
Thermodynamic stability of ACGL Chern-Simons
Black Hole and Optimal Processes

V. AVRAMOVa, H. DIMOVa,b, M. RADOMIROVa, R. C. RASHKOVa,c,
and T. VETSOVa,b

aDepartment of Physics, Sofia University,
5 J. Bourchier Blvd., 1164 Sofia, Bulgaria

bThe Bogoliubov Laboratory of Theoretical Physics, JINR,
141980 Dubna, Moscow region, Russia

cInstitute for Theoretical Physics, Vienna University of Technology,
Wiedner Hauptstr. 8-10, 1040 Vienna, Austria

v.avramov,h_dimov,radomirov,rash,vetsov@phys.uni-sofia.bg

Abstract

We investigate the thermodynamic stability of the (2+1)-dimensional β2 = 0
ACGL Cern-Simons black hole solution of the topologically massive gravitoelectro-
dynamics. We show that the system is globally unstable against thermal fluctua-
tions, but still able to retain some local regions of stability with respect to certain
processes. As a consequence we are able to define an optimal Penrose process and
study its properties via the concept of thermodynamic length. We estimate the ther-
modynamic time and speed of the process with respect to several Hessian metrics
on the space of macro states.

1 Introduction
For long time gravity in three dimensions has been unduly neglected. The situation
radically changed after the discovery of the famous Banados-Teitelboim-Zanelli (BTZ)
black hole solution [1] and the string/holographic revolution [2]. As of today, variety of
such toy models have been investigated in great details. Due to their relative simplicity
and topological nature an abundance of highly non-trivial structures and phenomena were
discovered, many of which find applications in more general theories.

An advantage of three-dimensional gravity is that it can be defined in a multitude
of different ways. For example, one can modify the Einstein-Hilbert action by electro-
magnetic or higher-derivative terms [1, 3, 4]. While another approach adds topological
Chern-Simons (CS) terms [5–9]. A third path takes on nontrivial reductions of higher-
dimensional models down to D = 3. In this way a Gauss-Bonnet-like black hole solutions
were recently derived [10–12].
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In this paper we focus on the Chern-Simons approach, where a sequence of Chern-
Simons black hole solutions were already found [9, 13, 14]. The latter admit highly non-
trivial statistical, differential and algebraic structures, which one can use to extract rele-
vant physical data encoded in these systems [15–18]. Most importantly, three-dimensional
black holes can be interpreted as the heat bath source for the finite temperature in the
holographically dual field theory. For this reason we will be most interested in the thermo-
dynamic aspects of these black holes. Particularly, we conduct our study on the β2 = 0
ACGL1 CS black hole beyond the traditional formalism. Our approach is towards the
study of its thermodynamic stability under fluctuations in the framework of thermo-
dynamic information geometry [19–22]. This approach can additionally be utilized to
identify most efficient ways to extract energy from the system.

As a first step we implement the classical conditions for thermodynamic equilibrium
with respect to the Hessian matrix of the mass-energy potential. If some of these criteria
are violated, we say that the black hole is thermodynamically unstable and thus it can
radiate. In the second step we utilize the Hessian as a metric on the space of states and
use it to define a probabilistic measure of the fluctuations.

Additionally, studying the stability against thermal fluctuations is indicative of the
possibility to extract energy from the system. One such process of extraction in black
hole physics is the famous Penrose process. One can ask the natural question what is
the optimal way or protocol to extract energy with minimal effort. The answer to this
question is most conveniently encoded in the properties of the so called thermodynamic
length (see [23] and references therein).

The concept of thermodynamic (TD) length is not new, but its rather powerful in
thermodynamic optimization and control theory for various systems [24–28]. It quantifies
the amount of work or effort required to change the thermodynamic state of a physical
system. The definition depends on the notion of metric on the thermodynamic state space.
The simplest such metrics are proportional to the Hessian of the given thermodynamic
potential and determine the probability for fluctuations between states. Most prominent
ones are the Hessian of the energy (Weinhold metric) [19] or the Hessian of the entropy
(Ruppeiner metric) [20]. Their importance is evident in fluctuation theory as shown by
Ruppiner [20]. The general idea is that the probability of fluctuating from state S to
state S + ∆S, where ∆S = S − S̄, is proportional to the thermodynamic distance or
length between these two states. It is important to stress, that this is not the traditional
geometric distance between these two states on the thermodynamic manifold, but rather
the Fisher distance between probability distributions [29,30].

Given the metric gab(x) on some metric space with coordinates x one can define the
functional of the length in two different forms. The first definition uses the natural coor-
dinates x of the chosen thermodynamic potential, without any explicit parametrization
of the path γ in x space:

L[γ] =

∫
γ

√
gab(x)dxadxb. (1.1)

The second definition takes an affine parameter t along the path γ, which yields

L(τ) =

∫ τ

0

√
gab(x)ẋa(t)ẋb(t) dt. (1.2)

Here τ is the final value of t. The main difference between the two lengths is that L[γ]
does not necessarily give the optimal thermodynamic distance, while L(τ), evaluated on

1K. Ait Moussa, G. Clement, H. Guennoune and C. Leygnac (ACGL).
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a geodesic profile for xa(t), is optimal. The extremal values of the thermodynamic length
represent the minimum amount of work required to take a system from one equilibrium
state to another in a reversible manner. Reversible means that the system goes through
a sequence of equilibrium states during the transformation, and at each step, it is in
thermal equilibrium with its surroundings. This implies that the process is quasi-static
and infinitesimally slow, so no entropy is generated along the way. Therefore, the TD
length sets a lower bound on dissipation. This is implemented by the simple Cauchy-
Schwarz inequality

J = τ

∫ τ

0

gab(~S)ṠaṠbdt ≥ L2, (1.3)

where the thermodynamic divergence J measures the efficiency of the quasi-static proto-
cols.

The structure of this work is the following. In Section 2 we briefly present the con-
cepts of global and local classical thermodynamic stability. In Section 3 we introduce the
(2+1)-dimensional β2 = 0 Cern-Simons black hole solution of TMGE and its properties.
In Section 4 we show that the system is globally unstable against thermal fluctuations, but
still able to retain local thermodynamic stability with respect to certain processes. In Sec-
tion 5 we consider optimal processes in view of different thermodynamic representations.
Finally, in Section 6 we make a brief discussion on our results.

2 Classical criteria for thermodynamic stability
The study of thermal systems starts by referring to an appropriate thermodynamic po-
tential, which properly reflects the constraints imposed on the system. This is equivalent
to determining the suitable thermodynamic representation. In general, one starts with
the energy E or the entropy S of the system and derive all other representations via some
Legendre transformation. For this purpose one needs to know the fundamental relations
E = E( ~E) or S = S(~S), where ~E = (E1, E2, ..., En) and ~S = (S1, S2, ..., Sn) are the nat-
ural extensive variables of the energy and the entropy, respectively. All other properties,
including the intensive ones, follow naturally from these relation. For example, in energy
representation, the natural extensive variables ~E and their thermodynamically conjugate
intensive ones ~I = (I1, I2, ..., In), are related by the equations of state:

Ia =
∂E( ~E)

∂Ea

∣∣∣∣
E1,...,Êa,...,En

. (2.1)

Here the parameters in the subscript are kept fixed except for Êa. Taking a differential
of the energy and using these equations one can write the first law of thermodynamics as
a generalized work:

dE = IadE
a = ~I.d ~E. (2.2)

This form of the first law is specifically chosen to represent Ia as generalized thermody-
namic forces and Ea as generalized thermodynamic coordinates by analogy of classical
mechanics. Similar expressions can be written in entropy or other representations. All of
these representations contain full thermodynamic information of the system. The choice
of a particular potential only depends on the control parameters and the constraints
imposed on the system.
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The fundamental relation E = E( ~E) is even more important, because it can be used
to determine the thermodynamic stability of the system, i.e. for the set of control pa-
rameter for which the system is in equilibrium. We say that a thermodynamic system is
in equilibrium with its surroundings if the state quantities do not spontaneously change
over considerably long period of time. According to the laws of thermodynamics [31–35]
the necessary, but not sufficient, conditions for thermodynamic equilibrium between the
system and its surroundings can be established by the equalities of the corresponding
intensive parameters, Ia = I∗a , of the system Ia and the reservoir I∗a . These parameters
may include temperature, pressure, chemical potentials etc. The conditions can easily be
derived by the restriction on the first variation of the internal energy of the system during
a virtual process:

δ(1)E(Ea)− I∗aδEa =

(
∂E

∂Ea

∣∣∣∣
E1,...,Êa,...,En

− I∗a
)
δEa = 0. (2.3)

Due to the first law in equilibrium one has (2.1), thus the necessary (but not sufficient)
conditions for equilibrium become

Ia = I∗a = const. (2.4)

Naturally, the sufficient conditions for global thermodynamic equilibrium, and thus
global thermodynamic stability, follow from the second variation of the energy:

δ(2)E = δ ~ET .Ĥ(E)( ~E).δ ~E > 0. (2.5)

The positive sign of δ(2)E > 0 reflects the fact that in equilibrium the energy of the
system assumes its minimum and should be a strictly convex function. Here Ĥ(E) is the
symmetric n× n Hessian matrix of the energy given by

H(E)
ab ( ~E) =

∂2E( ~E)

∂Ea∂Eb

∣∣∣∣
E1,...,Êa,...,Êb,...,En

, a, b = 1, 2, ..., n. (2.6)

The inequality δ(2)E > 0 defines Ĥ(E) as a positive definite quadratic form. This means
that for global equilibrium it is sufficient that all eigenvalues εa > 0, a = 1, ..., n, of the
Hessian of the energy be strictly positive. The positive definiteness of the Hessian is a
consequence of the convexity of the energy potential, which can be expressed in the most
general form by the Jensen inequality for convex functions [32]:

E
(
E1 + ∆E1, E2 + ∆E2, ...

)
+ E

(
E1 −∆E1, E2 −∆E2, ...

)
> 2E(E1, E2, ...). (2.7)

Expanding these strict global conditions in powers of the fluctuations ∆Ea = Ea − Ēa,
one by one or in conjunction to each other, one finds another form of the global criteria
for thermodynamic stability, namely the Sylvester criterion for positive definiteness of a
quadratic form. In this case, the criterion states that all the principal minors ∆k > 0 of
the Hessian of the energy must be strictly positive2. For example, for n = 2 system, the
Hessian Ĥ is 2× 2 symmetric matrix and the Sylvester criterion imposes the conditions:

∆1 = H11 =
∂2E

(∂E1)2

∣∣∣∣
E2

, ∆2 = H22 =
∂2E

(∂E2)2

∣∣∣∣
E1

, ∆3 = det Ĥ =

∣∣∣∣∣ H11 H12

H12 H22

∣∣∣∣∣ > 0.

(2.8)
2The same criteria were found valid for general black holes by A. K. Sinha [36–38].
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Finally, we would like to briefly discuss on the concept of local thermodynamic stability
of the system. The system is said to be in a local thermodynamic equilibrium if it can be
divided into smaller constituents, which are individually in approximate thermodynamic
equilibrium, only small gradients are allowed. The study of local thermodynamic stability
is based on the admissible heat capacities. In this case, for a system to be locally stable
with respect to a perturbation in a set of parameters, the corresponding heat capacities
must be strictly positive. When there is a heat transfer the change in temperature is
defined by d̄Q = CdT = TdS, where the extensive quantity C is the total heat capacity
of the system. One can also write

C =
d̄Q

dT
= T

∂S

∂T
, (2.9)

and since d̄Q depends on the nature of the process3, so does C. In multiparameter systems
the heat capacity Cx1,x2,...,xn−1 , at fixed set of thermodynamic parameters (x1, x2, ..., xn−1),
is defined by the temperature gradient of the entropy in a certain space of variables
(y1, y2, ..., yn), namely [39]:

Cx1,x2,...,xn−1(y1, y2, ..., yn) = T
∂S

∂T

∣∣∣∣
x1,x2,...,xn−1

= T
{S, x1, x2, ..., xn−1}y1,y2,...,yn
{T, x1, x2, ..., xn−1}y1,y2,...,yn

. (2.10)

The Nambu brackets { } generalize the Poisson brackets for three or more independent
variables (see Appendix C). We say that the parameters (y1, ..., yn) define the coordinates
on the space of macro states of the system.

Local heat capacities are also important for identifying critical properties and possible
phase transitions of the system. For example, the divergences and the zeroes of the heat
capacity signal the presence of a phase transition and the breakdown of the equilibrium
description of the system. This was first pointed out by Paul Davies for black hole [40],
where the energy and the mass of the black hole can be identified as equivalent4.

3 Chern-Simons black hole solutions of TMGE
The topologically massive gravitoelectrodynamics (TMGE) is a three-dimensional Einstein-
Maxwell theory augmented by gravitational and electromagnetic Chern-Simons terms.
The action for TMGE consists of several parts:

S = SE + SM + SCSG + SCSE, (3.1)

where SE is the Einstein action, SM is the Maxwell part, SCSG and SCSE are the gravita-
tional and the electromagnetic Chern-Simons action terms, respectively. Explicitly, one
has

SE =
1

2κ

∫
d3x
√
|g|(R− 2Λ), (3.2)

SM = −1

2

∫
d3x
√
|g|gµνgρσFµρFνσ, (3.3)

3Hence the inexact differential d̄.
4Unless you consider a pV extended thermodynamics, where the mass becomes the enthalpy of space-

time.
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SCSG =
1

4κµG

∫
d3x ελµνΓρλσ

(
∂µΓσρν +

2

3
ΓσµτΓ

τ
νρ

)
, (3.4)

SCSE =
µE
2

∫
d3x εµνρAµ∂νAρ, (3.5)

where εµνρ is the totally antisymmetric Levi-Civita symbol, Λ is the cosmological constant,
µG and µE > 0 are the Chern-Simons coupling constants, and κ = 8πG is the Einstein
gravitational constant. Note that in (2+1)-dimensional Einstein gravity, the sign of the
gravitational constant κ is not fixed a priori [5, 13, 41]. Therefore, we shall consider both
signs to be possible.

Several regular rotating Chern-Simons black hole solutions of TMGE were found in
[13]. In this case, the type of the black hole solution is determined by the values of the
parameter β2:

β2 =
1

2(1− η)

(
1− 2η − 4

Λ

µE

)
, η ≡ µE

2µG
. (3.6)

Different, causal and regular Chern-Simons black hole solutions exist for 0 < β2 < 1,
β2 = 1 and β2 = 0. We focus here on the properties of the β2 = 0 Chern-Simons black
hole, which thermodynamics admits a natural representation of the mass potential.

The line element of the β2 = 0 solution is given by5 [13]:

ds2 =
[
dt−

(
ρ+ ν + ω

)
dϕ
]2 − 2νρdϕ2 +

dρ2

2νρµ2
E

, (3.7)

where ν > 0 and ω ∈ R are the parameters of the solution. This is a causally regular
(R = µ2

E/2) black hole, with a single horizon at ρ = 0 for ν > −2ω. Its thermodynamics
is represented by

M =
2πνµE
κ

(λ− 1), J =
2πνµE
κ

(
(λ− 1)ω − ν

)
, (3.8)

S =
4π2

κ

(
(1 + λ)ν + (1− λ)ω

)
, Ω =

1

ν + ω
, T =

νµE
2π(ν + ω)

, (3.9)

where M is the mass of the black hole, J is the angular momentum, Ω is the angular
velocity, and T is the Hawking temperature. In order to avoid extremality one has to
assume M,S,Ω, T > 0, which lead to three admissible sectors for ω, ν and the coupling
parameter λ. All other sectors of the ACGL CS black hole are presented in Appendix A.

• Sector I: κ > 0, λ > 1, ν ≥ ω > 0: nonextremal.

• Sector II: κ < 0, λ < −ν+ω
ν−ω < 0, 0 < ω < ν: nonextremal.

• Sector III: κ < 0, λ < −ν+ω
ν−ω < 0, ν > −ω > 0: nonextremal.

Finally, solving κ, ω, µE and λ in terms of (S, J,Ω, T ) and inserting them in M one
finds the Smarr relation:

M = ST + 2JΩ. (3.10)

In what follows, we will investigate the stability of the ACGL CS black hole against
thermal fluctuations with respect to the strict local and global classical criteria for ther-
modynamic stability.

5The authors of [13] consider additional time scale c, which consequently was set to c = 1.
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4 Thermodynamic stability of the Chern-Simons black
hole

This study is entirely within the classical criteria for thermodynamic stability, where
quantum fluctuations are neglected. Also extremal cases are discarded due to the third
law of thermodynamics6.

4.1 Thermodynamic stability in Sector I

The strategy is to solve for the free parameters ω and ν in terms of (S, J), keeping the
couplings µE, λ and κ constant:

ν =

κS +

√
κ
(

32π3Jλ
µE

+ κS2
)

8π2λ
, ω =

(λ+ 1)

√
κ
(

32π3Jλ
µE

+ κS2
)
− κ(λ− 1)S

8π2λ(λ− 1)
. (4.1)

After inserting these expressions inM , T and Ω one finds the mass-energy representation:

M(S, J) =
(λ− 1)µE

4πκλ

(
κS +

√
κ

(
32π3λ

µE
J + κS2

))
, (4.2)

T (S, J) =
∂M

∂S

∣∣∣∣
J

=
(λ− 1)µE

4πλ

1 +
κS√

κ
(

32π3λ
µE

J + κS2
)
 , (4.3)

Ω(S, J) =
∂M

∂J

∣∣∣∣
S

=
4π2(λ− 1)√

κ
(

32π3λ
µE

J + κS2
) . (4.4)

The fundamental relation M = M(S, J) allows one to test for global thermodynamic
stability via the Sylvester criterion for positive definiteness of the Hessian of the mass,

Ĥ =

(
HSS HSJ

HSJ HJJ

)
=

(
∂2M
∂S2

∂2M
∂S∂J

∂2M
∂J∂S

∂2M
∂J2

)
=


8π2√κJ(λ−1)(
32π3Jλ
µE

+κS2
)3/2 − 4π2√κ(λ−1)S(

32π3Jλ
µE

+κS2
)3/2

− 4π2√κ(λ−1)S(
32π3Jλ
µE

+κS2
)3/2 − 64π5(λ−1)λ

√
κµE

(
32π3Jλ
µE

+κS2
)3/2

 .

(4.5)
The stability criteria requires the following inequalities to be satisfied simultaneously:

HSS > 0, HJJ > 0, det Ĥ > 0. (4.6)

However, in this sector, one notes that HJJ < 0 and det Ĥ < 0, where

det Ĥ = − 16π4(λ− 1)2µ2
E

(32π3Jλ+ κµES2)2 < 0. (4.7)

Therefore, the β2 = 0 ACGL CS black hole is globally unstable against thermal fluctuation
as far as classical thermodynamics is concerned. This result follows also by the eigenvalue

6For a discussion of how the third law can be violated by black holes see [42]. Extremal cases might
still be interesting for string theory and other approaches to quantum gravity.
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criterion, presented in Appendix B. Under these conditions the system is always radiating
through some process.

In the case of local thermodynamic stability with respect to certain processes, one
should study the heat capacities of the system in (S, J) space:

CM(S, J) = T
∂S

∂T

∣∣∣∣
M

= T
{S,M}S,J
{T,M}S,J

=

√
32π3Jλ+ κµES2

√
κµE

> 0, (4.8)

CΩ(S, J) = T
∂S

∂T

∣∣∣∣
Ω

= T
{S,Ω}S,J
{T,Ω}S,J

= CM + S > 0, (4.9)

CJ(S, J) = T
∂S

∂T

∣∣∣∣
J

= T
{S, J}S,J
{T, J}S,J

=
κµE

32π3Jλ
CΩC

2
M > 0. (4.10)

Here, we used the Nambu bracket formalism to calculate the corresponding quantities (see
Appendix C). One notes that all of the heat capacities are positive in this sector, hence
the CS black hole retains full local stability with respect to either fixed mass, angular
velocity or angular momentum, respectively.

One can also look for critical behavior. For example, all heat capacities diverge at
µE → 0 or λ→∞. For processes at constant J , the corresponding heat capacity CJ also
diverges at µE → ∞ and J → 0. These critical points indicate the break down of the
classical thermodynamic description.

4.2 Thermodynamic stability in Sectors II and III

It turns out that Sectors II and III share the same expressions for the state quantities
and thus, the same macro properties. Here we set κ = −|κ| < 0 and λ = −|λ| < 0. The
solutions for ω and ν in terms of (S, J), are given by

ν =

|κ|S +

√
|κ|
(
|κ|S2 + 32π3J |λ|

µE

)
8π2|λ|

, (4.11)

ω = −
|κ|(|λ|+ 1)S − (|λ| − 1)

√
|κ|
(
|κ|S2 + 32π3J |λ|

µE

)
8π2|λ|(|λ|+ 1)

. (4.12)

After inserting these expressions in those for M , T and Ω one finds the mass-energy
representation:

M(S, J) =
(|λ|+ 1)µE

4π|κλ|

(
|κ|S +

√
|κ|
(
|κ|S2 +

32π3J |λ|
µE

))
, (4.13)

T (S, J) =
∂M

∂S

∣∣∣∣
J

=
(|λ|+ 1)µE

4π|λ|

1 +
|κ|S√

|κ|
(
|κ|S2 + 32π3J |λ|

µE

)
 , (4.14)

Ω(S, J) =
∂M

∂J

∣∣∣∣
S

=
4π2(|λ|+ 1)√

|κ|
(
|κ|S2 + 32π3J |λ|

µE

) . (4.15)
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The Hessian of the mass is

Ĥ =

(
∂2M
∂S2

∂2M
∂S∂J

∂2M
∂J∂S

∂2M
∂J2

)
=


8π2
√
|κ|J(|λ|+1)(

|κ|S2+
32π3J|λ|
µE

)3/2 − 4π2
√
|κ|(|λ|+1)S(

|κ|S2+
32π3J|λ|
µE

)3/2

− 4π2
√
|κ|(|λ|+1)S(

|κ|S2+
32π3J|λ|
µE

)3/2 − 64π5(|λ|+1)λ√
|κ|µE

(
|κ|S2+

32π3J|λ|
µE

)3/2

 . (4.16)

One notes that the Sylvester criterion is violated by HJJ < 0 and the determinant

det Ĥ = − 16π4(|λ|+ 1)2µ2
E(

|κ|µES2 + 32π3J |λ|
)2 < 0, (4.17)

hence the ACGL CS black hole is globally unstable against thermal fluctuation in these
sectors.

The heat capacities of the system in (S, J) space are correspondingly:

CΩ(S, J) = CM + S > 0, (4.18)

CM(S, J) =

√
|κ|µES2 + 32π3J |λ|√

|κ|µE
> 0, (4.19)

CJ(S, J) =
|κ|µE

32π3J |λ|
CΩC

2
M > 0, (4.20)

thus retaining local thermodynamic stability.

5 Optimal processes
The negative definite Hessian of the mass showed that the ACGL CS black hole is globally
unstable against thermal fluctuations. Therefore, the system is not in equilibrium and
always radiates energy. This leads to certain irreversible changes in the thermodynamic
parameters of the black hole. They could be optimized so that to provide an answer to
the following question: what kind of processes most efficiently change the state of the
system? The answer lies in the extremization of the functional of the thermodynamic
length with respect to Hessian metrics.

In what follows we will study optimal processes for the β2 = 0 ACGL CS black hole.

5.1 Optimal processes in energy representation

Here we show that even non-positive definite Hessian metrics of the CS black hole may
lead to positive definite thermodynamic (TD) lengths. For this purpose, let us identify
x = (S, J) and ĝ ≡ εĤ from (4.5). The choice ε = ±1 corresponds to elliptic (R(TD) > 0)
or hyperbolic (R(TD) < 0) information geometry with respect to the thermodynamic
curvature

R(TD) =
4π
√
κλ

ε(λ− 1)
√
µE(32π3Jλ+ κµES2)

. (5.1)

We prefer to work in Sector I, but similar analysis can be implemented in the other
two sectors. The TD length in energy natural parameters is given by

L[γ] = 2πi

∫
γ

√
2εµE(λ− 1)

κ
(

32π3λ
µE

J + κS2
)3/4

√(
8π3λ

µE
dJ + κSdS

)
dJ − κJdS2. (5.2)

86



Evidently, the properties of the length depends on the process (the path γ).
For example, one can consider an isentropic process S = const from initial state J0 to

final state J , hence

LS(J0, J) =

J∫
J0

4iπ2
√

4πελ(λ− 1)

κ
(

32π3λ
µE

J + κS2
)3/4

dJ = i

√
µE(λ− 1)ε

πλκ
4

√
κ

(
32π3λ

µE
J + κS2

)∣∣∣∣J
J0

. (5.3)

The TD length LS is real and positive for ε = −1 and J0 > J (Penrose process). One
notes that LS(J0, J) has only two reference measurements at J0 and J and may not give
the optimal distance between the initial and the final state.

In order to estimate the optimal thermodynamic path of the process, one needs the
geodesic profiles of S(t) and J(t). The corresponding geodesic equation,

ẍσ(t) + Γσµν(g)ẋµ(t)ẋν(t) = 0, (5.4)

yields a system of two ordinary nonlinear differential equations:

S̈ − 16π3λJ̇Ṡ

32π3λJ + κµES2
− κµESṠ

2

32π3λJ + κµES2
= 0, (5.5)

J̈ − 2κµESJ̇Ṡ

32π3λJ + κµES2
+

κµEJṠ
2

32π3λJ + κµES2
− 24π3λJ̇2

32π3λJ + κµES2
= 0. (5.6)

For S = const the second equation for J(t) decouples,

J̈(t)− 24π3λ

32π3λJ(t) + κµES2
J̇2(t) = 0. (5.7)

The general solution is given by

J(t) =
4096π12c4

1λ
4(t+ c2)4 − κµES2

32π3λ
, (5.8)

where c1,2 are constants of integration. In this case, one can impose two different initial
and boundary conditions. For J(0) = J0 and J̇(0) = J̇0 the solution is given by

J(t) = J0 + J̇0t+
12π3J̇2

0λ

32π3J0λ+ κµES2
t2 +

64π6J̇3
0λ

2

(32π3J0λ+ κµES2)2 t
3 +

128π9J̇4
0λ

3

(32π3J0λ+ κµES2)3 t
4.

(5.9)
The TD length becomes

LS(τ) =

∫ τ

0

√
gab(x)ẋaẋb dt =

8iπ5/2J̇0

√
ελ(λ− 1) 4

√
µE

4
√
κ (32π3J0λ+ κµES2)3/4

τ = vτ, (5.10)

where v = L̇(τ) is the thermodynamic speed of the process and J̇0 is the initial rate of
change of the angular momentum. The length L(τ) is positive definite for ε = −1 and
J̇0 = −|J̇0| < 0. Equating (5.10) and (5.3) one finds the thermodynamic time of the
issentropic Penrose process from J0 to J :

τ =
32π3J0λ+ κµES

2 − 4
√

32π3Jλ+ κµES2 (32π3J0λ+ κµES
2)

3/4

8π3|J̇0|λ
. (5.11)
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Here J is the final value of the angular momentum of the black hole.
Solving for J(t) with boundary conditions J(0) = J0 and J(τ) = J = const, one has

implicit equations for c1 and c2 as functions of the final time τ :

c4
1c

4
2 =

32π3J0λ+ κµES
2

4096π12λ4
, c4

1(τ + c2)4 =
32π3Jλ+ κµES

2

4096π12λ4
. (5.12)

After calculating the TD length for (5.8), and using the relations above, one recovers the
original length LS(J0, J) from (5.3).

Let us consider a process from state S0 to state S at constant angular momentum
J = const. In this case, Eq. (5.2) becomes

LJ(S0, S) = −2π
√

2Jε(λ− 1) 4
√
κ

S∫
S0

(
µE

32Jπ3λ+ κµES2

)3/4

dS

= −
µES

√
(λ− 1)ε 4

√
κ

4π 4
√

2Jπλ3µE
2F1

(
1

2
,
3

4
,
3

2
,− κµES

2

32Jπ3λ

) ∣∣∣∣S
S0

. (5.13)

This quantity is real and positive definite for ε = 1 and under decreasing entropy S < S0.
The latter seems counter intuitive and suggests that this process may not be possible. This
is evident from the geodesic equations at J = const, where one can show that entropy
should also be a constant. Other possibility is for J = 0, where the entropy decreases
exponentially

S̈(t)− Ṡ(t)2

S(t)
= 0 ⇒ S(t) = S0e

− |Ṡ0|
S0

t
, S0 = S(0), Ṡ0 = Ṡ(0). (5.14)

However, in this case, the thermodynamic length becomes zero, LJ→0 = 0, which indicates
a phase transition in the system at J → 0. This is evident from CJ → ∞ at J → 0.
Therefore, in the energy representation, it is not possible to decrease the entropy of the
black hole with an optimal process at J = const.

5.2 Optimal processes in entropy representation

In order to study processes with constant mass of the black hole one has to go to entropy
representation:

S(M,J) =
2πλM

(λ− 1)µE
− 4π2J(λ− 1)

κM
. (5.15)

The Hessian of the entropy is given by

Ĥ =

(
HMM HMJ

HMJ HJJ

)
=

(
∂2S
∂M2

∂2S
∂S∂J

∂2S
∂J∂M

∂2S
∂J2

)
=

(
−8π2J(λ−1)

κM3

4π2(λ−1)
κM2

4π2(λ−1)
κM2 0

)
. (5.16)

Notably, in entropy representation, the Hessian does not depend on the CS coupling µE.
The two eigenvalues of the Hessian are given by

s− =
4π2(λ− 1)

(
J −
√
J2 +M2

)
κM3

, s+ =
4π2(λ− 1)

(
J +
√
J2 +M2

)
κM3

. (5.17)

They appear with different signs, s− < 0 and s+ > 0, hence CS is globally unstable
against thermal fluctuations as expected. This is also confirmed by the Sylvester criterion
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for negative definite quadratic forms. In this case, entropy is a concave function and the
principal minors of the Hessian should satisfy (−1)k∆k > 0, hence HMM < 0, HJJ < 0
and det Ĥ > 0. For the CS system this criterion is not satisfied:

HMM = −8π2J(λ− 1)

κM3
< 0, HJJ = 0, det Ĥ = −16π4(λ− 1)2

κ2M4
< 0. (5.18)

Considering ĝ = εĤ (Ruppeiner metric) with ε = ±1 and x = (M,J), one can calculate
the TD length in (M,J) space:

L = 2πi

∫
γ

√
2ε(λ− 1)(JdM −MdJ)dM

κM3
. (5.19)

It is evident that L = 0 for processes with constant mass M = const. A process at
constant J = const is defined by

LJ(M0,M) = −4πi

√
2εJ(λ− 1)

κM

∣∣∣∣M
M0

. (5.20)

This quantity is positive definite if ε = −1 and the mass of the black hole decreases
M < M0.

The geodesic equations for M(t) and J(t) are

M̈ =
Ṁ2

M
, J̈ +

JṀ2

M2
− 2J̇Ṁ

M
= 0. (5.21)

The first equation for the mass decouples and it can be solved to give

M(t) = M0e
Ṁ0
M0

t
, M0 = M(0), Ṁ0 = Ṁ(0). (5.22)

Consequently the solution for J(t) becomes

J(t) =
e
Ṁ0
M0

t

M0

(
(J̇0M0 − J0Ṁ0)t+ J0M0

)
, J(0) = J0, J̇(0) = J̇0. (5.23)

One notes that J = const leads to M = const. Therefore we cannot decrease the mass of
the black hole quasistatically. The process is intrinsically irreversible. Hence, there are
no optimal processes in entropy representation along independent directions.

However, one may consider optimal paths between states with both M and J fluctu-
ating. In this case, the total thermodynamic length, between the initial state (M0, J0)
and state (M,J) at time τ , becomes:

L(τ) = 2π

√
2εṀ0(λ− 1)(J̇0M0 − J0Ṁ0)

κM3
0

τ = vτ. (5.24)

It is positive definite assuming several restrictions. For ε = 1 one has J̇0M0 > J0Ṁ0 and
Ṁ0 > 0, or J̇0M0 < J0Ṁ0 and Ṁ0 < 0. For ε = −1 one has J̇0M0 < J0Ṁ0 and Ṁ0 > 0,
or J̇0M0 > J0Ṁ0 and Ṁ0 < 0.

In order to extract τ one has to solve (5.21) with boundary conditions:

M(t) = M0

(
M

M0

)t/τ
, M(0) = M0, M(τ) = M, (5.25)
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where M0 is the initial mass and M is the final mass of the black hole. Therefore, the
J(t) profile assumes the form:

J(t) =
J0M(τ − t) + JM0t

Mτ

(
M

M0

)t/τ
, J(0) = J0, J(τ) = J. (5.26)

The TD length now evaluates to

L(M0, J0;M,J) = 2π
√

2ε(λ− 1)

√
J0M − JM0

κM0M

√
ln
M0

M
. (5.27)

It is positive definite for ε = 1, together with M < M0 and JM0 < J0M . Comparing to
(5.24) one finds (together with M < M0, Ṁ0 < 0, J̇0M0 < J0Ṁ0):

τ =
M0

√
J0M − JM0√

MṀ0

√
J̇0M0 − J0Ṁ0

√
ln
M0

M
> 0. (5.28)

5.3 Optimal processes in Helmholtz representation

The analysis of optimal processes can be extended to other representations. For example,
in (T, J) space, the appropriate potential is the Helmholtz free energy,

F (T, J) = M − TS = 4π

√
JT
(
(λ− 1)µE − 2πλT

)
κµE

, T < Tc, (5.29)

which defines the canonical ensemble. The Helmholtz free energy exists only below the
critical temperature defined by

Tc =
(λ− 1)µE

2πλ
. (5.30)

The components of the Hessian of the Helmholtz potential yield

Ĥ =

(
∂2F
∂T 2

∂2F
∂T∂J

∂2F
∂J∂T

∂2F
∂J2

)
=

 π(λ−1)2
√
Jµ3E√

κT 3((λ−1)µE−2πλT )3/2
− π((λ−1)µE−4πλT )√

κJµET ((λ−1)µE−2πλT )

− π((λ−1)µE−4πλT )√
κJµET ((λ−1)µE−2πλT )

−π
√
T ((λ−1)µE−2πλT )

J3/2√κµE

 . (5.31)

The Hessian metric ĝ = εĤ is positive definite for ε = −1, and negative definite for ε = 1.
The analysis of the geodesic equations shows that only an optimal isothermal T =

T0 = const process is possible at a very specific temperature:

T0 =
(λ− 1)µE

4πλ
=
Tc
2
. (5.32)

In this case, the profile of the angular momentum is

J̈(t)− 3J̇(t)2

4J(t)
= 0 ⇒ J(t) =

(4J0 + J̇0t)
4

256J3
0

. (5.33)

The thermodynamic length at constant temperature is

LT (τ) =
|J̇0| 4
√
πµE

√
ε(λ− 1)

4
√

23J3
0κλ

τ = vτ. (5.34)
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It is positive definite in the elliptic case ε = 1. The TD length in terms of Helmholtz
natural parameters is

LT (J0, J) = −2
√

(λ− 1)ε
4

√
2πJµE
κλ

∣∣∣∣J
J0

. (5.35)

It is positive definite for J < J0 and ε = 1. Equating both lengths we find the thermody-
namic time and the speed of the optimal Penrose process in Helmholtz representation:

τ =
4
(
J0 − 4

√
JJ3

0

)
|J̇0|

, v = L̇(τ) =
|J̇0| 4
√
πµE

√
(λ− 1)

4
√

23J3
0κλ

. (5.36)

It is notable that, in this case, the thermodynamic time τ does not depend on any of the
coupling constants µE, λ or κ, but only from the initial J0 and the final value J of the
angular momentum.

6 Conclusion
Gravity in three dimensions prove itself as an invaluable source of renormalizable toy
models, which provide a rich set of new structures and phenomena. This is especially
important in the context of string theory and holography, where many such novel systems
turn out to be dual to a lower-dimensional quantum field theories. The presence of black
holes in such models provide an external heat bath in the quantum field theory side and
thus placing it at finite temperature. This leads to the appearance of criticality and the
possibility of thermal phase transitions.

One way a system to be driven to a certain phase transition is through natural fluctu-
ations or external processes conducted within its boundaries. Natural small fluctuations
around an equilibrium state are always present, but in many cases they can be neglected,
hence the system can be considered stable against thermal fluctuations. If strong fluctua-
tions appear the system is driven out of equilibrium and becomes unstable. The criteria for
thermodynamic stability are well established and can be used to identify the parametric
regions of stability of any thermodynamic system.

In this context, we investigated the regions of local and global thermodynamic stability
of the (2+1)-dimensional β2 = 0 ACGL CS black hole solution of TMGE. We found
that it is globally unstable against thermal fluctuations in all admissible sectors for its
parameters, thus it always radiates energy. However, we showed that local thermodynamic
stability with respect to certain processes is still attainable.

The intrinsic global thermodynamic instability of the CS black hole allowed us to in-
vestigate the possibility of extracting energy out of the system in an optimal way. For
this purpose we utilized the methods of thermodynamic geometry to define a proper Rie-
mannian metrics on the space of macro states of the system. The latter are chosen to
be proportional to the Hessians of the mass-energy, the entropy and the Helmholtz free
energy of the CS black hole. We were able to define and calculate the corresponding ther-
modynamic distances (lengths) between macro states in two different ways: one optimal
(quasi-equilibrium) along a geodesic curve on the thermodynamic manifold, and another
as a non-optimal (non-equilibrium) version. As a consequence we managed to define an
optimal Penrose process in every representation and estimate its thermodynamic time and
speed. Finally, the natural requirement for positive definiteness of the thermodynamic
length also uniquely defines the direction of the Penrose process.
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It would be interesting to extend this analysis towards the framework of finite-time
thermodynamics [43], where one can consider these systems as black hole heat engines.
In this case, one can define a step-wise Carnot-like cycles on the system and calculate
their efficiency against an ideal case, hence one can actually find the amount of useful
energy, which can be extracted from the system under such processes. A second avenue
of investigation is towards geometrothermodynamics [44, 45], where one defines a set
of Legendre invariant metrics on the state manifold. The difference from the Hessian
approach is that the Legendre invariance preserves the physical properties under the
change of representation. In this case, one can compare the efficiency of the Penrose
process with respect to different metric measures.
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A Sectors of the ACGL CS black hole
Assuming M,S,Ω, T > 0 and the properties of the metric one can identify several regions
for the ω, ν and the coupling parameter λ. For κ > 0 one finds:

• Sector Ia: λ > 1, ν ≥ ω > 0: admits positive mass, entropy and temperature.

• Sector Ib: λ > −ν+ω
ν−ω ≥ 1, 0 < ν < ω: not allowed due to negative entropy.

• Sector Ic: λ < −ν+ω
ν−ω <

1
3
, 0 < ω < ν: not allowed due to negative mass and entropy.

• Sector Id: 1
3
≤ λ < 1: not allowed due to negative mass.

• Sector Ie: λ < −ν+ω
ν−ω < 1

3
, ω < −ν

2
< 0: not allowed due to negative mass and

entropy.

For κ < 0 one finds:

• Sector IIa: λ > 1, ν ≥ ω > 0: not allowed due to negative mass and entropy.

• Sector IIb: λ > −ν+ω
ν−ω ≥ 1, 0 < ν < ω: not allowed due to negative mass.

• Sector IIc: λ < −ν+ω
ν−ω <

1
3
, 0 < ω < ν: allowed.

• Sector IId: 1
3
≤ λ < 1: not allowed due to negative entropy.
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• Sector IIe: λ < −ν+ω
ν−ω < 1

3
, ω < −ν

2
< 0: allowed if ν > −ω for T > 0, thus

λ < −ν+ω
ν−ω < 0.

One notes that only three sectors are allowed, namely Ia, IIc and IId. The latter we
called Sector I, II and III, respectively.

B Eigenvalues of the Hessian
The eigenvalues of the Hessian of the mass (4.5) in Sector I satisfy the following quadratic
equation

ε2 − ε (HJJ +HSS)−H2
SJ +HJJHSS = 0. (B.1)

Its explicit solutions are given by

ε± =
4π2(λ− 1)

(
κJµE − 8π3λ±

√
κ2µ2

E (J2 + S2) + 16π3κJλµE + 64π6λ2
)

µE
√
κ
(

32π3Jλ
µE

+ κS2
)3/2

. (B.2)

A closer study of their signs suggests that ε+ > 0 and ε− < 0 in Sector I. Therefore,
confirming the result from the Sylvester criterion.

In Sectors II and III one finds:

ε± =
4π2(|λ|+ 1)

(
8π3|λ| − |κ|JµE ±

√
κ2µ2

E (J2 + S2) + 16π3|κλ|JµE + 64π6λ2
)

µE
√
|κ|
(

32π3J |λ|
µE

+ |κ|S2
)3/2

.

(B.3)

A closer look at their signs suggests that ε+ < 0 and ε− > 0 in these sectors. Therefore,
confirming the result from the Sylvester criterion.

C Nambu brackets
The Nambu brackets generalizes the Poisson brackets for three or more variables. For
example, for n = 2 one has the traditional Poisson brackets:

{f, x}u,v =

∣∣∣∣∣
∂f
∂u

∣∣
v

∂f
∂v

∣∣
u

∂x
∂u

∣∣
v

∂x
∂v

∣∣
u

∣∣∣∣∣ =
∂f

∂u

∣∣∣∣
v

∂x

∂v

∣∣∣∣
u

− ∂f

∂v

∣∣∣∣
u

∂x

∂u

∣∣∣∣
v

. (C.1)

For n = 3 one has:

{f, x, y}u,v,w =

∣∣∣∣∣∣∣∣
∂f
∂u

∣∣
v,w

∂f
∂v

∣∣
u,w

∂f
∂w

∣∣
u,v

∂x
∂u

∣∣
v,w

∂x
∂v

∣∣
u,w

∂x
∂w

∣∣
u,v

∂y
∂u

∣∣
v,w

∂y
∂v

∣∣
u,w

∂y
∂w

∣∣
u,v

∣∣∣∣∣∣∣∣ , (C.2)

and so on. In general, Nambu brackets account for the determinant of the Jacobian when
working in certain coordinates, i.e.
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{f, x1, ..., xn−1}y1,y2,...,yn =

∣∣∣∣∣∣∣∣∣∣∣

∂f
∂y1

∣∣
y2,y3,...,yn

∂f
∂y2

∣∣
y1,y3,...,yn

· · · ∂f
∂yn

∣∣
y1,y2,...,ŷn

∂x1

∂y1

∣∣
y2,y3,...,yn

∂x1

∂y2

∣∣
y1,y3,...,yn

· · · ∂x1

∂yn

∣∣
y1,y2,...,ŷn

...
...

...
∂xn−1

∂y1

∣∣
y2,y3,...,yn

∂xn−1

∂y2

∣∣
y1,y3,...,yn

· · · ∂xn−1

∂yn

∣∣
y1,y2,...,ŷn

∣∣∣∣∣∣∣∣∣∣∣
.

(C.3)
Let us show how this works for CM from (4.8):

{S,M}S,J =

∣∣∣∣∣ ∂S
∂S

∂S
∂J

∂M
∂S

∂M
∂J

∣∣∣∣∣ =

∣∣∣∣ 1 0
∂M
∂S

∂M
∂J

∣∣∣∣ =
∂M

∂J

∣∣∣∣
S

=
4π2(λ− 1)√

κ
(

32π3Jλ
µE

+ κS2
) , (C.4)

{T,M}S,J =

∣∣∣∣∣ ∂T
∂S

∂T
∂J

∂M
∂S

∂M
∂J

∣∣∣∣∣ =
∂T

∂S

∣∣∣∣
J

∂M

∂J

∣∣∣∣
S

− ∂T

∂J

∣∣∣∣
S

∂M

∂S

∣∣∣∣
J

=

π(λ− 1)2µ
5/2
E

(√
κ
(

32π3Jλ
µE

+ κS2
)

+ κS

)
√
κλ (32π3Jλ+ κµES2)3/2

. (C.5)

Taking into account the expression (4.3) for the temperature T , one finds

CM(S, J) = T
{S,M}S,J
{T,M}S,J

=

√
32π3Jλ+ κµES2

√
κµE

. (C.6)
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