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Abstract

Factorization of physics associated with different scales is a powerful tool that en-
hances our understanding of high-energy processes. This thesis applies this concept
within the framework of soft-collinear effective theory (SCET) to two different scenar-
i0s.

In the first part, a factorization theorem for non-global observables is derived, con-
sisting of a hard function that captures physics at the high scale () of the order
of the partonic center-of-mass energy, convoluted with a low-energy matrix element
that describes physics relevant at the soft veto scale )g. On the example of gap-
between-jet cross sections, the leading double-logarithmic corrections, known as super-
leading logarithms, are resummed to all orders in perturbation theory by solving the
renormalization-group equation of the hard function. It is shown that they give sizable
contributions to partonic 2 — 2 scattering processes, but play a subdominant role for
vector or Higgs boson production in association with one or no jet. In a second step,
the analysis is extended to also include the imaginary parts of the large logarithms. We
demonstrate that this “Glauber series”, which in the low-energy effective theory arises
from Glauber-gluon exchanges between initial-state partons and collinear emissions
from these partons, is parametrically suppressed with respect to the leading double-
logarithmic corrections. Numerically, it suffices to consider up to four such exchanges
to capture the relevant contribution to the cross section. For large N., we resum the
Glauber series in closed form.

In the second part, we study weak annihilation contributions to exclusive non-
leptonic B-meson decay amplitudes. By performing a systematic two-step matching
of the relevant operators in the weak effective Hamiltonian on SCET-2, we identify
several new partially endpoint-divergent contributions and so far unknown four- and
five-particle distribution amplitudes of the B meson. We show how the endpoint
divergences cancel between the standard QCD factorization contributions and some
of these newly discovered ones. Therefore, this work establishes a subleading power
factorization theorem for weak-annihilation amplitudes.






Zusammenfassung

Die Faktorisierung von Physik, die mit unterschiedlichen Skalen verkniipft ist, stellt
ein leistungsfahiges Werkzeug zur Verbesserung unseres Verstandnisses von Hoch-
energieprozessen dar. Diese Arbeit wendet dieses Konzept im Rahmen der soft-
kollinearen effektiven Theorie (SCET) auf zwei verschiedene Szenarien an.

Im ersten Teil wird ein Faktorisierungstheorem fiir nicht-globale Observablen her-
geleitet. Dieses besteht aus einer harten Funktion, die die Physik an der hohen Skala
(), welche von der Gréflenordnung der partonischen Schwerpunktsenergie ist, erfasst,
gefaltet mit einem Niederenergiematrixelement, das die Physik an der soften Veto-
Skala )y beschreibt. Am Beispiel von Gap-between-Jet-Wirkungsquerschnitten wer-
den die fithrenden Doppellogarithmen, bekannt als “super-leading logarithms”, durch
die Losung der Renormierungsgruppengleichung der harten Funktion zu allen Ordnun-
gen in Storungstheorie resummiert. Es wird gezeigt, dass sie nicht zu vernachlassigende
Beitriage zu partonischen 2 — 2 Streuungsprozessen geben, aber eine untergeordnete
Rolle bei der Produktion von Vektor- oder Higgs-Bosonen in Verbindung mit einem
oder keinem Jet spielen. Im zweiten Schritt wird die Analyse um die Imaginarteile
der groflen Logarithmen erweitert. Wir zeigen, dass diese “Glauber-Reihe”, die in
der Niederenergietheorie durch Glauber-Gluon-Austausche zwischen Partonen im An-
fangszustand und kollinearen Emissionen von diesen entsteht, relativ zu den fithrenden
doppel-logarithmischen Korrekturen parametrisch unterdriickt ist. Numerisch reicht es
aus, die ersten vier solcher Austausche zu betrachten, um den relevanten Beitrag zum
Wirkungsquerschnitt zu erfassen. Fir grofle N, resummieren wir die Glauber-Reihe
in geschlossener Form.

Im zweiten Teil untersuchen wir “Weak-Annihilation-Beitrage” zu exklusiven nicht-
leptonischen B-Meson-Zerfallsamplituden. Durch ein systematisches, zweistufiges
Matching der relevanten Operatoren im schwachen effektiven Hamiltonian auf SCET-2
identifizieren wir mehrere neue, teilweise endpunkt-divergente Beitrdage und bisher un-
bekannte vier- und fiinf-Teilchen-Verteilungsamplituden des B-Mesons. Wir zeigen,
wie sich die Endpunkt-Divergenzen zwischen den bekannten QCD-Faktorisierungs-
beitragen und einigen der neu entdeckten Beitragen aufheben. Dadurch etabliert
diese Arbeit ein Faktorisierungstheorem in nachstfithrender Ordnung fiir exklusive
nicht-leptonischen B-Meson-Zerfallsamplituden.
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Chapter 1

Introduction

The progression of modern physics is marked by a dynamic interplay between theo-
retical advancements and experimental discoveries. With the High-Luminosity Large
Hadron Collider (HL-LHC) starting to operate in the near future, experimental mea-
surements will reach unprecedented precision. Therefore, theorists are compelled to
refine their models and enhance the accuracy of their predictions to keep pace.

A powerful tool for refining theoretical predictions are effective field theories (EFTs),
as they separate physics at different energy (length) scales. This scale separation
goes under the name of factorization and allows one to distinguish the ultraviolet
(UV) behavior of a theory, associated with high energy scales, from its infrared (IR)
behavior, linked to low energy scales. In the “standard” EFT approach, heavy fields
are systematically integrated out, retaining only the relevant light degrees of freedom.
This results in a simplified theory that accurately describes low-energy phenomena
while including UV corrections through higher-dimensional operators suppressed by
the heavy mass scale.

The prime example of an EFT frequently used in high-energy physics is SMEFT.
Here, the standard model of particle physics (SM) is considered to be an EFT of
an unknown UV theory and is extended by higher-dimensional operators compatible
with the SU(3). x SU(2) x U(1)y symmetry group. The Wilson coefficients of these
operators need to be determined either from fits to experimental data or by matching
to an UV model. This allows, for example, for the description of Majorana neutrino
masses by the so-called Weinberg operator. In contrast, considering the SM as UV
theory and working at low energies, beta decays in nuclear physics can be described
by Fermi theory. Integrating out the heavy W boson results in flavor changing four-
fermion operators, describing these types of decays on a partonic level. However, the
application of EFTs is not limited to particle physics. General relativity is nowadays
considered as an EFT of an unknown quantum theory of gravity and BCS theory in
solid-state physics, an effective theory for phonons, describes superconductivity.

While many EFTSs, including the aforementioned ones, assume that UV physics can
be completely integrated out, this is not always feasible for high-energy processes.
For instance, outgoing partons in colliders have small virtualities but still carry large
energies comparable to the center-of-mass energy. In such cases, the EFT framework
can still be used to separate physics at different energy scales. The appropriate theory
for this is soft-collinear effective theory (SCET), which will be applied to collider and
B physics in this thesis.

This thesis is structured as follows: First, we introduce the basic concepts of SCET
as an effective theory of quantum chromodynamics (QCD).! In Part I this EFT is
then applied to derive a factorization theorem for non-global observables at hadron
colliders and to resum appearing large logarithms. Part II is dedicated to the study of
subleading power corrections to non-leptonic B-meson decay amplitudes, in particular
to weak annihilation contributions.

Tt has also been successfully applied to quantum electrodynamics (QED) and gravity.
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Chapter 2

An EFT on the Light Cone

Many high-energy processes feature several widely separated scales. At particle
colliders, the highest scale () is typically associated with the partonic center-of-mass
energy V/§, while for B physics it is given by the b-quark mass m,. Lower energy
scales are characterized through a power-counting parameter A as A*(Q) with a > 0
and are related to experimental vetoes on radiation, small transverse momenta, the
QCD confinement scale Agcp, etc. As the expansion parameter for the perturbative
series of an observable for such processes is a,In A ~ 1, with a, the strong coupling,
large logarithms In A > 1 cause the breakdown of perturbation theory. An EFT
description separating different scales allows one to resum these large logarithms using
renormalization-group (RG) methods. This is discussed in great detail for non-global
observables in Part I.

Particles in high-energy processes often carry momenta of virtuality Q?, it is thus
not possible to remove physics at this scale by integrating out heavy fields in the
standard EFT approach. However, assigning different scalings to these momenta and
performing an expansion in A, it is possible to achieve the desired scale separation.
On a technical level, this procedure is called method of regions. It was proposed by
Beneke and Smirnov over 25 years ago in [7] and allows for an asymptotic expansion
of Feynman integrals with multiple distinct scales. Even though it has been applied
successfully in many cases, only recently a first proof for the specific scenario of an
“on-shell expansion” was presented in [8]. The general idea is to expand the integrand
of a Feynman integral for different A\ scalings of the loop momenta. The integral for
each of these “regions” is often simpler to evaluate and — more importantly — depends
only on a single scale. Evaluating them in d = 4 — 2¢ dimensions and adding up the
contributions from all regions, one recovers the full result of the UV theory expanded
order by order in A. Some examples can be found in [9].

As many particles in high-energy processes have (nearly) light-like momenta, it is
convenient to decompose all momenta p in a light-cone basis

n* - nt _
Pr=nep oty AP = (nep nep,pl) (2.1)
with light-like vectors (n* = n? = 0)
= (1,n), = (1,-n), (2.2)

such that n-n = 2 and p, is transverse to n and n. When applying the method of
regions, one encounters momenta with different scaling in their light-cone components
as well as with different virtuality. The most relevant virtualities are hard with p* ~
Q?, (anti-)hard-collinear with p? ~ A\2Q? and soft or (anti-)collinear both with p? ~
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Figure 2.1: Modes in SCET. (Anti-)collinear modes have the same virtuality as soft ones,
while (anti-)hard-collinear modes have a higher virtuality.

A Q%' Their light-cone components scale as follows

pZN (17171>Q7 pZCN ()‘2717>\)Q7 pgN ()\4717>\2>Q7
p% ~ (17 AQ; A) Q7 plg ~ (]_, A4, A2) Q7 (23)
P~ (2020 Q.

From here on we drop the hard scale () in such relations. Figure 2.1 shows the position
of these modes in the (n - p,n - p) plane. Modes with the same virtuality lie on a
hyperbola.

SCET was constructed to reproduce the method-of-regions results by introducing
separate fields for each mode. In general, one needs to include all modes in (2.3) (and
maybe more) to reproduce the full result of the UV theory, see the example in Section 2
of [11]. However, in many physical processes not all of them contribute. The effective
theory, called SCET-1, developed in the seminal papers [12-15] contains only hard-
collinear and soft modes, i.e. modes with different virtuality. This theory is appropriate
to describe e.g. Drell-Yan production close to the threshold, as soft modes have a
smaller virtuality [16]. In contrast, in exclusive B-meson decays, studied in Part II,
both the collinear final-state mesons and the soft spectator quark have virtuality Agep.
The appropriate theory containing soft and collinear modes is called SCET-2. The
situation for non-global observables at hadron colliders is more complicated, as will be
discussed in Part I.

!Depending on the process under consideration, many more/different modes can contribute. For
example, Glauber modes with scaling pjy ~ (A%, A2, \?) can mediate interactions between collinear
and soft modes which otherwise is forbidden by momentum conservation [10].



2.1 Field Decomposition

2.1 Field Decomposition

Combining (hard-)collinear and anti-(hard-)collinear modes yields hard ones, which
are integrated out in the EFT. This implies that there cannot be any interactions be-
tween different (hard-)collinear sectors and they can be constructed separately. There-
fore, the construction of SCET with one (hard-)collinear direction is explained in the
following.

As explained above, the effective theory must contain separate fields for all relevant
modes. The only exception are hard modes, their effect is captured by non-trivial
Wilson coefficients of operators. We start by constructing SCET-1 and postpone the
construction of SCET-2 to the next chapter.

For SCET-1 the relevant decompositions for fermions and gauge bosons read

(x) = Epe() + Npe() + ¢s(2) A(x) = Ape(x) + As(z) . (2.4)

We use the notation A = A*t* with t* a generator in the fundamental representation
of SU(N,) normalized to tr(t*t?) = Tp 6 with Tp = 3. Derivatives of these fields
scale like the associated momenta, i.e.

8H@hc ~ (>‘27 17 )‘> ¢hc > @,u¢s ~ (>‘27 )‘27 )‘2) gbs ) (25)

where épe € {Eney Mhe, Anet and ¢ € {qs, As}. As derivatives - ddp. are O(1) in the
power expansion, one has to include an arbitrary number of them when constructing
operators in the effective theory. This yields non-local operators of the form

Pne(x +17) = Zt—i 0 dne() (2.6)

7!
=0
with Wilson coefficients depending on the O(1) variable ¢. In momentum space, this
translates to a dependence on the large momentum components of the hard-collinear
fields. This feature will be discussed in detail in Part II. The hard-collinear fermion is
split into two components . = & + Nie Which are defined by

il P ). 2.7)

Ehe() = = Yne(2), Mhe(T) =
They fulfill the important projection properties 7 &p. = A npe = 0. The A-scaling of
these fields can be determined by considering their propagators. For the hard-collinear

fermions, one finds

mn-p
27r42p + 10

%775

—ip-(z—y)

OT6(2) 6e)10) = 22 01T vl cl)lo) B = [ 5
(2.8)
and a similar result with n <+ n for n,.. Here, T denotes the time-ordering of fields

on the right of it. While for the soft fermion the propagator remains unchanged

0T (e a)]0) = [ by S e, (29)
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with a mass m ~ A2. One can directly infer the scaling of the fermion fields
Ehe ~ A, The ~ A%, qs ~ A (2.10)

As ny,. is subleading compared to &, it will be integrated out below using its equation
of motion. For the gluon fields, one needs to consider their propagator in ¢ gauge
dp  —i

O A @) A7)0y = [ 52

(2m)* p? 40

1t ‘

(nﬁ“’ —(1-¢) —f) ey - (2.11)
p

After contracting with n, n or projecting onto the L-components, one finds the fol-

lowing scaling for the components of the gluon fields

Ap. ~ (N2 1,0), AR~ (N2 0707 (2.12)

The appearance of an unsuppressed field n- Ay, is problematic because such fields can
be inserted arbitrarily often into operators. This can be dealt with using Wilson lines
as explained below.

2.2 Gauge Symmetry and Multipole Expansion

In this work, we focus on high-energy processes that are dominated by the strong
interaction, i.e. by QCD. The construction of SCET has to respect the SU(N,) gauge
symmetry of the underlying full theory. Decomposing the quark and gluon fields
according to (2.4) also decomposes the gauge group into a hard-collinear and soft part.
Soft fields cannot transform under hard-collinear gauge transformations, as this would
turn them into hard-collinear fields. The soft gluon field transforms as a background
field for hard-collinear fields. The decomposed gauge transformations are [14]

1
hard-collinear: Ap. — Up. Ape Ugc + — Upe [’iDS, U,u , Ene = Une &pe s
Js

Ay — Ay, qs = qs
(2.13)
soft:  Ap. — Ug Ape UST , Ehe = Ug&he
1
A, = U AU+ = U [0, U] qs — Usqs,

s

where the covariant derivative is 1D = 10 + g5 As. Here and in the following, we use
the convention that fields without argument are evaluated at x. The hard-collinear
gauge transformations are not homogeneous in A for n- Ay, and Aj- | as they contain
the soft gluon field. A second source of inhomogeneity is the requirement p -z ~ 1
implying in generic hard-collinear-soft interactions x ~ (1, A72, A\™!). Therefore, one
has

Ghe(®) Ds(x) = B} (7) (1 TR R T %x‘ixi@u&, + <9<A3)> bo(r),  (214)

where _ = n-2 % and z, '=n-z 2. The derivatives are taken before setting the soft
field to x = x_. Thus one has to multipole expand soft fields around x = z_ to obtain
homogeneous hard-collinear-soft interactions.



2.2 Gauge Symmetry and Multipole Expansion

It is essential to work with objects homogeneous in A to control the underlying power
expansion in SCET. Therefore, the effective theory should be built from hard-collinear
fields Ay, &, which have the following homogeneous gauge transformations

“ N 1 “ ~ ~
hard-collinear: A, = Upe Ape US, + = Upe[iDs(x-), ULl &he = Une e,

s

As — Ag, ds = s ,
soft:  Ap. — Us(xz_) Ape Ul(z_), Ene — Us(z-) Ene
1
As%UsAsUj"i__Us[iaaUHa QS%USQSa

s

) o (2.15)
where iDg(z_) = i0+ gsn-Ag(z_) % The new fields Ay, & are connected to the old
ones by the Ry Wilson line defined in Appendix A.1

éhc = Rl ghc ) Ahc = Ri Ahc Rs 5 (216)

which moves the soft gauge transformation of hard-collinear fields from = to z_ [15].






Chapter 3

The Lagrangian

After the above discussion of field decomposition, gauge invariance and multipole
expansion, we are now ready to derive the SCET-1 Lagrangian. The starting point is
the QCD Lagrangian

Loon = D —m)d — %tr F, F™ (3.1)

with covariant derivative iD := i0+ gs A and field strength tensor igs F** = [iD* i D"].
In the following, we focus on the quark part, a discussion including the Yang-Mills
part can be found in [15].

First, we insert the field split (2.4) in (3.1) and drop momentum-conservation vio-
lating terms, i.e. terms containing only one hard-collinear field. Fixing hard-collinear
light-cone gauge (HCLCG) - Ap. = 0 allows us to eliminate the unsuppressed gluon
component in (2.12). Second, the suppressed quark component 7. is integrated out
using its equation of motion [14]
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((ZpJ_ —m)&ne + gs A qs) : (3.2)

Nhe =

In the following, we omit the 0 prescription. Third, before substituting the old fields
Ahc and &, with the new ones, we “unfix” HCLCG [17] by replacing Ay and £hc
in (2.16) with

Ahc = W]IC s Ahc th + W}J{c [iDs(x—)7 th] s :Axhc = VAV]IC éhc 5 (33)

respectively. Here, the hard-collinear Wilson line is defined in Appendix A.1. The
composite building blocks Aj,. and X}, are invariant under hard-collinear gauge trans-
formations and related to the elementary fields A, and &, by a gauge transformation
Upe = VAVJC Therefore, the unsuppressed gluon component only appears through Wil-
son lines ensuring gauge invariance. After the substitution, soft fields in interactions
with hard-collinear ones split into a homogenous background field n-A;(x_), appearing
only through iDS(x_), and the gauge-covariant fields [18]

A, = R! (gsAs — gsn-Ag(x_) g) R, + R} [zf)s(x_), R, Q =Rlq. (3.4)

They fulfill the fixed-line gauge condition (z — z_)- As(z) = 0. Finally, one finds for
the SCET-1 Lagrangian

‘CSCET-I = ‘CYM + st (les - m)QS + :_xhc (Z?’LDS<QZ',) + n'Ahc + nﬂs) % xhc

) 1
" in o+ A,

! 1 i
e, g e 9t T (A G+ A0 )

b T (i + A+ (i + A+ T+ m) B,
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Chapter 3 The Lagrangian

P A+ ) AhOthe.  (35)

n-0+n- A
where the hermitian conjugate only refers to the last two terms. Here and in the

following, we omit hats as objects without them will not appear anymore. Let us
summarize the main features of Lagrangian (3.5):

e It is exact to all orders in A.
e As explained in Section 3.4 of [14], it does not renormalize, i.e. all matching

coefficients retain their tree-level values and the strong coupling g, evolves with
the standard QCD [-function.

e As a remnant of the Lorentz invariance of the full theory, the Lagrangian is
invariant under linear combinations of [19]

(I): n* —=nt40, " —n",
(I1):  n* — nt, nt —nt 4o, (3.6)
(II): n* — (n*, nt — (tak,

where ( = O(1), 6, = O(A) and n-§, =n-J; = 0. Naturally, the EFT must be
independent of the choice of the reference vectors n and 7 as long as n? = n? = 0
and n-n = 2. This symmetry is referred to as reparametrization invariance (RPI)
and restricts the form of possible operators in SCET. Type (III) is exploited in
Part II to construct a basis of SCET-1 operators.

e If the mass scales like m ~ A, the soft quark field is not dynamical.

3.1 Leading Power

All terms in (3.5) containing the soft building blocks (3.4) need to be multipole ex-
panded to obtain terms homogenous in A. This expansion is most conveniently per-
formed by expressing them through field strength tensors [15]

n-As(x) = /0 dt (x —z_)"n” (R! 9s F, Re) (v— 4+ t(z —z_)),
ﬂjy(x) = /0 dt t (xz —z_ )" (R! gsFiuRs) (- +t(x —z)), (3.7)

n-As(x) = /0 dtt(x —z_)*n" (R} 9s 3, Rs) (a— + t(x — ),

where F};, is the standard QCD field strength tensor with only soft gluons. As we
show below, all these objects start at O()\®) in the expansion and, therefore, do not
contribute to the leading-power Lagrangian. It is thus given by the sum of

£§f? = Xpe(in-Dy(x_) +n-Ap) % Xhe

1 (3.8)

+ Xne (iP1 + Ai) —

. 1 C 14
(u}h + A#C) % Xhe — 3 tr F/’fl, Fi

12



3.2 Subleading Power

and the soft part

. 1 s 5
,Cs:(js(lll)s—m)qs—itrFuny : (3.9)

Here and in the following, we assume the mass to scale as m ~ A2. The hard-collinear
field strength tensor is defined by
1

Fi = o [iD*(z_) + AL, iDY(z_) + A}, (3.10)
As soon as hard-collinear fields are present, the measure in the action is O(A™*)
compensating the O(\*) of the leading-power Lagrangian (3.8). The purely soft La-
grangian (3.9) is of O(A®) which is compensated by d*z ~ O(A™®) in the action. At
leading power, the SCET-1 Lagrangian contains only the hard-collinear-soft eikonal
interaction through the soft gluon field n- Ay(z_). These unsuppressed interactions

can be removed at the Lagrangian level by a decoupling transformation, explained in
Appendix A.2.

3.2 Subleading Power

Besides the leading parts (3.8) and (3.9), the SCET-1 Lagrangian contains an infinite
tower of subleading terms

Lscer-1 = L5+ Z ﬁsz) + Ll (3.11)

he,s
n=0
where the superscript indicates the suppression relative to the leading Lagrangian.
They either contain the small mass m or arise from multipole expanding the soft
fields (3.4). The terms in these expansions relevant for the first and second subleading
Lagrangian are [15]

1
n-As =zl n” gsF, (v-) + zh n” gs Fj, (7)) + 5 zh ) ,n” [Dg’,gstu] (x_)+ 0N,

Qs = qs(z_) + 1, [DF gs](z_) + O(N), (3.12)

where the first term in both cases is of O(\?), and

Ak, = %x’i G F2, (1) + O, 1T, = O, (3.13)
The different components of the soft gluon field are suppressed with different powers
of A relative to the hard-collinear one. As consequence, we need the O(A\3) and O(\*)
terms in the expansion of n - A, but only the first term for 4. The component 7+ A,
only contributes to Lgfg and higher terms.

At subleading power, one finds a new interaction between soft quarks and hard-
collinear fields. It is suppressed relative to the leading-power Lagrangian by at least
one power of A and its first term reads

L) = (ao) A Xne + Xpe A qs(2-) - (3.14)
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Chapter 3 The Lagrangian

The soft quark at z_ is the leading contribution from the second line of (3.12). At the
same power, there also exist interaction terms of hard-collinear fields and soft gluons.
The associated Lagrangian is

ESC) = 5%34 + Xpe 2! MY 9sF;, (7)) % Xne

1 1 (3.15)
(9 + M) g — g 00+ ) S e

m-

where the Yang-Mills part is given in [15] and the first term is part of the multipole
expansion of n- A in (3.12).
The by two powers of A suppressed interaction terms featuring soft quarks are

r .
‘6512(:),5 _3 (‘T,) (n"AhC + ‘Alj{c Zﬁ a (Z@J- + ‘A#c)) % xhC

+ Xne % (n-flhc + (g1 + Ar) ﬁ ﬁi) gs(2_) (3.16)

+ [@ D] (22) w1 Ak, Xe + Xne Atk 21, [DF g5 ()

where the last line is the second term in the multipole expansion of Q,. Expressing this
Lagrangian in a covariant form through Aj., &, and employing the soft equation of
motion, one finds a term —m gs(x_) WJC &pe. In HCLCG this term would be dropped
by momentum conservation. However, dropping momentum conservation violating
terms in the covariant Lagrangian is not hard-collinear gauge-invariant. Gauge invari-
ance is only restored after applying the soft equation of motion in physical transition
amplitudes [17]. The interaction terms without soft quarks are

1
L) =L —m? Xpe —— £ X
he ymM — M he 7o 99 oh

_ 1
+ Xpe (xi n’ g Fp (v ) + s @l w1,n” [DE, g, F}, ] (ff—)) 5 Xhe

2 2 (3.17)

1
-0

15 , v s
5 X (19 + 1) 5 7V g F ()

v s I I
+ 2t g F (7o) P (i, +4’4ﬁc)>§xhca

where the Yang-Mills part is again given in [15]. This subleading Lagrangian also
contains terms from the multipole expansion of A in (3.13).
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Chapter 4

SCET-2

For many interesting processes, e.g. for weak annihilation discussed in Part I, exter-
nal fields are described by collinear instead of hard-collinear modes. In these cases the
appropriate theory is SCET-2 and we discuss its construction in this chapter, following
closely reference [11].

In a first step, one decomposes quark and gluon fields similar to (2.4) in

(x) = &) + () + gs(2) , Az) = Ac(z) + As(2) (4.1)

where the components of the collinear quark field are defined by projections in complete
analogy to (2.7). The scaling of the soft fields is the same as in SCET-1. Analyzing
the propagators of the collinear fields, one finds

£~ M\, Ne ~ A1, A~ (A 1,07 (4.2)

Similar to the unsuppressed component and derivative for hard-collinear modes, one
can deal with 7 - A. and 7 - 0. by introducing Wilson lines and non-local operators,
respectively. By momentum conservation, interactions of two collinear and one soft
or one collinear and two soft fields are forbidden. Therefore, the gauge symmetry of
SCET-2 is just the same as in full QCD for each sector

1
collinear: A, — U, A Ul + —U, [i@, Uﬂ , &= UE,
Js

Ay — Ay, qs = Qs
(4.3)
soft: A, — A., & — &,

1
A, = U AU+ = U[i0,U1], g5 — Usgs.
As these transformations are already homogeneous in A, there is no need for a field
redefinition as in (2.16). The interaction of two collinear and two soft fields is allowed
by momentum conservation. However, as in these interactions z ~ (1, A2, A72), one
needs to multipole expand both collinear and soft fields to avoid inhomogeneities
according to [11]
() = (1 Yo+ (’)(X‘)) belzs + 1),
(4.4)
() = (1 a0+ 0(A4)> ol + 1),

where the derivatives are taken before setting the fields to v = x4 + x, .

4.1 The Lagrangian

The Lagrangian of SCET-2 can also be organized as power series in A. Taking into
account that d*z ~ O(A™?) for purely soft and purely collinear terms but d*z ~ O(A79)
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Chapter 4 SCET-2

in soft-collinear interactions terms, one can show that these interactions are power
suppressed [11,20]. Therefore, the Lagrangian takes the form

Lscpr—2 = Ls + L+ Z AR (4.5)

n=0

However, if incoming and outgoing fields in the same collinear direction exist, soft and
collinear fields can interact at leading power through Glauber gluons. They are respon-
sible for the existence of the super-leading logarithms discussed in Part 1. Following
the same step as in Chapter 3, one can show that the soft part of the Lagrangian is
the same as in SCET-1, see (3.9), and the collinear part is

o= (in-d+n-a)lx,

(4.6)
Y . 1 . 1 % _ 1 C v
+ X (i@ + A —m) P (i + A +m) 5 Xe 5 tr F,, FiY,
where the collinear field strength tensor is defined by
1
FH = — [i0" + AL i0” + AY] . (4.7)

Js

Similar to above, we use gauge-invariant building blocks for the collinear fields. They
are defined by

A=W} g AW, + Wi [io,W.], X =Wle., (4.8)

where the collinear Wilson line is defined in Appendix A.1. Both the soft and the
collinear part of (4.5) are equivalent to the full QCD Lagrangian (3.1). The Lagrangian
does not renormalize and has the same RPI as in SCET-1. However, as soon as one
includes heavy quarks, see Chapter 5, L. receives power corrections from integrating
out heavy-quark loops [11].

The first subleading term in the Lagrangian Lg? is given in [11]. In soft-collinear
interactions, it is most convenient to also use gauge-invariant building blocks for the

soft fields
A =S} gsAs Sy + ST 100, S,] Q= ST g, (4.9)

with soft Wilson lines defined in Appendix A.1. The building blocks (4.8) and (4.9)
will be used in Part II to construct gauge invariant operators.

4.2 Matching from SCET-1

As combining soft and (anti-)collinear modes yields (anti-)hard-collinear ones, the
matching process on SCET-2 contains two steps [11,21-25]. In a first step, one matches
QCD on SCET-1 by integrating out hard modes at a scale u, ~ . The Wilson
coefficients arising in this first matching step are called hard functions. In a second
step, one then matches on SCET-2 by integrating out (anti-)hard-collinear modes.
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4.2 Matching from SCET-1

This second matching step happens at an intermediate jet scale p; ~ AQ and results
in so-called jet functions.

The matching from SCET-1 to SCET-2 is most conveniently done using a theory
with hard-collinear, collinear and soft modes [11,23,24]. It is called SCET(hc,c,s)
in [11]. First, one performs a decoupling transformation in SCET-1, as described in
Appendix A.2, for each hard-collinear sector. As a consequence, operators in the EFT
contain products of soft Wilson lines in different directions, and soft fields only ap-
pear in their gauge invariant form (4.9). For a single (hard-)collinear direction, this is
equivalent to working in soft light-cone gauge n - A; = 0. In a second step, the decou-
pled hard-collinear fields in each sector are matched separately using SCET(hc,c,s).
Employing (hard-)collinear light-cone gauge n- Ay, = n- A, = 0 avoids dealing with un-
suppressed field components. The SCET (he,c,s) Lagrangian — in light-cone gauge and
without leading power interactions between different sectors — is obtained by replacing

Ehe = G e, A = AR+ A (4.10)

and dropping all momentum-conservation violating terms. Integrating out the hard-
collinear modes in this theory yields, at tree level, relations of the form

€9 5 F(€er Aey Qomy Asn) A 5 (e Ay Qo Asn) s (4.11)

where the right-hand sides are power series in A. Finally, gauge invariance is restored
by replacing collinear fields with the gauge-invariant building blocks in (4.8). At tree
level, integrating out hard-collinear modes is equivalent to solving equations of motions
for f,(f;) and A;LOC) . Using this method, the expansion of the right-hand sides in (4.11)
to O(A\*) and partially O()\%) was obtained in [11]. The trivial terms are

X0 = x4+ 0%, AT AL+ o0, (4.12)

The subleading corrections will be studied in detail in Part II. Lastly, we note that
there is no need to consider the small components n - Ay, and n- A, when constructing
operators in the EFT as they can be removed using equations of motion [26].
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Chapter 5

Heavy Quark Effective Theory

In SCET, only quark masses up to O()A) can be considered, as they do not change
the light-like character of momenta. When dealing with B-meson decays in Part II,
one also has to take into account the bottom quark mass m;, ~ O(1). The appro-
priate effective theory to describe such heavy quarks is heavy quark effective theory
(HQET) [27,28].

A heavy quark inside a heavy meson, such as the b-quark inside the B-meson, carries
almost the full meson momentum. Therefore, its momentum can be split according to

Py = mpvt + kH (5.1)

where v is the velocity (v? = 1) of the heavy meson and k ~ Aqgcep ~ O(A\?) a residual
soft momentum. The full QCD b-quark field is decomposed as

b(z) = e "™V [by(z) + By(z)], (5.2)

where the two HQET fields b, and B, carry only the residual soft momentum and
the meson velocity v appears as a label on these fields. In complete analogy to the
hard-collinear quark fields in (2.7), the two fields are obtained by different projections

by(x) = ™" P, b(x), By(x) = ™" " P_b(z), (5.3)

with projector Py := (1 £¢)/2 and ¥ b, = b,. For the two-point correlation function,
one finds

(0T by () by (y)[0) —/ Th 1 p ity
AP = T ont vk a0 ‘

Here we used that Povy* P. = +ov* PL. From a similar relation for B,, one can infer
the power counting of the two HQET fields

(5.4)

by ~ A, B, ~ A, (5.5)

The large component b, has the same power counting as a light soft quark in SCET.
The small component B,, describing hard fluctuations, can be integrated out at tree-
level by applying its equation of motion

1

L
= bv: .
2my +1v-Dg — 10 i, (5.6)

v

with covariant derivative iD, = 10 + g, A, and v - DSL = (. In the following we omit
the 70 prescription.

Inserting (5.2) in the QCD Lagrangian and applying the equation of motion for B,,
one finds

e , 1 :
£HQET = b, <ZU Dy + ZD;‘ m ij‘) by . (57)
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Chapter 5 Heavy Quark Effective Theory

In contrast to SCET, the HQET Lagrangian does receive contributions from integrat-
ing out hard loops, i.e. it renormalizes. Taking the heavy-quark limit m;, — oo, i.e.
considering only the first term in the power expansion, one finds

Lt = byiv-Dyb, . (5.8)

As this Lagrangian is independent of m, and has a trivial Dirac structure, QCD has
a spin-flavor symmetry in the heavy quark limit [29,30]. This symmetry is broken by
subleading terms starting at O(1/my,). The first terms are given by

(1) _ I - L1 2 - v s
‘CHQET = 2_mb by (ZDS ) by + 8_mb by [Wﬁa VJ Js F,W by (5.9)

and are referred to as kinetic and chromo-magnetic operator, respectively.
Similar to (3.6) in SCET, the Lagrangian (5.7) has a RPI. The split of the heavy
quark momentum (5.1) is not unique and can be changed by
’ q"
ot — ot — — kY — KM+ g* | (5.10)
my
where ¢ ~ Aqep ~ A?, without altering the effective theory. This reparameterization
connects terms with different power counting, e.g. the leading-power Lagrangian and
the kinetic operator. Therefore, the first term in the power expansion that has a non-
trivial matching coefficient is the chromo-magnetic operator [31]. Splitting the heavy
quark momentum is not the only ambiguity in the HQET construction. As quarks
are always confined in hadrons, there exists no canonical definition of the heavy quark
mass my. This problem can be solved by introducing a residual mass term, see [32]
for more details.
There is an important detail regarding the normalization of meson states in HQET.
Such a state is described in the effective theory by a velocity v and a residual soft
momentum k. It is convenient to normalize them in a mass-independent way, i.e.

(By(K)|Bo(k)) = 20° 6y (2)* 6P (k — K) (5.11)

to avoid difficulties when taking the heavy quark limit. The connection to QCD states

is then
|B®) = vins (|B.(k) + O(1/my)) (5.12)

with meson mass mpg ~ my.
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Appendix

A.1 Wilson Lines

As Wilson lines play an important role in SCET, we list their definitions and most
important properties in this appendix. In Parts I and II of this work, more than
one (hard-)collinear direction is relevant. Therefore, in most cases we also give the
expressions associated with an anti-hard-collinear sector.

The Wilson lines used to transform Aj. and &,. to HCLCG are defined by

0

—00

0

Whe(z) = Pexp {igs / dt n- Ape(z + tn)] ,

(A.1.1)
Wig(z) = Pexp [igs /

—00

dt n-A;(x + tn)] :

where P denotes that the fields in the exponential are path-ordered. In the redefini-
tion (2.16) of the old hard-collinear fields, the R; Wilson line is defined by

0

Rs(z) =P exp {igs/

—00

dt (x — x_), Al (z_ +t(:c—m))]. (A.1.2)

This Wilson line transforms soft fields into fixed-line gauge with U, = RI. In an
anti-collinear sector, the redefinition is performed using the same Wilson line with x_
replaced by x .

Similar to the Wilson lines (A.1.1), one can define

0

Su(x) == P exp [igs /

—00

0

dt n-Ag(z + tn)] :
(A.1.3)

Salw) = Pexp [z’gs /

—0o0

dt n-Ag(x + tn)] :

They transform soft fields to light-cone gauge and are used to perform the decoupling
transformation, see Appendix A.2.

Under the homogeneous gauge transformations (2.15), these Wilson lines transform
according to

hard-collinear: W, — Up. W, R, — R,, Sn — Sp,

soft: Whye = Uz )Wy Ul(z_), Ry = U,RUNz_), S, —=US,.

(A.1.4)

Remember that fields without argument live at x. Form the first column, it is obvious

that the building blocks (3.3) are invariant under hard-collinear gauge transforma-

tions, whereas from the second column, one can infer that the fields (3.4) transform
covariantly with Ug(xz_) under soft gauge transformations.
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The covariant derivative along their direction vanishes [9]. The most relevant rela-
tions for us are

[i Dpe Wie] =0, [in-D,S,] =0, (A.1.5)

where iDj,. = 10 + g, Ap.. Similar relations hold in the anti-hard-collinear sector, i.e.
for n <> n. The square brackets indicate that the derivatives only act on the Wilson
lines. Exploiting this property, it is easy to show that the hard-collinear building
blocks (3.3) for the gluon fields are indeed in HCLCG.

In SCET-2 an additional type of Wilson lines appear. These collinear Wilson lines
encode the O(1) component of the collinear gluon field and are defined by

0

W.(x) = Pexp [igs/ dt n- Az + tn)},

’;” (A.1.6)

Wx(z) = Pexp {igs / dt n- As(z + tn)] .

They only transform under gauge transformations according to
collinear: W, — U.W,, soft: W, — W, (A.1.7)

and, therefore, the building blocks (4.8) are indeed invariant. Similar to (A.1.5), they
turn covariant derivatives to ordinary ones

lin-D.W,] =0, (A.18)

where iD, = i0 + g, A..

A.2 Decoupling Transformation

In this appendix, we discuss the decoupling transformation removing the leading power
interaction of soft and hard-collinear fields, see Section 3.1. Similar to Appendix A.1,
we also include anti-hard-collinear fields in the discussion.

The leading-power SCET-1 Lagrangian (3.8) contains hard-collinear-soft interac-
tions only through the soft gluon field n- As(x_). It is possible to eliminate this
interaction by redefining the (anti-)hard-collinear fields [13]

&0 () = Sh(@_) &elw), Al (2) = Sl(x-) Apel@) Su(-)

(0) t (0) t (A-2.1)
o () = Sp(ay) Go(z) . A (z) = Si(xy) Ape(x) Sa(zy)

where the soft Wilson lines are defined in Appendix A.1. The multipole expansion of
the soft Wilson lines ensures that only the components of the soft momenta which are
commensurate with the small components of the hard-collinear or anti-hard-collinear
momenta can propagate in these interactions. Under this redefinition the Wilson
lines (A.1.1) transform as

Wie = Su() Wid Sf(z-) Wiz = Sa(w) Wi Sf(x) (A.2.2)
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where the superscript (V) on the Wilson lines indicate that they contain the decoupled
hard-collinear gluon fields. Using (A.1.5), it is possible to show that the building
blocks (3.3) transform as

Xne = Sp(x-) XY, Ape = Sp(z_) ALY Shz_),
(A.2.3)

Xz = Salz4) X2 Az = Saley) A Si(zy),

where we defined new soft and (anti-)hard-collinear gauge invariant building blocks

0 0 0 0 0 . 0 0 0 0
‘Agzc) = WISC)T 9s Agw) Wigc) + WfEC)T [Za7 Wigc)} ? ‘rxgw) = W}EC)T 61(7,0) )

(A.2.4)
© ._ Ot (0) 137(0) O 1, () ©) ._ 701 £(0)
A =W g AW+ W0, W], 00 =W
Finally, observing that
in-Ds(x_) +n-Ap. = Sp(x_) (m-a + n-flﬁf?) Shz_) (A.2.5)

and inserting it in the SCET-1 Lagrangian, one finds that the leading-power interac-
tions are gone. In contrast, performing the decoupling transformation in the subleading
terms, see Section 3.2, transforms all soft fields to light-cone gauge. The respective
Lagrangians can then be expressed through the building blocks (A.2.4) and (4.9). For
example, the multipole term in the first subleading Lagrangian (3.15) becomes [33]

L) o X0 iat [in-0AL, (z)] i x (A.2.6)

5,1, [ 2

whereas in the term proportional to m one just has to replace all hard-collinear fields
by the decoupled ones.
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Chapter 6

Non-Global Observables

Jet observables play an important role at high-energy colliders, as they closely mirror
the underlying hard-scattering event and are used in a wide range of physics analyses.
By providing a unique vantage point to study the strong interactions at the shortest
distances, they allow for the search of new phenomena and precision tests of the SM.
However, jet rates are among the most difficult observables to calculate theoretically,
especially for hadron colliders as the LHC [34]. Defining M-jet cross sections involves
clustering energetic radiation into jets and vetoing the remaining out-of-jet radiation,
ensuring it to be soft, see Figure 6.1 for a graphical illustration. This veto in certain
regions of phase space leads to non-global observables and to an intricate pattern of
logarithmically enhanced corrections in perturbation theory.

The simplest example are gap-between-jet cross sections, where the radiation above
a low scale Qg is vetoed outside the jets. As the jets itself carry large energy Q) ~
V8, the coefficients of the perturbative series for such an observable are enhanced
by large logarithms L = In(Q/Qq) > 1. For wide-angle jets at eTe™ colliders, the
leading logarithmic corrections are of the form o L"™. They arise from soft gluon
emissions of the primary partons produced in the collision and, as Dasgupta and Salam
observed in [35], also from secondary soft gluon emissions inside the jets. The latter
so-called non-global logarithms (NGLs) have an intricate structure, even at leading
logarithmic accuracy, and the complexity of the involved color algebra renders their
resummation highly non-trivial. In the large- N, approximation, the leading NGLs can
be resummed by solving a non-linear integro-differential equation derived in [36]. Using
a map between the JIMWLK [37-39] and BK [40,41] evolution equations for small-z
dynamics, this BMS equation was generalized to finite IV, in [42] and numerical results
for the leading NGLs at N, = 3 were obtained in [43-46]. Advances in the development
of finite-NN, parton showers made it possible to resum the NGLs numerically also in
this framework [47-56]. Recently, also the resummation of next-to-leading NGLs was
achieved [55-62].

At hadron colliders an additional subtlety arises. Soft interactions between the two
initial-state partons, mediated by Glauber gluons, lead to complex phase factors, so-
called Glauber phases.! They prevent the cancellation of soft+collinear singularities
and lead to collinear factorization violation [63-65]. Consequently color coherence
breaks down in higher orders of perturbation theory, leading to so-called super-leading
logarithms (SLLs), an infinite tower of double logarithms a3*" L372" starting at four-
loop order in perturbation theory [66-68]. As the SLLs are suppressed in the large- N,
limit, traditional probabilistic parton showers do not even capture the leading double-
logarithmic corrections for gap-between-jet cross sections at hadron colliders.

For a long time, very little was known about the SLLs. The four- and five-loop
terms, i.e. alL® and o®L”, were computed several years ago in [66-68] for different
2 — 2 hard-scattering processes without interference effects. In [69] it was shown
that they can amount for corrections up to 15% for gap-between-jet cross sections.

'In the literature, these phase factors are also called Coulomb phases.
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Chapter 6 Non-Global Observables

Figure 6.1: Graphical illustration of a pp — 2 jet scattering process. Soft radiation
is shown in red and initial-state hadrons (protons) in blue. The radiation
outside of the jets is restricted by Q¢ whereas the jets (gray cones) carry
large energy Q ~ /3.

The gap-between-jet cross section for lepton colliders can be factorized into a hard
function, describing the hard-scattering ete™ — m partons, and a soft function, a
vacuum matrix element of m soft Wilson lines [70,71].2 The NGLs are then resummed
by solving RG equations. Using a similar factorization theorem for hadron colliders,
the all-order resummation of the SLLs for quark-initiated scattering processes and for
a fixed-coupling approximation has been recently accomplished in [73].

This part is structured as follows: In Chapter 7 we derive in detail the aforemen-
tioned factorization theorem for gap-between-jet cross sections at hadron colliders
using SCET, including a derivation of the one-loop anomalous dimension governing
the RG evolution of the hard function. The resummation of the SLLs is extended to
processes with initial-state partons transforming under an arbitrary representation of
SU(N,) and to RG-improved perturbation theory in Chapter 8. A full phenomenolog-
ical analysis of the SLLs is beyond the scope of this work but we include a numerical
analysis for all 2 — 0, 2 — 1 and 2 — 2 scattering processes relevant in QCD and
investigate interference effects for partonic qq — g¢q scattering. In Chapter 9 we
extend the resummation to subleading logarithmic corrections arising from multiple
Glauber-gluon exchanges. For this Glauber series, we determine the all-order structure
and perform (partial) resummations for two expansions and for large N.. Finally, we
present our conclusions in Chapter 10.

2It is also possible to include sequential jet clustering in this framework [72].
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Chapter 7

Factorization Theorem

In this chapter, we discuss in detail — using the language of SCET — the leading
power factorization theorem for gap-between-jet cross sections [1,73,74]

raan(@0) = [d€rdte 30 ()60, © Wi}, Qosa ) (7

m=2+M

applicable for 2 — M wide-angle scattering at hadron colliders. Furthermore, the
anomalous dimension of the hard function H,, is calculated and the cancellation of
real and virtual collinear singularities is demonstrated. For the low-energy matrix
element W, only the lowest order approximation is relevant in this work, but it
deserves further studies in future. The various symbols in (7.1) are explained below.

7.1 Jets in SCET

The scattering of several energetic particles in SCET is described by the m-jet operator.
As soft fields are power suppressed compared to hard-collinear ones, see Section 2.1, the
leading power m-jet operator contains m hard-collinear fields, one for each direction of
the jets [75,76]. At subleading power, soft fields as well as more than one hard-collinear
field in each direction are allowed, see [26,77] for more details on this subject.

Introducing m hard-collinear sectors for the directions of the jet, i.e. light-like vectors
n;, = (1,n;) and n; = (1,—n;) such that n;-n;, = 2, the relevant leading power
Lagrangian contains m copies of 52(?, derived in Chapter 3, and one soft Lagrangian
L. By momentum conservation, there cannot be any interactions among the different
hard-collinear sectors, only the leading-power eikonal interactions with the soft field
remain. Matching the full QCD jet operator onto SCET-1, one finds!

dt dtm g ai...am a _
T (0) = 2—;...5[@“]&1_%( vt ) [T (@0 (im), (7.2)
i=1

with ®; € {X;, X;, A} being the hard-collinear gauge invariant building block (3.3) in
the n;-collinear direction. The a; are the color indices of these fields, either fundamental
for (anti-)quarks or adjoint for gluons. Dirac and Lorentz indices of (anti-)quarks and
gluons, respectively, are labeled by «;. Showing all these indices explicitly makes the
connection to the color-helicity-space formalism [78, 79], used throughout this part,
more transparent. The hard-collinear fields in (7.2) are displaced along the light-
cone, as derivatives n; - 0 are unsuppressed in SCET. This non-locality reflects in
{t}-dependent Wilson coefficients C,,({t}).

Performing the decoupling transformation, see Appendix A.2, for each hard-collinear
sector transforms the fields in the jet operator according to

[q)i} Zi (tin;) = [Sz(m)}az [(I)EO)}I;(QT_LZ-). (7.3)

IEvaluating the jet operator at « = 0 is sufficient, as the d%z integral only yields an overall 5-function.

b;
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Chapter 7 Factorization Theorem

All soft Wilson lines live at £ = 0, which is why we drop this argument and prefer to
indicate their directions. Using color-space notation, one can express the soft Wilson
line for outgoing partons, j > 2, transforming under an arbitrary representation, as [9]

S;(nj) =Pexp {igs/ dt nj- AS(tn) T} | (7.4)
0

For incoming partons, one has to integrate over ¢t € (—o0,0).

In general the appropriate EFT to describe inclusive processes is SCET-1, where
soft modes have a lower virtuality than collinear ones. However, imposing a veto on
radiation outside the jets in non-global observables forces the transverse components
of soft and collinear momenta to be of the same magnitude. Thus, the relevant theory
for non-global observables is SCET-2. At leading power the matching of the decoupled
hard-collinear SCET-1 fields CI>Z(-O) on SCET-2 is trivial, see Section 4.2, and they can be
replaced by the collinear gauge invariant building blocks. In the following, we denote
these fields also by ®; € {X;, X;, A} and explicitly mention which type of collinear
fields we refer to. For hadron colliders it is possible that one of the incoming partons
becomes collinear to an outgoing one, i.e. ny || n; or ny || n;, thus collinear and soft
physics cannot be factorized. Interactions between these sectors mediated by Glauber
gluons break collinear factorization [63-66,80]. For lepton colliders, in contrast, the
incoming partons are color-neutral (S;(n;) = 1 for ¢ = 1,2) and, therefore, no such
factorization breaking effects occur [70,71]. Glauber-gluon exchanges are always asso-
ciated with the initial state, see (7.37). For the final-state partons j > 2, one can thus
evaluate the on-shell matrix elements of collinear fields in terms of on-shell spinors
and polarization vectors [81]

<pj; aj, sj’ [x]}z (tjﬁj) }O> _ §bias Va, (pj; Sj) eTiti T p; ’
<pj; as, S;j ’ [D_CJ} ZJJ (tj ﬁj) }O> = (5ajbj ﬂay (pj; SJ') et Han P ) (7-5)
(pj; a5, 5] [Aﬂz (t;75) |0) = 6%% &7, (pj; 55) etttamPs

where s; labels the helicity of the parton. These relations do not receive loop cor-
rections because all integrals containing only collinear modes vanish in dimensional
regularization.

7.2 Derivation

The derivation of the factorization theorem (7.1) works similar to the one for ete”
colliders in [70,71]. Nevertheless, the inclusion of color-charged initial-state partons
leads to complications. Starting point is the cross section for the scattering of two
hadrons H;, Hy into M jets

o2 (Qo) = Z Z H/ d fgl 2|p| ’./\/l H Hy — 3.. )|2

m=2+M spin/color j=3

X (27T)d 5(d)(p1 + P2 — ptot) @hard({ﬂ}) 9( E(J)Ilt)

(7.6)
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7.2 Derivation

where py, py are the momenta of the two hadrons and py. is the total momentum
of the final-state partons. The collection of all parton directions is abbreviated by
{n} = {n1,...,nn}. The sum over parton multiplicities m also contains the sum
over all partonic final-state channels. As we are only interested in unpolarized hadron
beams, the sum over final-state colors and helicities also includes an average over
the hadron spins. The angular constraint Op,a({n}) = Ohara(n1) - . . Onara (1) defines
the jet region. The total transverse momentum of the soft radiation outside the jets

EL. = > |pi| is restricted by Qo.”> Here, L denotes the (d—2) components transverse
to the beam directions n; and nsy. Of course, one could consider different restrictions.
For example, at ATLAS the total transverse momentum of jets inside the veto region
is constrained [82,83]. In the leading-logarithmic approximation, one is only sensitive
to the energy cutoff and the precise definition of the veto is irrelevant.

The scattering amplitude is connected to the m-jet operator (7.2) by

M(HyHy — 3...m) = ({ps} .. . {pm}; Xs| Jm(0) | H1(p1) Ha(p2)) , (7.7)

where {p;} denotes the set of momentum, helicity, and color of final-state parton j
and X, the soft final state restricted by )y in the veto region. On the right-hand
side, implicit sums over the hard-collinear fields ®; € {X;, X;, A;-} for i = 1,2 are
understood. In the factorization theorem (7.1), they are also included in the sum over
m. Evaluating the on-shell matrix elements for the final-state partons after decoupling
and matching onto SCET-2 according to (7.5), the sum over final-state colors of the
squared amplitude can be performed straightforwardly and the Wilson coefficients get
Fourier transformed. Using translation invariance, one can perform all integrals except
for

dt, dt _ o
/dfl dés 2—1 2—2 Ti - 1 Tig - pg € 11181 PL o= il2E2Ma P2 Cr({P}, 1t) Cjn({f_?}w“)
(7.8)

X [ﬁnal—state spinors/polarization vectors} e
where {p} = {&1 01,82 02,03, ... ,Pm}. The variable & can be interpreted as the mo-
mentum fraction carried by a parton of hadron H;. To obtain the full spin- and
color-summed squared matrix element in (7.6), one needs to add the hadronic matrix

element, denoted by the ellipsis. As hadrons are color-neutral and we average over
their spins 7 and 7, one finds for the matrix elements of the collinear fields

zZ<H1(p1,ﬁ)H2<p2,@>\[a>} (i) [8] (272) ... | X,)

X, 71,72

X (Xa| . (@] (0) [@2]7 (0)| Ha(pr, 71) Ha(pa, 72))

_ i (H% O [p0 ]czCz)<H1 o) Ha(po)|[#1])% (117) [82] 2 (f272) ... | X.)

S < (X [@1](0) 2] (0)| Hilp) Halpo)) (7.9)

2We omit the phase-space integrals associated with the soft radiation in (7.6) to increase readability.

They are denoted by i below.

X,
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Chapter 7 Factorization Theorem

where the color- and spin-average factors for the initial-state fields are

2N, fori=gq,q,
N, = =G (7.10)
(d—2)(N?—1) fori=g.

The ellipses represent the (conjugate) soft Wilson lines from the decoupling in the
(conjugate) amplitude. Contracting color and Dirac/Lorentz indices of the collinear
fields with the projectors, one finds

[POJ (X)) [X]20) = ~T(0) B (k) (7-1)

[PO)2 [AF] S (tima) [AF]2(0) = 2tx [0, AL, (i) AT(0)]

where the minus sign in the second equation appears due to the Grassmann character
of the fermionic fields. The leftover factors 7i; - p; in (7.8) combine with the conjugate
projectors to

U (& pis 8i) Ual& pis si) fori=q,
_ ()jaa 1 cog ~ o
;- pi [P ]aa - & 0 Z Ua(& pis si)va(& pizsi)  fori=q, (7.12)

Si

eal&ipis si)es(&piysi) fori=g.

Combining these spinors/polarization vectors for the initial-state partons with the
ones of the final state in (7.8) yields together with the Wilson coefficients the partonic
142 — 3...m scattering amplitude [81]

My ({p}, 1) = Cru({p}, 1) x [spinors/polarization vectors] , (7.13)

where the implicit Dirac/Lorentz indices on the right-hand side are contracted. The
two inverse factors &, & combine with s from (7.6) to the partonic center-of-mass
energy § = £1&s. To prove relation (7.9) and the following, one can contract both
sides with P and turn derivatives —id,, into & ;- p; by integration by parts.

Finally, factorizing hard physics in the form of Wilson coefficients and soft+-collinear
physics encoded in the hadronic matrix elements, one obtains the factorization theo-
rem (7.1). Using color-helicity-space formalism, see Appendix A.3, one can organize
the contraction of indices in a convenient way. In this formalism the hard function is
defined by

dE; ES
Mo e H [ [ M) (Moo
X (27T)d 20(71 - Prot — 51\/5) d(N2 - Prot — 52\/5) 542 (p‘i)t) Onara({12}) ,

where the vectors n; are chosen in the laboratory frame, i.e. p; = E; n; and the energies
of the incoming partons are F; = £1/s/2 and Ey = &4/s/2. This implies n; - ny = 2

(7.14)
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7.2 Derivation

and, therefore, n; is anti-collinear to ny. The amplitude expressed as vector in color-
helicity space is squared as density matrix. Here, we include a factor ¢ = €2 /7 as
explained below. The low-energy matrix element contains all soft+collinear physics
and is given by the Fourier transformation

dty dty —~ L o
Wm({ﬂ}a@(bgl?g?a /_1 _2 W {n}7Q07tlat27H’) e—lt1£1n1~p1 e—lt2§2n2~p2

(7.15)
of

W,, = ipm P@ (Hy(p1) Ho(p2)| @1 (t1711) Po(tain) ST(na) ... ST, (nm) | X

Xs

(7.16)
x (X,|S1(n1) ... Sm(nm) ©1(0) @2(0)|Hi(pr) Ha(p2)) 6(Qo — Egye)

with the projectors as in (7.11). It is thus a unit matrix in helicity space. In (7.1)

the hard function and the low-energy matrix element are first combined and then

integrated over the directions of the final-state partons n; denoted by the @ symbol.
It is defined by

Hon({n},s,&, 6, 1) @ Wh({n}, Qo, &, &, 1)

(7.17)
H/ dQ {’I’L} S 517527 ) m({ﬂ}7@07€17£27#)
with the (d — 2)-dimensional angular integral
d2Q;
dQ] = ——. 7.18
[ ] 2(27T>d_3 ( )

In the combination of the hard function and angular integrals, the factors of ¢ cancel
out, but prevent a proliferation of yg terms and logarithms of 7 in intermediate steps.
The trace denoted by (...) contains the sum (average) over final-state (initial-state)
color and helicity indices, i.e. it includes one factor (7.10) for each initial-state parton.
The factorization theorem (7.1) for gap-between-jet cross sections at hadron colliders
is depicted in Figure 7.1.

The low-energy matrix element in (7.16) is not factorized into a soft and a collinear
part, because Glauber-gluon exchanges in the low-energy EFT still mediate inter-
actions between the two sectors. The corresponding Glauber Lagrangian is derived
in [10] for forward scattering. As the Glauber-gluon interactions are associated with
the jet-veto scale @)y, one can match below this scale onto an EF'T involving only soft
and collinear fields associated with the scale Aqcp of non-perturbative physics. We
conjecture that the Glauber interactions cancel at this scale, similar to the mecha-
nism for the Drell-Yan process [84-86].> As soon as Glauber interactions are absent,
the low-energy matrix element factorizes into the usual collinear parton distribution
functions (PDFs) for quarks and gluons inside the hadron H;

Flgian) = [ 52 € Em o 1) (1) PO 0,0) Hil) (7.19)

30nly recently, it was shown that up to three-loop level breaking of collinear factorization does not
imply breaking of PDF factorization [87].
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Figure 7.1: Graphical representation of the factorization theorem (7.1) for gap-between-
jet cross sections at hadron colliders. Soft physics is indicated in red, the
hard function H.,, is shown in black and collinear fields for the initial-state
partons are shown in blue. The low-energy matrix element W,, contains soft
Wilson lines from the decoupling (double lines) as well as real and virtual
soft gluons (curly lines).

and a vacuum matrix element containing only soft Wilson lines. To answer the question
whether the loss of color coherence breaks collinear PDF factorization properly, one
needs to study Glauber exchanges involving spectator partons.* At least for some
observables they seem to be present [88-90] and also seem to be phenomenologically
relevant [91]. This open issue will be addressed in future work. At the scale i, ~ Qo,
the leading order form of the low-energy matrix element is

Wm({ﬂ}7 Q07 fl; 527 :U’S> = f1<£17 IU’S) f2(£27 /JJS) ]-m + O(Oés) . (720)

We show below, that the RG evolution creates double logarithms in the scale ratio
(Q/Qo. As the low-energy theory naively only knows about a single scale @y, it must
suffer from a collinear anomaly at higher orders in perturbation theory, producing
rapidity logarithms [92,93]. These logarithms are a characteristic of processes involving
Glauber gluons [10]. However, they need to have an intricate structure as the SLLs
only start at four-loop order and deserve further studies in the future.

7.3 Anomalous Dimension

As the cross section is a physical observable, the dependence on the renormaliza-
tion scale p in (7.1) of hard function and low-energy matrix element needs to cancel.
Therefore, their RG evolution is governed by the same anomalous dimension. The RG
equation of the hard function reads [73]

d
dln

Hm<{ﬂ}> Saﬂ) = - Z %l<{ﬂ}7s7ﬂ) * Fﬁn({ﬂ}?‘S?/’L)? (721)

I=2+M

where T is a matrix in color and multiplicity space. The anomalous dimension is
an upper triangular matrix in multiplicity space, since virtual and real emissions can

4The authors of [80] state that the loss of coherence extends also to many global observables.
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7.3 Anomalous Dimension

only map hard functions H,; to H,, with m > [. Its one loop form is

Vorn Roim 0 0
0 Voyms Roynma 0
T — Z‘_; 0 0 Vamso Ronrn - | +0(?), (7.22)
0 0 0 Voymys -

where the virtual (real) entries on the (secondary) diagonal are determined in the
following. The % symbol in (7.21) indicates a convolution over the momentum fractions
for each initial-state parton

(f * 9)(€) = /0 deL F(EL€) 9(E)). (7.23)

It is thus convenient to omit the momentum-fraction arguments when using this no-
tation. More details on the convolution over momentum fractions can be found at the
end of Section 7.3.3. In contrast to e™e™ colliders [70, 71], soft+collinear singularities
related to the color-charged initial-state partons generate an explicit logarithm of the
renormalization scale p in the anomalous dimension. This logarithm is the source of
the SLLs.

The hard function can be evolved from its characteristic scale u;, ~ v/s down to the
one of the low-energy matrix element ps ~ Qo by solving the RG equation (7.21). A

formal solution can be written in terms of the path-ordered exponential

U ({n}, 5. . 1) = P exp [ I d;‘ I ({n}. 5. )] (7.24)

s

It is defined by its series expansion®:

H(s) = H(pn) * Upn, pis)

=M () + /“h W 34 yu) T g

ﬂhd ,uld
/ ’“/ D2 i) T2 (i) # T () +

where the anomalous-dimension matrices on the right-hand side are ordered in the
direction of decreasing scale values, i.e. u; > o in the last line. By calculating this
path-ordered exponential explicitly keeping only the leading-logarithmic terms in T'¥,
one can resum the SLLs, see Chapter 8.

In the following, we derive in detail the one-loop anomalous dimension I'! of the
hard function for hadron colliders and study the (non-)cancellation of (initial-) final-
state collinear singularities.

(7.25)

5Here and in the following, we only indicate the — for the property studied — most relevant arguments
to increase readability.

6As the * convolution, defined in (7.23), is not associative, we use the convention that the leftmost
product is convoluted first, i.e. fx g*h = (f xg) * h.
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7.3.1 Virtual Singularities

Infrared (IR) singularities of massless gauge amplitudes are a well studied subject [31,
94-98]. As shown in [81,94], the IR singularities of massless on-shell QCD amplitudes
correspond to the ultraviolet (UV) singularities of soft and collinear loops in SCET and,
therefore, can be renormalized with standard methods. The amplitudes renormalize
multiplicatively

Mo} ) = i 271 ({p} s €) [Mon({}, ). (7.26)

The RG equation of the renormalized amplitude is determined by an anomalous di-
mension matrix, which is related to the Z-factor by

Mph) = =27 {ph ) = Z({ph ). (7.27)

This anomalous dimension takes into account all soft and collinear singularities and is
up to two-loop order given by [94]

2 m

(U) U=
where s;; == 20;; p; - p; +10 and o0;; = +1 if partons ¢, are both incoming or both
outgoing and o;; = —1 otherwise.” The first sum runs over all unordered pairs of

partons with ¢ # j, indicated by the symbol (i7). In the hard function H,, the squared
amplitude is integrated over the energies of the final-state partons taking phase-space
constraints into account, see (7.14). The cusp logarithm in (7.28) depends on these
energies through the s;; and, therefore, one cannot immediately translate T'™ to the
anomalous dimension of the hard function. Splitting angular and energy dependence
of the cusp logarithm, one finds

2

o i
—Sij n;-n; 2E 2E J

In

(7.29)

where 2II;; = o;; + 1. The last term is only present when partons 7,j are both
incoming or both outgoing and is related to the Glauber phases. Applying color
conservation (A.3.7) for the two middle terms, the color structure simplifies

(b = 5 3 BT remnlan) (=2 i)

/)’LZ . /”L .
(i5) J

+Z(—mm® gi%w) (7.30)

=TM+) 1M
i=1

"Remember that the momenta of the incoming partons are p; = & p; and py = & po.
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7.3 Anomalous Dimension

where Cj is the eigenvalue of the quadratic Casimir associated with the representation
of parton i. The anomalous dimension splits into a purely soft part T'** and m collinear
parts Fé\f, one for each parton.

Translating the anomalous dimension of the amplitude back into the Z-factor, as
for example described in Appendix B of [98], yields

a 11 P —k
Z({Q}a#,ﬁ)zl—ggi — Tz"Tj%(/ pm W,-j—mrHij)
ij

Qs - 1 1 H 7(1) 2
—— Civl|l— + =1 -—=|1+0 :
— [ o (462 - 2 2EZ-) 26} +0()

(7.31)

where the non-trivial term in the first line regularizes the soft singularities and the term
in the second line the collinear ones. Here, vy = 4 is the first term in the expansion of
the cusp anomalous dimension

Yeusp(Qs) = i Yn (Z—;)W (7.32)

n—

and 7§ = 78 = —=3Cp and 7§ = —4 C4 + % Trny are the first terms in a similar
expansion of the quark and gluon anomalous dimensions, respectively. The one-loop
coefficient of the cusp anomalous dimension can be found in Appendix A.4 and the
number of quark flavors is denoted by ny. In (7.31), we express the angular-dependent
part of the cusp logarithm (7.29) as integral over the direction of the virtual gluon

A*Q —k N N;
W, =1ln ——2 7.33
/ Ar U T (7.33)

where the measure is the 4-dimensional version of (7.18) and the integrand is the soft
dipole

n’L . n .
Who=—"7— (7.34)
NN Nj-Ng
with subtracted collinear limits, i.e. n; || ng or n; || ng,
L 7 S y— L ) 7.35
Y Yok * njony ’ (7.35)

The soft dipole is given by the product of two eikonal factors summed over the spin
of the virtual gluon. Subtracting the collinear limits is necessary as the associated
singularities are already regularized by the second line in (7.31).

Soft limits: We are now ready to consider the soft limit of the hard function. At one
loop, the associated virtual singularities are

a, 11 d*Q, —k
o) == 52 55> 0 (T T+ Ton Tin) [ 25T 3
(@) (7.36)
ag 1 .
+ E E’}/o 2Z7T(T17L'T27L _TLR'TQ,R)Hm(,U) + ...,
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Chapter 7 Factorization Theorem

where ellipsis denote terms that are free of soft singularities at one loop. The color
matrices T; , (T} g) act on the (conjugate) scattering amplitude and multiply the hard
function from the left (right). The terms in the second line are purely imaginary and
were simplified using color conservation (A.3.7)

ZTi'Tsz‘j =2T1'T2+Z T, -(-Th - T, - T,

(i3) 1=3 m
=2T - T+ (Ti + T)- (T + Ty) = Y _ C; (7.37)
1=3

:4T1-T2+01+02—ZOZ».

The constant imaginary part cancels between amplitude and its conjugate on the level
of the anomalous dimension. The part proportional to T} - T5 is only present if both
incoming partons are color-charged, i.e. there are no Glauber phases for ete™ colliders
and one can drop them in (7.36), see [71]. As the contribution of Glauber phases can
always be moved to the initial state, our assumption leading to (7.5) is justified.

Collinear limits: When determining the contribution of collinear singularities, we
need to worry about the integrals over the final-state energies in (7.14). Decomposing
the hard function

Ho({n}, 5,60, 6) = / 0, o ({p}) (7.38)

where d&,, denotes these integrals including phase-space constraints and flux factor,
and defining an “unintegrated” hard function by

n({p}) = |[Mu({ph))(Mu({p})], (7.39)

allows one to simplify the notation in the following discussion. Note that the integral
d&,, contains only (m — 2) energy integrals, one for each final-state parton. The one
loop virtual collinear singularities are given by

aliph o) =~ fien 3 [en(5 1oy ) 2] Autiph +
(7.40)

where ellipsis denote terms that are free of collinear singularities at one loop. Adding
the contributions of the amplitude and its conjugate simply results in a factor 2 com-
pared to (7.31), as virtual collinear singularities are associated with a trivial color
structure.

7.3.2 Real Singularities

Similar to the virtual corrections studied in the previous section, real emissions develop
singularities if the emitted parton becomes soft or collinear. As we are dealing with
color-charged initial-state partons, we distinguish two types of collinear singularities

(i) time-like, originating from two final-state partons becoming collinear,
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7.3 Anomalous Dimension

(ii) space-like, originating from one initial- and one final-state parton becoming
collinear.

In the following, we study both of them in more detail.

Soft limits: In the soft limit, scattering amplitudes factorize according to

(Mo ({p, k})) = (ks s1,) T (k) | M ({p})) | (7.41)

where momentum, color and spin of the soft gluon are labeled by k, a; and s, respec-
tively. The soft current at tree-level is given by

m

z
Jrak(k) = —g, Y T (7.42)

n;-k
i=1

and the one- and two-loop results can be found in [99] and [100, 101], respectively.
Performing the polarization sum for the emitted soft gluon, contained in (...), on the
level of the unintegrated hard function, one finds

Do Ha({po k) €) = —dman i Y- T A (ph ) T, (7.43)

(i9) J

where only the term —n* of the polarization sum contributes by color conservation,
and the strong coupling is renormalized in the MS scheme fi? = &/4p?. As the
momentum k = Ej n; of the gluon is soft, it is not part of the momentum conserving
d-functions in (7.14) and the integral over Ej can be evaluated straightforwardly.
Isolating the soft divergence by introducing a cutoff, one finds [71, 102]

Z?—[m+1 {p, k} Z 1-,1 Lo j,R WZ ehard(nk) Hm(“_?}a :u) T (744)

where ellipsis denote terms that are free of soft singularities at one loop and the o
symbol describes the extension of the color space, now including the emitted collinear
gluon. More details can be found in Appendix A.3. Here the soft dipole with sub-
tracted collinear limits (7.35) appears as collinear singularities are treated separately
below.

Time-like collinear limits: Similar to the factorization in the soft limit (7.41), the
amplitude factorizes if two partons i, j become collinear. At tree level, one finds [103]

‘Mm+1<p17 -3 Piy Pjs - - 7pm+1)> = Sp(pwp]) ‘Mm(pla s 7P7 s 7pm+1)> ) (745)

where explicit expressions for all tree-level splitting amplitudes Sp(p;, p;) can be found
in [63]. This factorization formula holds for both time-like, i.e. P — i+ j in the final
state, and space-like, i.e. ¢ — P + j in the initial state, splittings. As the splitting
amplitudes are matrices in color-helicity space, the color and spin structure is different
between left-hand and right-hand side.

Let us start with the time-like case (i). If both partons 4, j are in the final state, one
can parameterize their momenta as p; ~ { P and p; ~ (1—¢) P where the momentum of
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Chapter 7 Factorization Theorem

1 1
N\ / N /

/ \ IR \

Figure 7.2: The amplitude factorizes if partons ¢ and j become collinear. The associated
soft Wilson lines (red double lines) combine into a single Wilson line for the
parent parton.

the parent parton P? — 0. The hard function #,,1 in the factorization theorem (7.1)
is multiplied from the left and right with soft Wilson lines contained in the low-
energy matrix element W,, ;. If the final-state partons 7,7 become collinear, the
two associated outgoing Wilson lines combine to a single Wilson line in the common
direction np

Si(np) Sj(np) = Sitj(np) = Pexp [igs/ dt np- A5(tnp) (T +T7') | (7.46)
0
From color conservation, one can immediately infer that

(T + T¢) Sp(pi, p;) = Sp(pi,p;) TH, (7.47)

which implies that the color state of the partons after the splitting corresponds to one

of the parent parton [81,103]. Consequently, we find an operator version of the usual
QCD coherence

Sl<np) Sj(np) Sp(pwp]) }Mm(pla .- '7P7 o 7pm+1)>
= Sp(plvpj) SP(nP) ‘Mm(pla s 7P7 s 7pm+1)> 3

stating that the soft emissions from two collinear partons are the same as the collinear
emissions from the parent parton. It is illustrated in Figure 7.2. Exploiting this on
the level of the unintegrated hard function and the low-energy matrix element, one

finds ~
(Hmr1({p}, ©) Wi ({n}, €))

(7.48)

o (SP(pi, ;) Hin({P}, ) Wi ({12}, €) SP' (pi, p)) (7.49)

= A0, [ Prayep () (Fon ({0} 1) Win(1). )
ij
where s;; = 2E3£(1 — £)n; - n; and momenta {p} = {p1,...,pic1, P.Djs1s - Pms1 )
and directions {n} = {ni,...,ni—1,np,Nj11,...,Nms1} for time-like splittings. The
trace (...) in the first two lines contains the sum over color and helicity indices of
partons 7,7 and in the last line over the ones of parent parton P. FEvaluating the
squared splitting amplitudes under the trace is equivalent to averaging over their spin.
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7.3 Anomalous Dimension

This yields the so-called splitting functions P;; ;. p, which can be found in (14-17)
of [104] and are given by

2
Porgq(§) = Pargeq(§) = Cr Eti —e(l - f)} :
Pg+q<—q(§) = Pg+<§<—¢7(§) = Pq+g<—q(1 - f) )
_ (7.50)
Poraeg(§) = Pargeyg(§) = Tr {1 - %_f)} ;
_ § 1-¢
Pyrgeg(§) =2C4 L iy + N +&(1— f)} .

The product of hard function and low-energy matrix element in (7.49) is integrated
over (m — 1) directions of the final-state partons. Integrating over direction n;, one
encounters a collinear singularity

/[de] L o0, (7.51)

n;-n; 2¢

The remaining angular integral can then be interpreted as the one over the direction
of parent parton P, i.e. yielding the correct angular integrals for functions H,, and
W,, of multiplicity m. The (m — 1) energy integrals can be split into an integral over
the momentum fraction £ € (0, 1) and the (m —2) energy integrals for these functions.
Using that the measurement function is collinear safe, we find

1 Ed 4 1 ded

Performing the momentum fraction integrals for the case that parent parton P is a
(anti-)quark yields

261 1 3

[ e = ) §Preged®) + Porgcs©] =Co( -1 =5 ) 400, (753

where one should average over the splittings ¢ — ¢ + g and ¢ — g + ¢ as they are
both part of the same (m + 1)-parton configuration. Of course, as the integral is
symmetric under £ — 1 — & one could simply consider only one of the two channels. If
the parent parton is a gluon, one also needs to take into account a factor 1/2 for the
splitting ¢ — g + ¢ to not over-count identical particles and sum over the flavors of
the quark-anti-quark pair. We find in this case

26]-

/01d§ [f1-8)] 2( g+gg(§ +Z iaeg(€ +7>HH(§)])
(7.54)

1 11 2
:OA<_E_€) +§Tpnf+(')(e).
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T /j
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0= ~

Figure 7.3: In the limit where initial-state parton 1 and final-state parton j become
collinear, the amplitude still factorizes, but in contrast to the final-state
collinear limit depicted in Figure 7.2, the soft Wilson lines associated with
1 and j do not combine.

Finally, combing the above results and summing over the splittings of all parent partons
in the final-state, we find

/ 0E s (s ({0}, ) © Winr ({1}, 0)) (7.55)

= fag, S emno (o + 2 ) = ) R (45,10 @ Wi ) +
A rnP:3 P70 262 B 2EP B m Ba,u m\ 1Ly, [ e

where ellipsis denote terms that are free of collinear final-state singularities at one
loop.

Space-like collinear limits: Next, we study the case of collinear emission from an
initial-state parton (ii). Without loss of generality, we restrict to splittings of initial-
state parton 1. Instead of repeating the above derivation in this case, one can cross
the momentum of parton i in the time-like result (7.49) to the initial state by replacing
pi — —p1.5 To account also for the difference in kinematics, one needs to use P =~ £ p;
and p; ~ (1 —¢)py, which implies we should also replace & — 1/£. Even though (7.47)
generalizes to partons in the initial state, it is not possible to commute and combine
Wilson lines similar to (7.48). As already mentioned at the end of Section 3.1, the
reason is that the soft Wilson line associated to parton 1 is incoming and the one
associated to parton j is outgoing, see Figure 7.3. These two Wilson lines differ by
their sign of the ¢0 prescription in the associated light-cone direction and, therefore,
this effect is related to the Glauber phases in (7.37). On the level of the unintegrated
hard function, the splitting factorization in the space-like case reads

(Huer ({0}, © Winaa ({12}, )

oo o (7.56)
— Ao (1 = Pispr(§) <Cl—>P Ho({p}, 1) €1 p Wi ({1}, :“)> ;

115 —s15 &

where s1; = —2E7 (1 — &) ny - nj and 0y ={P,p2---,Pj-1,Pj+1,- - Pms1} for space-
like splittings. Here P;_,p are the unregularized DGLAP splitting functions. In con-

8 At higher orders, careful analytic continuation is needed to correctly reproduce the complex phases
in the amplitude when performing the crossing [63].
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7.3 Anomalous Dimension

trast to the time-like case (7.50), it has become established to indicate only the in-
coming parton 1 and the parton P entering the hard scattering. From fermion flavor
conservation, it is possible to infer the radiated collinear parton j. The extra factor
1/¢ compared to the time-like result (7.49) corrects the flux factor in the hard function
to the one relevant for the scattering of the incoming parton P since spy = £s12. The
normalized color matrices of the space-like splitting amplitudes Sp(p1, p;) are denoted
by Ci_,p. The explicit expressions for the different partonic channels can be found
in Appendix A.3 and are illustrated in Figure 7.4. This object together with its con-
jugate maps the hard function from the m-parton color space before the splitting to
the (m + 1)-parton color space after it. The average factors (7.10), contained in (...),
differ between left- and right-hand side of (7.56) if parton 1 and P are not the same.
Taking this into account, one finds after crossing that P,_,p = Ppj1 at one loop.

Similar to the time-like case (7.51), the integral over the (m — 1) directions of the
final-state partons yields a collinear singularity. For the space-like case, one should
interpret the splitting functions as singular distribution

/[dszj] L L 1401 6(m = ny) + O(e). (7.57)

ny-n;  2¢

Due to the change in the flux factor, the (m — 1) dimensional energy integral turns

into -t
/d8m+1 5 / d¢ (1 (27T> /dé’m, (7.58)

where the energy of ﬁnal—state parton j is parameterized by E; = E; (1—¢€). As evident
from (7.50), the splitting functions P,_,, and P,_,, suffer from a soft divergence if
¢ — 1. This divergence is regularized by the prefactor on the right-hand side of (7.58)
and one can extract the pole by

G-t = Lsa-g+ [#] L0, (7.59)
+

2¢ 1-¢

with plus distribution [...]; defined in (66) of [105]. In the following, we denote by

P1_p the splitting functions with removed singularity according to this prescription.

If parton 1 and P are different, there is no soft singularity and Pip=Pip.
Summing over all different splittings, i.e. emitted partons j,” and including collinear

emissions from initial-state parton 2, we find

<'Hm+1({ﬂ},f1, §2,6) @ Wi ({n}, &1, &, €>>

«

; 20—
=22 [t [crnns1 - ) (5 + i Yo~ 2Prost€) ] — ) (760

X < 1p Hn({2}, 61 61, 6o, )CIHP ®Wm+1({ﬂ},fl,§2,,u)> +(1<2)+...,

where ellipsis denote terms that are free of collinear initial-state singularities at one
loop and for given partons 1,7 one can infer the parton P by fermion flavor conser-
vation. The term proportional to d;p only contributes if parton 1 and P are both

9We keep the sum over j implicit on the right-hand side of (7.60) as it is by definition part of the
sum over multiplicities.
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Chapter 7 Factorization Theorem

Figure 7.4: Color structures Cy_,p for different collinear initial-state splittings. If the
splitting includes quarks (first three cases), the color structure is given by
the generator of the fundamental SU(N.) representation, appropriately con-
tracted with the hard function. For the three gluon splitting (last case), it
is given by the structure constant.

(anti-)quarks or both gluons, i.e. for the first and last splitting in Figure 7.4, and the
hard function in the last line depends on {n} = {n1,...,nj_1,mj41,...,Nym41}. Here,
one recognizes the % convolution defined in (7.23) over the momentum fractions of the
initial-state partons.

7.3.3 (Non-)Cancellation of Collinear Singularities

Comparing the virtual collinear singularities of the hard function in (7.40) to the real
ones in (7.55) and (7.60), we observe that the singularities associated with final-state
partons exactly cancel. This cancellations takes place before the energy integrals, con-
tained in the definition of the hard function (7.14), are carried out. For the collinear
singularities associated with initial-state partons, the cancellation is spoiled by Glauber
effects, as explained above, and therefore, they give rise to collinear anomalous dimen-
sions T'¢. Virtual and real soft singularities in (7.36) and (7.44), respectively, give rise
to a soft anomalous dimension I'* as well. Therefore, I' contains three terms

DH(&,6)=61-&)0(1 - &) TP +T7(&)6(1 — &) +6(1 — &) TS (&),  (7.61)

where we omitted all arguments except for the momentum fractions. Since soft partons
can only take away an insignificant amount of momentum, the corresponding part of
the anomalous dimension I'¥ must come with §(1 — &) d(1 — &).

Introducing a hard reference scale puj, one can separate soft+collinear and purely
collinear terms

o M Hh
2, —lnE+ln2Ei
for the initial-state singularities in (7.40) and (7.60). For the default choice p, ~ V/3,
the second logarithm is only there in the laboratory frame — as 2E; = v/§ in the
partonic center-of-mass frame — and depends on the momentum fractions &;.1° Due
to their trivial dependence on the momentum fractions, the terms with the large
logarithm In l—% are included in I'®. This motivates the split [4]

In

(7.62)

2
FS = PYcusp<Oés) (FC In ,U/_Q + VG> + % T + O(Oéz) , (763)
1 A7

10Tn [73] the hard function is defined in the partonic center-of-mass frame.
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7.3 Anomalous Dimension

i7)
JoEol
)

Figure 7.5: Action of the real-emission operator R,, and the virtual piece V,,, on a hard
function H,,.

—

where I'® contains the (real and virtual) soft-+collinear terms and T’ the purely soft
ones. Note that the superscript ¢ stands for cusp and is not to be confused with the
superscript ¢ in (7.61) meaning collinear. The Glauber phases (7.37) are of virtual
origin only and included in V9.

To obtain explicit expressions, one can use that the one loop anomalous dimension
is given by (—2) times the 1/¢ pole in the Z-factor of the hard function. In multiplicity
space, we find for the virtual and real purely collinear parts

(5@) = (’70 Cz Yo 2E ) 5(1 - gz) 1 ) (7 64)

RE(6) = 2(2Pap(€) - Corodin n 0001 = 6) )€y €L s = i),

where, similar to (7.22), the one-loop coefficient = is factored off. The real-emission
operator R{ has different partonic channels i — P + k. For example, if parton i is
a quark and the operator acts on a hard function with multiplicity m and parton P
being a quark (gluon), then it turns them into a function of multiplicity (m + 1) with
initial-state quark and additional final-state gluon (quark). The logarithms in the real
and virtual piece evaluate (modulo a sign) to the rapidity difference between the lab
and the partonic center-of-mass frame for the deafult choice of uy. After convolution
with the low-energy matrix element, this is an order one logarithm.

The purely soft terms I’ know about the multiplicity m of the hard function multi-
plying them and are, at one loop, given by

A*Qu, —
_22 TzL o+ TR TJ',R)/?]CWU,
(i5)

—k
=4 Z Ty oTjr W, Ohara(ng) -

(25)

(7.65)

Instead of performing the angular integral over ij in the virtual term using (7.33),
it is convenient to keep it to show the cancellation of real and virtual contributions
below. The real term describes the emission of a soft gluon in direction n; and in the
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2 2 \9

Figure 7.6: Action of the cusp operator R® and the virtual piece V& on a hard function
H,,. The operator R¢ adds an additional final-state leg (dashed blue line)
along the direction of the incoming partons.

product H,, R,, increases the multiplicity by one, see Figure 7.5. The corresponding
angular integral is contained in the ® with the low-energy matrix element W, ;.
The Glauber term is proportional to the unit matrix in multiplicity space and reads

VG = —0m (Tl,L'TQ,L - leR.TZR) (766)

In a slight abuse of notation, we denote both the matrix in multiplicity space and its
entries by V&. The soft+collinear terms, proportional to the large logarithm, read

Ve=> Ci1, R=-) TpoTrd(n—n). (7.67)

i=1,2 i=1,2

For the second term, we used C; d;p Ci.pL CLP’R =T, o T, r, see Appendix A.3. In
all real emission terms, nj denotes the direction of the emitted parton. In Figure 7.6
we illustrate the action of V& and R® on a hard function.

Interestingly, the collinear RG evolution is not driven by the standard DGLAP ker-
nels as real and virtual part in (7.64) have different color structure. For the same
reason the two parts of I'“ do not cancel and, therefore, the soft anomalous dimen-
sion (7.63) contains an extra logarithm leading to the SLLs. Turning the RG evolution
of the hard functions into the one of the low-energy matrix element

where H and WY are vectors in multiplicity space, one finds a standard Mellin convo-
lution!!

(f *9)(€) = / a1 dE! 5(6, — €167 F(€) gl€l) (7.69)

At the soft scale p ~ g the low-energy matrix element takes the form (7.20). Since
the color structures C;_,p are normalized, the term with the extra logarithm In 2’%

"There exists an important relation between Mellin and * convolution, (f * g) *x h = f * (g * h).
Therefore, it is possible to Mellin convolute several anomalous dimensions in (7.25) first and then
combine them with the hard function.
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7.3 Anomalous Dimension

cancels between real and virtual part of I'¢ in this case. The remaining terms yield
the standard DGLAP evolution for the PDFs [105-107]

/d§1 fi(&, ) ((H * I‘lc) (&1, 15) ® 1)
(7.70)

= /d& % (Pisp x f1) (61, 1) <7'L(§17:u$) ® 1> ;

where P, _, p are now the regularized MS splitting kernels, e.g. given in (68-69) of [105].
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Chapter 8

Resummation of Super-Leading
Logarithms

The soft+collinear part I'® of the anomalous dimension comes together with an extra
logarithm in the scale ratio p/u, with hard scale of order the partonic center-of-mass
energy i ~ V5. Evaluating the factorization theorem (7.1) at the scale us ~ Qg and
evolving the hard function down to this scale, the logarithm Lg := In(uy, /1) becomes
large. After the scale integration, it is turned into a double-logarithmic correction
as L? and needs to be resummed to all orders in perturbation theory.

To extract the logarithmically-enhanced terms, we compute the RG evolution of
the hard function (7.25). Starting with the lowest multiplicity hard function for a
given process, at Born level containing only a single entry o .y = (H241,0,0,...),
we multiply with powers of I'"! and take the trace with the leading order low-energy
matrix element (7.20). The evaluation of these products simplifies due to the simple
structure of the anomalous dimension at one loop. Real-emission terms (R,,, R°
and RY) increase the multiplicity by one, while virtual contributions (V,,, V¢, V¢
and V%) leave it unchanged. To streamline the notation, all multiplicity indices are
suppressed in the following and we work instead with matrices. Therefore, we combine
real and virtual pieces of the soft anomalous dimension into [1]

=" [Ci1-T 0T r6(n; —ni)],
i=1,2
V¢ =2ir (T11-Tor — Ti,p Tor) (8.1)

_ d*Q, — =k
=2 Z (Tip- Ty + Tyr-Tjr) / 47Tk Wi—4) TipoTir Wi Onaa(nr)
)

(i) (i

and for the collinear one as

47

1

TO(g) = = {2 (Qﬁ'—m(&) — Cioln 2‘;} 6(1—&) 5@‘P) d(ny, —n;)C,pClp
(8.2)

~2 <v6 ~ Cioln 2";) 6(1 - &) 54 .

These matrices in multiplicity space multiply the hard function from the right and
their order matters. They also contain color matrices acting on the amplitude or its
conjugate in each step, i.e. multiply the color indices of the hard function on the left
or right. The real emissions generated by the real parts of the anomalous dimension
are labeled with an index k,, where n = 0 is the last (rightmost) emission, n = 1 the
second to last, and so on.

The computation is greatly simplified for three reasons. First, color coherence im-
plies that the sum of soft emissions from two collinear partons yields the same contri-
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Chapter 8 Resummation of Super-Leading Logarithms

bution as a single soft emission from the parent parton, i.e.
[re. 1] =0, [r,T] =0. (8.3)

As for soft emissions from two collinear partons i, j, the anomalous dimension T' de-
pends only on the sum of their colors

—k
LpoTyrW, +T; 0Ty R W = (TiL +TjL) o Tyr qu ; (8.4)

with W W] o> one can apply (7.47) to commute with I'* or 'Y, respectively. Second,
due to Colhnear safety, singularities from real emissions cancel against the associated
virtual singularities for a trivial low-energy matrix element. Third, complex Glauber
phases also cancel in this case between amplitude and conjugate amplitude. In our
formalism, these two properties are encoded in the cyclicity of the trace which implies

(HT°®1) =0, (HVE®1)=0. (8.5)

The corresponding relation for T'¢ is (7.70) and ensures the standard PDF evolution.
These relations hold for an arbitrary hard function.

The leading SLLs are obtained by inserting a maximal number of T'¢ in the series
expansion (7.25) combined with the leading order low-energy matrix element (7.20)
under the trace. The properties (8.3) and (8.5) imply that the two rightmost factors of
T' need to be proportional to VET to get a non-zero contribution. The insertion of
this Glauber phase breaks color coherence [63-66,80]. As tree-level QCD amplitudes
do mot contain any phase, it is possible to chose a basis such that the Born-level
hard functions Ho .,y are real [64]. To get a contribution to the cross section, a
second Glauber phase is thus required.! Consequently, the SLLs are generated by the
evolution operator [3,4]

Hh o 2
Ustr({n}, tin; f1s) / M/ Mz/ 5 U (ks 1) Yeusp (s (p1)) V€

(8.6)
A
X UC(Mlv ,UJ2> ’Ycusp (as(ﬂ2)) VG i:?)) r )
where we have defined the generalized Sudakov operator
i d 2
U1 15) = exp [rc [ (i) | (8.7
wi M 'uh

Here no path-ordering is required, since the matrix structure in the exponent is scale-
independent. From (8.6) it is evident that the first double-logarithmic corrections
arise at four-loop order in perturbation theory. As the SLLs are generated by the
soft anomalous dimension only, the convolutions over momentum fractions are trivial.
Their contribution to the 2 — M jet cross section is

@) = Y [deds fl6m) fla ) (6,600 (g

partonic
channels

'In general, the hard function can develop non-trivial phases. In these cases, a second Glauber
phase is not required. We discuss this in more detail in Chapter 9.
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8.1 All-Order Structure

with partonic cross section

o5 (€1, 62, Qo) == (Hamsnr({n}, 5, &1, &2, pn) Usir({n}, pn, p1s) @ 1) (8.9)

where p; ~ V§ and s ~ Qo. The partonic cross section depends on the specific
scattering channel 1+ 2 — 3...(M + 2), over which one has to sum in (8.8). The
hard functions are normalized such that their trace is equal to the contribution of the
Born cross section, i.e.

(Honr ® 1) = 6901 - (8.10)

The differential partonic cross section is obtained when not performing all angular
integrals of ®.

8.1 AIll-Order Structure

It is instructive to study the all-order structure of the SLLs in detail. To do so, we
expand the generalized Sudakov operators in (8.6) and find

Mhd lld l¢n+2d "
Usti (1, 12s) CZ/ “1/ R / Pt pS () TS (1) - .. T (nss)

s Hn+3
(8.11)
where the C symbol indicates that not all terms on the right-hand side contribute to
the SLLs and n denotes the number of I'“ insertions. From the above considerations, it
is clear that here the last two factors are VE T and all others — except for one Glauber
operator — are the cusp part I'¢ of the anomalous dimension. Factoring off the scale
integrals, we conclude that the leading SLLs arise from the color traces [73]

Crp = (Hosnr (T) VE ()" VT ® 1), (8.12)

where 0 < r < n. The dependence of the color traces on the partonic channels is kept
implicit in our notation. The corresponding iterated scale integrals are

s dﬂl " dﬂz 2 dpig g3 1
rn ,uha,us — ce ﬁYcusp(Oés(,ul)) ln— C..

s Hn+3 Nh
p e
- Yeusp (s (1)) 105 Yeusp (s (fr41) ) Yeusp (s (ftrp2)) In =52 ..
Hp, Hh
/’L3L+1 O‘s(,un—i-?»)
-+ Ycusp (Oés(/ln+1)) In o Yeusp (as (Hn+2)) 4— : (813)
Hp, ™

The integrals over py to p, and g0 to p,41 of this expression result from the r and
(n — r) insertions of I'® in (8.12), respectively. The contribution of the SLLs to the
partonic cross section can hence be expressed as

6;&%\4(@0) = Z Z Irn(ﬂha ,Us) Crn . (814)

n=0 r=0

In the following, we evaluate in detail first the color traces for arbitrary partonic
scattering processes and second the process-independent iterated scale integrals.
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Chapter 8 Resummation of Super-Leading Logarithms

8.1.1 Color Traces

Defining the abbreviation
H = Hop (T) VE(T)" VY, (8.15)

one finds for the insertion of the rightmost anomalous dimension in (8.12)
d QkO k
<HF®1> =4 Z /HT T; ®1> Wi Oveto(niy) - (8.16)

The sum over i # j includes all up to (M + n) partons contained in #. The p < n
collinear gluons from the n insertions of I'* are labeled by indices ki, . .., k, (from right
to left) below. The angular integrals for the virtual and real soft wide-angle emissions
ko, contained in Vs, m+p and the ® symbol, respectively, combine as

o a— d*Q
/ 4;0 Wi [1 = Onava(ng)] = / 47r’“° WZ;O Ovvoto (Mo ) (8.17)

where 6., restricts the emission to lie inside the veto region, i.e. outside the jets.
In this region, we can replace the subtracted dipole (7.35) by the unsubtracted one.
Exploiting the cyclicity of the trace, one can pull out V¢ from (8.15) and finds

(HVET@1) =16ir Y Jif " (HTF T T © 1), (8.18)

§>2

with angular integral

d*Q,
Jj = / o (W = W32 Oreto(ny ) - (8.19)
Clearly, the soft wide-angle emission must connect an initial-state parton in the am-
plitude with a final-state parton in the conjugate amplitude, or vice versa. All angular
information of this emission is contained in the integral J;. If the soft gluon is attached
to a collinear one from I', it needs to be collinear to an initial-state parton leading to

d*Q
Jig=Jy=—J1 = / e ko W1 Oveto (ko) - (8.20)

Hence, there are (M + 1) independent kinematic structures in total. For the following
discussion, it is convenient to label the appearing color structures. We define

._ - pabc qna b e
Xy=) Jif" T T (8.21)
7>2

Note that both the angular integral J; for j > 2 and i f®¢T¢ Ty are anti-symmetric
under the exchange of partons 1 <+ 2 and, therefore, X is invariant. Below, we also
find color structures containing the symmetric integral Ji». This feature is exploited
in Section 9.1 to construct a basis of color structures.
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8.1 All-Order Structure

Pulling out the first factor I'® from (8.15), describing a collinear gluon k; emitted
from one of the initial-state partons, one needs to calculate

HI*X 21) = {Z’Jj if " (CHTT T, Ty o1 -THT TY T, Ty ©1)
=12 =5>2

—_ Jl fabCdee<11i€ H 1—;d Tla T2b ® 1> 7 (822)

where the prime on the sum in the first term indicates that 7 # k;. The term with
7 = kq yields the result in the second line, the angular integral over the direction of the
collinear gluon is already performed using the 6(ng, —n;) in (8.1). Using the cyclicity
of the trace to proceed, we commute the generators in the second term such that one
can use T; - T; = C; 1 to cancel the first term. The commutator terms can then be
simplified using

Ne e (8.23)
2 (2

Applying a similar strategy to the third term and translating the product of f-symbols
to

Z-fabc 1*;(1 1—;b —

N, .
tI‘(Fan) — Nc 6ab 7 tl"(FanFc) — 7 ZfaLbc ’ (824)
where (F'?)% = —i f®¢ is a generator of the adjoint representation, one can show that it

vanishes. Physically, this means that the soft gluon kg does not attach to the collinear
gluon k. Putting things together, we find

(HT°X;®1) =N, (H X, ®1) (8.25)

where it is important to keep in mind that the implicit sum over 7 > 2 on RHS does
not contain gluon k; anymore. Repeating the same arguments for the collinear gluons
ko, ..., k,_, leads to

(H(I)""VET®1) =16in N "(HX; ®1). (8.26)
The second Glauber operator in (8.15) yields
(HVEX,01) =2in (H [T, To, X:] ®1) = Noin (H X, ® 1), (8.27)
where the new color structure is defined as
1
Xy =5 ) S f (T T - T T T3 ) T (8.28)
€ j>2

The factor 1/N, is chosen such that (Hs s Xo) is at most O(1) in the large- N, limit
for all hard functions considered in Section 8.4. To arrive at this result, one can use

a 1 aoc C 1 a
TOT! = 5 if ™ T + S {1 TV (8.29)

to symmetrize products of generators. The full color trace including the second
Glauber operator then reads

(HVE@)""VT@l)=-16r"N"""{H X, ®1), (8.30)
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Chapter 8 Resummation of Super-Leading Logarithms

Figure 8.1: Example diagram for partonic 2 — 2 scattering giving rise to a color struc-
ture X; with ¢ = 2,...,5. In this case, the soft wide-angle emission (red)
attaches to an initial-state leg and one final-state leg of the Born-level hard
function. Glauber gluons (green) are exchanged between initial-state partons
and collinear gluons (blue) are emitted from them. Darker colors indicate
later emissions.

where H = Ho_,p (I'°)" contains only cusp anomalous dimensions.
Inserting the definition of I'® once again, we need to calculate

HI X, 01)=— > [Z'Jj ¢ H T [T {T, T - T{T3, T3} T/ ] T/ @ 1)

1=1,2 ~5>2
— L Y H T (T T, T - T TR, Ts ) T @ 1) |, (8:31)

with N, (ebed = fabe fede and the prime indicates that j # kn_,.1. The first line
reproduces color structure X, and three new structures with J;, they read

1
Xom LY g (BT T - THTL T T

¢ j>2

1
Xii= oz 0 (BT T - T Ty, T T (8.32)

¢ j>2

1
Xoim 4 S GAT T 20T 7).

¢ j>2

where the d-symbols are totally symmetric and traceless structure constants of SU(N..),
see (8.56). In Figure 8.1 an example diagram yielding one of these color structures
is shown. This time the second line does not vanish and yields color structure with
angular integral Jy5. We find

1
X6'

= g i F T T (T T

1
X7 = g S d"d {T), TP H{T;, T
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8.1 All-Order Structure

Figure 8.2: Example diagram for partonic 2 — 2 scattering giving rise to a color struc-
ture X; with ¢ = 6,...,11. The colors have the same meaning as in Figure 8.1
but here the soft emission attaches to an initial-state leg and one of the early
collinear emissions. Attachments to the later emissions (dark blue) do not
contribute, as the second line in (8.22) vanishes.

1
X8 — m J12 dadedbce |:T2CL (leTlchd)+ —|— Tla (T21)T20T2d)+i| 9
1
Xg mJIQ {Tlaale}{TQa’Té)} ’
1
X10 = FG J12 Tl 'T2 5
X (8.33)

In (8.32) and (8.33) the factors 1/N, are again chosen such that (Hs s X;) are at
most O(1) in the large-N, expansion. Color structure Xy contains the symmetrized
product of three generators, defined by

a a . 1 a a
(T1...Tk)+.:HZTU<1>...T0<k), (8.34)
oESK
where the sum is over all permutations of {1,2,...,k}. A sample diagram giving

rise to such a color structure is depicted in Figure 8.2. The action of I' on the new
structures (8.32) containing a sum over final-state partons can be calculated similar
to (8.31) with

N, d*dbe  for X3,

NZ ¢abed — § gabged for X, , (8.35)

yadgbe for X5 .
For new structures (8.33) without final-state generator, i.e. i = 6,...,11, the action is
(HT°X; ®1) = —(HT{ [ X, T @ 1) — (HTy [ X;, Ty @ 1), (8.36)

because in this case T, o T, p = T, - T; . Remarkably, the set {Xo,..., X1} is
closed under repeated application of I'“. It is thus convenient to express its action as
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Chapter 8 Resummation of Super-Leading Logarithms

a matrix II'“ in the space of color structures defined by

HTX;®1) =) (HX;®1) N, (I°),, (8.37)

~

where we pulled out the factor N, for convenience. Note that also here the implicit
sum over j > 2 is different between left- and right-hand side. We find [4]

1 0 0 0 0 0 00000
0 g 0 0 0 00000
0 L 1 0 0 0 00000
0 1 o 3 0 0 00000
0 1 0 0 : 0 00000
= |0 e 0 -1 0 2 00200[, (838
0 i 0 0 0 1 10000
0 N 0 0 0 0 01000
0 —1 0o -1 0 00200
0 Neft MO g Ne—GioC GG g 0 0 0 1 0
0 1= 0 0 000000

where also X is included. The i-th column of this matrix (times N.) describes the
action of the cusp anomalous dimension on color structure Xj.

To arrive at these results, one uses (8.29) to symmetrize products of generators.
Contractions of several f- and d-symbols can then be simplified using (8.24) and the
relations [108]

N2

tr(DF) =0, (D D) = N

2 _
tr(D*D) = % 5, tr(DF'F°) = N7 e,

[

(8.39)

where (D%)% = d%. Similar relations hold for traces of four and more f- and d-
symbols. In our case, we need [108§]

tl"(Fa{Fb7 Fc}Fd) — 25ad5bc + (5ab5cd + 5ac5bd) + % dadedbce7

[ N (8.40)
(5ab50d . 6ac(5bd) 4 < fadefbce + IC dadedbce .

tr(F*F*D°D?) = ny

N | —

For example, the first relation maps fe€f¢ in (8.31) to the three structures found
in (8.35). Color structure Xy is obtained from anti-commutators by means of

ade jbce b e nd 1 ade jbce b e d NCZ_4 a

which holds for generators in an arbitrary representation.
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8.1 All-Order Structure

The color trace (8.12) associated with the SLLs can be written as
11
Crn = =167 NIV " (Honr X @ 1), (8.42)
=2

where the coefficients cgr) are determined by recursive relations. Here, the ® symbol

only contains the angular integrals over the M final-state partons of the Born process.
As this M has been kept arbitrary in the above derivation, our formalism allows for
the study of processes with a single (M = 1) or even no (M = 0) final-state jet [73],
see Section 8.4. So far, the literature on SLLs only discusses 2 — 2 hard-scattering
processes [66-08]. As argued below (7.37), one needs (at least) two color-charged
initial-state partons for non-trivial Glauber effects to arise. The same arguments can
be applied to the final state where missing color-charged partons for M = 0,1 are
provided by collinear emissions from I'® (after the second insertion of the Glauber
phase V). For M = 0 the color structures (8.28) and (8.32) do not contribute and
two such emissions are necessary, thus the SLLs start first at five-loop order. For
M = 1 they start at four-loop order, as for M > 2, but the n = 0 terms does not
contribute.
From (8.30), one can infer the boundary condition for the coefficients in (8.42)

A =65 (8.43)

The recursive relations for these coefficients can be read off from the i-th row of (8.38),
we find for the structures with final-state generator

r+1 3 r 1 r r+1 1 r r
g2y Lo g 1o, o
5 ¢ . (8.44)
cir-l—l) _ 0(27") +2 cglr) : cg"-l—l) _ 0(27") +Z Cér) 7
2 2
which can be solved to
) = - (5 +05) o N Ne o N
g Al 3 2(N2 —4) 2 " 4(N.+2) * 4(N,—2) v (8.45)
= %(v’" — v}) = - N op e gy N |
4 g V3 A b N2—11 7 2(N.+1) % 2(N.—1) *

The coefficients of the structures without final-state generator fulfill

e N2 I T T T
CéH):——ccé)—c§)+20é)+20g),

2
A N2 T 1 T T
c(7+1):—zccg)+§cé)+c§),

N? ,
(v N o o

8 2 2 Cg
1 2
r+1 r r r r
Cg() )_——Cg)——ci)—{-—NZCé)—{—ch),
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Chapter 8 Resummation of Super-Leading Logarithms

L) _ NZ+8 4Ci+Co)] N N.—Cy=Cy N Ci+Cy oy

0 = 6 N Ca N Cq N C5 " +Cig s
r+1 401 02 r 201 02 r 801 02 r
Cgl—i_ ) :—WCé)+ N2 Cé)+TCé) (846)

After inserting the solution (8.45), it is possible to solve these relations

r ch T r r T
& = 2(v3+v4—v5—v6),
r ‘]\[c2 NC r r NC r r
A = | {NG+2(v3—v5)+Nc_2(v4—716)},
(r) Nél T Nc2 NC 7"+ NC r
C = Vy — —— (Y v
8 T N2—-4?% 2 |N,+27% N, -2
r NC r r r r

2N. , N,+2 , N,—2
R A R
N2[ . N,+4 ., N.—4 ,

Vo — Vq — v
3 |2 oN, 3 N, 4|
r 20102 2Nc2 r r NC r r NC r r
C(ll): NCZ |:N02—1(U0_v1)+Nc+1 (03—05)+m(v4—v6) .

A= (Cy + Cy) [

Here and in (8.45), the solutions for the coefficients are expressed in terms of the
eigenvalues of '

1 3N, + 2 2(N, £ 1)
vg =0, V=g vp=1, v34= A .

(8.48)

where v3 and vs correspond to the plus signs. Eigenvalue vy contributes as 0" = d,..

Using the fact that the eigenvalues vz and vy, as well as vs and vg, coincide up
to subleading terms in the large-N,. limit, one finds that the coefficients cz(-r) for i =
6,7,8,10 contain “super-leading” terms in N.. In order for these terms to cancel out
in all predictions for physical quantities, the color operators Xg and X7, as well as
Xg and X, must satisfy the relations [4]

1 1
X+ 3 X; = O(1/N?), X5 — 3 X0 = O(1/N?). (8.49)

They can easily be proven for QCD, for example, by translating the structures X; to
the basis structures for quark-, quark-gluon- and gluon-initiated processes, developed
in Section 9.1. As the color trace (8.42) is combined with the iterated scale inte-
gral (8.13), containing a factor a”™3 and the super-leading terms in the coefficients
cancel, the SLL contribute as a? (N, a,)" ™ = O(1/N?) and, therefore, are subleading
in the large- N, expansion.
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8.1 All-Order Structure

Simplifications for QCD with Quarks and Gluons

In QCD only two types of fields are present, (anti-)quarks transforming in the funda-
mental and gluons transforming in the adjoint representation of SU(N,). Both their
generators fulfill the useful relation

dadedbce {rIvZ_b’ CT;C}CT;d — Rz 1—;(1 ’ (850)
where (N2 4)2 N2 4
Rq - Rq - ;TCZ 5 Rg - C2 . (851)
Applying this to (8.41), one finds
Ri+Ry N?-4
X5 = { N2 — 62 } X . (8.52)

Taking the large- N, limit, one recovers the second consistency relation in (8.49). Ex-
ploiting this connection, one can remove the most complicated color structure Xg from
our final result (8.42) by replacing

r r T Rl + RQ NCQ —4
) = )+ ) { N e ] (8.53)
For gluons, one finds by applying (8.39) twice
N2 —4
dadedbce {Eb) EC}Ed — Nc dade Df Ed — 02 F-;a’ (854)

which proves (8.50). Here and in the following, we denote generators by F; if parton
i is a gluon and define

[11] a;b; - 6aaibi ’ [Ea] a;b; — —ifaaibi ’ [D;l} a;b; — daaibi ‘ (855)

In contrast, generators for (anti)-quarks are denoted by t;, see Appendix A.3 for their
precise definition. Besides the standard commutation relation, they fulfill®

1
{t, 0} = — 0" 1; + o, d™° 85, (8.56)
Ne
where 0; = —1 (41) for an initial-state (anti-)quark. Relation (8.50) follows immedi-
ately
N2 —4 (N2 —4)?
ade jbce f4b gc\4d _ "¢  Jade fqe 4d) _ c a 8.57
drted e {], t } ¢ N o d* {5, ¢ TN t (8.57)

In Chapter 9, we apply (8.56) further to simply the color structures X; for quark-
initiated processes.

2Relation (8.56) can be understood as definition of the d-symbols.
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Chapter 8 Resummation of Super-Leading Logarithms

8.1.2 Iterated Scale Integrals

The contribution of the SLLs to the partonic cross section consists of two parts,
the color trace (8.12), simplified in the previous section, and the iterated scale in-
tegrals (8.13). When working in a strict double-logarithmic approximation one can
ignore the running of the strong coupling, as it is a single-logarithmic effect. The
iterated scale integral evaluates in this case to [73]

g\ 3 (—4)"n!  (2r)!
Irn s Ms = <_> 2 L2n+3, 8.58
(inss)| o =) 0 sy v B (8:58)
where «; = ag(r) and [ is a fixed reference scale between ps and py. A priori it

is not clear which value one has to chose for ji leading to a scale uncertainty when
working with a fixed coupling. Here, we used the one-loop form of the cusp anomalous
dimension (7.32) but including higher terms is straightforward

s o (=4)"n!  (2r)! 5.5
= — s L . 8.59
fixed 47 CHSP(a ) (2n + 3)! 47(r!)? ( )

Irn(ﬂha ,us)

One can show these relations by changing variables in (8.13) to L; = In(up/p;) > 0
and inverting the order of integration

a
y s = S qmt2 —2)"
(Mhnu’ ) fixed 4 chsp(a )( )
Ls Ls Lo T n+1
x/ dLn+3.../ dLQ/ dL, (HL)( 11 Li) (8.60)
0 0 0 i=1 i=r+2
_ % n+2( ) (_Q)n 1 (QT - 1)” 2n+3
4o PR (20 + 3)(2n 4+ 2) (2r)!! 2n 4+ )N 7
where n!! = n(n — 2)... denotes the double factorial. Expressing them through

ordinary factorials, one obtains the above results.

When including a running coupling as(u), it is also possible to obtain explicit ex-
pressions for [, for given values of n and r. In this case, it is convenient to again
change variables in (8.13) to x; = a(;)/as(pn) > 1. For two-loop running, one can
express the explicit scale logarithm as

2 as(un) g —4 1 B
o Q ™ ap, P1 2
= — = l—-———"—=Inz; + O« }, 8.61
/as(ui) 5(06) Bo au, { ( h> ( )

where «y, = a(up) and the expansion of the QCD S-function is

Blas) = —2a, iﬁn (%) , (8.62)

with coefficients given in Appendix A.4. Using this result, we find
1 s dJ]l s dl‘g s de’n+3
Irn Hhs Us) = 7n+2 <_) |: 1 / / .. / o
( " ) 0 26, Bo o, 1 Tpiz Tn+3
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8.1 All-Order Structure

: 1 4! Bl ﬁlxz lnxl
XH(“@){”EK%%) wo—l—xl]”(“i)}

x {1 42 (ﬂ - @) Tyt + (9@2)}

4t \v  Bo
s 1 ap|(m B pr @i Inx;
< 1L (-2 ) (- 7)o 35T s o]
x[1+%(ﬂ_ﬁl)x 2—1—(9(@)}[1 ahﬁlx 1+(9(a)}
4t \v  Bo " " 47 By o h
o2 L)n-l-?) |: . ‘| n
Y (2&) oo P () - (8.63)

At one loop (71 = B1 = 0), the functions h,,, are simple and only contain logarithms
and polynomials. We find for the first three?

3 4 2

| | | 1 3
haoe) = 5, o) = = (24 e 342,

24 2
(8.64)
In*z In*z I’z 1

8.1.3 Partonic Cross Section

By combing the simplified color trace (8.42) and the iterated scale integrals with
fixed (8.58) or running coupling (8.63), the contribution of the SLLs to the partonic
cross section is fully determined. For a running coupling, we were not able to perform
the iterated scale integrals in a closed form for arbitrary n and r and thus cannot per-
form the double sum in (8.14). However an alternative strategy, discussed in the next
section, allows to express the resummed SLLs in RG-improved perturbation theory as
a two-fold scale integral.

In the fixed coupling approximation, we find at the level of the partonic cross sec-
tion [1]

o0

. dag(i) L 4™ n)
SLL o s o n+1
B P nzzo( O Gy 3)
(8.65)
X24r Z Y (oo () Xi 1)
with parameters
N, N, _
wi= =20 () L2, wy = =2 o (@) 7 (8.66)

47 47

Here, the variable Ly = In(uy/us) depends on the ratio of the hard and soft matching
scales and reduces to the variable L used in the introduction for the default scale

3In [1] we defined =, = as(un)/as(ps) < 1 and, therefore, one needs to replace x — 1/z in (8.64)
to obtain our previous results.
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Chapter 8 Resummation of Super-Leading Logarithms

choices pp = @ and ps = Q. From this result its is obvious that the SLLs start
at four-loop order, as the first non-vanishing term with I'“ also requires the insertion
of two Glauber operators and one soft anomalous dimension [73]. Furthermore, the
series over n is alternating and, as we show in Section 8.4, resummation is crucial since
strong cancellations take place.

The coefficients cl(»r) have a power-like dependence on r and can thus be decomposed

6
=0

where the matrix ¢;; can be read off from (8.45) and (8.47). One can then perform
the nested double sum, thereby resumming the SLLs to all-orders. For the special
case v = 0, one only needs to perform a single infinite sum and finds a generalized
hypergeometric function [73]

. 3147 p)
=3 2n+’; w)" = F(1,1:2, 3 —w) . (8.68)

n:O

Here and below, we include a factor 3! in the definition of the ¥ functions for conve-
nience. For all other eigenvalues v > 0, we define

n

34rnl (2r)! N
ZZ 20 1 3) 17 (1)) v (—w)". (8.69)

n=0 r=0

Separating the sums by replacing n — n + 7,

Z Z n+r )n(_)r (_w)n <_/Uw)T : (870)

n=0 r= n+r( )n+r n' T!

where (a),, = I'(a + n)/I'(a) are Pochhammer symbols, one can show that these are
Kampé de Fériet functions

-1 1.
] —vw). (8.71)

1
E(vw) = 1+1F2+0( 5.
2,5

)

The arguments in the upper line indicate the Pochhammer symbols in the numerator,
and the lower line corresponds to the ones in the denominator. These ¥ functions are
discussed in more detail in Section 8.3. The contribution of the resummed SLLs to
the partonic cross section is given by

11 6

6§£}LM(QO) = —M W W, Z Z X(vj;w) ¢y <7‘L2HM(,U;L) X; ® 1> . (8.72)

fixed 37TNC - -
1=2 j5=0
Remarkably, it can be expressed through traces of only ten color structures X; with

the process dependent hard function Hs_, ), and seven ¥ functions encoding the de-
pendence on the leading double logarithms.
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8.2 Resummation in RG-Improved Perturbation Theory

Including the running of the strong coupling, i.e. working in RG-improved perturba-
tions theory, is an essential step in producing reliable predictions. However, it is not
clear how to proceed from our all-order result for the color trace in the previous sec-
tion, as the counterpart for the iterated scale integrals I,.,, is not available in this case.
Therefore, starting point for the resummation of the SLLs in RG-improved perturba-
tion theory is (8.8) where all super-leading corrections are encoded in the evolution
operator (8.6).

We now evaluate this operator under the trace with a trivial low-energy matrix
element (7.20). From (8.18), one can directly conclude

(Hoosn (pn) Usie(pns pis) © 1)

Bh ] H1 d,u K2 Qg
= 16@71'/ Iul/ 2/ s Yecusp O‘s(,ul)) /VCusp(QS(MQ)) i::?)) (873)

X <H2—>M(Mh) U (pn, 1) VEU(pa, p12) X1 ® 1> .

The generalized Sudakov operator on the right-hand side evaluates to a scalar function,
since X is eigenvector of I'® with eigenvalue N, see (8.25). Exploiting further that
the Glauber operator maps color structure X; according to (8.27), we find

Lh d/vb 1 dﬂ M2 d,u Ag(
6(im)® N, / 1 / 2 / > Yeusp (s (1)) Yeusp (s (12)) AE !
i 7r (8.74)

X (Mot (pn) U (ks i) Xo @ 1> US(1; pua, o)

where the scalar Sudakov function is
2

. i d,u 1L
U (UE i ,Uj) = exp|v N, — ’YCUSp(O‘SOL)) In=1. (8'75)
wi H 'uh
In general, v is equal to one of the eigenvalues of I'“ and this function satisfies 0 <
U¢(v; pi, i) < 1, where the value 1 is obtained only for p; = p; or v = 0. Products of
these function can be simplified using the identities

U(v; iy p13) US (05 gy pire) = U (05 iy i) U(0; i, pr) = 1. (8.76)

The remaining generalized Sudakov operator can be evaluated using that the set
{X3,..., X1} is closed under repeated application of I'°. By (8.37) it translates
to a matrix exponential

2

¢ e [ dp 1
U (Mia N’j) ‘= €Xp NCIF — 7cusp(as< )) In—|. (877)
wi H 'uh
Note that only the second column of this matrix exponential contributes. Since II' is
diagonalizable, the scale dependence of U(uy, 1) is encoded in linear combinations
of the scalar functions (8.75) with eigenvalues given in (8.48). They can be combined
with the factor U¢(1; u1, p2) in (8.74) using the shorthand notation

Uiy - Vigs s 1y -+ 5 1) = U035 oy 1) U (Vi s pr2) -+ U035 -, ) -
(8.78)
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Finally, we find for the resummed partonic cross section

11
63530(Qo) = D (Homsnr () Xi ® 1) 7 (1w, o) (8.79)
i=2

with pp, ~ Vs and s ~ Qo. The coeflicient vector of the color structures is [4]

Hh d M1 d H2 d Qg
SLL(Mh“LLS) = —477' N / at! / i / 1 ,Ycusp as{ﬂl)) ’YCusp(aS(M?)) S:LS)

%[UC<U3, ].) + UC(U4, 1)]
sy | U1 1) = 32 U (s, 1) — 352 U (0, 1)

Ne [T (vg, 1) — UC(vy, 1)]

NS 1[(]0( 1) — S5 Uc(us, 1) — S5 Ue(ug, )]

N[00, 1) + US(01, 1) = U¥(v5, 1) — U(vg, 1)

y ﬁ[ =2 (U, 1) — Ue(v, 1)) + D522 (U (0, 1) — Uc(vﬁ,1))]

e UL 1) — 2 U, 1) — 32Uy, 1))
Ne [U¢(w3,1) — U(va, 1) — US(v5, 1) + U(w5, 1)]

G [y}, 1) - D U 1) P o, 1)

—2EUP(1,1) = B5E U (us, 1) — S5 U (v, 1)

16 [Ue(0,1) - U%(3, 1) + S (U(vs, 1) — U°(v5, 1)
35 (U0, 1) = U (v, 1))

(8.80)
where for brevity we have dropped the three scale arguments of U°(v;, 1; pip, i1, pi2)-
This vector describes the full scale dependence of the leading double-logarithmic cor-
rections, independent of the partonic scattering process under consideration. The
process dependence in (8.79) is encoded in the traces of the hard functions with the
color structures.

In leading order RG-improved perturbation theory, one uses the one-loop approxi-
mation for the cusp anomalous dimension in the Glauber terms and rewrites the scale
integrals 1, po, 13 in terms of coupling integrals with the one-loop S-function. The
first line in (8.80) becomes

27T Ts dx 2 dx
S ) = — 20, / o L. (.81)
1 1
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where we already performed the x3-integral and inverted the order of integrations. The
remaining two-fold integral can be performed numerically without much effort. The
ellipsis denote the 11-component vector containing the scalar evolution functions. For
these functions, as evident from (8.61), one has to keep the two-loop approximations
for the cusp anomalous dimension and the g-function. Expressed through the variables
x;, one finds

YouN, [4m (1 1 xj

Uc Sl ) = — | — = — —In

(Unu ILL]) eXp{ 253 |:ah (377, xj nﬂfi
(8.82)

oA () 4 A (2 e
+<Vo B())(xZ xj+1nxi)+250<1n x; —In IL‘Z>:|}

For the special case p; = pup and v = 1, this result reduces to the well-known expression
for the Sudakov exponent encountered in applications of SCET [109]. In Appendix A.4
we generalize this expression for the case that the lower scale lies below the top-
quark threshold (p; < ). With the result (8.81) at hand, one can estimate the
perturbative uncertainty in the standard way by varying the soft scale in the interval
Qo/2 < ps < 2Qp. In Section 8.4 we compare this uncertainty to the one arising by
varying z in the fixed coupling approach.

8.3 Fixed-Coupling Results and Asymptotic Behavior

In the standard counting scheme a; Ly = O(1) the double logarithms scale as a, L? ~
1/ag > 1 and, therefore, the SLLs give parametrically large contributions to the
cross section. It is thus important to understand the asymptotic behavior of the
series (8.65). To study the double-logarithmic asymptotics, it is sufficient to work
with a fixed coupling a,(f1), since the scale dependence of the running coupling is a
single-logarithmic effect.

[t turns out that starting from the integral representation (8.80) is more convenient
than from our fixed coupling result (8.72). In this way the analysis can be generalized
to multiple Glauber-operator insertions in Chapter 9. Using the one-loop approxima-
tion for all cusp anomalous dimensions (79 = 4) and changing variables, we find

as(@)\' [ "
= —47T2 Nc( ® ) / dL1 / dLQ (LS - LQ) ey (883)
T 0 Ly

where we already performed the Lj integral and the ellipsis denote the 11-component
vector containing products of the scalar Sudakov functions. Changing variables once
more L; =: z; Ly, they are given by

UC(v; i pij) = exp [vw(z] — 27)] . (8.84)

To perform the double integral over the functions U¢(v, 1; uup, f1, f12) in the coefficient
vector, we invert the order of integration and define

S (1, 1) )

xed

1 ) 1
/ dze (1 — 2z9) / dz1 U(v, 1; gy pia, o) = 3 Y(v;w) . (8.85)
0 0 !
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For v = 0, we simply recover the result (8.68). It is straightforward to further obtain [4]

Z’Zﬁ[ ’ (@) e (@)1 ,

Y(1lw) = 3 SVm erf(\/a) , (8.86)

w o 2w3/?

{zm T(\/§ 2, @) — 7+ merf(vw) erf(2)

z

3
22w

+ 2 arctan (\/m) — ﬁz\e/r;(w\/ﬁ) + \/%e:;’werf(z)] )

where the last line holds for v > 1 and z = /(v — 1)w. The error functions are

erf(z /dme x, erfi(z /dxe , 8.87
VR VR (557

and the Owen T-function is

—1,2 (1+t2)

1 a
T(z,a) = —/ R (8.88)
2 Jo 1+1¢2

By adding an 0 prescription to z in (8.86), one can analytically continue the result in
the last line to v < 1. In this way, one recovers the results for v = 3 and v = 1, see [4]
for more details. Performing the sum over r in (8.69) in terms of a hypergeometric

function, then using an integral representation for this function, and finally performing
the sum over n in terms of an error function, one finds

! . 3 2 _ﬁerf(y(x))
N R (55

with y(z \/ w(l+ (v—1)x). After evaluating the remaining integral over z, one
reproduces the results (8.86). Therefore, the two definitions (8.69) and (8.85) are
equivalent. In Figure 8.3 we show the w dependence of all relevant ¥ functions for the
cigenvalues in (8.48) with N. = 3.

In the fixed coupling approximation, the coefficient vector in (8.79) is given by

20,(7) L,

SLL
= — WWr ...
( fixed 37TNC T ’

[t Hs) (8.90)

where the ellipsis represent the vector in the second line of (8.80) with the simple
replacement

Ui, 15 pps i, pr2) — S0z w) (8.91)

This result is of course equivalent to (8.72).

66



8.3 Fixed-Coupling Results and Asymptotic Behavior

Figure 8.3: Behavior of the functions ¥ (v;w) for different values of v corresponding to
the eigenvalues in (8.48). Darker colors correspond to larger values of v.

The asymptotic behavior for w > 1 of the ¥ functions with v > 0 can be obtained
from (8.85) by replacing the upper limit of the zy integral by infinity. We find

_3V2ln(1+v2)  3yw “

S(z:w) w V2 w32 +0(e72),
(1 w) % - ;’w—‘@ + 0@, (8.92)
$(0:w) = 3arctan(yv/v — 1) 3T L O(eewy,

Vuo—1w 2o w3
where in the last line ¢ = min(1,v). For the special case v = 0, we expand the
generalized hypergeometric function in (8.68) and obtain

_ 3 In(dw) + 5 —2 3

-3 8.93
2 w + 4w? +Ow™). ( )

Replacing the upper limit on z, by infinity in this case yields a divergent integral.
Interestingly, the limits w > 1 and v — 0 do not commute. In Figure 8.4 we com-
pare the small-w and large-w expansion to the full result for the smallest and largest
eigenvalue.

The leading asymptotic behavior of the resummed SLLs is given by

o L
TN,

In contrast to the standard exponential Sudakov suppression, the leading term for the
SLLs is a constant or even logarithmically growing for 3(0;w). It will be interesting
to contrast this asymptotic behavior to the one of subleading logarithmic terms. In
Chapter 9, we study this for terms arising from multiple insertions of the Glauber
operator V¢.

¥(0; w)

03534(Qo) ~ —= wr In(4w) . (8.94)
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Figure 8.4: Plot of the function ¥(v,w) for the largest parameter vs and the smallest
value vg. The full result is shown as a solid line. The red dotted lines show

the perturbative expansion up to the eighth order in w. The blue dashed

line is the large-w asymptotics.

8.4 Numerical Estimates

Scattering processes involving at most two (M < 2) hard final-state partons at Born
level are of great phenomenological importance. In this section, we provide compact
expressions for the SLL contribution to the partonic cross section (8.79) for all relevant
partonic subprocesses and analyze their size. In order to compare the resummed effect
in leading order RG-improved perturbation theory to the fixed coupling approximation,

(1) [1 + 1 a;ﬁf‘)] () (8.95)

in (8.90) to take the two-loop anomalous dimension approximately into account. We al-
ways evolve the strong coupling using RunDec [110] starting from a,(myz) = 0.118 with
the two-loop S-function and with ny = 5 active light quark flavors, see Appendix A.4

we replace

for more detalils.

8.4.1 Evaluation of Angular Integrals
To get numerical results, we need to evaluate the angular integrals J; defined in (8.19).

For concreteness, we consider a veto region Ymin < Yk, < Ymax, Where the rapidity y is
defined with respect to the beam directions and particle 1 has rapidity y; = +o00. The

Oyeto-function in the definition restricts the integral to the veto region

Ymax 27rd 1 h _ .
J] — / dyk-o / ¢k0 S (yko y]) ’ (896)
o 2m cosh(yk, — y;) — cos(pr, — &;)

Ymin

where yi, and ¢y, are the rapidity and azimuthal angle of the soft gluon and y; and
¢; the ones of the hard parton along direction n;. Carrying out the integrations leads
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to the result [1]
J] - _(ymax - ymin> Slgn<y] - ymax) 3 (897)

since the jets cannot be inside the veto region, i.e. ¥; ¢ (Ymin, Ymax). From this result
it is obvious that the integrals J; are invariant under boosts along the beam direction
and only depend on the rapidity difference AY = ¥max — Ymin, SO that they are the
same in the laboratory frame and the partonic center-of-mass frame.

Below we consider 2 — M scattering processes with M = 0,1,2 color-charged
partons in the final state. For the 2 — 0 case, for which all final-state particles are
color-neutral, only the integral

J12 == :]2 - AY (898)

is relevant. For forward scattering in a 2 — 2 process, the hard final-state particles
have y3 > Ymax and y4 < Ymin, Which yields

Jy = —AY | Ji = +AY . (8.99)

For backward scattering, these signs are opposite. Symmetric 2 — 1 scattering chan-
nels such as gg — ¢g and gq¢ — ¢ only involve the integral Ji5, but for the qg — ¢
channel also integral J; arises, with J;3 = —AY for forward and opposite sign for
backward scattering.

8.4.2 2 — 0 Scattering Processes

Color-neutral final states are particularly interesting as they describe the production of
one or several electroweak bosons (H, vy, W=, Z%) at hadron colliders via ¢q scattering
or gluon fusion. Especially for Higgs and diboson production, it is experimentally often
necessary to impose a jet veto to suppress background. Even though such jet-veto cross
sections have been studied extensively, no analysis so far included the SLLs.

The leading order hard functions for the ¢q¢ — 0 and gg — 0 partonic scattering are

1
<CL17 CLQ"qu—m ‘bh b2> - <7'qu¢7—>0> ﬁ 50,1(12 5b1b2 )
] o (8.100)
(a1, az| Hggoso |b1, b2) = (Hgg-0) N1 gz g

where the trace on the right-hand side yields after angular integration the Born cross
section (8.10). In the absence of color-charged final-state particles, the color structures
X; with i = 2,...,5 do not contribute and color conservation implies T, = —T}. Thus
one finds for the partonic cross sections in leading order RG-improved perturbation
theory

6472 s dx 2 dx
~SLL — 2 -
—6 C AY/ In
qq—)O(QO) q3—0 o3 60 3 1 To 132 1 T (8101)

x [U°(0,1) —2U°(3,1) + U(1,1)]
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and

s 32 dx T xr2 dx
s;i()(QO) O'ggHO ﬁ N, AY/ o2 In == &1
0 1

T2 T2 J1 I1

8N2 c c(l
{N2—1[U (0,1) = U(3,1)]

o (8.102)
(N +3) c
~ ST U01) = 205wy, 1) + U5, 1)

Ne(N. —3)

N1 [U°(0,1) — 2U%(vs, 1) + U (v, )}},

Here and in the following, we drop the three scale arguments of U(v;, 1; pp,, i1, f12) to
increase readability. The fixed coupling versions can be obtained by the replacement
described around (8.90).

For 2 — 0 scattering the SLLs start at a3 L3 x (o, L?)? instead of four-loop order.
To see this, we observe that the coefficients ¢; of the functions U¢(v;, 1) in (8.101)
and (8.102) and, therefore, the coefficients of the ¥-functions in the fixed coupling

approximation fulfill
6

6
» =0, D civi=0. (8.103)
i=0 i=0

Consequently, the first two terms in a Taylor expansion for small o vanish and the
SLLs start at six-loop order.

In Figure 8.5 we study the SLL contributions to the total cross sections for ¢qg — 0
(top row) and gg — 0 (bottom row) as a function of the jet-veto scale Qy. The soft
and hard scales are chosen as i, = Qo and u, = V/3, respectively. We consider a fixed
partonic center-of-mass energy v/§ = 1 TeV and a gap region in rapidity with AY = 2.

The left panels show the resummed effect of the SLLs in leading-order RG-improved
perturbation theory (black lines), see (8.81), and for a fixed coupling a(fz) evaluated at
the geometric mean i = /QQy (gray lines), see (8.90). The perturbative uncertainty
from varying the soft scale between Qy/2 < 115 < 2Q) in the running coupling approach
is indicated by the yellow bands. The blue bands serve as an estimate for the scale
ambiguity of choosing i € (Qo, Q) when working with a fixed coupling. As the running
of the strong coupling is a single-logarithmic effect and we only resum the leading
double-logarithmic corrections, both the perturbative and the scale uncertainties are
very large. Interestingly, the running of the coupling is approximated well for a wide
range of )y values by evaluating the fixed coupling at the geometric mean.

The right panels show the contribution of the SLLs at (3 4+ n)-th order in pertur-
bation theory together with the resummed result, when working with a fixed coupling
evaluated at 1 = Q. As described above, the first two terms in this expansion
vanish for 2 — 0 processes and one can observe an alternating sign behavior. The ab-
solute effect of the SLLs is very small O(0.1%) for both ¢§ — 0 and gg — 0 scattering.
However, for the gluonic case the individual contributions are huge, reaching up to
30% for small jet-veto scales, and strong cancellations take place. The biggest effects
arise at seven-, eight- and nine-loop order (n = 4,5,6). In fact, the cancellations are
so strong that the curves in the left-hand plot have a local maximum and change sign
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Figure 8.5: Numerical results for super-leading contributions to partonic qg — 0 scat-

tering (top row) and gg — 0 scattering (bottom row) as a function of the
jet-veto scale Qp, at fixed partonic center-of-mass energy v/$ = 1TeV and
for a central rapidity gap with AY = 2. The left plots show the resummed
contribution of the SLLs with a running coupling as(u) (black lines) and for
a fixed coupling as(j1) with i = \/QQo (gray lines). The perturbative un-
certainties indicated by the yellow bands are obtained from the variation of
the soft scale us by a factor of 2 about its default value. The light-blue band
shows the estimate of the scale uncertainty from varying i € (Qo, Q). The
right plots show the individual contributions at (3 + n)-th order in pertur-
bation theory when working with a fixed coupling at i = v/QQg. The terms
with n = 0,1 vanish for 2 — 0 processes. The gray line depicts the infinite
sum over all contributions and is the same in the left and right panels.
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for scales below @y ~ 15 GeV. Without resumming the SLLs to all-orders, one could
wrongly conclude that they play an important role in this case. For example, the
contribution with n = 4 is of about 15% for Qg =~ 15GeV which is a large five-loop
effect. For qg-scattering the individual contributions are way smaller, reaching at most
1%, and the cancellations are less pronounced.

These results suggest that SLLs play a subdominant role in electroweak boson pro-
duction without additional jets. We stress, however, that a careful study of subleading
logarithmic effects is necessary to verify this conclusion.

8.4.3 2 — 1 Scattering Processes

Scattering processes with one color-charged final-state parton are also of great phe-
nomenological importance since they include some benchmark Standard Model reac-
tions such as pp — H + jet or pp — V + jet, where V = v, W=*, Z° In this case,
the implicit sum over j for the color structures X, ..., X5 in (8.79) includes only a
single term, and color conservation implies that T3 = —T7 —T5. The relevant partonic
scattering reactions are q¢ — ¢, gg — g, and qg — ¢ with leading-order hard functions

<a1, a2, a3|%qq—>g ’bla b2’ b3> <7'qu—>9> tggal tb1b2

1
(a1, az, as| Hggorg b1, b2,03) = (Hggsg) —_1) fraees fhtats (8.104)
<a1, asz, a3|’Hqgﬁq ’bh ba, b3> <7—ngﬁq> tggal tlgfbs ’

By momentum conservation, at least one color-neutral final-state parton needs to be
present in these cases. This parton cannot interact with gluons and thus the hard
function for gg — ¢ starts at one loop. We ignore the presence of a second color
structure proportional to d®192% %25 in this work and only consider the tree-level
structure for simplicity. The SLL contribution to the partonic cross sections for the
diagonal channels are

~ 32 dx 2 dx
E;EQ<Q0) qu%g ﬁ N, AY/ =2 In et
0 1 T2 :Cg 1 I
C NQ (8105)
20F . =2 1.
><[NCU(0,1)——N2 U(%,l)—mUQ 1)}
and
32 dm 2 dQJ
&SLL . .
N.AY — 1n -
ggﬁg(QO) Uggﬁg 50 /1 T :CQ : o

< 0. - 0 )

(Ne = 2)(Ne +3) 1 ¢
AT [U(0,1) — U%(v3,1)] —

N.+3

N [U(0,1) — U(v5,1)]
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Figure 8.6: Numerical results for super-leading contributions to partonic qqg — g scat-
tering (top row) and gg — ¢ scattering (bottom row) as a function of the
jet-veto scale Qg. The color coding and input parameters are the same as in
Figure 8.5. The terms with n = 0 vanish for 2 — 1 processes.

N.—-3
N.—-1

(Ne +2)(Ne — 3)

oy, — 1y O = U, 1] -

[U°(0,1) — U(vg, 1)] } :
(8.106)

They fulfill the first sum rule in (8.103) and, therefore, the SLL contributions start at
four-loop order. In Figure 8.6 these contributions are shown. The curves and bands
have the same meaning as in Figure 8.5 and we observe several similarities. For g7 — ¢
scattering, the absolute size of the SLLs can reach up to O(1%) for small values of
Q. The individual contributions in the (3 + n)-th order in perturbation theory are
of similar size with maxima at four- and five-loop order (n = 1,2). Only moderate
cancellations take place in this case. In contrast, for gg — ¢ scattering the individual
contributions are dominated by the five- to eight-loop order (n = 2,3,4,5) and are
more than an order of magnitude larger than the resummed contribution. However,
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Figure 8.7: Numerical results for super-leading contributions to partonic gg — ¢ forward
(top row) and backward (bottom row) scattering as a function of the jet-
veto scale (Qg. The color coding and input parameters are the same as in
Figure 8.5. The terms with n = 0 vanish for 2 — 1 processes.

strong cancellations take place, reducing the absolute effect to at most £0.5%. Similar
to gg — 0, one can observe a sign change for jet-veto scale below @)y ~ 15 GeV.
Comparing the diagonal SLL contribution for 2 — 1 scattering to the one of 2 — 0,
we observe that the later is about a factor 3 smaller.

Considering the off-diagonal channel, i.e. qg — ¢ scattering, we find in the forward
limit

6SLL’FW<Q0) — _GFW 3272 N, AY /zs % I s x2 %
0 1

q9—q q9—q 53 T T2 Jy 1
4‘]Vc2 2 c c(l
X { N1 [U°(0,1) —U(3,1)]
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process | channels | forward | backward
qq — qq t,u t U
g9 = gg | t,s,u,4g U
qq — gg t,S,u t U
g9 — qq t,s,u t U
qq — qq t t t
qq — 47 s s s
qq — qq t,s t,s
q9 — qg t,s,u t U

Table 8.1: Contributions to partonic 2 — 2 scattering at tree level. The relevant color
structures can be read off from the corresponding Feynman diagrams shown
in Figure 8.8. The third (fourth) column shows the relevant contributions for
(forward) backward scattering. Quarks g and ¢’ have different flavor.

N(N. + 3) N¢(N. — 3)
———21U%0,1) = U* 1 ——1U%0,1) = U* 1
2(N0+1) |: ( ) ) (U37 )} + 2(Nc_1) [ ( ) ) (U47 )}
(8.107)
and in the backward case
3272 s da rs [*2dx
GILLEW(Qg) = —6BY "o N AY / — = =
s (@) wmBg T 1)y m (8.108)

x [2U°(0,1) —3U°(3,1) + U°(1,1)] .

In both case, the cross section fulfills the first sum rule in (8.103) and, therefore, the
SLLs again start at four-loop order. Figure 8.7 shows the SLL contribution to gg — ¢
scattering for forward (top row) and backward (bottom row) scattering. Even though
the resummed contributions are of similar size in both cases and reach 2 — 3% for
small jet-veto scales, there are two interesting differences. First, while in the forward
case the individual contributions are large and strong cancellations take place, in the
backward limit the second term in the perturbative expansion is already a factor 3
smaller than the first. One should thus compare the forward case to gg — ¢ scattering
and the backward one to q§ — g, see Figure 8.6. Second, the cross section is enhanced
by the SLLs for forward scattering but reduced in the backward case.

This example shows that in general SLLs can affect the differential cross section in a
non-trivial way. Here, this dependence on the scattering kinematics is due to angular
integral J3 which differs between forward and backward scattering.

8.4.4 2 — 2 Small-Angle Scattering Processes

For 2 — 0 and 2 — 1 scattering processes only one color structure contributes at tree
level, simplifying the structure of the hard functions considerably. Turning to 2 — 2
scattering processes, this is no longer the case. In Table 8.1 we summarize the different
channels, i.e. different color structures, contributing to tree-level QCD amplitudes. We
observe that in most cases several color structures are relevant, providing a second
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Figure 8.8: Generic Feynman diagrams contributing to partonic 2 — 2 scattering at tree
level. Solid lines can represent (anti-)quarks or gluons.

source for the dependence of the SLLs on scattering kinematics. This effect is studied
for qg — qq scattering in more detail in the next section.

For the moment, we restrict our analysis to small-angle scattering as in this case
the amplitude is dominated by a single color structure, see the last two columns of
Table 8.1. Applying color conservation Ty +T5+T35+T, = 0, one can show that except
for qg — qg and gg — ¢g the angular integrals J3 and J; only enter in the combination
(J3 — Js). As a result of this effect, the SLLs contribute equally to both forward and
backward scattering for the processes listed in the upper portion of this table. The
corresponding hard functions dominated by the t-channel diagrams in Figure 8.8 are

<CL1, a2, Aas, a4|qu%qq |bla b27 b37 b4> = <%qqaqq> CFN a3a1 tng tb1b3 tb2b4 )

1
<(1,1, a9, as, a4|’Hgg_>gg |bl, bg, bg, b4> = <%gg—>gg> m fa1a3afa2a4afb1b3bfb2b4b ’

<a'17 2, as, a4|7-£qq—>gg |bla b27 b37 b4> - <qu—>gg> ta4ta3)a2a1 (tbStb4>b1b2 )

02N

<a/17 a2, a3, a4 | %gg—>qq {blu b27 b37 b4> <%gg—>qq> taltGZ)a3a4 (tb2tb1 )b4b3 ’ (8109)

02 N,
In Figures 8.9 and 8.10 we show the contribution of the SLLs to the partonic cross
section as a function of the jet-veto scale in these cases.

The SLL contribution for the processes in the lower portion of Table 8.1 differs
between forward and backward scattering. For the first two of these processes this is
due to the dependence on J3 and Jy. The respective hard functions are

2 a
<CL1, Gz, a3, @4‘7{@%(1/@’ |b1> an b37 b4> = <7'Lq(jﬁ\q/q/> CFN a2a1 ta3a4 tb1b2 t24b3 (8110)

and H gy g = Heg—qq- For q7 — qq and qg — qg also the color structures contribut-
ing to the hard functions deviate. We find in the forward limit

(a1, az, a3, ag| HyY, o b1, b2, b3, 04) = (Ho Y, o N2 foaaaga - fhebbgd
(8.111)
FwW a
<CL1, az, ag, a4{7iqq_>qq {51, ba, b3, b4> = <7'qu_>qq> ~ AT tagal azaq tblbg tb4b2

and in the backward case

<a1,a2,a3,a4|’H g—>qg|b17b2’ bg,b4> <H (taZt(M)a?)al (tb4tb2)b1b3 . (8112)

q9—99 C’%Nc
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Figure 8.9: Numerical results for super-leading contributions to partonic ¢q¢ — ¢q (top
row) and gg — gg small-angle scattering (bottom row) as a function of the
jet-veto scale (Qg. The color coding and input parameters are the same as in
Figure 8.5.

The amplitude for q¢ — qq scattering does not simplify in the backward limit, since
there is no u-channel diagram. Therefore, we exclude this case from our analysis.
The SLL contributions in the forward and backward limit to the cross section are
contrasted in Figures 8.11 and 8.12. As the hard function for q¢ — ¢¢’ scattering is
the same as for gq¢ — qq, the SLL contribution to this process can also be read off
from the top row of Figure 8.9.

For all partonic 2 — 2 scattering processes, the corrections of the SLLs to the
Born-level cross sections found after resummation are of O(15%) for small jet-veto
scales and should be included in future precision calculations of multi-jet LHC cross
sections. The only exception is q¢ — ¢'¢ scattering, shown in the middle rows in
Figures 8.11 and 8.12, for which the SLL contribution amounts to just a few percent.

7



Chapter 8 Resummation of Super-Leading Logarithms

_5:_
g -10¢
2
‘1 -15¢
P
L 0f
=
7
& sf
— (1)
_30F
_ as( QQO)
10 20 30 40 50
_5:_ - —
. —lof
X i
< -15F
T r
> r
/—\m —20_'
< L
o~ I
3 -25F
wn
Lb/ [
-30f
' — a(p)
-35¢ Oég( QQO)
10 20 30 40 50 10 20 30 40 50
Q(] [GCV] Q(] [GCV]

Figure 8.10: Numerical results for super-leading contributions to partonic ¢§ — gg (top
row) and gg — qq small-angle scattering (bottom row) as a function of the
jet-veto scale Q. The color coding and input parameters are the same as
in Figure 8.5.

By coincidence, the contribution to the cross section in this case

SLL . 3272 Tsdre  xs [T2day
o —0qq—qq —55~ Ne — In—= —
50 1 T2 T2 J1 T1

9q—4'7 —
N2 _—4
X {(J4 — J3) 5N2 [U°(3,1) = U“(1,1)] (8.113)
205 . N2—2 1
+aa| R 000 - 2220y - o) |

fulfills the first sum rule in (8.103) and, therefore, the n = 0 term in the perturbative
expansion does not contribute. As this term always gives the dominant contribution
for quark-initiated scattering processes, q¢ — ¢'q’ scattering is comparable to the
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a function of the jet-veto scale (Qg. The color coding and input parameters
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Numerical results for super-leading contributions to partonic q¢’ — g¢’ (top
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2 — 1 processes in Figures 8.6 and 8.7. In the strict sense of the word, these n = 0
terms are not a “super-leading” effect, even though they result from two Glauber-
gluon exchanges. For processes with gluons in the initial state the situation is different.
While for gg — qq scattering the higher individual contributions are small, for gg — qg
and especially for gg — gg they give sizable corrections. The perturbative uncertainty
(yellow bands) increases only slowly for decreasing @)y and on average is of magnitude
+5%. In contrast, the scale uncertainty (blue bands) shows a strong dependence on
the veto scale and becomes huge for small values of (). The fixed coupling evaluated
at the geometric mean i = v/QQo, however, provides a very good approximation to
the RG-improved result for all processes except for gg — gg. Comparing forward and
backward scattering in Figures 8.11 and 8.12, we observe that the effect of the SLLs
are of similar size in both cases but the sign can be different. The cancellations of
individual terms is more pronounced for forward scattering.

8.4.5 Angular Dependence of qqg — gq Scattering

Relinquishing the restriction on small-angle scattering or different flavors, several color
structures contribute to most 2 — 2 partonic scattering processes. This yields a second
source of dependence on the scattering kinematics for the SLLs, as in general different
color structures can interfere.

To describe such scenarios, it is convenient to chose an orthonormal basis {|B;)} of
color configurations and decompose the amplitude as

(M) = M |Br)., (8.114)
1

where the coefficients MELI) are functions of the kinematic invariants. Sometimes, it is
more convenient to work with non-orthogonal color structures, the generalization to
this case is explained in Appendix A.5. The “unintegrated” hard function (7.39) can
be expressed as a matrix in this basis

(714)” = <BI|¥L4 ‘BJ> - MA(LI) MELJ)* : (8.115)

The one- and two-loop hard functions for all 2 — 2 processes in QCD can be found
in [111] and [112], respectively. Working in the partonic center-of-mass system, the
simple kinematics for 2 — 2 scattering allow us to express the Born cross section (8.10)

as
d&) 1~
—) = —— (1), (8.116)
(dr 9o  16mS < )
where 7 = —#/3 = sin?(#/2) and the phase-space constrains on the directions of

parton 3 and 4 are implicitly understood. The trace computed in the basis {|B;)}

yields
do 1 1 ()
(dr )2—>2 1678 NN, Z Z }M4

I spins

2

: (8.117)

with color- and spin-average factors N given in (7.10).
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Similar to (8.116), one can determine the SLL contribution to the differential par-
tonic cross section from (8.79). Expressing also the color structures as a matrix

(Xi),, = (Bi| Xi|By), (8.118)

we find

do Lo Y 7 SLL
( dT )2_,2 N 167T§ N1N2 ZZ Z (H4)[J (Xi>J[ gi (Mhaus)a (8119)

=2 [,J spins

where pp, ~ Vs and is ~ Qo. The coefficient vectors for the color structures in RG-
improved perturbation theory and for fixed coupling are given in (8.81) and (8.90),
respectively.

Until now, most of the literature on SLLs studied processes involving a single color
structure only, e.g. q¢ — qq’ scattering in Table 8.1. We analyze qq — qq scattering
in the following, including the interference of two different color structures. They can

be chosen as ]
<&1, az, ag, a4|Bl> = —— Oazaz Oagas »
N,

o (8.120)

<CL17 a2, Aas, a4|82> = \/ﬁ tagaz ta4a1 :

The normalization factors are such that (B;|B;) = d;;. For two-quark two-gluon and
four-gluon scattering the basis is 3- and 9-dimensional, respectively, and can be found
together with the associate hard functions in [112]. The matrix representations for the
spin-averaged hard function (8.115) in this basis is

1 ~ 2Cr
1 S Hygrg = (470)’ ¥ (8.121)
spins ¢
N, C’F(r2 —2r +2) \/1\22—1 <r3—3r2+1(ivrc+4)r—2>

VINZ=1 (133124 (Ne+4)r—2\ (N241)7r*—4r3+(N242N47)r2—2(Ne+3)r+2
2 1—r 2(1-r)?

The ones for the color structures (8.118) can be found in Appendix A.5. The hard
function is a symmetric 2 x 2 matrix, as QCD tree-level amplitudes do not contain
any non-trivial phases. Therefore, the trace with the anti-symmetric color structure
X vanishes, thereby confirming our previous findings.

In Figure 8.13 we show the contribution of the SLLs to the partonic q¢ — qq
scattering cross section as a function of the jet rapidity y; = y3 = —y4 in the partonic
center-of-mass system. The rapidity of parton 3 is related to the scattering angle by
ys = Incot(6/2). The hard jets are restricted to lie outside the veto area (gray) of
width AY = 2, i.e. |y;| > 1. However, we plot the results for illustrative purposes also
inside this region. The plot is obtained with fixed values )y = 25 GeV of the jet-veto
scale and the partonic center-of-mass energy v/ = 1 TeV. The resummed effect of the
SLLs shown in the left panel is of similar size (~ 6%) as for the small-angle limit, shown
in the upper row of Figure 8.9. The right panel shows the summed contribution up to
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Figure 8.13: Numerical results for super-leading contributions to partonic qqg — qq scat-
tering as a function of the jet rapidity ys, at fixed partonic center-of-mass
energy v§ = 1TeV and jet-veto scale Qp = 25GeV, and for a central ra-
pidity gap with AY = 2 (gray area). The left plot shows the resummed
contribution of the SLLs with a running coupling as(u) (black line) and for
a fixed coupling a(ji) with i = /QQq (gray line). The yellow and blue
bands are obtained in the same way as in Figure 8.5. The right plot shows
the contributions summed up to (3+n)-th order in perturbation theory for
different values of n when working with a fixed coupling at i = v/Q Q.

the (3+n)-th order in the fixed coupling approximation. As typical for quark-initiated
processes, the exact result is approximate already well by summing n < 2.

Even though it is a small effect, the kinematic dependence on the SLL contributions
on the jet rapidity is clearly visible in both plots. For processes where one can dis-
tinguish forward and backward scattering this effect is more pronounced. In order to
perform a full phenomenological study of the SLLs, one needs to study the interfer-
ence effects of different color structures for all relevant partonic processes and combine
them with the PDFs, see (8.8).






Chapter 9

The Glauber Series

In the previous chapter, we have studied in detail the leading double-logarithmic
corrections to gap-between-jet cross sections at hadron colliders, arising from the non-
cancellation of soft+collinear singularities due to Glauber-gluon exchanges between
initial-state partons. The contributions of these SLLs to the 2 — M jet cross section
is of the form

;EBW Z CipnW ) (91)

where the parameter w encodes the double logarithms L in the scale ratio and w,
contains the two Glauber phases im from the associated exchanges. Both parameters
originate from the cusp logarithm In[(—Q?—0)/Q3] = 2L—im and are defined in (8.66).
Even though this effect formally starts at four-loop order (n = 1), for typical values,
e.g. @ = 1TeV and Qy = 40GeV, one finds w ~ w, = O(1) and also the n = 0
term could be considered as “super-leading”. Therefore, higher order Glauber-gluon
exchanges lead to a more general series

o L [ee] oo
SLL+G | QXslis ¢, ntl
Tomm ™ TN ZZc&nwﬂw” ) (9.2)
C

which is referred to as the Glauber series [1-3]. Here, ¢ denotes the number of Glauber
pairs arising from Glauber-gluon exchanges.
The Glauber series is generated by the evolution operator for the hard function [3]

h m g
Usti+c({n}, pn, ps) = / i / oz (9.3)
Hs

e dp e ] ¢ Qs(p2) =
X PeXp |:/ — Yeusp \ Xs (M In— + \4 Veusp | Xs [ \4 I‘,
| e () (T V) | () VO =2

where the path ordering is required as V¢ and I'® do not commute and only acts on the
exponential. Similar to the evolution operator for the SLLs (8.6), the rightmost factor
needs to be VET to get a non-vanishing result under the color trace with the leading-
order low-energy matrix element (7.20). In (9.3) even and odd numbers of Glauber
operators are included. The latter become only relevant if the hard function itself
yields a phases to get a real- Valued Contrlbutlon In this case, the amplitude needs to
be of the form [My_,pr) = M) +i| MY, ) where real and imaginary part have
different color structure. In pure QCD this can only happen at loop level, but for
electroweak amplitudes such phases can already appear at tree level through massive
gauge bosons or Cabibbo-Kobayashi-Maskawa matrix elements [64]. Therefore, the
SLLs and the Glauber series for these processes start already at three- and two-loop
order, respectively. In the following, we thus include odd numbers of Glauber-operator
insertions as well. The contribution of the Glauber series to the gap-between-jet cross
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section is then obtained in the same way as for the SLLs, and reads

‘7555\}(;(@0): Z /d§1d€2fl(flaﬂs)f2(£2>ﬂs)6§iIﬁG<€17€2aQ0) (9.4)

partonic
channels

with partonic cross section

GG (1, €9, Qo) = (Mo ({0}, 5,61, o, pn) Usirsa({n}, i) @ 1), (9.5)

where ps ~ Qo and pp ~ Q.

0.1 Color Basis

To evaluate the evolution operator (9.3) of the Glauber series under the trace, one
needs to determine the action of the Glauber operator on all appearing color structures.
By means of (8.27), it is thus necessary to calculate commutators with Tj - Tp. To
understand the general mechanism behind this, we now look at generic color structures
that can appear in the Glauber series [3].

Since the cusp anomalous dimension I'® and the Glauber operator V¢ contain only
initial-state generators and just one insertions of T is relevant, there are two types of
color structures that can appear

X0 =3"J;¢(€C.1C,— C.C1) Ty,
= (9.6)
XM = J1,¢ (€€ +C2C1) 1y,

where we explicitly indicate the unit matrices for all final-state generators in the second
type. Here, the objects C; and C; are color-space matrices which contain products of
color generators associated with parton i. The tilde indicates that these structures
are not necessarily related by interchanging 1 <+ 2. One the one hand, they carry two
matriz indices, i.e. anti-fundamental or fundamental indices if parton ¢ is a quark or
anti-quark, respectively, or adjoint indices if it is a gluon. On the other hand, they also
carry an open adjoint index for each color generator. Whereas the matrix indices are
to be contracted with the hard function under the color trace, the open adjoint indices
are contracted with ¢, a color-space tensor of corresponding rank. For example, color
structure X defined in (8.21) is of type (I) with

aobc 1'(1(: a a ~
gbzﬁsz’ 1:T1a Cg:T2b7 (97)

where the third index of ¢ is contracted with T%. As the cross section is invariant under
1 <> 2, both types of color structures must be invariant as well. We have already seen
above that J; — —J; and Ji2 — Ji2 under this exchange, which must be compensated
by the color-space matrices. B

A good choice for the structures C; and C; are symmetrized products (8.34) of
SU(N,) generators. Spelling out adjoint indices explicitly, they read

(k)ai..ap a a
C; = (T T, (9.8)
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with CEO) = 1;. The open adjoint indices must be contracted with (, which can be
constructed from all combinations of permutations of traces of fundamental generators
C(O) -1 7 C(Q)a1a2 — tr(t‘” ta2) ’ <(3)a102a3 c {tr(tal 192 ta3) ,tr(t‘“ 193 taz)} ’
(9.9)
¢Warazasas ¢ {tr(t“1 192 % %) 4+ perm. , tr(t* %) tr(t*t™) 4+ perm.} .
Note that there exists no (V) as generators are traceless. As in Chapter 8, we express
these traces in the following through f- and d-symbols. The relevant relations are [108]

1
tr(tatbtc> — Z(daLbc + Z'fabc) 7
1 1
tr(tatbtctd) - 5ab(scd + _(dabedcde o fabe]ccde + Z'fabedcde + 7;fcdedabe) ’
4N, 8
1
8N,

1 (9.10)

cd dabe - rabe
0 (d™ +if )+8Nc

tr(tatbtctdte) — 5ab (dcde + idee)

1
16
which can be proven by applying (8.56).

From (9.6), it is easy to show that the cusp anomalous dimension I'" maps color
structures with k& adjoint indices (the rank of () to color structures with again at
most k adjoint indices. In other words, it does not increase the complexity. As
a consequence, it is possible to find sets of color structures that are closed under
repeated application of I'“; e.g. {Xs,..., X 1} for the SLLs. Unfortunately, this is
not possible for the Glauber operator as long as one works with initial-state generators
of arbitrary representations. The Glauber operator acts as commutator and increases
the complexity of color structures

C(k1+k2+§) |:T1 . TQ, Cgkl) égk?)}

+ (dabf+ifabf)(dCdg+if0dg)(defg+ifefg),

9.11
_ C(k1+k:2+1+5) Cgklﬂ) 55162) + 6<k1+k2+1+(5) cgkl) @kzﬂ) + .. ( )

c

where § =1 (0 = 0) for type I (II) structures and ellipsis denote terms that have at
most (k1 +ky+9) adjoint indices. Therefore, it is not possible to construct a finite color
basis valid for initial-state partons transforming under any representation. However,
upon specifying a representation, one can always construct a finite basis, as is shown for
the fundamental and adjoint representations below. This is a somewhat unexpected
result, given the complexity of the color algebra in the adjoint representation, and
allows one to access the all-order structure of the Glauber series.

0.1.1 Quark-Initiated Processes

We begin by constructing a color basis for processes with (anti-)quarks in the initial
state. In this case, the color-space matrices in (9.6) can only be C;,C; € {1;,;} as
products of (anti-)fundamental generators can always be reduced using the commuta-
tion and anti-commutation relation (8.56)

et = %[t?,tﬂ + %{t?, thl = % 6% 1; + % (i f* + o;d™) E5 . (9.12)
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qq—0| q@—g | qd —qq | 97— d7 | 9@ — a7 | 93— g9
b C - 0 0 0 0 0
x¢| - 0 0 o(1) O(1) 0
X5 - 0 o(1) o) | O/Ng) | o)
X{| 0@1) | O@/NZ) | O/NZ) | O(1/NZ) | O@1) | O@1/NZ)
x¢| o) | o) o(1) o(1) 0(1) o(1)

Table 9.1: Large-N,. counting of the traces (Mo X[) for quark-initiated partonic
(small-angle) scattering processes, where quarks ¢ and ¢’ have different fla-
VOrs.

Therefore, we only need to consider color-space tensors ¢ up to rank 3. They are

C(O) =1, C(2)a1a2 — Saraz 7 g(3)a1a2a3 c {Z'famzas o1 de1e203 70.2d111<12a3} 7 (913)

where d-symbols always appear together with o; as evident from (9.12). Meeting also
the symmetry constraints under the exchange 1 <+ 2, we find three structures of type I
and two of type II [2,4]

> £aoc ga (& 1
Xf::Zszfbtlthj, Xffi:ﬁz]mtl'tza

C

§>2
X§ =Y " Ji (o1 — oo)d™ t5 5 T | X5 =Jinl. (9.14)
j>2
1
X§= ) Ji(t—t) T,
¢ j>2

Here, the factors 1/N, are chosen such that the traces (Ha_n X) for all processes
considered in Section 8.4 are at most of O(1) in the large- NV, expansion, see Table 9.1.
Of course, it is possible to map the color structures describing the SLLs to this basis.
One finds

X, = X! Xﬁz—]f]\é4alaQXZ—Nijglxg
X, = —%Xé’ + X! X; = (Nj\; 4)20—10—2 X4
X4—Ni3(Xg—X§) X9:N§V;40102X5+N§V;1X5
X5_—N§VC;1X§ Xy = X!

X, = X!
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9.1 Color Basis

In this case, the consistency relations (8.49) are clearly fulfilled and, therefore, the
super-leading terms in N, cancel for quark-initiated processes. Using this result, one

can simplify the color trace (8.42) for the SLLs. The complicate dependence of the
(r1)

coefficients ¢; '’ on the eigenvalues (8.48) mostly drops out and one is left with [73]

r1
C(7“21T2 = _167T2 Nf+1 |: - % <7-L2~>M X2q ® ]-> + UII <7-L2~>M qu X ]_>
(9.16)

2
P27 ) (Moo X0 1) + 2 (1t — o) (Hao XS0 1)]

[

where we used that C; = Cy = CF in this case. Remarkably, only eigenvalues vy = 0,
v = % and vy = 1 contribute for quark-initiated processes.

0.1.2 Gluon-Initiated Processes

For processes where both initial-state partons are gluons, the generators are given by
the SU(N,) structure constant
T, = F,, (9.17)

with F; given in (8.55). There is no relation similar to (9.12) as anti-commutators of
adjoint generators cannot be reduced. However, it is still possible to construct a finite
color basis in this case. To simplify notation, we label the color-space-matrix part of
the two generic color structures (9.6) as

type I. AV = ¢(C C, —C2al)Tj>
oo (9.18)
type II: S = C(C1 C,+Cy Cl) ;

in the following. The AU are anti-symmetric under the exchange 1 < 2 whereas
the S are symmetric. The four matrix indices of these two structures are all adjoint.
Factoring off the final-state generator T} for AU the two tensors

type I (a1, a2|¢ (Cy Cy — Cy 51) |b1, bs, )

_ _ (9.19)
type II: <a1, az‘C(Cl Cy+Cy Cl) ‘bl, b2>

have five and four open indices, respectively. As all these open indices are adjoint,
one possible basis choice are traces of generators in the fundamental representation,
similar to (9.9) for . Since the generators are traceless and normalized such that
tr(tett) = %(5‘“’, the only allowed tensors for type I consist of anti-symmetric (for
(ay,b1) <> (ag,bs)) linear combinations of permutations of the traces

tr(tetor ozt ¢%2) and  tr(ttereo2) §brbz (9.20)

To obtain a basis element AU), this linear combination is then multiplied by the left-
over T¥. Due to the cyclicity of the trace, there are 4!+ (g) 2! = 44 such permutations,
22 of which are anti-symmetric. For type II the allowed tensors are symmetric linear
combinations of permutations of the traces

tr(ter o2 ¢h14%2)  and  §1%2 §02 (9.21)
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The 3! permutations of the first term allow for four symmetric linear combinations,
together with the %(3) = 3 permutations of the second term which are already sym-
metric, yielding in total seven linearly independent S structures.

As linear combinations of (9.20) and (9.21) cannot be used within the color-space
formalism straightforwardly, it is convenient to map them onto objects naturally ap-
pearing in the adjoint representation of the initial-state partons. Using (9.10), one
can translate them to d’s, f- and d-symbols. Rearranging indices in such a way that

(a;, b;) always appear together, the adjoint matrices
[A‘;b] aib; — faai é‘bbi + (5bai 5abi ’ [ng} aib; — 5aai5bbi . 5bai 6abi ’ (922)

together with 1;, F; and D; naturally arise, see (8.55) for their definitions. They fulfill
the important relations [108]

[F F] = if"Fy, F'D] + FD} = D{F + D{F{ = d"F;,

b - rab 2 b b b - rab (9.23)
(D7 Dj) = if™ Ff = Vi, [, D}] = [D} F!] = i Dy,
Commutators of these matrices can be reduced by applying (9.23), mimicking the
properties of ordinary generators of SU(N,.). However, it is in general not possible to
simplify anti-commutators, resulting in a larger basis compared to the quark case. It
is possible to remove one of the symmetric matrices as [108]

AP (e BV 4 (D DY = 2571, + N d Dy (9:24)

In the following, we choose to remove {Df, D! } using (9.24). As shown below, it
suffices to consider the unit matrix 1;, the two matrices F; and D; constructed from
the structure constants together with A; and V; complemented by the two additional
anti-commutators {F?, F}'} and {F?, D!} to construct a basis for gluon-initiated
process. Importantly, there is no need to include symmetrized products (8.34) with

k> 3.

AU) structures: The third relation in (9.10) implies that we only need to consider
color structures AU) containing at most three f- or d-symbols. In Table 9.2 all 26
such color structures are listed, sorted by the number of contracted indices, i.e. by
the rank of ¢ in (9.18). All other contractions either vanish by symmetry or can be
reduced to those listed in the table. For the possible structures of Agj )—type not listed
in Table 9.2, one can apply

,éfabc V;Lb — _21;;07 dabc {EG7F1ib} = NCDZ»C,
N4 (9.25)
abc ab __ c abc a bl _ ¢ ¢
4™ A% = 2D¢ d {Ftz'}‘—( N. )F

to relate these operators to the Agj). In principle, it is also possible to construct
Aflj )-type structures by contracting with ¢ € {fabe fede dabeqede g fabegedel  However,

90



9.1 Color Basis

Two contracted indices Four contracted indices
A [meom) Al | (FrAP 10T
Afp | (Di-Dy) Ty AG o | (Frvg - 1oo)T
AY}‘,FF (F{ {F5, F}} —1<2)T}
Three contracted indices Afljl)u, rp | (FE{F$ D5} — 14 2)T;’
A:(ff)FF ifabe o Y T¢ AE&),A (D Ag —1 <—>2)T
Aé]].c{D’D ifabe D DY TS Az(lj,z?,v (D¢ Vi 1 2)T]b
Az(?,?,F,D if*(F{D} _anle)Tf AEI{)D,FF (D {Fg,Fb} — 1<—>2)T4’
Aflpp | d™(F{ D}~ FyDY)Ty Af) pp | (DE{Fg, DY) —162)T)

Five contracted indices

Aé]}),A,A if*e AL AY TS
Agf),v,v i fabe wad b ¢
AY) o (A VY 10Ty AY) o | AP (AP VY 16 2)TY

Ag”),A,FF if e (AY{Fy, F} —162)TF Agi),A,FF AV F, ) —162)TF

(
dabc(
A app | (AT {F). DS} —102)T5 | Af) s pp | d(A3{F}, D} — 12T}
(Vi
(

Aé?,V7FF Z'fabc(vcfd {F2bv F2d} - 192)TC Agi),v,FF o (Vv {F2ba Fd} - 1H2)T'c
A G pp | i (Ve{FY, DI} —162)T¢ | AU)G Ly | do (V94 {FY, DS} — 162)T¢

Table 9.2: Possible anti-symmetric color structures featuring T for gluon-initiated pro-
cesses.

contractions with two additional anti-commutators cannot contribute, as they already
contain four f- or d-symbols and one can directly simplify

facefbdeAab {Fc Fd} faCEfbdevgb — ifcdel;xie ’
2
dacedbdeAab {D Dzd} 7 dacedbdevgb — Z-fcdel;xie - ﬁvfd ’ (926)
Z'facedbdeA;zb — ideeDl-e ’ ifacedbdev;zb — {.F;C, Dzd} ]

Recall that the anti-commutator { D¢, D¢} can be eliminated by means of (9.24).
Following the argument around (9.20), there are only 22 linearly independent color

structures of type I. Thus there exist non-trivial relations between the 26 structures
listed in Table 9.2. They read

(4) _ (j
A5f,V,FD - _A4,F,FD7
A(J _ A(ﬁ)

5d,A,FF — 4,D,FF »

Aéjf),A,FD =2 Af(ﬂjf)FD + A5d V,FF >

91



Chapter 9 The Glauber Series

No contracted indices Two contracted indices

So 1 So.FF F-F,
So.p,p | D1-Do
S2.FD F,-Dy;+ F,-D;

Four contracted indices
Siaa | AP AL Siarr | AP {Fg, Fy} + ASP {Fy, FY}
Sivy | ViP Vs Siarp | AP {Fy, Dy} + A {F{, DV}

Table 9.3: Possible symmetric color structures without T; for gluon-initiated processes.
Even though the individual terms in Sy v rp are non-zero, they vanish in the
symmetric combination (gray).

) 8 . ) ) ) )
Agi),A,FD = _ﬁ Ag% - 4A§Zi),F,D + Az(ij,l)P,FF - Az(lj,)D,FD - Aé]f),V,FF ) (9-27)

which can be used to reduce the full set to 22 basis structures. With the explicit basis
at hand, we construct the isomorphism to the basis (9.20), for example

(et e t) — (102) & (A .+ AV, — AV L),
(9.28)

tr(te e th) 522 — (142) <

| oolHr

() )
(A2J,D - AZJ,F) )
allowing us to express anti-symmetric linear combinations of traces of fundamental
generators in terms of the basis structures listed in Table 9.2.

S structures: Form the second relation in (9.10) it immediately follows that one
only needs to consider S structures with up to two f- or d-symbols. There are eight
such color structures, listed in Table 9.3, sorted by the number of contracted indices,
i.e. by the rank of ¢ in (9.18). All other contractions either vanish by symmetry or can
be reduced to these, i.e. all possible S3-type structures can directly be reduced to S5
using (9.25). Since the basis of S structures contains only seven elements, as argued
around (9.21), one non-trivial relation among the structures in Table 9.3 exist, we find

Siarp =282rD - (9.29)

Hence, one reduces the full set to seven basis structures. Again, it is possible to
construct an isomorphism to the basis (9.21). For example,

1 1
So+ < (SQ,F,F +Sopp — SQ,F,D) )

tr(tm 2 ¢2) o
r( ) AN, 8

) (9.30)
5a1b1 5a2b2 aN Z (S47A,A + S4’V7V) ,

92



9.1 Color Basis

where both terms on the left-hand side are already symmetric under 1 <+ 2.
Remarkably, this construction yields a finite basis containing 22 + 7 color structures
for the infinite Glauber series of gluon-initiated processes. In the following, we choose

the basis to be [3,4]

Xy = ZJJ A:(ajf),F,Fv 9. ¢4
j>2
X3 = Z‘]j A:(sjf),D,Da Xg =
j>2
Xg :_ZJ A4FV7 Xfo
]>2
X3 :_ZJ AszA: X
]>2
2. ¢4 :_ZJ A5fAFF7 Xty :
C i>2
X :_ZJ A5fvv> st
C 7j>2
X7 = ZJ A5dVFD7 X, =
C j>2

:—ZJA2;—:, X19522J12S0,
]>2
() g . 1
- Z J AddFD? X16 = ﬁ Ji2 SQ,F,F7
7>2 c
:_Z‘] Xy ::i‘]mSQDD
17 NC Iy k) )
]>2
g . 1
= N2 ZJ 4FFF7 Xig = 2 Ji2Saan,
C 7>2 c
1 ) g . 1
- N2 Z JiAiprp, Xig= N Ji2 SunFF
¢ j>2 ¢
.
:_ZJASfAV’ Xzo-_N2J12S4vv7
j>2
ZJ A< e (9.31)
C j>2

using (9.27) and (9.29). Ordering the the basis structures in this way and not assigning
a label to the remaining 8 + 1 structures turns out to be convenient. The factors 1/N.
are chosen such that the traces (Ha_y X7J) are at most of O(1) in the large-N.
expansion for the processes considered in Section 8.4. Mapping the eleven structures
describing the SLLs to this basis, we find

X, = X7,

1
X2_2X9+2X9+X10,

Xy = —X{,
X, = -X7,,
X5 = -2X¢,

Xy =~ Xt = 5 Xt 5 X,
X7 = X197,
2 _
Xy = ]\%N34 Xis (9.32)
X9 = Nich{’5+Xlg7+Xf8,
X0 = X{s,
X = Xi;.

In contrast to the case of quark-initiated processes not all basis structures are relevant
for the SLLs. Clearly, the consistency relations (8.49) are fulfilled in this case and all
the super-leading terms in NN, cancel for gluon-initiated processes.
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Chapter 9 The Glauber Series

0.1.3 Quark-Gluon-Initiated Processes

The third scenario relevant for QCD are processes initiated by one (anti-)quark and
one gluon. Without loss of generality, we assume parton 1 to be the (anti-)quark, i.e.

T =t¢ and T¢=Fy. (9.33)

By making this choice, it is no longer possible to restrict the form of color structures by
symmetry arguments under the exchange of parton 1 and 2. The color-space-matrix
part of the generic color structures (9.6) thus only is

type . OY) :=(C, 521-']'7
~ (9.34)
typeIll. O :=(C,C>.

Employing (9.12) for parton 1, it is obvious that C; € {1;,¢;}. Distinguishing the
case C; = 1; and C} =t} for both types of color structures, the tensors

type I: <a2‘(’52‘b2,c> and <a2|§52}b2,a,c>,

_ _ (9.35)
type II: <a2‘CCQ ‘b2> and <a2|CC2 }bg, a> ,

have between two and four open adjoint indices. Similar to the gluonic case, we
factor off T¢ for the first type. A possible basis for the tensors of type I are linear
combinations of permutations of

tr(tct®2¢™)  and  tr(t©t*t92¢%) ) 50 52b2 (9.36)

for C; = 1; and C} = t{, respectively. In total, there are 2! 4 3! + %(3) = 11 basis
structures OY). For tensors of type 11, the possible basis consists of the three elements

622 and  tr(t®t24%2) | tr(tet%21%2), (9.37)

which combined with 1; and t{, respectively, yield 3 basis structures S.

Again, the structures (9.36) and (9.37) are not suited to be used within the color-
space formalism and are therefore mapped onto objects that naturally appear in this
context. The obvious choices for C; are 1; and t{. For the color structure Cy of
parton 2, we choose the same objects as in Section 9.1.2. Combining them to OV
and O color structures results in 11 4+ 3 structures, listed in Table 9.4. For each d-
symbol one includes a factor o (recall that o2 = 1), thus allowing for a simultaneous
treatment of parton 1 being a quark or an anti-quark. By the same arguments as given
in the previous section, no additional color structures are necessary. Therefore, the 14
color structures [3,4]

. 1 .
Xi]g ::ij Oéjf),F7 ng = FZJJ Oé{;;, Xi]g = J12 007
§>2 ¢ j>2
; 1 ; 1
Xy =Y J,0%,, X = > J,05 X =< J12Oar.
j>2 € j>2 ¢
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9.1 Color Basis

Two contracted indices | Three contracted indices Four contracted indices

o5} | Fo-T; Of)p |ifts BT | OY) | tiAg T

Ofp | 01Dy T O}y | ovif™ i DYT; | Ofy | 85 V5" T}

ofl |t Oy | ord™ et YTy | Oy | 8 {Fy, F}} T
o), | d e Dyt | O, | o8 {Fy. DY T

No contracted indices | Two contracted indices

Oy | 1 Oyr | 81 F

)

Oxp | o1t1-Dy

Table 9.4: Possible color structures with and without Tj for quark-gluon-initiated pro-

cesses.
1 ; ; 1
XY= > 00, XE =Y 08, X{] = 5112 Oup.
¢ j>2 j>2 ¢
X7 = ZJ OSdD?
7>2
ng = Z Jj O4A )
]>2
Xg7 = _ZJ O4FFa
C j>2
Xiy =~ Z Jj 02 D>
j>2
X = ZJ O}p., (9.38)
C i>2

are linearly independent and constitute a basis for the color algebra of (anti-)quark-
gluon-initiated processes relevant for the Glauber series. The factors 1/N. normalize
the traces (Han X9) to be at most of O(1) for all processes studied in Section 8.4.
Restricting parton 1 to be a (anti-)quark and parton 2 to be a gluon, one can translate
the SLL color structures to the above basis. We find

X, =X, X = N2 Xf§+ X147

a9 a9 1 ag a9 a9 N2 4
X2:X4 +2X5 +§(X6 +X7 >+X8 ; X7: N2 X14,

N2 4 (N2 —4)(N? - 3)
K=~ X' - X X = 3N s

95



Chapter 9 The Glauber Series

1 2
X, = gy (KPP XP) - XP o
X =X, (9.39)

where we used that ¢} = Cr and Cy = C4. Similar to quark- and gluon-initiated
processes, the consistency relations (8.49) are fulfilled and the super-leading terms in
N, also cancel for processes with one quark and one gluon in the initial state.

9.2 All-Order Structure

The all-order structure of the Glauber series can be obtained by expanding the path-
ordered exponential in (9.3). Similar to the SLLs, we find that the relevant color trace
Is

Cly = (Hosn (T VE . (T)"VOT®1), (9.40)

. 1 . .
where in total n = )., 7; cusp anomalous dimensions I'* and ! Glauber operators

V¢ are inserted. This color trace appears together with the iterated scale integrals

Bh dlll 25 dﬂ2 HKnti dﬂn 11 'u2
I{T} :U’hvlvbs — / / o / t chsp(as(,ul)) lnu_; s

s Hn+i+1 h
/~L %2"14-2
-« Yeusp (045(,“1“1)) In —- ,U%L Yeusp (Qs(urﬁrl)) Yeusp (aS(NﬁJr?)) In /JJ—lQL te
2
-+ Ycusp (Oés(un-i-l—l)) In Mn+l - Yeusp (as (/jln-i-l)) M : (941)
1 dm

The integrals over p; to p,, and i, 12 to fiy,4r,+1 of this expression result from the
ry and ry insertions of I'® in (9.40) and so on. To calculate the contribution of the
Glauber series to the partonic cross section, one would need to resum infinitely many

infinite sums o s -

=1 r1=0 r;=0

We avoid this problem in Section 9.3 by organizing the Glauber series in a more
convenient way.

The scale integrals associated with the Glauber series can be evaluated in closed
form when working with a fixed coupling oy = ay(jz) with reference scale . One
finds [2]
as

_ n+l (_2>n 2n+1+1
47'(' ,ycusp(a )

Cn+1+1)2n+1)

I‘l{z} (#h’ MS) fixed

(9.43)

(

l 1
XH Do 1n+k )
k=1 221 1Ttk — 1)”
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9.2 All-Order Structure

where we define (—2)!! .= (—1)!l := 1. For [ = 2 this reduces to (8.58) for the SLLs.
To show this, we change variables in (9.41) to L; = In(up/p;) and invert the order of
integration

a N Ls L3 Lo
—ZAn —2)" dL,, e dL dL
fixed 47‘(‘ chsp(a ) ( ) /0 +i+1 /0 2/0' 1

i=r1+2 i=r1+-+r_1+1

Iéz} (/’Lhﬂ ILLS)
(9.44)

Concentrating on the integrals and performing the ones with the explicit logarithms
yields

l

1 b A b2 T T2 2
H(2 ”/ dLH-l/ dle/ dLy (Lf — Li )" ... (L3 — L) LT, (9.45)
i1 it Jo 0 0

where the integrals over . L; with 1 <1 <[ originate from the Glauber operators and
the one over L;,; from I'. To solve these, we observe that for k <

L p—
/ dek—l (Li — Lia) ™ (Lk_l)Qlel e
0

(9.46)
I (22 =1 rl+k 3)” (L )22?217'7;+]€71‘

(221 1T1+k_1)"

The integral over L,_; thus increases the value of £ in the exponent by one and leads
to the prefactor. For k = 1 the second line is just L:" and we find

= (2ry)!

l

—1
i+ kE— 3\ Ls Ly
H z 1 r ) / dLl—H/ dLl Ll2n+l—1
0

k=1 221 1Tz+k3_1)”

L2t 235 r+ k= 3)

T @n+l+ )20+ 1) ,H 2Xr r+k—1)1

As we were not able to obtain a closed form expression for the iterated scale integrals
with running coupling in the SLL case, there is no hope to achieve this for the Glauber
series. Of course, one can calculate the integrals for [ given values of r;. However, this
does not lead to any new insights and we spare the work.

Considering next the color trace (9.40), we can use the results from Section 8.1.1
and find for [ =1

(9.47)

C)l =16ir N' (Hoy X1 ® 1) (9.48)

As described above, the hard function Hs_,)s needs to contain a phase to yield a
real-valued contribution. The result for the SLLs (I = 2) is given in (8.42) with r = 4.

With the color bases from Section 9.1 at hand, the reduction of the color traces for
higher [ is now straightforward. One first computes the action of I'“, according to (8.31)
and (8.36) for basis structures with and without final-state generator, respectively, and
V¢ according to (8.27), on all basis structures and then expresses the reduced color
traces as linear combinations of the basis structures with coefficients depending on [

and {r}.
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Figure 9.1: Example diagram for partonic 2 — 2 scattering giving rise to color struc-
tures with angular integral Jy2. The colors have the same meaning as in
Figure 8.2 but here four Glauber gluons are exchanged. Attachments to the
later emissions (darker blue colors) do not contribute, as V& maps color
structures without final-state generators to zero.

9.2.1 Quark-Initiated Processes
Similar to (8.37) for the SLLs, it is convenient to define the matrix representations
(HT°X!@1) =Y (HXI®1)N,(I),,

(HVOXI®1) = Z (HX!®1)irN. (V)

7

(9.49)

%’

of cusp anomalous dimension and Glauber operator in the basis X7 := (X7{,..., X7)
for quark-initiated processes. Recall that the implicit sum over j > 2 is different
between left- and right-hand side in the first equation as explained below (8.22). The
explicit forms of these matrices read [2]

10 0 00 0 =20, 5 00

01 0 00 —1 0 0 00
rr=joo I oo, V&=]1 0 0 0 0], (950

00 -1 10 0 0 0 00

00 =52 00 0 0 0 00

where 5 = 711 (01—02)? equals 1 for the ¢ initial states, and 0 for gq or g initial states.

The off-diagonal structure of V¢ implies that different color structures contribute for

even and odd values of [. Furthermore, the last two rows/columns are zero, i.e. the

Glauber operator maps color structure without final-state generator to zero, reflecting

that the soft gluon can only attach to the earliest collinear emission, see Figure 9.1.
Concluding from (8.18) that for quark-initiated processes

(HVET®1) =16ir(H X{®1) =16ir(HX'®1)c, (9.51)

where ¢ = (1,0,0,0,0)%, the Glauber series can be studied completely in the color
basis. We find for the color trace (9.40)

Cly = 16(im)! NI (Hoy X9@ 1) (D) VE L (D) V() 6. (9.52)
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9.2 All-Order Structure

The coefficients can be simplified as ¢ is an eigenvector of I'“ with eigenvalue vy = 1
and as A
WG (EC)T WG ¢ = |:K12 Ug + m U;:| (9 (953)
with v; = % and
N2 —4 B N2 —4

Ky = (01 — 09)? e = e da (9.54)

For even [ = 2/, the color trace with simplified coefficients reads [2]

14

ity = 5 (-7 Ve I [t |
¢ 1=2 c
1
X [— % <7'L2ﬁM X3 ® 1> + vy <’H2ﬁM Xi® 1> (9.55)
2
+ 20 = v') (Hooom X @ 1) + %(vgl — ) (Han X0 1))

Surprisingly, we recover the result (9.16) for the SLLs up to an additional prefactor.
If 64 = 0, i.e. for gq or ¢q scattering, this prefactor is suppressed in the large-N.
limit and, therefore, also the higher Glauber-operator insertions are suppressed in this
limit. In contrast, for ¢G scattering this is not the case. Combining (9.55) with the
iterated scale integrals (9.43) of the Glauber series, one obtains the contribution to the
partonic cross section as series in w and w,. However, deriving numerical predictions
from this result is complicated as one needs to perform multiple infinite sums. For
completeness, we mention that for odd [ = 2¢ — 1 the color trace is

. L

_ 1627 1 nma2d— 4

Coyt = ()N T [Klg + 3 vlm} (Moo X{®1) (9.56)
¢ i=2 ¢

which is just the result (9.48) for | = 1 with the same prefactor as for even [ values.
We note that in both cases the Glauber series is alternating in [. This statement also
holds for gluon- and quark-gluon-initiated processes, as we show below.

0.2.2 Gluon-Initiated Processes

Table 9.5 summarizes how the basis structures constructed in Section 9.1 are related
under the mapping of Glauber operators and cusp anomalous dimensions for gluon-
initiated processes. Obviously, the basis structures in X9 = (X7, ..., XJ,) are ordered
such that the first seven structures emerge from an odd number of V¢ insertions, see
fifth column, and the remaining 14 from an even number, see fourth column.! Applying
further insertions of V¢ does not create new color structures. Besides these 20 basis
structures there are nine structures which are not generated by the operators V¢ and
I'“ in the color trace (shown in the right portion of the table). The reason is that for
the gluon case the initial structure in (8.18) contains three f-symbols, and V¢ as well

!'Note that the operators from the first three columns are included in the fourth and fifth one as
well.
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VET (VO)?2T (VESET (VEIT (VEST never appear
x{  x{ Aslrp  ASp
xj X Alpy  Afpa
Xt X Agiav  Alprr
ST ot Adivrr Aflkrp
X3 X,
X X
X7, X7
X S2,F,D
X
Xy
Xy
X
X5
140 445 5+0 7+6 7+0 4+0 4+1

Table 9.5: Color basis for gluon-initiated processes. The different columns list the basis
structures appearing after given number of V& insertions. Structures ap-
pearing for the first time are indicated in black, whereas structures that have
appeared already before are indicated in gray. For a given number of Glauber
operators, application of I'“ does not create new structures containing T; but
does create the structures without T; shown in the lower half. The one excep-
tion from this rule is X7, which only appears after applying I'® to (VE)2T.
The two last columns list 8 4+ 1 basis structures that never appear starting
out from (8.18).

as I'“ contain two. Therefore, all structures with T} can only contain an odd number
of f-symbols, corresponding to the 14 operators listed in the left portion of Table 9.5.
On the contrary, for the basis structure without final-state generator, Tj is replaced
by an f-symbol, see (8.22), and consequently they must contain an even number.

Similar to (9.49) for quark-initiated processes, one can define matrix representations
of the Glauber operator and the cusp anomalous dimension in the physical® basis X 9.
These 20 x 20 matrices can be decomposed as

U 07y7 Orxe O7r DY) Oy
I = O7x7 V(j) O7xé | > VG: V(j) O7x7 Orxe | - (9-57)
Osx7 A 0 Osx7 Osx7 O6xe

The simple form of V¢ is the motivation for the ordering of the basis structures

2Physical in the sense that it only contains the 14 + 6 color structures appearing in the Glauber
series calculation and not the 8 + 1 structures from the last two columns in Table 9.5.
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9.2 All-Order Structure

in (9.31). Here the two 07,7 matrices on the diagonal reflect the fact that the structures
with T} can be split into two distinct subsets, each appearing only for an even or odd
number of Glauber-operator insertions. The last six zero rows indicate that structures
without final-state generator are mapped onto zero, similar to X{ and X7, whereas the
two 074 matrices in the last column indicate that V¢ does not create such structures
at all. The positions of the non-zero entries in I'“ indicate that the structures with
T; appearing for an odd number of V¢ insertions do not mix with those appearing
for an even number or with structures without final-state generator. Likewise, I' can
only map structures X7 with ¢ = 8,...,14 onto structures X7 with ¢ > 14. The
submatrices of T° and V¢ have been calculated using ColorMath [113] and are given
in Appendix A.6.

The reduced color trace can now be expressed as linear combinations of the basis
structures X9 as in (9.52) with ¢ := (1,0,...,0)” being a 20-component vector. Even
though ¢ is an eigenvector of ' irrespective of the nature of the initial-state partons,
no relation similar to (9.53) holds for gluon-initiated processes. Therefore, the coeffi-
cients in the reduced color trace can only be determined by performing several matrix
multiplications. One finds for even [ = 2/

16 .
C{r} N — (=7 ) Nnﬂg Z <7'L2%M X7 ® 1> (elr) (9.58)
and for odd | =2/ —1
01 16T 2\0—1 Arn+20—1 d g ~(L|r)
Cly' = (Cm)TINEEL Y (M X @ 1) & (9.59)
¢ i=1

Here, the coefficient vectors are given by [3]

L
). (H )72 ) (@) u))gh?’

l
C(“ﬂ) » : <H J) T2i—2 ~ ) (’Y(j))rm (J'))§|177 (960)

1=

‘
) = :\(Tl) V) ( H (i(j))r%2 V) (’V(j))mil VU)) §’1 77

15-20
=2

where the vectors are restricted to the components indicated by the subscript. Due
to the simple form of V¢, the complicate interplay of A\, v and ) in (9.57) is only
relevant for the (3,2) entry of the block (I'°)™, which we denote by A(ry).

To work out the contribution of the Glauber series to the partonic scattering cross
section for gluon-initiated processes, one combines the reduced color traces with the
iterated scale integrals (9.43). The situation here is even more complicated than for
quark-initiated processes, as one not only needs to perform infinitely many infinite
sums over {r} but also needs to determine the coefficients by multiple matrix products.
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VET (VOIT (VE3ET (VOIT
b D ¢
X5qg ng
X X9
X%
X
X4
X
X1
X1
X
X
1+0 6+2 3+0 8+3

Table 9.6: Color basis for quark-gluon-initiated processes. The columns and colors have
the same meaning as in Table 9.5.

9.2.3 Quark-Gluon-Initiated Processes

For quark-gluon-initiated processes the action of Glauber operator and cusp anomalous
dimension on the color basis X% = (X{9, ..., X{{) is sketched in Table 9.6. Similar
to above, the order of the basis structures in (9.38) is chosen such that the first
three elements emerge from an odd number of Glauber-operator insertions, see third
column, whereas the remaining eleven structures contribute for even numbers, see
fourth column. The insertion of five or more Glauber operators does not create any
new structures. In contrast to the gluonic case, all 11 + 3 basis structures constructed
in Section 9.1 contribute to the Glauber series.

The 14 x 14 matrices representing I' and V¢ in the basis X%, see (9.49) for their
definition, can be decomposed as

FU) 03y O3x3 O3x3 DY) 0343
I = Osx3 V(j) Osxs | > VG: V(j) Osxg Osxs | - (9-61)
O3x3 A v O3x3 0O3xg Ozxs

Here the positions of the non-zero submatrices reflect the same general properties as
in (9.57) and they are given in Appendix A.7.

The reduced color trace for quark-gluon-initiated processes takes the form (9.58)
and (9.59) for even and odd values of [, respectively. The coefficients are given in (9.60).
Of course, for odd values only the first three color structures (components) and for
even values the remaining eleven are relevant. The vector ¢ := (1,0,...,0)? contains
14 components in this case.
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9.3 Two Possible Expansions

We have seen in the previous section that the all-order structure of the Glauber series
is very intricate. On the one hand, even in the fixed coupling approximation the
iterated scale integrals (9.43) lead to a complicated ratio of double factorials. On the
other hand, the coefficients of the basis structures in the reduced color trace (9.52)
are not given by scalar functions but rather need to be determined through matrix
multiplication. After combing these two results, one is left with infinitely many infinite
sums that need to be performed in order to determine the contribution of the Glauber
series to the partonic cross section. To circumvent dealing with this complicated
structure, we discuss an alternative approach of how to organize the Glauber series in
the following.

9.3.1 Expansion in V&

In the standard counting scheme oy Ly = O(1) it is convenient to expand the evolu-
tion operator (9.3) only in V¢, while keeping the double logarithms exponentiated
through (8.7). We then find a generalized version of (8.6) for the SLLs

H d/h " dﬂz Mo dp
o ({n}, o, pis) = R
s Hi+1

(9.62)
[H U* (i1, 1) Yeusp (vs (1)) VG’] as(pir1) T

47

where g9 = pp, and the terms in the product are ordered from left to right according
to increasing values of 7. The Glauber series is then obtained by summing all possible
terms

Usir+c({n}, pn, ps) = Z UL ({nd, n, ps) - (9.63)

From (9.62) it is evident that all double logarithms originate from multiple generalized
Sudakov operators. It is straightforward to generalize this expressions to include mul-
tiple soft emissions, i.e. multiple insertions of I', as well as insertions of the collinear
anomalous dimension (8.2). This provides a convenient RG-based framework to study
subleading logarithmic corrections to non-global observables in future work.

In the following, we restrict the discussion to quark-initiated processes. However, a
generalization to gluon- and quark-gluon-initiated processes is straightforward. Trans-
lating cusp anomalous dimension and Glauber operator to their matrix representations
in the basis for quark-initiated processes, see (9.49), and using (9.51), we find for the
contribution of the Glauber series to the partonic cross section [4]

GG (Qo) = > (Hasnr () X7 @ 1) UG (110, 1) < (9.64)
=1
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where

| m g He g
! apy aftz Hi4+1 e
UéliL(luhnuS) =1 Z7T Nl 1/ / / ,UlJ: U( h?ﬂ’l)
Ms

o (9.65)
X [H Veusp (as(ﬂi)) VU, Mi+1)] Yeusp (043(#1)) M .

, 4
=1

The matrix representation U¢(p;, pj) of the generalized Sudakov operator, defined
n (8.77), takes for quark-initiated processes the form

Ue(1; i, 145) 0 0 0 0

0 UC(1; i, 145) 0 0 0

U (i, p1) = 0 0 U“(3; i, 145) 0 0
0 0 Q[UC(%;M,MJ') - UC(L/M,M)} Ue(1; i, i) O

0 0 U] 0 1

(9.66)
and all double-logarithmic effects are resummed into the scalar Sudakov factors (8.75)
with eigenvalues vy = 0, v; = % and vy, = 2.3 It is instructive to explore the matrix
structure of the result (9.65) in more detail, using that

0 20 MU ) o Ui ) 00
—3 UL i, p1y) 0 0 00
VOU (i ) = | UL iy 1) 0 0 00
0 0 0 00
0 0 0 00
(9.67)

As eigenvalue vy = 0 does not appear in this expression, it can only contribute through
the leftmost factor U¢(uy, p1) in (9.65). The multiplication with the vector ¢ in (9.64)
projects out the first column of the product of (I — 1) such matrices. It follows that
for odd values of [, only the first component of the resulting vector is non-zero, while
for even values of [, the first component vanishes but the remaining four components
are non-zero. Using the fact that the vector ¢ is an eigenvector of I'“ with eigenvalue
ve = 1, which is true irrespective of the nature of the initial-state partons, see (8.74),
the rightmost factor U¢(py_1, i) always generates U¢(1; y;_1, 7). Note also that the
(1,3) entry of the product V& U¢(u;, ), which contains the only contribution corre-
sponding to the eigenvalue v; = %, vanishes in the large-N, limit. In Section 9.5, we
exploit this fact when treating higher-order terms in the Glauber series in the large- N,
approximation.

To calculate the coefficient vector UgﬂL(uh, ps) s in leading order RG-improved per-
turbation theory, we change variables in (9.65) to z; = a(u;)/as(pn) and use the
one-loop approximation for the cusp anomalous dimension in the Glauber terms (with

SRemember, U¢(0; p;, ptj) = 1.
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v = 4). Inverting also the order of integration, one finds

U3 s dy r, [“tdx 2 dg
| ! — l -1 1
(SﬁL(uh,,us) ( ) Ncl 1 — /1 In S /1 -

0 Z IrJ1 T T
1 (9.68)
x U pns 1) [HVG Uc(ﬂivﬂiJrl)] ,
i=1

where the integral over z;,; is already performed and the scalar Sudakov functions
U¢(v; pi, pbj) expressed through the variables x;, x; can be found in (8.82). This formula
accomplishes the resummation of the infinite series of terms involving [ insertions of
Glauber operators at leading order in RG-improved perturbation theory. For the first
two terms, we find

160w dx c
USL (s 1) s = R /1 x_lll x_lU (L, pas 1) s, (9.69)

where the right-hand side is proportional to the vector g, i.e. only its first component
is non-zero, and

Ts dx 2 dx
UL, (i 1) s = —° ﬁ N/ —21n— —
0

1T
0
X Ue (2717/”17[1'17[1'2)

2[U%(5, 15 pny i, p12) = US(L; pa, o))
%[Uc(l’/’“’u@) Uc(27 7,uh7:u17,u2):|

This result is equivalent to (8.81) for quark-initiated processes. Here, we have used
the identities

US(1,1; i, pias pi2) = UC(L5 pans pi2) U0, 1; piny i, pi2) = US(L5 i, pi2) ,  (9.71)

which follow from (8.76). As already explained above, the last eigenvalue always
equals 1 and eigenvalue zero can only appear in the first entry. As we proceed to
larger [ values, we find

64im3 dz 3 daxy dx
U (s f15) s = — 51 Nf/ =4 ln— / —
0 1 I3

(9.72)
X [Ku US(1; pn, pi3) + Uc(17§,1,uh,u1,u27u3)}
and
12874 dz Tdrs [Tdrs [T dx
UL (1 1) s = 7 NS’/ — ln— / 2/ — (9.73)
0 1 T4 1
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0
_% [KIQ UC<1;,LLh>,u4) + Nig Ue (17 2 1,/Lh,/,62,/,63,/,64):|
KIQU (27 ]-muhnul)l’bél) UC(%: ,2,1,Mh,/u1,1,/$2,/l3,/,64)

2[K12 Ue (27 1aMh;M17M4) + Nig Uc(%a L, %7 1;:“}17,“17//“27#37”4)]
(

—2[K12U(1;uh,u4)+%U 1,%,1;%,#2,#3,#4)]

&[Klz U(1; pua, pa) + UC(17;71,M17M27M3;N4)]

_NL[K U(Qa 7/’%7;“17”4) UC(Qa 72717,uh7:u17,u27u37/’64):|

with K5 defined in (9.54). In the all-order analysis (9.53), one finds the same behavior,
the term with eigenvalue v; = % instead of vy = 1 is suppressed in the large- N, limit.
The integrals over the x; variables can be performed numerically without much effort.

Similar to the above discussion, one can derive the coefficient vectors for quark-
gluon- and gluon-initiated processes. In the first case, the vector has 14 components
and all eigenvalues in (8.48) together with

contribute. In the latter case, the coefficient vector has 20 components and also the

three eigenvalues
2N.+1

N,
where vy correspond to the plus sign, appear. In Section 9.6 we compare the contri-
bution to the partonic 2 — M cross section for different values of [.

(9.75)

vg =2, V910 =

9.3.2 Expansion in I'“

As already discussed at the beginning of this chapter, for typical values of @) and Qg
the two expansion parameters w and w, are both of O(1). It is thus a priori not clear
whether one should expand (9.3) in V¢ or I'“. Expanding in the latter, one finds [3]

n d M1 d Hn41 d n
Ué )({ﬂ}aﬂhaﬂs) ::/ H,l / IU2 te / M +2 UG( h,,ul) (976)

s Mnt2

[HF “Yeusp (Oés(,uz>> 111 p, UG(MZ’NH—I)] 7Cusp(as(,uzn+1)) A4S WF,

=1 h Ar

where the Glauber operator is kept exponentiated through

U (i, p15) = exp [VG/#M%L%usp (%(M))] - (9.77)

J
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By summing over the number of I' insertions n, one recovers the evolution operator
of the Glauber series

Usiira({nd, i, ps) = > US (), pon, prs) - (9.78)

A similar strategy to include higher-order Glauber operators through exponentiation
in parton showers was investigated in [53].

Similar to the discussion above, we restrict in the following to quark-initiated pro-
cesses. The generalization to gluon- and quark-gluon-initiated processes is discussed
at the end of this section. Expressing the evolution operator (9.76) in the color basis
X1 for quark-initiated processes, one finds

e m Hntt
U (pny i) = 1627TN"/ Ml/ -2 / 2 U6 (i ur)
“w

s Hn+2
( ) (9.79)
c ,LL Qs Un
H IF P)/Cusp (&S(Mz)) l ) U (;uza ,Ui+1) f}/cusp (as (ﬂnJrl)) —+2 3
i=1 M, 47
where the matrix representation of U% is
G . G Hi d,LL
U™ (i, py) = exp |im NV FvcusP(as(u)) : (9.80)
15

Due to the factor ¢ in this definition, the matrix exponential can be expressed as linear
combination of sines and cosines. We find

0 0 0 00
0w o 00
U (i, p5) = | 0 2[@,2,—]33] [v2 Nicg} 00
0 0 0 10
0 0 0 0 1
1 0 0 00
0 [U?r_]\?g} N§22 00
+ cos u” (vg; i, ;) | 0 Q[Nig vf,] N§U2 00 (9.81)
0 0 0 00
0 0 0 0 0
0 2[g—vi] x7z 00
—ﬁ 0 0O 00
+ 4 sinu® (vg; i, 1) -+ 0 0 0 0],
0 0 0O 00
0 0 0O 00
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where all Glauber phases are contained in the scalar functions
a i d,u
u (UTF; Hi, Mj) = UrT Nc 7 VYeusp (O‘s<,u)) . (982)
1

The matrix V¢ has only one (modulo a sign) non-vanishing eigenvalue v,. It differs
for qq or g and g scattering

2
— for qq or qq scattering,
vy = Ve (9.83)

1 for qq scattering.

In the large-NV, limit, the matrix (9.80) becomes the unit matrix for ¢gq and §q scat-
tering, reflecting the suppression of higher Glauber terms.

Similar to (9.68), we change variables in (9.79) to x; = as(u;)/as(pr) to determine
the coefficient vector in RG-improved perturbation theory. Using the one-loop approx-
imation in the Glauber terms (with vy = 4) and keeping the two-loop expressions for
the cusp anomalous dimension, we find

n . on+d —47 N, nooprs dz,, Ts Tni1 dzx,, 2
Ué)<uhaﬂs)zlﬁn_—i-2|:—:| / L n / _/ it
1 1 1

0 Bo aup, Tn41 Tn41 T, x

x U (pp, ) [HEC U (i, i) (1 - %) (9.84)

i=1 v

an|(m B Bz Inx;
fe3l(z- 2o
{ 4 [\  Bo Bo 1—u;
where we already performed the x,.5 integral and inverted the order of integration.
As for the iterated scale integrals (8.63), it is important to keep the two-loop terms
for cusp anomalous dimension and S-function to work at leading order in the strong

coupling. The factor im originates from the rightmost insertion of a Glauber operator
in (9.76). The scalar functions (9.82) are in this case given by

fYO'UTI'NC X
uG(UW7MZ7M]) = 2/80 nz_J

For the coefficient vector with n = 0 insertions of I', the factor with the product
over 7 is absent. After carrying out the x; integral, we find [2]

8 i [1—cosu®(va; pun, phs)
U(O) , _ 1 A e s s
R A W (om i) )

(9.85)

0

1 [sinuG(vﬂ;uh,/Ls) 1} : } (9.86)
0
0

N[

E uG</U7T;,uh7ﬂs)
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where the term with the cosine only contributes if the hard function H._,3; contains
a non-trivial phase. Including one insertion of the cusp anomalous dimension yields

0
1
12872 N. [ dxy . x5 [*dx; 2
LSl P R B O A Y CR T
G (s pts) Byon ve Sy w2 nxz LT sinu”(vn; i, po) 12
Cr
2 Ne

- [sinuG(v,,;,uh,ul) cosuG(vﬂ;,ul,,ug) - (1 - N2v2) (9.87)
C T O

_1
2
X [1 — cos uG(v,r; ,uh,ul)] sin uG(v,r; [, /@)] }

+ ...,

where the ellipsis denote terms that only contribute if the hard function contains non-
trivial phases. The two integrals can be performed numerically without much effort.

Generalizing the above derivation to processes with gluons in the initial state is
complicated by the fact that in this case V¢ has several non-vanishing eigenvalues.
For gluon-initiated processes they are

2 N.+2 N.—2
1, — .
Uﬂ' E { Y NC 9 NC ) Nc } (9 88)
and for quark-gluon-initiated processes
2 N.+1 N.—-1
U € {FG s Nc 5 Nc } . (989)

The matrix (9.80) can then still be expressed as linear combinations of sines and cosines
but one has to sum over all eigenvalues [3]

Vo 0 0 Vo 0
U(pip) = 0 Vo 0+ cosu®(vmipmipy) | 0V,
0 0 1 v 0 0
) (9.90)
0 V., 0
+iZSinUG(Uﬂ—;Mi,Mj) Vv, 0 0],
U 0 0 0

where the different submatrices can easily be derived from (9.57) and (9.61). With
the explicit results at hand, one can straightforwardly derive the coefficient vector
Ugf )(Mm is) s for partonic scattering processes with gluons in the initial state. In
Section 9.6 we compare these results to the ones obtained by expanding in V¢, i.e. by
including all double logarithms.
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9.4 Fixed-Coupling Results and Asymptotic Behavior

For the standard counting scheme o, Ly = O(1), the double logarithms are o, L? > 1
and, therefore, it is convenient to study the asymptotic behavior of the Glauber series

in this limit. The large-w asymptotics of the SLLs are derived in Section 8.3 and one
finds

as(f1) L

TN w, In(4w) . (9.91)
In this section we generalize this analysis to the full Glauber series.

The result (9.65) provides a convenient framework for performing studies of the
asymptotic behavior for w > 1, since it resums all double-logarithmic corrections.
To study the large-w asymptotics, it is sufficient to evaluate the evolution operators
with a fixed coupling a; = a,(fi), since the scale dependence of the running coupling
is a single-logarithmic effect. Using also the one-loop approximation for the cusp
anomalous dimension (v = 4), we find by changing variables to L; = In(u,/u;) and
rescaling L; = z; L

) N1 Ys ot o =
Ut (pn, prs) = 4(im)" N, (— LS> / dz (1 — zl)/ dzj_q -+ / dz;
0 0 0

™

USLL({E}, Hh, Ms) ~

. (9.92)
x We(fa, 1) [HWG U (s, ,ui+1>] :

As in the first part of Section 9.3, we need to evaluate multi-dimensional integrals
over concatenations of U¢(v; p;, ptj) with different eigenvalues. The last eigenvalue is 1
irrespective of the nature of the initial-state partons, since ¢ is eigenvector of U¢(yu;, f15).
We define the generalization of (8.85)

1 z] 22
/de(l—Zl)/ le—l"'/ dzr U(viy, - iy 15 s iy -+ )
0 0 0
1

= E(/Uz‘l,-~~7vil_1;w)7

(I +1)!

(9.93)

where the scalar evolution functions expressed through the variables z; are given
in (8.84). In the following, we collect explicit expressions for the coefficient vectors

UgﬁL( fins tis) ¢ and the relevant functions as well as their asymptotic expansions. While
individually the factors U¢(v; ;, ;) in (9.93) exhibit exponential suppression, the ad-
ditional scale integrals lead to a different functional dependence of the resummed
expressions.

Casel =1

For [ =1 the coefficient vector is given by

. (O 2
UL (tns ) s = 2277(? Ls) Y(w)s. (9.94)
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This formula holds for all types of processes, only the number of zero entries in the
vector ¢ varies. We find for [ = 1 only one function

Sy = YEretV) et =1V % + O™, (9.95)

w Vuw

where the last formula shows the complete asymptotic expansion for w > 1 up to
exponentially small terms.

Casel =2

The case | = 2 are the SLLs, which are studied in great detail in Chapter 8. If one
is only interested in them, it suffices to consider the color structures {Xi,..., X1}
with coefficients (8.90) in the fixed coupling approximation. However, as this set is
not appropriate to describe the entire Glauber series, one needs to work with the bases
constructed in Section 9.1. For quark-initiated processes and for [ = 2, the coefficient
vector is given by

0
1 .
2) 2m? s - \3 2 Xi(l’ w)
Usr (1, ps) s = 3 Ne <? Ls> Y(55w) : (9.96)

Considering processes with gluons in the initial state, the results become quite lengthy
and we do not show them explicitly. The three different X-functions as well as a form
for generic eigenvalues v > 0 are given in (8.68) and (8.86). Their asymptotic form
can be found in (8.92) and (8.93).

Casel =3

For [ = 3 Glauber-operator insertions, the coefficient vector is

i

6

Qs 4
UéSL)L(NhnLLS)g = Nc2 <? Ls) [K12 (1, Lw) + ]éf (1, %;w)} <, (9.97)

with K5 defined in (9.54). The only two functions relevant when considering quark-
initiated processes are

Vrwerf(yw) +2e™ — 2

w2

(1L, Lw)=3

9

(9.98)

)9 )92

1
Y(1, 3 w) = 12/ dz (1 — 2)22 e 7, Fy(1,1; 2 2;22%).
0

4Recall, for quark-initiated process the vector ¢ has 5 entries, for quark-gluon-initiated processes 14
and for gluon-initiated process 20.
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Their asymptotic expansions read

3vm 6 w
2(1,1711}): w3/2 _E—i_O(e )7
Jrl (9.99)
6y/mIn2 3w _w
2(1,%, ):W—ﬁ—l—(’)(e 2).

To obtain the second result, we have replaced the upper integration limit by infinity,
using that the hypergeometric function behaves like 2F5(1,1;2,2;y) ~ y=*/%¢eY for
Yy — 00.

Casel =14

Considering the second Glauber pair, i.e. the first corrections to the SLLs, the coeffi-
cient vector of the color basis X is given by

0
K21, 1,1 w) + 5 21,1, 5 w)]

K231, Lw) + 45 2(5, 1, 55 w)

29 Y I

o

U _ TN (LY
SLL(Mh,MS)§ = % c <? s) 2[_;(122(27 1, Lw) + ]\4%2 E(%,l,%;w)]
—2[K123(1, 1, Lw) + 55 2(1, 1, 53w)]

&[KQZ(O,LLIL})‘{'AZ(O,L%,
2CF [sz( L 1; w)+ w2 E(%,l,%;w)}

27ty by

(9.100)
One encounters six functions, four of which can be expressed in closed form. They are

5 {4+ 27" 3\/7_rerf(\/ﬁ)} |

(1,1, Lw) = 3 " e

S 1,1 w) = 125\/— {2\/_—21n(1+\/_) 427rT<\/_ %)]

- ()]

20,1, Lw) = 15 MPerf(\/a) —e v erﬁ(\/ﬁ)] ;

w2 2wd/2?

(9.101)

S 1, ) = 3?;2/5 [2 In(1 4+ v2) — V2 + 4¢7TT(\/%, %)}

B - 5) (5]
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For the remaining two functions we have obtained one-dimensional integral represen-
tations

(3,1, Lw) = /Oldz [% o erf (Vi) — exf (Viuz)] - e Smh(w(l_—zz)ﬂ

W 2

1
x 30 2% 9 Fy(1, 1; %, 2; —iwzz) ,

503w = [ [ et (Vi) —ent ()] - e s ()]

w 2

x 30\/5{111(1 +V2) + 2in (T(ﬁz, iV2+0) i)} , (9.102)

which can readily be evaluated numerically and the 70 prescription in the last line is
need to regularize the pole at t = i of (8.88).

The asymptotic forms of these functions for w > 1 can be obtained by applying
the method of regions [7] to the defining integrals (9.93). In general, these integrals
receive contributions from the “soft” region z4 ~ w~? < 1 and the “hard” region
z4 ~ 1. However, we find that in the cases where all eigenvalues are non-zero the
hard region gives rise to exponentially suppressed contributions, while for v;, = 0 it
contributes terms starting at O(1/w?), which are suppressed relative to the two leading
terms scaling as 1/w? and 1/w®/2, respectively.® It thus suffices to focus on the soft
region, for which the upper limit on the integral over z; must be replaced by infinity.
Introducing new integration variables via the substitutions z; = t129, 20 = t323 and
z3 = t3z4, and performing the integral over z4, we then find up to higher-order terms

! ! ! 1 1 37 1
. . .. — 2 -_
E(UZI,UZQ,UZB,w)‘w>>1 60/O dtl/o dt2t2/0 dtsts LUQ 2 il N2 (9.103)

with

A=, titats + v, (1 — ) t5ts + v, (1 —t3) 15 + (1 —13) . (9.104)
Performing the three parameter integrals for the cases of interest, we find the asymp-
totic forms

10 157 »
E(lvlalaw) = E_ 2w5/2 0(6 )a

152 -v2In(1 +v2)] 157 (2-V?2) w

w2 wb/2 +O(6_2)7

53,1, w) =

1 1
0,1, Lw) = 22— YT o3y,

w2 w52

5The sign of the 30 prescription and, therefore, the sign of the % is opposite to the one used in our
paper [4]. The current version is identical with the internal definition of Mathematica and allows
for faster numerical evaluation.

6For [ = 2 the hard region gives unsuppressed contributions for v;, = 0. This fact is responsible for
the In(4w)/w term and the absence of a term proportional to w~3/2 in the expression for ¥(0; w)
in (8.93).
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Figure 9.2: The Y-functions for [ < 4 are shown from bottom to top in each panel
in the order in which they are presented in the text. The relevant eigen-
values are v € {1,3,0} for I = 2, v € {1,4} for | = 3, and (v,0) €
{(1,1), (%,1), (0,1), (1, %),(%, %),(0, %)} for I = 4. The dashed lines show
the asymptotic large-w behavior for the case of ¥(1,...,1;w).

60 30 21 v
(L1 iw) = 2 [V2In(1+v2) - 1) - ﬁ{fﬁi ) Lo,
152572 3 , 15v/27 In2 W
N(z: Lgiw) = = {4 _511122_12&2(\/%)]_ oz o),
In?(1 2 In(1 2
(0,1, 1 w) = 20 TV2) B0VT (VD) L (9.105)

w2 wd/2

In Figure 9.2 we show the relevant functions X-functions for [ < 4. As a representa-
tive example, the dashed line shows the asymptotic behavior for large w for the case
of the function 3(1,...,1;w). We observe that for higher values of [, the asymptotic
forms start providing a good approximation at increasingly larger w values. Note also
that for given [ the differences of two functions belonging to different eigenvalues v;
are much smaller than the individual functions. As a consequence, we find that the
coefficients of the color operators X{ and X/ are considerably smaller in magnitude
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than those of the operators X3§ and X3, cf. (9.96) and (9.100).

All-order asymptotic behavior

The technique described for the case | = 4 can be straightforwardly extended to
higher values of [. Focusing on the functions needed in (9.92), it follows that the
leading asymptotic behavior for w > 1 is

1
w2’

Y (Viyy e ey Uy ;W) ~ (9.106)
with the single exception that for ¥(0; w) there is an extra factor In w in the numerator,
which for quark-initiated processes enters only in the fifth component of the evolution
vector. For the generic case, we find [4]

il

i) +1 1 I
[U(l) ~ (ZT() -1 (aS > o 1 Qg Lig 1/2
SLL(Mh):uS) (l I 1)| Nc T Ls U}l/2 - (l T 1>‘ 7TNC w; . (9107)

Remarkably the dependence on w cancels in the asymptotic limit. In the conventional
counting scheme a;Ls = O(1), where w ~ 1/a, and w, ~ ag, higher-order Glauber
exchanges are parametrically suppressed in addition to the factorial suppression. It is
thus to be expected that higher order Glauber terms yield considerably smaller con-
tributions than the SLLs. Comparing numerical values, also the alternative counting
scheme o, L? = O(1) can be justified. In this case higher-order terms in the Glauber
series are even stronger suppressed.

9.5 Large-N. Resummation

So far, our studies of the Glauber series relied on the expansion in either V& or
I'“, see Section 9.3, or in both of these operators, see Section 9.2. We were able
to determine the coefficients of the basis structures relevant for scattering processes
in QCD in leading-order RG-improved perturbation theory for a given number [ of
Glauber-operator insertions or alternatively for a given number n of insertions of the
cusp anomalous dimension. Furthermore, we determined the asymptotic behavior for
w > 1 for all terms of the series in Section 9.4. However, we were not able to resum
simultaneously in V¢ and I'°. In this section, we overcome this issue and perform
a full resummation of the Glauber series for large N.. As the Glauber series itself is
subleading in 1/N. compared to e.g. the NGLs, this corresponds to a resummation of
next-to-leading terms in the large- N, expansion of the respective cross section.

0.5.1 Quark-Initiated Processes

We begin by presenting the resummation of the Glauber series in the large- N, limit for
quark-initiated scattering processes [5]. In this limit, the contributions of higher-order
Glauber-gluon exchanges simplify. In (9.72) and (9.73) only the terms proportional to
K15 prevail and their prefactor simplifies to

Ky = 04 + O(1/N?). (9.108)
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As the terms with unordered eigenvalues are subleading, it is possible to perform most
of the integrals over the z;, e.g.

1627 dx T 1 (2imN, 2 .
Ué?’L)L(uh,Ms)g:_Q/ _31n 5qq '( lnxg) U(1; pon, p13) S + -+
B 1 T3 2 Bo
(9.109)

where ellipsis denote subleadlng terms in the large-N,. expansion. The structure of
this result is similar to U(SLL(/”Z? s) s in (9.69), aside from the additional factor in the
integrand. At higher values of [, the feature remains, i.e. higher-order contributions in
the Glauber series are absent for ¢qq and ¢q scattering.

For large N, the (1,3) entry of V¢, given in (9.50), vanishes, leading to a substantial
simplification. In this case, the relevant block in the Glauber series fulfills

VU (i, 1) = VEUSL; i, 1) (9.110)

where the structure of U(p;, ptj) remains unchanged. Applying this important result
leads to a simplified version of (9.68)

U 23 (o dyy  wy [Tdu 72 da
! S -1 1
(SIiL(Mh,,uS) (m) Né 1 l+1 /1 — In—= - /1 a1

Zi Zi Li-1 L1 (9.111)
C -1 C
X U (s 1) (V) U (L5 o ) 6
In the case of odd | = 2¢ — 1, the remaining matrix structure simplifies as ¢ is

an eigenvector of (V%)% with eigenvalue d,5. Exploiting further that U¢(up, 1) s =
U°(1; up, p11) s, one can trivially perform the z;-integrals for i < [, yielding
2ir)2-1 N2 st

20 (20— 2)

—
D (1, ) 6 = 8
(9.112)

s ]
X/ ﬂl l 2= 233‘[ Uc(l /Lh,,ul>
1

x x
While for even | = 2/ the vector < is not an eigenvector of (V)?*~! one can use

(VO o = g1yl (9.113)
and perform the integrals over the x; variables for 1 < ¢ <[ to obtain

(2¢) (2i7‘(‘)2£ N2£71 0—1 dxl Ls “dxy 20—9 T|
USLL(/“L; :uS) =38 20+1 (2€ 2)| 6qq In — In -
1

0 x T )1 1 T
0
—L U1 i, ) (9.114)
X Uc(z, My H1s )

[UC<27 a,uhaﬂla,ul) - UC(].,/Lh”U,l)}
%[UC<1’/‘L17/“) UC<27 a,uha/lla/il)]
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Note that while the factor % in the last component of this expression should be

replaced by 1 in the strict large-N, limit, we prefer to keep it in its original form, as

this ensures that the terms with [ = 2, i.e. the SLLs, are reproduced exactly.
Resumming the Glauber series in the large- N, limit is now straightforward. Keeping

in mind that 55;1 =1 for £ =1 also for qq and ¢q scattering, we find for odd [

16em dx
ZUSQLZLI Mhaﬂs)§ = —/ -2 111_ UC(]' Mha/’m)
1

53 X2 T2

N,
X {1 — 2043 sin? <7Tﬁ— In 1:2)1 S,
0

where the right-hand side is proportional to the vector ¢, i.e. only its first component
is non-zero. For even values of [, a double integral prevails as also the eigenvalues 0
and % contribute. We find

(9.115)

167 27N, (" dxy dm [ .9 (WN $2>]
U s s 2, L — 2045 Sin
Z SLL (tans pos) TR By )i wm o w)i m * fo  m
0
3 Uc(l':uhnu’Q)
X —UC(271,Mh,M1 Mg) . (9116)

2[U°(1; pn, pr2) — U5, 15 pans i, o)
UG L s g, o) = UL, o)

Combining (9.115) and (9.116) yields the resummed Glauber series in RG-improved
perturbation theory, containing at most two scale integrals. In these expressions, the
1 inside the square brackets corresponds to the SLLs, whereas the term proportional
to d45 accounts for the effects of higher-order Glauber phases. It is therefore evident
that the latter effects always reduce the contributions of the SLLs, albeit typically by
a small amount, see Section 9.6. Note that for tree-level QCD processes, only an even
number of Glauber-operator insertions contribute, as the cross section is real-valued.
In general, however, the Glauber series contains both even and odd [ values, where
the latter are relevant e.g. for cross sections involving electroweak gauge bosons [64].

Fixed-Coupling Results and Asymptotic Behavior

The asymptotic behavior of the resummed Glauber series in the limit «gL? > 1 can
be determined with the same techniques developed in Sections 8.3 and 9.4. Ignoring
the running of the strong coupling, as it is a single-logarithmic effect, one can use

SLS
zl—i—ﬂoa z

(9.117)
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with fixed coupling as = o, (1) evaluated at an intermediate scale ji € (us, ptp). The
fixed coupling version of (9.115) reads

4@045 _
ZUSQLEL 1) ,Uh,,us) ¢ = ,/ / dy2 1 — ﬁ) e yg
X {1 — 26,4 sin’ ( V;U” 2>]g,

where we inserted (8.84) and rescaled y; = \/wz;. Its asymptotic behavior for w > 1
can be obtained by replacing the upper integration boundary on ys by infinity yielding

(9.118)

2ia L Cwr
ZUsﬁs o) = 2 T VAL~ 0(1 - )]

(9.119)
1
\/E{ 5qq\/w7rF( )]+O< )}Q
where the Dawson function is defined as
F(z)=¢* / dze® = \/7% e erfi(z). (9.120)
0
For even values of [, we find working with a fixed coupling
40ésLs Vw Y2 —y2 v2
ZUSLL :uhhus = - 7TNC ,wrr/0 dy? <1_ﬁ>e 2/0 dyl
0
_1 (9.121)

3

2
X {1 — 204q sin? ( ;U” (y2 — yl))] ez ¥i
2(exvi —1)
2 (o1 — b

c

In almost all case it again suffices to replace the upper integration boundary on y»
by infinity to obtain the asymptotic behavior. By the method of regions analysis
in Section 9.4, the hard region only contributes for the last component in the term
without the sine. For the three relevant integrals, we find

Vw Y2 e
y 2 . W
/0 dys (1 — _\/QE> e Y2 /0 dy; [1 — 204g sin? ( 5 (y2 — yl))}

LR o e (R | FEC)

(9.122)
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and
/Oﬁdyg (1 . %) v /Odeyl {1 — 95, sin® (@ (o — yl)ﬂ 3t
_ 1n(1\4/r§\/§) B Q\Z_w . {% +V2in T T (7, ) (9.123)
+ Z\/% e (erf(@) — erf(%))} +O(e7?),
and

Vw Y2 fr—
y2 —y2 . w’]T 2
/0 dys (1 — _\/E> e 2 /0 dy; [1 — 28,4 sin’ (T (y2 — yﬁ)} eVl (9.124)

~ In(4w) +vg — 2 5 l
- 4 — Yqq

T/ Wy
8w

In agreement with our findings in Section 9.4, it turns out that the dependence on the
variable w of the Glauber series cancels in the asymptotic limit for all but the fifth
component, which has a residual logarithmic dependence on w.

o 2F2(17 1;3,2; —%) -

3 2, 4 erf(*/;]i”)] +O(w™).

0.5.2 Gluons in the Initial State

There are two reasons why the resummation of the Glauber series for quark-initiated
processes is particularly simple in the large- N, limit. First, the relevant building block
VE Uy, p17) fulfills relation (9.110), allowing us to perform all except (at most) two
scale integrals and to simplify the matrix structure in (9.68). Second, I'“ remains
diagonalizable in this limit. As soon as gluons are present in the initial state, these
properties are lost, complicating the resummation [5].

The up to eleven different eigenvalues of I'°, given in (8.48), (9.74) and (9.75),
degenerate in the large- N, limit to only five distinct ones

vy =0, v = vy =1, vr = — vg =2, (9.125)

5 )
where vg only contributes for gluon-initiated processes. As for quark-initiated pro-

cesses, Sudakov factors with the eigenvalues vy and v; only arise from the last insertion
of U(pp, 1) in (9.68). Therefore, the generalization of (9.110) reads’

VEU (i, p5) = VUL iy 1) + V00 U35 iy 1) + VG U2 iy 1) . (9.126)

As ¢ is an eigenvector of U¢(p;, pt;) with eigenvalue U°(1; pu;, p1;) irrespective of the
nature of the initial-state partons, the coefficient matrices fulfill V?,G/Qg = VS¢=0.

For quark-gluon-initiated processes V§ = 0 because the eigenvalue vg does not appear.
Furthermore, the coefficient matrices satisfy

VEVE, =0, VE, Vg =0, VéV§ =0, ViV =0, (9.127)

"Note that V' depends on p;, {t;; however, this dependence is irrelevant as explained below (9.129).
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ensuring that the eigenvalues (9.125) only appear strictly ordered in magnitude. The
only exception is the first eigenvalue, which can take an arbitrary value.

There is one more subtlety that needs to be taken into account when dealing with
gluons in the initial state. Since I'° is no longer diagonalizable once the large- NV, limit
is taken, its matrix exponential U®(y;, pt;) with full V. dependence contains terms of
the form

NU (3562 i, 1y) — U (355735 i, 13) | = 2 Inpais 1) U35 s, p3) + O(1/NZ)
(9.128)

with the integral
2

i d,u 1
Ih(/% :u]) = NC/ — ’Ycusp(as(:u)) In T2 (9129)

which counts as O(1) in the large- N, expansion. This effect arises for all V.-dependent
eigenvalues of ', i.e. for vsy4, vse and vg19. As consequence, the coefficient matrix
V§ in (9.126) depends on pu;, ;. Fortunately, this dependence drops out in the only
relevant product V§ \/3 - Therefore, we can treat V§ as scale-independent in the
following. The coefficient matrix \/3?/2 does not depend on i, 1t; at all.

Inserting the decomposition (9.126) in (9.68) and exploiting the properties of the
coefficient matrices, one finds

QU3 rTs gy U dxy 2 dx
! ax -1 1ye
UG )5 = Y N Sy [T [P0 / )
— L l—i
XUVS (s m) + Y (VS) T (VE) T U 1 i, i, )
1=2
-1 j5—-1 .
+ (WQ) (WS/Q)] (WG) jUC( ) 9 a/-Ll ﬂlnu/]a,ul)
j=3 i=2
(9.130)

The first term looks similar to the quark case (9.111). If [ > 2, one can trivially
perform all integrals except the ones over x; and x;. For [ = 1 there is only one such
integral, and one can use that U¢(up, u1)s = U(1; pp, p1)s. Combining these two
cases, one obtains

dr;_q r2 dasl " dxy 1 —9 T
e =4 1-96 — 1 —. )
/1 T1—1 /1 X1 1 + ( ll)/l X1 (l — 2)' t I (9 131)

For the second and third term in (9.130), also the integrals over z; and x;, z;, respec-
tively, are non-trivial. The remaining integrals evaluate to

" dr;_q 2 dx i dxl i dx io T 1 11— T
. ln — ————— In —,
L T xy (I—1—1)! x;
/xl dr;_4 ‘ /“’ dxq /” dx; /””J dz; /x dxq -2 % (9.132)
1 Tl 1 zy (i —2)! x1

it v Int—1-i 2

O—Z—U zi (I=1—7) T
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9.5 Large-N. Resummation

Distinguishing the cases of even and odd [, one can calculate the matrix products
in (9.130) and perform the sums over i, j, [, i.e. the resummation of the Glauber series.
For [ = 2¢ — 1 odd, one finds for the matrix products

(W?)%_Q ¢ =0us+ (1—="51)¢,
(VSa)" " (VE) 7 ¢ = (1+ Giaem2) 532 (9.133)
(VS) (V3/2) a (Vf) w s=(140d2-2)%.

The ¢ vectors differ between quark-gluon and gluon-initiated processes and are given
in Appendices A.6 and A.7, respectively. Combining this with (9.131) and (9.132), the
coefficient vector of the basis structures can be expressed as

1677 dx
UST (g :—/ My Ts e 9.134
Z S s = [ St UL ) (9.134)
2N, ["dzy 2rN, . = .
- —— U°(1; 1, ja) sm< In —4) U, p11) $1
Bo 1 I 0 T

27TN 4 dx 2 dml
27 aM17/“L27M4)
2N, . x4 27N, . 9
In — In—= ) |U°
X {cos( o nx1>+cos< 5 nxl)} (o, 111) S3/2
27TN 4 dw 3 dx r2 dxl
27 2 17 M1, H2, 13, [,64)
1

(21N, . x4 . (2nN, . x4 ) ] }
X | sin In — ) +sin In — | | U (pn, p41) S2 ¢-
[ ( Bo xl) ( Bo T wh Ml) ?

After carrying out the last products U°(up, 1) <5, it is possible to combine some terms
by integrating over x;. However, these simplifications are not universal and are per-
formed separately for quark-gluon and gluon-initiated processes in Appendices A.6
and A.7, respectively.

For [ = 2¢ even, the matrix products evaluate to

(V) s =01 c+ (1= 010) G,
(Vs?/z)i_l (VlG)%_i S = (L+dige—1)S3/2, (9.135)
(Wg)i_l (V3G/2)j_i (VlG)%_j S=(140;2-1)%

The ¢ vectors are also given in Appendices A.6 and A.7. Performing the sums over
i,7,¢ in (9.130) results in

167 dx 2rN. [**dx ~
Zwﬁfﬁ (ks p1s) § = —2/ —41 — / — U°(L; pa, pa) U (s i) S
85 J1 x4 o Ji
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——U(1; pa, pia) 2 sin®
5% )l o (15 s pa)

27N, "dry [T dx
( ) / / 1U (271 fi1, fh2, fha)

27N, 2w N,
X {sin( 2 lnﬂ) —|—sin( 7; - ln&>:|Uc<,uh7N1>€3/2

0 X1

27N, “dry [P dry [T dx
( )/ 3/ 2/ _1UC %,1;M1;M27N37H4)

27N, 21N,
X {cos( e 1nx4> +cos< e lnﬁ)}Uc(Mh’Ml)é}-
Bo xy Bo T
(9.136)

27N, ["*dx, (WNC Ty

0 X1

After the products U¢(up, 1) ¢; are carried out, the result becomes very lengthy and
contains terms proportional to Ij(up, i11) by the mechanism described in (9.128). As
its construction is straightforward, we do not show the expression explicitly.

With (9.134) and (9.136) we extended the large-N. resummation of the Glauber
series to processes with gluons in the initial state. It is remarkable that the resummed
series can be expressed through simple trigonometric functions and an at most four-
fold integral. In analogy to the previous section, these equations may now be used
to determine the large-w asymptotics by restricting to the fixed-coupling approxi-
mation (9.117). Here, we omit a detailed discussion due to the complexity of the
resulting expressions, which involve four-fold integrals that are no longer amenable to
straightforward analytical evaluation. The qualitative dependence on the parameter
w, however, is similar to the one for quark-initiated processes, i.e. the leading term is
constant up to logarithmic corrections.

9.6 Numerical Estimates

In Section 8.4 we have seen that SLLs give sizable contributions to the partonic cross
section for 2 — 2 scattering processes. For small values of the jet-veto scale )y, they
are of O(15%) and, therefore, should be included in future precision calculations. In
contrast, for 2 — 0 and 2 — 1 scattering, i.e. for the production of electroweak gauge
bosons with no or a single jet, the SLLs play a minor role. Higher order Glauber-gluon
exchanges are parametrically suppressed, cf. the discussion at the end of Section 9.4,
but the associated expansion parameter w, is numerically of similar size as w. There-
fore, we examine the numerical impact of including higher terms in the Glauber series
on partonic 2 — 0, 2 — 1, and 2 — 2 scattering cross sections in the following.

As we were not able to expressed the resummed Glauber series with full N, depen-
dence in closed form or as simple integral representation, we employed two different
expansions in Section 9.3. In Figure 9.3 we compare the convergence of the expan-
sion (9.62) in V¢, which resums all double logarithms, to the one (9.76) in T'¢, which
resums all Glauber phases, in RG-improved perturbation theory. Here and in the fol-
lowing plots, we identify s = Qo and p, = v/§ = 1 TeV and use a central rapidity gap
with AY = 2. Analyzing different 2 — 2 small-angle scattering processes, we conclude
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Figure 9.3: Comparison of the expansions in V¢ (blue lines) and in T'¢ (red lines) of
the Glauber series in RG-improved perturbation theory. The plots show the
contributions to qq¢ — qq (upper left), ¢q¢ — gg (upper right), gg — gg (lower
left), and gg — qg (lower right) small-angle scattering as a function of the
jet-veto scale Qp, at fixed partonic center-of-mass energy v/§ = 1TeV and
for a central rapidity gap with AY = 2. The individual contributions are
indicated in all plots with the same line style and labeled in the left panels.

that the expansion in V¢ converges significantly faster. The difference between the
sum of the first two (I < 4) and first three terms (I < 6) of this expansion is very small
over the full range of )y values. Remember that for QCD Born processes only even
numbers of Glauber-operator insertions contribute. The expansion in I'¢ converges
slower. While for larger values of )y the difference between the curves with n < 2 and
n < 3 is also very small, for small values of the veto scale the double logarithms give
the dominant contribution and the difference is still significant, especially for processes
with gluons in the initial state. As the rate of convergence depends on the process-
independent coefficients of the basis structures, these observations remain valid for
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Figure 9.4: Numerical results for the Glauber-series contribution to partonic 2 — 0
scattering in RG-improved perturbation theory as a function of the jet-veto
scale Qp, at fixed partonic center-of-mass energy v/§ = 1TeV and for a
central rapidity gap with AY = 2. The left plot shows the effect for gg — 0
and the right for gg — 0 scattering. The individual contributions of the first
three Glauber pairs are shown in gray (I = 2, SLLs), red (I = 4), and blue
(I = 6). The sum of all these contributions is indiacte by the black curve.
The perturbative uncertainties indicated by the yellow bands are obtained
from the variation of the soft scale us by a factor of 2 about its default value.

other scattering processes. Therefore, we analyze the contributions of the Glauber
series in the following only in the first expansion. We include up to [ = 6 Glauber-
operator insertions, since the integrals associated with even higher [ are numerically
hard to evaluate.

9.6.1 2 — 0 Scattering Processes

First, we concentrate on 2 — 0 scattering processes, i.e. processes relevant for the pro-
duction of one or several electroweak bosons at hadron colliders via qq scattering or
gluon fusion. The respective hard functions are given in (8.100). Evaluating the traces
(H 450 X?) and (Hz4—0 X7) and combining them with the coefficient vector (9.68),
determined in RG-improved perturbation theory, one can analyze the contribution of
the Glauber series to the partonic cross section for different values of [. In Figure 9.4
we show the individual contributions for | = 2,4,6 (gray, red, blue lines) and the
summed result (black lines) as a function of the jet-veto scale. The yellow band esti-
mates the perturbative uncertainty and is obtained by varying the soft scale between
Qo/2 < ps < 2Q. While for g — 0 all higher Glauber pairs give a negligibly small
contribution, the [ = 4 term for gg — 0 gives a sizable contribution compared to the
one of the SLLs (I = 2). However, the overall magnitude is still very small in both
cases and the Glauber series effects the cross sections for electroweak boson production
without additional jets only insignificantly.
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Figure 9.5: Numerical results for the Glauber-series contribution to partonic 2 — 1
scattering. The plots show qg — g (upper left), gg — g (upper right), and
q9 — q (bottom row) scattering. The color coding and input parameters are
the same as in Figure 9.4.

9.6.2 2 — 1 Scattering Processes

Next, we analyze the impact of the Glauber series on processes like pp — H + jet or
pp — V + jet. The hard functions for the three relevant partonic scattering processes
qq — g, g9 — g, and qg — ¢ are given in (8.104). The contribution of the Glauber
series to the cross sections for 2 — 1 scattering as a function of the jet-veto scale is
shown in Figure 9.5. For processes with quarks in the initial state the total contribu-
tion is of O(1%), but higher Glauber pairs again give negligibly small contributions.
Considering gg — ¢ scattering, the second Glauber pair (I = 4) gives a sizable contri-
bution compared to the SLLs, especially for small values of ()y. However, the overall
effect in this case is small. We note once again that the Glauber series effects the
dependence on the scattering kinematics, i.e. the effect for qg — ¢ differs between
forward and backward scattering in sign and magnitude.
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9.6.3 2 — 2 Small-Angle Scattering Processes

For 2 — 2 scattering processes, we restrict our analysis to small-angle scattering
and do not consider interference effects between different color structures. The hard
functions for these types of processes can be found in Section 8.4.4. Figure 9.6 shows
the Glauber-series contribution to the partonic cross section for six different 2 — 2
small-angle scattering processes as a function of the jet-veto scale. For the three
depicted quark-initiated processes qq¢ — qq, q¢ — ¢'q, and qG§ — gg higher Glauber
pairs yield insignificantly small effects. The [ = 4 contribution (red lines) is already an
order of magnitude smaller than the one of the SLLs (I = 2, gray lines) and the | = 6
curve (blue lines) is indistinguishable from the zero line. A similar statement holds for
gg — qq scattering shown in lower right panel. The situation is completely different
for gg — gg scattering, the effect of the second Glauber pair (I = 4) reaches —6% for
small values of )y and thereby reduces the effect of the SLLs by about a factor 2. The
third Glauber pair (I = 6) only contributes for very small veto scales in this case. For
qg9 — qg scattering, the | = 4 contribution is still sizable but the significant part of
the Glauber-series contribution is due to the SLLs.

In summary, including the full Glauber series always reduces the effect of the SLLs
on the partonic scattering cross section, as they are the first term in an alternating
series, cf. Section 9.2. However, higher Glauber pairs suffer from a strong factorial
suppression, due to the iterated scale integrals, and can be neglected for quark-initiated
processes. For processes with gluons in the initial state it suffices to consider also the
second Glauber pair (I = 4).

Lastly, in Figure 9.7 we compare the in the large- N, limit resummed Glauber series
(red lines) to the SLLs only (gray lines) and the up to | = 6 summed result (black
lines), which numerically is close to the resummed result with full N, dependence as
we have seen above. We show the effect to the partonic cross section for four different
2 — 2 small-angle scattering processes as a function of the jet-veto scale. The red line
for the two quark-initiated processes is dashed to allow it to be distinguished from
the other lines. As higher terms in the Glauber series are absent in the large- N, limit
for qq and g scattering, see (9.116), the gray and red curve lie perfectly on top of
each other for gg — qq scattering.® For ¢¢ — gg and gg — qg scattering, the large-N,
approximation works very well as indicated by the close alignment of the red and black
curves. In contrast, for gg — gg scattering the large- N, approximation is less accurate
but can be improved by including the SLLs with full NV, dependence (red dotted line).
This is not surprising, as we have seen in the center left panel of Figure 9.6 that the
effect of higher Glauber pairs is most pronounced in this case.

8Remember that we did not replace QN& — 11in (9.116), as would be demanded in the strict large-N,
limit, thus capturing the contribution of the SLLs completely.
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Figure 9.6: Numerical results for the Glauber-series contribution to partonic 2 — 2
scattering. The plots show qq¢ — ¢qq (UL), q7 — ¢'¢ (UR), g9 — gg (CL),
q9 — qg9 (CR), q7 — gg (LL), and gg — ¢q (LR) small-angle scattering. The
color coding and input parameters are the same as in Figure 9.4.
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Figure 9.7: Comparison of the Glauber series resummed in the large- N, limit (red lines)
to the SLLs (gray lines) and summed result for I < 6 (black lines). The plots
show the same processes with the same input parameters as in Figure 9.3.
The red dotted line in the lower left panel shows the in the large-N, limit
resummed result but with full N. dependence of the SLLs.
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Conclusion

In this part, we have derived a factorization theorem for gap-between-jet cross sec-
tions at hadron colliders. It consists of two parts: a hard function H,, encoding the
high-energy physics at the scale puj, ~ @), and a low-energy matrix element W,,, encod-
ing perturbative soft and collinear dynamics associated with the low scale p; ~ g, as
well as non-perturbative physics. Both objects are matrices in color and multiplicity
space. The RG evolution of the hard function from pj, down to ps is governed by an
anomalous dimensions matrix I' in this space. We have extracted the one-loop form
of ' which splits into a collinear and a soft part. The former describes a modi-
fied DGLAP evolution of the parton distribution functions, as real and virtual part
have a different color structure. The latter takes into account soft and soft+collinear
emissions from the hard partons as the cancellation of the associated singularities is
spoiled by complex Glauber phases. They arise from factorization breaking Glauber-
gluon exchanges between initial-state partons.

By solving the RG equation of the hard function, one can resum all large logarithms
in the scale ratio Q/Q > 1. The leading double-logarithmic corrections are obtained
by including one soft emission operator I' and two Glauber operators V& alongside an
arbitrary number of soft+collinear anomalous dimensions I'°. We have extended the
resummation of these super-leading logarithms (SLLs) for quark-initiated processes
in [73] to processes with initial-state partons transforming under an arbitrary repre-
sentation. Working with a fixed strong coupling, the resummed SLLs can be expressed
through Kampé de Fériet functions depending on the parameter w ~ «,L? containing
the double logarithms. Even though the SLLs are obtained from an evolution oper-
ator expressed through generalized Sudakov exponentials, their asymptotic behavior
for w > 1 is proportional to Inw and, therefore, they are not suppressed. General-
izing the resummation to RG-improved perturbation theory, we reduced the result to
a simple two-fold integral over generalized Sudakov functions. A detailed numerical
analysis for partonic 2 — M scattering processes with M < 2 revealed that individual
contributions in a fixed-order expansion can be huge, especially for gluon-initiated
processes, and significant cancellations in the alternating series take place. Resum-
mation is therefore crucial to obtain reliable predictions. For 2 — 1 scattering, the
first term in the fixed-order expansion vanishes and the SLLs start at four-loop order.
For 2 — 0 scattering, the second term also vanishes and SLLs arise first one order
higher. As higher order contributions are numerically suppressed in these cases, the
SLLs play only a subdominant role for Higgs-boson or vector-boson production with
a single or no jet. In contrast, for 2 — 2 scattering the resummed SLLs can amount
for O(15%) corrections relative to the Born cross section. Formally, they also start
at four-loop order in this case, but the three-loop term contributes significantly as
well. For 2 — 2 scattering processes different color structures interfere and thereby
the SLLs also change the shape of the differential cross section. We discussed this
feature exemplary for qqg — qq scattering. The perturbative uncertainty, estimated by
varying the soft scale about a factor 2, is of O(1) and thus the study of subleading
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logarithmic corrections is of major importance.

As a first subleading logarithmic correction, we included alongside with the double
logarithms an arbitrary number [ of Glauber-gluon exchanges. Each of them results in
a factor ¢, which numerically is of similar size as the large logarithm. This Glauber
series can then be expanded in the two parameters w and w, ~ a,72, where the
[ = 2 term is just the SLLs. We found that it alternates in both parameters and
starts at three-loop order. To determine the all-order structure and perform a (par-
tial) resummation, we developed three color bases. For quark-initiated processes this
basis contains 5, for gluon-initiated 20 and for quark-gluon-initiated 14 elements. The
elements are constructed from initial-state generators t; in the fundamental represen-
tation and adjoint generators/matrices F;, D;, A; and V;. Translating the relevant
operators to matrices V¢ and I'° in one of these bases, we were able to resum either all
Glauber phases or all double logarithms for a given number of I'* and V¢ insertions,
respectively. Exploiting the latter expansion and working in a fixed coupling approxi-
mation, it is possible to determine the large-w asymptotic of the Glauber series. We
found that higher terms are parametrically suppressed compared to the SLLs. It turns
out that higher order terms in this series are also suppressed numerically. Studying
various 2 — M partonic scattering processes for M < 2 showed that it is always suffi-
cient to truncate after [ = 4 Glauber-operator insertions, for quark-initiated processes
one only needs to consider the SLLs (I = 2). Working in the large- N, approximation,
we resummed the Glauber series, which itself is subleading in 1/N,, to all orders. The
result can be expressed as an at most two-, three- or four-fold integral over general-
ized Sudakov functions for quark-, quark-gluon- or gluon-initiated processes. From a
purely phenomenological point of view, however, a better approximation is obtained
by working with the truncated series with full N. dependence. From a conceptual
point of view in contrast, it is remarkable that the resummation of the Glauber se-
ries is possible in the large-N, limit. This suggests that the treatment of non-global
logarithms at hadron colliders simplifies in our framework within this limit.
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A.3 Color-Helicity-Space Formalism

The amplitude for partonic 1 + 2 — 3...m scattering depends on the colors {a;},
spins {s;} and momenta {p} of all involved partons. It is convenient to introduce an
orthonormal basis in color-helicity space lay, ..., am; 81, .., Sn) and define a vector in
this space with coefficients given by the amplitude [78,79]

(Me({p))) =D > [Mal{pD)] 70" fa

{ai} {si}

Lo Qi S, Sm) (A.3.1)

In the following discussion, we omit the momentum dependence to increase readability.
The scalar product of this vector with itself is

spin/color

where on the right-hand side one sums (averages) over final-state (initial-state) col-
ors and spins. The factors N for the initial-state partons are canceled by the ones
contained in the definition of the trace (...) in (7.1).

The emission of a gluon from parton ¢ is described by the color charge operator T;.
If the color of the emitted gluon is a, its action on the color space is defined by

(ar, .. amya| To|br, o by = 690 L[] ™ gt (A.3.3)

where the non-trivial matrix elements are given by

to s, for ¢ (initial-state) final-state (anti-)quark,
[T7] aibi 17 o for ¢ (final-state) initial-state (anti-)quark, (A.3.4)

—ifaeibi  for ¢ gluon.

If parton 7 is an (anti)-quark, the generators are also denoted by ¢;. Since the low-
energy matrix element (7.16) is a unit matrix in helicity space and we are mainly
interested in the soft RG evolution (7.63), we concentrate primarily on the color space
properties in this work. As we often omit the m-dimensional basis vectors in the main
text, it is convenient to define T}* := (a|T;. These generators fulfill the usual SU(N,)
commutation relation separately for each parton

[0, TP) = if™ T 5,5 (A.3.5)

Introducing the notation T; - T := ) T;* T}, one finds T; - T; = C; 1, where

(A.3.6)

C - Cr = ;N_l for ¢ (anti-)quark,
Cy =N, for 4 gluon.
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By definition, the vector |M,,) is a color-singlet state and thus color conservation
is [78,79]

> T M) =0. (A.3.7)
=1

Similar to gluon emissions, the emission of a quark can be described by the color
charge operator T;, see the two middle splittings in Figure 7.4. However, due to the
change in the partonic configuration in this case, one needs to consider all partons in
the splitting ¢ — P+ j. The color structure in (7.56) describing the splitting ¢ — g+¢
is defined by

(ay,...,a;. .. ,am,aj’Cqu|b1, o bpy by = T;% s [T;’P}%Gi ... §ombm
(A.3.8)
where a;, a; and bp are the colors of the quarks and gluon, respectively. In this work
we use Tr = % For the splitting g — ¢ + ¢ it is

<CL1,...,CLi,...,am’aj‘cg*)q‘b17...’bp,...,bm> = C’;% subr [T;”]ajbp ... §ambm
(A.3.9)
where a;, a; and bp are the colors of gluon, anti-quark and quark, respectively. For
completeness, we mention C, ,p = Cl-_l/ >y if parton ¢ and P are both (anti-)quarks
or both gluons, see (A.3.3). These color structures are normalized such that

¢l ,c _.=1. (A.3.10)

i»pPLisp

Physically, they map an amplitude |M,,) with initial-state parton P to an amplitude

|M,1) with parton P replaced by ¢ and additional final-state parton j in color space.

In the hard function, the amplitude vector (A.3.1) is squared as a density matrix,

thus the emission of a parton changes the color structure on both sides. For a gluon
emission, we introduce the o symbol defined by

Hon TipoTig =T Ho T)" (A.3.11)

where a (bg) is the color index of the emitted gluon in the (conjugate) amplitude.
Here, the color basis on the left-hand side includes an additional (ax| (|bx)) for the
(conjugate) amplitude contained in the definition of T}** (ij") on the right-hand side.
Using the o symbol, one can rewrite the action of the splitting amplitudes as

1
0;pCypHmCl p =M s TiroTin (A.3.12)

(2

for the case that parton ¢ and P are the same.

A.4 Heavy Quark Threshold

The perturbative expansion coefficients of the cusp anomalous dimension (7.32) and
the QCD p-function (8.62) at one- and two-loop order are given by [114]

67 o« 20
70:47 71:4{(3_?)014_37_1an:|7
(A41)
11 4 34 20
BOZQCA_g Py, 61:§Ci_§CATan_4CFTan-

132



Appendix I

For N, = 3 colors and n; = 5 active light quark flavors one has b — % ~ 5.043 and

Bo
n — 151 72 ~ 6.908. We have used these values along with the two-loop expression

Yo 9
for the running coupling and starting value a@(m z) = 0.118, when deriving our
numerical results.

In the realistic scenario where the interval (ps, i) contains the top-quark threshold
e ~ my, one should in principle not work with a fixed value ny = 5 but instead adjust
the number of light quark flavors as a function of the scale. For instance, for the scale
integrals over the cusp anomalous dimension in (8.6) one should replace

/ : %ﬂ Yeusp (s (1))

'Ycus
— / d 5(5)1) )> Mg < by < [t
(ko) ’YcuSP ) s (ki) ’Y(gugp( ) S
— / da B (a) / dav W; Hy < e < Hi,

_) / d ’YCUSP )) : ,L[/t < ILLJ < ,L[/’L7
where the superscripts denote the value of ny for the various integrals. The running
of the strong coupling also depends on the value of ny, as described by the relation
do/dIn p = ) (ay). Note that at two-loop order the coupling is continuous at the
quark threshold, such that al (uy) = al® (u¢). For simplicity, we refrain from adding

a superscript on the running coupling itself, i.e. we use a,(p) = al™ )(,u).

For the generalized Sudakov operator U¢(u;, pt;) in (8.7) and the associated scalar
functions U°(v; p;, pt5) in (8.75) the situation is more complicated, because the relevant
scale integral Ij,(p;,t;), defined in (9.129), with g, > p; > p; includes a logarithm
In(p?/p3) of the hard scale. Eliminating the scale u in favor of the running coupling
as(p), and distinguishing the different scale hierarchies, we obtain

I (i 15)
i as(pt) / o ;]
%usp 04) do da
— 2N, — — | < < b
/ ﬁ(z)) (a) /as(uh) ﬁ(ﬁ)(o/) +/as(m) 5(5)(a,)_ ) Hi < M i
. d vgigp Al [ [0 _dor e
B9(a) | pO(a’) BE(a’)
045(/%) as(pt) |
s () e’ !
Yoo (@) do” . .
+ 2N / dov 5(6) ) /C!s(,uh) 5(6)(0/) ) My < e < [ ,
,ul « /
’YcuSP @) da’ . ,
— 2N / d ) Ls(uh) 6(6)(0{/) ) /J['t < /‘Lj < /,[,’L .

(A.4.3)
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Figure A.1: Numerical results for the evolution vector U(SIL)L (th, pts) s for quark-initiated
processes. We show the first component for threshold matching (black line),

al? (1) (red line) and a9 (1) (blue line). The results are obtained with
ur = 1TeV and threshold py = my = 175 GeV.

Expanding the QCD [-function and the cusp anomalous dimension, it is straightfor-
ward to derive from these results the generalization of the expression (8.82) for the
various scale hierarchies.

Numerically, it turns out that the effect of accounting for the top-quark threshold
is very small. For example, Figure A.1 shows UgL)L(,uh, s) s as a function of u for the

default choices pp = 1TeV and pu; = my = 175 GeV.
A.5 Matrix Representations for gg — qq

At the beginning of Section 8.4.5, we introduced an orthonormal basis to decompose
the scattering amplitude. Even though this is always possible, it turns out to be more
convenient to decompose the amplitude in a non-orthogonal basis {|D;y) } in some cases.
The non-trivial scalar products of the basis elements are collected in the Gram matrix

Gr; = (Di|Dy), (A.5.1)

which allows one to write the completeness relation
- Z }DI> (G_l)u <DJ‘ : (A.5.2)

The trace of the “unintegrated” hard function with a color structure in (8.79) can now
be expressed as

<,;,_“L4 X1> - Z (Gil)u <DJ|7TL4‘DK> (Gil)KL <DL|X1'|DI> ) (A.5.3)

1,J,K,L
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where we dropped the spin sum and average factors contained in (. . .) on the right-hand
side. It is thus convenient to define as matrix representation of the hard function

(Ha) 1, =D (G7) e (Die|Ha D) (G71) = MED M (A5.4)
KL
and generalize (8.118) to
(X:),, = (Di| Xi|Dy) . (A5.5)
The trace (A.5.3) can then be calculated by
<¥‘4 Xi) = Z (/’q‘l)u (X)) - (A.5.6)
1,J

To determine the differential Born cross section (8.116) one replaces the matrix rep-
resentation of the color structure by the Gram matrix.
Considering qq — qq scattering as in Section 8.4.5, we choose the orthogonal ba-
sis [112]
<a1’ az, as, CL4‘D1> = 5a3a2 6a4a1 ) <CL1, a2, a3, a4}D2> =t to (A57)

aszaz ‘agal
to avoid the appearance of normalization factors in (8.121). Color structure X, is by
definition proportional to the Gram matrix, in this basis one finds

N2 0
Xll = Jlg G — J12 ( 0 CFNC> . (A58)
2
The spin-averaged hard function is [112]
1 ~ 2Cr
4 Z Hygsqg = (47015)° N2 2
spins ¢
CF(T2 — o4 2) r3—3r2+1(i\;c+4)r—2 (A.5.9)
r3—3r24(Ne+4)r—2  (N24+1)r*—4r3+(N24+2N+7)r% —2(Ne+3)r+2
1—r Cr (1-r)?
The matrix representations of the remaining color structures relevant for the SLLs
read
N2—4
CpN2 (0 1 Cr ([ —2 —4%
X1 = Ju3 1 (_1 O)’ XG:JQFC NP4 NP2 )
4N, AN?
N2—4
Cp [—2N. 1 Cyr [ 0 N
Xo=Juz — ; Xr=Jia =5 | ro e E
5 1Oy N? Nzcvc4 _vag4
N2—6
00 Cor (0 3N
X3 = <O 0) , X5 = Jio N2 (ch_ﬁ N6 | (A.5.10)
¢ 3N, 3NZ
N2—4
Cr (2N, —1 Cr 2 55
X4=J43—2< >7 X9 = Ji2 <N24 B
1 — 2-4 3
2V¢ 1 —Cg N, e
x. — .. Ck (2Ne —1 X_JCFO%
5= Jas 1) 10 =12 7 %_% )
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with Jy3 = (Jy — J3) and Cs3p = 1\;3]\]_:1 CF is the cubic Casimir of the fundamental

representation [108]. We note that all matrices above except for X, are symmetric.

A.6 Gluon-Initiated Processes

As the color basis (9.31) for gluon-initiated scattering processes contains 20 elements,
matrix representations and coefficient vectors in the basis are large objects. In this
appendix, we give the most important quantities relevant for the computations in the

main text.
For the matrix representations (9.57) of I'* and V¢, one finds

1057 0 0 %% 300 =% 0 0
010 O—ngoo 010—2];32}@02;33
003 0 0 05 003 -3z 0 0 x
W=1000 2 -%0 0|, =loo-1 ¢ 0o 1 0 |,
000 -1 2 0 0 ooo o 2 o 1%
000 0 0 2 0 000 0 0 2 —x
000 0 0 0 2 000 0 0 —1 2
000 0 —x3 0 “10-3 —3 0 0 5
010 0 0 -10 4 1 & -2
. 001 0 -4 0 \_|00-1 0 -10 1
000 2 —4 0| 0o0-1 2 o0 o0 1]
000-5 2 0 00 7 -5z 0 5 0
000 0 0 2 oo o o 1 0-3
(A6.1)
and
200 0 57 03 e e e w0
3730 0 5 0-% 0 -1 0 —x 5 0 0
10-10-2%0 0 0 -1 -10 0 0 5
V=100 —1-1 0 1 V=10 0 0-% 0 1 0 |,
00 00 1 0-1 00 -1 0 00 %
00 0 5 —x53~ns 00 0 0 -1 5
00 1 -1 1 1 -1 00 0 0 0 0—3
(A.6.2)

respectively. Resumming the Glauber series in the large- N, limit, one needs to apply
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powers of V¢ to ¢ in (9.130). For odd [ values, we find

1
q;zﬁ(L—{,—LOJLQOV.)T
1
S3/2 = 5(0,0,—1,07—1,0,0,...)T, (A63)

1
§2:Z(07070707_170717"'>T7

where we show only the first seven components being relevant in this case. For even [
values, the relevant components 8 to 14 of these vectors are

1
S 5(...,4,1,2,0,0,0,0,...)T
.1 .
q—5(...,2,1,1,0,0,0,0,...)
1 (A.6.4)
63/225(...,0,0,1,1,0,0,—1,...)7“,
.1 .,
G =5(+0,0,0,0,=1,0,—1,...)".

Performing the products U¢(up, i1)s; in (9.134), the dependence on py cancels for
some terms and one can combine them by evaluating the x;-integral with terms with
one integral less. The simplified result reads

167 dzs
U (s :/ 2B Zs lyeq, A6.5
Z sun (B pts) S 7w Mo (15 s p13) ( )
N,
X|:COSZ(7T 1nx3>(1,0,0,0,0,0,0,...)T
Bo
N,
+ sin? <7T lnx3>(0, 1,0,0,0,0,0,...)T]
Bo
7N, ["3dx;
—U%(5,1; ,
5 ) (3,15 sy p1, e3)
2w N, 2w N,
X [sin( T lnacg) —|—sin( T lnxl)}(0,0,1,0,0,0,0,...)T
Bo Bo

2
mN Wdry 72 das o
" < /BOC> / / ’2717/'”17/"1’,“2,/13)
1

27N, 27N,
X <[cos< e 1y m)%—cos( 7; lnmz>](0,0,0,0,1,0,1,...)T

Bo x1 0 x1

27N, 27N,
n [Cos< T ln333> +cos( T 1n;c2)](0,0,0,0,1,0,1,...)T :
Bo Bo

In contrast to (9.116) for quark-initiated processes, we here work in the strict large- N,
limit. This proves to be convenient as then there is no term with a fourfold integral.
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A.7 Quark-Gluon-Initiated Processes

Similar to Appendix A.6, this appendix lists the relevant matrix representations and

coefficient vectors for quark-gluon-initiated processes in the basis (9.38).
For the matrix representations (9.61) of I'“ and V¢, one finds

0000 0 0 O
05000 =5 0 0
1
10 00100 0 0-—gp
» ¢ . 0001 0 —5250 0
7(]) — 01 0 ’YU) — 5 2]¥c ,
5 000032 -0 O
00 2 :
2 0000-1 2 0 0 (A.7.1)
00000 0 1 0
00000 0 0 3
C
000 3w 00 =587 —532 0 0
¥y=1010 A=1|3 -2 00 -2 1 00,
001 o 0 00 0 0 3-%
and
2 0 0
11 2
2 2 N2 _2 2 _Ne—4 Ne8 1 1 g _ 1
1 1 N2 N2 ~ 2NZ T2N2 N2 2N2 2NZ
Jh_ ]2 320 s —| o o L N4 _1_ 12
1 o0 -1l 2 2N?Z N2 T 2NZ T N? 2N§ )
0 0 0 -1 -1 0 0 -
0 0 —1 N
0 -1 0
0 0 —1
(A.7.2)

respectively. Resummig the Glauber series in the large- NV, limit, one finds after carry-
ing out the matrix products in (9.130) for odd [ values
(1,—-1,-1,...

1= )T7

(A.7.3)

),

N = DN =

S3/2 = 5 (0,0,—1,...

where we only show the first three components relevant for an odd number of Glauber-
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operator insertions, and for even [ values

1
= 5("'7_2747_17172707070707070)T7
1
& = 5(...,—1,2,—1,1,1,0,1,0,0,0,0)T, (A.7.4)
o ,
<3/2: 5("'7070707071517071707070> )

where we dropped the first three components as they are irrelevant. Since eigenvalue
vg = 2 does not appear for quark-gluon-initiated processes, i.e. V§ = 0, one finds
G =G =0.

Performing the products U¢(up, 1) s; in (9.134), the dependence on p; cancels for
some terms and one can combine them by evaluating the x;-integral with terms with
one integral less. The simplified result reads

(26 16im [“dry w5 | .
ZU%”(%,MSM:?/ —21n—{U(1;uh,u2) (A.7.5)
=1 0o J1 T2 T2
1 0
N, 0 . 1
x | cos? T In x4 +sin? [ —< Inzy
0 0 0 0
7TNC szl‘l

/BO x_lUc(%l;MhaHl,lh)
1

y [s' (27TNC 1 ) L <27TNC 1 )] 0
1mn nr 11 nr .
Bo ? Bo ' 1

Similar to (A.6.5), we here work in the strict large-V, limit as then there is no term
with a threefold integral.
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Chapter 11

Leading-Power Factorization

The flavor sector of the SM is an excellent place to search for new physics. However,
theoretical predictions have to catch up to the increasing experimental accuracy to
allow for potential new discoveries. Predictions for exclusive non-leptonic B-meson
decay rates suffer from large uncertainties due to the lack of a consistent treatment
for power corrections in Aqep/me. The QCD factorization approach does not account
for weak annihilation contributions as they are a next-to-leading power (NLP) effect.
These contributions suffer from endpoint-divergent convolution integrals breaking the
factorization. It is convenient to study them in the SCET framework as decay prod-
ucts and spectator quark can be described by collinear and soft modes, respectively.
The power counting parameter in this case is A = (Aqcp/mp)'/2.! Improving the
understanding of weak annihilation amplitudes and endpoint-divergent convolution
integrals is also crucial to understand the underlying power expansion of SCET.

11.1 Weak Effective Hamiltonian

The highest relevant scales in B-meson decays are the B-meson mass, mpg ~ 5.3 GeV,
and the b-quark mass, my;, ~ 4.2 GeV. Their difference is consider to be O(A\?). Tt is
therefore convenient to integrate out all heavier SM particles, i.e. top quark, W, Z
and Higgs boson, in the standard EFT approach. This results in new four-fermion
and additional two-quark one-photon/gluon interactions encoded in the so-called weak
effective Hamiltonian [115]. The relevant part for the study of non-leptonic B-meson
decays is

G 10
Heﬁ” = 7; Z /\q |:01Q(f + O2Qg + ZCZQ’L + C77Q7fy + O8gQ89 + h.c. ) (111)
=3

q=u,c
where % = % is the Fermi constant with My, the W-boson mass and g the weak-
w

interaction coupling constant. The products of CKM matrix elements are denoted by
Ag = ViV and fulfill the unitarity relation A, + Ac + Ay = 0.

The current-current operators Q?Q arise from integrating out the W boson and are
given by - o o

Q1 = (qb)V—A (dq)V—A’ Q5 = (qzb]>V—A (d]ql)V—A’ (11.2)

with (G1q2)vea = @7*(1 £ 75)g2 and i,j being color indices. The QCD penguin
operators ()3 ¢ originate from integrating out the W boson and the top quark, they
read

Qs = (Jb)V—A Z (q_q)v—A’ Qs = (Jibj)V—A Z (qjqi)v—A’
L L (11.3)
Qs = (db) V-A Z (QQ) VA Qs = (dlbj)V—A Z ((j] QI)V+A ’

1Soft and (anti-)collinear modes have virtuality p? ~ AQQCD.
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Chapter 11 Leading-Power Factorization

where a summation over ¢ = u,d, s, ¢, b is implied. Integrating out also the Z boson,
one finds the electroweak penguin operators Q)7 19 defined as

.....

3, - _ 3
Q7:§<db)V—Azeq(qq)V—A’ Q8:§ VAZeq 7))y s
! (11.4)

[\CRGV]

3 o o
Q9_§< V- Azeq 74) viar Qo= (d H)V—Azeq@]Q)erAa

q q

where ¢, is the electric charge of quark ¢. The electromagnetic ()7, and chromomag-
netic (Jg, dipole operators arise by the same mechansim as the penguin operators but
with a mass insertion for the b-quark. They are given by

Qry = #mdeyu(1+V5)bF5ED, Qg = 897:
with o = £[y#,4"]. The QCD field strength tensor is given below (3.1) and the one
of QED is defined similarly. The weak effective Hamiltonian for non-leptonic By meson
decays is obtained by replacing d — s in the above expressions.

Both the operators @Y, @Q; and the Wilson coefficients C; in (11.1) depend on the
renormalization scale p. The latter are calculated at a high scale y ~ My, and evolved
down to pu ~ my by solving their RG equations. At the low scale, coefficient C is
numerically most relevant [116]. The primary challenge in calculating non-leptonic
decay amplitudes lies in evaluating the hadronic matrix elements of the local operators
present in the effective Hamiltonian.

mde"w,(l—i")%)F‘uyb (115)

11.2 QCD Factorization

The QCD factorization approach developed by Beneke, Buchalla, Neubert and Sachra-
jda (BBNS) in the seminal papers [116-120] provides a systematic theoretical frame-
work for calculating these matrix elements in the heavy-quark limit, i.e. at leading
power in A. For an exclusive decay B — M; M, into two light mesons M;, M, the
amplitude factorizes as

1
ORL|Q[BY = S FF ) [ dyThy) fotal) + (1 02
j=+,0,T 0

(11.6)

1
+ [ dededy T 0,y) fa () fn(z) fa0nly).
0
where the decay constant and leading-twist light-cone distribution amplitude (LCDA)

of the B-meson in QCD are denoted by fp and ®p, respectively. The LCDA is defined
by the non-local matrix element

<0|d(tn)[tn,0]%%b(0)‘B (p)) = fB—/ dE eI B (€) (11.7)

where [tn, 0] denotes a finite-distance Wilson line, and the decay constant by the
local limit ¢ — 0. Furthermore, m; is the mass, f; the decay constant and ¢; the
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11.2 QCD Factorization

leading-twist LCDA of meson M;. More details on their definition can be found in
Appendix A.8. The B — M, form factors are denoted by F JB M and their definitions
can be found in [118]. For completeness we mention that if meson M is heavy, only
the first term in (11.6) contributes.

The factorization formula (11.6) disentangles the non-perturbative hadronic dynam-
ics — in form of decay constants, form factors and LCDAs — from the hard-scattering
kernels T}; and T}', which are, in principle, calculable to all orders in perturbation
theory. The matrix elements are described in terms of convolutions of these hard-
scattering kernels with the LCDAs.

SCET Formulation

SCET has been developed as an EFT for processes involving highly energetic light
particles, with particular focus on B-meson decays [12—15,20]. Proofs of QCD fac-
torization in exclusive B decays using this framework have been presented for the
radiative modes B~ — £~ in [121,122] and B — K*v in [24].

We now explain how the leading power factorization formula (11.6) for non-leptonic
decays translates to SCET, starting for simplicity with the heavy-to-light form factors.
By performing a two-step matching, they can be factorized as [11]

FPoM = H; (Bt fp o+ Ty % far da (11.8)

where f5 and ¢% denote the B-meson decay constant and leading-twist LCDA defined
in HQET, see Appendix A.8. The LCDAs are convoluted with the hard-scattering
kernels 7j as indicated by the x symbol. The universal soft-overlap part of the form
factors is denoted by ¢#7M and the hard functions H; are matching coefficients from
the matching QCD — SCET-1. The relevant SCET-1 operators for the first and
second term in (11.8) are of the form

_ 1 _
OFf = [Xpe (1 £75)by] Of = e [Xhe A (L£75)0,] (11.9)

respectively. Hard-collinear fields are displaced in n direction and the flavors of the
quarks depend on the heavy-to-light transition under consideration. The correct mass
dimension of operator OF is ensured by the factor 1/my. To describe decays in trans-
verse polarized vector mesons, one needs to add extra v, to these operators.

The matrix element (M|O7|B) defines (¥7*. Technically, this object needs to be
treated in SCET (hc,c,s).? Matching the second operator on SCET-2 as explained in
Section 4.2 yields an operator with two collinear, one soft, and the HQET b-quark
field. The coefficients T} can thus be decomposed into hard functions convoluted with
jet functions, both calculable in perturbation theory. In the absence of leading-power
interactions between different sectors in SCET-2, the transition matrix element can
finally be factorized, yielding the LCDAs for the two mesons.

2Factorizing it further introduces several new non-perturbative functions and leads to endpoint-
divergent convolution integrals [123,124].
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Chapter 11 Leading-Power Factorization

Similar to the form factor, one can perform a two-step matching for the full weak
effective Hamiltonian (11.1). In SCET-1, one finds two types of operators that con-
tribute at leading power. They read [125]

Oit = [:X‘hc %(1 - 75)bv} [:X:}Tc%(l + VS)XE] )

, , (11.10)
Oy = — [Xne Ape (1 4 75) bo] [Xg (1 £ 75) X

1
mp
where (anti-)hard-collinear fields are displaced along 7 (n). We do not show different
color and flavor structures. For decays including transverse polarized vector mesons,

one needs to include extra 7, .
The leading-power factorization theorem for weak effective operators reads [21,22]

(M M| Qs| BY = ¢P=M (m3) / dyTHy) fadaly) + (1 2)
0 (11.11)

o 1
_|_/O d;w/() drdy T (w, z,y) froh (W) fror(z) f2é2(y) -

The first line originates from matching the anti-hard-collinear sector of OF trivially
on SCET-2 and translating the hard-collinear sector to the heavy-to-light soft-overlap
form factor. Matching both sectors of OF, one obtains SCET-2 operators of O(A'?) in
the power expansion. Evaluating their matrix elements yields the contribution with
three LCDAs in the second line. The kernels T and T}' can also be decomposed in
hard and jet functions. By factoring out 1/w in the second line, we ensure that the
coefficients T!! only dependent logarithmically on the small variable w ~ A2, which can
be interpreted as the momentum fraction of the B-meson carried by the light spectator
quark. As it was pointed out in [126], this factorization formula is equivalent to (11.6).

11.3 Weak Annihilation

Besides the form factor and hard-scattering contributions in the first and second line
of (11.6), respectively, there is a third class which contributes at leading order in a
to the decay amplitude. This so-called weak annihilation contribution arises from dia-
grams in which the soft spectator quark participates in the weak effective vertex.* The
leading power diagrams studied by BBNS are shown in Figure 11.1. Their contribution
to the amplitude is of the form [116]

1
(ML QB ~ fafifo [ dody| bt Jaat) (L)

for operators @; with Dirac structure (V' — A) ® (V' — A). The first and second term
arise from diagrams (a) and (b) in Figure 11.1, respectively, whereas the contributions
of diagrams (c) and (d) cancel in this case. Here and in the following, we use the
abbreviations y =1 —yand z =1 — .

3This conclusion was under debate, see also [127,125].
4Weak annihilation contributions to semileptonic decays are studied in [129].
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11.3 Weak Annihilation

K%KK

Figure 11.1: Leading power weak annihilation contributions studied by BBNS.

From the asymptotic form of the light-meson LCDA ¢, (x) ~ xZ, it is obvious that
the convolution integral over the momentum fraction x diverges in the endpoint x — 1
for the first term in (11.12). This endpoint divergence clearly breaks factorization
of soft and collinear physics. However, comparing the SCET version (11.11) of the
leading power factorization formula to the weak annihilation contribution (11.12), we
note that there is no factor 1/w ~ A2 in the latter. It is therefore evident, that weak
annihilation contributions are NLP in the A expansion [116,118].° Even over 20 years
after the QCD factorization approach has been developed, it is still an open question
whether a more general factorization framework can be established, in which power-
suppressed contributions to non-leptonic two-body decay amplitudes of B mesons can
be treated consistently.

In the following, we establish such a NLP factorization theorem. For concreteness,
we focus on the two-body decay mode B® — K+ K~ which is a pure weak annihilation
channel. At the valence-quark level, the flavor structure of this decay is (db) —
(us) + (Su), i.e. the quark flavors in initial and final state are different and hence
both valence quarks of the B meson need to be annihilated. Our discussion is general
enough that it can be applied to other two-body decay modes (also those which are
not pure annihilation modes) in a straightforward way. The majority of this part is
dedicated to the successive matching of the weak effective Hamiltonian from QCD —
SCET-1 — SCET-2. In Chapters 12 and 13 the two matching steps are presented in
detail. The matrix elements of the relevant operators are then evaluated in Chapter 14,
before we discuss the cancellation of endpoint divergences in Chapter 15. We conclude
in Chapter 16.

5To arrive at this conclusion, one has to take into account that fz ~ fB and that the B-meson
LCDA (bg is normalized to 1.
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Chapter 12

Matching onto SCET-1

The weak effective Hamiltonian (11.1) provides an effective description of weak-
interaction processes for scales above the b-quark and below the W-boson mass. At the
hard scale i, ~ my, this Hamiltonian is matched onto SCET, which is the appropriate
EFT describing b-quark decay processes into light quarks and gauge bosons, which can
either be soft (with energies of order Aqgcp) or collinear (carry large energies of order
my in one direction). As described in Section 4.2, this matching is performed in two
steps:

(1) At the scale pj, ~ my, hard modes, with momenta and virtualities of order my, are
integrated out and the theory is matched onto SCET-1. The Wilson coefficients
arising in this first matching step are called hard functions, and they depend on
the scales my, and 2E; ~ m;, where E; denote the energies of the light final-state
mesons M; in the rest frame of the B meson.

(2) After the effective theory SCET-1 has been evolved down to the intermediate
jet scale p; ~ y/myAqep, the (anti-)hard-collinear modes are integrated out
and one matches to the final effective theory SCET-2. The Wilson coefficients
arising in this second matching step, called jet functions, depend on the scales
/2E;Aqcp. The low-energy hadronic matrix elements remaining in SCET-2
capture all long-distance hadronic dynamics in the decay process.

In our discussion we closely follow the two-step matching procedure presented in [11,
23,24]. Focusing on the decay B® — K+ K~ we choose the directions of the K~ and
K™ mesons to be n and 7, respectively. The relevant Lagrangian is given by the sum
of SCET-1 Lagrangian (3.11) and HQET Lagrangian (5.7). We express the operators
in the EFT through hard-collinear building blocks (3.3) and ordinary soft fields to
ensure hard-collinear gauge invariance. The form of these operators is restricted by
RPI type (III), see (3.6). Since we are only concerned with the leading contribution
to weak annihilation amplitudes, types (I) and (II) are not relevant for the present
discussion.

Whenever a SCET-1 operator contains Ny, > 1 fields in the hard-collinear sector,
these fields share the large component n - py. of the total hard-collinear momentum.
Since the large components of hard-collinear momenta are always positive, we assign
variables g; € (0,1) with ¢ = 1,..., Ny, to the fields, which specify the fraction of the
large moment component carried by the individual fields. Specifically, we define [130]

, 7 - P .
C =0 — he ) gt 12.1
¢hc (9s) (y - iPhc) ¢hc ( )
where the label operator n - Pp. projects out the large component of the total hard-
collinear momentum carried by an operator, whereas the label operator 7i- P  projects
out the large component of the hard-collinear momentum carried by a given hard-
collinear field ¢ . These label operators are nothing but ordinary derivative operators
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Chapter 12 Matching onto SCET-1

- Ohe acting on the product of all hard-collinear fields or a single field ¢! ., respectively.
The hard functions and operator matrix elements depend on the variables {y;}, and
in the effective Lagrangian one must integrate over these variables. The condition
>o,n- P, =n- P implies that one of these integrations is trivial, since the last &
function can be rewritten as

s hc th
5, — P 5 1-3 4 (12.2)
yth ﬁ:P = Y . .

he i1

In a completely analogous way, we introduce momentum-fraction variables z; € (0, 1)
with ¢ = 1,..., N5 and define fields (b;Tc ) in the anti-hard-collinear sector.

Following [24], we use a generic notation to indicate the Dirac structures that can
occur in the various operators. The Dirac basis is spanned by the 16 matrices

17 V5, 717 7i757 7/L7 7/"757 7727i7 ﬁ’? ﬁ757 ﬂ7ﬁ7 7/"%7 [fyi7f>/j_]7 (123)

where the transverse Lorentz indices can take two distinct values. We express all SCET
operators in terms of fermion fields with definite chirality (left- or right-handed), and
hence there is no need to write out additional factors of v;. We thus define the sets

I = {14}, (12.4)
as well as
D= {1 o s, i i, [V, 10} - (12.5)
The different quark bilinears we encounter in our analysis are then of the form
Xne BT (1 % 75) Xe Xz T (1 % 75) Xpe (12.6)
and
Xpe BT (1 £ 5) by Xne I (1 4 75) by, (12.7)

and similarly for bilinears in which hard-collinear and anti-hard-collinear fields are
interchanged (in which case one must replace n — n). Lorentz invariance requires
that all open transverse Lorentz indices in the SCET operators are contracted using

the symbols (we use the convention ’'#* = —1)
n*n’ + ntn” 1 _
7751;1} = 7’]"“’ — —2 , Eliy = 5 6;1,1/04,5 nanﬁ . (128)

When €, is contracted with a Dirac matrix next to a (anti-)hard-collinear spinor, it
can be traded for 1, using the relations [123]

i€y =0 st = Vs, —ie Yt = 0 v st = Y, (12.9)

which hold in four spacetime dimensions. A corollary of these relations are the iden-
tities

Y (1 F v5) @y, (14 5)
AV (1 £75) @ Ay, (1 £7s5)
By (1 75) @ by, (1 £ 75)

0,
0, (12.10)
0,
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12.1 Four-Quark Operators

which can be used to eliminate certain operators involving four or more fermion fields
from the operator basis. Note also that there is no need to allow for the commutator
(Y, 7] next to a (anti-)hard-collinear spinor, because of the identities [123]

Vi = (" i) h, A= (0 il ) 7t (12.11)

The Dirac structure in the most general soft-quark bilinear is spanned by the matrices
['(1+7;).

Expressions for Feynman diagrams in the full theory also contain the heavy-quark
momentum p, = mpv + k, see (5.1). In general, gluon attachments on the incoming
b-quark line yields structures of the form

b+ gn + My p + q1 + My
]é q 2 2’}/“"... 75 q 3 27’“ub(pb). (12.12)
(Po + Gn)? — mj (oo + @)% — m}

The denominators take the form 2myv - (¢; + k) + (¢; + k)?. In the numerators, all
factors of m; can be moved next to the b-quark spinor, where they can be replaced
by myup(ps) = (mpy + K)up(py), assuming that the heavy quark is on-shell, which
can always be done in matching calculations. Using momentum conservation, we then
replace myv = pr+ + px— — k', where k' is another soft momentum. Once this is
done, the b-quark mass m, and the 4-velocity v do not enter the SCET operators and
matching coefficients.

12.1 Four-Quark Operators

From the structure of the operators in the weak effective Hamiltonian (11.1), it follows
that the simplest SCET-1 operators contain four quark fields carrying the flavor quan-
tum numbers of (db) (uu) or (db)(5s). We choose the reference vectors n and 7 such
that the final-state meson K is made up of anti-collinear partons, containing v and 5
as valence quarks. The final-state meson K~ consist of collinear partons, containing s
and u as valence quarks. Since the original operators Q7 and @); have mass dimension
D = 6, we need to construct operators with the same mass dimension in the effective
theory. For four-quark operators containing a (uu) pair, the three possibilities are

OZ,hc,r({g}7 ,LL) = [:X:Ei)@l)’yLu(l - ’75)bv} [:X(%) 7i (1 - ’75)x§llz)(gz)} )
Ofge, (&} o) = X2 7en (U =)0 [N VL (1492 ] . (1213)

Oritn (1) = [67 71 (1 = 96) ] [0 7 (1 £ 45) X3 ]
where we indicate the quark flavors using superscripts, except for the b-quark. The
colored subscripts (7;) and (Z;) denote the fractions of the total large momentum
components 7 - pp. and n - p;- carried by the corresponding fields, see Figure 12.1.
We denote the collection of these variables by {7} and {Z}. The operators depend on
these variables, and they also depend on the renormalization scale y, as indicated. The
third operator is color-marked in gray to indicate that it does not contribute at leading
power, see (12.17). Analogous operators in which the two transverse Dirac matrices
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Chapter 12 Matching onto SCET-1

Figure 12.1: Choice of the momentum variables in the SCET-1 four-quark operators
O per (left) and OZ,E,r (right).

are contracted with the €, symbol can be ignored, because they can be reduced to the
above operators using the relations (12.9). Note also that the variants of the first two
operators in which the second quark bilinear contains fields with opposite chirality
vanish due to the identities in (12.10).

Our labeling of the operators is such that the first superscript (4), if present, refers
to the choices (1 4 75) in the second quark bilinear, whereas the second superscript
(¢ = u,s) indicates the flavor content (db)(qq) of the operator. The first subscript
(here 4) shows the number of fermion fields of an operator, while the second subscript
(he, he, s) refers to the SCET field used for the d-quark. The two up-quark fields
carry large energy along the directions n and 7, because they end up in the mesons
K~ and KT. The down-quark field eventually (after matching onto SCET-2) ends up
as the soft spectator quark inside the BY meson.

In fixing the Dirac structure of the operators, we have taken into account that the
d-quark in the weak effective Hamiltonian (11.1) is always left-handed, whereas the
two up-type quarks have the same chirality. This requires the presence of a matrix v,
between the spinors of the second quark bilinear, and Lorentz invariance then requires
that the first bilinear also contains such a matrix. Additional insertions of 7 or ji are
then not allowed in the first bilinear, since they would violate boost invariance.

The last subscript (r) refers to the color structure of an operator. For simplicity of
the notation we do not write out the color indices of the various quark fields explicitly,
but it is understood that in all cases the SCET operators are of the form

u 7 y(d)i 17 [y ()i u)j i1i
Ol e ({3}, 1) = [Xih Y (1= 35) 00 ] [X 20 (1= 45) X302 ] [T1y] 12, (12.14)

and similarly for the other operators. The fact that the SCET operators are over-
all color singlets implies that each color index j; transforming in the fundamental
representation of SU(N,) must be contracted with an index i; transforming in the
anti-fundamental representation. In the present case, there are two possible index
contractions, namely

(Tl = 070 622, [Tl = 0772 6200 (12.15)
They correspond to the familiar color structures, where the two quark bilinears carry
color indices [ii][j7] or [ij][ji], respectively.
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12.1 Four-Quark Operators

SCET-1 field | SCET-2 fields | power counting
o) 2w 32
A At A2
e Ak A
Ar. X A3
T | (X X
X 20 (XEgs”) A7

Table 12.1: Relevant matching relations for hard-collinear quark and gluon fields onto
collinear and soft fields in SCET-2 [11,23,24]. In the last relation, one has
the freedom to add one of the objects 9, , AL or Af without encountering
a further power suppression. In all other cases, adding extra fields implies a
higher-order scaling with A. The non-trivial matching relations are visualized
in Figure 12.2.

It is instructive to explore how the four-quark operators in (12.13) can be matched
onto SCET-2 operators containing (at least) two soft quarks for the initial-state B°-
meson, two collinear quarks for the final-state K~ meson and two anti-collinear quarks
for the final-state K meson. While this matching is discussed in detail in Chapter 13,
we now briefly sketch the outcome of this discussion. The relevant branchings and
their scaling with A are shown in Table 12.1. For the first operator, we find that the
matching relation giving rise to the lowest power of X is

Z,he,r = [3—(:;;? ,}/Lu(l - VB)bv] [ _%) 'th_(l — ’}/5) Xﬁ:ﬂ ~ /\147

~)3 l \L
12.16
(xal) a” (@)% X 210

~AL D ~A2

and in complete analogy one finds that O} is also O(A\'"). For the third operator,

on the other hand, the matching relation with the lowest power of A reads

O3ty = (0070 (1 = 35) b ] [T 7 (1 £ 95) 230 ] ~ AT
o B l (12.17)

@ x)y x0 1t (X ¢Y)

c c

N)\? N)\r’

We show below that SCET-2 operators with power counting A% are indeed the leading-
power operators contributing to weak-annihilation amplitudes. It follows that the
operator Oif’;} does not contribute at leading power, and we therefore ignore it from
now on. Note that in the matching onto SCET-2 the SCET-1 four-quark operators
map onto eight-quark operators of the type (we suppress Dirac structures and color
indices for simplicity)

(@D b, @ g@] (X ] [ ] (12.18)

S Cc
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Figure 12.2: Feynman diagrams contributing at tree level to the non-trivial matching
for hard-collinear quark and gluon fields onto collinear and soft fields in
SCET-2, see Table 12.1. Similar to the last diagram, there are additional
O(A%) contributions with soft or collinear gluons attached.

and not six-quark operators, as one would naively expect. The hadronic matrix ele-
ments of these operators involve so far unknown higher-order distribution amplitudes
of the B meson.

In complete analogy with (12.13), for operators containing an (Ss) pair we define

4hcr({$} 'U') [ )( >’}/J_#(1 - 75)b ] [jcgfc)Vﬁ(l - 75)1:28)“2)}

O por (17}, 1) = (X0 i (1= 75)b] [X52) 74 (14 75) X2]

Note that the final-state s-quark is now hard-collinear, while the s-quark is anti-hard-
collinear. We have written these operators in such an order that they are obtained
from the operators in (12.13) making the replacements u <> s, hc <> he, n 7, and
Z; <> ;. The Wilson coefficients of these operators are later derived by making these
replacements.

(12.19)

12.2 Four-Quark Operators with an Additional Gluon

It turns out that SCET-1 operators containing an additional (anti-)hard-collinear
gluon field can give rise to SCET-2 operators of the same order in power counting
as those descending from the operators in (12.13). We therefore define the boost-
invariant operators

O (w)
VL= 75) 0] [XG Aie) (1 £ 95) Xer ]

T2

[PRC)
O, ,m({_, gt ) = P [DC
1

~E,u ~ (d) w) (u)
(')](].}1r‘,r({g}' /[> - 7 - ]‘)] [“X z/1 ,7 15 Z) } [:X:( 'Ah( 7];) l :t ’F))‘X]l((ljz)} ’
~+,u ~ 1 (¢ : ~~(u) : ~(u
Osgien ({0}, 1) = 7 Phe [@E7 (L= 75)bo] [ Aoy (1 £ 75)9‘;7(")@;2)} )
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12.2 Four-Quark Operators with an Additional Gluon

Figure 12.3: Choice of the momentum variables in the SCET-1 four-quark operators
ojg% (left) and O} (right) with an additional (anti-)hard-collinear
gluon.

, 1 . ,
O]f}_l,im({ﬁ}r p) = np (@98 (1 — 75)by] [X%)Aif(gl) (1% ?vs)x;;,l(lf)(ﬂz)} . (12.20)
where the color marking indicates that only the first operator matches on leading-
power SCET-2 operators. The subscript 4g means that the operators contain four
fermion fields and a hard-collinear gluon field. Note that the second operator con-
tains three fields in the hard-collinear sector, and hence it is necessary to introduce
two independent momentum-fraction variables g; and 3. We also define analogous
operators with a subscript 4g, in which the hard-collinear gluon field A;. is replaced
by the anti-hard-collinear field _A% The only relevant operator of this type is

1

+u = ~ _ v(d) v () (w)
O4§,hc,r({% g} ) = - Pre [xhc(;h)%(l - 75)51)} [xm,;;l)ﬁﬁ(@) (1+ ’75)xhc(g}2)} :
(12.21)

Our choice of momentum fractions in the operators Ojcg’%w and Ofg’jfwﬂ, is illustrated
in Figure 12.3. In the last two operators in (12.20) we add a label n or 7 next to the
symbol s indicating a soft down-quark field. This label shows whether the soft quark
field is followed by 7t or ji. The fact that the two up-type quarks must have the same
chirality requires the presence of v, in the second quark bilinear, and the transverse
index on this structure must be contracted with the transverse index on the gluon
field. As mentioned earlier, contractions with ¢, can always be eliminated using the
relations (12.9).

The product of fields in each operator in (12.20) has mass dimension D = 7, and
to ensure that the effective Lagrangian has mass dimension D = 6 requires that each
operator must contain an inverse large derivative acting on the (anti-)hard-collinear
fields. Which of the two options 7 - Op. or n - 0 applies is determined by boost
invariance. Note that the corresponding momentum components n - pp. ~ my and
n - prs ~ my are the large components of the (anti-)hard-collinear momenta, and it is
natural that the corresponding inverse derivative operators appear after the matching
to SCET-1. If an operator contains more than one (anti-)hard-collinear field, then
these derivatives can act on any one (or any combination) of these fields. In (12.20)
we have introduced the label operators i - P, and n-P5_, which project out the large
component of the total (anti-)hard-collinear momentum carried by an operator. In
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Chapter 12 Matching onto SCET-1

our case this is the component n - pg- or n - px+ of one of the momenta of the final-
state mesons. The dependence on the momentum fractions carried by the individual
fields is contained in the Wilson coefficients multiplying the operators in the effective
Lagrangian.

As before, the subscript r on the operators labels the different color structures.
Writing out color indices explicitly, the operators in (12.20) take the form

o L ra@a 3
O4g,%,r({£’ g}’ 'LL) = [xﬁ(;z)%(l - 75)1)1]1 ]

T (12.22)
y(uw)i la jo i (u)j i1iois
X [xﬁ(:fi)( hc(!71)>j2 ’ (1 + 75)xhc(i;;)] [T(T)}jljzj:s ’
and similarly for the other operators. A basis of color tensors is given by
[T(l)]jj;jz — (5z1J1 512]2 513]3 , [T(Z)}jijzjz — 621]3 512]2 (513]1 ’
[T(g’)]jijzjz — §idz §i2ds §isi ; [T(4)Lijzjz — §idz gizg1 §isds : (1223)
(T, jagy = 0771 6272 6572, [T ], o = g7 g2 g1z,

Note that index contractions with the symbols €1%2% and €273 do not arise in QCD.
Taking into account that SU(N,) generators are traceless, we find that the structures
15 and Tg) give rise to vanishing operators in (12.22).

Let us again explore how the operators in (12.20) can be matched onto SCET-2
operators containing (at least) two soft quarks for the initial-state B%meson, two
collinear quarks for the final-state K~ meson and two anti-collinear quarks for the
final-state K™ meson. Using the matching relations summarized in Table 12.1, we
find that the relations giving rise to the lowest power of A\ are

1. )
+u d u 3
O = g X 0= 95) 0] [ A (1 99) X2 ~ N1,
o ] l (12.24)
) W g aw
~A4 ~AZ N3 o2

but
1

+,u (@) () (u)
O4g7h677" - ﬁ':])hc [xhc 772(1 - 75) bv} [XE ‘Aic (]‘ + 75> xhc } ~ )\16 )
l ol N l
(x88) gl @ x®yxw  4E x
~A ~\B ~A2 ~A2

(12.25)
+.u

1 vV aal ¢ u
Olgier = == [Xpe B(1 =75 bu) [ i (1 £ 95) X3] ~ X'
o LN l
VAL @)y x Xl ol
~\3 N ~\3 ~A2

Similarly, one finds that the leading SCET-2 operators deriving from the operators
Oug,snr and Oug opn » scale like A6, Hence, only the first operator in (12.20) contributes
at leading power in \.
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12.3 Six-Quark Operators

As mentioned earlier, the corresponding operators containing an (Ss) pair instead of
the (4u) pair can be constructed from the operators in (12.20) and (12.21) by making
the replacements u <> s, hc <> he, n <> n, and T; <> y;. This yields

O (2.} 1) = [ B = 75) 0] [, i o) (L £ 5) X T

n: iPhc
1 _
+,s o~ _ (d) Kl (s)
O4g’h*c,T({£>Q}:N) - n ?E [:X:E(;I)%(l - 75>b71} |: he(71) ‘Ahc (g2) (1 + 75)xhc(1 )}
(12.26)
The different color structures of these operators are defined as
L @i jl
4ghc7‘({ y}a:u) = 7P [thc(gz)ﬂ<1 _75)bv ]
he (12.27)

[ hsc)(Z?jl (‘Ahc(r ) (1 + 75)36%)(];2)] [T(r)};izz ’
where the color tensors are the same as in (12.23).

This exhausts the list of four-quark operators which need to be retained in SCET-1.
Operators containing a soft gluon field AL or a 9, derivative instead of the (anti-)hard-
collinear gluon field in (12.20) do not contribute at leading order to the weak anni-
hilation amplitudes, because after matching onto SCET-2 they give rise to scaling
relations analogous to that shown in the first line of (12.25). Similarly, operators
with two (anti-)hard-collinear gluon fields give rise to subleading power SCET-2 op-
erators. The same remark holds for four-quark operators containing more than one
(anti-)hard-collinear gluon field, because any additional field counts at least O(\?).

12.3 Six-Quark Operators

The hard-scattering contributions to the weak annihilation amplitudes shown in Sec-
tion 11.3 correspond to SCET-1 operators containing six quark fields, one for each
valence quark of the initial- and final-state mesons. We thus define the boost-invariant
operators

_ 1 _
Ogjsﬁ,r({za g}nu“) = n-P— (ﬁ:Ph )2 [qu)ﬁ(l - 75)bvj|
hc c

v (w) (s) () (u)
X [XE@-])%O j:%’)xﬁ(jr_,)} [xhC(J )ﬂ(l + 75)9(: he (3 )} ’

. 1 _
O sne ({2, 9}, 1) = CECSIT [@D9h (1 = 75)b.]
he c

v (w) (s) v (5) (u)
X [xm(i,]ﬂ/‘(l + VS)XE@QJ [xhc(J )ﬂ(l + ’75)xhc(g2)} )

- 1 =
O per ({2, 5}, 1) = N S [:)cg?w:})%u — 75) by]

o [0 (L 5) X2 [T (L £ 96) X0,
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Chapter 12 Matching onto SCET-1

Figure 12.4: Choice of the momentum variables in the SCET-1 six-quark operators

O 4 and OF,,, . (left), OF,, . (right), and O (bottom).
1 _
= (7)) = (4) _
O6,E,r({£’g}>'u) - (n_ipﬁyn,g)hc I::X:E<j3)¢(1 75)bv]

) (s) () (u)
X [DCE(j1>¢(1 + ys)xmm} [ B £ 3) X000 ], (12.28)

where one must choose the same sign in the last two quark bilinears in each operator.
The reason is that the two up quarks must have the same chirality and the same is
true for the two strange quarks. One pair is produced from the chiral weak currents
in the weak effective Hamiltonian (11.1), while the other pair is generated from QCD
interactions, which preserve chirality in the limit where the light quark masses are
neglected. The six fermion fields in each operator have mass dimension D = 9, and
ensuring mass dimension DD = 6 requires the presence of three inverse large derivatives.
As before, we implement them using label operators. Which derivatives must be chosen
is dictated by boost invariance. Once again, it is understood that the derivatives can
act on any field (or any combination of fields) in the relevant sectors, and the Wilson
coefficients of the operators contain the dependence on the momentum fractions carried
by these fields. Our choice of momentum fractions in the various six-quark operators
is illustrated in Figure 12.4.

In principle, one could consider an analogous set of six-quark operators containing
an additional pair of transverse Dirac matrices v,. The above argument that the two
up quarks must have the same chirality and the two strange quarks must have the
same chirality, while the chiralities of each pair can be different, requires that the
transverse Dirac matrices must be inserted in the last two quark bilinears, giving rise
to the structure

YL (LF75) @y (l£75) . (12.29)

However, any operator containing this structure vanishes according to (12.10).
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12.4 Comments on the Structure of the Operators

As throughout this thesis, the subscript r on the operators labels the different color
structures. Writing out color indices explicitly, the first operator in (12.28) takes the
form

.U 1 ~(d)1 j (u)i s
Osonr (&3} 1) = g (A7 L= ) R (X5 (1 0) 22 )
he c
y-(8)1: (u) g 111217
x [xhc(gl)ﬁ;’(l + 75)xhc(zji)} [T(r)}ﬁjzjz ) (12.30)

with basis color structures defined in (12.23). The color structure of the remaining
operators can be written in an analogous form. Finally, note that we have omitted
the superscript ¢ = u, s on the six-quark operators, because under the replacements
u <> s, he <> he, n > A, &; <> §;, and (i, jo) ¢ (i3,73) the operators map onto
themselves. They therefore receive matching contributions from operators in the full
theory with flavor structures (db) (iwu) and (db) (3s).

The only possibility to match the operators (12.28) to leading power SCET-2 oper-
ators is by trivial matching, see Table 12.1. Therefore, six-quark operators containing
additional 0, derivatives do not contribute at leading power to weak annihilation
amplitudes.

12.4 Comments on the Structure of the Operators

The SCET-1 operators collected above have different power counting in A. Yet, they
give rise to contributions of the same (leading) power after they have been matched
onto the relevant SCET-2 operators. This is discussed in detail in Chapter 13. Op-
erators with more fields cannot contribute by the same argument given at the end of
Section 12.3.

For the SCET-1 operators constructed in this chapter, it is understood that all fields
are evaluated at the spacetime point z = 0 after the derivatives have been carried
out. Alternatively, one can work with operators in which the hard-collinear fields are
displaced from z = 0 by a light-like distance s;n, whereas the anti-hard-collinear fields
are displaced by a light-like distance t;n, see Section 7.1. The inverse derivatives can
then be generated by integrals over the parameters s; and ¢;, e.g.

0 0 -
| tonten) = [ are g o) |~ o) (1230
for a generic hard-collinear field ¢y.. Here, the i0 prescription is needed to make the
integral well defined. The two formulations are therefore equivalent.

While our focus in the discussion above has been on the construction of boost-
invariant operators, it is more conventional to collect the inverse (anti-)hard-collinear
derivatives in the hard matching coefficients, which are encountered when the weak
effective Hamiltonian (11.1) is matched onto SCET-1. When this is done, only the
products of the hard functions with the corresponding SCET-1 operators are boost
invariant. Note that, beyond tree-level in QCD interactions, boost invariance allows
for logarithmic corrections to the above expressions of the form

In" {—ﬁ.a}wn‘%} ;

(12.32)
112
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Chapter 12 Matching onto SCET-1

where p denotes the renormalization scale. These terms govern the scale dependence
of the hard coefficient functions.

12.5 Tree-Level Matching Results

We now illustrate the general results described above with an explicit matching calcu-
lation, focusing on four-quark operators and working at tree level in QCD interactions.’
In this approximation, we only need to keep the terms in the weak effective Hamilto-
nian (11.1) with flavor structures (db) (uu) or (db)(5s), corresponding to the flavors of
four of the valence quarks in the B° — KK~ process. Using a Fierz transformation
for the operators Q7 and @I, and defining the new operators

Qf’q - (Jb) VA ((jq) VA Qéc’q - (Ciibj)V—A (‘jjqi)ViA’ (12.33)
we find that at a hard matching scale pj, ~ my
Hor = Y Y [Co% () Q) + G (pn) Q5 (pn)] + -+, (12.34)
q=u,s r=1,2

where ellipsis represent terms which do not contribute to weak annihilation amplitudes
at tree level. Exploiting the unitarity of the CKM matrix, we find for the matching
coefficients

Cy ¥ (un) = G—\/g [Au Copn) 67 = X Cs(pn) — M Cr(pn)]
C3 " (un) = (ji D0 C (1) 7 — A, Capn) — A Ci(an)]
. (12.35)
C () = —TF A [Cs () + Co(pn)]
€ (i) = — 2\ [Colpn) + Croljun)]

V2

Note that the coefficients C;"? are independent of the flavor ¢ and only C, " depends
on the largest Wilson coefficient C}.

In the remainder of this section, we present the tree-level matching relations obtained
when the weak effective Hamiltonian (12.34) is matched onto SCET-1 at a scale of
order pj, ~ my. In general, the resulting weak Lagrangian in SCET-1 takes the generic

form
SCET 1 _ ZH ) (1236)

where we refer to the Wilson coefficients as hard functions H,,, and the relevant oper-
ators O,, have been defined in the previous sections. The global minus sign arises from
translating the weak effective Hamiltonian to a weak effective Lagrangian. Recall that
both the hard functions and the operators depend on the momentum fractions Z; and

!The Wilson coefficient of the chromomagnetic dipole operator Qs in the weak effective Hamiltonian
is relatively small and, therefore, ignored in the following.
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12.5 Tree-Level Matching Results

he

he hc
(a) (b) (c)
(e) ()

Figure 12.5: Feynman diagrams contributing to the matching coefficients of the SCET-1
four-quark operators with an additional hard-collinear (top row) or anti-
hard-collinear (bottom row) gluon. The definition of the momentum-
fraction variables is illustrated in Figure 12.3.

(d)

g; carried by the various (anti-)hard-collinear fields. If N,. > 1 and/or Ny > 1, one
needs to integrate over these variables with measure

th 1 NH 1
(H/ dgz) (H/ d@), (12.37)
=170 j=170
which is indicated in (12.36) by the * symbol.

12.5.1 Four-Quark Operators

The tree-level matching conditions are trivial in this case, because the weak effective
Hamiltonian (12.34) consists of four-quark operators. We obtain

Hzll,hc,r({gi}7 :uh) = Cr_’u(:uh) ) Hj,hc,r({gi}7 :uh) - C;‘Fﬁ(:uh) )

) N ) ) (12.38)
Hiw ({&domn) = C" ) Hi (&) = € ()

for r = 1,2. Starting at one-loop order, a dependence on the momentum-fraction
variables x; and 1; would arise.

12.5.2 Four-Quark Operators with an Additional Gluon

The tree-level Feynman diagrams contributing to these matching relations are shown in
Figure 12.5. In evaluating these diagrams we make frequent use of the relations (12.9)
and (12.11), which can be used to simplify the Dirac algebra and bring the result
into a form which corresponds to matrix elements of the basis operators defined in
Section 12.2. For the Wilson coefficients of the operators containing a hard-collinear
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Chapter 12 Matching onto SCET-1

gluon field, defined in (12.20) and (12.26), we find
—,u ~ o~ 1 —,u +,u ~ o~ 1 +,u
H, 5 (20} ) = N Co (), Hy 5 (§2,0) ) = N Ci(pn)

—u ~ ~ 1 —u u ~ ~ jQ u
H4g:ﬂ72({£7 Q}>Nh) = _'%_1027 (,uh) ) H;:EQ({z? Q}aﬂh) = _:Z__lcg_ (ﬂh)?

) (12.39)
H s (2 01 ) = = € (). H (L5} i) = 7" ()

—u ~ o~ 1 —u U ~ o~
H, (U2 3} n) = = €3 () H (2,9} ) = 0.

Since we are working at tree level, there cannot be a dependence on ¢,. The dependence
on y; always cancels between numerator and denominator. In an analogous way, we
obtain for the Wilson coefficients of the operators containing an anti-hard-collinear
gluon field, defined in (12.21) and (12.26), the expressions

—u ~ o~ 1 —u U ~ o~ 1 U
H4§7,hc,1<{£’ Q}7 :uh> = @ Cl 7 (:uh) ) sz,hc,l({gv y}, Mh) = g C;_ (Nh) )

H41_§7,7zc,2<{i7 2}7 Iuh) - C2_7u<lu’h) ’ HL’,ZC,Q({EJ g}a Mh) =0 )
(12.40)

—u ~ o~ —u u ~ o~ 1 u
H, ez, 9}, pn) = C " (un) ng’,hc,s({% U} ) = 0 C" ()

—u ~ o~ [N u u ~ o~ 1 u
Hyhea{Z, 0}, ) = — C " (1) ng’,hcA({@v U bn) = —— Cy " (1n) -
Y2 Y1Y2

In all cases, the Wilson coefficients of the operators containing an (ss) pair are obtained
from the coefficients of operators containing an (au) pair by making the replacements
u <> s, hc <> he, n <+ n, and T; < 1; everywhere. The coefficients Hj;’%w are thus

. iyu . i,s . i,u
obtained from Hj~; ., and the coeflicients H, 7 .- are derived from H toTer

12.5.3 Six-Quark Operators

In the derivation of the matching coefficients for the six-quark operators we make fre-
quent use of Fierz identities to reorder the hard-collinear and anti-hard-collinear quark
fields. For hard-collinear fields the relevant identities are (with correlated signs) [123]

[Xhe (1 £75)Treh1] [2 To (1 F 45) Xne] = —[Xhe g(l T ¥5) Xne| [ ng(l +v5) 1]

[Xhe (1 £75)T1th] [a Do (1 £ 95) Xpe| = —[Xne gﬁ (1% 75) Xne) [0 FWM% Tin],

(12.41)
where v, and 1, denote generic (in our case soft and anti-hard-collinear) spinor fields,
and the Dirac matrices I'; and T’y can be arbitrary. Analogous relations (with n and
n interchanged) hold for anti-hard-collinear fields. We also use the relation

Yty =0, (12.42)
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12.5 Tree-Level Matching Results

which holds in four spacetime dimensions. The color indices on the various quark fields
can be rearranged using the color Fierz identity

| 1/ .. . 1 ..
a\ij (4a\kl - il ckj ij skl
(£ (¢) _2(5 3 — 5 70 ) (12.43)

In this way, we obtain for the Wilson coefficients of the operators containing a soft
spectator quark followed by 7

_ -~ TQp [ 1 —u 1 — s

Hownal(E ) = T3 | = €0 m) = == ()

Hi sl {E D) = T8 | e € ) + = G )
— T — ’ )

6,57,2\ VL Y 15 [ 2 |1 (T2 + 21 2 \Hn 172 2 \Hn)| >

_ . Ty 1 —u 1 o

H = = o C )
6,8'!1,3({&7 Q}’ /‘Lh) 2 _gl (52 + jlgl) 1 (/’Lh) Nc ~1 ~§ 2 (/"Lh):| )
_ L Tap [ 1, 1,

HoonallZ, 0} mn) = =5~ | =2 Co " (n) = 2—-Cs <uh>] ,

_ . may | 1 1 1 . T s
H = = — _ — . C ’ _J- C )

. . T 11 1 1Y\ . 1
H6,sﬁ,6({£7 g}a :uh) = Th |: - X = <— + _>CQ ’ (uh) + ?’gzcl ’ <Mh>:| )
2

Neyp \Z2 +T101 22
(12.44)
and
+ = Ton | 1 g Lots
H&Sf’l,l({g’ Q}7”h) = 9 mcl (Mh) - 10 ¢ (Mh) )

Hg,—sﬁ,2({i7 g}» ﬂh) =0 )

o ran[ 1 . 11 1 1\ s
Hpns(2 ) = T3 | €1 m) = - o (= 2 )6

Ui B4 T2l I
R e R R e I
He s (12, 9}, ) = —7;—]6:;: {2—%—51 Ci () + i(m - %)Cf”s(uh)} :
He o s(12, 9}, pn) = % { - Ni 1@?@21 Cy " () + mcﬁ(uh)] . (12.45)

where we use the abbreviation a; = as(up). The Wilson coefficients for operators
with soft spectator followed by 1t are

. T
Cy " (un) + —=Cp~ (Mh)la

_ ~ o~ T
H6,sn,1({£7 g}a ,uh) = T |: - Zh 55'2 #10s
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Hipnal(20)o) = 52 = = € m) + = €5

Hapns (2 o) = T3 | €)= 2 (4 = ) (m)]

Hapna o) = 52| =2 €)== ()|

He o s(12, G}, pn) = ;O\é/h ~x£2 Cy " (pn) + a:ll (m + i)Cl’s(uh)] ,

He o 6({Z, 7}, 1) = % - Ni %C;’“(uh) + mc;s(m} . (12.46)
and

Hpna (2 Do) = 52| = =€) + =€)

HE ol (& g1 ) = T2 & (ﬁ - Dlegvim + 2 e u]

s Bhm) = B3 s O ) = el

H o a({Z, 5}, 1) = 0,

Motz ) = S | (= D + L m]

Bl (2.2 = T2 = (= D) + ().

(12.47)

The coefficients for the six-quark operators with (anti-)hard-collinear spectator are
given in Appendix A.9. As we show below, they only contribute to decay amplitudes

of B* mesons.
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Chapter 13

Matching onto SCET-2

Below the intermediate jet scale QCD is described by SCET-2, see Chapter 4. The
Lagrangian of this theory is given by the sum of (4.5) and (5.7) in our case and does
not contain interaction terms including fields from different sectors at leading power.

While the power counting in A is not preserved in the matching from SCET-1 to
SCET-2, the mass dimension of the operators is conserved in this step. Given the
generic structure of the SCET-1 operators,

Oscer—1 ~ [soft fields| x [he fields] x [hc fields], (13.1)

it is important to note that the blocks of hard-collinear and anti-hard-collinear fields
can be matched onto SCET-2 separately, while the soft fields are matched onto them-
selves, i.e.

[he fields] — [collinear fields] x [soft fields],

[hc fields] — [anti-collinear fields] x [soft fields], (13.2)
[soft fields] — [soft fields] .

In the matching [hc] — [¢] x [s] the collinear bracket cannot be empty by momentum
conservation, and the soft bracket cannot be empty as soon as there are at least two
particles in the final state. The detailed form of these matching relations have been
studied in [11,24]. As described in Section 4.2, hard-collinear fields can be integrated
out at tree level by solving their classical equations of motion, using a systematic
expansion in powers of A [11]. Alternatively, one can construct the relevant relations
by constructing the most general set of boost-invariant operators built out of collinear
and soft fields with the correct quantum numbers [24]. The second method also works
beyond tree level, but in order to fix the Wilson coefficients of the various operators
explicit matching calculations are required.

13.1 Multipole Expansion and Soft Decoupling

So far we have omitted the spacetime dependence of the various component fields in
the SCET-1 operators. For the purposes of the following discussion, it is instructive
to be more general. Without loss of generality, we evaluate the local operators in the
weak effective Hamiltonian (11.1) at the spacetime point z = 0. As mentioned earlier,
however, the operators built out of effective fields in SCET-1 are in general non-local
operators. Hard-collinear fields live at positions along the i light cone, e.g. Xp.(s17)
and A;- (so71) ete., with O(A?) parameters s;. The reason is that expanding these non-
local fields generates unsuppressed derivatives n - Oy.. Likewise, anti-hard-collinear
fields live at positions along the n light cone, e.g. X;-(t;n) and Ai(tgn).

LAt higher orders in power counting, effective interactions connecting collinear and soft fields can
be induced by integrating out hard-collinear field [11]. These interactions play no role for our
analysis.
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Chapter 13 Matching onto SCET-2

Before matching onto SCET-2, it is convenient to perform the decoupling trans-
formation to get rid of leading-power interactions between (anti-)hard-collinear and
soft fields. As explained in Appendix A.2, the soft Wilson lines introduced during this
decoupling are evaluated at z_ (z,) in the (anti-)hard-collinear sector. In other words,
when the decoupling is performed in the SCET-1 operators defined in Chapter 12, the
soft Wilson lines all live at z = 0. Therefore, we suppress spacetime point arguments
z = 0 in the following. Due to the decoupling, soft fields only appear as gauge invariant
building blocks defined in (4.9) and for the HQET field we define

Hym =S b, . (13.3)

Similar building blocks defined with n — n arise for the anti-hard-collinear sector.

In the next step, the decoupled (anti-)hard-collinear fields are matched onto (anti-)
collinear and soft fields in SCET-2. In these matching relations, the soft fields are
integrated over light-like directions. This non-locality of the soft fields is related to
the fact that the components n - ps. and n - ps are of similar size [11]. In the spirit
of (12.31), we do not work with fields displaced along the light cone but prefer to use
inverse derivatives acting on soft fields. Therefore, we define

¢s,n(w) = 5(W - 27183) ¢s,n s ¢s,ﬁ(@') = (5<(D —ain: as) ¢s,ﬁ . (134)

RPI requires w (w) to behave like n (72) under boosts in this relation. The change in
mass dimension of the soft fields can be ignored, as the § functions are compensated by
integrals over w and w in the effective Lagrangian. The jet functions and soft matrix
elements depend on these variables.

13.2 Six-Quark Operators

We begin with the first two six-quark SCET-1 operators given in (12.28), which contain
all the six quarks needed as constituents of the final-state mesons. Therefore, the
leading contributions after the matching to SCET-2 are obtained by implementing the
trivial matching relations, in which all (anti-)hard-collinear quark fields are mapped
onto the corresponding (anti-)collinear fields. Using a less trivial matching relation for
the (anti-)hard-collinear quark fields gives rise to power-suppressed SCET-2 operators.

Since fields of different type in SCET-2 do not interact, hadronic matrix elements
of such operators can be non-vanishing only if the fields of each type are in a color-
singlet state. Performing the decoupling transformation first and employing the trivial
matching relations (4.12) afterwards, we find for the collinear bracket

X (537) (1 4 75) X005 (597)

=2

;LSC)(O)/CS (Slﬁ) (S'j;,) kSiSﬁ (1 + 75) (Sn)jslsxgi)(o)ls (Sgﬁ)

v(s)k _ +\ k33 J313 e (u)l — (135)
— X, 3(51n)(Sn) ﬁl(lj:'yg,)(Sn) X% (s9m)

C
RYELE

—>Nc

(X (s17) 7 (1 £ 75) XL (s27)]
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13.2 Six-Quark Operators

where we projected onto a color-singlet state in the last line and a sum over color
indices on the quark fields is understood. Recall that our notation is such that we do
not display spacetime arguments z = 0. We find that the (unitary) soft Wilson lines
from the decoupling transformation cancel out. Similarly, the anti-collinear bracket
becomes

G2tz

G (tam) (1 95) X2 (1am) =

(X (tn)gh (1 £95) X (B2m)] . (13.6)

Projecting also the soft quark fields on a color-singlet state, we finally obtain for O6 shr

1 . i oo ciai 119243 [ (d
N3 071 o722 97 [T(T)}jljzje, [qg )ﬁul B ’}/5)1)1;}

¢ (13.7)
XU (#rn)gh (1 % 5) X8 (tam)] [ X8 (s517) (1 % ~5) XL (507
x (X0 (tm)h (14 795) X7 (tam)] [X) (s17) 8 (1 £ 95) X (50m) ]
which is of O(A'). This defines the leading power for SCET-2 operators describing

weak-annihilation amplitudes. For 06 sn, ONE just has to replace 7 — 7t in the first
bracket. The projected color structures evaluate to

. 1; r=1,
m S §iziz §i3is [T(T)];I;z;i = NLC or=2,45, (138)
‘ xzi r=3,6.

The purpose of keeping the momentum arguments of the fields explicit was to demon-
strate that the cancellation of soft Wilson lines works out even if the various (anti-)
hard-collinear fields live at different spacetime points. At this point we can switch
back to momentum space, as we have done in Chapter 12.

It follows from this discussion that at the intermediate jet scale j; the twelve six-
quark SCET-1 operators Og ., and Og,,, (with r =1,...,6) in (12.28) match onto

only two SCET-2 operators, which we define as

Ok }.b) = s (R (L = 7)705]

() (s) (s (u)
X [:X:E(T )7/"<1 :|:’7 )xc(rg } [ Jl)%(l j:fy5)x (Jz)}
1
(n‘ipg)Zﬁ'iPC
u)

x [0, (L) X0 ][00, (L £ 96) X)) ]

Here we include in the soft brackets two Wilson lines i 1n order to get the soft building
blocks (4.9) and (13.3). They are chosen such that ol (QS n) is followed by 7 (i)
as for the four-quark operators, see below. For these operators the soft fields are
not displaced along the light cone, and, therefore, the B meson is just described by
the decay constant fB in the amplitude. The momentum fractions {z,y} are chosen
similar to Figure 12.4a. B

For the remaining two operators in (12.28), we need to match the (anti-)hard-
collinear down-quark field onto a soft down-quark field plus other fields, containing

(13.9)

O, ({z, y} p) = (O 9 (1 — 75) Hoy )
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SCET-1 field SCET-2 fields power counting | relevance
X AL+l 3 v
x| R+ X+ ol A v
W0 olf) + 04 + X A v

Table 13.1: Matching relations for a hard-collinear quark onto a soft quark of the same
flavor plus other partons [11,24].

at least one (anti-)collinear field. The possible matching relations arising a different
orders in power counting are shown in Table 13.1. We are only interest in the O()\?)
matching relation shown in the first line of the table, because when combined with
the trivial matching relations for all other (anti-)hard-collinear fields this yields op-
erators of O(A\'). Using higher-order matching relations for any of the fields gives
rise to power-suppressed SCET-2 operators. Boost invariance uniquely fixes the struc-
ture of the matching relation for the decoupled down-quark field. At tree level, see
Figure 12.2, it reads [11]

x@0©0 , _1_ g ﬁif (13.10)

An analogous relation holds in the anti-hard-collinear sector.?

Performing the decoupling transformation and projecting onto color-singlet states
in this case is more involved. For Oé'fhc’r the anti-collinear bracket yields the same
result as (13.6) but the collinear bracket becomes (omitting all spacetime arguments)

XS 0(1 4 5) X019

= TR (S1) (AL) " (L ) (S) X (13.11)
1 lyi3 jsk1 1 isis cliki (s u
= g (S ()" = aitath ) [T AL (1 +29) X0

where a sum over color indices on the quark and gluon fields is understood. Combining
this with the soft bracket yields

S5i2i2 (( Sl)lm ( Sn)ﬂékl _ L(;jgz-g 5zlk1> [To"ﬂ iiois

N(N2—-1) N. J1d2Js
x [QUOn (S1) ™" it (1 — 5 b3
(13.12)
Nic ;T =2,
- [qu)’yiﬁﬁ(l - '75)bv} J\}g ; r=3,6,
0; r=1,4,5.

2At the same order one can construct operators given by the same expressions times arbitrary
powers of the boost-invariant ratio (n - As/n - d5). However, all of these terms are already taken
into account by working with the gauge-invariant building block A, ,,.
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SCET-1 field | SCET-2 fields | power counting | relevance
A At A2
A X+l A3 v
A QL + x A3 v

Table 13.2: Matching relations for a hard-collinear gluon [11,24].

Again the soft Wilson lines from the decoupling cancel. A similar derivation holds for
OQEET and we find only two SCET-2 operators

O {293 1) = sz (910 L a1 =399,

() (s) v (s) ¥
X [0 (L £ 75) X [0, At (L £ 75) X0 ] (13.13)

_ 1 A
Ol Az yh ) = g (Lno 1t (L= 36) Ho

E(::l)‘A(J:_(ljg Tﬂ(l i%)x(() )} {jcﬁs(yl)ﬁ(l + 75)95( 7),2 } .

These operators are not boost invariant and have mass dimension D = 7. Boost
invariance and mass dimension D = 6 are restored when combined with the Wilson
coefficients which contain the inverse derivative from (13.10). For our decay of interest
BY — K*K~, these operators do not contribute, as they describe B*-meson decays.

13.3 Four-Quark Operators with an Additional Gluon

Let us next discuss the matching for the SCET-1 four-quark operators in (12.20),
(12.21) and (12.26), which contain an additional gluon field. If the (anti-)hard-collinear
gluon field would simply be matched onto the corresponding (anti-)collinear gluon
field, then these operators are suppressed by two powers in A relative to the six-quark
SCET-2 operators discussed above. Hence, we need to invoke a non-trivial matching
relation for the gluon field, in which it splits up into a quark pair. Possible matching
relations contributing at different orders in power counting are shown in Table 13.2.
The leading contributions including a quark pair arise at O(A\3). At tree-level, see
Figure 12.2, it is given by [11]

1 _
Ay 4z ay, XDy, 1209 4 he] .
e T im0, (in-0,) ; et @+ e (13.14)
Besides this, the (anti-)hard-collinear down quark must match onto a soft down quark
together with an (anti-)collinear strange-quark for SCET-1 operators with (@u) pair
and an up-quark for operators with (Ss) pair, respectively. According to Table 13.1
the leading contribution in this case is of O(\*). At tree-level, see Figure 12.2, the
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Chapter 13 Matching onto SCET-2

matching relation reads [11]

(d)(0 I = u 1 - .
Xhe” — 2ma o Q) Akt CRACEA > XDyt 0 +he] . (13.15)
S S c q

Of course, similar relations to (13.14) and (13.15) in the anti-collinear sector exist.

To get a leading power contribution from the operators OZ;’% . we then match
the decoupled hard-collinear gluon according to (13.14), the anti-hard-collinear down
quark according to (13.15) and the two (anti-)hard-collinear quarks with flavor ¢ = u, s
trivially onto SCET-2 fields. Applying the Fierz transformations (12.41) twice, we can
combine (anti-)collinear and soft fields to spinor bilinears. Projecting onto color-singlet
states in the (anti-)collinear bracket and combining the result with the soft bracket, we
find that one pair S%Sn does not cancel out. We end up with the following eight-quark
SCET-2 operators

Q1) L yrudh(L = 75) Hoa] [OF) (1 +75) 58,95 )]

X [ngl) (1 +5) xés()lg)} [3—6%1) (1 +s) DCS@))] ,

g ! QD o  at (u)
S T (P2 P, (95 @) YLulth(1 = 95) Hom] [Q7n ) SnSa ity (1 = 5) Q.5 )]
o () e W
x [XE(’I) (1 =) Xe, ¢(a 2):| [xc(yl) (L —s) xC(JZ } . (13.16)

The superscript ¢ = u, s specifies whether the operator contains an additional (@)
or (8s) soft quark pair. The subscript L 7 indicates that the spectator down quark
is followed by 7, 7. The choice of momentum variables is illustrated in Figure 13.1.
These operators have mass dimension D = 9 and are not boost invariant. However,
the correct mass dimension and boost invariance are restored after combining with the

Wilson coefficients. Applying the same procedure to the operators O, % ahers we find
1 (d) 5() i (5)
8, 1ln,r n-ng (ﬁ TC)Q [Qs n(w) Vluﬂi%(l —75) -{}Cvn} [Q a(7) S S %7/'/)@_(1 _75)9 a(p )]

(@) () Y (5) (u)
x (X8 (1= 95) X&) T[S (1= 5) X ]
S Y 5w (u)
- n- TE (ﬁ . fpc>2 [Qs,n(w) 'YLy%ﬂ(l - 75) j_Cv,n:| [QSJL(/)) %%’Yﬁ(l + ’75) SJLSﬁ QS,ﬁ([))}

X (X80 L+ 5) X8 T[S (L4 95) X T (13.17)

After projecting onto color-singlet states in the (anti-)collinear brackets, two possible
color structures r = i,1ii in the soft sector remain. For Og | ., they are

Q80" Y Luth(1 = 5) F01] [0 gt} (14 95) (SES. Q0] [T ]2, (13.18)

J2

[To]; = 00 6, [T 12 = () (g2 (13.19)

J1J2 J1J2
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£ T

Figure 13.1: Choice of the momentum variables in the SCET-2 eight-quark operators.

And similar for the other operators. It proves to be convenient to choose these color
structures instead of the ones defined in (12.15). They are related by the color Fierz
relation (12.43).

The four leading power operators originating from O;q’,q}?m are

sl _ 1 A(d) A (s) ta o
Oglnr = m [Qs,n(@) YLptt(1 —s) g'fv,ﬁ] [Qs,ﬁ(p) (L — v5) SpSn Qs’n(p)}
X (XU it (14 35) X T[S b = 35) X, ]
Uu, 1 ~(d u u
O tny = PP, Q') YL h(L = 75) Hos] [OL2) STt (1 — 5) QL]
X (XL gt (14 9) X8 T [XE) 7L+ 35) X ] (13.20)

and the ones from Ozg,th,r are

1 = (d)
= 1qf
n-Pgs(n-P,)? [ sm(w)

(w) &) 1 ras) ()
X [ X WL+ 78) Xl ] [XeT,) BV (L +75) X055, ]

wl 1 5@ o) fa o
OB,LH,T - m [Qs,n(w) fh—#%ﬁ(l - 75) :H’-U,n} [Qs,n %%(1 - 75) Snsﬁ Qs,ﬁ:|

YLl —5) Ho] [QF)  SESL (1 — 75) QF) ]

S7L —_—
O&J_n,r -

[xgém (1 — >xi(u)} [xﬁs(m) Ay (14 75) x%m} : (13.21)

The superscript L indicates that these operators only contribute to B*-meson decays.
The color structure of the soft brackets is similar to (13.18), i.e. the soft Wilson lines
belong to the soft quark field standing close by. We do not consider these operators
in the following.

13.4 Four-Quark Operators

The matching relations for the four-quark operators listed in (12.13) and (12.19) are
more involved. These operators do not contain the pair of strange or up quarks needed
to form the final-state kaons, respectively, and hence this pair must be generated in
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SCET-1 field SCET-2 fields power counting | relevance
X X 2 v
X\ X9 + AL, A
) X9+ 7 A, A
x X9+ AL+ AL, Al
o X+ AL+ AL, Al
@ X +08) + 0lf) M
x50 x4+ X+ alf) A3 v
x50 X + Q) + P v
o) 0 4+ X+ Q) + AL AP v
@ 0 + Q) + i + At AP v
e 0+ X+ l) + AL, X v
X @+ 0% + o) 4 AL, X v

Table 13.3: Matching relations for a hard-collinear quark onto a collinear quark of the
same flavor plus other partons [11,24].

the matching onto SCET-2. Moreover, each of these operators contains either only one
hard-collinear or one anti-hard-collinear quark field and, therefore, this quark has to
match at least onto two (anti-)collinear quarks in SCET-2. According to Table 13.3,
the leading such contribution is of O()N°), see also Figure 12.2, and contains also
contributions with additional soft or (anti-)collinear gluons. The explicit expression is
rather lengthy and can be found in eq. (45) of [11]. In order to get a leading power
contribution the remaining up or strange quark in the opposite sector has to match
trivially whereas the down quark has to generate the missing strange or up quark
to form a kaon, respectively. The leading contribution with the correct field content
is (13.15).

First, let us consider Oy, .. After performing the decoupling transformation, match-
ing the down quark according to (13.15), applying the Fierz transformation (12.41)
once and projecting onto a color-singlet state in the collinear bracket, we define the
operator

~ L a0 (@) (0) ot (s)
B = = (L) B = 78) Hon] [ S sh(1 = 15)Q,7 )
c (13.22)

(s (u)
X [:X:C(UL) 77'/(1 o 75) .xc(yz)} )
Note that we dropped two soft inverse derivatives, which would restore boost invari-

ance and the correct mass dimension. Strictly speaking, this operator is defined in
SCET(he,c,s) as it contains both (anti-)hard-collinear and (anti-)collinear fields, we
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13.4 Four-Quark Operators

indicate this by the hat. The color structure of the first two brackets is

[QUDi (1 — 5) 321, (XD SES, ) (1 — 75)Q0072] [T 2 (13.23)

J17J2

with () defined in (13.19).

For the second four-quark SCET-1 operator Oj -, one follows the same steps and
defines at an intermediate stage

~ 1 B y
Obnr = [Q(d 77i(1 — ) 5, } [Q§)< )%(1 +’Y5)STS x )(0}

3
5
3
)
ol

(13.24)
x [X8) (1 +75) X8 ]

Its color structure is similar to (13.23).

Matching the remaining (anti-)hard-collinear quarks in (13.22) and (13.24) at O(\%)
onto SCET-2, we find several operators containing eight quarks as well as operators
containing an additional soft or (anti-)collinear gluon. It is convenient to apply a Fierz
transformation (12.41) to bring the matching relations in the form

TOO L (70 a®)a ., xWO L o) X0 xW]  (13.25)

and already perform the color-singlet projection in the (anti-)collinear bracket. If the
matching relation does include an additional gluon, this projection works as in (13.11)
otherwise as in (13.6).

Finally, the simplest eight-quark operators are

1 _ _
s _ (d) (s) i (s)
(98 o (n :PE)Q - :Pc |:Q37n(w) 7/"(1 - 75) g{u,n} [Qs,ﬁ(ﬁ) SﬁSn Vi(l - ’75) Qs,n(p):|

X [jcg(tzl) ¢<1 - 75) xés()lz)] [jcgs(?yl) ﬂ<1 - 75) xf(;(Ll)Jz)] ’

N 5 5(5) fa o
Ognr = PR N A Qim0 B = 95) Hoa] [Q7 ) B+ 75) SaSe Q)]

(13.26)

() (&) 174+) @)
X Xy L+ 75) Xl ] (et L+ 75) X)) -

The two possible color structures r = i,ii in the soft bracket are the same as in (13.18)
and the choice of momentum variables is visualized in Figure 13.1. The second type
of eight-quark operators contains also a derivative 0, in the numerator acting on
(anti-)collinear fields,

s O(s) (s)
OSBnT = W[ s,n(w) 7/"(1 - 75) H, } [Qs,ﬁ(f)) S;lsn 7”%(1 — 75) Qs,n(p)}

< (XG0 W ies (145 X, ] (XD, 81 = 99) X0, ]
1 M —
s _ (d) (s) " 5)
SR e Pe (0 Pe)? 3 (D@ AL = 15) Hoa] 975 ) (L = 5) 525 0,0 )

X (X (14 75) XD VX ides (1 +75) X0 1. (13.27)
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These operators have mass dimension D = 10 which is reduced to D = 6 after com-
bining with the Wilson coefficients. In principal, there are also operators containing a
soft derivative in the numerator but applying the soft equations of motion,

ki Q5) = —2in-0HQL) — it ;98 (13.28)

they can be reduced to the operators (13.26) and operators containing eight quarks
and an additional soft gluon, see (13.30) below.

Besides operators containing only eight quarks, there are ones with an additional
(anti-)collinear gluon. They read

s 1 A (d) o) at (s)
Osamr = m [Qan o 1L = 75) Fo] [Qs,mm SaSu (1 —5) Qi )]

oy = Qif’%ma—%m }[Q§Sn<p h(1 — 75) S5S, Qi;<p}

8c,n,r ______Z_____;ji[

(u (s) v (s) i (u)
X [ L+ 75) ) ] [X0 ) Az (L4 95) X, ] - (13.29)

The last type of leading power SCET-2 operators contains eight quarks and an addi-
tional soft gluon

s _ 1 A(d) A 4L t (s)
Ogsnr = n P)Tn P, (9 () (L = 5) Fn] [Qsﬁ sin(o) ShSn (L —5) Q2 )]

x [XE0,) (1= 29) X0 1 [XE,) 1 = 35) X0, ]

s 1 A () i 1 (s)
ng—m[ o) B =75) Foa] [Q75 () b S2Sn A (o) (1 +75) Q)]

(u) (s) v (s (u)
X[ B+ 75) XG0, X, O+ 75) X, (13.30)
As evident from (13.22) and (13.24), there are only two possible color structures r = i, ii
for these operators

1005 (1 — 5) 321, ] [(Qh AL, S15,) (1 — 25) Q0] [Ty] ™2

J1732

(13.31)
Q807 (1 — ) H] [QEN2 b (1 — 35) (SES AL, Q0] [T ]2

with T{,y given in (13.19). The choice of momentum variables for eight-quark operator

with additional gluon is illustrated in Figure 13.2. If one would also consider B*-

meson decays, one would find 16 additional leading power operators originating from
four-quark SCET-1 operators with (uu) pair.

SCET-1 four-quark operators with (Ss) pair (12.19) match on SCET-2 operators

containing eight quarks (and additional gluons) with a (uu) soft quark pair. For
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£ T
£ AT

Figure 13.2: Choice of the momentum variables in the SCET-2 eight-quark operators
with additional gluon Og; , . (left) and Og,, . (right).

example, the analog of (13.26) is

w o 1 (d) 5 )
Osnr = tup 2, Q) (L= 8) Fon] [0 ) (L +75) 5187 275 )
() () 1[4 (w)
X (Xt L+ 75) X (X, B+ 75) Xy, ] (13.32)
w 1 5 i () '
Onr = o Gy [Qemio L= 1) o] (90 () ShSa (1 = 15) 27 ]

X (X80 (L= y5) X5 T[XE) (1 =) XL ]

In general, the eight-quark operators with (zu) soft quark pair are obtained by making
the replacements u <> s, ¢ <> ¢, n <> N, T; <> y;, w <> W, p <> p, and 0 <> & everywhere.

13.5 Tree-Level Matching Results

In this section, we present the tree-level matching relations obtained when the weak ef-
fective SCET-1 Lagrangian (12.36) is matched onto SCET-2 at a scale p1; ~ /myAqep.
In general, the resulting weak Lagrangian in SCET-2 takes the generic form

ESCET 2 _ ZD ), (1333)

where the relevant operators O,, have been defined in the previous sections. The
Wilson coefficients D,, of the full matching can be decomposed as

1) =Y () Ho(1) % Jonn (1) (13.34)

The jet functions .J,,, and jmm originate from matching SCET-1 to SCET-2 in the
hard-collinear and anti-collinear sector, respectively, and the hard functions H,, are the
ones from the matching QCD to SCET-1, see Section 12.5. The sum over n includes
all SCET-1 operators that match onto the given SCET-2 operator O,,. Working at
tree level, only one SCET-1 operator (with different color structures) contributes to
the matching for a given SCET-2 operator. This simplifies the structure of the jet
functions considerably. We give their explicit expressions in Appendix A.10.
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The hard functions depend only on the momentum fractions z; and g; of the various
(anti-)hard-collinear fields. The jet functions depend also on the momentum fraction
x; and y; of the (anti-)collinear fields. Therefore, the symbols * in (13.34) indicate
that one needs to integrate over the momentum fractions of the (anti-)hard-collinear

fields with measure
th 1 NE 1
(H/ dgi) (H/ d@). (13.35)
i=1 70 j=10

Here Nj. (IN5;) denotes the number of (anti-)hard-collinear fields in SCET-1 operator
O,,. Similar to (12.36), these integrals are only present if Ny, > 1 and/or N;- > 1. As
we work at tree level, the jet functions contain ¢ functions and these integrals can be
performed trivially. The symbol % in (13.33) indicates that one also needs to integrate
over the momentum fractions of the (anti-)collinear fields and the soft momenta with

measure (ij /0 1dyi) (]jj /Olda’j) (ﬁ/—zdw’“)’ (13.36)

where N, (Nz) is the number of (anti-)collinear fields and N, the number of light soft
fields in SCET-2 operator O,,. In the following, N. as number of collinear fields does
not appear anymore and, therefore, it cannot be confused with number of colors. In
general, the soft variables {w} = {w,®, ...} need to be integrate in (—oo, c0) as soft
momenta are not conserved in HQET and SCET.

Below we list the full tree-level Wilson coefficients for the operators defined in the
previous sections. However, we restrict to operators relevant for B — K+ K~ and do
not include the coefficients relevant for B*-meson decays.

13.5.1 Six-Quark Operators

For SCET-2 operators containing six quarks (13.9), the jet functions are trivial and
their full Wilson coefficients (13.34) are given by linear combinations of H,, , and

6,sm,r
Hgfsn’r. Taking into account the factors from the color singlet projection in (13.8), we

find

L l) Cy (1))

o 1 .. 1
Dia({z,y} ) = Vf%‘{ﬂL ch’ (15) + P (y—% " N

. 1 1 1Y Gy
- Cf’(uj)Jr—(—__)M}’
Y2y Yo \T1+Xay2 Ty Ne
_ Cr { - 1 ( 1 1 ) Cy " (1)
Dﬁ, Z, y i) = —— O, +_C . )t — -t }
6, ({ g} ,LL]) Nc J hT 1 (/’L]) U1 T9 x2+y1x1 Nc
1, 11 1) G ()
——C1’(Mj)+_<_2_ ) 2Nj ’
Yoy T \Y2 Y2 c
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D+n z, s i) = —— TTOA;§ — C+’u . _|__(—__) 2 J
6, ({— Q} MJ) N, J Y12a 1 (,u]) P CPE —Nc
1 1 1 1 C+’S(M.)
+ c -+—(_+_)u 7
Yoty (1) Yo \ 22 11 N,
X Cr { [ 1 (1 1 ) Cy " (11y)
Dg ({z,y}, ) = —majq— —C; " (uy) + — | 5 — — J
6, ({ Q} 147) N, % Y12 (k) n\2Z o N,

1 1 /1 1 Cy (1))
+—0Cr° -+—<—+ ) 2 J},
Yoy (1) T \Y2 Y2+ 01T N,
(13.37)

with abbreviation o; = a(p;). We show below that the matrix elements of ngﬁ and
Ogﬁn evaluate to the same expressions. Therefore, one has to add up the correspond-
ing Wilson coefficients and finds that Qf’q does not contribute to six-quark SCET-2
operators.

13.5.2 Eight-Quark Operators

For eight-quark operators (13.16) and (13.17) originating from SCET-1 operators with
four quarks and additional gluon, the full Wilson coefficients at tree level are

1 1 1
Ds )= — 20?2
sni{z g b py) SN2 Ty p(p+@)p y1z120

C u C u
S e ) + e )}

1, ., 1 1

Dg na({z,y, wh, pj) = + Ty
8,17, ({z,y, w}, 1y) SN2 T p(p+w)p yhx1m9

x u N2 +1 u
c{a(cn 5 )ertm) + Mt e ) |

1, ., 1 1
— o’
8NZ T plp+w)p y1y272

Dg iz, y,wh py) =

OF —u CF —,u
X {Nc Y2 C1 " (py) + W(QCFNCM - 1)C, (Mj)} ,

C

1, ., 1 1
— T O
SN2 7 p(p+w)p Y1y

Dg iz y, wh 1) =

N2 -2 . ) 1\, .
X {Q(C'F + O, ?J2) Ci " (ky) + <4OF Y2 + FE) Cy” (Nj)} .
Note that the Wilson coefficients of the operator Og |, (Og |,,,.) depend on the hard
functions C7** (C") with opposite flavor superscript. As in general they are integrated
over the entire real axis, the 10 prescription of the soft variables can be relevant, see
e.g. [131]. However, in our case it is always the same w — 0, w — 0 and so on.
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The full Wilson coefficients for the SCET (he,c,s) operators (13.22) and (13.24) are
at tree level given by

1 1 Cr
plp+w) yr N2 72
~ 1 111 _ 2C0F _ }
D§,s=ma;—— — | —C; " (pj) + —C5 (1) |,

6,n, ]p(p—FW) L |:Nc 1 (NJ) N, 2 (,u])

D’lL

6,n,i

(/’LJ)

= 7TOéj

(13.39)

Dy .= R ——_— ‘
6,7, 770‘] ﬁ(ﬁ—f‘@) To NCQ 2 (:uj)a

~ 1 111 1

_Du,. — - _C+’u . __C+7u X .
6,n,ii Tr&] ﬁ(ﬁ‘i‘a)) To |:Nc 1 (M]) NCQ 2 <MJ>]

Matching also the remaining (anti-)hard-collinear up-quark field to SCET-2, we find
for the Wilson coefficients of the eight-quark operators (13.26)
Dis(fa psh) = +5E w2 g,
Dinaliz v wh 1s) = 2]55 o p(piw)p 1;:;22
Dsgiliz, g wh ) = _2155 ™y p(p i ©)p 1y§le

s 2CF 1 1+y1 ” 1 ”
DS,ﬁ,ii<{£7g7g}7:U’j> = Nz 7r204]2 ;ﬁ (1) — C; (1)

[ () + 205 G (11

C;7u<uj) )

' Pp+@)p i N,
(13.40)
and for the ones with additional derivatives (13.27)
02 1 1
D5 ({z,y,w}, +—L 722 C, " (i),
88,n,1({— Q —} iu]) N3 j p(p + (JJ)ﬁ2 ylxlx% 2 (lu])
Cr 1 1 _ _
D3y, sz, y,wh, 1) = +—= 72a? _ [C’“ )+ 205 Cy " }
88,11,11({ Yy } IU’J) Ncg j p(p+w)p2 y1I1I§ 1 (:U’]) F L2 (MJ)
C2 1 1
Dy iV Y, Wy :__FWQO; C—hu i)
80,7, <{— Q —} :u]) Ncg j p(p +W)p y1y2$2 2 (NJ)
Cr 1 1 1
Digni{z, y,w}, ) = =<5 w2 — {C*’“ ) — —C" ]
80,7, ( Yy ) Nz i 55+ @)p? V2 ya o () N. 2 (#)
(13.41)

The Wilson coefficients for the eight-quark operators with (uu) soft quark pair, i.e. for
O% 1n,and Og |, aswell as Og; . and Of, ., are obtained by making the replacements

U4 S, C4>C,n<>n, x; <>y, w0, and p <> p everywhere. For the operators with
an additional derivative, Og, ;. and Og; = one also needs to replace 0 <+ 0.

13.5.3 Eight-Quark Operators with an Additional Gluon

For the operators with eight quarks and additional (anti-)collinear gluon (13.29) or
with an additional soft gluon (13.30), the full Wilson coefficients are at tree level given
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13.5 Tree-Level Matching Results

by
1 1 1
T,Y, W Q@
80n1<{ Y 2 '“J) QNCQ plp +w)p? y1 (w2 + x3)2
T gy 2 2 @R n) o,
Ty Nc Nc {EQ(JTlJrfES)
1, 1 1
T,y W as —
Doz y, w0ty 1y) = 2N, p(p 4 w)p? yn (4 + x3)?
s 2 20r (w24 23)" ][ 0w ~u
T2 € () + 200 € ()]
% |:$2 NCQ Nc x2<I1—|—$3) 1 (/M)‘i‘ F Y9 (:U'J)
Cp 1 1
c,m,1 Zz,Y,w =+ a; = N
Diens{p:0h 10) = 4 985 ™0 S5 2 T+ )
" 2 20p (it 93) | v
|:_ — 14 — N2 N 2 (lu]) ;
mn E e Y1(y2 +y3)
1, 1 1
c,n,il L, Y, w - %505 _
Dicqilla y,wh ) = +577 T p(p+w)p? (g1 + ys)?a:
Y3 2 2CF (1 +y3)? u 1 ot
e n X F ) = € ()
n : ¢ Y1(y2 +y3) Ne
(13.42)
and
1 1 1
D:. . T, Y, Wy, hj) = — ’7T2062'
SS,TL,I({— Yy —} ,u]) 2]\762 J p(p )(p+5)2 Y175

2
85n11({x y’w} 'UJ) 2NC7T & 5’)2 2

x [(1 - 2]% s %-l— NZ} [Cf"(uj) +2Cr G, (uj)] ,
Dioni{z, y,w} py) = _20_]\1;;27T2 JQP(P—Fw)l(PﬂLU)? y21.732
x [(1 - 2]% y1> % + %} C" (1)
Dina{z, g0}, 1) = 2]1\7.; maj p(p+w)1(p+a)2 y;xz
(el o]
(13.43)
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Chapter 13 Matching onto SCET-2

respectively. Similar to above, the Wilson coefficients for the operators with (au) soft
quark pair are obtained by replacing u <> s, ¢ <> ¢, n <> N, T; <> Y, W > @, p > P,
and o <+ ¢ in these expressions.
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Chapter 14
Weak Annihilation Amplitudes

In this chapter, we determine the matrix elements (K+K~|QF4|B°) for the opera-
tors defined in (12.33) in terms of convolutions over Wilson coefficients with LCDAs
and generalized soft functions for the B meson. The appearing endpoint divergences
of weak annihilation amplitudes are discussed in detail in Chapter 15.

The relevant operators obtained after matching on SCET-2 are of the from

Oscrr—2 ~ [soft fields] x [¢ fields] x [c fields] . (14.1)

As interactions between different modes in SCET-2 are power suppressed, it is possible
to factorize the matrix elements as

(KT K~ |Oscpr—2|B) ~ (0|soft fields|B®) (K |¢ fields|0) (K~ | c fields|0) . (14.2)

This factorization for an individual operator actually works to all orders in A as the
subleading soft-collinear interaction terms in the Lagrangian (4.5) only contribute for
scattering processes of the form s+c¢ — s+c but not for s+s — ¢+c studied here [11].
However, at subleading power new operators contribute. Many of the factorized matrix
elements can be evaluated straightforwardly in terms of LCDAs and decay constants.
Translating the (anti-)collinear fields with colored momentum-fraction subscript to
position space, e.g.

u _ dt igptn
X0, = npe [ e e e (143)

one can easily convince oneself that the standard (anti-)collinear brackets are

1 (o . |
g (B0 10 = 35) X015, [0) = Fifie dc(91) 01 = 11 = 1),

1
n’P

(14.4)
<K+‘xcm n(1 £ 7s) DCSQ)|O> Fifr Ox(x1)0(1 — 21 — x9),

i.e. the leading-twist light meson LCDAs, see Appendix A.8 for their definitions.

14.1 Six-Quark Contributions

The soft bracket for the six-quark operators (13.9) is local and simply evaluates to the
HQET decay constant

<O‘Q§d%ﬁl(1 — 75)5-(1,,,—1‘3% = —ifg/mp v,
<O‘Q(d) (1 —s) U7n‘BO> = —ifg/mgn-v.

Replacing the QCD eigenstate with the leading order HQET one yields a factor /mg.
Applying momentum conservation in the first line, one can replace mgn - v with the

(14.5)
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Chapter 14 Weak Annihilation Amplitudes

large component of pyx- and cancel the remaining label operator in (13.9). A similar
relation holds also for the second line. Combing this with (14.4) yields the useful result

(O5) = (Ogn) - (14.6)

Here and in the following, we use the shorthand notation (...) = (KTK~|...|B%).
Adding up the associated Wilson coefficients D, and Dg, in (13.37), we find that all

contributions proportional to CljE ! cancel, i.e.
:l:7
<Q1 q>6—quark — 0. (147)

For the operators with color structure [ij][ji], the six-quark contributions read

u Crp ' 1 1
(91 e = g mrifnfi [ dndy| - o) (149
and
. O ! 1 1
(93" e = 5 il [ dndy | ot o) o), (149

where we replaced the HQET decay constant with the one defined in full QCD,
cf. (A.8.7). Similar relations for Q;* are obtained by replacing x <+ y in the above ex-
pressions. With (14.7-14.9) we have recovered the result (11.12) obtained in the QCD
factorization approach. Clearly, the convolution integrals in (14.8) and (14.9) suffer
from endpoint divergences for y — 0 and x — 1, respectively, as the leading-twist
LCDAs for the kaons vanish only linearly in the endpoints, see Appendix A.S.

14.2 Eight-Quark Contributions

In SCET-2, there are two different eight-quark operators contributing to weak annihi-
lation amplitudes. First, we concentrate on Of |, . and Of |, ., originating from four
quark SCET-1 operators with additional gluon. We restrict our discussion to the case
q = s, i.e. the weak effective operators Q=  applying the usual replacement rules one
can obtain the results for Qri’s.

The collinear and anti-collinear brackets just yield the leading-twist LCDAs for the
kaons in this case. In the soft bracket, one encounters so far unknown four-quark
contributions to the B meson. Therefore, we define four soft functions by

(0] Q8% (b2 1) i} (1 + 75) S55, QL) (sm) QLD (b1 72) YLuftoh(L — 5) Hoa| B
=: ifB/dw dpdp e CHHPE) Gy (@, p, p)
<O‘ ng%(tﬁ> S;[ISTZ ﬁ;”’/"’yjf(]' - ’75) Qg n(sQn) Qsd (Sl TL) fylﬂyi%(l - 75 v,n ‘Bv>

= Z.]EB /dw dp dp€ {Fitwertesz) ¢i_B,r(w7 Ps ﬁ) ) (1410)
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14.2 Eight-Quark Contributions

where the HQET fields and the soft Wilson lines are evaluated at z = 0. The subscript
r = 1,ii refers to the two different color structures in (13.18) and the superscript L
indicates that both quark billinears contain a v,. RPI dictates that ¢35, (d13,)
transforms as n (72) under boosts. It is important to note that the HQET matrix
elements contain soft fields displaced in both light-cone directions. Therefore, not
all distances of two fields are light like and we do not call them LCDAs. Similar
soft functions depending on two light-cone directions appear when including QED
corrections [131] and in the context of long-distance penguin contributions to B — vy
decays [132,133].) In contrast to the standard LCDAs, the support of these functions
extends to negative values for the variables {w} [131].

Combining the expressions for the matrix elements in terms of LCDAS, soft functions
and the Wilson coefficients in (13.38), we find

. 1 , L Uz dodpdp 1
(O e~ el | Lont) [ o) [ 22

rT plp+w)p n-v
x . C o
X {2 (CF + ﬁ) O1135(@..0.0) = 2 G s(@. . p)} (14.11)
and
—u\L L 2 2 2 ld_x /1@ /dePdP 1
<Q1 >8—quark—>+8N027T asszfK/O = ¢K(I) o ¢K(y) p(p+w)ﬁ e

NE—2 3o L O _
|2\ Or + =57 | aa(w, p,p) + 7 U dapilw, p,p) | (14.12)

for weak effective operators with color structure [i7][jj]. The factors n-v and n-v could
be remove by defining boost-invariant soft variables.? The corresponding relations for
the ones with [ij][ji] read

. 1 , La Vdx dwdpdp 1
<Q;_7 >thuark—> __7T2a§ZfoI2(/ Ey K(y)/ _¢K(x)/ ree
0

8NZ 0 x plp+w)p n-v
NZ+1 . C o
{ N2 ¢iB,ii(Wv p,p) — F}; ¢iB,i(wa P P)] (14.13)

and

_and 1, 2/ld_:c /1@ /dwdpdﬁ 1
<Q2 >8—quark_>+8N027T astBfK o 7 ¢K(w) o Yy ( ) p(p—i-OJ)ﬁﬁU

1) - . C - - _
| (1C2 5+ 53 ) a0 + S5 (Cr Neg = D0 (141

Cc

Obviously, the convolution integrals in the collinear and anti-collinear momentum frac-
tions are finite. Answering this question for the soft variables {w} is more complicated

1Slightly simpler soft functions depending on both light-cone directions also arise in collider
physics [134, 135].
2Tn the B-meson rest frame, these factors are absent as 2v = n + 7.
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Chapter 14 Weak Annihilation Amplitudes

because the new functions qﬁLfB’r and (/Bis,r are completely unknown in the literature.
Defined in terms of fields displaced in both light-cone directions, it is unclear whether
one can analyze them using conformal symmetry arguments [136]. Nevertheless, ap-
plying such arguments suggests that

¢i_B,r(w>p> ﬁ) prﬁv Qgi_B,r(w7p7 ﬁ) prﬁa (1415)

for small values of {w}, leading to the conclusion that the soft convolution integrals are
well defined at the origin. Since these integrals extend over the entire real axis, they
can also be treated as Cauchy integrals. However, this does not necessarily guarantee
the existence of inverse moments [131]. We come back to the question of existence of
convolution integrals in the next chapter.

The second eight-quark contribution (with additional gluons) originates from SCET-1
operators with only four quarks. It is convenient to study their effect in terms of the
SCET (hc,c,s) operators (13.22) and (13.24). For the weak effective operators with

color structure [¢][77], their contributions are
1 Ydx dwdp
o — ——=Tagif /—Cb x /—
e ALY e e (1416)
X (K |Q00 ) (1 +75) 1558, 26.77 Q) ) 12 (L = 35) 30,0 | B)

and

w 1 'y /M
(Q; >8_quark —>+N WastK/O ” ¢x (Y) o(p+w) (14.17)

YO ot ¢ a ) @ a s
X (KH| XY SES, 1 h(1 — )an(p)g o) L1 = 75) | BY) .

The contributions for the ones with [ij][ji] read

td
(") g quark — ~T s i / = ox() /
0 T

Cr _
lNQ (K~ \Qm(p (1 + 5) 518, 20 Sw)ﬁt(l—% H,n|B%) (14.18)

dodp
p(p+ @)

1 . . _
— 7 CET[Q00 ) L+ 35) 2578, X0 QU ) 1 (1 — 75) Hoa| BY)
and
. ) 1dy dwdp
(Q; >8—quark — +7rassz/0 ?QSK(?/)/M
C'F u s A =
{NQ (KXW 8E8, (1 — 75)QF) QY (1 — 45) K, BY)  (14.19)
2Cr ;. to ga ) 5@ a R0
+ (KHXWOgls, ¢ (=) ) Qo) 1 (L = 75) Hy | BY)
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14.2 Eight-Quark Contributions

As discussed in Chapter 13, the up-quark fields are matched onto SCET-2 at O(\°)
yielding leading- and subleading-twist LCDAs for the kaon and new four- and five-
particle soft functions for the B meson. However, the cancellation of endpoint di-
vergences is more transparent expressing our results through the matrix elements
(K*|...|B%, which can be considered as “non-local form factors”. The convolution in-
tegrals over the (anti-)collinear momentum fractions in (14.16-14.19) are well-defined.
In the next chapter, we explain why the soft convolution integrals of these form factors
must diverge for p — —oo and p — —oo when their color structure is [ii][jj], while
remaining finite otherwise.
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Chapter 15

Endpoint Divergences

The factorization of soft and collinear physics at NLP in the A expansion is often
spoiled by endpoint divergent convolution integrals. In our case, the six-quark contri-
butions to the factorization of the matrix elements for Q3 in (14.8) and (14.9) indeed
diverge. However, in the sum of all contributions the endpoint divergences have to
cancel as observables are finite. The refactorization-based subtraction (RBS) scheme
developed in the seminal papers [137,138] allows for a consistent treatment of endpoint
divergences and thereby the establishment of NLP factorization theorems. It has been
successfully applied to collider physics [137-142] and only recently also to inclusive
and exclusive B-meson decay amplitudes [143-145]. In this chapter, we show how the
RBS scheme is applied to exclusive non-leptonic weak annihilation amplitudes.

15.1 Finite Contributions

It is easy to decide whether convolution integrals in the (anti-)collinear momentum
fractions are finite, as the behavior of the relevant LCDAs in the endpoints is well
known. In contrast, the endpoint behavior of the generalized soft functions and non-
local form factors is completely unknown and, therefore, determining the existence of
the convolution integrals in the soft variables {w} is more complicated.

Nevertheless, the requirement that in the sum of the six-quark and the two different
eight-quark contributions all endpoint divergences have to cancel separately for all
weak effective operators allows one to identify finite contributions. As the matrix
element for Qf’“ does not receive any contributions from six-quark operators, one can
conclude from comparing (14.11) and (14.16) that

dwdpdp |, .
————— ¢yp.::(w, p, p) = finite. 15.1

/p(p+oJ)p 43’ (15.1)
A cancellation of divergences cannot occur as the soft function is multiplied with
different independent hadronic quantities, i.e. the integrals over z differ. Similarly,
comparing (14.13) to (14.8) and (14.18), we conclude that also for the second color

structure dodods
wapap :
Tgﬁ W, p,p) = finite . 15.2
/p(p+w)p 15l ,7) (152)

Repeating the analysis for the operators Q. * with r = 1,2, it is possible to show
that for all eight-quark contributions with v, in the soft brackets the soft convolution
integrals are finite, i.e.

u

<Q;t’“>;_quark — finite. (15.3)

Exploiting once more that the operators Qli’“ do not receive any six-quark contribu-
tions, we can directly conclude that also

<Qit’u>8—quark — finite. (154)
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Chapter 15 Endpoint Divergences

Of course, this implies that the convolutions over the non-local form factors with color
structure [t%][t*] in (14.16) and (14.17) are finite. As the soft variables are integrated
over the entire real axis, the notion of an endpoint becomes complicated. Here, “finite”
always refers to the integrals being well-defined.

15.2 Cancellation of Singularities

From the discussion in the previous section, it is obvious that the only divergent
contributions from soft convolution integrals are

dwdp ~18() tq @) Gd) 30
—F (KO (1 +5)518,X QY it (1 —~5) Hypn|B 15.5
/p(p+w)< ‘ s,m(p) 7;’( 75> hc 5,7 (@) ﬁi( 75> , ‘ > ( )

and in the opposite sector

dwdp — ()(0 s —(d _
T (gHXWO8tg i1 —45)Q® g 1— ) HonlBYY .  (15.6
/P(P+w)< X7z SaSn (L =15) 2% ) Lnie) #L = 75) o BY) . (15.6)

We can conclude even further that their divergences have to cancel with the ones of the
six-quark contributions in (14.8) and (14.9), respectively. In the following, we restrict
the discussion to the operator Q5 . The results for Q, " can be obtained by replacing
y — T and p — p.

Heuristically, this cancellation can be understood as follows. In the endpoints, the
momentum of one of the K~ constituents becomes soft, i.e. y ~ A2, and, by momentum
conservation, the other constituent hard-collinear. From the definition of the kaon
LCDA in this limit

1
n-P.

1
(K~1Q8)(0) 7195 X3 (t7) [0) = —ifK/ dy 7' Gy (15.7)

)3 2 Y0 2 ~A2

one can infer that the combination of the hard-collinear field and the kaon state must
be of O(A3) in the power expansion. There are two options to achieve this:

(1) The counting of the kaon state is the standard one, i.e. A2, and, therefore,
the hard-collinear field counts as A\°. This is precisely the same power at which
this field in (15.5) is eventually matched onto SCET-2, cf. the discussion be-
low (13.24). A graphical illustration of the endpoint configuration in this case is
shown in Figure 15.1.

(2) The hard-collinear field counts canonically as A\, whereas the kaon state in the
endpoint counts as A\2. In this case, one should, of course, count the field and
the state in (15.5) similarly.

Using the first option, the kaon consists of collinear fields only and the power sup-
pression in the endpoint arises from an O(\°) splitting of the hard-collinear field, see
Table 13.3. Equivalently, one can consider the kaon in the endpoint as being build up
from soft and hard-collinear fields, resulting in a power suppression of the state. On a
technical level, the matrix element on the left-hand side of (15.7) implicitly contains
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15.2 Cancellation of Singularities

Figure 15.1: Endpoint configuration of the kaon consisting of collinear fields only.

two insertions of subleading power Lagrangians, yielding an O(A\?) suppression. They
can either be combined with the hard-collinear field (option 1) or with the kaon state
(option 2). The cancellation of the endpoint divergences can then take place in both
cases because of the refactorization condition

[[Dgﬁ (z,y) = (h-px-) [[Demﬂ x;0,p), (15.8)

which is fulfilled if one identifies p = —yn - px-. Remember that all soft momenta are
chosen to be incoming. Here and in the following, [f] denotes the leading terms of f
in the limit y — 0 and p — —oo, respectively [137].

On the technical level, one has to rearrange contributions in

<Q2’ —>/ dxdyDGn:Uy <(9 > Y)
(15.9)

/ alar;/dwalpD6n1 T;w, p) <@6,n,1>($§@ap) +..

where ellipsis denote terms free of endpoint divergences and we already performed
some of the integrals over momentum fractions using the ¢ functions in (14.4). In
a slight abuse of notation, we denote the coefficients of C;* in (13.37-13.39) also as
D¢, Df,, etc. To regularize the endpoint divergence for g — —oo, we subtracted
from the second line of (15.9)

/ dx/dwdp [[Dﬁm W, P) [<@6ﬁl>ﬂ (x;00,p)0(—A — p), (15.10)

where A is some arbitrary cutoff. In this limit, the up- and strange-quark fields in (15.5)
become collinear — gauge invariance is ensured by the S%Sn Wilson line pair — and
one can factorize the non-local form factor into the leading-twist kaon LCDA and
an B-meson-to-vacuum matrix element. However, as the Wilson coefficient D6n1 '

independent of @ in the endpoint, performing the associated integral moves the down-
quark field to zero and this matrix element simply evaluates to the decay constant,
see (14.5). These observations can be summarized in a second refactorization condition

/dw [(Os0:)] (@9, 5) = 7 prc- [(OFa)] (x,9) (15.11)

with p = —yn - pg-. Adding back the expression (15.10) to the first line of (15.9), one
also regularizes the endpoint divergence for y — 0. To demonstrate this, one can use
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Chapter 15 Endpoint Divergences

the two refactorization conditions (15.8) and (15.11) to rewrite

/ ddp [Dg ;] (259, 5) [(Os )] (5@, ) O(—A — p)

- (/oo dy—/oody) [D&A] (e, ) [OFa) [ (2, ) (15.12)
A 0

/n'pK—
=0

AJ7pg—
_ /0 dy [D&] @) [(O6) ] ().

Here, the integral over y € (0,00) in the second line vanishes in dimensional regular-
ization, due to scalelessness. In deriving the factorization theorem, we work with bare
fields. From the last line, it is obvious that the natural choice is A = n - pg- = my. In
this case, the factorization theorem for Q" reads

/0 dxdy{Dﬁn r,0) (i) ) — [P ) [0 )

/ dxdy/dwdpdp Z D3 (550, 0, 5) (O L) (2,950, p, )

/ da:/dwdp (z;0,p) <(§6,ﬁ,i>(ﬂ3§@aﬁ)
- Hﬁg,n,lﬂ ( [[<067“>]] —mp — :5)}
/ dx/dwdpDGnu <(96nu> 50, D) . (15.13)

Each individual integral is well defined and no endpoint singularities spoil factorization.
In order to avoid creating artificial power-suppressed terms, it is convenient to split
for explicit calculations [137]

[9{Bt0s09) @1} 4) ~ D) ) [(Bun) ] 90110~ 1)}

_ /_ T D) (Oon) () + / G [P ] D[ Gend] B (15.14)

—my,

. /_AQCD dp { A6 n1 <O6 7 1> [[DG - lﬂ [<@6ﬁ7i>ﬂ (ﬁ)} :

where we dropped irrelevant arguments to increase readability. All of the three in-
tegrals have homogeneous power counting and in the sum the dependence on Agcp
cancels out. It is thus also possible to choose a different parameter of O(Aqep).
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15.2 Cancellation of Singularities

Similar to the soft-overlap contribution ¢ B=M of the heavy-to-light form factors, the

operators Qg , are defined in SCET (he,c,s). Matching the remaining hard-collinear
field at power A% on SCET-2, one again finds several endpoint divergent convolution
integrals over leading- and subleading-twist LCDAs for the kaon. In complete analogy
to the form factor, they have to cancel with divergences in soft convolutions. These
cancellations are very intricate and still not fully understood, see [123, 146, 147] for
different approaches. For weak annihilation amplitudes, the situation is even more
complicated as the involved soft functions describe so far unknown four- and five-
particle contributions to the B meson. Similar to the soft functions defined in (14.10),
they contain soft fields displaced in both light-cone directions complicating the analysis
significantly. The study of these objects is left for future work. However, when working
with the SCET (he,c,s) operators, all contributions in (15.13) are finite.
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Chapter 16

Summary

In this part, we systematically matched the operators of the weak effective Hamil-
tonian relevant for non-leptonic B-meson decays onto SCET-2. For concreteness, we
focused on the pure annihilation channel B° — KTK~. In the first step, these four-
quark operators were matched from QQCD onto SCET-1 by integrating out hard modes
with virtuality m?. We identified three distinct classes of SCET-1 operators: opera-
tors containing only four quarks, four quarks with an additional gluon, and six-quark
operators. At tree level, the Wilson coefficients of the first class are trivial, contain-
ing only the Wilson coefficients of the weak effective operators. For the other two
classes, the Wilson coefficients depend on the momentum fractions carried by the var-
ious hard-collinear and anti-hard-collinear fields, reflecting the non-locality of these
operators.

Even though the SCET-1 operators do have different power counting, they con-
tribute at the same power after being matched onto SCET-2 at an intermediate scale
of virtuality Aqcp msp. The six-quark operators already contain all the necessary quark
flavors to form the three mesons. Therefore, all (anti-)hard-collinear fields are matched
trivially, i.e. they are replaced by (anti-)collinear fields, resulting in SCET-2 operators
of O(A'). Since the four-quark and four-quark operators with an additional gluon
lack the constituent quarks for the final-state mesons, some of their SCET-1 fields are
matched non-trivially onto SCET-2. As a result, they contribute through eight-quark
and eight-quark operators with an additional gluon. The jet functions from this second
matching step depend on the momentum fractions of the various (anti-)hard-collinear
and (anti-)collinear fields, as well as the light-cone components of the soft field mo-
menta. We have calculated these functions at tree level for all relevant operators.

When calculating the (KT K| ...|B°) matrix elements, we recovered the well-known
BBNS results from the six-quark SCET-2 operators, expressed as convolutions over the
leading-twist LCDAs of the kaons. These results contain endpoint divergences arising
from (anti-)collinear momentum fractions tending to zero. The matrix elements of the
eight-quark operators (with an additional gluon) evaluate to convolutions over both
leading- and subleading-twist LCDAs for the light mesons, as well as convolutions
over previously unknown four- and five-particle soft functions for the B meson. The
defining matrix elements of these functions involve soft fields displaced along both
light-cone directions, significantly complicating their analysis. The existence of the
soft convolution integrals thus presents an intricate issue.

In the endpoint region of the six-quark contributions, one of the kaon constituents
becomes soft while the other becomes (anti-)hard-collinear. This makes it conve-
nient to match only one sector of the SCET-1 four-quark operators onto SCET-2.
The resulting operators contain six fields, and their matrix elements evaluate to non-
local B® — K* form factors. From the consistency requirement that all endpoint
divergences must cancel individually for a given weak effective operator, we can de-
termine which soft convolution integrals in this framework are well-defined. Notably,
all convolution integrals over soft functions from SCET-1 four-quark operators with
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an additional gluon are finite. By refactorizing the non-local form factors in di-
vergent convolutions, we demonstrate the cancellation of all endpoint divergences,
thereby establishing a subleading-power factorization theorem for weak-annihilation
decay amplitudes without introducing new modes in the EFT. Deducing phenomeno-
logical implications is complicated because weak annihilation amplitudes depend on
several unknown hadronic quantities. This challenge will be addressed in future work.
However, if the remaining (anti-)hard-collinear field is also matched onto SCET-2, new
endpoint-divergent convolution integrals emerge which have to cancel separately.

Parenthetically, we note that the authors of [148] regularize the endpoint divergences
in non-leptonic weak annihilation amplitudes by employing kernels with inhomoge-
neous power counting. Although we reproduce their results within the lowest-lying-
state approximation®, their approach sacrifices one of the key advantages of SCET
by not utilizing homogeneous objects. As a consequence, they need to perform a A
expansion after the convolution integrals are evaluated and fail to identify eight-quark
contributions arising from SCET-1 four-quark operators with an additional gluon.
Moreover, their method cannot be generalized to higher powers in this expansion,
limiting its applicability.

n [148] this is referred to as “ground-state factorization approximation” and simply means inserting
a vacuum |0)(0] in (14.10), (15.5) and (15.6).
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A.8 Light-Cone Distribution Amplitudes

LCDAs play an important role in many exclusive hard processes and are crucial ingre-
dients of factorization theorems in B physics. In this appendix, we give the definitions
relevant for decays into pseudoscalar mesons.

Light Mesons

For light mesons, one can define them in full QCD [149] or equivalently in SCET-2 [23].
Expressed through the collinear gauge invariant building blocks (4.8), the defining
relation of the twist-2 LCDA reads

p)’ic( 77L’}/5:X: ‘O> = —ZfMT/ dyezytnpng( ) (AS]_)
0
The decay constant fj; is defined by the local limit ¢ — 0, i.e. the LCDA is normalized
to 1.
Three new LCDAs arise at twist-3, which are connected through the equations of
motion. The 3-particle LCDA is defined in full QCD in terms of the field strength
tensor F'*. In SCET-2, this definition translates to

(M (p)|X.(0) ﬂ 5 AL (sn) n)|0)
5 (A.8.2)
=(d—2)ifsu % /Dy il t+ys)mp P30 (Y1, Y2, Y3) 7
Ys
where the integral measure is defined as

1

Dy = / dyrdysdys 6(1 —y1 — y2 — ) - (A.8.3)
0

Turning the field strength tensor to the collinear building blocks yields an inverse
derivative which is responsible for the factor 1/y3 on the right-hand side. The remain-
ing twist-3 LCDAs ¢, and ¢p are defined similar to (A.8.1) but with a different Dirac
structure, see e.g. [149]. They do not appear directly in our calculations. However,
¢, appears through the matrix element of the eight-quark operators with additional
derivatives in the numerator (13.27). One finds [140]

(M (p)|X.(0) %% i) X (tn)]0) = (d — 2) T'p /0 dy VP (A.8.4)

gy—m‘; 0o (y) +ifsu /Dy %ﬁg}y%yg) (O(ys —y) — 07— v3)) | »

with y =1 —y and pp = m3,/(my + my).
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To determine whether a term contributing to weak-annihilation decay amplitudes
suffers from endpoint divergences for small momentum fractions or not, it is crucial
to know how the various LCDAs behave in these endpoints. The endpoint behavior
can be determined applying conformal symmetry arguments, one finds for the relevant

LCDAs [149]
dm(y) = 6y7, b (y) ~ 6y7 , 31 (Y1, Y2, Y3) = 36091929? (A.8.5)

Heavy Mesons

In full QCD there is no distinction between heavy and light mesons. Therefore, the
leading-twist B-meson LCDA in (11.7) is defined similarly to the one for light mesons.
In contrast, in HQET the leading-twist B-meson LCDAs is defined by [150, 151]

<O‘ Q,n(tn) %75 Ho.n(0) |Bv> =ifp % /Ooodw e rot(w), (A.8.6)

where we use the soft gauge invariant building blocks (4.9). As the heavy quark mass
is mp — oo in HQET, the momentum fraction carried by the spectator quark needs to
be integrated up to infinity. The HQET decay constant fB is related to the physical
decay constant fp by [152]

fv/me = fs(n) [1 + CF%;W <§ In TZ—QB — ) + O(aﬁ)] . (A.8.7)

Similarly, it is possible to match the QCD LCDA (11.7) onto HQET [153].

A.9 Hard Functions for Six-Quark Operators

The Wilson coefficients of the six-quark operators with hard-collinear spectator, de-
fined in (12.28), are given by

_ . Top [ 1 u 1 .
Hahc,l({&a Q}’Mh) ) 12 (1 — 73 Cy " (pn) — mQ (Mh)} ’
Top [ 1 1

HGThc,Q({ia g}7 Mh) = C;’U(Mh> +

2 | (Za+21%)

Toy [ 1

HGihc,S({i7 g}7 /th) = 2 ?31 (j2 + 7 §1) C;,u(ﬂh>
1 gl - g?) —,8 :|
- _ —C ,
Ne 132 (G2 + §3) (1 — 73) (#s)
- ~ o~ TR —u —,8
H = ’ - - )
6,’16,4({&7 g}? /’[’h) 2 |::g1 £2 (1 _ z’]3) CQ (/’Lh) i‘l z’]2<1 _ g3> CZ (Iuh)‘| ’
_ L map | 1 1 1 —u
H = — — )
sies (2 L1 ) 2N, le (332 + Z1th " Ta(1— ?3))61 (in)

gl - 373 C—,s<luh):|
2192 (o + 93)(1 — §s) ! ’
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Ha,hc,ﬁ({z,g},m-@[—ii( L1 )>Cz’“(uh)

2 Ne h \To+ 2151 22(1 — 73
1
+—C , A9.1
192 (J2 + Us3) ! wh)] ( )
and
o (2 3 i) = o | () — —— (1)
G he AL 2 2 | 122(1 —13) 192 (1 — ¥3) ’

thc,2<{i? g}v :U’h> =0 )
Ty [ 1
2 1720 + U3)

11 1 1
L)
Ne 92 (x1+x2y2 171(1—313)) )
TOy, 1+ +u
e — Cy
2 [y1$2(y1+y3)(1—3/3) )

1 1 1
+ = = — — = — ) } ,
Y2 (951 + Toe  T1(1— yg)) 2" (1n)

C " (k)

He e s ({2, 7} 1n) =

Hg,_hcA({i? g}v :uh) -

Hines (2 21 1) = _;T]O\ZL {?31 Ta (h 1++?J3g)1(1 — Us) G )
* i (aél +1aézg2 T & (11— gg))cf’s(“h)} ’
Hieal (2.3} ) = 5 [ B NL s <911++g§>1(1 gy G )
+ m Cf’s(uh)} : (A.9.2)

The Wilson coefficients of the six-quark operators with anti-hard-collinear spectator,
defined in (12.28), are given by

_ L mop [ 1 o 1 g

H = — C C
B L mop [ 1 o 1 g

H — = — C ) C 3
G,hC,Q({§7 g}’ 'uh) 2 | g1j2(1 _ ‘%3) 2 (Mh) + i’ng(l . j{;) 2 (/’[’h):| )
B s mop [ 1 o

H — = C ’
6,hc,3({£’ g}’ 'uh) 2 _gl Ty (552 + .i’3) 1 (Mh)

1 1( L1 )0—75( )}
N, 3\ G+ 3191 Go(1—33)) ° |
1 1

TQp u
Cy " (un) + ——————=0C,
? ( h) i'1<§2 —1—37:13?1)

2 le To(Ty + T3)

Hy o (L 3} ) =
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TAp [ i‘l — :fg
2N, (U1 T2 (To + T3) (1 — T3)

ST
P\ + 3151 Go(l—33)) ! .

Cy " (1)

H(;E’E)({ia g}7 Mh) ==
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As a cross check, we note that
lim HF = HF li Hi = Hf, ..
i, gn_m 6,hc,r 6,sn,r 7 Fa, gl;?/io 6,sn,r (A95)

A.10 Jet Functions

In general, for a given SCET-2 operator O,, several SCET-1 operator O,, contribute to
the matching. The jet functions .J,,, and jm,n in (13.34) can be considered as vectors
in the space of SCET-1 operators. In the following, we give the expressions obtained
by tree-level matching.
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Six-Quark Operators

For the six-quark SCET-2 operators ngﬁ and Oéfn only the six-quark SCET-1 oper-
ators contribute to the matching. Taking the factors from the color singlet projec-
tion (13.8) into account, we find for the jet functions

1
1
N
12
Toal@ub 1) = Joul@ vt ) = 0y — 91) 62 — G2) [ [
E
N.
12
e (A.10.1)
1
1
L L ~ e
Tl zho ) = T (2 2hms) = 0l = 31) s — ) | |
1
1

where the r-th entry of the vectors gives the contribution of SCET-1 operator OF s
and O snm» Tespectively. We decided to put all color factors in the jet functions and
not in the anti-jet functions. However, this is a choice and one could distribute them

differently.

Eight-Quark Operators

For the eight-quark SCET-2 operators O ;. and Og |, . only the four-quark SCET-1
operators with additional gluon contribute to the matchmg. We find for the jet func-

- S
tions of Og |,

- 1 . i ] e
Jg ml({g Y, wh, i) = —4ra; ﬁ Sy — 1) 0(y2 — y2)( _ @) ivc 7

‘ (A.10.2)

1 1 1
gy, wh ) = —4ro; — Sy .y (__> 2N,
JS,J_n,n({g Yy Q} luj) TG oY1 5(3/1 yl) 6(y2 y2) 39

where the r-th entry shows the contribution of OJr " Again, we decided to put all

4g,he,r
color factors together with a factor —1/32 from snnphﬁcatlons in the jet and not in
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the anti-jet functions. Therefore, the anti-jet functions are independent of the color

structure and read

1
T e (B wh ) = —2 L Sm—adm—a) || (A103)
7 LT, L, Wy, i) = —£TO; ————~ 1 — X To — T . .
8, La,r 1L K j p(p—l—w)xg 1 1 2 2 1
1
For the operators O |, .., we have
1
Gy who) = —2 L -5 — ) | | (A.10.4)
YUY, Wy, Uj) = —2T0G; —F——~— - - y . .
1

where the r-th entry shows the contribution of Oig’f,‘w. For symmetry reason, we put

the color factors together with the factor —1/32 in the anti-jet functions. They are

0
Cf

Ts ~ 1 ~ - 1 3
Js,Ln,i({L z,wh, py) = —4ra; % §(xy — 71) 6(z9 — $2)< _ 3_2> 2%;3
Cr

2NZ

(A.10.5)
Cr
NE
2C%.

. i 1 i i 1 :
s ini({Z, 2w}, ) = —4may . 0wy — 1) 0(a — 132)( - 3—2> N2
2N

1
2N

As the four-quark SCET-1 operators contain only one (anti-)hard-collinear field,
there is a canonical way to distribute color factors between jet and anti-jet functions.

For the eight-quark SCET-2 operators O, .., we choose

1 1
J3 U, Yy, wh, i) = 1o, ——— 6(y1 — 1) 0(y2 — ¥ 2NE )
8,n,1({g Yy w} MJ) T PERH (y1 — 1) 0(y2 — 92) ( 0 )

p(
(A.10.6)
1 1
JS ~7 ) yHj) = —(5 —q (5 — 2N,
SnaBr @b pig) = meay 2= 0y = 1) 0(y2 = ) <%>
and
= C 1+axy (1
‘]8,n,'r<{£7 &}7,“/]‘) - ‘I’FF 27'('0[]‘ ﬁT%Q <1> s (A107)

where the 7-th entry shows the contribution of Oy ... For O . we have

JS,ﬁ,T({g7 Q}u :uj) = _FF 271'@]' pT%l <1> (A108)

C
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and

— ~ 1 ~ ~ _%
Jg,ﬁ,l({§7£7 ('_")}7 /“L]) = TQy 7(7—7 5([[;1 — xl) 5(3:2 _ $2) ( 2];/'6) ’

pLp+ W)Z'Q
(A.10.9)

. 1 +3x

Jeno(Z, 2, wh, pj) = Ty —————0(x1 — Z1) 0(22 — @ e ),

8,,2<{ } ]) ],0(,0+W)$2 (1 1) (2 2) _ﬁ
where the r-th entry shows the contribution of O} . For eight-quark SCET-2 op-
erators with additional derivatives Og; — and Oy ., the same SCET-1 operators
contribute. The associated jet functions are

_ Cr 1 1
P 7 PSP A.10.10
80,n,r 8,n,r 86?’”77"({&’ g}”uﬂ) +Nc T(Oéj ,52:61'1% (1> ( )
and
_ , Cp 1 (1
T S O WV W</ U S R A.10.11
80,n, 8,7, 80,7, ({g } Mj) Nc ! pr%yz (1) ( )

These results match the ones obtained in [123]. The jet functions for the operators
with (@u) soft quark pair are obtained by replacing u < s, ¢ <> €, n <> 0, 7; <> y;,
W< w, p<>p,and 0 <> 0 in the above expressions.

Eight-Quark Operators with an Additional Gluon
The SCET-2 operators with eight quarks and additional (anti-)collinear gluon O

S
8c¢,n,r

and Of, ;. also originate from the four-quark SCET-1 operators. Their jet functions
read
Jsenr = Jsmr (A.10.12)
2
S ({2, W}, 1) = _WQ% iz (x21+ T3)2 [i_z -1+ ng N 2]5;5 ;:(ZTfZ)g)} <1>
and
Tcie = S (A.10.13)

yer 1 {% 14 2 2Cr (y +y3)° ] 1
2 p*(y1 +uy3)? L N2 Ne n(y2 +us)] \1)
The last type of SCET-2 operators that originate from the four-quark SCET-1 oper-

ators are the ones with additional soft gluon. The jet functions of O and Og, ; .
read

J;C,ﬁ,r({g; g}, Mj) =+

s
8s,n,r

s .
‘]8s,n,r - Js,n,ra

=5 TQ; 1 2C g 1 1 (A.10.14)
JSs,n,r({£7 ('_U}mulj) = - 2] 2 |:(1 — NF ZUQ); + m:| < >

(5 +o)43
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and

js __ T8
8s,n,r — Y8n,r

s T, 1 2Ck o 1 1 (A-10.15)

respectively. These results again match the ones obtain in [123]. The jet functions
for the operators with (uu) soft quark pair are obtained by replacing u <> s, ¢ <> €,
n <> n, T; <> Y, W< w, p<>p,and o <> 0 in the above expressions.
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Chapter 17

Precision is Key

In the absence of any direct hints to new physics, it has become clear that precision
may be the key to discovery. This thesis advances the understanding of non-global
jet observables at hadron colliders and weak annihilation B-meson decay amplitudes,
leading to more precise theoretical predictions.

In Part I, we derived a factorization theorem for non-global observables at hadron
colliders and used it to resum the leading double-logarithmic corrections, the super-
leading logarithms (SLLs), appearing in the perturbative expansion of 2 — M jet cross
sections. Furthermore, we extended our analysis to include a first class of subleading
logarithmic corrections arising from multiple Glauber-gluon exchanges. A detailed
conclusion can be found in Chapter 10.

As the theoretical uncertainties of jet observables are the limiting factor in collider
experiments, it is of major importance to reduce them by improving our understanding
of (subleading) logarithmic corrections. However, including multiple Glauber-gluon
exchanges is only a first step in achieving single-logarithmic accuracy for non-global
observables at hadron colliders. One needs to allow for multiple soft emissions, i.e.
insertions of T', as well and also has to consider the purely collinear part T'¢ of the
anomalous dimension. As a next step, it would be worthwhile to study a second soft
emission as this will produce the first true non-global logarithm (NGL). The methods
developed in this thesis (exponentiating double logarithms, constructing color bases)
provide a good tool for analyzing this case. Studying the interplay of SLLs and NGLs
could reveal interesting new features of non-global observables and will reduce the
perturbative uncertainties.

In Part I1, we established a subleading power factorization theorem for exclusive non-
leptonic B-meson decay amplitudes. By performing a systematic two-step matching of
the weak effective Hamiltonian to the relevant effective theory, SCET-2, we discovered
several so far unknown eight-quark operators (with additional gluon). We were able
to demonstrate the cancellation of endpoint divergences between six-quark and “form-
factor-type” contributions. An overview of our results can be found in Chapter 16.

Studying the new soft functions arising from the eight-quark operators in more de-
tail will be a crucial next step to include subleading power corrections to theoretical
predictions for non-leptonic two-body B-meson decay rates. Since the soft physics
they describe is non-perturbative, one method to study them is to determine their
renormalization group evolution, which can be calculated in perturbation theory. In-
cluding subleading power effects to decay rates is important to enhance the accuracy
of theoretical predictions and allows one to distinguish new physics from Standard
Model contributions.

In conclusion, this work contributes to the ongoing effort of applying SCET to high-
energy collider physics and B-meson decay processes, highlighting the critical role
of factorization in improving the theoretical understanding of precision observables,
which is essential for the advancement of particle physics.
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