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Abstract. A description of fragmentation functions which satisfy the momentum and isospin sum rules is
presented in anfiective chiral quark theory of QCD. We concentrate on the pion fragmentation function, taking
into account cascade-like processes in a generalized jet-model approach. Numerical results obtained in this NJL-
jet model are presented and compared to empirical parametrizations.

1 Introduction 2 Operator definitions and sum rules

The spin-independent fragmentation functiondos his
defined by

Quark distribution and fragmentation functions are the ba- DQ(Z) -z ﬂeip—ﬂf/zz

sic nonperturbative ingredients for a QCD-based analy- 12 271 "

sis of hard scattering processes [1-3]. Distribution func- x {p(h), prl(0)I0) v* Ol (w)Ip(h), pry. (1)

tions can be extracted by analyzing inclusive processes '

and their description in terms offective quark theories The field operators refer to a quark of flavayrthe sym-

of QCD has been quite successful [4]. In recent years thereP®! P(h) refers to a hadroh with momentump, and pn

has been a significantfert to extract the fragmentation labels the spectato“r stat?._lf we introduce the Fourier de-
functions by analyzing inclusive hadron production (semi- composition of the go_od light-cone quark field operator,
inclusive) processes ig* e~ annihilation, deep-inelastic W€ obtain the expression
lepton-nucleon scattering and proton-proton collisions [5, T
6]. Because of the importance of the fragmentation func- Dg(z) dz = }dp, fdsz Z (k@)iay(P)an(p)lk(@))
tions many attempts have been made to describe them us- 6 p (k(a)lk(a))

ing effective quark theories [7]. However, in these earlier 2)
attempts only the elementary fragmentation procgss ) ) .

gr was considered, and the result did not satisfy the mo-Here dz = dp_/k_, implying p_ = zk_ for some fixed
mentum and isospin sum rules in a natural way. In a recent<- > 0. The creation and annihilation operators refer to
publication [8] we have shown that cascade-type fragmen-the hadronh, andk(e) labels a quark state of flavouy

tation chains must be included in order to satisfy these sumWith momentunk and spin-color. The result (2) can be
rules. interpreted as the light-cone momentum distribution of the

) . hadrorhin the quarlg. This interpretation provides a natu-
The purpose of this paper is to apply the method of ra| link to models describing the hadron cloud around con-
the quark jet-model, as formulated originally by Field and stituent quarks, like the familiar pion cloud model.

Feynman [9], to calculate the spin-independentfragmenta-  The momentum and isospin sum rules obtained from
tion functions to pions in the Nambu—Jona-Lasinio (NJL) Eq. (2) are

model [10], which has proven to be a successfiiée

tive theory of QCD. We will introduce a generalized prod- ! dzzD"(2) = 1
uct ansatz to describe multi-fragmentation processes, and Zfo 2zDy(9) = 1.
we will demonstrate that this NJL-jet model provides a h N

very reasonable framework for describing the fragmenta- Zf dzta D"(2) = tq. (4)
tion functions. = Jo g a

®3)

The condition which lies at the basis of these sum rules
is that the initial quark state is an eigenstate of the mo-
2 e-mail: bentz@keyaki.cc.u-tokai.ac.jp mentum and isospin operators, expressed solely in terms
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Fig. 1. Cut diagram for the elementary fragmentation function

dj(2). Herep_ = zk_ and the two quark lines with momentum
are connected by #".

Fig. 2. Graphical representation of the two terms in the expres-
sion Eq.(7) fordg ().

is shared between the quark remainder and the pion. Both
of hadrons. The physical content of these sum rules is thatP0ints are in contradiction to the usual assumption of com-
100% of the initial quark light-cone momenturk_} and plete hadronization, which is expressed by the momentum
isospin () are transferred to the hadrons. (Note that the SUM rule of Eq. (3).
definition in Eq. (1) implies an average over the isospin of
the soft quark remainder of a fragmentation chain.)
4 Generalized product ansatz for quark
cascades
3 Elementary fragmentation function
] ] o From the previous section, it is clear that we have to con-
The elementary fragmentation function for the pion is rep- sjder the possibility that the fragmenting quark produces
resented in Fig. 1 as a cut diagram, and is expressed by 5 cascade of mesons. Inspired by the quark jet-model of
d?p, Field and Feynman [9], we will first introduce a gener-
3 alized product ansatz to describe multifragmentation pro-
(27) cesses, and then explain its physical significance.
pi + M?Z (5) We first introduce an auxiliary quantity?(n), which
[pi +M2Z2 4 (1-2) m727]2 ' describes the element_ary fre_lgmen_tation of a ggakan-
other quarlQ. (The variabley is the light cone momentum
HereM is the constituent quark masg, is the pion-quark  fraction of Q w.r.t. to the initial quarkg.) This function,
coupling constant defined via the residue ofdfé-matrix which is essentially the same as the distribution function
at the pion pole, andr(, 7g) = (1,-1), (5, 750, Tx-) = of Q insideq, is represented graphically by Fig.2, and ex-
(1,0, —1). This elementary fragmentation function satisfies pressed as followts

the following relation: Gd(?(n) _ Zo(n- 1)+ di1—1)
[ ) - = (1+ ) L-Zo) = Zos(1- 1)+ L-2JFG)  (7)

1 The first term on the r.h.s. of Eq.(7), or Fig.2, refers to

= f dz Z @ =1-2Zq, (6) the process where the initial quark does not emit a pion.
0 e The second term, which refers to the pion emission pro-

cess with probability * Zq, is obtained by replacing —

1 -7 in the elementary fragmentation functiofj(r) of

the previous section (apart from a similar replacement for

isospin). By definition, the functioR(n) is normalized to

dy(@ = % (1 + ‘r,r‘rq) 292

whereZg is the residue of the quark propagator in the pres-
ence of the pion cloud. (The corresponding Feynman dia-
gram for the quark self energy is obtained by connecting
the pion lines in Fig. 1.)

BecauseZg is interpreted as the probability to find a
bare constituent quark without the pion cloud, Eq. (6) in-
dicates that the elementary fragmentation function is nor-
malized to thewumber of pions per quark. This is expected
from our discussions in relation to Eq.(2). Because typi- 1 1 1
cal values o¥Zq in models based on constituent quarks are D@ = f dnlf dnz,.,f dign
between 0.8 and 0.9, we see from Eq. (6) that the momen- 0 0 0

Because the functioaif]g is the splitting function for the
elementary procesg— Q, we make the following product
ansatz for the total fragmentation functibj(2):

tum sum rulefol dzz 3, dj(2) will be much smaller than 6d 6d 64 N 5

typical empirical values. For example, the NLO analysis of x 6d(171) - 6d(r72) . . . 6d(17n) Z (2=2m) |
Ref. [5] found a pion momentum sum ©f0.74. From this m=1

we can anticipate that the elementary fragmentation func- (®)

tion dj will be very small compared to the empirical one
(see Section 5).

Although a description of fragmentation functions us-
ing only the elementary fragmentation processes does no
violate any conservation law, it is completely inadequate
for the following reasons: Firstly, there is a large proba- * For simplicity we do not write out the explicit isospin depen-
bility (Zg) that the initial quark does not fragment. Sec- dence on the r.h.s. of Eq.(7). The full expressions can be found in
ondly, if it does fragment the momentum fraction-Zq Ref.[8].

Here we introduced a parametdr which is the maxi-
mum number of pions which can be produced by the ini-
tial quark. The product ansatz (8) is shown graphically in

ig.3.
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Fig. 3. Graphical representation of the product ansatz Eq.(8).
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Fig. 4. Graphical representation of Eq.(9).
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In the actual calculation it is not necessary to evalu-
ate the products (9) explicitly, because a compact integral
equation for the fragmentation function can be derived. We
refer to Ref.[8] for the explicit form of this integral equa-
tion, as well as for the verification of the isospin sum rule

(4).

5 Numerical results and discussions

In this Section we present the numerical results for the

To see the physical meaning of this ansatz, we use Eq.(f}agmentation function in the NJL-jet model, which was

to rewrite Eq.(8) identically as follows:

N 1 1 1
02 = Y PW [ i [ e [
= 0 0 0

k

x F(m) - F(na) ... F(m) [Z 5z~ zm)] :
m=1
9)

This expression is represented graphically by Fig. 4. The
binomial probability distribution thék pions are produced
for a maximum ofN pions is given by

P = () 2 - zor (10)

and satisfies the normalization conditipg., P(k) = 1. It
is well known that in the limitN — oo the binomial dis-
tribution (10) becomes a normalized Gauss (normal) dis-

tribution with the same mean number and variance as the,

original binomial distribution.

In order to see whether the momentum sum rule (3)
is satisfied by the fragmentation function (9), we note that
in each elementary fragmentation process, a fractian
(zZF(2)) is left to the quark, wheré ..) means an integra-
tion overz. Therefore the momentum fraction left to the
final quark remainder after emission of a maximunbf
pions is given by

1 N
1- fo dz; zDX(2) = kz;) P(K) aX.

In order to satisfy the momentum sum rule (3), this should
vanish. It is easy to see that (11) vanishes only in the limit
N — oo, because in this limiP(k) becomes a normal dis-
tribution with mean valugk) = N(1 — Zg) — oo, and then
the functionsP(k) anda® have zero overlap. Therefore, in
the limit that the maximum number of mesons which can

(11)

developed in the previous section. We will use the same
regularization scheme as in Ref. [11], namely the invariant
mass, or Lepage-Brodsky (LB) [12] regularization scheme,
with the same values of the constituent quark mags

300 MeV) and the equivalent 3-momentum ciiit{ol3 =

670 MeV), which is determined by reproducing the experi-
mental pion decay constant. The LB regularization scheme
is suitable for regularizing integrals in terms of light cone
variables, and preserves the sum rules. We did not inves-
tigate whether other parameter sets or other regularization
schemes lead to a better description of the fragmentation
functions.

As usual, we will associate a low energy renormaliza-
tion scale Q3) to our NJL results and evolve them @F
by using the QCD evolution equations. We will use the
valueQj = 0.18 Ge\?, which was determined in Ref. [11]
from a comparison with the empirical distribution func-
tions at a high energy scal@ = 4 Ge\2. For the evolu-
tion of the fragmentation functions we limit ourselves to
the leading order (LO) ims. For this purpose, we use the
Q? evolution code of Ref. [13] at LO for the distribution
functions, and perform the transformation of the kernels as
explained in Ref.[5] or Ref.[8]. (Unfortunately, a next-to-
leading (NLO) evolution code for the fragmentation func-
tions is not yet publicly available. In this paper we do not
attempt a quantitative comparison with the empirical func-
tions, therefore we leave the NLO calculation to a future
work.)

Fig. 5 shows thefavoured fragmentation function
zD7" (2), and Fig. 6 shows thenfavoured fragmentation
function zDZ' (2). The elementary fragmentation function
for the favoured case is very small, as is expected from
our discussions in Sect. 3, while for the unfavoured case it
vanishes identically because of charge conservation. The
results shown in these figures show the tremendous en-
hancement of the fragmentation functions caused by the
cascade-type processes. The final results shown by the
solid lines have the correct order of magnitude for interme-
diate and large, when compared with the empirical func-

be produced by the fragmenting quark is assumed to be in-tions. This point, which reflects the fact that our model sat-

finite, 100% of the initial quark momentum is transfered to
the mesons, and the sum rule (3) is satisfied.

We note that in the limilN — oo, the fragmentation
function (9) becomes essentially equivalent to the original

isfies the momentum sum rule, is very important, because
effective quark model calculations completed hitherto only

considered the elementary fragmentation functions and in-
troduced some ad hoc parameters (like normalization con-

infinite product ansatz of Field and Feynman [9], because stants) to obtain the correct order of magnitude.

in this limit P(k) is effectively zero for finitek, i.e., the
probability of the fragmenting quark to emit a finite num-
ber of mesons is zero.

Quantitatively, Fig. 5 indicates that our favoured frag-
mentation function is too big at largeand too small at
smallerz. This is natural for the following reasons: Firstly,
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Fig. 5. Favoured fragmentation functiorzD?'(2). The dash-
dotted line is the elementary fragmentation function, and the dot-
ted line is the full fragmentation function in the NJL-jet model.
The solid line is the result after LO evolution@ = 4 Ge\?, and

the dashed line is the empirical NLO result of Ref. [5], evolved
to Q% = 4 Ge\2.

0.8

T T
—————— NJL-elementary

NJL-jet (Q2 = 0.18 GeV?)
NJL-jet (Q* = 4GeV?)

- = = = Empirical (Q? = 4GeV?)

0.6

0.2 0.4 0.6 0.8 1.0

z
Fig. 6. Unfavoured fragmentation functiozDZ (2). The dotted
line is the result in the NJL-jet model. The solid line is the result
after LO evolution toQ? = 4 Ge\?, and the dashed line is the
empirical NLO result of Ref. [5], evolved t@? = 4 Ge\2. Note

momentum and isospin sum rules in a natural way, with-
out the introduction of ad hoc parameters. This framework
should also give fragmentation functions that have the cor-
rect order of magnitude at intermediate and larg&Ve
explained in detail, that for this purpose, the simplest ap-
proximation where a truncation is made to the one-quark
spectator state in the defining relation given by Eq.(1), is
completely inadequate. Although this approximation does
not violate any conservation law, it gives very small frag-
mentation functions; because the probability for the ele-
mentary fragmentation process is small iteetive theo-
ries based on constituent quarks and the quark remainder
can carry an appreciable amount of momentum.

In order to overcome thesefficulties we followed the
idea of the quark jet-model and made a generalized prod-
uct ansatz to describe the cascade processes in the NJL
model. We explained that this ansatz corresponds to a bi-
nomial distribution for the number of mesons emitted from
the quark. However, in the limit that the maximum num-
ber of mesons becomes very large the results are indepen-
dent of the form of this distribution function. Our formu-
lation thus represents an extension of the original quark
jet-model, which assumed an infinite number of mesons
from the outset. We have shown that this NJL-jet model
describes fragmentation processes where 100% of the ini-
tial quark light-cone momentum is transferred to mesons.
The momentum sum rule of Eq.(3), which is assumed valid
in all QCD based empirical fits, is then satisfied automati-
cally without introducing any new parameters into the the-
ory. We have also shown that the isospin sum rule of Eq.(4)
is naturally satisfied in this approach.

The comparison with the empirical fragmentation
functions shows that our calculated functions have the cor-
rect order of magnitude for intermediate and larg&Ve
highlighted that a straightforward extension to include the

that the elementary fragmentation function vanishes for this caseNLO terms in theQ? evolution and to include theffect of

because of charge conservation.

we can expect that a NLO calculation will lead to a soften-
ing of the fragmentation functions. Secondly, some of the

primaryp andw mesons, as well as fragmentation to other
hadronic channels, will improve the description. Therefore
we can conclude that our NJL-jet model provides a rea-
sonable framework to analyse fragmentation functions in
an dfective quark theory.

observed pions are secondary ones, which come from the

decay of primary andw mesons. Thirdly, the coupling Acknowledgments
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6 Summary and conclusions

In this paper we used the NJL model as dfecive

quark theory to study the simplest fragmentation function,
namely, the fragmentation of unpolarized quarks to pions.
Our aim was to develop a framework which satisfies the
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