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ABSTRACT The development of advanced quantum-classical algorithms is among the most prominent
strategies in quantum computing. Numerous hybrid solvers have been introduced recently. Many of these
methods are created ad hoc to address specific use cases. However, several well-established schemes are
frequently utilized to address optimization problems. In this context, D-Wave launched the Hybrid Solver
Service in 2020, offering a portfolio of methods designed to accelerate time-to-solution for users aiming to
optimize performance and operational processes. Recently, a new technique has been added to this portfolio:
theNonlinear-ProgramHybrid Solver. This paper describes this solver and evaluates its performance through
a benchmark of 45 instances across three combinatorial optimization problems: the Traveling Salesman
Problem, the Knapsack Problem, and the Maximum Cut Problem. To facilitate the use of this relatively
unexplored solver, we provide details of the implementation used to solve these three optimization problems.

INDEX TERMS Quantum computing, hybrid quantum-classical computing, quantum annealing, D-Wave.

I. INTRODUCTION
The emergence of quantum technology is expected to have
a significant impact on a number of industries. The field of
Quantum Computing (QC), which leverages the principles
of quantum mechanics to process information, is constantly
making advances to connect quantum processing with practi-
cal use cases. Thus, QC has advanced significantly in recent
years, mainly due to the rapid development of technology and
advancements in its democratization, understanding it as the
process of making QC accessible to a broader spectrum of
individuals and communities [1], [2]. As a result, QC has
facilitated the development of various proofs of concept
across multiple sectors, including finance [3], energy [4], and
logistics [5].

Historically, the idea of a quantum computer can be
traced back to the works of Benioff [6] and Feynman [7],
where they proposed a quantum mechanical implementa-
tion of a Turing machine and the idea of simulating a
quantum system with another quantum system, respectively.
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Currently, there are two types of real quantum devices that
we can differentiate between: gate-based quantum computers
and quantum annealers. A gate-based system, on the one
hand, employs basic quantum circuit operations on qubits,
which are akin to the classical operations on regular bits
and may be combined in any order to create algorithms.
This version is often referred to as a universal quantum
computer. On the other hand, a quantum annealer is based
on adiabatic computation, wherein an initial, easily prepared
Hamiltonian is gradually and continuously evolved from
its ground state to the ground state of a final, problem-
specific Hamiltonian. If the evolution is slow enough, the
adiabatic theorem guarantees that the system remains in
the ground state during the whole computation. In quantum
annealers, the adiabatic theorem is intentionally relaxed,
allowing the system to evolve more rapidly than the adiabatic
limit would dictate. As a result, transitions to higher energy
states usually occur during the evolution; however, alternative
methods to achieve adiabaticity have been proposed [8], [9].
Although this model of computation is also universal [10],
D-Wave quantum annealer is based on an Ising Hamiltonian,
restricting the types of problems that can be run on the system.
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This type of quantum annealer is, however, well suited to
solve combinatorial optimization problems [11].

Despite all the progress made in the field, quantum
computers are still in their infancy in contrast to classical
computers, which have been developed for decades and
are therefore highly advanced. Thus, quantum devices are
currently unable to efficiently solve real-world problems
mainly because of the small number of qubits and their
unstable nature. Phenomena such as decoherence time,
noise and information loss, in absence of error correction
protocols, impact in the performance of the computation.
Besides, there are other roadblocks such as quantum gate
fidelity and gate noise. At this time, the number of
qubits for both universal quantum computers and quantum
annealers is around three orders of magnitude (thousands of
qubits) [12], [13]. However, this number needs to be much
greater in order for the technology to become truly useful
for real industrial use cases. In any case, there are factors
other than the qubit count that influence the practical
capabilities of quantum computers, such as the connectivity
topology or the previously mentioned operational fidelity and
decoherence time.

As a result of this situation, recent advancements
have emerged during the noisy intermediate-scale quantum
(NISQ, [14]) era, a period characterized by quantum comput-
ers’ limitations in efficiently handling problems, even those
of small to medium size. As it turns out, both universal
quantum devices and annealers suffer from these limitations.

As a consequence, the entire community is striving
to come up with mechanisms to deal with the present
limitations and capitalize on the promise that QC has to
offer. The design of advanced hybrid algorithms, which
combine the advantages of both computing paradigms, are
among the most popular strategies [15]. Arguably, hybrid
quantum computing represents the immediate future of this
area. This is so because the adoption of quantum techniques
to address real-world use cases is heavily reliant on hardware
capabilities. In this regard, just as QC should not be thought
of as a direct replacement for conventional computing,
it would also be a mistake to view quantum-classical hybrid
computing as merely a temporary fix to minimize the
limitations of NISQ-era systems. As stated in works such
as [16], hybrid algorithms will be influential well beyond the
NISQ-era and even into full fault tolerance, with quantum
computers enhancing the capabilities of already powerful
classical processors by carrying out certain specialized tasks.
The challenge here is in determining how to integrate
classical and quantum computing to create a synergy that
surpasses the performance of purely classical approaches.

Besides, hybrid algorithms have its own limitations. For
example, since quantum and classical hardware are often
physically separated and they need to share information,
latency is introduced in theworkflow [17]. Another roadblock
is the possibility of barren plateaus in the optimization
landscape, making it difficult for classical optimizers to
converge [18], [19]. Also, when the problem at hand exceeds

the computational capacity of the quantum processing
unit (QPU), determining which subproblems to allocate
to the quantum component of the algorithm is a non-
trivial task [20], [21]. The choice of methodology is not
always straightforward and often depends on the specific
characteristics of the problem and the quantum hardware’s
limitations, for example its topology.

It is also crucial to note that the design and implementation
of quantum algorithms could necessitate a high degree of sub-
ject matter expertise. This intricacy could be a hindrance for
researchers who lack a sufficient background in disciplines
like physics or quantum mechanics. In order to remove that
barrier and make QC more accessible, various frameworks
and programming languages are proposed, such as Silq [22],
Eclipse Qrisp [23], or Qiskit [24]. The availability of such
frameworks and languages helps to foster the building of a
multidisciplinary community focused on QC and helps the
field to progress toward new horizons [25].
In this article, we focus on the hybrid algorithms and

frameworks proposed by the Canadian company D-Wave
Systems. Anyway, it is worth noting that significant efforts
have been made from various fronts in the design and
implementation of both hybrid techniques and platforms.
Probably the most well-known and widely studied hybrid
resolution schemes are the Variational Quantum Algorithms
(VQA, [26])), oriented towards gate-based quantum comput-
ing. The most representative examples of VQA are the Quan-
tum Approximate Optimization Algorithm (QAOA, [27])
and the Variational Quantum Eigensolver (VQE, [28]).
In this context, it is also interesting to highlight commercial
approaches such as the so-called HybridSolver devel-
oped by the German company Quantagonia.1 Regarding
frameworks and platforms specifically created to facilitate the
design, implementation, and execution of hybrid algorithms,
notable examples include NVIDIA’s CUDA-Q,2 IBM Qiskit
Runtime3 and Google’s Cirq.4

Focusing our attention on D-Wave, and as part of the
strategy to bring QC to a wider audience, D-Wave-Hybrid-
Framework was published in 2018, which, in the words of its
creators, is ‘‘a general, minimal Python framework to build
hybrid asynchronous decomposition samplers for QUBO
problems’’.5 This framework is appropriate for ‘‘developing
hybrid approaches to combining quantum and classical
compute resources’’.

Some further efforts were made by D-Wave to bring
hybrid solvers to industry. Thus, in 2020, D-Wave’s Hybrid
Solver Service (HSS, [29]) was launched, which consists
of a portfolio of hybrid solvers that leverage quantum
and classical computation to tackle large and/or real-world
optimization problems. HSS is tailored for researchers and

1https://www.quantagonia.com/hybridsolver
2https://developer.nvidia.com/cuda-q
3https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/runtime_service
4https://quantumai.google/cirq
5https://github.com/dwavesystems/dwave-hybrid
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TABLE 1. Brief survey on recent practical applications of HSS solvers,
classified by the field of knowledge on which the research is focused.

practitioners aiming to streamline the code development pro-
cess. Consequently, all solvers in the portfolio are designed
to enhance time-to-solution, aiding users in optimizing
performance and operational workflows.

Until June 2024, the HSS included three solvers for solving
three different problem types [30]: the binary quadratic
model (BQM) solver, BQM-Hybrid, for problems defined
using binary variables; the discrete quadratic model (DQM)
technique, DQM-Hybrid, for problems defined on discrete
values; and the constrained quadratic model (CQM) method,
CQM-Hybrid, which can deal with problems defined on
binary, integer, and even continuous variables. Recently,
a new solver to be added to the portfolio has been unveiled:
the Nonlinear-Program Hybrid Solver, or NL-Hybrid.

As we have summarized systematically in Table 1,
much research has been carried out in recent years around
BQM-Hybrid, DQM-Hybrid, and CQM-Hybrid. Among
these methods, BQM-Hybrid is the one most frequently
used by the scientific community. This is because it was
the first to be implemented and its usage is similar to the
D-Wave QPU. It is important to highlight that, precisely for
this reason, the BQM-Hybrid is not well-suited for solving
real-world problems with many constraints. Consequently,
there are few studies where this method has been used to
solve problems with realistic aspects [31], [32], [33], [34].
With all this, the BQM-Hybrid has been primarily used
as a benchmarking algorithm [35], [36], [37], [38], [39],
[40], [41], [42]. That is, as a method employed within
an experimentation to measure the performance of other
methods. In addition to this, BQM-Hybrid has also been
used to solve academic problems, such as Tail Assignment
Problem [43], Vehicle Routing Problem [44] and the Set
Packing Problem [45].

Focusing on the CQM-Hybrid, we see how this advanced
solver has a clear orientation towards solving real-world
problems. The CQM-Hybrid has been used in a significant
number of works to address complex problems with a high
number of constraints, and it has been employed in different
contexts: to solve a complete problem [35], [39], [46], [47],
[48], [49], [50]; as part of a complex resolution pipeline
where it is called a single time [51] or iteratively [52];
or to implement mechanisms to improve the performance
of existing classical algorithms [53]. Furthermore, the
CQM-Hybrid has been scarcely used as a benchmarking
algorithm [42], [54].

Regarding the DQM-Hybrid, it is the HSS method
that has received the least attention from the community.

This is mainly because it is less flexible and powerful
compared to CQM-Hybrid, leading researchers to clearly
favor the latter. Thus, the DQM-Hybrid has been used in
only a handful of papers, either to act as a benchmarking
method [39] or to solve clustering and community detection
problems [55], [56], [57].

Despite this abundant scientific activity, no work has yet
been published on NL-Hybrid. Motivated by the lack
of existing research, this paper focuses on describing the
newly introduced NL-Hybrid solver. Furthermore, we will
conduct an experiment to analyze the performance of this new
solver in comparison with BQM-Hybrid, CQM-Hybrid,
and D-Wave’s QPU Advantage_system6.4. For these
tests, we used a benchmark composed of 45 instances,
equally distributed across three combinatorial optimization
problems: the Traveling Salesman Problem (TSP, [59]),
the Knapsack Problem (KP, [60]), and the Maximum Cut
Problem (MCP, [61]). We have chosen these problems
because:

• They have been extensively used for benchmarking
purposes in QC-oriented research [5], [62], [63].

• They are appropriate for formulation and use in the
solvers considered in this study. Furthermore, TSP and
KP are well suited to be solved with NL-Hybrid
newly introduced variables, while MCP can be easily
formulated with traditional binary variables.

• Their complexity for being solved by QC-based
methods has been previously demonstrated in the
literature [64], [65], [66].

Finally, to facilitate the use of this still unexplored solver,
we will share details of the implementation to solve these
three optimization problems.

This research complements previous work on hybrid algo-
rithms carried out by the authors of this study. In works such
as [67] and [68], the authors presented ad hoc implemented
hybrid algorithms to solve the TSP and its asymmetric
variant. Furthermore, in [47], [52], [53], and [46], the authors
used the CQM-Hybrid to tackle real-world problems in
fields such as logistics and industry. Finally, the authors
have also conducted research focused on benchmarking
different hybrid algorithms, with representative works such
as [69], [70], and [71]. This paper stands out from all these
papers, being the first to work with and experiment on the
newly unveiled NL-Hybrid.
The rest of this article is structured as follows. In Section II,

we provide a brief background related to HSS and describe
the main aspects of NL-Hybrid. Section III focuses on
introducing the implementation details. Section IV details the
experimentation carried out. The paper ends with Section V,
which draws conclusions and outlines potential avenues for
future research.

II. NONLINEAR-PROGRAM HYBRID SOLVER
We divide this section on the NL-Hybrid into two parts.
First, in Section II-A, we give an overview of the method.
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Then, in Section II-B, we take a look at its structure and
workflow.

A. OVERVIEW OF NL-HYBRID
In recent years, the community has proposed a plethora of
hybrid solvers. Many of these techniques are ad hoc imple-
mentations to tackle specific problems. Usually, researchers
consider a number of factors when designing their hybrid
solvers, such as i) the specifics of the problem to be solved; ii)
the limitations and characteristics of the quantum device to be
used; and/or iii) the knowledge and intuition of the developer.
In many cases, the researcher’s knowledge in fields such as
artificial intelligence or optimization is crucial [72].

However, there are some well-established methods that
the community routinely uses, such as the aforementioned
QAOA and VQE, or QBSolv [20]. Another interesting
and recognizable scheme is Kerberos [73], which is a
concretization of the above-describedD-WaveHybrid Frame-
work. More specifically, Kerberos is a reference hybrid
workflow comprised of three methods iteratively running in
parallel: two classical methods, Simulated Annealing and
Tabu Search, and a quantum one that uses the QPU of
D-Wave.

As mentioned beforehand, D-Wave’s main motivation for
creating HSS is to introduce a portfolio of hybrid techniques
that lighten the method-implementation phase. In this way,
HSS is made up of a set of four ready-to-use methods that
target different categories of input and use cases. The last of
the methods included in HSS is the NL-Hybrid, which is
the one we will focus on in this article and which represents
a breakthrough in the implementation of hybrid algorithms.

Firstly, NL-Hybrid stands out because it allows for the
definition of variables in other additional formats than those
considered in the methods previously included in HSS. More
specifically, NL-Hybrid excels with decision variables that
embody common logic, such as ordering permutations or
subsets of options. For instance, in routing problems like the
TSP, a permutation of variables indicates the sequence in
which nodes are visited. Similarly, in the KP, the variables
representing items to be stored can be categorized into two
distinct groups: packed and unpacked.

In this way, in addition to allowing variables defined
as binary and integer values, NL-Hybrid permits the
definition of the following types of decision variables:

• list(number_variables): The solver can use a
list as the decision variable to optimize, this being
an ordered permutation of size number_variables
describing a possible itinerary.

• set(number_variables): The decision variable
can be a set, being this a subset of an array of size
number_variables, representing possible items
included in a knapsack.

• disjoint_list(n_variables,n_lists): The
solver can employ a disjoint_list as the decision
variable, which divides a set of n_variables into
n_lists disjoint ordered partitions, each representing

a permutation of variables. This encoding is appropriate
for complex logistic problems such as the Vehicle
Routing Problem. There is a variant of this variable,
called disjoint_bit_sets, where the order of the
produced partitions is not semantically meaningful.

It is worth mentioning at this point that in the field of
optimization, whether by means of classical or quantum
systems, the performance of a solver is closely tied to its
capacity to explore and exploit the whole solution space. That
is, the larger the search space, the higher the probability of
reaching better solutions, understanding search space as the
region of the solution space that the algorithm can access.
However, there is the downside that larger spaces are usually
computationally expensive to explore and exploit. Therefore,
employing decision variables that act as implicit constraints
is an effective way to reduce both search and solution
spaces and thus, the running time to find a solution. For
instance, using list(number_variables) to represent
a canonical TSP implicitly ensures that no nodes are visited
more than once along the route and also that each node is
visited. This results in the absence of infeasible solutions
within the solution space, thereby ensuring that this space
comprises solely feasible solutions to the problem. This
characteristic is not observed with binary encoding. For this
reason, the use of the aforementioned decision variables is a
significant advantage for NL-Hybrid.

Finally, NL-Hybrid natively permits nonlinear (linear,
quadratic, and higher order) inequality and equality con-
straints, expressed even arithmetically. This aspect represents
a significant contribution compared to other well-established
hybrid solvers. For comparison,BQM-Hybrid accepts linear
soft constrains as penalty models, while CQM-Hybrid
works with linear and quadratic constrains natively, although
it is also possible to implement them as soft constraints.

To conclude this section, it is important to note that
the existence of NL-Hybrid does not imply the complete
deprecation of previously existing methods in HSS. Depend-
ing on the characteristics of the problem and the decision
variables used, NL-Hybrid may not always be the most
efficient algorithm. As will be demonstrated in later sections,
CQM-Hybrid or BQM-Hybrid might be more suitable for
problems primarily composed of binary variables.

B. STRUCTURE AND WORKFLOW OF NL-HYBRID
Being part of HSS, NL-Hybrid has the same structure as
the other methods within the portfolio. This structure, which
is depicted in Figure 1, is divided into three distinct phases:
A) First, the NL formulation of the problem is introduced

as input into a classical front end. In this preliminary
phase, the solver creates a predetermined number of
equally structured branches.

B) Secondly, each created thread is executed in par-
allel on a set of Amazon Web Services (AWS)
CPUs and/or GPUs. Each branch is composed of
a Classical Heuristic Module (CM) and a Quantum
Module (QM). The CM is in charge of exploring
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FIGURE 1. Structure of NL-Hybrid solver. CM = Classical Heuristic
Module. QM = Quantum Module.

the problem-solution space using traditional heuristics.
During this exploration, the CM formulates different
quantum queries, which are executed by the QM,
and which are partial representations of the problem
that are accommodated to the QPU capacity. The
solutions provided by the QPU are employed to
guide the CM toward promising areas of the solution
search space. Furthermore, QM can even improve the
solutions found by the CM. NL-Hybrid resorts to the
latest D-Wave quantum device to execute the quantum
queries. At the time of this writing, the system used was
the Advantage_system6.4, which is made up of
5616 qubits organized in a Pegasus topology.

C) Finally, after a predefined time limit T , all generated
branches stop their execution and return their solution
to the front end. Then, NL-Hybrid forwards the best
solution found among all the threads. It should be
noted that CM and QM communicate asynchronously,
ensuring that latency in a particular branch does
not hinder the overall progress of the NL-Hybrid
solver.

Some of the benefits of using NL-Hybrid over
ad hoc generated methods or other widely recognized
solvers are:

• NL-Hybrid is built to manage low-level operational
specifics, eliminating the need for users to have any
expertise in properly parameterizing the QPU.

• NL-Hybrid accepts inputs that are much larger than
those of other solvers focused on solving problems in
QUBO format and even larger than those of the rest
of the solvers within HSS. NL-Hybrid is intended to
take advantage of the QPU’s capability to quickly find
promising solutions, expanding this property to a wider
range of input types and sizes than would otherwise be
feasible.

• NL-Hybrid provides a user-friendly use of quantum
resources, allowing the user to model a problem in

an intuitive way. This is an advantage in comparison
to QUBO, which is the native formulation for QPUs,
mainly because translating a problem to this binary
formulation is often a challenging task [74]. In fact, inef-
ficient translation can critically affect the performance
of the solver.

Lastly, it should be noted that the NL-Hybrid solver is
proprietary. Consequently, further technical details are not
available to the general public. For additional information on
this method, we refer interested readers to the D-Wave report
on the HSS portfolio [29].

III. IMPLEMENTATION DETAILS
The experiments conducted in this study focus on three
combinatorial optimization problems: TSP, KP, and MCP.
Due to its incipient nature, there is little information regarding
NL-Hybrid. Given this lack of documentation, we provide
several key implementation details on how to tackle the
above-mentioned problems by means of NL-Hybrid. This
allows the reader to understand how intuitive the problem
design is.

It should be noted that, while the implementation of MCP
was done from scratch, those for TSP and KP are slight
adaptations of the open-source code published by D-Wave.6

First, in order for the problem to be solved by
NL-Hybrid, it must be defined using a special entity
dedicated for this purpose, called Model. Once this model is
initialized, the definition of a problem includes the following
four steps:

• Defining the decision variables.
• Entering the information necessary to describe the
problem as constants (if needed).

• Defining the problem constraints (if any).
• Formulating the objective function.
The rest of the section is divided into four subsections.

The first three are devoted to each of the problems to be
addressed, while the last is devoted to the execution of the
NL-Hybrid.

A. TRAVELING SALESMAN PROBLEM
The TSP is a classical routing problem that can be represented
as a complete graphG = (V ,A) of sizeN , where V illustrates
the set of nodes and A the set of edges linking every pair of
nodes in V . Furthermore, a matrixC of sizeNxN contains the
costs cij associated with traveling from node i to node j.

The TSP is a problem that is particularly suitable
for being solved by NL-Hybrid, since the decision
variables can be defined using the above-described
list(number_variables) type. Thus, list(N)
represents an ordered permutation of the nodes in V . It is
worth noting at this point that, thanks to permutation-based
coding, it is not necessary to add any constraints to the
model, such as those required when the TSP is defined using

6https://github.com/dwavesystems/dwave-
optimization/blob/main/dwave/optimization/generators.py
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the QUBO or CQM formulations. This is undoubtedly an
advantage for the NL-Hybrid.

In the following Python code snippet, we show how to
initialize the model and the decision variables. We also show
how to introduce the information needed to describe the
problem.

from dwave.optimization.model import Model

#Initializing the model entity
tsp_model = Model()

#Defining the variable as a list of size N
route = tsp_model.list(N)

#Entering the cost matrix as constant
cost_matrix = tsp_model.constant(C)

Regarding the objective function, which must be mini-
mized, it can be mathematically formulated as follows, being
x a list representing a feasible TSP route:

f (x) =

N−1∑
i=1

cost_matrixxi,xi+1 + cost_matrixxN ,x1 (1)

Which is represented in code as shown in the following
snippet:

route_cost = cost_matrix[route[:-1], route[1:]]
return_cost = cost_matrix[route[-1], route[0]]

# Sum the costs of the full route.
complete_cost = route_cost.sum()+return_cost.sum()

# The objective is introduced using model.minimize
tsp_model.minimize(complete_cost)

B. KNAPSACK PROBLEM
In summary, KP consists of a set I ofN items, describing each
one by its weight (wi) and its profit (vi), whichmust be packed
into a knapsack with a maximum capacity C . The objective
is to choose a subset of items to be stored that maximizes the
profit obtained and does not exceed C .

Like the TSP, the KP is a problem that benefits
from the features of NL-Hybrid, since we can use the
set(number_variables) type to define the decision
variables of the problem. Thus, set(N) represents a subset
of I . We show the initialization process of the KP-related
model in the following Python code snippet, whereW and V
are two sets that include the weights and benefits of all items,
respectively.

from dwave.optimization.model import Model

#Initializing the model entity
kp_model = Model()

#Defining the variable as a set of size N
items = kp_model.set(N)

#Entering problem information as constants
capacity = kp_model.constant(C)
weights = kp_model.constant(W)
profits = kp_model.constant(V)

In contrast to MCP and TSP, in the case of the KP it is
necessary to add a restriction, which ensures that the items
placed in the backpack do not exceed C .

capacity_check = weights[items].sum() <= capacity

#Restrictions are introduced using
#model.add_constraint method
model.add_constraint(capacity_check)

Finally, the objective function, which must be maximized
natively, can be mathematically formulated as follows,
being x a feasible set of items, and M the size of
this set:

f (x) =

M∑
i=1

valuesxi (2)

Which can be represented in code as follows:

# Sum the profits of introduced items.
sum_values = profits[items].sum()

# The objective is introduced using model.minimize
kp_model.minimize(-sum_values)

It is worth noting that NL-Hybrid method only allows
for the minimization of the objective function. This is why
problems natively designed to maximize an objective, such as
the KP, are handled by adding a negative sign to the function,
as seen in the code above. This situation also occurs with
the MCP.

C. MAXIMUM CUT PROBLEM
Taking into account a directed graph G made up of
N nodes and a weight matrix W of size NxN , the
objective of the MCP is to divide N into two subsets
such that the sum of the weights of the cut edges is
maximum.

In order to formulate the MCP to be solved by
NL-Hybrid, the set X = x1, . . . , xN of binary decision
variables has been defined, where xi is 0 if node i is part of
the first subset and 1 otherwise.

We show the initialization process of the model in the
following Python code snippet.

from dwave.optimization.model import Model

#Initializing the model entity
mcp_model = Model()

#Defining the N bynary decision variables
nodes = mcp_model.binary(N)

#Entering the weights into the model as constant
weights = mcp_model.constant(W)

Furthermore, the objective function, which must be
maximized natively, can be mathematically formulated as
follows, being x a feasible binary solution to the MCP:

f (x) =

N∑
i=1

N∑
j=1

|xi − xj| ∗ weightsi,j. (3)
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Which can be made explicit in code using the following this
Python snippet:

obj = None

for i in range(N):
for j in range(N):
if i!=j:
if obj is None:
obj = abs(nodes[i]-nodes[j])*weights[i][j])

else:
obj = obj+(abs(nodes[i]-nodes[j])
* weights[i][j]))

#The objective is introduced using model.minimize
mcp_model.minimize(-obj)

It should be noted that, because of the nature of the MCP,
no problem constraints are needed.

D. EXECUTING THE PROBLEM
Once the problem has been modeled following the steps
described in the previous subsections, it is ready to be
submitted to NL-Hybrid. This process is carried out in the
same way as the rest of the HSS portfolio, as can be seen in
the following snippet:

from dwave.system import LeapHybridNLSampler

sapi_token = ’XXXXX’
dwave_url = ’https://cloud.dwavesys.com/sapi’

sampler = LeapHybridNLSampler(token=sapi_token,
endpoint=dwave_url)

sampler.sample(model)

Finally, the results-collecting process differs from the rest
of the HSS solvers. In this case, NL-Hybrid deposits the
complete set of outcomes in the Model itself. The results,
as well as their energies, can be read as follows:

from dwave.system import LeapHybridNLSampler
from dwave.optimization.model import Model

for i in range(model.states.size()):
solution = next(model.iter_decisions()).

state(i).astype(int)
solution_energy = model.objective.state(i)

The code above produce an outcome as we represent in the
following code snippet, centered on a TSP example composed
of 9 nodes.

solution {-} objective function
[7 8 6 4 2 3 0 1 5] - 2134.0
[1 5 7 8 6 4 2 3 0] - 2134.0
[1 0 3 2 4 6 8 7 5] - 2134.0
[4 6 8 7 5 1 0 3 2] - 2134.0
[3 2 4 6 8 7 5 1 0] - 2134.0
\ldots

IV. EXPERIMENTATION AND RESULTS
The main elements of the experiments carried out are
described in this section. First, we detail the characteristics of
the benchmark used in Section IV-A. Then, in Section IV-B,
we describe the design choices adopted. Lastly, we show and
analyze the results obtained in Section IV-C.

A. BENCHMARK DESCRIPTION
As mentioned, a benchmark composed of 45 instances
has been used, equally distributed over three combinatorial
optimization problems:

A) TSP, for which instances of sizes between 7 and
107 nodes have been used. Instances with a size equal
to or less than 25 nodes have been obtained from the
QC-oriented benchmark QOPTLib [71], while the rest
have been obtained from the well-known TSPLib [75].

B) KP, for which each case is named sX_Y, where X is
the number of items and Y is a suffix to distinguish
the set of instances with the same X. All instances have
been obtained from the KPLib benchmark,7 described
in [76].

C) MCP, for which each instance is coined MC_X, with X
being the number of nodes that define the graph. Ten
of the instances have been obtained from the QOPTLib
mentioned above, while graphs of sizes 80, 90, 120,
140, and 170 have been generated ad hoc for this study.

In Table 2, we summarize the main characteristics of each
instance considered. Finally, to improve the reproducibility
of this study, all 45 instances are openly available in [77].
Furthermore, the newly created MCP instances have been
generated randomly using a Python script, which is also
available in the same repository.

B. EXPERIMENTAL SETTING
Using the benchmark described above, the main objective
is to analyze the performance of the NL-Hybrid, and to
compare the results obtained by this method with those
obtained by three D-Wave-based counterparts: the QPU,
BQM-Hybrid and CQM-Hybrid. Our main motivation for
choosing these counterparts is to measure the main contri-
bution that NL-Hybrid provides in relation to previously
available methods. More specifically, the BQM-Hybrid has
been employed in these tests because it is the most widely
employed HSS solver and its input format is similar to that
of the QPU. Additionally, the CQM-Hybrid has been used
because it is the most advanced algorithm in the portfolio and
is easy to usewhenmodeling the problems addressed. Finally,
the DQM-Hybrid has been set aside due to the little attention
it has received in the literature and the complexity of its use
compared to the other solvers within HSS.

Regarding the QPU, the Advantage_system6.4
device has been used, which is the most recent from D-Wave
at the time this work was written. This computer features
5,616 qubits and more than 35,000 couplers arranged in a
Pegasus topology. Similar to hybrid solvers, the QPU has
been accessed through the D-Wave Leap cloud service, and
the common forward annealing process has been executed,
which consists of the following main steps [78]: i) convert
QUBO into a graph, ii) minor graph embedding, iii) QPU ini-
tialization, iv) annealing, v) readout, and vi) postprocessing.

7https://github.com/likr/kplib

4730 VOLUME 13, 2025



E. Osaba, P. Miranda-Rodriguez: D-Wave’s Nonlinear-Program Hybrid Solver

TABLE 2. Summary of the TSP, KP and MCP instances used.

FIGURE 2. Graphical representation of the quantum annealing process followed by the D-Wave’s QPU used in this work.

In Figure 2, we graphically represent this process to facilitate
its understanding.

In relation to the parameterization, the default values have
been used for all the solvers for the sake of fairness. For
hybrid solver versions, v2.2, v1.12, and v1.1 have been
used for BQM-Hybrid, CQM-Hybrid, and NL-Hybrid,
respectively. For the QPU, the default parameters have also
been used.

Finally, Qiskit_Optimization8 v0.6.1 open libraries have
been employed to aid in solving the three optimization
problems using the QPU and BQM-Hybrid. These libraries
have been utilized because they enable tasks such as data
reading, solution decoding, result evaluation, and, most
importantly, the automatic construction of the QUBOs.
More specifically, to build the QUBO formulations, these
classes relax the constraints using a penalty model, with
the coefficient being automatically estimated. Finally, it is
worth noting that Qiskit_Optimization does not present any
incompatibility with any versions of Qiskit, such as the
current v1.2.

The CQM implementations of the three problems have
been developed ad hoc for this research. Finally, as mentioned
above, the NL implementation of the MCP has been done ad
hoc for this work, while the implementations of TSP and KP

8https://qiskit.org/ecosystem/optimization/apidocs/qiskit_optimization.
applications.html

are slight adaptations of the open code published by D-Wave.
To improve the reproducibility of this research, all codes
are available from the corresponding author upon reasonable
request.

C. RESULTS
In order to obtain representative results, all the outcomes pre-
sented in this section have been obtained after 10 independent
runs per method and instance. Regarding TSP, we show in
Figure 3 the average of the best solution reached by each
solver. It should be noted that the metric used to represent
the quality of the solutions is the approximation ratio. This
metric has been applied to all the methods executed, and it
is particularly suitable for measuring the distance between
the obtained outcomes and known optimal solutions in terms
of the objective function cost. Thus, the approximation ratio
is calculated by using the cost of an obtained solution
and the optimal value of the problem being solved. The
optimal values for each instance have been obtained from [71]
and [75].

In addition to the best solution found, each solver provides
a set of solutions called sample-set for each execution. It is
possible that there are repeated solutions in this sample-set.
For this reason, the reliability of a method can bemeasured by
analyzing the entire sample-set, with it being preferable that
the quality of the solution set approaches the optimal solution
to the problem. Thus, to represent the robustness of each
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FIGURE 3. The average approximation ratio of the best solutions found
by each method for the TSP instances.

FIGURE 4. The average approximation ratio of the whole sample-sets
found by each method for the TSP instances.

method, the averages of the complete sample-sets obtained
by each technique are presented in Figure 4.

A simple glance at Figure 3 and Figure 4 is enough to
detect the superiority of the NL-Hybrid solver over its
competitors. To verify this improvement, two statistical tests
have been performed with the results shown in these figures.

First, we applied Friedman’s non-parametric test to deter-
mine if there are significant differences among NL-Hybrid,
CQM-Hybrid, and BQM-Hybrid. It should be noted that
QPU has been left out of all these tests as it does not provide
outcomes for all datasets. The results of this test are presented
in Table 3. Specifically, the average ranking value returned
by the Friedman non-parametric test is presented for each
of the compared algorithms. A lower rank indicates better
performance. Furthermore, on the left-hand side of Table 3,
we show the results referring to the best results obtained,
while on the right-hand side, we show those concerning the
complete sample-set mean.
The Friedman statistics obtained in these tests are

26.53 and 28.13. With a 99% confidence interval, the critical
value in a χ2 distribution with 2 degrees of freedom is 9.21.
Since both statistics are greater than this critical value, we can

TABLE 3. Average rankings obtained using the Friedman’s test for the TSP
experimentation.

conclude that there are significant differences among the
results, with NL-Hybrid having the lowest rank.
Following the results described above, we conducted

Holm’s post-hoc test to evaluate the statistical significance of
NL-Hybrid’s superior performance. The adjusted p-values
from Holm’s post-hoc procedure are presented in Table 4.
Upon analyzing these results, and considering that all
p-values are below 0.05, we can confidently conclude that
NL-Hybrid significantly outperforms BQM-Hybrid and
CQM-Hybrid with 95% confidence.

TABLE 4. Results obtained using the Holm’s post-hoc procedure for the
TSP. NL-Hybrid used as control algorithm.

Finally, as can be seen in Figure 3, the performance
of NL-Hybrid in all the datasets considered is almost
perfect. For this reason, and to get a glimpse of the limits of
NL-Hybrid’s performance, we have conducted additional
experiments with TSPLib instances composed of between
100 and 783 nodes. We show the average of the best results
and the average of the complete sample-sets in Figure 5,
where it can be seen how NL-Hybrid obtains remarkable
results (above 0.8 with respect to the optimum) in instances
of up to 439 nodes. This performance is a substantial
improvement over other hybrid methods in the literature.

FIGURE 5. The average of best solutions and of the whole sample-sets
found by the NL-Hybrid for big TSP instances.

Similar conclusions can be drawn if we focus our attention
on the tests carried out with the KP. For the KP, we show
in Figure 6 and Figure 7 the results obtained in terms of
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FIGURE 6. The average approximation ratio of the best solutions found
by each method for the KP instances.

FIGURE 7. The average approximation ratio of the whole sample-sets
found by each method for the KP instances.

TABLE 5. Average rankings obtained using the Friedman’s test for the KP
experimentation.

the best solution found per run and the average of the entire
sample-sets, respectively. In this case, the optimal values used
as the baseline have been obtained by solving each instance
through Google OR-Tools. As mentioned, NL-Hybrid
proves to be superior to its competitors also for the KP. The
outcomes obtained after the execution of both Friedman’s
and Holm’s post hoc tests are depicted in Table 5 and
Table 6, respectively. On the one hand, the Friedman statistics
obtained are 26.53 and 30. Given that both statistics exceed
the critical value, we can infer that there are significant
differences between the results, with NL-Hybrid achieving
the lowest rank. On the other hand, because all p-values
are below 0.05, we can conclude that Holm’s post-hoc test
supports the conclusion that NL-Hybrid is significantly
better than CQM-Hybrid and BQM-Hybrid with 95%
confidence.

TABLE 6. Results obtained using the Holm’s post-hoc procedure for the
KP. NL-Hybrid used as control algorithm.

TABLE 7. Wilcoxon test results. Each cell contains a symbol per metric
(best solution found and average of the sample-set).

FIGURE 8. The average approximation ratio of the best solutions found
by each method for the MCP instances.

Finally, Figures 8 and 9 present the results for MCP,
where the conclusions differ significantly from the previous
ones. A glance at the results shows that NL-Hybrid only
outperforms the QPU, offering considerably lower perfor-
mance compared to BQM-Hybrid and CQM-Hybrid, both
of which demonstrate outstanding suitability for this problem.
To assess if the differences between NL-Hybrid and the
other algorithms are statistically significant, we used the
Wilcoxon rank-sum test. The results are included in Table 7.
Each cell displays the two metrics considered (best solution
found and average of the sample set) using one of the
following symbols: ‘‘▲’’ indicates that NL-Hybrid has
produced better results than the algorithm in the column with
99% confidence, and ‘‘▽’’ denotes that the algorithm in the
column is statistically superior to NL-Hybrid.

Thus, as can be observed in Table 7, NL-Hybrid signif-
icantly outperforms QPU in both metrics, but the superiority
of BQM-Hybrid and CQM-Hybrid is also statistically
significant for both metrics. However, this performance does
not detract from the value of NL-Hybrid. Although these
results seem counterintuitive compared to those of TSP
and KP, they are consistent with what was expressed in
Section II-A. That is, depending on the type of problem and
the coding of its decision variables, NL-Hybrid may not
always be the most suitable algorithm. Specifically, as shown
through this experimentation and supported by D-Wave [79],
for problems primarily involving binary variables or integers
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FIGURE 9. The average approximation ratio of the whole sample-sets
found by each method for the MCP instances.

with low ranges, CQM-Hybrid or BQM-Hybrid are more
appropriate. This situation opens up a wide range of future
work to be carried out around the NL-Solver and its
applicability to industrial problems, which we detail in the
following section.

V. CONCLUSION AND FURTHER WORK
This paper focuses on the recently introduced NL-Hybrid
solver, evaluating its performance through a benchmark
of 45 instances across three combinatorial optimization
problems. The results have been compared with three
different counterparts. Additionally, to facilitate the use of
this relatively unexplored solver, we have provided detailed
implementation guidelines for solving the three optimization
problems considered.

Given the results obtained, it is prudent to conclude that
D-Wave’s NL-Hybrid emerges as a promising alterna-
tive in the realm of hybrid classical-quantum algorithms.
The NL-Hybrid has demonstrated superior performance
compared to its competitors, particularly in constrained
problems where the new decision variables are applicable.
This algorithm proves to be a high-quality approach for
such complex problems, efficiently solving large instances
and achieving near-optimal solutions. It is likely that
NL-Hybrid will become a flagship in the field, primarily
due to the innovative types of variables it incorporates, which
enable the efficient handling of highly complex problems that
have posed significant challenges to existing hybrid solvers.

Furthermore, an important factor to consider when evalu-
ating NL-Hybrid is its ease of use. As shown in Section III,
the way variables, constraints, and the objective function are
defined is very intuitive. This is not a trivial matter, as it helps
to bring and expand the use of quantum computing to a larger
group of researchers who may not be familiar with complex
quantum concepts.

However, not everything that glitters is gold, as NL-
Hybrid presents certain limitations that warrant more
detailed exploration. Investigating these weaknesses will
enable the scientific community to delineate the boundaries

of this solver and determine the contexts in which it can
perform optimally. Indeed, the NL-Hybrid has shown
inferior performance compared to other hybrid alternatives
in the MCP, where the decision variables used were of the
binary type and the problem had no constrains. Although this
is a limitation, it is not unexpected. In fact, unconstrained
problems are ideally suited for the other methods, since there
is no need for penalty models. This observation aligns with
the statements previously made by D-Wave in [79].

Also, like any hybrid algorithm, there are further lim-
itations that require further investigation. One of these
limitations regards the overhead of asynchronous communi-
cations. Since quantum and classical computers are separate
physical devices, each with its own computational interface
and data transfer pipeline, the NL-Hybrid is constrained to
repeatedly switch contexts and exchange intermediate data
between devices. This latency prevents classical decisions
from influencing the evolution of the quantum state before
qubits undergo decoherence. Another aspect that requires
further investigation is the scalability of the algorithm when
dealing with increasingly larger problems.

With all this, the findings reported in this work have
enabled us to identify a set of inspiring opportunities, paving
the way for several future research directions. These are some
of the most intriguing challenges to pursue:

• Analyze the performance of NL-Hybrid against other
well-known optimization problems, such as Bin Pack-
ing, or the Job-shop Scheduling Problem. For this, it will
be necessary to work on adapting the formulation of
these problems to the new types of decision variables.

• Study the performance of NL-Hybrid compared to
other commercial hybrid methods, not only in terms of
quality, but also in terms of scalability.

• Considering the NL-Hybrid’s ability to handle com-
plex constraints, efforts will be made to solve problems
composed of multiple constraints. The Rich-Vehicle
Routing Problem or the Three-Dimensional Bin Packing
Problem are suitable cases to advance in this line.

• Explore alternative problem formulations to improve the
performance of the NL-Hybrid. An example of this
line of research is the Maximum Cut problem, where
a formulation that allows the use of the new types of
decision variables will be studied.
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