioni in mu e
md ai valori (3.28) di minimo per σ e δ cercandoli, all’ordine più basso nelle
masse dei quark, nella forma

σ = α1mu + α2md + ...

δ = β1mu + β2md + ...
(3.29)

Sostituendo la soluzione per T >Tch nella (3.25) si trova il seguente sistema
per i coefficienti α1, α2, β1, β2

1
2
λ2
πB

2
π(α1 + β1)mu +

1
2
λ2
πB

2
π(α2 + β2)md

−c1FX(α1 − β1)mu − c1FX(α2 − β2)md = 2Bmmu

1
2
λ2
πB

2
π(α1 − β1)mu +

1
2
λ2
πB

2
π(α2 − β2)md

−c1FX(α1 + β1)mu − c1FX(α2 + β2)md = 2Bmmd

(3.30)

da cui troviamo, imponendo l’uguaglianza dei termini proprozionali a mu e
md, il seguente sistema di equazioni per i coefficienti α1 e β1

λ2
πB

2
π(α1 + β1)− c1FX(α1 − β1) = 2Bm

λ2
πB

2
π(α1 − β1)− c1FX(α1 + β1) = 0

(3.31)

mentre i coefficienti α2 e β2 sono determinati dalle equazioni
λ2
πB

2
π(α2 + β2)− c1FX(α2 − β2) = 0

λ2
πB

2
π(α2 − β2)− c1FX(α2 + β2) = 2Bm

(3.32)

Le soluzioni di questi due sistemi sono date da{
α1 = α2 =

Bm

λ2
πB

2
π−c1FX

β1 = −β2 =
Bm

λ2
πB

2
π−c1FX

(3.33)

Pertanto al primo ordine non banale inm i nostri punti stazionari a T >Tch sono
dati da {

σ = Bm

λ2
πB

2
π−c1FX

(mu +md) + . . .

δ = Bm

λ2
πB

2
π+c1FX

(mu −md) + . . .
(3.34)

Come ci aspettavamo, vediamo che anche all’ordine lineare inm, nel limite
di isospin, il campo δ assume un valore di aspettazione sul vuoto nullo.



60 3. Predizioni del modello nel caso di 2 flavours leggeri per T >Tch

In maniera analoga, è possibile determinare le correzioni ad α . Sostituen-
do l’espressione generica

α =
FX√
2
+ η1mu + η2md + η11m

2
u + η12mumd + η22m

2
d + . . . (3.35)

nella (3.25) , con σ e δ date dalla (3.34) , troviamo

α =
FX√
2
+

√
2

FXλ2
X

(
Bmc1λπBπ

λ4
πB

4
π − c21F

2
X

)2

(m2
u +m2

d)

+

√
2c1

F 2
Xλ

2
X

B2
m

λ4
πB

4
π + c21F

2
X

(λ4
πB

4
π − c21F

2
X)

2
mumd + . . .

(3.36)

3.2.3 Effetti della anomalia

Fino ad ora abbiamo trascurato nei nostri conti la presenza del termine
anomalo nel potenziale (3.3) . In particolare, utilizzando l’espressione (3.14)
(i.e. Ṽ = V + 1

2
Aβ2), avremo che la derivata rispetto al campo β sarà

modificata come segue:
∂Ṽ

∂β
=

∂V

∂β
+ Aβ (3.37)

mentre le derivate rispetto a tutte le rimanenti variabili non saranno in alcun
modo modificate. Come già osservato quando abbiamo analizzato il caso
L ≥ 3 nel precedente capitolo, l’aggiunta del termine generato dall’anomalia
non modifica in alcun modo la ”posizione” dei punti stazionari del potenziale;
come vedremo l’effetto del termine anomalo sarà soltanto quello di aggiungere

un contributo di ordine O
(

1
Nc

)
alla massa quadra dello stato SX .

3.2.4 Matrice di massa quadra

Siamo adesso nelle condizioni di calcolare esplicitamente la ”matrice di massa
quadra” (i.e. la matrice delle derivate seconde) del nostro potenziale nel
punto stazionario (3.28) . Analizzando il segno dei suoi autovalori emergerà
quanto accennato alla fine del Paragrafo 3.2.1, ossia che, a differenza del
caso L ≥ 3, non basta essere a temperature superiori a Tρπ perchè il suddetto
punto stazionario sia un minimo per V .

In virtù delle osservazioni fatte sull’invarianza sotto parità dello stato
di vuoto, al punto di minimo (indipendentemente se ci troviamo sopra o
sotto la transizione) tutte le derivate miste del potenziale rispetto ad un
campo scalare ed uno pseudoscalare si annullano in tale punto. Pertanto, per
diagonalizzare la matrice di massa quadra possiamo studiare separatamente
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il settore scalare e quello pseudoscalare. Le derivate seconde rilevanti del
potenziale (3.13) sono, pertanto 3 :

∂2V

∂α2
= λ2

X [3α
2 − F 2

X

2
] (3.38)

∂2V

∂σ∂α
= − c1√

2
[σ cos β + η sin β] (3.39)

∂2V

∂δi∂α
=

c1√
2
[δi cos β + πi sin β] (3.40)

∂2V

∂σ2
=

1

2
λ2
π(3σ

2 + η2 + π⃗2 + δ⃗2) + λ2
π δ⃗

2 +
1

2
λ2
πB

2
π −

c1√
2
α cos β (3.41)

∂2V

∂δi∂σ
= 3λ2

πδiσ + λ2
πηπi (3.42)

∂2V

∂δi∂δj
=
1

2
λ2
πB

2
πδij +

1

2
λ2
π(σ

2 + η2 + π⃗2 + δ⃗2)δij + λ2
πδiδj

+ λ2
πσ

2δij + λ2
π(π⃗

2δij − πiπj) +
c1√
2
α cos βδij

(3.43)

∂2V

∂S2
X

=
c1

2
√
2α2

α[cos β(σ2 − η2 − δ⃗2 + π⃗2) + 2 sin β(ση − δ⃗π⃗)] (3.44)

∂2V

∂η∂SX

= − c1√
2α

α[η sin β + σ cos β] (3.45)

∂2V

∂πi∂SX

=
c1√
2α

α[πi sin β + δi cos β] (3.46)

∂2V

∂η2
=

1

2
λ2
π(σ

2 + 3η2 + π⃗2 + δ⃗2) + λ2
ππ⃗

2 +
1

2
λ2
πB

2
π +

c1√
2
α cos β (3.47)

∂2V

∂πi∂η
= 3λ2

ππiη + λ2
πδiσ (3.48)

∂2V

∂πi∂πj

=
1

2
λ2
π(σ

2 + η2 + π⃗2 + δ⃗2)δij + λ2
ππiπj +

1

2
λ2
πB

2
πδij

+ λ2
πη

2δij + λ2
π(δ⃗

2δij − δiδj)−
c1√
2
α cos βδij

(3.49)

3Sulla base della (3.6) avremo che ∂
∂SX

= 1
α

∂
∂β ,

∂2

∂S2
X

= 1
α2

∂2

∂β2 .
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Settore pseudoscalare Se nelle espressioni (3.38) -(3.49) poniamo i campi
η, β, πi, δ1,2 uguali a zero, utilizziamo per α l’espressione (3.36) e poniamo
i campi σ e δ uguali alle espressioni σ e δ della (3.34) , troviamo che nella
matrice di massa quadra i campi π1 e π2 sono disaccoppiati sia dagli stati π3,
η e SX che tra di loro e hanno massa quadra pari a

M2
π1,2

=
1

2
(λ2

πB
2
π − c1FX) + . . . (3.50)

dove i puntini si riferiscono ai termini di ordine due o superiore in m.

Invece, l’insieme dei campi (SX , η, π3) sarà descritto dalla matrice

A =

 c1
2FX

(σ2 − δ
2
) − c1√

2
σ c1√

2
δ

− c1√
2
σ 1

2
(λ2

πB
2
π + c1FX) + ∆ λ2

πσδ
c1
2
δ λ2

πδσ
1
2
(λ2

πB
2
π − c1FX) + ∆

 (3.51)

dove ∆ è un termine di ordine due o superiore in m.

Osserviamo innanzitutto che il determinante di (3.51) risulta essere pro-
porzionale, all’ordine più basso nelle masse, al determinante della matrice di
massa M . Si trova infatti, trascurando il termine ∆, che:

detA =
c1
2FX

(σ2 − δ
2
)
1

4
(λ2

πB
2
π + c1FX)(λ

2
πB

2
π − c1FX)

− c21δ
2

4
(λ2

πB
2
π + c1FX)−

c21σ
2

4
(λ2

πB
2
π − c1FX) + · · · = c1

2FX

B2
mmumd + . . .

(3.52)

L’annullarsi del determinante nel ”limite chirale” ci dice che deve esistere un
autovalore nullo. In effetti è immediato verificare che nel limite chirale i tre
autovalori della matrice A sono dati da:

M2
SX

= 0 ≡ λ
(0)
SX

M2
η = 1

2
(λ2

πB
2
π + c1FX) ≡ λ

(0)
+

M2
π = 1

2
(λ2

πB
2
π − c1FX) ≡ λ

(0)
−

(3.53)

a cui corrispondono i tre autostati SX , η e π3. Se vogliamo calcolare le cor-
rezioni dovute alle masse non nulle dei quarks possiamo, in maniera analoga a
quanto fatto nel Paragrafo (3.2.2) per determinare i punti di minimo, cercare



3. Predizioni del modello nel caso di 2 flavours leggeri per T >Tch 63

le soluzioni dell’equazione caratteristica nel caso ”generale”

det(A− λI) =[
c1
2FX

(σ2 − δ
2
)− λ][(

1

2
λ2
πB

2
π +∆− λ)2 − (

c1FX

2
)2]

− (c1λπσδ)
2 − λ4

π(σδ)
2[

c1
2FX

(σ2 − δ
2
)− λ]

− c21
2
δ
2
(
1

2
λ2
πB

2
π +

1

2
c1FX +∆− λ)

− c21
2
σ2(

1

2
λ2
πB

2
π −

1

2
c1FX +∆− λ) = 0

(3.54)

sotto forma di una serie di potenze in mu e md:

λ(mu,md) = λ(0) +α1mu +α2md +α11m
2
u +α12mumd +α22m

2
d + . . . (3.55)

avendo indicato con λ(0) una qualsiasi delle tre soluzioni (3.53) (ottenute nel
limite chirale). Eseguendo i calcoli si trova che tutti e tre gli autovalori (3.53)
ricevono delle correzioni di ordine O(m2) o superiore [i.e. α1 = α2 = 0 nella
(3.55) ]. In particolare, al primo ordine non banale in m si trova che:

λSX
=

c1
FX

2B2
m

λ4
πB

4
π − c21F

2
X

mumd + . . . (3.56)

λ+ =
λ2
πB

2
π + c1FX

2
+ . . . (3.57)

λ− =
λ2
πB

2
π − c1FX

2
+ . . . (3.58)

Se adesso vogliamo includere nel potenziale anche gli effetti generati dal-
l’anomalia dobbiamo considerare il potenziale (3.14) . La matrice di massa
quadra per l’insieme dei campi (SX , η, π3) sarà data, in questo caso, da

Ã =

 c1
2FX

(σ2 − δ
2
) + 2A

F 2
X

− c1√
2
σ c1√

2
δ

− c1√
2
σ 1

2
(λ2

πB
2
π + c1FX) + ∆ λ2

πσδ
c1
2
δ λ2

πδσ
1
2
(λ2

πB
2
π − c1FX) + ∆


(3.59)

che, per semplificare un po’ la notazione scriveremo nella forma

Ã =

m2
0 +

2A
F 2
X

−a −b

−a λ
(0)
+ +∆ −c

−b −c λ
(0)
− +∆

 (3.60)
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dove λ
(0)
+ e λ

(0)
− sono stati definiti in (3.53) e abbiamo posto

m2
0 ≡ c1

2FX
(σ2 − δ

2
)

a ≡ c1√
2
σ

b ≡ − c1√
2
δ

c ≡ −λ2
πσδ

(3.61)

(si osservi che, con tale notazione, la (3.56) diventa λSX
= m2

0+. . . ). Facendo
uso dei parametri appena introdotti, l’equazione caratteristica per questa
matrice è: (

m2
0 +

2A

F 2
X

− λ

)
(λ

(0)
+ +∆− λ)(λ

(0)
− +∆− λ)− 2abc+

−b2(λ
(0)
+ +∆− λ)− a2(λ

(0)
− +∆− λ)− c2

(
m2

0 +
2A

F 2
X

− λ

)
= 0

(3.62)

e ha per soluzioni i seguenti autovalori:
M2

SX
≡ λSX

= 2A
F 2
X
+ c1

FX

2B2
m

λ4
πB

4
π−c21F

2
X
mumd + . . .

M2
η ≡ λ+ = 1

2
(λ2

πB
2
π + c1FX) + . . .

M2
π ≡ λ− = 1

2
(λ2

πB
2
π − c1FX) + . . .

(3.63)

dove, con un piccolo abuso di notazione, continuiamo a indicare con SX , η e
π3 gli stati fisici, autovettori della matrice (3.59) .

Vediamo che gli ultimi due autovalori, λ± risultano essere di ordineO(N0
c )

rispetto ad uno sviluppo per grandi Nc, come ci si aspetta per le masse dei
mesoni. Invece la massa quadra dello stato esotico SX ha acquistato, a causa
del valore non nullo della suscettività topologica, un termine di ordine O( 1

NC
)

di valore pari a 2A
F 2
X
.

Mostreremo più avanti, quando determineremo la suscettività topologica,
che è possibile derivare questo stesso risultato anche invertendo la matrice as-
sociata alla forma quadratica della Lagrangiana con l’inclusione della densità
di carica topologica Q(x).

Settore scalare La matrice di massa quadra per l’insieme dei campi (α̃, σ, δ3),
dove α̃ ≡ α − α è il campo che descrive le fluttuazioni scalari di X, risulta
essere:

B =

λ2
XF

2
X − c1√

2
σ c1√

2
δ

− c1√
2
σ 1

2
(λ2

πB
2
π − c1FX) + ∆̃ 3λ2

πσδ
c1√
2
δ 3λ2

πσδ
1
2
(λ2

πB
2
π + c1FX) + ∆̃

 . (3.64)
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dove ∆̃ è un termine di ordine due o superiore in m. Per quanto riguarda i
campi δ1 e δ2 essi risultano già ”diagonali” con massa quadra data, al primo
ordine non banale in m, da:

M2
δ1,2

=
1

2
(λ2

πB
2
π − c1FX) + . . . (3.65)

Come si può facilmente vedere, nel limite chirale i tre autovalori della
matrice B sono dati (all’ordine dominante in m) a

M2
α = λ2

XF
2
X + . . .

M2
σ = 1

2
(λ2

πB
2
π − c1FX) + . . .

M2
δ = 1

2
(λ2

πB
2
π + c1FX) + . . .

(3.66)

a cui corrispondono i tre autostati α̃, σ e δ.

Dai risultati trovati, vediamo che, nel limite di masse dei quarks nulle,
si ha una degenerazione tra le masse dei canali (σ, π⃗) e (η, δ⃗) appartenen-
ti agli stessi multipletti SU(2) chirali, come ci aspettavamo sulla base delle
considerazioni riguardo agli effetti della restaurazione della simmetria chirale
sulle suscettività chirali introdotte nel Paragrafo 1.5.2. Tuttavia, questa de-
generazione non coinvolge tutti i canali mesonici come avveniva per L ≥ 3:
vediamo, infatti, che si ha uno ”splitting” residuo (proporzionale a c1FX) tra
le masse quadre di questi due multipletti chirali. Questa non-degenerazione
è proprio una manifestazione del fatto che la simmetria U(1) assiale è ancora
rotta al di sopra della transizione chirale (FX ̸= 0), ma è una peculiarità del
caso L = 2.

Dai risultati ottenuti in questa sezione, vediamo che il punto stazionario
(3.28) è un minimo per il potenziale V soltanto per quei valori di T per i
quali l’espressione λ2

πB
2
π − c1FX è positiva e non per qualsiasi T ≥Tρπ . In-

fatti, per esempio, per T =Tρπ , avremmo che M2
π = M2

σ = −c1FX < 0 e il
punto stazionario in esame sarebbe un punto di sella (in quanto la matrice
(3.51) possiede sia autovalori positivi che negativi). E’ facile capire che,
affinchè la soluzione (3.28) sia un punto di minimo per V , dobbiamo trovarci
a temperature sufficientemente più grandi di Tρπ , nel senso che il termine
λ2
πB

2
π (supposto crescente a partire dal valore nullo a T =Tρπ ) deve essere

abbastanza grande da rendere la quantità λ2
πB

2
π − c1FX positiva.

Vedremo, infatti, nella prossima sezione, che per temperature non molto
superiori rispetto a Tρπ , le equazioni (3.26) per il punto stazionario am-
mettono una soluzione non nulla nel limite chirale. Inoltre le ipotesi per
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l’esistenza di tale soluzione ci porteranno necessariamente a determinare la
corretta condizione sui parametri del modello mediante la quale definire la
temperatura di transizione chirale Tch per L = 2.

3.3 Studio del potenziale e dello spettro di

massa per Tρπ < T <Tch

Come detto, oltre alla soluzione (3.28) , il sistema (3.26) ne ammette un’altra
che si differenzia dalla precedente per il fatto di essere non nulla (in a e b)
anche nel limite chirale. Questa soluzione è data da4

σ0 ≡ a = b =
1

λπ

√
c1
√
2α− λ2

πB
2
π, (3.67)

con α definita implicitamente dalla terza equazione del sistema (3.26) , ossia

c1

2
√
2λ2

Xλ
2
π

(c1
√
2α− λ2

πB
2
π) = α

[
α2 − F 2

X

2

]
. (3.68)

In termini dei nostri campi σ e δ avremo che [si veda l’Eq. (3.24) ]{
σ = σ0

δ = 0
(3.69)

Notiamo subito che la soluzione (3.67) ha significato soltanto se la soluzione
α dell’Eq.(3.68) soddisfa la condizione

α ≥ λ2
πB

2
π

c1
√
2
. (3.70)

Inoltre, dovendosi avere [si veda l’ultima delle equazioni (3.26) ] che

a = b =
1

λπ

√
2
√
2

c1
λ2
Xα

(
α2 − F 2

X

2

)
. (3.71)

la soluzione (3.67) ha significato se α è anche maggiore di (o, al più, uguale
a) FX√

2
, ossia

α ≥ max

{
FX√
2
,
λ2
πB

2
π√

2c1

}
. (3.72)

4La soluzione negativa va scartata perchè in tal caso la matrice di massa quadra per i
mesoni avrebbe degli autovalori negativi qualora si tenessero in considerazione anche gli
effetti delle masse non nulle dei quarks.
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Proveremo adesso che l’esistenza di una soluzione α dell’equazione (3.68)
che soddisfa la condizione (3.72) è legata al segno del parametro

Gπ ≡ c1FX − λ2
πB

2
π. (3.73)

facendo vedere che siffatte soluzioni esistono solo se Gπ ≥ 0.

Soluzioni (maggiori di FX/
√
2) dell’equazione (3.68) esistono se il coeffi-

ciente angolare della retta g(α) = c1
2
√
2

1
λ2
π
(c1

√
2α−λ2

πB
2
π) è maggiore di quello

della retta che unisce l’intercetta all’origine di g(α) con il punto di inter-

sezione tra la funzione h(α) = λ2
Xα
[
α2 − F 2

X

2

]
e l’asse delle ascisse, ossia se

(si veda la Figura 3.1)

c21
2λ2

π

≥ c1B
2
π

2
√
2
·
√
2

FX

(3.74)

cioè, se

Gπ = c1FX − λ2
πB

2
π ≥ 0. (3.75)

Figura 3.1: Rappresentazione grafica dell’equazione g(α) = h(α). Il punto

A ha coordinate
(
0,− c1B2

π

2
√
2

)
mentre il punto B ha coordinate

(
FX√
2
, 0
)
. Con

”a” è indicata la retta g(α) per Gπ > 0, con ”b” per Gπ = 0 e con ”c” per
Gπ < 0.

Quando nella (3.75) vale il segno di uguale avremo che α = FX√
2
(e σ = δ =

0). Invece, dalla Figura 3.1 vediamo che, per Gπ > 0, α> FX√
2
. In quest’ultimo
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caso è immediato verificare che la soluzione α soddisfa la condizione (3.70) ,

in quanto il fatto che Gπ > 0 comporta che max
{

FX√
2
, λ

2
πB

2
π

c1
√
2

}
= FX√

2
.

Essendo il parametro Gπ funzione di c1, FX , λ
2
π, B

2
π, i suoi valori dipende-

ranno dalla temperatura T . Sebbene non conosciamo quale sia la loro esatta
dipendenza da T , possiamo ipotizzare che in un intorno di Tρπ il parametro
B2

π sia crescente (dovendo ρπ passare da valori positivi ”1
2
F 2
π” a T <Tρπ a val-

ori negativi ”−1
2
B2

π” per T >Tρπ ). Invece, riguardo ai parametri c1, λ
2
π, FX

assumiamo che le loro variazioni siano trascurabili per T ∼Tρπ . In partico-
lare ci aspettiamo che il parametro FX , dovendo descrivere il comportamento
della simmetria U(1)A, vari notevolmente soltanto in prossimità della tem-
peratura TU(1) , rimanendo pressappoco costante per T <TU(1) . Sotto queste
assunzioni avremo che il parametro Gπ è una funzione decrescente della tem-
peratura in un intorno di Tρπ . In particolare, per motivi che saranno più
chiari nel seguito, perchè il nostro modello possa riprodurre la transizione
chirale dobbiamo assumere che Gπ si annulli ad una qualche temperatura
compresa tra Tρπ e TU(1) .

Riassumendo, abbiamo trovato che, a differenza del punto stazionario (3.28) ,
la soluzione (3.69) non esiste per qualsiasi valore T >Tρπ . Essa, infatti, ha
significato solo per quei valori di T per i quali il parametro Gπ è positivo.
In tale intervallo, essendo M2

π = M2
σ = −Gπ

2
[si veda l’Eq. (3.63) e (3.66) ]

il punto stazionario (3.28) non è un punto di minimo, bens̀ı un ”punto di
sella”. In effetti, faremo vedere nei paragrafi che seguono, che nel suddetto
intervallo il punto di minimo del potenziale V è dato proprio dalla soluzione
(3.69) .

3.3.1 Matrice di massa quadra

Vediamo, quindi, di analizzare la matrice delle derivate seconde del potenziale
nel punto (3.69) e i suoi autovalori.

Settore pseudoscalare Se trascuriamo per un attimo i contributi generati
dall’anomalia, troviamo la seguente matrice di massa quadra per l’insieme
dei campi (SX , η, π3) (anche in questo caso, i campi π1 e π2 sono già diagonali
e con massa quadra uguale a zero):

A =

 c1
2
√
2α
σ2 − c1√

2
σ 0

− c1√
2

c1
√
2α 0

0 0 0

 . (3.76)
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Come vediamo, c’è un autovalore nullo che è associato alla massa quadra del
campo π3. Inoltre, se calcoliamo il determinante del minore relativo ai campi
(SX , η) vediamo che questo si annulla, e pertanto deve esserci un ulteriore
campo a massa nulla. Se vogliamo determinare anche il terzo autovalore
dobbiamo risolvere l’equazione caratteristica

(
c1

2
√
2α

σ2 − λ)(c1
√
2α− λ)− c21

2
σ2 = 0 (3.77)

che ammette come soluzione, oltre alla già nota λ1 = 0, λ2 = c1
√
2α(1+ σ2

4α2 ).
Includiamo adesso gli effetti della anomalia determinando la matrice di

massa tramite il potenziale (2.34) . Verifichiamo, innanzitutto, che l’aggiunta
del termine anomalo nella (2.32) non modifica la soluzione da noi trovata
per il punto stazionario. Essendo, in questo caso U ̸= 0 (poichè σ = σ0 ̸= 0),
si può prendere un termine anomalo con ω1 che può anche essere diverso da
zero:

−1

8
A{ω1[log detU − log detU †] + (1− ω1)

2i

α
SX}2 (3.78)

con detU e detU † dati dalla (3.12) . E’ immediato verificare che le derivate
prime di questo termine si annullano nel punto stazionario (3.69) , in virtù

del fatto che si ha U = U
†
e X = X

†
(i.e. SX = 0).

La matrice di massa quadra, con l’aggiunta del termine anomalo, risulta
uguale a:

A =


c1

2
√
2α
σ2 + A

α2 (1− ω1)
2 − c1√

2
σ + 2A

ασ
ω1(1− ω1) 0

− c1√
2
σ + 2A

ασ
ω1(1− ω1) c1

√
2α+

4Aω2
1

σ2 0

0 0 0

 . (3.79)

che, trascurando la terza riga e la terza colonna, possiamo scrivere, per
semplificare un po’ la notazione, nella forma

A =

(
N Z
Z P

)
. (3.80)

dove 
N = c1

2
√
2α
σ2 + A

α2 (1− ω1)
2,

Z = − c1√
2
σ + 2A

ασ
ω1(1− ω1),

P = c1
√
2α+

4Aω2
1

σ2

(3.81)

Si trova, per il determinante di questa matrice, la seguente espressione:

detA =

√
2c1A

α
(3.82)
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che risulta essere O
(

1
Nc

)
. In effetti, l’equazione caratteristica per la matrice

(3.79)
λ2 − (N + P )λ+NP − Z2 = 0 (3.83)

ha per soluzioni gli autovalori

λ± =
N + P ±

√
(N − P )2 + 4Z2

2
(3.84)

che, all’ordine più basso in 1/Nc , sono uguali a
λ+ = c1

√
2α
(
1 + σ2

4α2

)
∼ O(N0

c )

λ− =

√
2c1A
α

c1
√
2α

(
1+σ2

4α

) ∼ O
(

1
Nc

) (3.85)

E’ immediato verificare, mediante le definizioni (3.81) , che entrambi questi
autovalori sono positivi.

Settore scalare Vediamo, per finire, gli autovalori della matrice di massa
quadra per il settore scalare. All’ordine zero nelle massemu emd tale matrice
è data da

B =

λ2
XF

2
X − c1√

2
σ 0

− c1√
2
σ c1

√
2α− λ2

πB
2
π 0

0 0 2c1
√
2α− λ2

πB
2
π

 (3.86)

e ha per autovalori λ1 = 2c1
√
2α− λ2

πB
2
π

λ± =
(λ2

XF 2
X+c1

√
2α−λ2

πB
2
π)±

√
(λ2

XF 2
X−c1

√
2α+λ2

πB
2
π)

2+
2c21
λ2π

(λ2
XF 2

X+c1
√
2α−λ2

πB
2
π)

2

(3.87)
Il primo di questi autovalori è sicuramente positivo nell’intervallo di tem-

peratura in cui ci troviamo e la stessa cosa possiamo dire per λ+. Per
quanto riguarda λ− dobbiamo invece avanzare qualche ipotesi supplementare
per provare la sua positività. Infatti, se calcoliamo il determinante della
sottomatrice

B̃ =

(
λ2
XF

2
X − c1√

2
σ

− c1√
2
σ c1

√
2α− λ2

πB
2
π

)
(3.88)

troviamo che

det B̃ = (c1
√
2α− λ2

πB
2
π)

(
λ2
XF

2
X − c21

2λ2
π

)
. (3.89)
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Ora, nell’intervallo di temperatura in cui ci troviamo, si ha che c1
√
2α −

λ2
πB

2
π > 0, e quindi avremo che λ− sarà positivo se λ2

XF
2
X >

c21
2λ2

π
. Ques-

ta condizione è sicuramente verificata, per esempio, se prendiamo il limite
λX → ∞, che, trovandoci a T < TU(1), dove la simmetria U(1) assiale è
spontaneamente rotta, ha come risultato quello di ”disaccoppiare” il grado
massivo scalare del campo esotico X.

Grazie ai risultati ottenuti nella presente sezione possiamo quindi affer-
mare che il punto stazionario dato dalle (3.67) e (3.69) è un minimo per il
potenziale V per quei valori della temperatura compresi tra Tρπ e lo ”zero”
di Gπ(T ) = 0.

Al termine di queste due sezioni, siamo nelle condizioni di caratterizzare
in maniera chiara la restaurazione della simmetria chirale secondo il modello
che abbiamo esaminato. Abbiamo visto, infatti, che per ogni temperatura
T >Tρπ il potenziale ammette un solo punto di minimo. Questo è diverso
da zero, segnalando la rottura spontanea della simmetria chirale, per tutti
quei valori di T (maggiori di Tρπ !) per i quali il parametro Gπ ≡ c1FX −
λ2
πB

2
π è positivo; invece, a temperature tali per cui Gπ risulta essere negativo

il valore d’aspettazione sul vuoto del campo mesonico U assume il valore
nullo, indicando l’avvenuta restaurazione della simmetria chirale. Alla luce
di queste osservazioni, diventa semplice capire che la temperatura alla quale
il parametro Gπ si annulla è proprio la temperatura di transizione chirale.
Definiremo quindi Tch per L = 2 mediante la relazione

Gπ(T = Tch) = 0. (3.90)

Come abbiamo già osservato, sotto le ipotesi avanzate sul comportamento
dei vari parametri λ2

π, B
2
π, c1, FX , questa temperatura è unica ed è maggiore

di Tρπ (a differenza del caso in cui L ≥ 3, dove Tch coincideva proprio con
Tρπ ), ma minore di TU(1) .

Un’ultima osservazione riguarda il significato del termine σ0 definito nella
(3.67) . Calcolando, in termini dei nostri campi definiti in Eq.(3.4) , le correnti
Aµ

a generate dall’invarianza della Lagrangiana (2.31) sotto trasformazioni
SU(2)A si trova che Aµ

a = −σ0∂
µπa + . . . , dove i puntini si riferiscono a

termini contenenti due o più campi. Da ciò se ne deduce che σ0 va identificato
con la costante di decadimento del pione Fπ.
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3.4 Condensato chirale e suscettività

topologica per T >Tch

Una volta determinato il punto di minimo per il potenziale (3.2) possiamo
determinare il condensato chirale mediante la relazione, vista nel Paragrafo
2.4.2,

⟨qiqi⟩ =
∂Vmin

∂mi

.

dove Vmin = Ṽ (U,U
†
, X,X

†
). Sfruttando il fatto che i campi β, η, π⃗, δ1 e δ2

sono nulli sul vuoto e che α = FX√
2
+ . . . [si veda l’equazione (3.36) ], troviamo

che

Vmin ≃1

8
λ2
π(σ

2 + δ
2
)2 +

1

2
λ2
π(σδ)

2

+
1

4
(λ2

πB
2
π − c1FX)σ

2 +
1

4
(λ2

πB
2
π + c1FX)δ

2

− Bm

2
[(mu +md)σ + (mu −md)δ]

(3.91)
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da cui si ricava che

⟨ququ⟩ =
∂Vmin

∂mu

≃1

2
λ2
π(σ

2 + δ
2
)[σ

∂σ

∂mu

+ δ
∂δ

∂mu

] + λ2
π(σδ)[δ

∂σ

∂mu

+ σ
∂δ

∂mu

]

+
1

2
(λ2

πB
2
π − c1FX)σ

∂σ

∂mu

+
1

2
(λ2

πB
2
π + c1FX)δ

∂δ

∂mu

− Bm

2
[σ + δ + (mu +md)

∂σ

∂mu

+ (mu −md)
∂δ

∂mu

] =

[
1

2
λ2
π(σ

2 + δ
2
)σ + λ2

πσδ
2
+

1

2
(λ2

πB
2
π − c1FX)σ − Bm

2
(mu +md)]

∂σ

∂mu

+ [
1

2
λ2
π(σ

2 + δ
2
)δ + λ2

πσ
2δ +

1

2
(λ2

πB
2
π + c1FX)δ −

Bm

2
(mu +md)]

∂δ

∂mu

− Bm

2
(σ + δ) = −Bm

2
(σ + δ)

(3.92)

avendo fatto uso delle equazioni di minimo (3.25) per i campi σ e δ. In
maniera del tutto analoga troviamo che

⟨qdqd⟩ =
∂Vmin

∂md

≃ −Bm

2
(σ − δ). (3.93)

Vediamo quindi, come è giusto aspettarsi, che il condensato chirale è dif-
ferente da zero se e solo se i campi σ o δ hanno un valore d’aspettazione
sul vuoto diverso da zero. Inoltre, nel limite in cui la simmetria SU(2)V di
isospin è esatta avremo che δ = 0 e avremo quindi che i condensati diventano
degeneri, essendo uguali alla stessa quantità indipendente dal sapore.

Sostituendo le soluzioni delle equazioni di minimo (3.28) troviamo che
per Tch< T <TU(1) si ha:{

⟨ququ⟩ ≃ − B2
m

λ4
πB

4
π−c21F

2
X
(muλ

2
πB

2
π +mdc1FX)

⟨qdqd⟩ ≃ − B2
m

λ4
πB

4
π−c21F

2
X
(mdλ

2
πB

2
π +muc1FX)

(3.94)

Invece, Tρπ < T <Tch si trova, usando la soluzione (3.67) -(3.69) , che:

⟨ququ⟩ = ⟨qdqd⟩ ≃ −Bm

2
σ0, (3.95)
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da cui si vede che, come si è già detto alla fine della Sezione 3.3, σ0 va
identificata con la ”costante di decadimento del pione” Fπ (si veda l’Eq.
(2.66) ).

E’ immediato riconoscere in queste espressioni per il condensato chirale
la stessa struttura (2.88) ricavata nel capitolo precedente per L ≥ 3.

Per determinare la suscettività topologica a T >Tch consideriamo la matrice

M(k) =


1
A

−
√
2

FX
0 0

−
√
2

FX
k2 −m2

0 a b

0 a k2 − λ
(0)
+ −∆ c

0 b c k2 − λ
(0)
− −∆

 (3.96)

associata alla parte quadratica nei campi (Q,SX , η, πi) della Lagrangiana
(2.31) nello spazio degli impulsi, in cui la densità di carica topologica Q non
è ancora stata integrata e dove abbiamo posto ω1 = 0. I parametri m2

0, a, b, c

sono quelli definiti in Eq. (3.61) e λ
(0)
+ e λ

(0)
− sono stati definiti in Eq.(3.53)

[∆ è un termine di ordine O(m2)].
La funzione a due punti della densità di carica topologica a impulso nullo

⟨QQ⟩(k = 0) sarà data da

⟨QQ⟩(k = 0) = i(M−1)11(k = 0) = i
detA⋆(k = 0)

detM(k = 0)
(3.97)

dove abbiamo indicato con A⋆(k) ≡ k2 · I3×3 −A, per cui

A⋆(k = 0) = −A (3.98)

essendo A la matrice definita in (3.51) . Ora, tenendo presente che

detM =
1

A
{detA⋆(k)− 2A

F 2
X

[(k2 − λ
(0)
+ −∆)(k2 − λ

(0)
− −∆)− c2]} (3.99)

e utilizzando la (3.98) e (3.52) , troviamo per la suscettività topologica

χ = −i⟨QQ⟩(k = 0) = (M−1)11(k = 0) =

− c1
FX

2AB2
m

λ4
πB

4
π−c21F

2
X
mumd

− c1
FX

2B2
m

λ2
πB

4
π−c21F

2
X
mumd − 2A

F 2
X

supmi→0
−→ FXc1

B2
m

λ4
πB

4
π − c21F

2
X

mumd

(3.100)

Vediamo che χ si annulla nel limite chirale come giustamente dev’essere.
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Confrontando l’espressione (3.100) per la suscettività topologica con quel-
la (3.94) per il condensato chirale si vede facilmente che la relazione (2.93)
è valida, come già anticipato nel precedente capitolo, anche per L = 2.

Il procedimento seguito per determinare la suscettività topologica può
anche essere utilizzato per derivare le masse dei vari stati mesonici che stiamo
analizzando (trascurando piccoli termini di mescolamento proporzionali alle
masse dei quark). Per esempio, si ha che

(M−1
22 )(k = 0) = − i

M2
SX

. (3.101)

Poichè si ha, indicando con M̃22(k) il minore dell’elemento M22(k), che

M̃22(k) =
1

A
[(k2 − λ

(0)
+ −∆)(k2 − λ

(0)
− −∆)− c2] (3.102)

troviamo, all’ordine più basso nelle masse e in 1/Nc ,

M2
SX

=
c1
FX

2B2
m

λ4
πB

4
π − c21F

2
X

mumd +
2A

F 2
X

+ . . . (3.103)

ossia proprio il risultato (3.63) .

3.5 Generalizzazione del potenziale

La forma (3.2) per il potenziale non è la più generale possibile. In effetti è
possibile aggiungere altri termini invarianti sotto il gruppo chirale. Qui di
seguito vedremo gli effetti dell’aggiunta di un termine quartico nel campo
mesonico U avente la forma

1

16
λ′2
π [Tr(UU †)]2 =

1

4
λ′2
π (σ

2 + η2 + δ⃗2 + π⃗2)2. (3.104)

In questo caso il nostro potenziale sarà dato da

V ⋆ = V +
1

16
λ′2
π [Tr(UU †)]2. (3.105)
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3.5.1 Punti stazionari del potenziale

L’aggiunta del termine (3.104) comporta che le equazioni di minimo (3.21)
sono sostituite da

1
2
λ2
π(σ

2 + δ
2
)σ + λ′2

π (σ
2 + δ

2
)σ + λ2

πσδ
2

3

+1
2
λ2
πB

2
πσ − c1√

2
ασ − Bm

2
(mu +md) = 0

1
2
λ2
π(σ

2 + δ
2
)δ + λ′2

π (σ
2 + δ

2
)δ + λ2

πσ
2δ

+1
2
λ2
πB

2
πδ +

c1√
2
αδ − Bm

2
(mu −md) = 0

(3.106)

che, definendo il nuovo parametro

Λ2
π ≡ λ2

π + 2λ′2
π (3.107)

e usando le variabili a e b definite in (3.24) , assumono la forma
Λ2

πa
3 − λ′2

π (a
2 − b2)a− c1

√
2αb = 2Bmmu

Λ2
πb

3 − λ′2
π (a

2 − b2)b− c1
√
2αa = 2Bmmd

(3.108)

Le soluzioni per questo sistema sono date nel limite chirale da{
σ = 1

Λ2
π

√
c1
√
2α− λ2

πB
2
π

δ = 0
(3.109)

e α definita implicitamente dalla terza equazione del sistema (3.26) per Tρπ <
T <Tch , e da {

σ = δ = 0
α = FX√

2

(3.110)

per Tch< T <TU(1) .
Tenendo in considerazione gli effetti delle masse dei quark, troviamo che

anche in questo caso, a T >Tch , le soluzioni sono quelle date da (3.34) .
Questo perchè avremo che σ ∼ δ ∼ O(m) e pertanto il nuovo termine quar-
tico apporta alle equazioni per i punti stazionari termini di ordine tre che
risultano soppressi rispetto a quelli lineari nei campi.

3.5.2 Derivate seconde e matrice di massa

Per determinare gli effetti del termine (3.104) sulle masse dei vari mesoni
calcoliamo le derivate seconde del potenziale (3.105) . Cominciamo osservan-
do che le derivate rispetto ai campi α e β non sono in alcun modo modifi-
cate, mentre le derivate rispetto ai campi mesonici sono date dalle seguenti



3. Predizioni del modello nel caso di 2 flavours leggeri per T >Tch 77

espressioni:
∂2V ⋆

∂2η
=

∂2V

∂2η
+ λ′2

π (σ
2 + π⃗2 + 3η2 + δ⃗2) (3.111)

∂2V ⋆

∂2πi

=
∂2V

∂2πi

+ λ′2
π [σ

2 + 3π2
i + (π⃗2 − π2

i ) + η2 + δ⃗2] (3.112)

∂2V ⋆

∂πi∂η
=

∂2V

∂πi∂η
+ 2λ′2

π ηπi (3.113)

∂2V ⋆

∂2σ
=

∂2V

∂2σ
+ λ′2

π (3σ
2 + η2 + π⃗2 + δ⃗2) (3.114)

∂2V ⋆

∂2δi
=

∂2V

∂2δi
+ λ′2

π [σ
2 + η2 + π⃗2 + 3δ2i + (δ⃗2 − δ2i )] (3.115)

∂2V ⋆

∂δi∂σ
=

∂2V

∂δi∂σ
+ 2λ′2

π σδi (3.116)

Come vediamo, a T >Tch il nuovo termine aggiunge correzioni quadratiche
nelle masse (essendo i valori di minimo dei campi mesonici proporzionali
alle masse dei quarks in questo intervallo di temperatura). In particolare
possiamo vedere che l’unico effetto del termine (3.104) è quello di ridefinire
il termine ∆ che compare nella (3.51) ; tuttavia questo termine, essendo
quadratico nelle masse dei quarks, non porta correzioni all’ordine dominante
alle masse dei mesoni sia del settore scalare che di quello pseudoscalare.
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Capitolo 4

Osservazioni conclusive

In questo capitolo commenteremo i risultati ottenuti nel capitolo precedente
riguardo allo spettro di massa del nostro modello sopra la temperatura di
transizione chirale Tch nel caso L = 2 e li confronteremo con i risultati ottenuti
nella Sezione 2.6 per il caso L = 3. Faremo anche il confronto delle nostre
predizioni: i) con i dati provenienti dalle simulazioni numeriche della QCD
su reticolo per L = 2 e T > Tch e ii) con le analoghe predizioni ottenute
usando un altro modello di Lagrangiana efficace presente in letteratura.

4.1 Confronto fra il caso L = 2 e il caso L = 3

Un aspetto particolarmente interessante dei risultati che abbiamo ottenuto
nel precedente capitolo nel caso di L = 2 flavours leggeri è che essi differiscono
sostanzialmente rispetto ai corrispondenti risultati ottenuti nella Sezione 2.6
per il caso di L = 3 (o, più in generale, L ≥ 3).

Abbiamo visto, infatti, che, nel caso in cui prendiamo L = 3 flavours
leggeri, i vari canali mesonici (scalari e pseudoscalari) risultano essere tutti
degeneri tra di loro sopra Tch , con masse quadre uguali a (nel ”limite chirale”
di massa zero per i quark)[si veda l’Eq. (2.81) ]:

M2 =
1

2
λ2
πB

2
π, (4.1)

e quindi non vi è alcuna differenza tra le masse di stati appartenenti a diversi
multipletti SU(3) chirali o U(1) assiali.

Per L = 2, invece, il modello di Lagrangiana efficace che abbiamo esa-
minato prevede che le masse quadre dei canali mesonici σ, η, δ⃗ e π⃗ siano
date dalle seguenti espressioni (nel ”limite chirale”) [si vedano le Eq.(3.63) e

79
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(3.66) ]:
M2

π = M2
σ = 1

2
(λ2

πB
2
π − c1FX)

M2
δ = M2

η = 1
2
(λ2

πB
2
π + c1FX)

(4.2)

Come vediamo, nel suddetto intervallo di temperatura, le particelle che ap-
partengono agli stessi multipletti SU(2) chirali, (σ , π⃗) e (η , δ⃗), hanno masse
uguali. Invece, le masse quadre dei mesoni di uno stesso multipletto U(1)

assiale, (δ⃗ , π⃗) e (σ , η), differiscono della quantità

∆M2
U(1) ≡ M2

δ −M2
π = M2

η −M2
σ = c1FX (4.3)

Come già osservato alla fine del Paragrafo 3.2.4, tale ”splitting” di massa
riproduce proprio la degenerazione o meno delle suscettività chirali degli stati
mesonici σ, η, δ⃗ e π⃗ dovuta alla restaurazione della simmetria SU(2) chirale
e alla rottura della U(1) assiale. Nelle equazioni (4.2) e (4.3) il parametro
FX rappresenta essenzialmente l’intensità del nuovo condensato assiale, il
cui valore non nullo segnala appunto la rottura spontanea della simmetria
U(1)A. Pertanto ∆M2

U(1) è uguale a zero soltanto al di sopra di TU(1) , mentre
per T < TU(1) esso è diverso da zero, rimuovendo cos̀ı la degenerazione delle
masse dei mesoni.

In particolare troviamo che, nell’intervallo di temperatura in esame, M2
π,σ

cresce con T , passando da un valore nullo a T =Tch ad un valore M2
π,σ =

1
2
λ2
πB

2
π(T = TU(1)) a T = TU(1) . Per quanto riguarda, invece, le masse

quadre del multipletto costituito da η e δ vediamo che esse sono uguali a
λ2
πB

2
π(T = Tch) per T =Tch (essendo M2

π,σ(T = Tch) = 0) e passano ad un
valore 1

2
λ2
πB

2
π(T = TU(1)) a T =TU(1) . Per temperature superiori a TU(1) tutte

le masse dei canali mesonici risultano invece uguali a 1
2
λ2
πB

2
π essendo ormai

restaurata anche la simmetria U(1) assiale.
Per capire l’origine di questo differente comportamento delle masse quadre

dei mesoni (per T >Tch ) fra il caso L = 2 e L = 3, bisogna considerare il
termine di interazione Lint tra il campo X e il campo U nella Lagrangiana
efficace (2.31) :

Lint =
c1

2
√
2
(X† detU +X detU †). (4.4)

Tenendo presente che, per Tch< T <TU(1) , il campoX può essere parametriz-
zato nella forma

X =

(
FX√
2
+ α̃

)
e
i
√

2
FX

SX ,

si trova che, sviluppando Lint all’ordine più basso nei campi α̃ (scalare) e SX

(pseudoscalare):

c1

2
√
2
(X† detU +X detU †) =

c1FX

4
(detU + detU †) + . . . (4.5)
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dove i puntini di sospensione si riferiscono a termini contenenti anche i campi
”esotici” α̃ e SX .

Se L = 2, l’espressione (4.5) risulta essere un vero e proprio termine di
massa quadra per i mesoni, essendo quadratico nei campi U . Invece, se L = 3
e T >Tch , essa rappresenta piuttosto una interazione a 3 mesoni e pertanto
non ne modificherà in alcun modo le masse (nel ”limite chirale”). Abbiamo
visto nella Sezione 2.6 che per temperature maggiori di Tch , il valore di U al
minimo del potenziale è proporzionale alle masse dei quarks, ossia si ha che
U ∼ O(m). Quando calcoliamo la matrice di massa quadra del potenziale nel
punto U si trova che le derivate seconde di ”detU” contribuiscono con termi-
ni di ordine O(mL−2). Di conseguenza, questo contributo risulta soppresso
rispetto a quello di ordine O(m0) proveniente dal termine di potenziale del
modello sigma (2.4) e uguale a 1

2
λ2
πB

2
π.

Quanto fin qui detto ha una interpretazione diagrammatica piuttosto sem-
plice. Guardiamo, infatti, ai diagrammi che contribuiscono alla grandezza
DU(1) definita nella (1.66) per T >Tch . Per L = 2 il diagramma da conside-
rare è quello mostrato in Figura 1.2. Come vediamo, questo è proporzionale
al valore del condensato U(1) assiale che, nel caso in esame, connette 4 campi
fermionici. Pertanto un valore non nullo di tale condensato comporta (almeno
per L = 2!) che le suscettività chirali dei mesoni δ e π sono differenti cos̀ı
come, di conseguenza, le loro masse. Per L = 3, invece, il diagramma da con-
siderare sarà quello mostrato nella Figura 4.1. In questo caso il condensato

Figura 4.1: Rappresentazione diagrammatica di DU(1) per T > Tch in
presenza del condensato U(1) assiale per L = 3.

U(1) assiale connette 6 campi fermionici e pertanto il diagramma in esame
sarà proporzionale anche a ms (oltre che all’intensità del condensato U(1)
assiale), in quanto l’unico modo per ”chiudere” tale diagramma è inserire
un operatore di massa −msss (essendo il condensato chirale ⟨qq⟩ uguale a
zero per T >Tch ). Nel limite chirale questo diagramma si annulla rendendo
uguali le suscettività chirali, e quindi anche le rispettive masse.
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Le previsioni ottenute mediante il nostro modello trovano riscontro nei
dati ricavati mediante le simulazioni numeriche della teoria su reticolo. Già
in [11, 12, 13] era stato studiato il comportamento in funzione della tem-
peratura delle suscettività chirali associate ai canali mesonici che abbiamo
considerato per L = 2. I risultati trovati indicavano che le masse dei canali δ⃗
e π⃗ sono differenti per temperature superiori a Tch , supportando cos̀ı l’ipotesi
che la simmetria U(1) assiale sia restaurata a temperature superiori rispetto
a quella di transizione chirale. Questi primi risultati sono stati confermati
da simulazioni più recenti, e.g. nella Ref. [14], dove la restaurazione del-
la simmetrie chirale e assiale è stata analizzata sotto due differenti aspetti.
Innanzitutto è stata studiata, come nei lavori precedenti, la dipendenza dal-
la temperatura delle masse (di ”screening”) di un certo numero di canali

mesonici, tra i quali δ⃗ e π⃗. Tale analisi ha mostrato che, anche al di so-
pra della temperatura di transizione chirale, il rapporto Mδ

Mπ
è maggiore di 1

(proprio come risulta dalle espressioni (4.2) , ricordando che, come spiegato
nella nota 1 a pag.56, c1FX > 0) 1 fino ad un valore TU(1)≃ 1.3Tch . Inoltre,
come ulteriore verifica, è stato anche analizzato, in funzione di T , il compor-
tamento a piccole distanze spaziali dei correlatori associati ai suddetti canali
mesonici. Pure in questo caso si è trovato che le suscettività diventano uguali
ad una temperatura pari a 1.3Tch .

In [58, 59], mediante un modello di Lagrangiana efficace L̃ definita in Eq.
(2.20) -(2.21) , ottenuta aggiungendo alla Lagrangiana del modello-σ definita
in (2.4) il termine di interazione ”anomalo” LI = cI [detU+detU †] proposto
da ’tHooft, è stata analizzata (anche con calcoli numerici) la dipendenza dalla
temperatura delle masse dei mesoni. In particolare, in [58] viene analizzato
nel dettaglio il caso L = 3, mentre in [59] è stata analizzata la dipendenza
delle suddette masse anche in funzione del numero di sapori leggeri (L =
2, 3, 4). Si è trovato che, nel limite chirale, la presenza del ”termine anomalo”
LI rimuove la degenerazione delle masse dei mesoni appartenenti a diversi
multipletti U(1) assiali sopra Tch soltanto per L = 2. Ora, è interessante
osservare che questi risultati sono in accordo (quantomeno qualitativo) con
quanto da noi previsto mediante un modello di Lagrangiana efficace con
caratteristiche differenti. Tale accordo può essere giustificato mediante il
seguente argomento. In virtù del risultato (4.5) , la Lagrangiana L̃ può essere
vista come l’ordine zero dello sviluppo nei campi α̃ e SX della Lagrangiana
L (2.31) da noi utilizzata:

L = L̃+ LA + . . . (4.6)

1Si ricordi che, in QCD, si può verificare in maniera ”esatta” la seguente disuguaglianza
Mπ ≤ Mδ (si veda il Cap.14 della Ref.[54] e le referenze ivi incluse)
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dove i puntini si riferiscono a termini dipendenti dai campi α̃ e SX , e LA

è il termine mediante il quale abbiamo descritto gli effetti dell’anomalia nel
nostro modello:

LA =
1

8
A{ω1Tr[logU − logU †] + (1− ω1)[logX − logX†]}2. (4.7)

Abbiamo visto che LA modifica soltanto le masse degli stati di singoletto
di SU(2)V , lasciando invece inalterate quelle degli stati mesonici di non-
singoletto. Nel nostro modello, queste possono essere modificate soltanto
dal termine di interazione tra i campi U e X, che, all’ordine dominante del
suddetto sviluppo [si veda l’equazione (4.5) ], risulta essere proprio uguale
al termine LI (con cI = c1FX

4
). Ora, mentre in [58, 59] tale termine viene

attribuito alla presenza dell’anomalia, nel nostro modello la sua presenza è
piuttosto legata all’esistenza del nuovo condensato U(1) assiale (a prescindere
dalla presenza o meno di un valore non nullo della suscettività topologica A).

Le differenze tra L = 2 e L = 3, tuttavia, non si esauriscono solo nelle
caratteristiche dello spettro di massa. Come abbiamo visto nella Sezione
3.3, anche il parametro del modello che determina la restaurazione o meno
della simmetria chirale è differente nei due casi. Abbiamo mostrato, infatti,
che per L = 3 il parametro che determina la transizione di fase chirale è
unicamente il ρπ che compare nel termine di potenziale del modello-σ: un
suo cambiamento di segno, da ρπ > 0 per T < Tρπ a ρπ < 0 per T > Tρπ

segnala il passaggio dalla fase di simmetria chirale rotta alla fase di simmetria
chirale restaurata, per cui Tch≡Tρπ . Invece, per L = 2, la restaurazione
della simmetria chirale avviene in corrispondenza del cambiamento di segno
del parametro Gπ

2λ2
π
= c1FX

2λ2
π
+ ρπ [si veda l’Eq.(3.73) ]. Per questo motivo, per

L = 2, Tch e Tρπ sono differenti: non basta, infatti, che ρπ cambi segno, ma
occorre che esso diventi ”sufficientemente” negativo da annullare ρπ perchè
si abbia la transizione chirale e possa, quindi, per T >Tch , restaurarsi la
simmetria SU(2) chirale. Se il comportamento del parametro ρπ in funzione
della temperatura T fosse indipendente dal numero di sapori leggeri L, quanto
appena detto implicherebbe una temperatura di transizione chirale Tch della
teoria con L = 2 maggiore rispetto a quella con L = 3. Questo sembra, in
effetti, essere in accordo con i risultati di simulazioni su reticolo (si vedano
le Ref.[12, 55, 56, 57]).
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4.2 Conclusioni e prospettive

Il presente lavoro di tesi prende le mosse dai risultati ricavati mediante simu-
lazioni numeriche su reticolo in cui sono state analizzate, in funzione della
temperatura, le masse dei canali mesonici costituiti da 2 flavours leggeri
[11, 12, 13, 14]. Questi risultati sembrano supportare l’ipotesi (già sostenuta
in passato [15, 16, 17, 18, 19]) che la simmetria U(1) assiale della QCD con
L quarks a massa nulla sia restaurata ad una temperatura TU(1)maggiore di
quella di transizione chirale Tch : i suddetti dati indicano che (almeno per
L = 2) si ha TU(1)≃ 1.3Tch .

Abbiamo quindi voluto proseguire lo studio delle conseguenze dell’esisten-
za di un condensato U(1) assiale sul settore mesonico iniziata in Ref.[15,
16, 17] e proseguita in [26, 27, 25]. In questa esposizione si è focalizzata
l’attenzione sull’analisi dello spettro di massa dei mesoni nell’intervallo di
temperatura compreso tra Tch e TU(1) , con particolare attenzione per il caso
L = 2. Per far ciò ci siamo siamo serviti del modello di Lagrangiana efficace
(2.31) proposto nelle Ref.[15, 16, 17], che rappresenta un’estensione di quello
introdotto all’inizio degli anni ’80 da Witten, Di Vecchia, Veneziano et al. in
Ref.[22, 23, 24].

Confrontando le previsioni sullo spettro di massa dei mesoni a Tch<
T <TU(1) per il caso L ≥ 3 (discusso nella Sezione 2.6) e il caso L = 2
(discusso nel Capitolo 3), si è visto che in quest’ultimo caso il modello in
esame presenta delle caratteristiche peculiari, che lo differenziano da quello
per L ≥ 3. In particolare si è trovato che l’esistenza di un nuovo condensato
U(1) assiale:

• rimuove la degenerazione tra le masse degli stati appartenenti a diversi
multipletti U(1) assiali per Tch< T <TU(1) .

• modifica, rispetto al caso L ≥ 3, la condizione sui parametri del modello
che determina la temperatura di transizione chirale;

Abbiamo anche verificato esplicitamente (col nostro modello) che le relazioni
(2.88) e (2.93) tra il condensato chirale e la suscettività topologica per
T >Tch sono valide a prescindere dal determinato valore di L, in accordo
con quanto richiesto da alcune identità di Ward rilevanti per la simmetria
U(1) assiale [17].

Sarebbe interessante, in prospettiva, analizzare anche le predizioni del
nostro modello riguardo all’ordine della transizione chirale per la teoria con
L = 2. Questo problema è stato inizialmente studiato da Pisarski e Wilczek
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(si veda la Ref.[39]) analizzando il comportamento critico del modello di La-
grangiana efficace proposto da ’tHooft. Questi hanno trovato che per L = 3 la
transizione chirale è del primo ordine, mentre il caso con L = 2 risulta molto
più problematico (si veda la discussione nel Paragrafo 1.5.2). In generale, uno
studio approfondito del problema richiederebbe una conoscenza dettagliata
della dipendenza dalla temperatura dei parametri della Lagrangiana efficace
che si utilizza (nel caso del lavoro di Pisarski e Wilczek, il modello proposto
da ’tHooft). Questa dipendenza è certamente dettata dalla teoria fonda-
mentale, i.e. la QCD, ma è tutt’altro che banale riuscire a determinarla.
Qualche informazione utile al riguardo potrebbe provenire, per esempio, dai
risultati delle simulazioni numeriche su reticolo richiedendo che i parametri
della Lagrangiana efficace siano tali da riprodurre le caratteristiche osservate.
Bisogna anche aggiungere che uno studio del comportamento della teoria in
prossimità della temperatura di transizione chirale Tch richiederebbe un ap-
proccio per diversi aspetti differente da quello che abbiamo utilizzato noi,
che consiste essenzialmente nell’approssimazione di ”campo medio” e nell’es-
pansione chirale, che non sono più valide in un intorno della temperatura
critica (basti osservare che tutti i termini delle correzioni in m dei risultati
che abbiamo ottenuto [si vedano, per esempio, le Eq. (3.34) , (3.36) e (3.56) ]
risultano divergenti a Tch ).

In definitiva, abbiamo visto che la teoria con 2 flavours leggeri presenta,
nell’intervallo di temperatura Tch< T <TU(1) , delle caratteristiche niente
affatto banali, che rendono questo caso di interesse particolare. Tale interesse
è anche giustificato dalla possibilità di poter confrontare le predizioni del
nostro modello con i risultati provenienti dalle simulazioni numeriche della
teoria su reticolo relative proprio al caso L = 2: come già osservato, queste
sembrano essere in accordo con le nostre previsioni. Tale accordo incoraggia
a proseguire lo studio degli effetti dell’esistenza di un condensato U(1) assiale
sulla dinamica degli adroni, s̀ı da poter aggiungere un altro tassello al quadro
teorico relativo alla struttura di fase della QCD.
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