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Abstract

When applying quantum computing to machine learning tasks, one of the first considerations is the design of the quantum
machine learning model itself. Conventionally, the design of quantum machine learning algorithms relies on the “quantisation”
of classical learning algorithms, such as using quantum linear algebra to implement important subroutines of classical
algorithms, if not the entire algorithm, seeking to achieve a quantum advantage through possible run-time accelerations
brought by quantum computing. However, recent research has started questioning whether quantum advantage via speedup
is the right goal for quantum machine learning (Schuld and Killoran 2022 PRX Quantum 3(3):030101.). Research also has
been undertaken to exploit properties that are unique to quantum systems, such as quantum contextuality, to better design
quantum machine learning models (Bowles et al. 2023). In this paper, we take an alternative approach by incorporating the
heuristics and empirical evidences from the design of classical deep learning algorithms to the design of quantum neural
networks. We first construct a model based on the data reuploading circuit (Pérez-Salinas et al. 2020 Quantum 4(226):226)
with the quantum Hamiltonian data embedding unitary (Schuld and Petruccione 2021). Through numerical experiments on
image datasets, including the famous MNIST and FashionMNIST datasets, we demonstrate that our model outperforms the
quantum convolutional neural network (QCNN) (Cong et al. 2019 Nat Phys 15(12):1273-1278) by a large margin (up to
over 40% on MNIST test set). Based on the model design process and numerical results, we then laid out six principles for
designing quantum machine learning models, especially quantum neural networks.
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Unlike principal component analysis and kernel methods,
which are often referred to as statistical learning algorithms,
neural networks, with their ability to discover hidden patterns
in large-scale unstructured datasets such as images and nat-
ural language, have gained popularity since the invention of
AlexNet (Krizhevsky et al. 2024) and have become the foun-
dation of modern artificial intelligence applications such as
ChatGPT-4 (Bubeck et al. 2023). However, since time com-
plexity is rarely the first priority during the design of novel
deep neural network architectures, which often rely on intu-
ition and even inspirations from biological neural networks,
it becomes less obvious that quantum computing should find
any advantage or utility in deep learning and Al.

Although recent research has attempted to integrate prop-
erties that are unique to quantum systems, such as contextu-
ality, into the design of quantum machine learning models for
specific types of tasks that could lead to quantum advantage
(Bowles et al. 2023), few studies have taken into account the
intuition behind successful deep learning models and how
to integrate them into quantum machine learning models.
This serves as the main motivation for our research. In this
paper, we aim to bridge this gap by bringing this intuition to
the design of quantum machine learning models, especially
quantum neural networks, via numerical experiments for the
design of a quantum machine learning model for benchmark-
ing image processing tasks.

Our main contributions in this paper are as follows.

e A quantum classifier based on the quantum Hamiltonian
embedding approach and the data reuploading circuit for
image classification tasks that could outperform the base-
line quantum convolutional neural network model (Cong
et al. 2019).

e Based on the model design process and the numerical
experiments, we lay out a set of guiding principles for
future quantum machine learning (QML) model design.

The results of our paper further emphasise the importance
of heuristics during the design of quantum machine learning
models, especially heuristics and empirical knowledge found
in the extensive classical deep learning literature.

This paper is organised as follows: In the rest of this sec-
tion, we briefly introduce the relevant research in applying
quantum machine learning to image processing, as well as
common quantum data embedding approaches. In Section 2,
we propose a quantum classification model based on the data
reuploading circuit (Pérez-Salinas et al. 2020) and quantum
Hamiltonian embedding method (Schuld and Petruccione
2021). In Section 3, we demonstrate the effectiveness of this
model by evaluating the classification performance on dif-
ferent datasets, including the famous MNIST (LeCun et al.
2010) and FashionMNIST (Xiao et al. 2017) datasets. In
Section 4, we discuss the results obtained through numerical
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experiments which inform our proposed six basic principles
for the design of quantum neural networks.

1.1 QML for image processing

As an illustration of quantum neural network (QNN) design,
we consider one of the most important tasks in modern
artificial intelligence—image processing, including image
classification, segmentation, and generation. Since the suc-
cess of AlexNet (Krizhevsky et al. 2024) at the ImageNet
Large-Scale Visual Recognition Challenge 2012 (ILSVRC
2012), deep neural networks, especially deep convolutional
neural networks (CNN), have dominated image-related tasks.
Recently, the vision transformer (ViT) (Dosovitskiy et al.
2021) and its variants are trending in image-related tasks due
to its structural compatibility with large language models and
the potential to build a single unified multi-modal model. An
important step in the vision transformer is to cut the image
into patches, following the same inductive bias as convolu-
tional neural networks. From the history of image processing
with deep neural networks, we can see that there is a central
principle in the network architectures designed throughout
the years, which is the locality of information and translation
invariance. This is reflected in both the convolution kernels
in CNNs and image patches in ViTs.

In the quantum context, several approaches have been
developed as a direct analogue to the classical CNN, namely
the quantum convolutional neural network (QCNN) (Cong
et al. 2019), which borrows the idea of localised opera-
tors, shared parameters, and downsampling from its classical
counterpart. It has been benchmarked for binary classifica-
tion with classical image data (Hur et al. 2022; Gong et al.
2024) and its effectiveness demonstrated through experi-
ments. Variational circuits other than QCNNSs can also be
applied to image processing, but often require classical meth-
ods to reduce the dimension of the input data (Jaderberg et al.
2022; Khatun and Usman 2024). A popular choice is to use a
pre-trained classical neural network, such as ResNet (He et al.
2015), to preprocess the original images and extract features
(Zaman et al. 2024; Khatun and Usman 2024). This approach
often involves a quantum-classical hybrid neural network,
where the output layer of the classical neural network is
replaced with a parameterised quantum circuit. However,
the necessity of such an approach remains unclear, as the
last layer of a classical neural network has a great similarity
to logistic regression, which, by itself, is a simple machine
learning model. When using a classical neural network for
dimension reduction, the “heavy lifting” of feature extraction
is off-loaded to the classical neural network, and the extracted
features are often classified by a simple machine learning
model. There is also research that involves the implementa-
tion or mimicking of classical convolutional operations via
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quantum circuits, such as Kerenidis et al. (2019), in which
the quantum version of convolution is achieved through local
unitary operators with parameter sharing, and the pooling is
achieved by tracing out a subset of qubits. Other research
aims to replace only the convolution operation in a classical
neural network, such as the quanvolutional neural network
(Henderson et al. 2020) and its variants (Riaz et al. 2023).
The data reuploading classifier (Pérez-Salinas et al. 2020) has
also been adapted for image classification, such as Easom-
Mccaldin et al. (2021), in which the pixel data in the image
are encoded as rotation parameters together with trainable
parameters that are shared among different patches of the
same image. From this, we can see that, when applying quan-
tum machine learning to high-dimensional data, especially
image data, it is a common practice to

e use aclassical model to reduce the dimension of the orig-
inal image data and extract task-related features, such as
in Khatun and Usman (2024) and Zaman et al. (2024). It
should be noted that non-machine learning-based mod-
els could also be adopted to extract features and reduce
the difficulty of learning for the downstream quantum
model, such as the remapping method proposed in Zhou
et al. (2023), which simplifies the multi-modal distribu-
tion of the input image.

e use amplitude embedding to reduce the number of qubits
required, such as in West et al. (2023).

e use the data reuploading circuit or use a small circuit that
only operates on localised patches of the image to reduce
the number of qubits required when angle embedding is
involved, such as in Easom-Mccaldin et al. (2021) and
Riaz et al. (2023).

For the remainder of this section, we will give a brief intro-
duction to common quantum data embedding methods.

1.2 Quantum data embedding

One of the most important steps when applying quantum
machine learning to classical data is loading the data into the
quantum computer. For example, it is difficult to find the clas-
sical counterpart of quantum data embedding for the loading
of images, where classically images can easily be stored as
rank-3 tensors and matrices in computer memory. Appro-
priate data embeddings are crucial to the success of both
classical and quantum machine learning models. Similar data
embedding processes, where the original data structure is
not suitable to be directly processed by the machine learning
model (mostly neural networks), could be found in research
and applications thatinvolve graph and natural language data.
In each case, the data embedding method, as well as the
machine learning model that follows data embedding, needs
to reflect the intrinsic properties of the data. Such intrinsic

properties can sometimes be described simply as translation,
rotation, and permutation symmetry (Heredge et al. 2024).
However, most of the time, it lies more on a semantic level
and is hard to describe via mathematical relations.

There are three widely adopted data embedding meth-
ods for quantum machine learning (Schuld and Petruccione
2021):

e BASIS EMBEDDING: In basis embedding, a length-n
binary string is directly embedded as one of the basis
states of an n-qubit quantum system by applying Pauli-X
operators to the quantum bits that are supposed to encode
the classical bit “1”. For example, to encode the binary bit
string “0101” as a quantum state, one only needs to apply
Pauli-X gates to the initial state |0000) on the second and
fourth qubits:

01015 > |0101) = X»X4/0000); (1)

e ANGLE EMBEDDING: In angle embedding, classical
floating-point data is embedded as rotation angles of
parameterized quantum gates, such as the Pauli rotation
gates Ry, Ry, and Rz. For x = (x1, xz)T, one could use
angle embedding to encode x as follows:

X = Rx(x1)Rz(x2)|0); (2)

e AMPLITUDE EMBEDDING: In amplitude embedding, the
normalised padded data vector X = (xqp, X1, - - - , Xpn_ )T
isembedded as a quantum state of an N -qubit system with
real amplitudes:

2N ]

x> [x) = Y xili). 3)

i=0

There are also special embedding methods designed for
image data, such as the flexible representation of quantum
images (FRQI) (Le et al. 2011; Yan et al. 2016), which
embeds the data in a quantum state that takes spatial informa-
tion into account. Since these methods still require specific
amplitudes for the embedded quantum states, they could
be viewed as an extension of the amplitude embedding
method. To make amplitude embedding feasible with cur-
rent quantum hardware, several approximate heuristic-based
state preparation methods have been proposed, such as the
GASP algorithm (Creevey et al. 2023), in which the authors
applied genetic algorithms to discover relatively low-depth
quantum circuits for approximate state preparation, as well
as the variational circuit-based approach to approximately
prepare the FRQI states shown in Shen et al. (2024).

We can see that, besides angle embedding, most of the
other approaches emphasise on encoding classical data as

@ Springer



35 Page4of18

Quantum Machine Intelligence (2025) 7:35

quantum states, which cannot work with the data reuploading
circuit adopted in this paper. It is hard to scale up to larger-
dimension datasets for angle embedding with the available
number of qubits on current quantum devices. Here, we com-
bine the quantum Hamiltonian embedding method, described
in Section 2.1, and the data reuploading approach, described
in Section 2.2, for image classification tasks. Compared to
angle embedding, embedding the image as a Hamiltonian
puts the pixels in the image on a more equal footing, meaning
that they go through the same type of mathematical operation.
Also, the matrix representation of a quantum Hamiltonian for
a qubit system is naturally “two-dimensional,” in the sense
that it has the same shape as a (grey-scale) image, making it
more suitable for modelling images.

2 Data reuploading classifier with quantum
Hamiltonian embedding

In this section, we will discuss the quantum neural net-
work classifier model based on the discussions from the
previous section. We opt for Hamiltonian image embedding
(Section 2.1) for data encoding and the data reuploading clas-
sifier (Pérez-Salinas et al. 2020) (Section 2.2), for both their
simplicity in terms of implementation with linear algebra
libraries such as JAX (Bradbury et al. 2018), and the intu-
itive connection with classical neural networks for the data
reuploading circuit. While looking for quantum advantage in
terms of training and inference speedups is a legitimate aim,
it is not the primary goal here. Instead, we seek to integrate
heuristics from deep learning into quantum machine learning
model design.

In the context of quantum computing, a quantum Hamil-
tonian can be written as a square matrix. This representation
provides the opportunity to encode image data in a two-
dimensional way, rather than flattening the image and/or
using the pixel values as rotation angles of parameterised
gates, which could introduce unwanted bias on the decision
boundary. Also, the possibility of encoding an entire image
as a quantum Hamiltonian with (polynomial) less qubits
required than amplitude embedding and angle embedding
gives us the chance to reduce classical preprocessing to a
minimum. We will see in Eq. 6 that encoding an image as a
quantum Hamiltonian provides a richer nonlinearity com-
pared to that provided by quantum measurements, which
could further enhance the expressivity of our model.

2.1 Hamiltonian image embedding
As mentioned in the previous section, one of the most impor-

tant components of a quantum machine learning model is
how to embed classical data into the quantum computer.
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Since we are working with image data, there is a preference
for data embedding methods that preserve two-dimensional
structures of images and transform image pixels with the
same nonlinearity function (activation functions) to avoid
unwanted bias on the decision boundaries.

In this paper, we adopt the Hamiltonian embedding
method (Schuld and Petruccione 2021; Yang et al. 2023) for
image data encoding. First, we “Hermitianise” our square,
grey-scale, real-valued image matrix M by the following:

M+ MT
iy = M

“)
This is the only classical preprocessing required for our
model, in addition to padding the image with zeros for the
MNIST and FashionMNIST datasets. Here, the embedding
unitary for the input image data is simply the matrix expo-
nentiation of Hy;:

—iHyt

Wi, M)=e 2, ©)

where ¢ is a trainable parameter instead of the physical time. If
we expand W (¢; M) in a Taylor series, we have the following:

iHyt  Hyt?
21 21 x 22

-7r73 .3
iHjy,t .
3! x 23

Wi, M)=1-— (6)

We can see that by simply time-evolving the (Hermitianised)
image, a (matrix) polynomial function is applied on the whole
image level, bringing “cheaper” nonlinearity compared to
angle embedding with single-parameter rotation gates. Later
in Section 3, we demonstrate that with the quantum Hamil-
tonian embedding approach, our model could outperform
QCNN for various datasets. In our model, the Hamiltonian
embedding of image M, parameterised by a single parame-
ter ¢, will act as the data encoding unitary for our quantum
machine learning model, which will be discussed in the fol-
lowing subsections.

2.2 Data reuploading

The data reuploading variational quantum circuit, first pro-
posed in Pérez-Salinas et al. (2020), is derived from the
guiding principles of classical neural networks that the
data are reused multiple times in classical deep neural net-
works. Originally, it was designed for classification tasks and
was later extended to applications in reinforcement learn-
ing (Coelho et al. 2024) to replace the classical Q network.
Researchers have also demonstrated the effectiveness of the
data reuploading circuit on small-scale datasets when trained
on a superconducting quantum processor (Tolstobrov et al.
2024).
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Variational circuits representing quantum versions of neu-
ral networks can be written as follows (before measurement):

[ (x; 8)) = V(0)Ugp(x)]0)®", (N

where V (0) are the variational layers parameterised by 6
and could be absorbed in the measurement observables O,
becoming O (#) = V' (0)OV (6):

(¥ (x; 0)| 01y (x; 0)) = (01" U4 (x) V' () OV (0) U (x)|0)*"
= (01®"U; () 0(0)Up(®)[0)®",  (8)

X is the input data, and Ug(x) is the data encoding unitary
and could be parameterised with some other set of parame-
ters ¢. In this form, the input data only appears once in the
model, while in classical neural networks, one input neuron
can be accessed by more than one neuron in the hidden layer.
Motivated by this difference, the data reuploading circuit can
be written as follows:

[V (x; @) =

1

L
[V (©)Ug(x)]10)®". ©))
=1

In this definition, the data encoding unitary Ug(X), together
with the parameterised layer V, are repeated L times with the
same data encoding unitary but with different parameters for
V,®o = {®1, @2, - - , @ }. Also, it has been proved that data

Fig.1 The quantum machine
learning model described in

Eq. 10. The model shown in the
figure has a five-qubit circuit for
the images from the
FashionMNIST dataset (and
MNIST as well). The grey-scale
images are padded from 28 x 28
to 32 x 32 with zeros. Then, the
quantum Hamiltonian Hy; is
constructed with the padded
image matrices. The data
encoding unitary (grey box in
the circuit diagram) and the
parameterised circuit unitary
(white box in the circuit
diagram) are repeated L times
for an L-layered data
reuploading circuit

reuploading circuits in principle exhibit a quantum advantage
in terms of function approximation (Yu et al. 2023).

2.3 The model

Combining the data reuploading circuit and Hamiltonian
embedding, we have the following quantum machine learn-
ing model (prior to measurement, also shown in Fig. 1):

L
lp(t, @; M) = [ TIV (@)W @; M)+, (10)

i=1

Here, we set the circuit to begin with an equal superposition
of all basis states (|+)®").

There is flexibility in the structure of the parameterised
layer V. For small datasets, we opt for a parameterised layer
composed of SU(4) unitary gates in a brick wall layout with
different parameters. Generally, a SU(N) gate, where N =
2", n being the number of qubits the gate acts on, can be
written as follows:

SU(N)(0) =eXp(Zi9iG,’), an
i=1

where m = 4" — land G; € {I,X,Y, Z}®¥"\{I®"). 9 =
{01, -+, Oan_1}.

In our model, the classical data pass through a non-
linear operation first (time evolution), then followed by a

T

)/ 2

- —]
— -
= exp(-iHyt/2) = V(w,)
-+ —
- —

Repeat L times with different t and w...

@ Springer
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parameterised unitary layer. Although this is not common in
deep learning practice, where nonlinear operations (activa-
tion functions) normally occur after linear and convolutional
layers, it could be viewed as a form of pre-activation, which
enabled the training of a 1001-layer ResNet in He et al.
(2016).

For a three-qubit circuit, there could be two different
configurations, as shown in Fig. 2a. These two different con-
figurations generally do not have a noticeable impact on the
performance of the model. The same holds for the SU(4)
gates in a five-qubit circuit, as shown in Fig. 2b. For larger
datasets, the SU(N) gate on all the qubits in the circuit will

be adopted.
For the classification of K — classes, the probability for
each label i € {0, 1,---, K — 1} can be obtained by mea-

suring the [log, K1— qubit projection operator P; = |i)(i|:

p(M; i) = (p(t, & M)|(P; ® In—qiog, k0 (t, @3 M)),
12)

where I, [10g, k7 18 the (n — [log, KT)—qubit identity oper-
ator, and 7 is the total number of qubits in the circuit. The
loss function for training is the cross-entropy cost function:

K—1
Cross-Entropy Loss (M) = — Z yilogy p(M; i), (13)
i=0

where y; is the true probability of class i for the input M,
which, in the case of one-hot encoding, is 1 for the true class
and O for all others. For a more detailed explanation of the

Fig.2 Potential layouts for the S

cross-entropy function, readers could refer to deep learning-
related textbooks, such as Chapter 5.7 in Prince (2023).

To avoid taking the log of 0, we use Softmax(p(M; i)) to
replace p(M;i):

eP(M:i)

Softmax(p(M; i) = ———.
(P 8)) S K epik)

(14)

The purpose of the Softmax function is to convert a real-
valued vector to another real-valued vector, but with values
in (0, 1) and sum to one (Prince 2023).

3 Simulation experiments and results
3.1 Baseline model and datasets

Our baseline model for comparison is the quantum convo-
lutional neural network proposed in Cong et al. (2019). The
structure and implementation of the baseline model follow
Kottmann et al. (2022). For the baseline model, since ampli-
tude embedding is used, all input images were flattened into
vectors and padded. The size and number of parameters of
the model depend on the size of the input and the number of
classes.

We trained and tested our model on four different datasets:

The Kaggle CT Medical Image dataset This is a small subset
of images from Albertina et al. (2016), obtained from the
Kaggle website (Scott Mader 2017). This dataset contains
100 CT medical images that have binary labels “True” or
“False” for “Contrast”. The original dimension of the images

SU(4) gate in three- and
five-qubit circuits used in the
quantum machine learning

model in this paper —

| ~—

(a) Two possible layouts for two SU(4) gates on a three-qubit circuit.

) S
) )
— —
) Y
— —
) )
-/ -/
— —

(b) Two possible layouts for four SU(4) gates on a five-qubit circuit.
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Fig.3 Sample images from the
Kaggle CT Medical Image
dataset. a Original image
samples from the CT medical
image dataset. b Same images
as a, but resized to 32 by 32.
The resize is achieved via
OpenCV-Python’s resize
function. The pixels are also
normalised before being fed into
the quantum neural networks
using OpenCV-Python’s
normalise function

label =

is 512 by 512. To reduce the simulation cost, the images were
resized to 32 by 32 using the Python package of OpenCV
(Itseez 2015). The resized images were randomly divided
into train (80 images) and test (20 images) datasets. Sample
images of the dataset are shown in Fig. 3.

Subset of the Sklearn digits dataset This data (Alpaydin
and Kaynak 1998) is obtained through the machine learning
package “Scikit-learn” (Pedregosa et al. 2011). The dimen-
sions of the images are 8 by 8. Only images with labels 0 to
7 (eight classes in total) were sampled when splitting train
(1200 images) and test (100 images) datasets. Sample images
are shown in Fig. 4.

Subset of the MNIST dataset The data (LeCun et al. 2010)
is obtained through the corresponding data loading module
in Torchvision (maintainers and contributors 2016). Only
images with labels O to 7 (eight classes in total) were sampled
when constructing the train datasets (48,200 images) and the
test datasets (8017 images). The original dimension of the

label=0 label=1 label=2 label=3

PIRTEARIET ML

label =

label = 0 label =0

images in the MNIST dataset is 28 by 28. The images were
padded to 32 by 32 with zeros. Image samples are shown in
Fig. 5.

Subset of the FashionMNIST dataset Data (Xiao et al. 2017)
is obtained through the corresponding data loading module
in Torchvision (maintainers and contributors 2016). Only
images with labels O to 7 (eight classes in total) were sam-
pled when constructing the train datasets (48,000 images)
and the test datasets (8000 images). The original dimension
of the images in the FashionMNIST dataset is 28 by 28. The
images were padded to 32 by 32 with zeros. Image samples
are shown in Fig. 6.

3.2 Results

Although our model does not provide speedups for either
training or inference when compared to classical techniques,
it still outperforms the baseline QCNN model with different

label=6 label=7

Fd

label=4 label=5

Fig.4 Sample images from the Sklearn digits dataset. The size of the images is eight by eight

@ Springer
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Fig.5 Sample images from the label=4  label=0 label=5 label=6 label=5 label=3 label=0 label=4
MNIST dataset. The size of the
original images is 28 by 28.
Images were padded with zeros
to 32 by 32 before constructing
the Hermitian operators of the
1mages label=7  label=7 label=4 label=9 label=1 label=5 label=9 label=6

] T ¢4 49/ 69 ¢

random initialisations and without extensive hyperparameter
search. These results show how machine learning models
based on straightforward heuristics could easily achieve good
performance, even outperforming famous quantum machine
learning models, and reach a level close to classical machine
learning models.

Both the baseline and the proposed model were trained
with 20 different parameter initialisations for the Kaggle
CT Medical Images dataset and subset of the Sklearn Dig-
its dataset, each for 500 iterations with the Adam optimiser
(Kingma and Ba 2017). In contrast, the MNIST and Fash-
ionMNIST subset datasets were trained for five different
parameter initialisations, each for 100 iterations with the
Adam optimiser (Kingma and Ba 2017). For the CT Medi-
cal Images and Sklearn digits datasets, the loss and accuracy
are averaged over the 20 different parameter initialisations.
For the MNIST and FashionMNIST datasets, the loss and
accuracy are averaged over the five different parameter ini-
tialisations. The averaged values of the evaluation metrics
(loss and accuracy) of the final iteration for each of these
four datasets can be found in Table 1, and the curve plot of
the metrics through the training iterations could be found in
Figs. 8,9, 10, and 11 in the Appendix. A summary of results
can be found in Table 1.

label=5 label=2 label=7 Iabel—
label=5 label=7 label=3 label=3

@/--II

3.3 Analysis

The performance gaps for the three datasets Sklearn Digits,
MNIST, and FashionMNIST between the proposed models
and the baseline models can clearly be seen in Figs. 9, 10,
and 11. The performances of the proposed model on the
test dataset are consistently better than those of the base-
line model on the training dataset. However, the performance
separation on the Kaggle CT Medical Images dataset is not
as significant. A major difference between the Kaggle CT
Medical Images dataset and the other three datasets is that it
requires downsampling (from 512 x 512 to 32 x 32) before
data embedding. From Fig. 3 a and b, we can see that the
downsampling process obscured many fine-grained features
in the image. This downsampling process, in addition to the
limited number of samples in the dataset, could be one of
the reasons that led to this smaller performance difference
between the proposed model and the baseline model.
Comparing the performance in the Sklearn Digits dataset
and the MNIST dataset, we can see that although both the
baseline model and the proposed model experienced a per-
formance drop when the size of the input data increased,
the performance of the baseline model dropped more and
widened the gap between the baseline model and the
proposed model. This phenomenon shows that the baseline

label=2 label=7 label=8 label=4
label=7 label=3 label=8 label=4

~fw

Fig. 6 Sample images from the FashionMNIST dataset. The size of the original images is 28 by 28. Images were padded with zeros to 32 by 32

before constructing the Hermitian operators of the images

@ Springer
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;Z?::lei:le :rilde ]fr eorlfggr:;rrﬁs doel;stl;et Dataset Metrics QCNN HamEmb HamEmb (2x depth)
the last iteration on all the Medical Images Train loss 0.6571 0.5457 -
datasets
Test loss 0.6843 0.6318 -
Train accuracy 73.25% 83.75% -
Test accuracy 58.25% 67.75% -
Digits Train loss 1.9461 1.5454 —
Test loss 1.9493 1.5609 —
Train accuracy 79.77% 95.22% -
Test accuracy 78.95% 94.40 % —
MNIST Train loss 1.9889 1.5742 —
Test loss 1.9871 1.5740 -
Train accuracy 46.94% 89.24% —
Test accuracy 47.03% 89.72% —
FashionMNIST Train loss 1.9738 1.6072 1.5810
Test loss 1.9741 1.6114 1.5876
Train accuracy 43.46% 78.52% 80.46 %
Test accuracy 42.90% 717.77% 79.61%

For the Kaggle CT Medical Images dataset, the model performance data is averaged over 20 different parameter
initialisations; for the Digits dataset, the performance is also averaged over 20 different parameter initialisa-
tions. For the MNIST and FashionMNIST datasets, the performances are both averaged over five different
parameter initialisations. For the FashionMNIST dataset, we also have additional results, in which we doubled
the depth of the data reuploading circuit. However, we can see that the performance increase is only marginal
compared to the increase in the number of parameters

model, which adopts amplitude embedding as the data encod-
ing method, cannot efficiently capture the features in such
a high-dimensional image dataset. The performance drop of
the proposed model, although smaller compared to that of the
baseline model, still indicates that it could also have trouble
dealing with high-dimensional image data, but is saved by
the increased number of parameters.

When comparing the performance of our scheme on
MNIST and FashionMNIST, the baseline model has a smaller
performance drop compared to the proposed model, as shown
in Figs. 10 and 11, as well as Table 1, albeit still performing
worse than the proposed model. FashionMNIST has richer
and more complex spatial features compared to the MNIST
dataset. The small change in performance of the baseline
models indicates that it is likely to fail in effectively captur-
ing the features in both datasets. The performance drop for
our proposed model implies that we could deduce that the fea-
tures in the FashionMINIST dataset are also more challenging
compared to those in the MNIST dataset. By encoding the
entire image as a quantum Hamiltonian, our model could
potentially have characteristics similar to a convolution layer
with a very large kernel. Large convolutional kernels cannot
capture fine-grain details in the image as well as smaller-sized
convolutional kernels, and the lack of local features could be
the reason the performance drops for both the baseline model
and the proposed model.

4 Discussion

In the previous sections, we designed a quantum neu-
ral network model based on the data reuploading circuit
(Pérez-Salinas et al. 2020), using the quantum Hamiltonian
embedding (Schuld and Petruccione 2021) approach as the
data encoding unitary, demonstrating that our model could
achieve reasonably better performance than the well-known
QCNN model without extensive architecture and hyperpa-
rameter search on multiple datasets, or dedicated pre-trained
variational circuits to approximate quantum-embedded clas-
sical images (Shen et al. 2024).

It should also be noted that our numerical experiments use
larger datasets compared to previous quantum machine learn-
ing research, since data scaling is also an important research
question in different areas of deep learning, such as large
language models (Kaplan et al. 2020; Hoffmann et al. 2022).
It is common for machine learning models that have good
performance on a small subset of common datasets, such as
MNIST and FashionMNIST, to perform badly on a larger
scale, both in terms of number of labels and number of data
in each label.

In this section, we point out similarities between our model
and classic neural network designs. We followed heuristic
techniques when choosing the data embedding methods and
the structure of the QNN model. In this section, we will dive
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into the details of these heuristics and propose six essen-
tial principles for quantum neural network design to inspire
future research in this direction.

4.1 Resemblances to classical neural network design

Possible connection to pre-activation in classical neural
networks In He et al. (2016), a modified version of the
original ResNet (He et al. 2015), the activation function
(ReLU), was placed before the convolutional layers (and
after the batch normalisation layer). This modification (He
et al. 2016) has been shown to increase the trainability of a
1000-layer ResNet and reduce overfitting. In the proposed
model presented here, we can see from the expansion of the
Hamiltonian embedding in Eq. 6 that our training data first go
through a non-linear transform, then a parameterised layer.
This implicit transform of the input data could be the reason
that during training, the proposed model did not suffer from
any obvious barren plateau with different random initialisa-
tions. However, at this stage, this is just a conjecture and still
requires further investigation.

Possible connection to the Gated Linear Unit (Dauphin et al.
2017) Generally, the Gated Linear Unit (GLU) follows the
form

GLU(x) = f(x) - 0(g(x)), (15)

where both f and g are linear transformations (such as the
linear layer in an MLP or the convolution layer in a CNN),
and o is usually a non-linear activation function, such as
ReLU or the tanh function. Recall the mathematical form of
our model from Eq. 10:

[V (o)W (ti; M)]|+)®", (16)
1

lp(t, @; M)) =

L
=

which can be rewritten as follows:

N

v(x; £, V) =[[1Vi - 0, )]0, (17)

i=1

where V; - 0, (x) can be viewed as a gated linear unit param-
eterised by weight matrix V; and parameter #;. Although it is
hard to say that there is a one-to-one correspondence between
GLU and the proposed model, the implicit data transform
in the quantum Hamiltonian embedding unitary could con-
tribute to the superior performance of our model compared
to other QCNN schemes.

We observed a performance degradation in the proposed
model occurring when the complexity of the data increases
(Sklearn digits — MNIST — FashionMNIST). An intuitive
explanation is that the images in the FashionMNIST dataset
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contain more details than those in the MNIST dataset. Most
pairs of MNIST digits have been shown to be well distin-
guished by using just a single pixel (Xiao et al. 2017). Our
result for the FashionMNIST brings us close to the perfor-
mance achieved by classical machine learning algorithms on
the benchmark provided in Xiao et al. (2017). Since we did
not extensively search for better structures, there is ample
room for improvement when it comes to model architecture.
For example, our model encodes the entire image as a whole,
whereas modern deep learning practice shows that even with-
out convolution, we should still divide the image into patches,
allowing the model to focus more on local spatial features,
such as the embedding layer in the vision transformer (Doso-
vitskiy et al. 2020).

4.2 Guiding principles of quantum machine
learning model design

In this paper, we assume that, as with their classical coun-
terparts, quantum machine learning with quantum neural
network (QNN) models also needs to process input data and
to discover hidden patterns, which means that they may also
benefit from incorporating similar intuition to that used for
classical deep neural networks, while operating under the
framework of quantum computing. In the previous sections,
we briefly mentioned some of the reasons for our design
choices of the QNN model. In this section, we lay out the fol-
lowing, but non-exhaustive, guiding principles for the design
of QML models (shown schematically in Fig. 7).

1. LESS INITIAL FOCUS ON SPEEDUPS: During the con-
ceptualisation of our model, we did not put speedup
quantum advantage as the initial goal (Fig. 7a). Instead,
we searched for options that align with the structure of
the data (which will be further discussed later), as well as
using heuristics from classical neural networks (the data
reuploading circuit). Since we have demonstrated with
numerical experiments that our model has better perfor-
mance relative to QCNN results (Table 1), in the future,
research could be focused on how to efficiently imple-
ment such quantum Hamiltonian embedding on current
quantum hardware. A similar evolution has occurred in
the research of deep learning models. For example, after
the transformer model proved its superior performance in
language processing tasks (Vaswani et al. 2017), accel-
eration methods such as flash attention (Dao et al. 2022)
were proposed to speed up the calculation of the atten-
tion layers. When developing quantum machine learning
models, one could follow a similar principle: first, find
a framework that has acceptable performance on com-
mon datasets, and then move on to the optimisation of
the model.



Quantum Machine Intelligence

(2025) 7:35

Page110f18 35

(a)

Speed-Up

Nl —taon -

el

“Better Model”

INNNEN]

(c)

(b)

final frontier <eos>
Decoder-Only Architecture T T T

Decoder Block
Decoder Block

Decoder Block

INNNNN]

TTTTTT

LE—EN

INRNNN]

E:

TTTTTT

T

/-)

B

111111

Feed-Forward Network
Self-Attention

T 1T 1T

Token and Pos Embedding

T 1
space the final

(f)

Fig.7 Our proposed six guiding principles required for designing quan-
tum machine learning models. a Speedup is not the first thing to consider
when designing new quantum machine learning models, since it does
not necessarily lead to “better models”, i.e. we should instead focus
on improvements in metrics of performance, such as accuracy. b The
intrinsic structure of the data should be taken into account when design-
ing the model architecture. Images have two major spatial directions,
so the convolution kernel in a CNN (lower part of b) will scan in both
directions, while text data only has a single temporal dimension, so
the model needs to generate the words one by one (upper part of b,
which is a decoder-only generative transformer Radford et al. 2018).
¢ Using a classical model, such as a neural network backbone or PCA

2. KEEP THE DATA IN MIND: One of the major rea-
sons that the quantum Hamiltonian embedding approach,
instead of many other popular data embedding methods,
was selected during the model design process is that by
embedding the images as quantum Hamiltonian in the
form of matrices, we could preserve the two-dimensional
structure of the images as much as possible. This partic-
ular choice is often referred to as the inductive bias in
machine learning literature. In classical machine learn-
ing, inductive bias is a set of assumptions a model makes
to generalise better on unseen inputs, since there are no

to reduce the dimension of the data (the upper path), obscures the real
effectiveness of the quantum machine learning model, so we should
minimise classical preprocessing as much as possible. d Avoid direct
“quantisation”, i.e. avoid using quantum circuits to implement the exact
mathematical operations of a classical machine learning model. e Mea-
surements in the quantum circuit of the quantum machine learning
model may not have the same kind of nonlinearity as the activation
functions in classical neural networks, such as the ReLLU (rectified linear
unit, ReLU(x) = max(0, x)) function. f Some data embedding meth-
ods, such as angle embedding, may introduce unwanted bias toward
certain kinds of decision boundaries, harming the performance of the
machine learning model

completely general learning algorithms according to the
No Free Lunch theorem (Goyal and Bengio 2022). This
inductive bias is also integrated into the design of classi-
cal convolutional neural networks, where the convolution
kernel usually moves along the height and width of the
image to capture the spatial dependence of pixels on
different locations (see Fig. 7b). Even when the convo-
lutional neural network is applied to sequence data (Kim
2014), the kernel usually moves along the time dimen-
sion to capture temporal correlations, which is different
from the CNNs that operate on image data. In more recent
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research, transformer-based architectures (Vaswani et al.
2017; Radford et al. 2018) have often been used for lan-
guage modelling. We can see from these two examples
that even though the underlying operation (convolution)
is the same, different kinds of data will require different
kinds of convolution kernels.

. MINIMISE CLASSICAL PREPROCESSING: In our model,

the only classical preprocessing steps involved are the
normalisation of pixel values, which is also a common
practice in classical deep learning, as well as the padding,
transpose of and addition between the image matrices to
construct the quantum Hamiltonian (see Fig. 1c). It has
been a common practice in some of the quantum machine
learning research to adopt the backbone of a classical neu-
ral network, such as the ResNet-18 (He et al. 2015), to
extract task-specific features from the high-dimensional
image data (for an example, see Zaman et al. 2024). In
essence, this kind of approach replaces the last fully con-
nected layer of the backbone classical neural network
with a parameterised quantum circuit. Usually, for classi-
fication tasks, the activation function at the last layer (the
fully connected layer) is the softmax function, making
the last layer a multinomial logistic regression. Figura-
tively speaking, we can say that the classical backbone
neural network has done most of the “heavy lifting” of the
downstream task by extracting features from the image.
Even a trivial (multinomial) logistic regression classifier
could complete the task, which makes one question the
necessity of introducing quantum models at the end of the
classical model. In the design of our model, we avoided
this potential issue by minimising the classical prepro-
cessing as much as we could.

AVOID DIRECT “QUANTISATION” OF CLASSICAL MO-
DELS: Instead of directly “quantising” the classical
machine learning model to a quantum one which per-
forms the same arithmetic operations on a quantum
computer via quantum linear algebra, it would be prefer-
able to develop quantum neural network models that
could utilise operations that are intrinsic to the underlying
quantum system, such as the time evolution of a quan-
tum Hamiltonian, indicated by the numerical experiment
results that the quantum Hamiltonian embedding, which
is related to the time evolution of a quantum system,
outperforms the QCNN, which “quantise” the classi-
cal convolution and pooling operations via qubit-local
unitary operators and measurement-outcome-controlled
unitary operators. We could see similar trends happening
in classical deep learning research: models that harvest
most of the hardware prevail. One of the reasons that
transformers (Vaswani et al. 2017) have such an advan-
tage over recurrent-neural-network-based models such
as the long-short term memory (LSTM) network and the
Gated Recurrent Unit (GRU) network is that the structure
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of transformer models enables it to be easily parallelised
during training and accelerated by GPUs. In other words,
the structure of transformer models is more compatible
with current GPU architectures.

. NONLINEARITY IS NOT WHAT YOU THINK: During the

design of our model, we relied on the evolution of the
image Hamiltonian to introduce “nonlinearity” into the
(quantum) neural network, which resembles the gated lin-
ear unit, as shown in Section 4.1. However, in quantum
computing, measurement operations are often considered
a “nonlinear” operation since the time evolution of the
system is no longer defined by the Schrodinger equa-
tion, which is a reversible linear differential equation.
While in deep learning research, nonlinearity refers to
the ability of the model or a layer to nonlinearly (that
is, not just translation, scaling, or rotation) transform the
data manifold (Olah 2014). Recent research shows that
nonlinear functions (activation functions) play a more
important role rather than merely providing nonlinear
transformations on the data manifold. In Humayun et al.
(2024), the authors suggest that nonlinearity (ReLU) in
deep neural networks divides the input space into non-
overlapping linear regions. In Teney et al. (2024), the
authors suggest that activation functions introduce a non-
trivial bias to the neural network, making the neural
network favour functions with certain levels of complex-
ity. For example, ReLU-activated neural networks would
favour low-complexity (low-frequency) functions which
often align with the training target. Features learned by
neural networks can also be regarded as directions in the
activation space (Elhage et al. 2022). Since operations
conditioned on mid-circuit measurement results could be
converted to quantum-controlled operations via deferred
measurements, the transformations on the input states by
the quantum convolutional neural network could be rep-
resented as a complete-positive trace preserving (CPTP)
map, which is linear (but not reversible). Although quan-
tum neurons with repeat-until-success circuits could
produce nonlinear responses akin to a classical activa-
tion function (Cao et al. 2017), the input is first passed
to an Ry gate, which is already nonlinear. The repeat-
until-success model could be viewed as a filtering process
to produce the tanh-like signal. In addition, the repeat-
until-success process makes it difficult to scale to a large
number of neurons, which is common for today’s large
models.

. BE CAREFUL OF UNWANTED BIAS: The other reason

that we opted for quantum Hamiltonian embedding rather
than popular choices, such as angle embedding, was to
avoid unwanted bias. In recent research, the authors of
Bowles et al. (2024) showed that angle embedding for
quantum machine learning models could introduce bias
on decision boundaries that are formed based on periodic
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functions, which is also taken into account during the
design of our model (Fig. 7f), since the rotation angles
passed as gate parameters will first go through trigono-
metric functions. This is essentially the same as using the
sine or cosine functions as activation functions, which is
very rare in deep learning practice. If parameterised gates,
which take multiple rotation angles as input parameters,
such as the U gate U(6, ¢, §), different elements (pixels)
of the same datum (image) will go through different non-
linear operations. Unless we are sure that this is required
due to the nature of the data or the task, we should avoid
such different treatments to the same datum.

In summary, our proposed principles for designing quan-
tum machine learning models shed new light on how to
combine quantum computing and machine learning for clas-
sical data. Some of these principles could be viewed as
inductive biases, which enable the algorithm to prioritise
certain hypotheses over others. Others are motivated by the
underlying hardware that runs the model. However, it should
be noted that these six principles are far from complete. The
hardware-based principles could be extended to analogue
neural networks on the quantum processors (or, in Hinton’s
words, “mortal computation” Kleiner 2024 on a quantum
processor). The principles for inductive biases could be in
a difficult position in the future due to recent research in
large language models, especially those on the scaling laws
(Kaplan et al. 2020; Hoffmann et al. 2022). According to Sut-
ton (2019), one could say that the past 70 years of Al research
could be summarised into the development of more and
more general methods with weaker modelling assumptions or
inductive biases, adding more data and compute power, or in
other words, to scale up. There has been evidence that given
enough data and compute budget, even MLPs (multi-layer
perceptron) and the closely related MLP-Mixer models could
perform in-context learning, which is the ability to solve a
task from only input examples (Tong and Pehlevan 2024).
Also, in addition in Nguyen et al. (2024), through numerical
experiments with a pixel transformer that treats an image as
a set of pixels and employs randomly initialised and learn-
able position embeddings without any information about 2D
structure, the authors questioned the necessity of the induc-
tive bias of locality which presents in many computer vision
models, from LeNet (LeCun et al. 1989) to the vision trans-
former (Dosovitskiy et al. 2021). It remains to be seen if such
considerations impact the introduction of inductive biases
from the quantum side to QML models (Bowles et al. 2023).

With limited computation, we still need inductive biases dur-
ing the design of QML models, which should be comforting
for researchers in this area. However, in the future, when
(classical and/or quantum) computing is cheaper and more
accessible for machine learning and Al research, enabling
the ability to train even larger models with a larger amount
of data, it would be necessary to remove such inductive biases
from the design of the model (Chung 2024).

It also should be noted that whether to continue invest-
ment of resources for the scaling law should be the future of
Al research is still under heavy debate. There are still many
issues and limitations existing in the current auto-regressive
decoder-only transformer large language models (Barbero
et al. 2024; Abbe et al. 2024; Nezhurina et al. 2024; Ofir
Press et al. 2022; Verma et al. 2024; Wu e tal. 2024; Kamb-
hampati et al. 2024; Zhou et al. 2023), and not all of them
could be solved by scaling up the size of the data and compu-
tation resources invested in the training process, especially
those regarding compositional reasoning (Dziri et al. 2023;
Wang et al. 2024). In the context of current work in quan-
tum computing, there is still a significant gap between the
major concerns in today’s Al research and the research on
quantum advantage and utility for Al. The research presented
here seeks to find ways to bridge this gap.

To summarise the main points and contributions of the
paper, we have the following:

e We have developed an embedding approach for image
data that requires as little preprocessing as possible and
preserves the spatial features as much as possible. Our
embedding approach could incorporate large-dimension
inputs but still work with the data re-uploading circuit.

e We have developed a QNN model based on the data reu-
ploading circuit that can achieve decent performance on
image classification tasks.

e Furthermore, based on our model design process and
experiment results, we proposed six guidelines for the
design of quantum machine learning models, which
incorporate intuitions and heuristics from classical Al
research.

It should be noted that our results are achieved with numer-
ical simulations of the quantum model. For future research,
we would like to investigate approaches that enable the
Hamiltonian embedding to be run on physical devices with-
out severely degrading the performance of the model.
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Appendix. Plots of the loss and accuracy
curves during the training of the model
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Fig. 8 Plots for the averaged train and test metrics over 20 different
parameter initialisations for the Kaggle CT Medical Images dataset.
Although the proposed model (HamEmb) outperforms the baseline
model, we could still see the gap between performances on the train
and test dataset, potentially due to the small size of the dataset

@ Springer

Train and Test Losses

21 F E
20F | 4
|
{ SosoesEs
1
191 | i
\ —e— QCNN Train Cost
9 i -#%- QCNN Test Cost
S8 | HamEmb Train Cost -
\ -#- HamEmb Test Cost
\
1.7 *\
' §
16 e
0 100 200 300 400 500
Epoch
Train and Test Accuracies
T T T T T T
1.0 F E
add 55 e B e o
$
o8 | WWWM .
)
[ |
]
206 | -
g |
3
8
<
0.4 F e
—e— QCNN Train Acc
02k ‘ —-#-QOCNN Test Acc |
| HamEmb Train Acc
—-#- HamEmb Test Acc
0 100 200 300 400 500
Epoch

Fig. 9 Plots for the averaged train and test metrics over 20 different
parameter initialisations for the Sklearn digits dataset. We can see that
the model proposed (HamEmb) drastically outperforms the baseline
model (QCNN with amplitude embedding)
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Fig. 10 Plots for the averaged train and test metrics over 5 different
parameter initialisations for the MNIST handwritten digits dataset. We
can see that the model proposed (HamEmb) outperforms the base-
line model (QCNN with amplitude embedding). However, we can
observe that both the performances of the baseline and proposed model
have dropped compared to the performance shown in Fig. 9, also for
handwritten-digit-type dataset, which could potentially be caused by
the increased dimension of the image size in the dataset
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Fig. 11 Plots for the averaged train and test metrics over five different
parameter initialisations for the FashionMNIST dataset. We can see
that the model proposed (HamEmb) outperforms the baseline model
(QCNN with amplitude embedding). However, we can observe that
both the performances of the baseline and proposed model have dropped
compared to the performance shown in Fig. 10, and increasing the depth
two times does not increase the performance by a significant margin.
This outcome could potentially be due to the decreased sparsity of the
images in the FashionMNIST dataset compared to the MNIST dataset
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