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Abstract

A potential platform for topological quantum computation is the Majorana-based tetron
architecture. Its building blocks are superconducting islands called tetrons, which host four
Majorana zero modes. Existing error correcting codes can correct even-weight errors on tetrons. In
a previous proposal by us, we had shown that incorporating tetrons in the stabilizer group allows
us to correct a combination of odd-weight errors and even-weight errors on tetrons. In this work,
we show that inclusion of tetrons in the gauge group lets us create subsystem codes from
conventional Pauli stabilizer codes, which can correct both kinds of errors. Compared to the
previous approach, the current approach lets us construct codes with fewer stabilizer generators.
This leads to shorter fault-tolerant sequence length, and improves the fault-tolerant
pseudothreshold by as much as 84%.

1. Introduction

Topological quantum computation might be an important ingredient for quantum fault-tolerance [1-14]. In
particular, the tetron architecture holds the promise of measurement-based quantum computation, without
requiring anyon braiding [15-19].

We propose error correcting codes for this architecture, which can correct both even-weight errors as well
as odd-weight errors on tetrons. The basic unit for this architecture is a tetron, which is a superconducting
island that hosts four Majorana zero modes (MZMs). Figure 1(a) shows a schematic diagram for a tetron
island that hosts the MZMs v,, Y, V¢, Y4 in locations a, b, ¢, d respectively. A group of tetrons can store
quantum information in the form of operator parity. We can measure the parity of any Majorana operator
that is supported on 0 or 2 MZMs per tetron. Such operators are used to define stabilizers and logical
operators of Majorana codes. Figure 1(b) shows all 6 measurable operators in a tetron.

A tetron can be affected with errors on some of its MZMs. A ‘bosonic error’ affects two MZMs on some
tetrons, and it can be corrected by a ‘bosonic code’ or a conventional Pauli stabilizer code. In a bosonic code,
the Pauli operators X, Y, Z can be mapped to the Majorana operators Yy7c, YaVe, YaYb> @5 Shown in
figure 1(b). However, such codes cannot correct ‘fermionic errors’ or odd-weight errors [20].

A tetron utilizes high charging energy to mitigate fermionic errors. Nonetheless, if a fermionic error
persists for a significant duration, it has the potential to interfere with measurement outcomes and may
extend to neighboring tetrons via connected measurements. Hence Knapp et al [18] suggests that it might be
helpful to use ‘fermionic codes’ for correction of fermionic errors before they can spread.

In a previous work [21], we have proposed Majorana codes that can correct fermionic errors by
incorporating each tetron in the stabilizer group. In this work, we show that we can construct subsystem
codes capable of ‘fermionic error correction’ by using a classical code over the tetrons such that tetrons
belong to the gauge group. The proposed subsystem codes require less stabilizer generators compared to the
previous approach [21], and can potentially lead to smaller fault-tolerant sequences yielding higher
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Figure 1. (a) A tetron has four Majorana zero modes at the four corners a,b,c,d. (b) There are six weight-2 Majorana operators in
a tetron. (Reproduced from [21])

Table 1. This table compares the code capacity and fault-tolerant pseudothreshold between non-subsystem fermionic codes and
currently proposed subsystem fermionic codes. The codes are compared at various values of noise bias 7, which is the ratio between
fermionic error probability and bosonic error probability. We observe that the [10, 1,2, d; = 3] code has the shortest
syndrome-measurement sequence that is fault-tolerant against a single error, and thus has the best fault-tolerant pseudothreshold
among these codes. We observe that the threshold of subsystem codes exceed their non-subsystem counterparts. For the above codes and
bias values, the threshold improvement percentage ranges from 10% to as much as 84%. The fault-tolerant sequences for these codes are

provided in appendix A.

Code capacity Fault-tolerance pseudothreshold
Code parameter n=0.1 n=1 n =10 Fault-tolerant length n=0.1 n=1 n =10
[10,1,dr = 6] 0.137 0.196 0.423 9 0.001 34 0.001 45 0.001 46
[10,1,2,df = 3] 0.135 0.169 0.255 8 0.001 64 0.00170 0.001 61
[12,1,de = 6] 0.103 0.177 0.391 14 0.00043 0.000 45 0.000 45
[12,1,1,df = 6] 0.103 0.176 0.346 12 0.000 60 0.000 62 0.000 62
[12,1,3,ds = 3] 0.097 0.122 0.197 12 0.000 59 0.000 60 0.00059
[14,1,df = 6] 0.072 0.128 0.418 16 0.000 27 0.000 28 0.000 29
[14,1,4,d; = 3] 0.067 0.077 0.155 12 0.000 47 0.00051 0.00051

pseudothreshold. This is depicted in table 1, which compares codes constructed using the previous approach,
with currently proposed codes.

In section 2, we provide a brief overview of Majorana operators and how they can be affected by errors.
We discuss some experimental challenges that hindered previous attempts of fermionic error correction.
Fortunately, our proposal does not require any experimental changes, and we distinguish fermionic errors
from bosonic errors by using two sets of operators shown in figure 1(b).

In section 3, we describe a general recipe of fermionic subsystem code construction using Pauli stabilizer
codes and classical codes. We choose a Pauli stabilizer code with parameters [, k;,dy ], and introduce
additional stabilizers supported on one or more tetrons in accordance with an [, k,,d| classical code. This
results in a [2n, k;, d¢]] subsystem code with k, gauge qubits, where the fermionic code distance dr is bounded
by dy, < df < 2dj,. For convenience, we will denote this subsystem code as [21, ki, ky, dg]], and will continue to
use this four-parameter notation later. We provide error analysis on some small codes constructed with this
recipe, as well as examples of some fault-tolerant schemes.

2. Background

The basic unit of this architecture is a superconducting island that hosts an even number of MZMs. Islands
with four MZMs are called tetrons, islands with six MZMs are called hexons, islands with eight MZMs are
called octons, and so on. We shall focus on the tetron architecture and propose error correction schemes
for it.

2.1. Majorana operators
We begin with a brief overview of the mathematical properties of Majorana operators. We consider a system
with an even number of MZMs, which are denoted as 1,72, . . . Y, - They satisfy these three properties:

Vi = VJT, v =1 {7 %} =28k

A Majorana operator supported on the MZM set S C {1,2,..., Ny, } can be defined as |S) = >jeslid

where the MZM |j) is a basis vector in JF?TM“. The commutation relations for two arbitrary Majorana
operators|A) and |B) is given by |A) x |B) = (—1)/AIBI+IANBl . | B) x |A). However, in practice, we can only
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measure the parity of Majorana operators that are supported on even number of MZMs per island. The
commutation relations are simpler for them. Two operators with even weight commute if they have even
overlap, and anticommute otherwise. We can use this to verify the commutation relations for the Pauli
operators shown in figure 1(b).

The parity of a Majorana operator can be affected by errors. If errors affect an odd number of MZMs in
the operator support, that toggles its parity. However, if a Majorana operator is affected by even number of
errors, its parity remains unchanged.

2.2. Challenges of fermionic error correction

Fermionic error correction can help to correct fermionic errors before they spread via connected
measurements. Although some of the previously proposed codes are theoretically capable of fermionic error
correction [22, 23], there are experimental challenges for their implementation. We discuss some general
challenges that hindered development of fermionic codes.

Firstly, it is experimentally challenging to perform a four-MZM parity measurement on a tetron [18].
Otherwise it would have been trivial to identify tetrons that have odd-weight errors.

Secondly, it is difficult to dynamically adjust the number of MZMs on an island, because it requires
careful tuning of experimental parameters [18].

Another approach was suggested by Bomantara and Gong [24] for correction of a weight-1 error on a
nanowire. They suggested tuning the system parameters to generate additional MZMs at ends of the
nanowire. A stabilizer code can be defined over the two original MZM:s and the additional generated MZMs,
which can correct a weight-1 error on the nanowire. This is experimentally challenging as well.

Fortunately, our fermionic error correction proposal does not require any experimental changes and can
be achieved by conventional measurements that span two MZM:s per tetron.

2.3. Principle of fermionic error correction

A tetron island hosts four MZMs, and is maintained in even parity state by high charging energy. As the
tetron has overall even parity, so if we conceptually divide the tetron in two halves, then both halves must
have the same parity. Now consider the 6 operators shown in figure 1(b), which are grouped in two sets:

R={XY,7}, where X = %Yo, Y="%%, Z="%%
R ={X".Y',Z'}, where X' =74,Y =Y, Z = Vd-

Note that parity measurement would give the same result for two corresponding operators in R and R’.
For example, parity measurement would give the same result for operators X and X', the same result for
operators Y and Y’, and the same result for operators Z and Z’. This remains true even if the tetron is
affected by an even-weight error.

However, things change when the charging energy protection is insufficient to maintain even parity state
of the tetron. If an odd-weight error occurs on a tetron, then parity measurement would give opposite results
for operators X and X', opposite results for operators Y and Y’, and opposite results for operators Z and Z'.

Thus, whether two corresponding operators from R and R’ have the same parity or the opposite parity
can be used as a test to identify whether an error has even weight or odd weight. We can use this idea to
develop codes which correct odd-weight errors.

3. BC — FS: Fermionic subsystem codes from bosonic and classical codes

We show that a non-subsystem bosonic code on n qubits and a classical code over 7 bits can be used to
construct a subsystem fermionic code over n tetrons. We apply this recipe to obtain several small subsystem
fermionic codes.

3.1. Notations for Majorana codes
Let us define some common notations that we will use for Majorana stabilizer codes and bosonic stabilizer
codes.

A Pauli code with parameters [n,k, d, ] represents a code over n physical qubits with k logical qubits,
where the logical operators have a least Pauli weight of dj,.

A Majorana code with parameters [2n, k;, k,, df] represents a code over n tetrons with k; logical qubits
and k; gauge qubits, where the dressed logical operators have a least Majorana weight of dy. If a Majorana
code has no gauge qubits, then it is simply denoted by three parameters—[2n, k;, d¢].

If an [n,k, dy] Pauli code is converted to a Majorana code by using the Pauli definitions given in
figure 1(b), then it would have parameters [21, k, d], where di = 2d,,. Out of 21 degrees of freedom that n
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tetrons can have, n — k degrees are restricted by stabilizer measurements. Furthermore, if we assume that
each tetron is constrained to even parity by means of high charging energy, then it restricts another n degrees
of freedom. Thus, we are left with k logical qubits for the k degrees of freedom left in the code. The logical
operators of the Majorana code would have a least Majorana weight dr = 24, since each Pauli operator
corresponds to two MZMs. The code distance subscript b indicates that this is the bosonic distance
corresponding to the least Pauli weight of the logical operators. The code distance subscript f indicates that
this is the fermionic distance corresponding to the least Majorana weight of the dressed logical operators,
which is also equal to the smallest error weight that can affect a logical qubit without producing any
syndrome.

Now for fermionic error correction, we cannot assume that n degrees of freedom are restricted by high
charging energy. Instead, we would need to manually restrict these degrees of freedom by introducing
additional stabilizer measurements, as we will see in the subsequent sections.

3.2. Recipe for fermionic code construction
We use an [n, ky, dp] non-subsystem bosonic code and an [n, k, d,] classical code to derive a [21, ky,, k, di]
subsystem fermionic code.

We start with the stabilizers and logical operators of the [, ky,dp] code and convert their Pauli operators
X, Y, Z to the Majorana operators X = Y7Yc, Y = YaVe, Z = Yab> according to figure 1(b). For example, we
can choose a [[5, 1, 3] Pauli stabilizer code with stabilizer generators IZXZX, XXIZZ, ZIXXZ, and XZZXI.
These generators are illustrated in row A of figure 2(a). The corresponding logical operators are illustrated in
the first row of figure 2(b).

Then we choose the classical code [, k, d.| with parity matrix H and generator matrix G. We choose G to
be in the systematic form [I|P] where I} is a k X k identity matrix and P is a k x (n — k) matrix. Then we add
tetron stabilizers according to the rows of its parity matrix.

For example, we can choose the [5,2, 3] classical code with parity matrix

H=

(R
S = =
S = O
— o O

and a systematic generator matrix

101 11
G_{01011]'

Since the first row of H is 11001, then we need to add the stabilizer T} T, T5 comprising the first, second
and fifth tetrons. Now, we cannot directly measure the parity of one or more tetrons. So in order to add such
a stabilizer, we would choose an existing stabilizer, for example S; = XXIZZ, that is supported on at least the
first, second and fifth tetrons. Then we add a modified stabilizer where the operators on the first, second and
fifth tetrons are switched from R to R’, for example S;,, = X'X'IZZ’. This ensures that S; X Sy, = T1T> Ts
belongs to the stabilizer group.

In this step, it is essential that the stabilizer code and the classical code are compatible with each other,
such that there exists a stabilizer supported on the non-zero tetrons in each row of the parity matrix.

The resulting subsystem fermionic code has n — ky, stabilizers from the bosonic code and #n — k stabilizers
from the classical code. This code has the same k;, logical qubits as the bosonic code.

This code also has k gauge qubits, corresponding to the k rows of the generator matrix of the classical
code. Each row of the generator matrix can be mapped to two gauge operators, the first being a tetron
operator at the first non-zero entry of the generator matrix row. The second operator is a fermionic operator
corresponding to 4 on all non-zero entries of that generator matrix row. For example, if the generator
matrix row is 11001, then the gauge operators are T (the first tetron) and v4;7427v45 (supported on 4
operator of tetrons 1, 2, and 5). This provides us with 2k gauge operators which generate a group of 22¢
and contains k gauge qubits.

size,

Claim. The above code construction utilizing an [n,ky,d,] non-subsystem bosonic code and an [n,k,d]
classical code results in a subsystem code with k gauge qubits.

Proof. We will show that the chosen gauge operators form generators of a gauge group.

e Suppose the classical code has parity matrix H and generator matrix G. If the group formed by rows of H
contain any single tetron at index D, then the entire column D of the generator matrix must be zero so that G
remains orthogonal with H. As we have chosen our tetron gauges from non-zero locations of the generator
matrix rows, so these chosen tetrons do not belong to the stabilizer group.
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e As the logical operators are only supported on 7,,7,7. but not the 4 operators, so the tetrons cannot
belong to the group of logical operators.

e The k chosen fermionic operators do not belong to stabilizer group or logical operator group. As the stabil-
izers and logical operators are supported on two MZMs per tetrons, so their group cannot have any fermionic
operator.

o The k chosen tetrons are independent of each other as they have no overlap.

e The k chosen fermionic operators are independent of each other because the rows of generator matrix are
independent of each other.

e The tetrons and fermionic operators are independent of each other since the fermionic operators are sup-
ported only on 4 operators and none of v,, vy, 7. Operators.

e The k chosen fermionic operators commute with all the tetron stabilizers formed by the rows of parity matrix
H, since G and H are orthogonal.

e The k chosen fermionic operators are entirely supported on 74 operators, whereas the original Pauli stabil-
izers of the bosonic code as well as the logical operators are supported only on ~,,7y,7. operators. So the k
chosen fermionic operators have no intersection with them, and so commute with them.

e The tetrons commute with all stabilizers and logical operators.

Thus we have k tetrons and k fermionic operators which are independent of each other, as well as independent
of stabilizers and logical operators. They commute with both stabilizers and logical operators, and hence these
2k operators form a gauge group of size 2%, which can accommodate k gauge qubits. O

Note that the least weight of all fermionic gauges, or the least weight of the group formed by generator
matrix rows is the same as the classical code distance d..

3.3. Code distance

Code distance of subsystem codes are given by the least weight of all nontrivial dressed logical operators. If a
logical operator of minimum weight 24, and a fermionic gauge operator are supported on the same tetrons,
then the dressed logical operator formed by their product has the least Majorana weight dy,. If their support is
different, then the dressed logical operator would have a higher weight. Thus, the code distance dr of the
subsystem code is bounded by dy, < df < 2dyp. The code distance for the proposed codes are evaluated by
exhaustive search.

3.4. Decoder

We use the BPOSD decoder, proposed by Roffe et al [25, 26] for correcting errors in the subsequent examples.
We use the ‘product_sum’ method for belief propagation, the ‘osd_cs’ method for the ordered statistics
decoder, a a maximum of five iterations, and a search depth of 2N+1 where N is the number of tetrons.

3.5. Example 1: [10,1, 2, d; = 3] subsystem code

We derive the [[10, 1,2, df = 3] subsystem Majorana fermionic code from the [5, 1, 3] Pauli stabilizer code
and the [5,2,3] classical code. The stabilizer generators of this code are shown in rows A and B of figure 2(a),
and its logical and gauge qubits are illustrated in figure 2(b). The third row of figure 2(a) shows that the
product of corresponding stabilizer generators in rows A and B yields tetron sets in the stabilizer group.
These tetron stabilizers correspond to the rows of a parity matrix H shown in figure 2(c). The two gauge
qubits correspond to the two rows of the generator matrix G shown in figure 2(c). These two matrices
characterize the [5,2, 3] classical code. The smallest error which affects the logical qubit but yields zero
syndrome is Yb37c4 Vb5, SO the Majorana code has distance df = 3. As each stabilizer generator overlaps with
another generator, so we require seven time steps for syndrome measurement.

Figure 2 illustrates that the rows of the parity matrix correspond to the tetron stabilizers, and the rows of
the generator matrix correspond to the gauge operators. Note that for each gauge qubit, one gauge operator
corresponds to a tetron on the first non-zero entry of the generator matrix row, and another gauge operator
is a fermionic operator corresponding to 4 on all non-zero entries of that generator matrix row. For
example, if the generator matrix row is 11001, then the gauge operators are T (the first tetron) and
~Yd17d27Vds (supported on 4 operator of tetrons 1, 2, and 5). We can verify the commutation relation between
these operators by inspection.
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Figure 2. (a) This figure shows the 7 stabilizer generators of the [10, 1,2, d; = 3] Majorana fermionic subsystem code in the rows
A and B. The third row shows the stabilizer formed by the corresponding generators in the first and the second rows. Each
stabilizer in the third row is a set of tetrons, corresponding to the rows of parity matrix H. (b) This figure shows the logical qubit
and the gauge qubits of the [10,1,2, d; = 3] Majorana fermionic subsystem code. Each gauge qubit corresponds to a row of the
generator matrix G. (c) This figure shows the classical parity matrix H and the generator matrix G of the [5,2, 3] classical code.
The tetron numbering scheme shown in this figure is used for the matrix columns.
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3.6. Example 2: [12,1, 3, d; = 3] subsystem code
We derive the [[12, 1,3, df = 3] subsystem Majorana fermionic code from the [6, 1, 3] Pauli stabilizer code
and the [6, 3, 3] classical code. The stabilizer generators of this code are shown in rows A and B of figure 3(a),
and its logical and gauge qubits are illustrated in figure 3(b). The third row of figure 3(a) shows that the
product of corresponding stabilizer generators in rows A and B yields tetron sets in the stabilizer group.
These tetron stabilizers correspond to the rows of a parity matrix H shown in figure 3(c). The three gauge
qubits correspond to the three rows of the generator matrix G shown in figure 3(c). These two matrices
characterize the [6, 3, 3] classical code. The smallest error which affects the logical qubit but yields zero
syndrome is Y2 Ye3Yes> SO the Majorana code has distance df = 3. This code has eight stabilizer generators,
but two of them can be parallelly measured, so we need seven time steps for syndrome measurement.

Figure 3 illustrates that the rows of the parity matrix correspond to the tetron stabilizers, and the rows of
the generator matrix correspond to the gauge operators.
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Figure 3. (a) This figure shows the 8 stabilizer generators of the [12,1,3,d; = 3] Majorana fermionic subsystem code in the rows
A and B. The third row shows the stabilizer formed by the corresponding generators in the first and the second rows. Each
stabilizer in the third row is a set of tetrons, corresponding to the rows of parity matrix H. (b) This figure shows the logical qubit
and the gauge qubits of the [12,1, 3, d; = 3] Majorana fermionic subsystem code. Each gauge qubit corresponds to a row of the
generator matrix G. (c) This figure shows the classical parity matrix H and the generator matrix G of the [6, 3, 3] classical code.
The tetron numbering scheme shown in this figure is used for the matrix columns.

3.7. Example 3: [14,1, 4, d; = 3] subsystem code

We derive the [14,1,4, d; = 3] subsystem Majorana fermionic code from the [7,1,3] Pauli Steane code and
the [7,4, 3] classical Hamming code. The stabilizer generators of this code are shown in rows A and B of
figure 4(a), and its logical and gauge qubits are illustrated in figure 4(b). The third row of figure 4(a) shows
that the product of corresponding stabilizer generators in rows A and B yields tetron sets in the stabilizer
group. These tetron stabilizers correspond to the rows of a parity matrix H shown in figure 4(c). The four
gauge qubits correspond to the four rows of the generator matrix G shown in figure 4(c). These two matrices
characterize the [7,4, 3] classical Hamming code. The smallest error which affects the logical qubit but yields
zero syndrome is Ya17Ya67a7, SO the Majorana code has distance df = 3. This code has nine stabilizer generators,
all of which overlap with one another. Hence, we require nine time steps for syndrome measurement.
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Figure 4. (a) This figure shows the 9 stabilizer generators of the [14, 1,4, d; = 3] Majorana fermionic subsystem code in the rows
A and B. The third row shows the stabilizer formed by the corresponding generators in the first and the second rows. Each
stabilizer in the third row is a set of tetrons, corresponding to the rows of parity matrix H. (b) This figure shows the logical qubit
and the gauge qubits of the [14, 1,4, d; = 3] Majorana fermionic subsystem code. Each gauge qubit corresponds to a row of the
generator matrix G. (c) This figure shows the classical parity matrix H and the generator matrix G of the [7,4, 3] classical code.
The tetron numbering scheme shown in this figure is used for the matrix columns.
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Figure 4 illustrates that the rows of the parity matrix correspond to the tetron stabilizers, and the rows of

the generator matrix correspond to the gauge operators.

3.8. Code capacity

We analyze four fermionic subsystem codes, and plot their variation of pseudothreshold with noise bias in
figure 5. Their logical error plots at various noise bias are provided in appendix B. The bosonic codes and
classical codes from which these four fermionic subsystem codes are obtained are listed below:
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Figure 5. The figure shows the variation of pseudothreshold with noise bias for [10,1,2,d; = 3], [12,1,1,d; = 6],
[12,1,3,d; = 3] and [14, 1,4, df = 3] subsystem codes.

e [5,1,3]+5,2,3] = [10,1,2,df = 3]
e [6,1,3] +[6,1,6] — [12,1,1,ds = 6]
e [6,1,3]+6,3,3] = [12,1,3,dr = 3]
e [7,1,3] +[7,4,3] — [14,1,4,ds = 3].

For the above Majorana fermionic subsystem codes, the stabilizers of the [5,1,3], [6,1,3], and [7,1,3]
codes are illustrated in figures 2(a), 3(a), and 4(a) respectively. The classical codes [5,2, 3], [6,3,3],[7,4, 3] are
defined in figures 2(c), 3(c), and 4(c) respectively. The [6,1, 6] code is a classical repetition code.

In this analysis, we utilize a biased noise model. We consider that fermionic errors are 7 times more likely
to occur than bosonic errors. There are three possible modes for bosonic errors—X, Y, Z errors, each of
which occurs with equal probability px = py = pz = p/(3n+ 3) = pp/3. There are 4 possible modes for
fermionic errors — 74, Y, Ye, Yd> €ach of which occurs with equal probability p,, = p,, = p,. =p~, =pn/
(4n +4) = pg/4. We use the BPOSD decoder to obtain the logical error rates for bias values 7 = 0.1,1,10. We
evaluate the pseudothreshold as the p value below which the logical error rate is lower than the physical error
rate. Note that the physical error rate is given by py, + 3ps/4 since a tetron qubit is affected by all bosonic
errors but only 3 out of 4 fermionic errors.

3.9. Fault tolerance
Fault-tolerance can be achieved by careful ordering of stabilizers, and might require some redundant
stabilizer measurements.

For example, figure 6 shows a fault-tolerant sequence for the [10,1,2, d; = 3] fermionic subsystem code,
which utilizes only one additional redundant stabilizer measurement. This sequence can tolerate one bosonic
or one fermionic error, either at the input or at any intermediate stage. We analyze this sequence for noise
bias = 7, bosonic error rate p, = p/(n + 1), fermionic error rate ps = pn/(n + 1), and measurement error
rate p. The fault-tolerance threshold for this sequence is illustrated in figure 7 for bias values of 0.1, 1 and 10.
The fault-tolerant sequences for other codes are provided in appendix A, and their fault-tolerance logical
plots are provided in appendix B.
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Figure 6. (a)—(h) demonstrate a sequence of fault-tolerant measurements for the [10, 1,2, df = 3] fermionic subsystem code. This
sequence can tolerate one bosonic error or one fermionic error. The tetron operators follow the same notations as figure 1(b).

T T T T T T T T T T
5x10°f ¢ Bias=0.1 5x10°f —¢ Bias=1 5x10°f —% Bias=10
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Figure 7. The logical error plots for the fault-tolerant implementation of the [10, 1,2, df = 3] code are given in figures (a)—(c) for
bias values 7 = 0.1, 1, 10 respectively. The graphs also show the 95% confidence intervals.

4. Conclusion
We have shown that subsystem fermionic codes can be constructed from Pauli stabilizer codes. We compare

the currently proposed codes with previously proposed non-subsystem codes and find that the current
proposal leads to shorter fault-tolerant sequences and higher fault-tolerant pseudothreshold.
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Table Al. This lists the fault-tolerant sequence for the codes tabulated in table 1.
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Appendix A. Fault-tolerant sequence

The fault-tolerant sequences for the codes provided in table 1 are listed in table Al. These syndrome
measurement sequence can tolerate 1 bosonic or 1 fermionic error, either at the input or at any intermediate
stage. We can observe that the subsystem construction leads to smaller fault-tolerance sequences as

compared to the non-subsystem construction.
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Appendix B. Code capacity and fault-tolerance
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The code capacity plots and fault-tolerance plots of select fermionic subsystem codes and non-subsystem
codes are shown in figures Bl and B2 respectively. As code capacity does not consider intermediate errors, so
they do not reflect the advantage of shorter syndrome measurement sequences in subsystem codes. In
contrast, fault-tolerance plots show that subsystem codes have higher threshold as compared to their

non-subsystem counterparts.
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Figure B1. Code capacity logical error plots for currently proposed fermionic subsystem codes as well as previously proposed
non-subsystem fermionic codes. The left column shows the plot for the five tetron codes, the middle column shows the plot for
the six tetron codes, and the right column shows the plot for the seven tetron codes. In these plots, the 95% confidence interval
bars are smaller than the marker size. (Top row) The three plots show the variation of logical error rate with p for bias = 0.1.
(Middle row) The three plots show the variation of logical error rate with p for bias = 1. (Bottom row) The three plots show the
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Figure B2. Fault-tolerance logical error plots for currently proposed fermionic subsystem codes as well as previously proposed
non-subsystem fermionic codes. The left column shows the plot for the five tetron codes, the middle column shows the plot for
the six tetron codes, and the right column shows the plot for the seven tetron codes. The graphs also show the 95% confidence
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