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Abstract. A description of fragmentation functions which satisfy the momentum and isospin sum rules is
presented in an effective chiral quark theory of QCD. We concentrate on the pion fragmentation function, taking
into account cascade-like processes in a generalized jet-model approach. Numerical results obtained in this NJL-
jet model are presented and compared to empirical parametrizations.

1 Introduction

Quark distribution and fragmentation functions are the ba-
sic nonperturbative ingredients for a QCD-based analy-
sis of hard scattering processes [1–3]. Distribution func-
tions can be extracted by analyzing inclusive processes,
and their description in terms of effective quark theories
of QCD has been quite successful [4]. In recent years there
has been a significant effort to extract the fragmentation
functions by analyzing inclusive hadron production (semi-
inclusive) processes ine+ e− annihilation, deep-inelastic
lepton-nucleon scattering and proton-proton collisions [5,
6]. Because of the importance of the fragmentation func-
tions many attempts have been made to describe them us-
ing effective quark theories [7]. However, in these earlier
attempts only the elementary fragmentation processq →
qπ was considered, and the result did not satisfy the mo-
mentum and isospin sum rules in a natural way. In a recent
publication [8] we have shown that cascade-type fragmen-
tation chains must be included in order to satisfy these sum
rules.

The purpose of this paper is to apply the method of
the quark jet-model, as formulated originally by Field and
Feynman [9], to calculate the spin-independent fragmenta-
tion functions to pions in the Nambu–Jona-Lasinio (NJL)
model [10], which has proven to be a successful effec-
tive theory of QCD. We will introduce a generalized prod-
uct ansatz to describe multi-fragmentation processes, and
we will demonstrate that this NJL-jet model provides a
very reasonable framework for describing the fragmenta-
tion functions.
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2 Operator definitions and sum rules

The spin-independent fragmentation function forq→ h is
defined by

Dh
q(z) =

z
12

∫

dω−

2π
eip−ω−/z ˆ∑

n

× 〈p(h), pn|ψ(0)|0〉 γ+ 〈0|ψ(ω−)|p(h), pn〉. (1)

The field operators refer to a quark of flavourq, the sym-
bol p(h) refers to a hadronh with momentump, and pn

labels the spectator state. If we introduce the Fourier de-
composition of the “good” light-cone quark field operator,
we obtain the expression

Dh
q(z) dz =

1
6

dp−

∫

d2p⊥
∑

α

〈k(α)|a†h(p)ah(p)|k(α)〉

〈k(α)|k(α)〉
.

(2)

Here dz = dp−/k−, implying p− = z k− for some fixed
k− > 0. The creation and annihilation operators refer to
the hadronh, and k(α) labels a quark state of flavourq
with momentumk and spin-colorα. The result (2) can be
interpreted as the light-cone momentum distribution of the
hadronh in the quarkq. This interpretation provides a natu-
ral link to models describing the hadron cloud around con-
stituent quarks, like the familiar pion cloud model.

The momentum and isospin sum rules obtained from
Eq. (2) are

∑

h

∫ 1

0
dz z Dh

q(z) = 1 , (3)

∑

h

∫ 1

0
dz th Dh

q(z) = tq . (4)

The condition which lies at the basis of these sum rules
is that the initial quark state is an eigenstate of the mo-
mentum and isospin operators, expressed solely in terms
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Fig. 1. Cut diagram for the elementary fragmentation function
dπq (z). Herep− = z k− and the two quark lines with momentumk
are connected by aγ+.

of hadrons. The physical content of these sum rules is that
100% of the initial quark light-cone momentum (k−) and
isospin (tq) are transferred to the hadrons. (Note that the
definition in Eq. (1) implies an average over the isospin of
the soft quark remainder of a fragmentation chain.)

3 Elementary fragmentation function

The elementary fragmentation function for the pion is rep-
resented in Fig. 1 as a cut diagram, and is expressed by

dπq(z) =
1
2

(

1+ τπτq

)

z g2
π

∫

d2p⊥
(2π)3

×
p2
⊥ + M2z2

[

p2
⊥ + M2z2 + (1− z) m2

π

]2
. (5)

HereM is the constituent quark mass,gπ is the pion-quark
coupling constant defined via the residue of theqq̄ t-matrix
at the pion pole, and (τu, τd) = (1,−1), (τπ+ , τπ0, τπ− ) =
(1, 0,−1). This elementary fragmentation function satisfies
the following relation:

∫ 1

0
dz dπq(z) =

1
3

(

1+ τπτq

)

(

1− ZQ
)

=⇒

∫ 1

0
dz

∑

τπ

dπq(z) = 1− ZQ, (6)

whereZQ is the residue of the quark propagator in the pres-
ence of the pion cloud. (The corresponding Feynman dia-
gram for the quark self energy is obtained by connecting
the pion lines in Fig. 1.)

BecauseZQ is interpreted as the probability to find a
bare constituent quark without the pion cloud, Eq. (6) in-
dicates that the elementary fragmentation function is nor-
malized to thenumber of pions per quark. This is expected
from our discussions in relation to Eq.(2). Because typi-
cal values ofZQ in models based on constituent quarks are
between 0.8 and 0.9, we see from Eq. (6) that the momen-

tum sum rule
∫ 1

0
dz z

∑

τπ
dπq(z) will be much smaller than

typical empirical values. For example, the NLO analysis of
Ref. [5] found a pion momentum sum of≃ 0.74. From this
we can anticipate that the elementary fragmentation func-
tion dπq will be very small compared to the empirical one
(see Section 5).

Although a description of fragmentation functions us-
ing only the elementary fragmentation processes does not
violate any conservation law, it is completely inadequate
for the following reasons: Firstly, there is a large proba-
bility (ZQ) that the initial quark does not fragment. Sec-
ondly, if it does fragment the momentum fraction 1− ZQ

Fig. 2. Graphical representation of the two terms in the expres-
sion Eq.(7) fordQ

q (η).

is shared between the quark remainder and the pion. Both
points are in contradiction to the usual assumption of com-
plete hadronization, which is expressed by the momentum
sum rule of Eq. (3).

4 Generalized product ansatz for quark
cascades

From the previous section, it is clear that we have to con-
sider the possibility that the fragmenting quark produces
a cascade of mesons. Inspired by the quark jet-model of
Field and Feynman [9], we will first introduce a gener-
alized product ansatz to describe multifragmentation pro-
cesses, and then explain its physical significance.

We first introduce an auxiliary quantitydQ
q (η), which

describes the elementary fragmentation of a quarkq to an-
other quarkQ. (The variableη is the light cone momentum
fraction of Q w.r.t. to the initial quarkq.) This function,
which is essentially the same as the distribution function
of Q insideq, is represented graphically by Fig.2, and ex-
pressed as follows1:

6dQ
q (η) = ZQδ(η − 1)+ dπq(1− η)

≡ ZQδ(η − 1)+ (1− ZQ)F(η) (7)

The first term on the r.h.s. of Eq.(7), or Fig.2, refers to
the process where the initial quark does not emit a pion.
The second term, which refers to the pion emission pro-
cess with probability 1− ZQ, is obtained by replacingη→
1 − η in the elementary fragmentation functiondπq(η) of
the previous section (apart from a similar replacement for
isospin). By definition, the functionF(η) is normalized to
1.

Because the functiondQ
q is the splitting function for the

elementary processq→ Q, we make the following product
ansatz for the total fragmentation functionDπ

q(z):

Dπ
q(z) =

∫ 1

0
dη1

∫ 1

0
dη2 . . .

∫ 1

0
dηN

× 6d(η1) · 6d(η2) . . .6d(ηN)















N
∑

m=1

δ(z − zm)















.

(8)

Here we introduced a parameterN, which is the maxi-
mum number of pions which can be produced by the ini-
tial quark. The product ansatz (8) is shown graphically in
Fig.3.

1 For simplicity we do not write out the explicit isospin depen-
dence on the r.h.s. of Eq.(7). The full expressions can be found in
Ref.[8].
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Fig. 3. Graphical representation of the product ansatz Eq.(8).

Fig. 4. Graphical representation of Eq.(9).

To see the physical meaning of this ansatz, we use Eq.(7)
to rewrite Eq.(8) identically as follows:

Dπ
q(z) =

N
∑

k=1

P(k)
∫ 1

0
dη1

∫ 1

0
dη2 . . .

∫ 1

0
dηk

× F(η1) · F(η2) . . .F(ηk)

















k
∑

m=1

δ(z − zm)

















.

(9)

This expression is represented graphically by Fig. 4. The
binomial probability distribution thatk pions are produced
for a maximum ofN pions is given by

P(k) =

(

N
k

)

ZN−k
Q (1− ZQ)k , (10)

and satisfies the normalization condition
∑N

k=0 P(k) = 1. It
is well known that in the limitN → ∞ the binomial dis-
tribution (10) becomes a normalized Gauss (normal) dis-
tribution with the same mean number and variance as the
original binomial distribution.

In order to see whether the momentum sum rule (3)
is satisfied by the fragmentation function (9), we note that
in each elementary fragmentation process, a fractionα ≡

〈zF(z)〉 is left to the quark, where〈. . .〉 means an integra-
tion overz. Therefore the momentum fraction left to the
final quark remainder after emission of a maximum ofN
pions is given by

1−
∫ 1

0
dz

∑

τπ

z Dπ
q(z) =

N
∑

k=0

P(k)αk . (11)

In order to satisfy the momentum sum rule (3), this should
vanish. It is easy to see that (11) vanishes only in the limit
N → ∞, because in this limitP(k) becomes a normal dis-
tribution with mean value〈k〉 = N(1− ZQ)→ ∞, and then
the functionsP(k) andαk have zero overlap. Therefore, in
the limit that the maximum number of mesons which can
be produced by the fragmenting quark is assumed to be in-
finite, 100% of the initial quark momentum is transfered to
the mesons, and the sum rule (3) is satisfied.

We note that in the limitN → ∞, the fragmentation
function (9) becomes essentially equivalent to the original
infinite product ansatz of Field and Feynman [9], because
in this limit P(k) is effectively zero for finitek, i.e., the
probability of the fragmenting quark to emit a finite num-
ber of mesons is zero.

In the actual calculation it is not necessary to evalu-
ate the products (9) explicitly, because a compact integral
equation for the fragmentation function can be derived. We
refer to Ref.[8] for the explicit form of this integral equa-
tion, as well as for the verification of the isospin sum rule
(4).

5 Numerical results and discussions

In this Section we present the numerical results for the
fragmentation function in the NJL-jet model, which was
developed in the previous section. We will use the same
regularization scheme as in Ref. [11], namely the invariant
mass, or Lepage-Brodsky (LB) [12] regularization scheme,
with the same values of the constituent quark mass (M =
300 MeV) and the equivalent 3-momentum cut-off (Λ3 =

670 MeV), which is determined by reproducing the experi-
mental pion decay constant. The LB regularization scheme
is suitable for regularizing integrals in terms of light cone
variables, and preserves the sum rules. We did not inves-
tigate whether other parameter sets or other regularization
schemes lead to a better description of the fragmentation
functions.

As usual, we will associate a low energy renormaliza-
tion scale (Q2

0) to our NJL results and evolve them inQ2

by using the QCD evolution equations. We will use the
valueQ2

0 = 0.18 GeV2, which was determined in Ref. [11]
from a comparison with the empirical distribution func-
tions at a high energy scaleQ2

= 4 GeV2. For the evolu-
tion of the fragmentation functions we limit ourselves to
the leading order (LO) inαs. For this purpose, we use the
Q2 evolution code of Ref. [13] at LO for the distribution
functions, and perform the transformation of the kernels as
explained in Ref.[5] or Ref.[8]. (Unfortunately, a next-to-
leading (NLO) evolution code for the fragmentation func-
tions is not yet publicly available. In this paper we do not
attempt a quantitative comparison with the empirical func-
tions, therefore we leave the NLO calculation to a future
work.)

Fig. 5 shows thefavoured fragmentation function
zDπ+

u (z), and Fig. 6 shows theunfavoured fragmentation
function zDπ+

ū (z). The elementary fragmentation function
for the favoured case is very small, as is expected from
our discussions in Sect. 3, while for the unfavoured case it
vanishes identically because of charge conservation. The
results shown in these figures show the tremendous en-
hancement of the fragmentation functions caused by the
cascade-type processes. The final results shown by the
solid lines have the correct order of magnitude for interme-
diate and largez, when compared with the empirical func-
tions. This point, which reflects the fact that our model sat-
isfies the momentum sum rule, is very important, because
effective quark model calculations completed hitherto only
considered the elementary fragmentation functions and in-
troduced some ad hoc parameters (like normalization con-
stants) to obtain the correct order of magnitude.

Quantitatively, Fig. 5 indicates that our favoured frag-
mentation function is too big at largez and too small at
smallerz. This is natural for the following reasons: Firstly,

07005-p.3



EPJ Web of Conferences

LO

0

0.2

0.4

0.6

0.8

1.0

1.2

z
D

π
+

u

0 0.2 0.4 0.6 0.8 1.0
z

NJL-elementary

NJL-jet (Q2
0 = 0.18 GeV2)

NJL-jet (Q2 = 4 GeV2)

Empirical (Q2 = 4 GeV2)

Fig. 5. Favoured fragmentation functionzDπ+

u (z). The dash-
dotted line is the elementary fragmentation function, and the dot-
ted line is the full fragmentation function in the NJL-jet model.
The solid line is the result after LO evolution toQ2

= 4 GeV2, and
the dashed line is the empirical NLO result of Ref. [5], evolved
to Q2

= 4 GeV2.

LO
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Fig. 6. Unfavoured fragmentation functionzDπ+

ū (z). The dotted
line is the result in the NJL-jet model. The solid line is the result
after LO evolution toQ2

= 4 GeV2, and the dashed line is the
empirical NLO result of Ref. [5], evolved toQ2

= 4 GeV2. Note
that the elementary fragmentation function vanishes for this case
because of charge conservation.

we can expect that a NLO calculation will lead to a soften-
ing of the fragmentation functions. Secondly, some of the
observed pions are secondary ones, which come from the
decay of primaryρ andω mesons. Thirdly, the coupling
to other fragmentation channels, in particular the nucleon,
antinucleon and kaon, will transfer some amount of the
hard quark momentum to these other hadrons. Also, one
should not forget that the empirical fragmentation func-
tions have very large uncertainties, which are not indicated
in our figures. Nevertheless, Figs. 5 and 6 indicate that the
present NJL-jet model provides a reasonable starting point
for the description of fragmentation functions.

6 Summary and conclusions

In this paper we used the NJL model as an effective
quark theory to study the simplest fragmentation function,
namely, the fragmentation of unpolarized quarks to pions.
Our aim was to develop a framework which satisfies the

momentum and isospin sum rules in a natural way, with-
out the introduction of ad hoc parameters. This framework
should also give fragmentation functions that have the cor-
rect order of magnitude at intermediate and largez. We
explained in detail, that for this purpose, the simplest ap-
proximation where a truncation is made to the one-quark
spectator state in the defining relation given by Eq.(1), is
completely inadequate. Although this approximation does
not violate any conservation law, it gives very small frag-
mentation functions; because the probability for the ele-
mentary fragmentation process is small in effective theo-
ries based on constituent quarks and the quark remainder
can carry an appreciable amount of momentum.

In order to overcome these difficulties we followed the
idea of the quark jet-model and made a generalized prod-
uct ansatz to describe the cascade processes in the NJL
model. We explained that this ansatz corresponds to a bi-
nomial distribution for the number of mesons emitted from
the quark. However, in the limit that the maximum num-
ber of mesons becomes very large the results are indepen-
dent of the form of this distribution function. Our formu-
lation thus represents an extension of the original quark
jet-model, which assumed an infinite number of mesons
from the outset. We have shown that this NJL-jet model
describes fragmentation processes where 100% of the ini-
tial quark light-cone momentum is transferred to mesons.
The momentum sum rule of Eq.(3), which is assumed valid
in all QCD based empirical fits, is then satisfied automati-
cally without introducing any new parameters into the the-
ory. We have also shown that the isospin sum rule of Eq.(4)
is naturally satisfied in this approach.

The comparison with the empirical fragmentation
functions shows that our calculated functions have the cor-
rect order of magnitude for intermediate and largez. We
highlighted that a straightforward extension to include the
NLO terms in theQ2 evolution and to include the effect of
primaryρ andω mesons, as well as fragmentation to other
hadronic channels, will improve the description. Therefore
we can conclude that our NJL-jet model provides a rea-
sonable framework to analyse fragmentation functions in
an effective quark theory.

Acknowledgments

This work was supported by the Grant in Aid for Sci-
entific Research of the Japanese Ministry of Education,
Culture, Sports, Science and Technology, Project No. C-
19540306 and by the U.S. Department of Energy Grant
No. DEFG03-97ER4014, and by the Contract No. DE-
AC05-06OR23177, under which Jefferson Science Asso-
ciates, LLC operates Jefferson Laboratory.

References

1. R. D. Field and R. P. Feynman, Phys. Rev. D15, 2590
(1977).

2. J. C. Collins and D. E. Soper, Nucl. Phys. B194, 445
(1982).

07005-p.4



19th International IUPAP Conference on Few-Body Problems in Physics

3. R. K. Ellis, W. J. Stirling and B. R. Webber, “QCD and
collider physics”, Cambridge University Press, 1996.
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