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Abstract

The AdS/CFT duality is an equivalence between string theory and gauge theory.
The duality allows to use calculations done in classical gravity to derive results in
strongly-coupled field theories. In this thesis, I explore several applications of the
duality that have some relevance to condensed matter physics.

In the first of these applications, it is shown that a large class of strongly-coupled
(3 + 1)-dimensional conformal field theories undergo a superfluid phase transition in
which a certain chiral primary operator develops a non-zero expectation value at low
temperatures. A suggestion is made for the identity of the condensing operator in the
field theory.

In a different application, the conifold theory, an SU(N) x SU(N) gauge theory,
is studied at nonzero chemical potential for baryon number density. In the low-
temperature limit, the near-horizon geometry of the dual supergravity solution becomes
a warped product AdS, x R? x T, with logarithmic warp factors. This encodes a
type of emergent quantum near-criticality in the field theory.

A similar construction is analyzed in the context of M theory. This construction
is based on branes wrapped around topologically nontrivial cycles of the geometry.
Several non-supersymmetric solutions are found, which pass a number of stability
checks. Reducing one of the solutions to type ITA string theory, and T-dualizing to
type IIB yields a product of a squashed Sasaki-Einstein manifold with an extremal

BTZ black hole. Possible field theory interpretations are discussed.
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Chapter 1

Introduction

The anti-de Sitter space/conformal field theory (AdS/CFT) duality is a conjectured
exact equivalence between string theory or M theory on certain backgrounds, and
specific quantum field theories that do not include gravity.

String theory started off in the 60s as an effort to describe the strong nuclear force,
but veered off from that goal as it was realized that it might provide a consistent
quantum theory of gravity. Around the same time, quantum chromodynamics was
developed as a theory of the strong force. The AdS/CFT conjecture, proposed in
the late 90s, is a surprising connection back from string theory to gauge theories. In
this case, string theory can be seen as a computational tool, useful for understand-
ing strongly-coupled quantum field theories, independent of whether or not it is a
fundamental theory of nature.

In the first section of this chapter, I will start with a brief explanation of why
AdS/CFT is useful; then I will go into a more detailed description of the duality, and
the ‘dictionary’ that allows mapping results from one side to the other. Along the
way, | will mention some of the reasons for which the duality, which as of yet does not
have a complete proof, is believed to be true.

The second section of the introduction will focus on a short description of some of



the condensed matter topics relevant to the thesis: superconductivity, superfluidity,
and quantum criticality.

The subsequent chapters will show three different applications of the duality.
Chapter [2] studies an instability reminiscent of superconductivity or superfluidity
that occurs in a large class of theories with gravitational duals; chapter [3 studies the
conifold gauge theory at nonzero baryonic chemical potential; and chapter |4| looks
at a class of theories involving M-theory branes with topological charges. Finally,

chapter 5| concludes the thesis.

1.1 AdS/CFT

1.1.1 Motivation

Understanding the strong-coupling regime of quantum field theories (QFTs) is a
long-standing problem in theoretical physics. The perturbative expansions employed
at weak-coupling break down as the coupling constants become large. One way in
which this difficulty can be alleviated is by using a duality transformation, mapping
a strongly-coupled theory to a weakly-coupled one. An example of such a duality
is the AdS/CFT duality, also known by the more generic names gauge/gravity or
gauge/string duality.

In its most basic form, as first conjectured by Maldacena [1] and clarified in [2,3],
the AdS/CFT duality states that certain conformal field theoried'| are dual to M or
string theories compactified on appropriate backgrounds. Maldacena’s conjecture was
motivated by a number of previous results connecting the two theories [5-8]. Duality
in this context means an exact equivalence between string theory and the conformal

field theory, through which results in one of the theories can be mapped exactly

!The best known examples are in 2+ 1 and 3 + 1 dimensions, but the duality has been generalized
to field theories from 0+ 1 to 5+ 1 dimensions (see, for example, [4]).



to corresponding results in the other. This is one of many examples of dualities in
physics, ranging from the observation that Maxwell’s equations are invariant under
the exchange of the electric and magnetic fields, to the dualities relating different
string theories.

The power of the gauge/gravity duality is twofold. First, it has the property of
mapping weak coupling on one side of the duality to strong coupling on the other.
This means that calculations in strongly-coupled QFTs can be performed by doing
calculations in weakly-coupled string (or M) theory, which reduce to calculations in
supergravity. Such calculations are often tractable, so the AdS/CFT duality can help
in deriving results in strongly-coupled field theories.

One caveat here is that as of yet no gravitational duals are known for empirically
relevant field theories, like quantum chromodynamics or the effective field theories
describing condensed matter systems. Instead, the duality has been most effectively
used in theories with some amount of supersymmetry. While these have not been
directly observed in nature, qualitative results from the strong-coupling limit of these
theories can still be applied in experimental conditions; see, for example, [9,/10].

Secondly, the gauge/gravity duality can provide a non-perturbative definition of
string or M theory. String theory is currently only defined as an asymptotic series
expansion in the string coupling constant [11], while for M theory only the low-energy
limit is known. The AdS/CFT duality might allow a formulation of string and M theory
as the duals of some quantum field theories, which can be defined non-perturbatively.

Despite more than a decade of very active work in this field, the AdS/CFT duality
is at this point still a mathematical conjecture. The high level of trust that it enjoys is
motivated by the fact that it passed many non-trivial checks. See for example [12-1§].

There are thus different directions of research in the field:

e using the duality to infer results on one side (usually, the gauge theory side) by

doing calculations on the other (usually, the string theory/supergravity side);



e finding calculations that are doable on both sides, and comparing the results,

thus providing another check of the duality;
e searching for a proof that the duality is exact, at least for some class of theories.

This thesis focuses on the first idea, of using the AdS/CFT conjecture to infer

information about strongly-coupled quantum field theories.

1.1.2 The duality

As was mentioned before, the idea of the gauge/gravity duality is that certain quantum
field theories secretly have an equivalent description in terms of string theory. More
precisely, the duality maps string theory in ten dimensions, or M theory in eleven
dimensions, to a QFT in a lower number of dimensions. This is done in two steps. First,
a Kaluza-Klein reduction of string theory is performed, to obtain a lower-dimensional
theory. This means reducing the range of some of the dimensions from infinite to a
finite size, and introducing appropriate boundary conditions, e.g., periodic boundary
conditions. Then the theory can be rewritten in a smaller number of dimensions, by
turning the various excitations in the compact directions into Kaluza-Klein modes.

Secondly, the resulting theory, which includes gravity on some manifold with a
conformal boundary, is conjectured to be dual to a quantum field theory living on
this conformal boundary. In this sense, the duality is reminiscent of the holography
proposed by 't Hooft and Susskind [19,20], which suggests that the physical reality in
our (3 + 1)-dimensional universe can be described by degrees of freedom living on the
boundary of the universe (in 241 dimensions).

In order to use the duality quantitatively, we need a precise recipe for mapping
field theory quantities to their string theory equivalents. Such a prescription was given
in [2,3]. It essentially states that the partition function of the QFT coincides with the

string theory partition function.



More precisely, let ¢" be fields in string (or M) theory, and let O; be their dual
operators in the gauge theory. Because of the identification of the gauge theory as
the theory living on the boundary of the string theory spacetime, 1" will be called
bulk fields, and O; will be called boundary operators. The statement of the duality, in

Euclidean signature, is that

<eXP/ %Oi> = Zs(p) , (1.1)
boundary QFT

where Zg(1}) is the string theory partition function, with boundary conditions that
¥" go to 1} on the boundary. T used Euclidean signature here because it avoids some
complications related to boundary conditions, and it makes the process of considering
thermal ensembles in the field theory more transparent. This is the formalism that
will be used throughout the thesis.

One subtlety here is that, in general, the solutions to the equations of motion for
1 in the bulk might not allow ¢ to go to a finite non-zero function on the boundary.
In such a case, 1 is defined as the coefficient of the leading term in an expansion of
1 around the boundary. See section for an example.

In eq. , the product between 1 and O; is an inner product respecting the
symmetries of the field. Consider, for example, the case in which 1 is a gauge field A
where M is a space-time index, and a is a gauge index. Let A* be the components of
A, parallel to the boundary. Then the dual boundary fields are conserved currents .J,
and the product in eq. is JﬁAg.ﬂ

Equation can be used to calculate arbitrary correlation functions in the field

theory. Indeed, the left-hand-side of that equation is simply the generating functional

2The operator dual to a gauge field in the bulk is always a conserved current on the boundary [3].
This can be shown by using the gauge invariance of Zg, and thus of the left hand side in eq. (1.1)).



for correlators, and we havd’|
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In the low-energy limit, the string partition function can be evaluated in a saddle-
point approximation, which depends on the on-shell supergravity action Ssugra (1) In

this limit, the AdS/CFT duality can be written as

<exp/ wéOi> ~ exp[—Ssugra(wé)} . (1.3)
boundary QFT

Using this and eq. ([1.2), we can calculate connected correlators by

0 ) .
Oy -+ Oi) oo = ——— - ——Sangra (U . 1.4
(O Oy =~ G S )] (14

In the model first proposed in [1], string theory on AdSs x S® is dual to the N' = 4
super-Yang Mills gauge theory in 3+1 dimensions. A physical picture of the duality
can be obtained by thinking of a stack of N parallel D3 branesﬁ There are N? types
of open strings stretched between the D3 branes, which is proportional to the number
of degrees of freedom of a U(N) gauge field. In fact, as the distance between the
branes decreases, the masses of the stretched strings go to zero, and the strings do
indeed behave as the components of a gauge field living on the world volume of the
branes [21]. The coordinates normal to the D3 branes become non-commuting N x N
matrices—scalars in the adjoint representation of U(N) in the field theory. This is
how the CFT side of the duality is realized.

Closed strings contain gravitons in the spectrum of their excitations. In the low-

energy limit this can be modeled by a supergravity theory, in which the metric on

3Note that eq. implies that the string partition function was normalized such that Zg =1
when ¢§ = 0.

4D-branes are solitons in string theory on which open strings can end. A Dp brane is a (p 4 1)-
dimensional hyperplane.



spacetime is affected by massive objects, like D branes. Thus the interaction between
the stack of D3 branes and closed strings curves space, generating an extremal 3-brane,
a higher-dimensional analog of an extremal charged black hole. The space near the
event horizon turns out to be warped into anti-de Sitter space. Thus the AdS part of
the duality is realized as the near-horizon limit of a stack of D3 branes.

Some general features of the generic gauge/gravity duality are as follows. The
region close to the conformal boundary of the near-horizon geometry corresponds to
the UV regime of the dual field theory. Moving away from the boundary has the field
theory interpretation of a renormalization group (RG) flow towards the IR. Of course,
for the case of N' = 4 Yang-Mills, the RG flow is trivial, since the theory is conformal
at the quantum level.

A thermal ensemble in the field theory can be considered by adding a black hole
to the dual geometry. The field theory temperature and entropy coincide with the
Hawking temperature and the entropy of the black hole [3].

There remains the problem of finding pairs of a quantum field theory and a
background space which are dual in the AdS/CFT sense. This is in general highly
non-trivial. One uses symmetry arguments (including supersymmetry) and brane
constructions to formulate a hypothesis, as in [1,122},23], and then finds supporting
evidence for this hypothesis by comparing results that can be derived on both sides of
the duality. In general it is hard to derive results in strongly-coupled field theories, but
this becomes possible when calculating correlation functions of operators protected by
supersymmetry.

Finding the boundary operator dual to a certain bulk field or vice-versa is also a non-
trivial task. Symmetry arguments can in general be used for such an identification,
as in [24]. Similar methods are applied in section to suggest a field theory

interpretation for the superfluid instability found in chapter 2]



1.1.3 Supergravity

In the low-energy limit, the various string theories reduce to the corresponding ten-
dimensional supergravity approximation. M theory is defined as the theory that has
eleven-dimensional supergravity as a low-energy limit. Since this is the regime in which
the gauge/gravity duality is used in this thesis, I will briefly describe the supergravity
theories corresponding to M theory, and type IIA/B string theory.

The classical limit of M theory is the unique eleven-dimensional field theory
having maximal supersymmetry and Poincaré invariance [11]. This eleven-dimensional
supergravity theory has two bosonic fields, the metric G, and a threeform potential
Asz with field strength F; = dAs, and the fermionic fields required by supersymmetry.

The equations of motion can be derived from the action

1
12k,

1 1
SH =53 dllx\/ -G (R — 5 |F4‘2>
11

As N Fy N F, 1.5
= [Asnrinb. (s

where r1; is the eleven-dimensional gravitational constant. See appendix [A] for the
conventions used for differential forms. Only the bosonic terms in the action, which
will be the most important in what follows, were kept in eq. . The fermionic
terms can be inferred from supersymmetry.

The ten-dimensional type ITA supergravity, which is the low-energy limit of type
ITA string theory, can be obtained by dimensional reduction of the eleven-dimensional
supergravity. The bosonic sector of the resulting theory has the metric g, a scalar
field ® called the dilaton, the NS-NS twoform B, with its field strength Hs, and the
R-R one- and three-form potentials C and Cj3, with field strengths F), = dC,,_;. The
equations of motion can again be derived from an action, the bosonic part of which is

1

Stia = 92
Ko

1
o= R = o [ [d® Axd® + e Hy A1 Hy
1o (1.6)

+e%¢’F2/\*F2+6%(1)F4/\*F4+B2/\F4/\F4 .



This is written in the so-called Finstein frame, where the gravitational term appears
without any dilaton factors.

Finally, type IIB supergravity contains again the metric, the dilaton, and the
NS-NS field, but in the R-R sector it features zero-, two-, and four-form potentials
Cy, Cs, and Cy. The equations of motion cannot in this case be obtained from an
action alone. Instead, the equations of motion obtained from the action need to be

supplemented by the self-duality condition for Fj:
Fy = %Fy . (1.7)

The action is

1 1
SHB:2—/€2/dlol’\/—gR—@/[d@A*d¢+6_¢H3A*H3

(1.8)
~ ~ 1~ ~
+ €2¢)F1 N *F1 + €¢)F3 N *F3 + §F5 VAN *F5 + 04 VAN H3 N Fg] .
Here we have defined
Fy=F;—Cy A H;,
- 1 1
Fy=Fy— ~CyAHy+ ~Bo A Fy,
2 2 (1.9)
Fp+1 = de,
H3 :dBQ

Note that imposing the self-duality condition directly in the action (1.8) would
give the wrong equations of motion. Self-duality must instead be seen as a constraint

added to the equations of motion that are derived by varying the action.



1.1.4 Anti-de Sitter space

Anti-de Sitter (AdS) space is a Lorentzian manifold of constant negative curvature.
The (p + 1)-dimensional space AdS,+; is maximally symmetric, so it is the negatively-
curved analog of the sphere. It can be embedded into flat (p + 2)-dimensional space

with signature (—, —,+,...,4) through the equation
p
—t] -3+ a2l =-L". (1.10)
pn=1

Note that this is a sphere in the sense that the metric distance to the center is constant.
The space obtained by solving eq. contains closed time-like curves, because of
the rotational symmetry in the (t1, ;) plane. Because of this, physicists usually use
instead the universal cover of anti-de Sitter space, which essentially ‘unrolls’ the space
by breaking the (t1,t5) rotational symmetry [25].

The metric on AdS space can be written as

r? s

ds? = §<—dt2+d22+2da:?>. (1.11)
i=1

This actually only covers half of AdS space, also known as the Poincaré patch. Here

2z > 0, so the Poincaré patch is conformally equivalent to the upper half-space of RPT!

with Minkowski signature. As z — 0, we find the conformal boundary of AdS,44,

which is just p-dimensional Minkowski space.

From eq. (1.10)), we can see that AdS,;; has SO(2, p) symmetry. This symmetry
group is the same as the conformal group in p dimensions. Translation along the
radial z direction is related to scaling transformations in the field theory. This again
hints at the relation between AdS space and conformal field theories. See 3] for more
details.

The radial z direction can be interpreted as an energy scale in the field theory.

10



Positions close to the conformal boundary, z = 0, correspond to the UV limit of the

theory, while positions deep inside the bulk correspond to the IR limit.
Five-dimensional anti-de Sitter space can be obtained as the near-horizon limit of

the spacetime around an extremal 3-brane. Indeed, the metric generated by a charged

black (p — 1)-brane is [26}27]
p—1
ds® = H-V2(r) [— F(r)de? + Z(dﬂ)ﬂ +H2() [ () d? 2402 ], (1.12)
i=1

where H(r) is a harmonic function,

L8 r
and
rz_p
flr)=1-—+5" (1.14)

Here the horizon of the black brane is at r = ry. The notation d€2j_, stands for the
metric on the (9 — p)-dimensional sphere.

Let us focus on the limit in which the black brane is extremal, when ry — 0. This
implies f = 1. In the near-horizon limit, r < L, we can ignore the constant term in

H, and we get

8—p 8—p

ast~ (1) T [t S(dﬂﬂ + (5) [ aed ) (1.15)

r

For a 3-brane we have p = 4, and defining z = L?/r puts the metric in the
form of AdS; x S° (see eq. (L.11))). If p # 4, the near-horizon metric is not exactly
AdS x sphere, but it is conformally equivalent to that.

If the brane is not extremal, f # 1, the near-horizon limit is that of a black hole

inside AdS space. Black holes emit Hawking radiation at a temperature proportional

11



to their surface gravity. While in Minkowski space this means black holes eventually
evaporate (so they are unstable), large enough black holes in AdS space are stable.
The AdS/CFT duality maps a geometry with a black hole onto a quantum field
theory in a thermal ensemble. The temperature of the QFT is equal to the Hawking
temperature of the black hole [3].

In cases where a black hole exists, boundary conditions must be specified not only
on the conformal boundary, but also on the black hole horizon. In Euclidean signature,
the boundary conditions just require regularity of all the fields on the horizon. In
Minkowski signature, several prescriptions for boundary conditions are possible [2§].

These correspond to calculating different kinds of correlators in the field theory.

1.1.5 Holographic renormalization

Equation cannot usually be applied naively, because the right-hand side di-
Vergesﬂ This shouldn’t be too surprising, since the left-hand side also diverges without
appropriate renormalization. The on-shell supergravity action diverges because of the
infinite volume of AdS space. The divergence can be regularized by imposing a cutoff
z > €, which gives an on-shell action that depends on e. The divergent terms in e can
be canceled by adding local boundary counterterms to the action [3]; this procedure is
called holographic renormalization.

As an example, let us briefly look at the holographic renormalization for a massive
scalar field in the bulk, and how this can be used to calculate correlation functions
for the dual field theory operator. The Euclidean action for a massive scalar field is

proportional to

S = /dp“x V9 9" (0,0)(0,¢) + m*¢?] . (1.16)

SHere by “naive” application I mean only including a Gibbons-Hawking boundary term in the
supergravity action. It turns out that, in general, the variational problem in the bulk is not well-posed
without adding more boundary terms. Adding these other terms renders the right-hand-side of

eq. (1.3)) finite [29].

12



Here we will work, for simplicity, in the approximation in which the scalar field does
not backreact on the metric. The metric g is simply that given by eq. .
Integrating by parts in eq. shows that the bulk part of the action vanishes
on-shell, since the integrand is proportional to the equations of motion. What is left
is a boundary term. Introducing a cut-off at z = ¢, this boundary term (and thus the

on-shell action) is given byf|

L\"
Se :/ " gV, (9" $0,0) = — (?) /_ &Pz 4. . (1.17)

Let us Fourier expand ¢ in the boundary directions

o(z) = /(ngk)p o (z) e e (1.18)

The equation of motion becomes

2710, (2 7P0.¢k) — ( = +k2) o =10, (1.19)

which must hold for all k. The solutions are

o(2) = cr 8y (2) + e oy (2), (1.20)
with the following small z expansion:

A (@) = (L an s ),
(1.21)

oy (2) =2 (a2 +--).

5The minus sign appears because the outward normal at z = € points towards decreasing z.

13



The powers AL are the roots of the equation

A(A —p) =m2L2. (1.22)

Note that A, + A_ = p, so that one of the roots (call it A_) is smaller than p/2,
while the other one is larger than p/2.

Note also that ¢, does not go to a constant as z — 0, unless m = 0. In general,
the role of 1y from eq. is played here by the coefficient of the leading term in ¢y,
which is c_.

Let us now focus on the cases in which A, — A_ < 2. This means that the two

leading terms in the expansion of ¢, are 2+, and we can ignore the o;+ terms. The

on-shell action is obtained from eq. ((1.17)

dPk

S, = —Lp1/ o [A+ ey |? 8+ L A e | em—*upRe(c,c:)] +o.., (1.23)
T

where the real-valuedness of ¢ was used. The terms that were ignored vanish in the

€ — 0 limit faster than the terms that were kept.

2A_—p

The term e is divergent at small €, so we need to add a counterterm. The

counterterm is given by

Sct:A_/ 4Pz Vh ¢? (1.24)

where h is the induced metric on the boundary z = €. In general more counterterms
will be needed if A, — A_ > 2, but I will not treat that case here.

The regularized on-shell action is

s = 17 (A= —p) [ 5 Rele- ()L (H). (1.25)

14



where the limit € — 0 was already taken. This can be rewritten in position space as

Speg = L1 (2A_ — p) /dpa: c_(x)eq(x). (1.26)

The vacuum expectation value of the boundary operator O dual to ¢ can be

obtained from S, using eq. (1.4)

5 S

e

(0) =

= (24, —p) L7 hey, (1.27)

c_=0

where I used the fact that Ay + A_ = p. Note that the normalization here doesn’t
mean much (including the dimensions), since I haven’t tried to normalize eq.
correctly. Since ¢, o< (O), it is common to refer to ¢, itself as the vacuum expectation
value (‘vev’) of the operator O. The value of ¢; can be determined in terms of c¢_ by
imposing boundary conditions at z — co. This means that (O) depends on c_, which
earns c_ the name ‘source’.

We can also calculate two-point correlation functions, by solving eq. to all
orders in z. This equation is just the Bessel’s differential equation, as can be seen by
setting ¢ = 2P/ 2gz~5k and z = Z/ik, where k = ‘l; | The solution that is well-behaved at

Z — 00 18

v

c_ mzp/2KV(kz)‘ (1.28)

P, =

Here I defined v = \/m?2L? + p?/4, as in [2], such that AL = (p/2) + v. We can read

off ¢, from the Taylor expansion for the Bessel’s K function

¢y = (E)ZV L) (1.29)

Now the (connected) two-point function can be calculated by differentiating —Sieg
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twice, with respect to c_(k) and c_(q), and evaluating the result at c. = 0. We get

OWOW =55 (5) Soil®k+a.  (130)

Again, note that the overall normalization here is arbitrary.

Since (O(k)O(q)) is proportional to the d(k + ¢) multiplied by k%, the position-
space two-point function behaves like (z — 2/)~P*2) = (z — 2/)724+ and thus this
corresponds to an operator O of dimension A, . See [30] for more details, including an
interpretation for A_. For a more systematic treatment of holographic renormalization

in general, see for example [27].

1.1.6 Charged particles in Reissner-Nordstrom AdS

Over the past few years, considerable effort has been devoted to using the AdS/CFT
correspondence for studying strongly coupled field theories at non-vanishing chemical
potential for some conserved global charge (see [31,32] for reviews). A global symmetry
of a (p + 1)-dimensional conformal field theory is mapped to a gauge symmetry in
(p + 2)-dimensional anti-de Sitter space. Therefore, properties of a conformal field
theory at finite chemical potential ;4 and temperature T are encoded in charged p-brane
solutions that are asymptotic to AdS,;2 x Y, where Y is an Einstein space.

An interesting class of AdS/CFT dualities involves Sasaki-Einstein spaces Y which
lead to backgrounds preserving eight supercharges. Type IIB backgrounds of the
form AdSs x Y? are therefore dual to N' = 1 superconformal gauge theories in four
space-time dimensions, while M-theory backgrounds AdS, x Y7 are dual to N = 2
superconformal gauge theories in three space-time dimensions [22,[33,34]. These
theories possess U(1)g symmetry that in supergravity is realized as an isometry of
Y. In an effective (p + 2)-dimensional description, the charged black branes are

described by Reissner-Nordstrom AdS (RNAdAS) backgrounds. One typically finds
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that as the temperature divided by the chemical potential is reduced, such a charged
p-brane solution is not the thermodynamically-preferred phase of the theory [35-37];
it becomes unstable towards developing charged “hair” [38]. Typically, when an
R-charged p-brane is embedded into string or M-theory, there are R-charged fields
that condense close to the black hole horizon, thus breaking the U(1) gauge symmetry
spontaneously [39-42]. The corresponding symmetry breaking in the field theory has
been used to model superconductivity [43] or superfluidity [44] in a strongly coupled
CFT.

In analyzing the stability of charged black branes, it is useful to start with a simple
model, looking at charged particles in the background given by the black brane. This
kind of analysis can be used in general for charged branes, whether the charge is the
U(1)g charge described above, or the topological charges studied in chapters [3[ and

Let us consider a particle of mass m and charge ¢ in a curved background given by

a2
ds?, = —ge “dt* + e + I Z(de)Q , (1.31)

=1

where g and w are functions of r.

The action for such a particle is

Sp:—m/ds

We restrict to a radial electric potential ®(r) = A;(r). For a particle sitting at some

dx*
—q/dsA“%. (1.32)

d

dzt
S

fixed r and 7, the action becomes

Sy = — / dt [me’“’“”%/ﬁ%— qCID(r)] (1.33)

in the gauge s = t. Equation ((1.33) shows that the potential for this particle as a
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function of r is given by

V(r) = me O /g(r) + q®(r). (1:34)

The first term is the gravitational attraction of the black hole, and the second term
the electrostatic repulsion.

To proceed further, we need explicit results for w, g, and ®. Let us consider the
simple case of a Reissner-Nordstrom black hole with negative cosmological constant.
Given the Einstein-Maxwell action

1 d(d—1 1
Spar = 2—%2/dd+1x\/_—g [R+ M} - —/dd“x\/_—gFWF“", (1.35)

L2 4e?

there is a black-brane solution with a horizon at r = r;, and with w = 0,

=" (1 (M) -0 (%)d) , (1.36)
O(r) = Qg% % {(%)H - 1] . (1.37)

The corresponding Hawking temperature is

d—(d—2)Q*ry

Ty = h
a Am 12

(1.38)

Without loss of generality, let’s assume Q > 0. The RNAdS black hole becomes
extremal at ) = Qumax = \/g where Ty vanishes.

Using these formulae for g and ®, one can check that for values of q/m < quit/m,
V(r) is increasing monotonically for all values of () smaller than @Qy,., while for large
values ¢/m > qeis/m, V(r) has a minimum at some r = r,(Q) provided that the
charge @) of the black hole is larger than some critical value @), that depends on g/m.

An expression for the critical charge ¢ can be found by requiring that the minimum
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of V(r) occurs right at r = r;, when Q) = Qmax. The equation V'(r,) = 0 is easily

solvable in this case, yielding
Gorit =M, (1.39)
e

independent of the number of dimensions of the RNAdS space. Actually, this ratio
has some broader significance, as emphasized by [45] in the context of a weak gravity
bound. If extremal Reissner-Nordstrom black holes are to be able to decay, there must
always exist at least one particle whose charge-to-mass ratio is greater than x/e.
This picture of an instability is essentially the classical limit of the superfluid or
superconducting instability studied in [38,43]. In these papers, the charged particle
is replaced with a charged scalar field ¥. One solution to the equations of motion is
1 = 0, but for QQ > @Q., there exists a second, more stable branch of solutions with
1 # 0. The classical analog of this second branch is a cloud of charged particles sitting
at the minimum in V' (r) described above. Moreover, for large m and ¢, the classical

and field theory results for Q). agree.

1.2 Condensed matter

1.2.1 Superconductivity and superfluidity

At low temperatures, a large number of materials exhibit a phase transition to a
superconducting phase, in which the resistivity drops to zero. Apart from the infinite
conductivity that gives this phase its name, other important characteristics are the
existence of a gap in the energy levels of the conduction electrons, and the Meissner
effect—the observation that superconductors expel magnetic fields from their volume.

Superconductivity was first observed experimentally in 1911. A full microscopic

theory for the superconducting materials known at the time was worked out by
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Bardeen, Cooper, and Schrieffer (BCS) in 1957. The basic idea is that the weak
attraction between electrons that is generated by interactions with the phonons is
sufficient to produce pairs of electrons, called Cooper pairs. The energy gap observed
in superconductors is given by the energy required to break a Cooper pair. These pairs
obey Bose statistics, and the Bose-Einstein condensate that forms below the critical
temperature T, is responsible for the peculiar characteristics of superconductors.

An empirical theory describing superconductivity was developed in 1935 by the
London brothers [46]. In 1950 Ginzburg and Landau worked out a thermodynamically-
motivated theory [47] that included the London theory and extended it. I will focus
on the Ginzburg-Landau theory in this thesis, since it is more readily related to results
from string theory. The description given here follows [48].

In the Ginzburg-Landau (GL) theory, it is assumed that there exists a complex
order parameter 1 which is zero in the normal (non-superconducting) phase, and
non-zero in the superconducting phase. The function 1 can be viewed as the collective
wavefunction for the macroscopically occupied ground state of the condensate. The
dynamics of 1 are governed by a variational principle, based on the free energy

functional

2
Falul+ %mwr‘] S (1)

F:/dx [L‘(—z’hv_iﬁ)zﬁ
2m* c

where I kept only the terms that depend on 1. The parameters m* = 2m and e* = 2e

are the effective mass and charge of the Cooper pairs[| This form can be seen simply
as a truncated expansion of F'in 1 and gradients of ¢). The expansion ((1.40)) takes
into account the U(1) symmetry under changes of the phase of .

A physical interpretation can be given to ¥ by defining the number density of

"The mass m* is different in real metals due to the interaction with the crystal lattice [48].
However, m* is hard to measure experimentally, so it’s conventional to fix its value at m* = 2m. The
potential missing factor is absorbed into the normalization of .
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electrons in the superconducting phase,
ns = [¥ . (1.41)

The superconductor can then be analyzed in a two-fluid model, where it is assumed that
the electrons, with density N, are split into two parts, a superconducting component
with density n,, and a “normal” component, with density N — n,.

Equation is just the action for a complex scalar field ¢ in a Mexican-hat
potential (provided 8 > 0 and « < 0), coupled to an external potential A If we
consider a homogeneous system, such that v is constant, and no external field A= 0,

the free energy is given by

F=Vgf (at 5 W), (1.42)

which is minimized by ¥ = 0 if both a and  are positive, and by

2 (0%

[Ve|” = 3 (1.43)
if o <0, 8 >0. We do not take into consideration the case 8 < 0, since then the
system would find it favorable to increase || to values where the higher-order terms
in eq. ([1.40), which we ignored, become important.

To explain superconductivity, we must assume that « is positive for temperatures

above T., and negative for T' < T.. The simplest dependence of o on temperature

that obeys these conditions is
a=oy(T-T,). (1.44)

We assume [ to be independent of temperature.
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Including the backreaction from the superconducting electrons on the electromag-

netic field, the free energy becomes

F:/da: [iK—ihV—e—j)w
2m* c

where h = V x A is the magnetic field. This is simply the action for the Abelian Higgs

2
9 1 4, 1,
— —h 1.4
+a\¢y+2ﬁ|¢y+8ﬁ , (1.45)

model. Below the critical temperature, the nonzero 1 breaks the U(1) symmetry. The
phase ¢ of 1 = |1|exp(i¢) is not an independent degree of freedom, since it can be
absorbed into the vector potential by a gauge transformation. Choosing a gauge in

which ¢ = 0, the kinetic term for v in eq. (1.45)) becomes

<—mv - e—*A’> ¥
C

which generates a mass term for the electromagnetic field. This is the Anderson-Higgs

2 2 %2

— (v

2m*

A% |2, (1.46)

2m* 2m*c?

mechanism: the electromagnetic gauge field ‘ate’ the massless Goldstone boson ¢
which resulted from the spontaneous breaking of the U(1) symmetry that rotates the
phase of ). The mass term for A is responsible for the Meissner effect: magnetic
fields decay exponentially at the surface of a superconductor as a result of turning
electromagnetism into a short-ranged interaction.

The differential equations obtained from varying the free energy (1.45)) are

a8 w2 v + #(—z’h - %/T)%b —0, (1.47a)

J=—Vxh=e¢ Y7, (1.47b)

c
dr
where v is the supercurrent velocity given by

m*, = Vo — —A. (1.47¢)
C
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In a gauge in which ¢ = 0, which is the same as the London gauge V - A =0 for

slowly varying n, = ||, eqns. (T.47D) and (T.47d) imply

n5€*2 .

J=——""A. (1.48)

m*c

Taking the time derivative leads to one of the London equations,

- = E, (1.49)

if we ignore the time variation of |¢|2. This shows that the superconducting electrons
experience zero resistivity, since the current is increasing linearly under the effect of a
constant electric field. A more careful check for this claim can be done by calculating
the DC conductivity with the help of Kubo formulae [49].

Phenomenologically, we thus see that superconductivity comes about when a
scalar field ¢ charged under a gauge field develops a non-zero expectation value. The
Higgs mechanism then implies the expulsion of magnetic fields from the bulk of the
superconductor. The current corresponding to 1 encounters no resistance, resulting
in zero resistivity. If the order parameter v is not coupled to a gauge field, the same
mechanism described above can be used as a model for superfluidity [50].

Typical critical temperatures for superconductivity in materials known before 1980
varied across several orders of magnitude, but were no larger than 20-30 Kelvin [51].
Starting in the mid 80s, a series of compounds based on copper were discovered that
achieve superconductivity at much higher critical temperatures. There are many
examples of so-called high-T, superconductors known today, with critical temperatures
going as high as 133 K. Most are based on copper compounds, which earned high-7.
superconductors the nickname cuprates, though in 2008 some high-T, superconductors
based on iron were found as well.

The Ginzburg-Landau theory seems to still be applicable to high-T, superconduc-
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tors, but the exact pairing mechanism is still under debate [48]. Part of the difficulties
encountered in the study of high-T, superconductivity are related to working in a
strong-coupling regime. This is where a description in terms of AdS/CFT could prove

fruitful.

1.2.2 Quantum criticality

A quantum phase transition is a phase transition occurring at zero temperature. Since
the temperature can no longer be the control parameter, a quantum phase transition
occurs at a critical value g. of some other parameter g [52]. The point where the phase
transition occurs is called a quantum critical point.

Because of the vanishing temperature, the system is in its ground state, so the
transition marks a change in this ground state. The quantum-mechanical ground state
of a system is unique, but depends on parameters such as g. As g is varied, one can
encounter a level-crossing event, in which the ground state and the first excited state
exchange roles. This would lead to a non-analyticity in the ground state as a function
of g (see Figure[L.1p). The more typical case for systems of finite size is an “avoided”
level-crossing, in which the energy of the excited state approaches that of the ground
state, but does not reach it (as in Figure [L.1p). In the infinite-size limit, however,
these events can get progressively sharper, leading again to non-analyticities of the
ground state [52].

At the point of a second-order quantum phase transition, the length scale of

quantum fluctuations diverges, according to a scaling law of the form

&~ g =gl (1.50)

where v is a critical exponent. This exponent exhibits universality, meaning it is

largely independent of microscopic details. At the same time, the energy scale of the
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a) b)

Figure 1.1: Possible dependence of the lowest energy states of a system of finite-size on
a parameter g. In a), there is a level crossing, and the ground state is non-analytic as
a function of g; in b), the level crossing is avoided, but the ground state’s dependence
on g might become non-analytic in the limit of infinite size.

fluctuations above the ground state (for example, the energy gap, if it exists) vanishes

at the critical point,

A~ g —ge|™, (1.51)

where the ratio z between the critical exponents is called the dynamic critical exponent.

The divergence of the correlation length for quantum fluctuations around the
critical point leads to long-range quantum entanglement, and the system can be
described by a conformal field theory. The conformal symmetry in systems at a
quantum critical point is often emergent, in the sense that it is a feature of the IR
physics that was not there in their microscopic description.

Since quantum critical points occur at exactly zero temperature, they can’t be
directly accessed in experiments. It turns out, however, that the existence of quantum
critical points has important consequences even at nonzero temperatures [52,[53].
There is in general a wide area in parameter space where the influence of the quantum
critical point is felt, as in Figure 1.2l This area represents the region of quantum

criticality in the phase diagram of a system. The rather surprising fact that the range
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of g where quantum criticality is observed is growing with temperature is related to

the fact that this phase is delimited by the lines A ~ T, and thus |g — g.| ~ T"/*".

T A

N 4
N\ /

‘. quantum
\ criticality
\ /

\ /

Phase 1 \\ /I Phase 2

1 >

9. g

Figure 1.2: A typical phase diagram for a system exhibiting quantum criticality [53].
There is a phase transition at zero temperature when g = g., but the system exhibits
non-classical behavior for a wide area of phase space even at T # 0.

Quantum criticality has been observed experimentally in various systems. For
example [52,/53], the insulators LiHoF, and CoNbyOg are normally ferromagnets at
zero temperature, due to the magnetic interactions between the holmium or cobalt
ions. However, when subjected to a large enough external magnetic field transverse
to the magnetic axis of the system, each of these insulators loses its magnetic order,
becoming a quantum paramagnet. Signs of quantum criticality were also observed in
high-T. superconductors (see, for example, [54]).

In the AdS/CFT formalism, the existence of quantum criticality is signaled by
the appearance of an AdS throat in the IR at zero temperature. Just as on the field
theory side of the duality, the conformal symmetry at a critical point need not be
present in the microscopic theory (or it can be realized differently), on the gravity

side, the IR AdS need not be matched by the UV geometry. Indeed, as an example,
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several “domain wall” solutions have been constructed that interpolate between AdS
behavior in the UV and a different AdS space in the IR, as in [41,|55,56].

One possibility is that at nonzero temperatures, the throat contains an RNAdS
black hole, making the geometry deep in the IR go to AdS; x R? as T — 0 [57].
Analysis of the IR behavior of fermions in the AdS, throat suggests the existence of a
Fermi surface, which would provide another nice connection with condensed matter
systems [57H59).

There is a problem with the AdSs constructions: the horizon area of the black
hole does not go to zero at zero temperature, which on the field theory side implies
non-vanishing entropy at 1" = 0. This is indicative of a large ground state degeneracy,
whose origin is not yet clear. See [57-59] for more details, and some reviews of the
ways in which AdS/CFT was applied to gain insights into strongly-coupled quantum

criticality.
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Chapter 2

Superconductors from superstrings

The following work was done in collaboration with Steven S. Gubser, Christopher
P. Herzog, and Silviu S. Pufu, and is published in [40]. This chapter is a lightly edited
version of the published paper.

We establish that in a large class of strongly-coupled (3 4 1)-dimensional N' = 1
quiver conformal field theories with gravity duals, adding a chemical potential for the
R-charge leads to the existence of superfluid states in which a chiral primary operator
of the schematic form O = A\ + W condenses. Here X is a gluino and W is the
superpotential. Our argument is based on the construction of a consistent truncation

of type IIB supergravity that includes a U(1) gauge field and a complex scalar.

2.1 Introduction

Using the AdS/CFT correspondence, refs. [38,43] argued that a classical scalar-gravity
model describes a superconducting phase transition in a dual strongly interacting
field theory. Superfluid phase transition is perhaps a more accurate description [44]
as there is no Higgs mechanism in the field theory, but for many physical questions,
the distinction is irrelevant [60]. The proposal is interesting because it suggests that

string theory techniques provide good theoretical control over superfluid transitions
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in certain strongly-coupled theories, raising the hope that one might extend lessons
learned from such theories to real condensed-matter systems. In this chapter, we
embed the scalar-gravity model in type IIB string theory. The embedding clarifies the
microscopic nature of the (3 4 1)-dimensional field theory dual.

The AdS/CFT correspondence provides a recipe for constructing a large class
of N =1 supersymmetric, (3 + 1)-dimensional conformal field theories (SCFTs) by
placing a stack of N D3-branes at the tip of a three complex dimensional Calabi-Yau
cone X in type IIB string theory [22}33}|34,/61]. The field theory can be thought of as
the open string degrees of freedom propagating on the D-branes at the Calabi-Yau
singularity, and is a quiver gauge theory with SU(V) gauge groups and superpotential
wl

The AdS/CFT correspondence provides a dual closed string description of the
field theory as type IIB string theory in the background curved by the energy density
of the stack of D3-branes. In the near horizon limit, i.e., close to the D3-branes,
the ten-dimensional space factorizes into a product of anti-de Sitter space and a
Sasaki-Einstein manifold, AdSs x Y, where Y is a level surface of the cone X. The
R-symmetry of the SCFT is realized geometrically as an isometry of Y.

In section [2.2] given a Sasaki-Einstein manifold Y expressible as a U(1) fibration
over a compact Kéahler-Einstein base, we write down a consistent truncation of type
I1B supergravity to five dimensions that includes a complex scalar field ¥ and the
gauge field A, dual to the R-symmetry current. The field ¥ is dual to a chiral primary
operator O with scaling dimension A = 3 in the field theory. In the presence of a
chemical potential u, realized geometrically as the boundary value of A;, the chiral
primary develops an expectation value below a critical temperature Tj. In the dual

gravity language, an electrically charged black hole develops scalar hair. By calculating

LA quiver gauge theory is a field theory defined in terms of a quiver diagram, in which nodes stand
for U(N) gauge fields, and edges are bifundamental matter fields between the two gauge groups they
connect.
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the free energy as a function of T, we demonstrate that this phase transition that
spontaneously breaks the U(1) R-symmetry is second order.

In section , we calculate the critical temperature 7}, below which a more
general complex scalar with conformal dimension A and R-charge R will develop
a perturbative instability. In some cases, for example for ¥ of section , this 7T,
corresponds to the critical temperature of a second order phase transition. However,
if the phase transition is first order, 7, > T,, and 7T}, is instead the temperature below
which the symmetry-restored phase of the field theory becomes perturbatively unstable.
We show that of all scalar chiral primary operators, O has the largest T}, if it has lowest
conformal dimension. If the latter condition is satisfied, then for reasons presented in
section , it is likely that the condensation of O is responsible for a U(1) symmetry
breaking phase transition in the field theory. O is at least tied for lowest conformal
dimension in some quiver theories: in section [2.3.2| we give a particular example based
on a Z; orbifold of S°.

Embeddings in M-theory of (2 4 1)-dimensional versions of these field theory
models have been discussed in [39]. While ref. [39] treats explicitly a broader range
of examples than we do, their analysis of the scalar instability is perturbative. Our
consistent truncation allows us to establish the phase transition is second order and to
follow the broken phase to arbitrarily low temperatures. Because we are working with
a (3 + 1)-dimensional field theory where the AdS/CFT duality is better understood,
we are able to say more about the microscopic nature of the field theory dual than

has been possible thus far in the (2 + 1)-dimensional case.
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2.2 A consistent truncation

Consider the following five-dimensional action, involving a metric, a U(1) gauge field,

and a complex scalar:

1
S = ﬁ / d5x\/ —g (EEM + ['scalar) ; (21)
5
where
L2 2L\* 1
Ly =R — ?FWF’“’ + (?) ZEAMVU'OF,\MFVJA/), (2.2)
and?
1 2 .12 2 6 27
Lecatar = —3 (0un)” + sinh”“n(0,0 — 2A,,)* — 12 cosh 5 (5 — cosh 77)] : (2.3)

We define €"1%* = 1/,/—g. Note that this has the opposite sign compared to the
conventions in appendix [A] The real fields 7 and 6 are the modulus and phase of the

complex scalar W. Note that for small 5, the potential term expands to yield

12 3

2
ﬁ—mn +.... (2.4)

Vin) =—

The leading order term comes from a negative cosmological constant, A = —6/L?.

The second order term is a mass for the scalar. We have

m?L* = A(A —4) = -3, (2.5)

and so A = 3.
The U(1) gauge field has been normalized such that W has R-charge 2 and chiral

primary operators satisfy the relation A = 3|R|/2 [63]. Our operator O has R-charge

2S. Franco et al. [62] considered a general class of scalar kinetic terms, to which this example
belongs.
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R = 2 and is indeed chiral primary.

We claim that any solution to the classical equations of motion following from this
action lifts to a solution of type IIB supergravity. The lift resembles the consistent
truncations of ref. [64], and it also generalizes the Pope-Warner type compactifications

of type IIB SUGRA [65]. The ten-dimensional metric for the lift has the form

2

L
ds® = cosh 2 dsy; +
c

5 p——] ds}, + cosh® g(CA)Q : (2.6)
2

The metric on the manifold M is a solution to the five-dimensional equations of motion,
while V' is a two-complex-dimensional manifold with a Kahler-Einstein metric g,; such
that R,; = 6g,5- Let w be the Kéhler form on V. We construct a U(1) fiber bundle
over V with the one form (* = ¢ +2A/3 and ¢ = di) + o such that d¢ = 2w.

In the case A =n = 0, the line element ds} = ds}, + ¢ on the five-dimensional
space Y is a Sasaki-Einstein metric. Moreover, introducing a radial coordinate r > 0,
the line element dr? + r2ds? is a Ricci flat metric on a Kéhler manifold X with a
conformal scaling symmetry » — Ar. In other words, X is a Calabi-Yau cone.

Denoting F' = dA and

J = sinh®n (df — 2A), (2.7)

we can write the self-dual five-form as

1
where
1 n 213 L*

F = ——cosh® = (coshn — 5)volyy — = (xpF) Aw + ————J Aw? 2.9
7 cos 2(008 n—5)voly 3 (xm F) w+4cosh4g w,  (2.9)

hn—5 214 L
*f:L4(COS—772)§A/\M2+—F/\(A/\w+—(*MJ)A<A. (2.10)

2cosh” 7 3 2
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To specify the two-form gauge potentials we first consider the holomorphic three-form
Qg on the Calabi-Yau three-fold X normalized so that Qg A ég = 8voly. This form
decomposes as

. d
Qg =13 (%AQQJFQP,) ; (2.11)

where 7 is the radial coordinate of the cone. The form e™3%(), is a primitive (2,0)
form on V satisfying [14]
d<€73iw92) = 3’i€73i¢0' A\ 927

(2.12)
QQ A QQ = 2w2 .

The two-form potentials are

F, = L*tanh Qewﬂg ,
2 (2.13)
FQ = BQ + igSCQ .

One can check that the ansatz given by (2.6]), (2.8]), and (2.13]) leads to a consistent
reduction with the effective five-dimensional lagrangian given by (12.2)) and (2.3)).

2.3 The phase transition

We are interested in studying the response of an SCFT to an R-charge chemical
potential  and a temperature 7. One expects that for low enough 7'/, R-charged
operators develop expectation values that spontaneously break the U(1) R-symmetry.
At high temperatures, the field theory is dual to an electrically charged black hole in
anti-de Sitter space, while at a sufficiently low temperature, the black-hole acquires
scalar hair [38,43]. The electrically charged black hole which solves the equations of

motion following from (2.2)), along with a negative cosmological constant A = —6/L?,
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takes the form

(2.14)

where

fz) =1 +@2(i)6 —q +Q2>(i)4, (2.15)

Zh Zh

with the charge Q = 2z,1/3. The Hawking temperature of the black hole is

2 — (2
Ty = . 2.16
" 27TZh ( )

At low temperatures, a hairy black hole solution with n # 0 becomes available.
We find this solution numerically, using the techniques described, e.g., in [60]. By
a gauge choice, we can set § = 0. We require no deformation of the conformal field
theory by the symmetry breaking operator O dual to 1. So for small z,

3 K3
n=—z <<O>ﬁ+> : (2.17)
and the expectation value (O) is the order parameter for breaking the U(1) symmetry.
With a black hole horizon at z = z;,, the other boundary conditions we impose are
that

Ai(z=2z,) =0.

Figure 2.1] gives (O) as a function of 7.

We also plot the difference in pressure between the electrically-charged black hole

phase and the hairy black hole phase in figure 2.1} The pressure is a coefficient in the
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near boundary expansion of g:

L? 22
gu=——+ 2,<§Pf +... (2.19)
It is related to the free energy via {2 = —P Vol. To within our numerical precision,

OAQ/OT =0 at T = Ty, indicating a second order phase transition.
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Figure 2.1: Upper-right plot: |(O)|"* /T, vs. T/Ty, where (O) is expressed as multiples
of L3/k2. The critical temperature is Ty ~ 0.0607u. Near Ty, (O) ~ |T — To|'/?,
indicating a mean-field critical exponent. Lower-left plot: AP/T* vs. T/T,, where
AP is the difference in pressure between the broken and unbroken phases, calculated
in the grand canonical ensemble. Near Ty, one has AP ~ (T — Tj)?, so the phase
transition is second order.

We have also calculated the conductivity for this model as a function of frequency
and T, using the techniques of ref. . The results are qualitatively similar to those
of a free A = 3 scalar in the probe limit .
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Figure 2.2: A contour plot of 7),/p as a function of A and R. The numbers next to
the contour lines represent 7,/p. We need only consider scalars above the unitarity
bound, A > 1 [67]. The dark solid line is the BPS bound A = 3R/2 [68]. Scalars
which are less stable than the operator O are restricted to the triangular, shaded
region near the lower-left corner.

2.3.1 Perturbative instabilities

Although our chiral primary leads to spontaneous breaking of the U(1) R-symmetry at
low temperature if u # 0, these SCFTs typically have many operators with R-charge.
It may be that there exists another operator which produces a phase transition at a

higher temperature. Such an operator need not be a scalar. We focus on the case that
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this “less stable” operator is a scalar, and replace Lgcaar With

12

=t (2.20)

1
D) [((%77)2 + 772(8#0 - RAM)2 + mgnﬂ +

representing the leading quadratic terms for a complex scalar of charge R and conformal
dimension satisfying m?L? = A(A — 4).

These leading quadratic terms are enough to calculate the temperature 7}, below
which the electrically charged black hole becomes perturbatively unstable with respect
to an exponentially growing mode of the scalar. We calculate T}, by looking for a zero

mode solution of 7 in the electrically charged black hole background ([2.14). Such a

solution will have the leading behavior n ~ z2

near the boundary and should be finite
at the horizon. Depending on higher order terms in the scalar action, which in general
we don’t know, 7, may be the point of an actual second order phase transition, as it
was in section [2.2] or it may label a spinodal point in a first order phase transition,
beyond which the electrically charged black hole ceases to be perturbatively stable.
We solved for this zero mode numerically, and the resulting 7, is plotted in figure
as a function of A and R. As described in [39], there is a critical curve in the R-A

plane where T}, = 0. This curve can be determined analytically by considering the

behavior of the scalar field in an extremal electrically charged black hole solution:
5 2
R = gA(A —4)+2. (2.21)

Note the BPS line A = 3R/2 intersects this curve, leaving a region of finite area in
the R-A plane with 7, > 0.

Note that T}, is a monotonically increasing function of R and a monotonically
decreasing function of A. Moreover, along the BPS bound A = 3R/2, T}, is a decreasing
function of A. These results suggest that the superfluid phase transition will be caused

by an operator at or close to the BPS bound and of small A.
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We found in section that for SCF'Ts dual to D3-branes at Calabi-Yau singu-
larities, there always exists an operator with A = 3 that saturates the BPS bound.
Given the existence of such an operator and corresponding Ty, scalars which are
perturbatively less stable, should they exist, are restricted to a tiny corner of the R-A
plane; see figure We can in general check if there are any chiral primary operators
with A < 3. It is less straightforward to rule out unprotected operators with a T, > Tj.
Nevertheless, the expectation is that such operators do not exist, at least for strongly
interacting theories with AdS/CFT duals. Large couplings are associated with large
anomalous dimensions. In these AdS/CFT constructions, we expect generic operators
to be dual to string states with masses of order the string scale, mf, ~ 1, and thus

A ~ (gsN)'*. Tt seems unlikely we will find any unprotected operator with a T, > Tj.

2.3.2 A universal chiral primary operator

What chiral primary operators in an SCFT have R = 2 and A = 37 Our supergravity
solutions are dual to superconformal quiver gauge theories via the AdS/CFT corre-
spondence. The lowest component O of the F-term in the Lagrangian describing these

field theories takes the form

32mi 9

Ja )
where VW is the superpotential, the gluino field A, is the lowest component of the
superfield W,, and the complex scalar fields ¢; are the lowest components of the chiral
matter superfields ®;. The 7; = 6,/27 + 4mi/ gJQ- are the complexified gauge couplings,
and the sum j runs over the gauge groups in the quiver. Because of conformal
invariance and holomorphy arguments, we expect O to be a protected operator (up
to non-perturbative corrections, wave-function rescaling, and possible mixing with a

descendant of the Konishi operator). It is true that 7 has R = 2 and A = 3. We
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claim that O is dual to the complexified scalar supergravity field (7, §).

Consider the cases where the Sasaki-Einstein manifold is the sphere Y = S% or the
level surface of the conifold Y = T!. In the first case, the dual field theory is NV = 4
SU(N) SYM. In N/ = 1 notation, the field theory has three chiral superfields X, Y,
and Z transforming in the adjoint representation of SU(/N), and a superpotential W ~
tr X[Y, Z]. In the second case, the SU(N) x SU(N) field theory has bifundamental
fields A; and B;, i = 1,2 transforming under the (N, N) and (N, N) representations of
the gauge groups and a superpotential W ~ ¢; e tr(A; By A;B;). In both these cases,
O is indeed dual to the complexified scalar (7, 0) [24].

Note that for S® and 7!, O will not cause the phase transition that breaks a U(1)
R-symmetry. The reason is that there exist chiral primary operators for these SCFT's
with lower conformal dimension. For S°, tr(X?) has A = 2 while for %!, tr(A;B;)
has A = 3/2, and both of these operators condense at a higher T,.. Thus, we need
to look for SCFTs where O has the lowest conformal dimension among the chiral
primaries.

One such theory is S°/Z; where the orbifold acts with weights (1,2,4) on the
C? D S°. The quiver field theory has G = SU(N)". The three chiral superfields X,
Y, and Z of N'=4 SYM become 21 fields X}, , Y}, and Z/,,. Here X indicates
a field that transforms under the anti-fundamental of the i** gauge group and the
fundamental of the j™ and X" = X!. A chiral primary tied for smallest conformal
dimension in this field theory is O. (The other chiral primary is related to the
beta deformation [69].) More generally, we expect an orbifold S°/Z, with weights
(w1, wy,w3) such that n = w; + wy + w3 to be a candidate provided that the w; are

distinct and that w; # —w; mod n for all ¢ and j.
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Chapter 3

Emergent quantum near-criticality

from baryonic black branes

This is work done in collaboration with Christopher P. Herzog, Igor R. Klebanov, and
Silviu S. Pufu, and is published in [70]. This chapter is a lightly edited version of the
published paper.

We find new black three-brane solutions describing the “conifold gauge theory”
at nonzero temperature and baryonic chemical potential. Of particular interest is
the low-temperature limit where we find a new kind of weakly curved near-horizon
geometry; it is a warped product AdSy x R?® x T with warp factors that are powers
of the logarithm of the AdS radius. Thus, our solution encodes a new type of emergent
quantum near-criticality. We carry out some stability checks for our solutions. We

also set up a consistent ansatz for baryonic black two-branes of M-theory that are

asymptotic to AdS, x Qb1

3.1 Introduction

Via the AdS/CFT correspondence [1-3], electrically charged black holes in space-

times with negative cosmological constant yield insights into the physics of strongly-
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interacting systems at nonzero density. Recall that the correspondence relates semi-
classical gravity in d+ 1 space-time dimensions to a strongly-interacting field theory in
one fewer dimensions. There have been two kinds of approaches to these problems. In
the bottom-up approach, a simple and phenomenological gravity model is constructed
to which the AdS/CFT dictionary is then applied. It is assumed that there exists
some field theory, of which we may have only a qualitative understanding, dual to this
space-time, but using the correspondence, we can quickly and efficiently determine
the phase structure, the equation of state, and transport coefficients. In the top-down
approach, one considers a well-established AdS/CFT duality where the field theory is
well-known but may have exotic symmetries and field content. Given the complexity
of the known dual pairs, calculations are often more difficult. However, they are worth
the extra effort, because they allow us to make precise and reliable statements about
actual strongly interacting field theories.

Here we take the second approach and construct a novel type of charged black
hole (or, more precisely, black 3-brane) using the baryonic symmetry of the conifold
gauge theory [22] dual to the AdSs x T background of type IIB string theory. Our
solution is similar to the Reissner-Nordstrom AdSs black hole but is more complicated
because the compact space T gets squashed by functions that depend on the radius.
In the zero-temperature limit, we find that the near-horizon region becomes similar
to AdSy x R? x TH! up to slowly varying logarithmic functions. The presence of the
logarithms makes our IR solution a new kind of nearly conformal behavior. Thus,
very interestingly, our solution exhibits “emergent quantum near-criticality,” which
could make it useful for exploring connections with condensed matter phenomena.

Recently, there has been much interest in bottom-up approaches to study field
theories that undergo superfluid or superconducting phase transitions (see [31,32]
for reviews). Strong electron-electron interactions are believed to play an important

role in the physics of high-temperature superconductors. References [57,71-73| use a
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bottom-up approach to model a strongly-interacting system of fermions at nonzero
density, and find evidence for the existence of a Fermi surface.

While the bottom-up approaches allow one to scan quickly through a number of
simple gravity models and search for new phenomena, they have some disadvantages.
A major issue is that the precise nature of the dual field theory is typically unclear, and
one cannot be certain that it exists. Another disadvantage is related to the notion of
a consistent truncation and its stability. The AdS/CFT correspondence in its original
incarnation is a mapping between type IIB string theory in an AdSs x S° background
and N = 4 super Yang-Mills theory in 3+1 dimensions. In order to reduce a ten-
dimensional string theory to a manageable five-dimensional gravity theory, a consistent
truncation is made that eliminates all but a small number of fields. The consistency of
the truncation guarantees that a solution to the five-dimensional equations of motion
for the remaining fields is also a solution to the full ten-dimensional system. However,
nothing guarantees that this solution is a global or local minimum of the action in the
ten-dimensional setting; indeed, often it is not. The simple gravity models in these
bottom-up approaches would be consistent truncations if fit into the larger AdS/CFT
framework, and as such they may have instabilities.

In top-down approaches, one of the easiest ways to charge a black hole is through
the R-symmetry. The dual field theory often has an R-symmetry which maps to a
gauge field in the gravity system. In the grand canonical ensemble, R-charge on the
black hole translates into nonzero R-charge chemical potential p in the field theory.
In the most studied case of NV = 4 super Yang-Mills in 3 + 1 dimensions, it is strongly
suspected that at any nonzero p, the theory is only metastable |[74-76]. Moreover,
if ;1 becomes sufficiently large compared to the temperature, the theory becomes
thermodynamically and perturbatively unstable as well [35,|36,|77].

More generically, charged scalars, if their charge-to-mass ratio is sufficiently large,

are a source of instabilities. Starting with refs. [38,/43], these charged scalars have
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been studied intensively in the context of modeling a superfluid or superconducting
phase transition. Truncating such a charged scalar out of the gravity model also
spuriously eliminates the phase transition. While it is true that the physical systems
of interest often have a superconducting phase transition at very low temperatures,
from a theoretical point of view, it is of value to have a model where one may reliably
go to low temperatures without worrying about such instabilities.

In this chapter we construct a black three-brane charged under a baryonic U(1)p
symmetry. This solution passes a number of stability checks. We consider the well-
known conifold gauge theory and its dual pair, type IIB string theory in an AdS5 x T
background [22]. The SU(N) x SU(N) field theory with bifundamental fields A; and
B,, i,j = 1,2, has a global baryonic U(1) 5z symmetry. The corresponding U (1) gauge
field in AdSs comes from the R-R four-form with three indices along a topologically
non-trivial three-cycle. This realization of the U(1) symmetry makes our approach
different from the previous attempts to embed charged AdS black holes into string
theory. In particular, the nature of the charged objects is quite different. The gauge
invariant operators with baryonic charge in the conifold gauge theory have conformal
dimensions of order N. The smallest such operator in the conifold theory involves
determinants of the bifundamental matter fields. In the string dual, such an operator
maps to a wrapped D3-brane which may be studied semi-classically. We are able to
show explicitly that this wrapped D3-brane has a charge-to-mass ratio that is too
small to produce an instability. This check, however, is insufficient to demonstrate
the stability of our solution because one of the neutral fields may condense as the
temperature is decreased. We demonstrate stability with respect to one seemingly
dangerous neutral mode, but leave investigation of other modes for the future.

In [78], another potential instability of charged brane backgrounds was suggested.
Such an instability, called the “Fermi seasickness” in [78], is caused by nucleation

of a spacetime filling D-brane towards the AdS boundary (for earlier discussions of
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similar D-brane instabilities see |75, 79])E| In the dual gauge theory, this corresponds
to an instability with respect to the Coulomb branch, where certain mesonic operators
develop vacuum expectation values.

In the background we are studying, this instability can be seen from computing the
potential for probe D3-branes filling the (¢, Z) directions. Numerical computations show
that for temperatures greater than about 0.2u, the charged black branes constructed
here are stable with respect to such D3-brane nucleation, while for lower temperatures
they become metastable. For any nonzero temperature, the D3-brane is attracted
near the horizon, which means that there exists a potential barrier that for large N
prevents brane nucleation to AdS infinity.

The rest of this chapter is structured as follows. In section we review the
details of the conifold gauge theory and its gravity dual. We also demonstrate a
consistent truncation of type IIB supergravity (SUGRA) for the conifold background
to a baryonic gauge field and two neutral scalars in five dimensions. Given the effective
5d Lagrangian, in section we construct a metric, scalar, and gauge field ansatz for
a baryonically charged black 3-brane that depends only on a single radial coordinate.
The ansatz is invariant under a certain Zs symmetry and leads to a system of non-linear
ordinary differential equations. In section (3.4, we find their numerical solutions with
AdSs5 x TH! boundary conditions at large r. Although we encounter difficulties at very
low temperatures, the numerical work provides us with useful intuition concerning
the T' = 0 solution. In section [3.5| we find the near-horizon series expansion in the
T = 0 limit and show that it has a near-AdS, structure. In section [3.6] we study the
behavior of the smallest operator with baryonic charge in the conifold theory, the
dibaryon. We show that its charge-to-mass ratio is too small to lead to an instability.
In section [3.7] we carry out another stability check of our T" = 0 solution, this time

with respect to a neutral Zs,-odd perturbation. Because of nontrivial mixing with

'We thank Eva Silverstein for suggesting to us that our background may suffer from this instability.
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the U(1)g gauge field, the analysis requires us to generalize the ansatz of Section
Section contains some final remarks and discussion. In Appendix [3.A] we find an

analytic expression for our black hole in the small charge limit.

3.2 Conifold gauge theory and consistent trunca-
tion

The principal aim of this chapter is to study the AdS/CFT duality in presence of a
chemical potential for baryon number. In a general large N gauge theory, the operators
carrying baryon number have dimensions of order N, which distinguishes them from
the “mesonic” operators whose dimensions are of order one in the large N limit. In
AdS/CFT, the objects dual to baryonic operators are D-branes or M-branes wrapped
over non-trivial cycles of the internal manifold. In the maximally supersymmetric
version, which relates the A" = 4 SYM theory to AdS5 x S®, there are no baryonic
operators. Their absence is related to the fact that S° has no topologically non-trivial
three-cycles that could be wrapped by D3-branes. However, there are many known
examples where the AdS/CFT duality relates AdSs x Y, where Y is a Sasaki-Einstein
manifold, to N/ = 1 superconformal gauge theories that have baryonic operators. The
compact space Y typically has non-trivial three-cycles, so that the wrapped D3-branes
are topologically stable and the corresponding gauge theory possesses baryonic U(1)p
symmetries. We would like to turn on a chemical potential for the baryon number in
the gauge theory; in the string dual this translates into turning on the R-R four-form
gauge field that couples to the wrapped D3-branes.

We will present perhaps the simplest example of such a construction, in the context
of the duality relating the AdSs x TH! background of type IIB string theory to the
N = 1 superconformal “conifold gauge theory” [22]. This duality is motivated by

studying a stack of N D3-branes placed at the tip of the conifold, the Calabi-Yau
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cone zw — uv = 0. The explicit metric of its Sasaki-Einstein base, the T%!, is

2
dSTl,l =

2
1
> (d6} + sin® 0,dg7) + 5 (@ + cos f1dey + cos Oxds)? . (3.1)
=1

| =

The conifold gauge theory with gauge group SU(N) x SU(N) is coupled to bi-
fundamental chiral superfields A;, i = 1,2 transforming as (N, N), and B;, j = 1,2
transforming as (N, N). These superfields form doublets under the global symmetries
SU(2)4 and SU(2)p, respectively, and all of them carry R-charge 1/2. In addition to
the U(1)g x SU(2)a x SU(2)p global symmetry, which on the gravity side is realized
through isometries of 71!, the gauge theory has a baryonic U(1)p symmetry under
which

Ay, — e Ay B —e DB, . (3.2)

The spectrum of gauge invariant operators splits into two sectors. The mesonic
operators, which are not charged under the U(1)g, have dimensions of order 1; the
baryonic operators, which are charged under the U(1)g, have dimensions of order
N. The lowest dimension examples of mesonic operators are TrA;B; of dimension
3/2, and TrA;A;, TrB;B;, Tr(A;A; — B;B;) of dimension 2. In general, the mesonic
operators transform under the U(1)p x SU(2) x SU(2) geometric symmetry of T,
but are neutral under the U(1)p. The lowest dimension operators carrying the U(1)p
charge are, for example, detA; or detAs. These are the m = +N/2 states of the spin
N/2 representation of SU(2)4. The general form of these dimension 3N /4 operators,
Ay, m=—N,—N+1,...,N —1, N, may be found in [80]. They carry R-charge N/2,
and we will normalize their baryon number to 1. The string theory objects dual to
these operators are the D3-branes wrapping the (01, ¢, 1) directions. Quantization
of the (s, ¢2) collective coordinate gives rise to the N + 1 degenerate ground states
corresponding to the chiral operators A,,.

Similarly, there exist chiral operators B,,, m = —-N,—N +1,...,N — 1, N, such
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that By = detB; and B_ = detB;. These operators have baryon number —1 and R-
charge N/2; they are dual to D3-branes wrapping the (6s, ¢2, 1) directions. Replacing
these D3-branes by anti-D3 branes we find objects of baryon number 1 and R-charge
—N/2 that are dual to the antichiral operators B,, that include detB;. Since the
U(1)g charge couples to mesonic operators and may lead to instabilities mentioned
above, we will be interested in objects charged under the U(1)p symmetry only. The
simplest such vertex operators are the (N + 1)? products A,,, B,,, which are dual to
combinations of D3-branes wrapping both the (61, ¢1,%) and (s, ¢2,1) directions.
Turning on a chemical potential for U(1)p is expected to create a nonzero spatial
density of such wrapped D3-branes. Our goal is to determine the background produced
by them. We will use the simplifying assumption that the wrapped D3-branes are
appropriately smeared over the T%! coordinates, so that our solution will have the
full SU(2) x SU(2) symmetry.

The U(1)p gauge field in AdSs x Th! is contained in the components of the 4-form
R-R-gauge field [30], Cy ~ A A w3, where

1
Wy = 5 (sin01dfy A doy — sin Oadby A deps)
w3 =gs Nwa (3:3)

g5 = dip + cos 61dpy + cos Oydgps .

Our ansatz for the self-dual 5-form field strength will therefore be?]

1
F5:_(]:+*]:)7

s

2L L’
F = 2—7w2/\W3+9—\/§F/\W3 ) (34>
*F = £€720X/3V01M + L_262nigx(*MF) N ws .
L 32

The normalization of the terms involving F' has been chosen so that the kinetic term for

2 We use the conventions of appendix [A| for the Hodge dual.
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F' in the effective five-dimensional action is normalized canonically in the ultraviolet.

Quantization of the 5-form flux requires that [81]

27

L* = 47g,N(a)* = . (3.5)
16

At non-linear order, we expect the additional components of F5 to cause a violation

of the Poincaré invariance of the 5d metric, and also to produce a squashing of the

internal space T%!. A minimal consistent truncation of type IIB supergravity that

contains these effects turns out to be

(d67 + sin® 0,d¢7) + ——gz2 | . (3.6)

5 n 2 4
ds}, = e 3Xdsy, + L?eX [ 5

e e N
6

=1

If x = n = 0, this metric reduces to the direct product between the non-compact
space M and T%!'. The scalar y controls the overall size of %!, while 7 introduces
a stretching of the U(1) fiber relative to the two two-spheres. These scalar fields in
AdSj5 are dual to operators of conformal dimension 8 and 6, respectively.
The above ansatz yields a consistent truncation of type IIB SUGRA with the
effective five-dimensional lagrangian
, 10

1 .
Log=R— ZeTX*z”FiV — 5(9un) 3(@,»()2 -V(n,x), (3.7)

where the potential for the two neutral scalars is given by

8 4
V(nx) = g5 X+ e X (¢ = 6c7) (3.8)

The scalar kinetic terms and potential had been previously determined in [82]. However,
the scalar coupling to the U(1)p gauge fields was not considered there. Indeed, (3.7))

shows that the gauge kinetic term depends on the scalars; to study the baryonic black
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holes we need to include the squashing of T

3.3 Equations of motion

Using (3.7)), we will look for time-independent charged black 3-brane solutions. We
impose rotation and translation symmetry in the 3 spatial directions, but the Poincaré

symmetry is obviously broken. Therefore we will use the ansatz
R S
ds?, = —ge "dt?> + D > (da') (3.9)

where g and w are functions of . This choice of parametrization (see, for example, [83])
will prove useful in simplifying the form of the equations of motion. To turn on
the baryonic charge density and chemical potential, we need to consider only the
time component of the U(1)p gauge field, A = ®(r)dt, so that the field strength is
F =dA = ®'dr A dt. We will also assume that the scalars xy and n depend on the
radial coordinate r only.

We should note that our full ten-dimensional ansatz f preserves the
Zs space-time inversion symmetry where (¢,Z) — (—t, —Z) is accompanied by the
interchange of the two 2-spheres, (01, ¢1) <> (02, ¢2). The forms w3 and wy change sign
under this transformation, but the terms dt A dr A ws and da! A dz? A da® A wo present
in Fj are invariant. In the gauge theory, this Z, symmetry appears to correspond to
(t,T) — (—t, —%) accompanied by A; ++ B;.

With this ansatz, the effective one-dimensional lagrangian is

Leg = —brige 2" <77/2 - gx’2> - %7‘365“’62”Lé"é[)/2 — 3(gr¥) e 2¥ — plem2vV
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The equations of motion following from this lagrangian are

X"+ X (3 + ‘(g + 53Tn’2 + %x”) — %ewﬁn—éx - %g—‘; =0, (3.11a)
n" +1 (; + ‘Z + 57“77,2 + 1(9)rX,2) + %ewm—éx — ﬁg—‘; =0,  (3.11b)
Jd+g (i A 1ng,2> + rqg’Q eUrAITEX 4 3\/ =0, (311

" + @' (2 + %w’ + 20 — %;{) =0, (3.11d)

w' + 1_8r(3n,2 +2x%) =0, (3.11e)

where primes denote derivatives with respect to r, and V' is the scalar potential defined

in .

Equation (3.11d)) can be integrated once yielding

o = Q — w2+ 5x (3.11f)

7“3 ’

where () is an integration constant related to the charge of the black hole. This is the

conservation equation for baryonic charge. From now on, we will use (3.11f) instead

of (3.11d)). Plugging (3.11f)) into equations (3.11a)—(3.11¢)), we get the added bonus

of eliminating the dependence on w, so the remaining equations are

3 ¢ 5r 10r Q* _, .4 3 oV
" r 2 Y 2 Y2 W 2n4Ex =0 3.12
X"+ x (T+g+—3n + 9X> 0 Tangay 0 (312)
3 ¢ br 10r Q* _, .4 1 oV
" / 2 2 _%  o7nt3x =0 3.12b
n+n(+g+3"+9x)+10r6e S aagay 0 O
2 5r 10r Q?
/ < o2 2 —2n+4x — 12
g+g(r+3n+9x)+65 NegV=0. (312

To reduce the system from five to three coupled differential equations was the main

motivation for using the ansatz (3.9)).
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3.4 Numerical solutions

Solving the coupled non-linear equations ({3.11al)—(3.111)) is in general a difficult task.

We will mostly rely on numerical work, but in some limits will be able to present
analytical formulae. The simplest situation is when ) = 0 and we find the well-known
black 3-brane solution in AdSs. In this solution, the shape of T does not depend
on r, i.e. the scalars y and 7 vanish. For small values of () we can use perturbation
theory in this small parameter to obtain an analytic expansion of the solution. This
exercise is carried out in Appendix where we find that the scalars y and 7 are
now of order Q2 and acquire a dependence on 7. In the next section, we present some
analytical results in the extremal limit. However, for intermediate values of @), we

know of no good analytical methods and resort to numerical ones.

3.4.1 Setup for numerics

Finite-temperature solutions are found numerically by a standard shooting technique.
The numerical solver is seeded close to the boundary, which is located at » — oo, by
using a series expansion that imposes the correct boundary conditions.

The first task is to determine the boundary conditions. All our ten-dimensional
metrics must asymptote to AdSs x TH! at large r. This means that the asymptotic

boundary conditions that we require as r — oo are

2

w0,  g=-—+O0(Lr),
L (3.13)
n—0, x—0.

In order to describe states in the dual field theory at nonzero baryon chemical potential,
we also require ® — @, for a constant ® that will be related to the chemical potential
shortly. Generically, solutions satisfying these boundary conditions will have an event

horizon at some value r = r, where g(r) vanishes. The standard boundary conditions
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required at the horizon are that w, n, and x should be finite.
From ((3.11al)—(3.11f) one can work out a series solution at large r that satisfies the
boundary conditions ((3.13)):

w=0((L/)*10g(r/L)) |
r? gol? Q*L*

9=13+" 5 + 150 TO(L/)log*(r/L)) ,
D=y — 2% + 0O ((L/r)®log(r/L)) , (3.14)
X = —% + Xjfs +O ((L/r)")

- PLIBID) | I o (1 ey 10g(r/ 1)

All higher order terms in the series are determined in terms of go, @, xs, 76, and Q.

To proceed further, it is useful to review some of the symmetries of our ansatz.
The equations of motion and the boundary conditions are invariant under some
scaling symmetries which act with the charges summarized in table [3.1} We say that

a quantity X has charge ¢ under a scaling symmetry if

X — ALY (3.15)

The first symmetry in table is a formal way of expressing the arbitrariness of a

SymmetryHe‘w‘g\Q\n‘X‘t\f\r\L
type A 0O |[0J0|0]0O] 1 1 [1]1
type B 0O [2/1]0]0|—=1|-=1]1/0

Table 3.1: Charges under the scaling symmetries of the equations of motion (3.11])
and of the boundary conditions (3.13]). These charges are defined as in ((3.15]).

choice of units in the bulk. It can be used to set L = 1. The second symmetry can
be used to put r, = 1, but when shooting from the boundary it is more useful to

employ the same symmetry to set go = —1 instead. We can also set &3 = 0, by using
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the fact that the potential ® appears only through its derivatives in the equations of
motion, and does not appear in the metric. Having eliminated ®, and fixed @, we
are left with two parameters, ys and 74, that need to be tuned in order to match to
regular solutions at the horizon. Trial values for these parameters are determined
from the small @ (large T') expansion of Appendix A, and the results are used to go
to progressively smaller temperatures.

Thermodynamic quantities such as the energy density €, entropy density s, tem-
perature 7', charge density p, and chemical potential u, can be computed from the

following formulae:

3 g 2} o e

T 2kILC °T KEL3 B 4t ’ (3.16)

. Q Dy — Dy .
pP= W , p=—7">

where £5 is the five-dimensional gravitational constant, wy, = w(ry,), and &, = &(ry,).

Using the parameters from [81] we find

1 27TN?
—_ = 3.17
ki 64m2L3 (3.17)
The energy density can also be computed from
3
e=—(T's+pp) , (3.18)

4

which follows from € = T's — p + up and the tracelessness of the stress tensor, ¢ = 3p.

3.4.2 Results

Using the shooting method described above, we were able to find numerical black
hole solutions for a fairly large range of temperatures. Here are the main features we

observe:
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Figure 3.1: The behavior of the horizon values of the scalars as a function of T'/u. The
dotted line is the high-temperature behavior obtained from the low () expansion in
appendix [3.A] According to the zero-temperature expansion developed in section [3.5]
nn, and yp should diverge at 7' = 0. We believe we are far from this regime.
e Our numerical results agree with the analytical computations presented in
Appendix in the limit of high temperatures. See figure for a comparison

of the values of the scalars at the horizon found numerically to those predicted

by the analytic formula (3.55]).

e We were able to construct numerical black hole solutions only for temperatures
higher than T" =~ 0.0005u because of loss of numerical precision at lower temper-
atures. We believe the lowest temperatures we attained are not low enough to
provide a thorough check of the analytical zero-temperature horizon expansion
constructed in the next section. In fact, we will argue towards the end of the
next section that we expect the zero-temperature expansion to become a good
approximation to the near-extremal solutions when loglog /T > 1, which is

beyond the range of temperatures where our numerics are reliable.

e As one decreases the temperature, the Bekenstein-Hawking entropy seems to ap-
proach a non-zero value (see ﬁgure. This fact will be confirmed analytically in
the next section, where we find that as T approaches zero, s/p &~ 2.09. However,
as will be discussed later, there are stringy effects that make our solution trust-

worthy only down to an exponentially low temperature of order pe=const-x(9sN s
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Figure 3.2: Entropy density normalized by charge density, as a function of temperature
over chemical potential. The entropy is seen to go to a nonzero constant as 7' — 0, in
agreement with the zero-temperature expansion discussed in section |3.5

e Lastly, one may worry that at low enough temperatures the curvature of these
backgrounds might get large and the supergravity approximation might break
down. As can be seen from figure the horizon value of the ten-dimensional
Riemann tensor squared is uniformly bounded from above. In fact, in the
following section we will show that all curvature invariants should vanish at the

extremal horizon.

3.5 Near-AdS; near horizon

We now find a horizon series expansion at zero temperature. We will restrict ourselves

to the set of equations (3.12)), since one can always use (3.11¢|) and (3.11f) to find

w(r) and ®(r) afterwards. In the following, we use the symmetries in Table [3.1] to set
L= Th = 1.
A guess for the zero-temperature value of the charge () that appears explicitly in

equations (3.12)) can be found from the following line of reasoning based on properties

55



(5) 10 bed
(R )hor (RgbcilR?l(():) )hor

—185F 450

-19.0 400 L

-19.5
350

-20.0F
300 -
-205F

-21.0F 250

=215

T/u T/u

0.001 0.01 0.1 1

Figure 3.3: The five-dimensional Ricci scalar (left), and the square of the ten-
dimensional curvature (right) at the horizon, in units where L = 1, as a function of
T/u. As discussed in section [3.5] all curvature invariants evaluated at the extremal
horizon vanish.

of the nonzero temperature solutions. At the horizon, g(r, = 1) = 0; since g must be
positive outside the horizon, we need ¢'(1) > 0. Evaluating eq. (3.11c) at the horizon,

we get
J(1) = —é e~Om= TN (160 4 8ebxn — 4gePmAbn | Q2MmAS) >0 (3.19)
which implies
by < etn < by, (3.20)

where

4
b2

2= Q24

(—1 F 6 £ (/T — 1269 — (Q% — 36)61077h> . (321
For @) > 6, both b; and by are negative or complex for any 7y, resulting in no possible

range of x;,. For ) < 6, the smallest positive value of 7, for which b, » are real is the

one for which b; = by. The fact that there are no solutions for ¢ > 6 implies from
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(B-I0) that

W

T 27
— >
- 3

il ~ 2.0, 3.22
0 (3.22)

s

p

an inequality that should hold at all 7" within the supergravity approximation.
When b, = by, we have

1 1 1 Q
— —Zlog(6 — — — —1og(6—Q) — ~log = 3.23
Ne 5 0g(6 — Q) , Xe 50 0g(6 — Q) ;g (3.23)

which implies that 7. and x. go to infinity as ) — 6, while

3
Ne — dxe = log% — log 5 a8 Q — 6. (3.24)

A reasonable guess is that at zero temperature () = 6 and the scalars x and 7 diverge
at the extremal horizon, while n — 4x approaches log %

With ¢ = 6, we use the method of dominant balance to find the asymptotic
behavior of zero-temperature solutions at the horizon. By adding arbitrary power
series to these dominant terms, we find we can satisfy the equations of motion. We

obtain a solution of the form

1 2187 _ 1063 _
X = —5;log ST SEER

20 16 ') 1000
1 463
n=—-1log(187) + —7 +--- ,
5 250
" (3.25)
L1373 (93312 - (12)V
g=r +o ),
25
I
w=——+—logr+w+---
367 | 30 P ’
where
r=r—1, (3.26)



and the dots stand for regular Taylor series.
As 7 — 0, goo = —ge™™ has an essential singularity. This prompts us to introduce
a better coordinate,

(3.27)

)

y = 3-193/1209-107/12053/40 ,i/2 ,5/(727)

which becomes large near the horizon. In terms of this coordinate, and reinstating the

factors of L?, the near-horizon metric becomes

12 1 1215\ /12
2 ~37/20 7,2 1/4 5 2 2 —1/12 12
dsiy = ?<—(10gy) 120442 + 673011/ EOEE (logy) Mdy ) + L <_128 ) (logy) 24z
L% 15\ = L% 125\
L7 (1o /42 2 w2 102\, ~3/4 2
(3.28)

This is a warped product AdS, x R? x T with warp factors that are powers of the
logarithm of the AdS radius y. The appearance of the logarithmic warp factors makes it
a novel type of “nearly conformal” IR behavior. Note that the 3d spatial components
of the metric tend to zero in the IR as g;; ~ (logy)~'/128;;; this is an important
difference from the RNAdS metric where they approach a constant. Remarkably, the
extra logarithms actually reduce the curvature, so that we can trust the supergravity
approximation everywhere: we have checked that the 10d Kretschmann invariant and
the 5d Ricci scalar scale as Rypeq R ~ (logy)~/? and R ~ (logy)~'/3 respectively.
Such an asymptotic reduction of curvature due to the appearance of logarithms also
occurs in the UV region of the warped deformed conifold [82,84].

One can use the asymptotic solution to estimate what happens at temperatures so
low that the horizon is located deep inside the near-AdS; region, at 7, < 1. If we
assume that approximately holds down to the horizon, we can estimate using

-
(3.16]) that T'/p ~ e ™™ up to power law corrections in 7, and numerical factors.
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From ([3.25)), one can then compute the values of the scalars at the near-extremal

horizon:

1 - N 1
= 4xn = —¢ log s + O(7) = ¢ log log% +O((T/p)") . (3.29)

We therefore expect the approach to the extremal limit to be very slow and hard to
investigate numerically because one has to go to exponentially small temperatures.
This numerical suggestion of the existence of an exponentially small scale compared
to the chemical potential ¢ in the conifold gauge theory is corroborated by a stringy
argument. In the type IIB string theory context, our solution cannot be trusted for
arbitrarily low temperaturesﬂ In the T' = 0 solution the -circle shrinks to zero size
at the horizon (see the last term of (3.28)), and the standard approach is to T-dualize

2/3 where the size of the circle becomes

along this direction for logy > const. x (gsN)
of the order of the string length v/o/. Estimating the temperature at which the size of

the 1-circle at the horizon reaches the string scale, we find
K 2/3
log T~ (gsN)*/° . (3.30)

It is remarkable that application of string theoretic arguments to our black brane

suggests that in the conifold gauge theory at baryon chemical potential i there exists

)2/3

an energy scale of order pe™"tx@sN)*  From the point of view of the type IIB

~1/4 such a scale can arise only non-perturbatively.

o-model with coupling ~ (g;N)
Below this exponentially small scale, the gauge theory presumably exhibits some new
effects that can be studied by T-dualizing the solution and lifting it to M-theory.
While the background has a non-vanishing Bekenstein-Hawking entropy and is

smooth, stringy effects become important when the 1-circle becomes small, and these

effects could remove the conflict with the conventional statement of the Third Law

3We are very grateful to J. Maldacena and E. Witten for pointing this out to us.
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of Thermodynamics [85]. Since the type IIB backgrounds can be trusted when the
1-circle is above the string scale, we expect the entropy to be approximately constant
for ue’COHSt'X(gsN)m < T < p, i.e. when the horizon is inside the near-AdS; throat. It
would be very interesting to provide a microscopic origin of this entropy of order N?
by studying the underlying D3-brane system, which involves two intersecting stacks of
D3-branes wrapped over the T!,

In order to match the asymptotic solution to the appropriate behavior at the
boundary, we generically need a two-parameter family of solutions, in addition to the
integration constant w, which is related to a choice of units for time in the boundary
theory. Following [83], we linearize around this leading behavior, to find non-analytic
pieces that we might have missed. There are two solutions to the linearized equations,

of the form

5X: ea/ffc1(1+”') 7
on = 40x + e (14 -1 (3.31)

5g:ea/ffc3(1+‘__) :

where the corrections are just series in positive powers of 7. The values of a and ¢; for

the two solutions are

) 1 10
— ¢ = e=a+l, ag=a+o, (3.32)

and

5 179421 — 189 13
a=-gp(V2-1),  a=—gg—— ., a=a, a=atg.

(3.33)

For a scalar in AdSs, the behavior of linearized modes as a function of the radius
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Y is

Gy, t) ~ go(t)y'~2m + A(t)y ™ (3.34)

where ¢g(t) is the source for an operator of dimension Ajg, and A(t) is its expectation
value |30]. In the case at hand, since the background is AdSs up to powers of logy,
we expect to hold up to similar powers. The perturbations are indeed
of this form. The first of these solutions corresponds to a source for an operator of
A = 2; the second to a source for Ay = (1 + /21)/2. Both of these operators are
irrelevant in the nearly conformal quantum mechanics found in the IR; hence, they
produce perturbations that decay at large .

Another type of perturbation that we can study easily is a minimally coupled
massless scalar, for example the dilaton. In the near-AdS, region, the minimal scalar
solutions behave as a + by(logy)*/® + - - -. We identify the dual operator as a marginal
operator with Ajg = 1. In the case of the dilaton, the operator is exactly marginal
because the string coupling is a parameter in our solution.

The extremal solution described above is reminiscent of the “run-away” attractor
flows described in [86]. Typically, an attractor flow is a set of solutions to the
supergravity equations of motion where the ultraviolet behavior is not universal, but in
the infrared the scalars approach fixed values. In the run-away case at least one of these
fixed values is at infinity. Our extremal solution would be of run-away type because
the scalars n and x diverge at the extremal horizon, even though the combination
n — 4x stays finite. An important difference between the extremal solutions from [86]
and the one we found is that in [86] the entropy density vanishes at extremality while

in our case it does not.
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3.6 Baryonic operators and D3-brane probes

In this section we investigate whether the baryonic black branes constructed above
are stable with respect to condensation of baryonic operators in the conifold gauge
theory. As was already described, these operators are dual to wrapped D3-branes in
the dual supergravity. These wrapped D3-branes act like charged particles; there is a
competition between the gravitational attraction and electrostatic repulsion between
the particle and the charged black brane. To test stability, we propose a simple
thought experiment. If we place such a wrapped D3-brane into the geometry and
the brane falls into the black hole, we conclude the black hole is stable. However,
if the brane finds some meta-stable minimum outside the horizon, we conclude the
black hole is unstable and more such wrapped D3-branes can bubble off the horizon,
find their way to the minimum in the potential, and reduce the baryonic charge on
the black hole. It is possible that more exotic bound states of D-branes may lead to
instabilities. We leave an investigation of such issues to future work.

We follow an analysis similar to that in section . The probe D3-brane action

takes the form

Spz = — 3 d*ze %/ —det Gy + € U3 / Cy (3.35)

where p3 = (2m)73(a’) 72, o is related to the string tension, and ¢ is the dilaton. For
our supergravity solution, the dilaton is a constant we take to be related to the string
coupling, g, = e?. The parameter € is equal to one, but we leave it arbitrary so that
we can tune the charge of the D3-brane. We assume the metric ansatz and .

We assume the probe brane sits at constant 0y, ¢o, x;, and r and wraps the
remaining four directions, including time. From Sps and the ansatz for Fj we

deduce a potential for the D3-brane:

Vi) = SN e=sut)-ntmixe \/—_63N\f (r) . (3.36)
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Comparing with , we see that in the UV where the scalars n and
x are negligible, e*("” ~ 1 and g ~ r2/L?, the wrapped D3-brane corresponds to a
particle in RNAdS with m/q = v/2. As shown at the end of section m this ratio
corresponds to the critical value m/qey at which in RNAdS the potential V (r) has a
local minimum at r = rj in the extremal case. There is no reason to expect that the
critical value of 1m/qe; should be the same in the presence of scalars, but we will now
show that this is nevertheless true.

The simplest demonstration is to plot V' (r) numerically. At the lowest temperatures
we can access, there is no minimum in the potential when ¢ = 1. However, for € > 1
and T sufficiently low, there is such a minimum, suggesting the D3-brane does indeed
have this critical ratio of charge to mass. Indeed, the minimum is observed to occur
for € > ¢y, where ¢ is some critical value larger than 1. In figure [3.4] we plotted the
dependence of this critical value on T'/u. We see that as the temperature goes to
zero, the critical value goes to 1. The position of the minimum moves towards the
horizon, showing that wrapped D3-branes have the marginal ratio of charge to mass

that means they barely escape condensation.

ol T

0.0 0.2 04 0.6 0.8 1.0

Figure 3.4: Critical value of the parameter ¢ above which condensation occurs, as a
function of T'/u. Just above €, the position of the potential minimum goes towards
the horizon as T" — 0.
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Some analytic support for this claim comes from studying the conditions that the
minimum in the potential disappear, V'(r,) = V"(r,) = 0. Restoring € = 1, these two

vanishing conditions imply the relation

onr) _ ge4><<’“*> , (3.37)

However, we know this condition is satisfied in the 7" — 0 limit at the horizon from
(3.24)). Thus the system just begins to become unstable at 7' = 0, and we expect no
phase transition.

More explicitly, we examine the potential in the 7" — 0 limit. From the

zero-temperature series expansion (3.25[), we find that

324 . 181/6

Vi) = Ne i - 1o (- g2

(r—1)+0(r— 1)2) ., (3.38)

where we set L = r;, = 1. Thus, the leading term in this series expansion vanishes

when € = 1.

3.7 Another stability check

The results of the previous section show that the black holes with baryonic charge
we have constructed are stable against the simplest condensing operators that carry
nonzero baryonic charge. Recall that all such operators have large dimensions of
order N. One may worry about a different kind of instability where at low enough
temperatures there is a phase transition driven by operators that are uncharged under
the baryonic symmetry. That such a phase transition is in principle possible was
noted in [39,40,60] for the case of the RNAdS black hole. In that case, all uncharged
operators with UV conformal dimension smaller than 3 (when the gauge theory is

3 + 1-dimensional) could trigger such an instability.
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In this section we will study the stability of certain modes in the IR near-AdS,
region of the T" = 0 solution. For a minimally coupled scalar,

1
Ay = = 4/~ +m2L% . . (3.39)

1
2 4
Hence, the Breitenlohner-Freedman (BF) stability bound in AdS; is

MLy, > _i | (3.40)
and the dimension Arg_ is allowed only in a narrow range of m? above this bound [30].
When the BF bound is violated the dimensions become complex, and the modes
exhibit the oscillatory behavior as a function of the radius that is characteristic of
“bad tachyons” (see for example [87]). This simple analysis is not directly applicable to
the case of interest to us because the background is not exactly AdS,, and the scalars
are not minimally coupled. However, we will adopt a similar stability criterion. In
the linearized approximation, an instability will be associated with the presence of
complex dimensions and the ensuing oscillatory behavior of modes.

The baryonic black 3-branes studied in this chapter come from a ten-dimensional
type IIB construction, so one can study fluctuations of various (uncharged) supergravity
fields and check their stability. While a full analysis of all possible modes was not
performed, we will demonstrate stability with respect to perturbations associated
with a field theory operator of UV conformal dimension A = 2. This operator is
Tr(A;A; — B;B;j), and its dual supergravity field is the “resolution mode” of the
conifold, A, that allows the two S?’s to have different sizes. This is the most relevant
mode that is odd under the Z, space-time inversion symmetry accompanied by the
interchange of the two 2-spheres. We thought that this mode was the most likely
to cause an instability because it saturates the BF stability bound in AdSs x T!;

luckily, as we show, it does not destroy the stability of the near-AdS, solution.
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The challenge here is that A\ mixes with the time components of certain gauge
fields, already at the linearized level. We were nevertheless able to find a consistent
set of supergravity fields that include A and that decouple from all other fluctuations,
providing a more general (non-linear) consistent truncation of type IIB supergravity
than the one considered in section [3.2] Indeed, the consistent truncation we find
reduces to the one in section [3.2]in a particular limit. The full ten-dimensional ansatz
and the effective five-dimensional action are given in section In order to examine
the stability of the near-AdS; geometry, in section we linearize the equations
of motion around the baryonic black brane background and develop a horizon series
expansion at zero temperature using the explicit solution discussed in section [3.5]
Remarkably, the linearized equations contain mixings between the modes and effective

mass terms that stabilize all potentially unstable modes within this ansatz.

3.7.1 A more general consistent truncation

A consistent truncation that extends f to include the resolution mode of
TY! can be constructed as follows. Compared to 7, this truncation has three
additional fields: the scalar field A, which is the resolution mode of the conifold, and
the spin-one fields A and Ag, which mix to give a gauge field corresponding to the
R-symmetry of the gauge theory as well as a massive spin-one field. The metric ansatz

18

ds?y = e~ /3ds%, + L2eX [E(dOQ + sin® 0, d¢7)
0= M 6 1 1497

e, g € 3 2 (3.41)
+ 5 (df5 + sin 02d¢2)+7 g5 + \/§LAR :
Defining
3
g5 =95+ —ﬁLAR 7 (3.42)
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the self-dual five-form can be written as

1
F5:_(F+*F)7

gs
F= QQ—I;wg/\wg/\gg)—l— 9[:/35117/\&}2/\954
— 18\3/§FR Adgs A git + 18\3/§AR Ndgs N\ dgs (3.43)
«F — %6—230xv01M + %6_;‘“’7 cosh(2X) sy F' — sinh(2X) sur Fr| A wo |
+ %e‘gan cosh(2)) say Fr — sinh(2)) sy, F| A dgs
+ 22t (At ) Mg

where we have defined the field strengths F' = dA, Fr = dAg, and Fr = dAp.

The effective five-dimensional action for this consistent truncation can be written

as a sum of a bulk piece and a Chern-Simons term:

S = /d‘r’x\/—gﬁ + Scs - (3.44)

The bulk lagrangian £ is given by

10
L=R- ?(8;0()2 - 5(8/”7)2 - (au)‘)g —V(n,x, )
1 L~ -
— e [cosh(2)\) (FWFW + FﬁFﬁ”) — 2sinh(2\) F,, F& (3.45)
_ 16—4n+§xFR o ie—4n—4X(AR + AR)Q
8 us R 2 H w/oo
where
8 _2 4 _s —6 -
V(n,x,\) = 12¢ X4 I2¢ 3% (7% cosh(2X) — 6" cosh A) . (3.46)
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The Chern-Simons part of the action is

1 ~ - 1
Sea = —— | A ANFpr NFp——— | ANFAFp. 3.47
cs 2\/5/ rANFr AN Fg 2\/5/ R (3.47)

From now on, we restrict to a time-independent background where we have rotation
and translation symmetry in the three non-compact directions z°. The most general
ansatz with these symmetries is where the scalars y, n, and A depend only on r, and

where

2 cw g dr? TP . i\2
dsy, = —ge dt+—+ﬁg(daﬁ) :
g i=1 (3.48)

A=®(r)dt,  Ap=Og(r)dt,  Ap=Og(r)dt,

generalizing the ansatz used in section [3.3] In this case, the equations of motion
following from the effective action (3.44) admit two conserved charges Qp and Qg
associated to the baryonic symmetry and to the R-symmetry of the gauge theory,

respectively. The conservation equations take the form

Q

@' cosh(2)) — Py sinh(2)) = < e 2w T2IHEX (3.49a)
T
i 1
"2 cosh(2)\) — @' sinh(2)\) — 56_6“4" P, = Q—fe_%“’_QnJr%X : (3.49Db)
T

where, as usual, primes denote derivatives with respect to r. The first of these two
equations is a generalization of (3.11f). In the UV, the scalars are negligible and
the above two equations reduce to ¢’ & T%QB and CTD’R — %Q)’R ~ T%QR, justifying the

interpretation of () as the baryonic charge and of @)z as the R-charge.
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3.7.2 Horizon expansion of linearized fluctuations

As mentioned in section our background is invariant under a Z, symmetry that
acts by flipping the sign of the non-compact coordinates, (t,z) — (—t,—Z), and
interchanging the two spheres in the compact space, (01, ¢1) <> (02, ¢2). Recall that
in the background solution only y, 7, and ® are nonzero. The fluctuations around
this background are distinguished by their parity properties under the Z, symmetry:
6®, &y, and 0n are even, while §®p, 6®p, and d) are odd. Due to the Z, symmetry
of the background, the even and odd linearized fluctuations cannot mix. Here we are
interested in the resolution mode d\, so we will focus on the mixing among the odd
fluctuations.

The linearized equations are

1w 3
. 4
< ( 25\ ) 4 2 axtu g [@’5)\ - 5%} + ﬁe_G”_%X(SeE’” —2)6A=0,
T e2¥
16 -
r3§2 (rde At ixtavsl ) — T3¢ T(0g + 5%R) =0, (3.50)
8
I (3P APl — 296 XON D' — T3¢ TN (0®p + 5Bp) =0,
riez

where x, 1, ®, g, and w are evaluated at their background values given in (3.11f])
and for the zero-temperature extremal solution. Let’s focus on this extremal
solution and find a series expansion in 7 — 1 (we set L = r, = 1). This calculation is
similar to that of the non-analytic contributions to the background given at the end
of section . Since is a system of three second order differential equations,

there are six linearly independent solutions whose leading behaviors are of the form

50 = eF i (600 +90RF ) |
0bp = 5 (60 + 507+ ) (3.51)

O\ =

Q)

¢ omr 3= 55 (5)\(0) + AW .. ) 7
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with 7 =7r —1 as in . The coefficients o and b; are given in table . All six
solutions satisfy the U(1)g charge conservation condition at the linearized
level. Of the modes that do not grow with y (I, III, IV, and V), only mode III requires
a non-vanishing Q)r, while the others satisfy the conservation equation with Qg = 0.

The crucial fact is that « is real for all six solutions, so there are no oscillatory solutions

Solution H o ‘ by ‘ by ‘ b3 ‘ AR
1 —% % by +1 b +1 2, source
11 2 — 2 | bhi+1|b+1| 2 VEV
111 —% % b1 b1 0, VEV
v 0 0 by by 0, source
\Y% — 5(1;21/5) 63I270‘/5 b1 by %5, source
VI _ 5(11;:1/5) 634{270\/5 b, b, 1+2\/5 . VEV

Table 3.2: The coefficients of the perturbative expansion (3.51f) and the IR dimensions
of the corresponding operators. The solution IV is in fact an exact pure gauge mode
for which &p = —®r = const.

in the near-AdS, region. The absence of oscillatory solutions means that the black
3-branes with baryonic charge constructed in the previous sections are likely to be
stable with respect to the perturbations .

We discussed in section how near the extremal horizon, the geometry is
AdS; x R? x TH! up to slowly varying logarithmic factors. We can thus ask what
the effective dimensions of the operators dual to the modes given in table [3.2] are.
Changing variables to the AdS; coordinate y defined in , we see that 0\ behaves
for the six solutions as y~!, v2, 4°, v, yl_T\/g, and y#, respectively.

Using , the dimensions Ajg corresponding to various perturbations are given
in the last column of table [3.2] Since solution IV is exact, has A = 0, and is pure
gauge, we suspect that the Ajg = 0 modes we are seeing correspond to the conserved
charge operator in the effective quantum mechanics. This is consistent with the

fact that mode III, which produces a VEV of this operator, is seen to correspond to

non-vanishing (Jg. In this chapter we only study solutions with vanishing R-charge,
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so the charged modes with Ajg = 0 are not allowed. The remaining dimensions we
find, 2 and 1 + \/75, correspond to irrelevant operators from the point of view of the IR
near-AdSs theory. The sources for such operators correspond to modes that fall off
near the horizon as y~=! or y%. Since the operators are irrelevant, we expect that

inducing them in the IR theory will not destroy the near-conformal IR solution we

find.

3.8 Discussion

This work initiates studies of black hole solutions charged under baryonic symmetries.
Such solutions are asymptotic to AdS x Y, and the baryonic U (1) symmetries appear
due to the non-trivial topology of the Einstein space Y. We discussed the type I1B
example AdSs x TH! in some detail. Perhaps our most surprising finding is that the
type IIB charged 3-brane solution develops, in the zero-temperature limit, a novel kind
of near-horizon region, which is a warped product AdS; x R3 x T*! with warp factors
that are logarithmic in the AdS radius. This supergravity solution is smooth because
the logarithms decrease the curvature of the solution; in fact, all curvatures approach
zero at the horizon. In this sense this solution is reminiscent of the UV region of
another solution based on the conifold, with a topologically non-trivial 3-form flux
turned on [82,84]. That warped deformed conifold solution was supersymmetric and
automatically stable. In the present case, where the only non-vanishing supergravity
fields are the metric and the self-dual 5-form, the solution does not seem to preserve
any supersymmetry, and its stability is a serious issue. We carried out some highly
non-trivial stability checks for our solution.

We have shown that the simplest objects charged under the baryonic U (1) g, namely
the wrapped D3-branes, do not condense. This still leaves the possibility that one

of the neutral fields might cause an instability. Our solution preserves a certain Zs
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symmetry and we have checked stability with respect to one of the modes odd under
the Zy. This well-known mode, dual to the operator Tr(A;A; — B;B;), turns on the
difference of the sizes of the two 2-spheres that is present in a small resolution of
the conifold, and also mixes with the U(1)gr gauge field. We leave further studies
of stability for future work. We also note that we have encountered difficulties in
extending our numerical solution all the way to zero temperature. At the lowest
temperature we have been able to reach numerically, wy, /2 ~ 0.85, which means that
the near-AdS, throat is only beginning to develop. It would be interesting to construct
the full numerical T" = 0 solution that matches onto the near-horizon form that we
found analytically.

The zero-temperature solution is however threatened by another potential instabil-
ity of our construction. This is the “Fermi seasickness” suggested in [78], which is
caused by the nucleation of spacetime-filling D branes outside the black hole horizon.
The analysis of this instability can be carried out similar to section by calculating
the potential for probe spacetime-filling D3 branes. The results are shown in Figure|3.5
It turns out that our background is stable with respect to this kind of nucleation for
T 2 0.19p. For smaller temperatures, the charged black branes become metastable:
spacetime filling D3-branes are attracted to the horizon when they are close to it,
and this can be shown analytically to hold even for the zero-temperature solutions of
section however, the branes can tunnel out to the AdS boundary. The tunneling
rate goes to zero for large N, so the metastability might not be a problem in the limit

we're considering.
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Figure 3.5: The potential for a probe spacetime-filling D3 brane as a function of
the distance from the horizon. The branes can tunnel out to the AdS boundary for
temperatures smaller than about 0.19u.

3.A Small-charge limit

Approximate solutions can be found in the small @) limit. Defining the dimensionless

parameter Q = QL /r3, the small @) expansion takes the form

w = Q*w® + Q*w™ + ... |
r’ T;’LL 25 (2) 45 (4)
g — i) TRV Q05T+

7]
1 1 ~
P = 9 (_2__2) +Q35q)(3)+... ’ (3.52)
2 \r; r

where the starting point of the expansion obtained by setting () = 0 corresponds to the

AdS-Schwarzschild solution. The small ) approximation (3.52)) can be alternatively

thought of as a large temperature expansion.
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To second order in @, defining p = r/ry, one finds the solution

1
2 2 2
sw® =0, 59():12T4(1—p),
1 /1—4p
2 4
577():%( T Qs (1—2p)>, (3.53)
1 [1+3p*>—6p! p*
ox? = —— [ — L — 4301 —2pY)1 :
X 0 7 + 3( p)ong2

This solution obeys the boundary conditions (3.14) at the conformal boundary and is

also regular at the black hole horizon.

The thermodynamic quantities (3.16)) become in this limit

Q 2mr3 4 ( ~9
P 2k212% 7 ° KEL3 ' ‘ 8kZL5 @)
0 . ) (3.54)
. T = (24 . 2) .
M=o 2472 @

One can check explicitly that the relation (3.18)) is satisfied. It is also useful to note

that the values 7, and x;, of n and x at the horizon are

~ log8 — 2 ~
Nh = 10 Q2 ) Xh = —TQz . (3-55)
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Chapter 4

Membranes with topological charge

This is a lightly edited version of work done with Igor R. Klebanov and Silviu S. Pufu,
and published in [88].

If the second Betti number b, of a Sasaki-Einstein manifold Y7 does not vanish,
then M-theory on AdS; x Y7 possesses “topological” U(1)” gauge symmetry. The
corresponding Abelian gauge fields come from three-form fluctuations with one index
in AdS, and the other two in Y7. We find black membrane solutions carrying
one of these U(1) charges. In the zero temperature limit, our solutions interpolate
between AdS,; x Y7 in the UV and AdS, x R? x squashed Y7 in the IR. In fact,
the AdS; x R? x squashed Y7 background is by itself a solution of the supergravity
equations of motion. These solutions do not appear to preserve any supersymmetry.
We search for their possible instabilities and do not find any. We also discuss the
meaning of our charged membrane backgrounds in a dual quiver Chern-Simons gauge
theory with a global U(1) charge density. Finally, we present a simple analytic solution
which has the same IR but different UV behavior. We reduce this solution to type
ITA string theory, and perform T-duality to type IIB. The type IIB metric turns out
to be a product of the squashed Y7 and the extremal BTZ black hole. We discuss an

interpretation of this type IIB background in terms of the (1 + 1)-dimensional CFT
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on D3-branes partially wrapped over the squashed Y.

4.1 Introduction

As was emphasized in sections and [3.1], charged black hole solutions embedded
in string or M theory are often thermodynamically disfavored at small temperatures.
While a low-temperature phase transition can be very interesting for applications to
superfluidity or superconductivity, for other classes of applications it is desirable that
the symmetric phase be stable down to very low (or even vanishing) temperature
[57,/71H73,89]. If so, then there exists a quantum critical phase described by the
AdSy x RP extremal near-horizon region of the RNAdS background.

In chapter [3, a black 3-brane charged under a topological “baryonic” charge was
studied. This is a solution asymptotic to AdSs x T, with the topological charge
carried by D3 branes wrapped around the nontrivial three-cycle of T4t In general,
for backgrounds of the form AdS, 2 x Y, in addition to the isometries of the Sasaki-
Einstein space Y, there may exist some non-R U(1) symmetries. The corresponding
gauge fields in AdS,;, arise due to the non-trivial topology of Y. The number of
such topological U(1) symmetries is given by the second Betti number, by, of the
internal space Y. In general, the nth Betti number b,, equals the number of linearly
independent harmonic n-forms on the manifold Y, each of these forms representing a
generator of the de Rham cohomology H"(Y). In the 10d examples from type I11B
supergravity, the space Y is five-dimensional and by the Poincaré duality by = b3; in
the 11d examples, the space Y is seven-dimensional, and the Poincaré duality implies
by = bs.

While the string theory solution of chapter |3 passes many stability checks, it suffers
from “Fermi seasickness”, an instability due to nucleation of spacetime filling D3

branes outside the horizon. This chapter will look at a similar construction in M
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theory that avoids this instability.

Analogously to the solution studied in chapter [3, the connection between topology
and supergravity fluctuations comes about as follows [24]30,90]. In AdS,» X Y
compactifications, harmonic forms on Y are all that is needed to construct a consistent
linearized set of fluctuations that includes massless gauge fields in AdS, 2, one gauge
field for each of the linearly independent harmonic forms. Consider the case of
M-theory Freund-Rubin compactifications of the form AdS; x Y7, where Y7 is a
seven-dimensional Sasaki-Einstein manifold with by > 0. Denoting by wéi) the by (= b5)
linearly independent harmonic two-forms on Y7 and by wéi) their seven-dimensional
Hodge duals (which in this case are harmonic five-forms on Y7), one can consider the

following consistent set of linearized fluctuations of eleven-dimensional supergravity:
b ‘ b .
0A; =3 AV AW A=Y ADAW? . dAD = x,dAD ) (4)
i=1 i=1

where A® and A® are one-forms in AdS,. The duality relation dAg = *dA; requires
that the fields A® and A® should be related to each other through dA® = x,dA®,
and that wéi) and wéi) should be harmonic forms. The relation dA® = x,dA®
implies that both A® and A® satisfy the equation of motion for a gauge field,
dxy dAD = d %, dA® = 0. For each 1, there are two different boundary conditions in
AdS, which correspond to treating either A® or A® as the fundamental variable [91,92].
The two possible conserved charges, electric and magnetic, map in the dual gauge
theory to global charge density and magnetic field, respectively [58,/93]. For our
purposes, this choice corresponds to allowing either the wrapped M2-branes or the
wrapped Mb5-branes. We will comment on the dual field theory interpretation of the
AdS, x Y7 backgrounds, and the meaning of this choice, in section . The above
discussion shows that in the M-theory case the supergravity fluctuation spectrum

around AdS,; x Y7 contains by independent gauge fields whose existence relies on the
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existence of harmonic two- and five-forms on Y7.

In this chapter we will consider Sasaki-Einstein spaces Y7 which are principal U(1)
bundles over a direct product of two Kéahler-Einstein spaces, V; and V5. In this case,
there exists a universal harmonic two-form wy (or, equivalently, a universal harmonic
five-form ws) that we exhibit in the next section. We will construct two-brane solutions
electrically charged under the corresponding gauge field A coming from §As[] As
in the solutions of [70], several warp factor functions enter our consistent non-linear
ansatz. We derive a system of coupled ODEs for these functions and solve them
numerically to find the backgrounds for various values of T'/u. The warp factors turn
out to stabilize to finite nonzero values at the horizon in the zero-temperature limit,
producing an AdS; x R? x squashed Y7 throat region that is also a solution to 11-d
supergravity. We find numerically the extremal background interpolating between this
throat region in the IR and AdS,; x Y7 in the UV. We also find an analytic solution
with the same IR but different UV behavior. A possible instability associated with
condensation of charged fields would manifest itself in wrapped probe M2-branes being
repelled from the horizon. However, using the M2-brane world volume action, we
show quite generally that such an instability does not occur. We make some simple
checks of stability against condensation of neutral scalar fields, and we again find no
instabilities. We also study the potential for a probe space-time filling M2-brane and
prove that it vanishes at T' = 0. Hence, there is no brane nucleation instability, and
our solution seems to be a good candidate for embedding the AdS, x R? IR behavior
into M-theory.

The rest of the chapter is organized as follows. In section [£.2] we describe the eleven-
dimensional ansatz and construct the charged black membranes numerically at nonzero
temperature and chemical potential. In section [4.3| we find the zero-temperature limit

of our backgrounds and show that the AdS; x R? x squashed Y7 throat by itself

! An ansatz for magnetically charged solutions was set up in |70], but seems to lead to backgrounds
singular in the IR.
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satisfies the 11-d supergravity equations of motion. We also present a similar analytic
solution with different large r behavior. In section [4.4] we compute the potential
for the charged objects in the theory—the M2-branes. In section we discuss an
interpretation of our results in the dual quiver Chern-Simons gauge theories. The
wrapped M2-branes are dual to operators containing non-diagonal magnetic fluxes,
and we comment on their fractional statistics. In section [4.6| we use string dualities to
map our analytic solution to one in type IIB theory, and find that the type IIB metric
is a product of the squashed Y” and the extremal BTZ black hole (the one that has
the minimum mass for a given angular momentum in AdSs) [94,95]. The Appendices

contain some further stability checks and constructions of the two-cycles in Y7,

4.2 A universal consistent truncation

Let us consider a seven-dimensional Einstein space Y7 that can be written as a U(1)
fiber bundle over a direct product of two Kéahler-Einstein spaces, V; and V5. The
spaces Y7, Vi, and V;, could be manifolds or, more generally, orbifolds. The product
Vi x V5 must describe a space of real dimension six, or complex dimension three, so
without loss of generality we assume that V; and V, have complex dimensions two
and one, respectively. In section we first show explicitly that all the spaces Y7
with the property mentioned above admit a universal harmonic two-form which can
be used to construct a massless gauge field in AdS, (4.1), and then give a non-linear
consistent truncation of eleven-dimensional supergravity that allows us to construct
black membrane solutions with topological charge. In section 4.2.2| we give examples
of spaces Y. Section is concerned with examining the thermodynamic properties
of the charged black branes at nonzero temperature and charge density. Lastly, in

section we construct these black branes numerically.
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4.2.1 The eleven-dimensional background

Quite generally, the Einstein metric on the space Y7 can be written as

dsy = dsy, +dsy, + (dy + o1 + o9)° (4.2)

where each of the connection one-forms o; is a pull-back of a locally-defined one-form
on V;. It is convenient to normalize this metric so that in a vielbein basis Ry, = 60,4.

The Einstein condition for Y7 implies both that

dO‘i = 2&)7;, (43)

where w; is the Kéahler form on V;, and that the Einstein metric on V; should be
normalized so that the curvature two-form R; satisfies R; = 8w;. In this normalization,
the range of 1 depends on the first Chern class of the fibration; see Appendix for
more details.

The spaces Y7 admit a universal harmonic two-form given by

W= w; — 2ws. (4.4)

To see that this form is harmonic, it is helpful to pass to a vielbein basis where, in a
small enough coordinate patch, wy = e; Aea+ezAey, wy = esA\eg, and dip+o1+09 = e7.
In this basis, the volume form on Y7 is just voly = e; Aes Aes Aeg Aes Aeg Aer. The

Hodge dual of w can then be computed to be

sy w=wy A (we —wi) A (dp + 01+ 02) . (4.5)

Using (4.3)), (4.5)), and the fact that both w; and ws are closed, one can show that
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dw = d *y w =0, so w is indeed harmonic. Note also that J A %y w = 0, where

J = wi + wy (4.6)

is the Kahler form on V; x V5.
One can use the space Y7 and w to construct a charged black hole solution to
the eleven-dimensional supergravity equations of motion as follows. The eleven-

dimensional metric is a warped product of a non-compact four-dimensional space M

and a squashed version of (4.2)):

ds® = e ™/2dsy, +AL%eX [eMdsy, + ePdsy, + e TR (d + oy + 00)?] (A7)

where the scalar fields y, 7;, and 7, are functions only of the coordinates on M. In
fact, we will only look for static solutions that are rotationally symmetric in two of

the four non-compact directions, and we write the metric on M in the form

2 cwge T 1y2 212 dr? 4
dsy, = —ge dt+ﬁ[(dx)+(dx)]+7 (4.8)
where g, w, x, 11, and 7, depend only on 7.
In addition to the metric, we need to specify the four-form Fj:
3 = g€ 2 72X 2 2 4.9
F, = —ze 2 Xyoly — 8QL —2dt Adr A (e Mw, — 2e ’72w2) , (4.9)
r

where () is a constant related to the charge of the black hole, and the orientation of

M is given by

2
voly = %e‘éwdt Adzt A da? A dr. (4.10)
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Its Hodge dual, F7, has the form

F; = 384 LSoly + 64 QL*dx* A da® A (xyw), (4.11)

with *yw defined as in . When @) is small, the 11-d equations of motion imply that
N1, 12, and y are of order O(Q?), so to linear order in @, equations f take
the form with the gauge fields A and A having only electric and only magnetic
components, respectively.

The effective one-dimensional Lagrangian describing the consistent truncation

€S- s

r? _.[63g g 29 2 2g
L= ge 2 [ X+ 5200 +5) + 92 +m)° + —w' =~ = S+ Vo + Vi,
(4.12)
where
AL? s 2 2 2
Vo = —e 2 (e +2e7) Q7
Vs = ie’%x - ie’%X (267 +e7™) + L672(2’71“72)’%)‘ [2e77M 4 777 .
*2L2 L? 217
(4.13)
This Lagrangian needs to be supplemented by the zero-energy constraint
2 63 1 2 2
;g' —g gxa + 5(277’12 +0%) + (20) +nh)? + ;w’ 3| T Vo+Vi=0. (4.14)

The scalar potential V, agrees with the one derived in [96] for the particular case

where the Sasaki-Einstein manifold Y7 is Qb1+,
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4.2.2 Examples

Examples of spaces Y7 satisfying the requirements of the previous section are some
regular Sasaki-Einstein manifolds and orbifolds thereof. A Sasaki-Einstein manifold Y
is a compact Riemannian manifold whose metric cone is Calabi-Yau. Such a manifold
is called regular if the fibers all close and have the same length. A regular Sasaki-
Einstein manifold can be described as a principal U(1) bundle over a Kéhler-Einstein
base V', which in general cannot be written as a product V; x V5 as in the previous
section [97].

The best known regular Sasaki-Einstein manifolds in seven dimensions are [97]:
I. Regular SE; where the base V' cannot be written as a product V; x Vs:

e S7, which is a U(1) fibration over CP?.
e NOLO which is a U(1) fibration over the flag manifold F(1,2).

e V5o, which is a U(1) fibration over the Grassmanian manifold Gf ».
II. Regular SE7; where V = V| x Vj:

e QU1 which is a U(1) fibration over CP' x CP' x CP"'.

e (Q**2 which is a Z; orbifold of Q"' and a U(1) fibration over CP* x CP* x
CP! also. It differs from Q" in that the length of the fiber is shorter by a
factor of two.

e MU which is a U(1) fibration over CP? x CP'.

e Spaces which we will call P, that are appropriate U(1) fibrations over
dP, x CP!, 3 < n < 8, where dP, is the nth del Pezzo surface constructed

by blowing up CP? at n generic points.

From now on we will only be interested in the second group of examples listed above

for which the base of the U(1) fibration can be written as a direct product of two
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Kahler-Einstein manifolds. Indeed, V' = V; x V5, was a necessary ingredient for
constructing the consistent truncation of eleven-dimensional supergravity presented in
section 4.2.1]

In addition to the regular Sasaki-Einstein spaces we just described, one can also
consider their orbifolds. While the regular Sasaki-Einstein spaces under all preserve

eight supercharges, their orbifolds generically break all SUSY.

4.2.3 Thermodynamics
Boundary conditions

Before we calculate thermodynamic quantities, we need to discuss the boundary

conditions one should impose on the solutions to the equations of motion following

from ([4.12)-(4.14)). At large r, these solutions should asymptote to AdS,; x Y7, so

w— 0, x—0, m — 0, ne — 0,

v (4.15)

9=mt O(L/r).

Generically, there will be an event horizon at some r = r;, where g vanishes. The
remaining boundary conditions come from requiring regularity of all the fields at
=T

Let us examine the boundary conditions more carefully. From the asymptotic
form of the equations at large r we find that there is only one possible behavior for x
consistent with : X ~ 1/r®. The gauge theory operator dual to y has conformal
dimension A, = 6, because in general the bulk field dual to a scalar operator of
dimension A behaves at large r as r~* if no sources for that operator are turned on. A

similar asymptotic analysis shows that the fields 7, o break up into the combinations

2m + 1o T M — 17
A ) )\ = 4.16
Ly . (4.16)

ﬁ:
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that have definite scaling dimensions at large . While for 7 there is only one possible
large r behavior consistent with , n ~ 1/r*, corresponding to A; = 4, A
generically behaves as a linear combination of 1/7 and 1/r? with arbitrary coefficients,
both of these behaviors being consistent with AdS,; x Y7 asymptotics. One then has
a choice of boundary conditions where either A; = 1 and the coefficient of 1/r? is
required to vanish, or A5 = 2 and the coefficient of 1/r is required to vanish [30]. Here
we choose the latter boundary condition on A. With this choice, the equations obtained
from the Lagrangian subject to the zero-energy constraint and the other
boundary conditions described above can be solved by a power series expansion at

large 7. The first few terms in the expansion are given below:

w=O(L"/r"),

g= 2—22 + % +O(L2/r?),

= 22t + o), (117
m = Aff — ;154 (2% —3)3) log% - f—j (%Cf + 774) + O(L°/r%),

Ny = —2>\sz2 - ;lé;i (2Q% — 3X3) log % + f—j (gQQ + 774) +O(L? 7).

All higher order terms are determined in terms of g1, xg, M1, A2, and Q.

The potential conjugate to ()

Quite generally, a global U(1) symmetry in the boundary field theory corresponds
to an Abelian gauge symmetry in the bulk. The charge density and its conjugate
chemical potential in the boundary theory can be computed from the corresponding
bulk gauge field. However, in (4.9) we did not write down a more general formula
in terms of a bulk gauge field as in , but instead we “solved” for the electric
component of this gauge field in terms of an integration constant () from the very

beginning. The reason why we did this lies in the intricacies of non-linear consistent
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truncations: equation can probably be generalized to a gauge field with arbitrary
components, but one would need to include several other supergravity fields that
were consistently set to zero in f. The reason why in the discussion around
equation this was not an issue is that at the linearized level in the gauge field, it
is consistent to set these additional supergravity fields to zero.

A generalization of is still possible without having to turn on other supergrav-
ity fields: one can find the nonlinear generalization of the time-component of the gauge
field appearing in (4.1]). To find it, one promotes @ to a canonical momentum in the
Hamiltonian associated with the 1-d Lagrangian . Call the canonically conjugate
variable ®. The equation of motion satisfied by ® can be found from Hamilton’s

OH

equation, ' = 30 which gives

o — L du-ix (e% v 2e2"2) ~0. (4.18)

Plugging @) from eq. (4.18) in eq. (4.9), we get

3 _m L?
Fy= = e voly = @ rmmmdt A dr A (€7 = 2670, (4.19)

One can explicitly check that this still leads to a consistent truncation. The equation
of motion for ® is imposed by the equation of motion for Fj.

It is instructive to decompose the form appearing in (4.19)) in terms of w and J,

2m 212 2m _ p2n2
e?Mwy — 2wy = e w + 2(e ‘ >J, (4.20)
3 3
and rewrite eq. (4.19) as
- 3 _21X/2 /L3 /2L3 627)1 - 62772
F, = —7¢ VolM—CD?dt/\dr/\w—CD 3 oo +262mdt/\dr/\J . (4.21)
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This shows that ® is the Coulomb potential for the topological charge density; for
large r it behaves as —24Q)/r. With the boundary conditions described in eq. (4.17)),
the last term in Fy, which contains J, falls off faster than 1/r% and therefore does not

correspond to a charge density.

Thermodynamic quantities

Thermodynamic quantities in the boundary theory such as the energy density e,
entropy density s, temperature 7', U(1) charge density p, and chemical potential p

can be calculated from the following formulae

gre" 2" 2mr? T g'(rp)e 2%n
= T o7 > S = 272 - ;
0 k3L kiL 4m (4.22)
— = Py — P
P 2’@21 ) 1% 0 h >

where the subscript “A” represents the value of the corresponding field at the horizon,
while the subscript “0” represents the value at the conformal boundary.

There is a simple relation between these quantities,

2
e=3(T's+pp), (4.23)

which holds in any (2 + 1)-dimensional CFT and can be proven from combining the
extensivity relation € = T's — p + up with the tracelessness of the stress-energy tensor
e = 2p. One can also prove (4.23)) solely from the gravity side by noticing that the

“current”

ot (L2 1, erwtax ,
) =1 (7"_26 g) —8 e2m + 2e2n2 ¢e (4.24)

is conserved in the sense that it satisfies dj/0r = 0. One can check that this current is

conserved using the equations of motion following from the effective one-dimensional
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Lagrangian (4.12)). Evaluated at the horizon, eq. (4.24]) yields

Jn = —2K3Ppp+2K3Ts. (4.25)

Evaluated at the conformal boundary, it gives

jo = —2K3 ®op + KT €. (4.26)

The equality of the above two relations enforced by the conservation equation yields

precisely (4.23)).

4.2.4 Numerics at nonzero temperature

For general values of the parameters, it is unlikely that there are analytic solutions
to the equations of motion resulting from the Lagrangian . We thus resort to
numerical work. We employ a standard shooting technique where we seed the numerical
integrator at large r, and integrate towards the horizon. The initial conditions are
then tuned until a solution that is regular at the horizon is found.

The boundary conditions for solving the equations of motion were described in
section [4.2.3] A series expansion around r = oo is used to determine the initial
conditions for the numerical integration. The first terms in this expansion are given in
eq. . At fixed @), there are four free parameters, g1, g, 74, and As. One of these
parameters can be eliminated by observing that the equations of motion are invariant

under the following symmetry transformation:

g — a’g, r—ar, t— o 't Z— a7, Q — *Q, (4.27)

which can be used to set g = —1. The parameters xg, 74, and Ay can be fixed by

imposing the regularity conditions at the horizon, resulting in one solution for every
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value of (). By varying the dimensionless parameter () we can probe the boundary field
theory at various temperatures, or more precisely, at various values of the dimensionless
parameter T'/u. The 1-d Lagrangian is invariant under ) — —@), so for each
solution with a given value of () one can find another solution by replacing ) by —@Q).
Without loss of generality, we restrict to the case () > 0.

Our numerical results suggest that nothing drastic happens as the temperature
approaches zero. In fact, the scalars x, 7, and 7y seem to approach fairly small values
at low temperatures: see figure 4.1, These values will be computed analytically in
the next section. The bottom right plot in this figure shows that the horizon value
of the eleven-dimensional Riemann tensor squared also stays bounded from above as
the temperature is decreased. The lack of divergences means that one can trust the
supergravity approximation all the way down to zero temperature.

The thermodynamics of our solutions is similar to that of four-dimensional RNAdS
black holes. For example, for both RNAdS and our backgrounds the entropy density
approaches a nonzero value at zero temperature (see figure . Similarly, the specific
heat at constant chemical potential grows linearly with temperature at low 7', as can
be seen from figure [£.3] In the next section, we will in fact prove that at 7 = 0 the

near-horizon four-dimensional geometry is AdS; x R?, as is also the case for RNAdS.

4.3 Extremal solutions

In general, the equations of motion following from admit black hole solutions
with an event horizon at r = r,. We expect there to exist solutions where the horizon
is extremal, which corresponds to having vanishing temperature in the dual field
theory. One of the simplest scenarios is that at extremality 7, > 0, the functions
X, M1, M2, and w approach finite values at r = 7, and g behaves as (r — r;,)? and

thus ¢'(r,) = 0, giving zero temperature by eq. (4.22). This scenario describes an
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Figure 4.1: The horizon values of the scalars 7, 9, and x and of the squared Riemann
tensor as a function of T'/u. The expected zero-temperature values that follow from
are indicated by red dashed lines. The fact that none of these quantities diverge
as T' — 0 shows that the supergravity approximation continues to hold down to
arbitrarily small temperatures.
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Figure 4.2: The dependence of the ratio of entropy density to charge density on T'/p.
The dashed line indicates the value s/p = 47w /Q ~ 14.75 expected from the extremal
solution of section 4.3l
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Figure 4.3: The dependence of the specific heat at constant chemical potential on 7'/ p.
The dashed line in the plot on the left is a best fit line, showing the linear behavior of
the specific heat at low temperatures.

extremal horizon which is AdS, x R? x squashed Y7, the amount of squashing in the
internal space Y7 depending on the values of the scalars at the horizon. At extremality,
g(rn) = ¢ (rp) = 0, and the equations of motion following from the Lagrangian (4.12])
together with the zero-energy constraint (4.14]) imply that an AdSs x R? x squashed Y7

horizon is possible only if the total potential V' = Vi 4+ Vi (see eq. (4.13))) satisfies

av oV
V:a :a—zo at’r’:’f‘h_ (428)
i X
These equations are solved by
1 1 5) 1
m=zlogd, p=clogd—log2,  x=_log3—log2,  (4.29)
as well as
2 1y " 4.30
Q::I:S—%ﬁz:lzo.é%wﬁ. (4.30)

We will see shortly that the AdSy x R? x squashed Y7 space is in fact an exact solution

to the 11-d supergravity equations of motion for an appropriate choice of the four-form

flux F4.
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For simplicity in the rest of this section we set L = r, = 1. This can be
achieved by using an appropriate choice of units in the bulk to set L = 1, and then
employing the symmetry to move 7, to 1. In this section we will describe
three solutions to 11-d SUGRA: In section [4.3.1] we start by describing an analytical
solution with seemingly unconventional UV behavior and AdS, x R? x squashed Y7 IR
asymptotics; in Sectionwe recover the analytical solution AdS, xR? xsquashed Y7
mentioned above as a scaling limit of the solution from section [4.3.1} lastly, in
section we present a numerical solution with AdS; x Y7 UV asymptotics and

AdS5 x R? x squashed Y7 behavior in the IR.

4.3.1 A zero-temperature analytical solution

The 11-d SUGRA equations of motion admit the following analytical solution with

extremal AdSs x R? x squashed Y7 horizon:

\/67“2?2 2%

ds* = —— el — L g2 ¢ Y20 _gp2 a7
S 336 r% + (7“4—1)2 T +3%r§ T
1 4| oo 1o, 4 5
+ 223215 |dsy, + 5dsv2 + g(d¢ + o1+ 09)7| (4.31)
2% 16
Iy Tvoly — 3 Zem 2R3t A dr A (2w; — wy) .

2% (rt — 1)2 2
g:M’ w:w0—1410g7“, ¢:®h+4\/j6_éwo(7“4_1)7
37p12 3 (4.32)
L 1oe3 L1003~ log2 L 3iirt o) 2
nl—;og , 772—§0g 0g <, X—gog PER T 3%

which shows quite explicitly that in the IR the scalars stabilize to the values calculated
above in eq. (4.29)), and the charge @ is the same as in (4.30)). There is, of course,

another solution to the equations of motion that differs from the one above in the sign

of Q.
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From a field theory perspective, the presence of the AdS, factor in the IR geometry
means that the effective IR field theory can be thought of as a (0+1)-dimensional quan-
tum mechanics, which can perhaps arise from a chiral sector of a (1 + 1)-dimensional
CF'T. The effective dimensions of various operators are related to the IR behavior of
supergravity fluctuations around the background : a supergravity field dual to
an operator O of dimension Ag has two linearly independent solutions, one behaving
as (r — 1)”® and one as (r — 1)}72® as r — 1. The coefficient of the first of these
two solutions corresponds to a source for O, while the coefficient of the second one
corresponds to an expectation value.

Some of the simplest operators one can study correspond to fluctuations of the
fields already present in the consistent truncation (4.12)). It turns out that the
linearized equations for the perturbations (§x, dn1, 0n2, g, dw) can be solved exactly.

The solution is

o = ¢y, (1t —1)%, 6 = ¢, (1t —1)%, Sx = ¢, (r* = 1)~
= 91/4 ) ; (4.33)
dw = —214dy, dg = ~ S oy (rt —1)%*2
where there are six possible choices for «,
1 69
=——4 — 4.34

aq 9 6 ) ( 3 a)
1 1

a=—3 + 6\/ 66 — 3V 73, (4.34b)
1 1

The coefficients ¢; are not independent, but are related by the following equations

. _3& 1502 + 15 — 28 o 3& 126a* + 25202 — 177a% — 303« + 140
m 4 602 4+6a—T7 ) 602 + 6a — 7 ‘
(4.35)

These perturbations correspond to three irrelevant operators in the dual quantum
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mechanics of dimensions

1 69 1 1 1 1
AIR,lZE—I-%, AIR,2:§+6 66 — 373, AIR,3:§+6 66 + 3v/73.
(4.36)

Solutions with different UV behavior for the functions appearing in the 11-d metric
([4.7) (in particular the one with AdSy x Y7 UV asymptotics we will discuss) generate
in the IR sources for these operators. Some fluctuations of 11-d supergravity not

included in the consistent ansatz (4.12)) are given in Appendix [4.B]

4.3.2 The IR “attractor” as a scaling limit

The AdS; x R? x squashed Y7 IR asymptotics of the exact solution described in the
previous section represent in fact another exact solution to the 11-d SUGRA equations
of motion. Indeed, the AdS, x R? x squashed Y7 “attractor” arises as a scaling limit
of where one sends  — 1+ ye and ¢t — t/e and then takes the limit ¢ — 0. The

background obtained in this limit is AdSs x R? x squashed Y7 supported by four-form

Aux:
27 37 1 i
ds? = — eyt + Q—i?dyz + 3—§df2
2 4
3a1 2 Lo 4 2
+2232 |dsy, + §d8‘/2 + g(dw + o1+ 09)7 (4.37)
27 16 [2
F, = —3—17167§w0dt Adz' A dz® A dy — 3 ge’ﬁwodt Ady N (2w — wy) .
4

Note that this solution is not of the form f because the coefficient of dz? in
(4.8) cannot be set to a constant. Perturbations around this solution can be computed
directly from perturbing the 11-d background , or can be obtained by taking
the scaling limit of perturbations around the background such as .
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4.3.3 A numerical solution with AdS; x Y7 asymptotics

Three of the six linearly independent perturbations described in section [£.3.1], namely
the ones corresponding to sources for the operators of dimensions , are well-
behaved at the horizon. These three integration constants allow us, at least at the
linearized level, to adjust to zero the asymptotic values of the scalars at large r so
that our solutions asymptote to AdS, x Y7. Of course, there is no guarantee that the
same holds true for the exact equations, but we can check numerically that this is
indeed the case. As before, we use a standard shooting technique, this time seeding
the numerical integrator very close to the horizon. We use the linearized perturbations
as a seed, and tweak the coefficients of the three linearly independent perturbations
until we find a solution that obeys the desired boundary conditions at large r.

Plots showing the behavior of the scalars as a function of radial coordinate are
given in figure We thus see that there exists an extremal black hole solution
that interpolates between the attractor solution of the previous section in the IR and
AdS,; x Y7 in the UV. As a consistency check, we verified that our zero-temperature
numerics are consistent with s/p = 47/Q ~ 14.75 and R}, spea R3¢ = 656/3 ~ 218.67,
which can be calculated directly from the attractor solution , as these quantities
are insensitive to the UV asymptotics. These values are also consistent with the

finite-temperature numerics that we discussed in section [.2.4} see figures 4.1 and [£.2]

4.4 The potential for probe M2-branes

There are two types of M2-branes present in our construction: the M2-branes filling the
(t,zt, 2%) directions, which are responsible for generating the asymptotic AdS; x Y7
space, and M2-branes wrapped over a two-cycle in the internal space which are
responsible for the topological charge of the membrane solution. We will henceforth

refer to the former type of branes as space-time filling, and to the latter as wrapped.
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Figure 4.4: The dependence of the scalars 7y, 12, and x on the radial variable r at
zero temperature. We see that the scalars tend to zero at the boundary since our
solution asymptotes to AdS,; x Y7 in the UV.
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One might wonder whether there is an instability where any of these branes tunnel
out to infinity |75]76.|78]. We investigate this question by computing the potential
for a probe brane as a function of the AdS radial variable . The action for a probe

brane is

SMQ = —TMQ/dgzU\/ _G:i:TMQ/A:J), (438)

where 7)o is the M2-brane tension,

27
T =
M2 (27r€p)3 Y

(4.39)

and Aj is the three-form gauge potential for Fy = dA3. We are primarily interested in
the sign such that the interaction with As is repulsive, i.e. when the M2-brane has the
same charge as the stack that creates our background. Then the force on the brane
vanishes in AdS; x Y7. The opposite sign corresponds to a probe anti M2-brane, for
which the force is attractive at infinity.

For static embeddings, one can define a potential V' for the probe branes through

Sm:—/Vﬁ. (4.40)

Our backgrounds are metastable if the potential is smaller at some r > rj, than at the

horizon.
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4.4.1 Probe space-time filling M2-branes

Since the volume of these branes is infinite, we will look at their potential energy per

unit area. We thus write

Sye = — /dt Pz [vg(r) + ve(r)] (4.41)

where vy(r) and v.(r) come from the first and second terms in (4.38)), respectively. It

is straightforward to calculate these contributions using eq. (4.7). We have

0p(r) = Taar®/Ge RN, ul(r) = Fnarle BEX, (442)

and we can choose, for example, v.(r,) = 0. Here and in the rest of this section we
set L = 1. The minus sign in v.(r) corresponds to probe branes, while the plus sign
corresponds to probe anti-branes. The probe anti-branes are always attracted towards
the horizon, so we will only focus on the probe branes. In figure we have plotted
the potential vy (1) = vy(r) + ve(r) at various temperatures, as a function of r. We
see that the potential never dips below the horizon value, so the background is stable
with respect to tunneling of space-time filling M2-branes.

One can also evaluate the potential vy (7) for the space-time filling branes on the
analytical extremal solution . In this case, the potential vanishes identically.
From the plots in figure [4.5] it looks like the space-time filling M2-brane potential
also vanishes identically in the extremal limit of the solution of section that
asymptotes to AdS,; x Y7, so one might wonder whether this result is insensitive to
the UV asymptotics of the solution. Indeed, one can prove this result starting with

the observation that the force per unit area, fior = —vy,,, satisfies the following first
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Figure 4.5: The potential energy per unit area of a probe space-time filling M2-brane
as a function of the AdS radial coordinate r, at various temperatures. We worked in a
gauge where the horizon value of the potential vanishes.

order differential equation:

3e~ 1 X g 21y

-+
JI 2 4

ftlot +

] ftot =0. (443)

Since this equation is linear, its solutions depend on one integration constant that

acts as a multiplicative factor. Near the extremal horizon, (4.32) and (4.33]) give

demax g 21y

2
NG 2g 4 r—1

+ subleading , (4.44)

SO

frot = ¢ [(r — 1)* 4 subleading] . (4.45)

The subleading terms in the above two equations are sensitive to the UV asymptotics,
but the leading term is not. Since v, vanishes identically when evaluated on the
leading behavior , it must be that ¢ = 0. Therefore, the potential for the space-
time filling M2-branes is exactly flat for any solution that connects to the solution

(4.32)) in the IR. It is worth noting that even though the exact AdSy x R? x squashed Y’
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solution (4.37]) cannot be written in the gauge —, one can also show that the
potential for space-time filling branes is exactly flat in this case too. The flatness
of the potential follows from taking a scaling limit of the exact solution as
explained at the beginning of section 4.3.2

The existence of a flat potential for the space-time filling branes is reminiscent of
supersymmetric solutions, so one might wonder whether our background preserves

any supersymmetry. In a supersymmetric background, the gravitino variation

1

41

1
0,e=V —
ne “€+12<

1
Fypro D, L7PA — EFWMF””A) € (4.46)
vanishes identically. A necessary condition for this to happen is that

[0,,0)e =0, (4.47)

which is a linear system of algebraic equations. One can check that this system has

no non-trivial solutions for both the backgrounds (4.31]) and (4.37)).

4.4.2 Probe wrapped M2-branes

Let us consider a static M2-brane embedding where the brane wraps a topologically
non-trivial two-dimensional cycle C in the internal space and sits at some fixed values
of r and Z. By the internal space we mean the squashed version Y7 of Y7 appearing

in (4.7) with the metric

ds%, = eX [emds%/1 + eﬁ2ds%/2 + 6_4771_2772<d77/) oy + 02)2} . (4.48)

For a fixed value of r at which the scalars x, 11, and 7y don’t diverge, the topology
of Y7 is the same as that of Y7, and there is a one-to-one correspondence between

surfaces in Y7 and surfaces in Y7. So when we say that a brane wraps a cycle C in
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Y7, we might as well be thinking about the corresponding cycle in Y7, and indeed
we will not be careful about this distinction in the rest of this section unless there is

potential for confusion.

The probe-brane action (4.38]) takes the form
Sopp = — / dt [VE(r) + VE@)] | (4.49)

where VE(r) and VE(r) come from the first and second terms in ([4.38)), respectively.
We will call V(r) the gravitational potential and V,(r) the electrostatic potential
for such a brane. Stable brane wrappings are of course those that minimize the total
potential V¢ (r) = Vi (r) + VE(r).

A simple way to construct non-trivial two-cycles in Y7 is to start with a two-cycle
in the base V = V; x V5, and lift it to Y7. However, not every two-cycle in the base can
be lifted to a two-cycle in the total space. The reason for this restriction is that when
lifting a two-cycle, one needs to specify what the fiber angle should be at all points
on that cycle, and such an assignment may not be consistent because of topological
reasons. We include a more technical discussion of these issues in appendix [4.C.1}

The upshot is that any (well-defined) two-cycle C in Y7 satisfies

/C J=0, (4.50)

where J = w; + wy, as in (4.6). One way to understand this condition is to note that
J is a closed form in Y7 because it obeys dey, = 2.J, where e, = dip 4+ 01 + 02 is a
globally-defined one-form on Y7

Using (4.21)) and the fact that fc J =0, one can write the electrostatic potential

2Note that o1 + o3 by itself is not a globally defined one-form, so the condition (4.50) does not
hold for two-cycles in V7 x V5.
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1
VE(r) = :FgTMZq)/(Wl — 2wp) = iTM2<I>/wz. (4.51)
c c

This term depends only on the homology class of C in Hy(Y7;Z), so in order to find
the stable wrappings for a given homology class Hy(Y";Z) one has to minimize only

the gravitational potential Vi (r). Two questions arise:

(I) For a static M2-brane embedding at fixed r, what cycles C are stable in the
sense that they minimize V¢, (r), at least compared to neighboring cycles? Since
VE(r) is topological and Vgc(r) is proportional to the volume (or more correctly,
area) of C computed using the induced metric from Y7, this problem reduces to

finding the minimal volume cycles of Y7.

ow does the minimal value o r) Irom epend on r! Are the branes
IT) How d h inimal val th‘étf () d d ? Are the b

repelled from the black hole horizon, or do they tend to fall into the black hole?

The first question is interesting in its own right, but may be hard to answer
in general, especially since there are Sasaki-Einstein manifolds such as the spaces
Py, described in section for which the metric is not known explicitly. We will
therefore content ourselves with finding a lower bound on the volumes of the cycles C
of Y7 in the cases where Y7 is a regular Sasaki-Einstein manifold. Such a bound can

be found by using calibrations, as we discuss in appendix [£.C.2l This bound is

/C(.)Q.
C

For an arbitrary homology class in Hg(fﬂ; Z), this inequality may not be saturated by

Vol(C) > eX (e™ + €e™)

(4.52)

any embedded surfaces in that class. However, as we now explain, the bound (4.52)) is
restrictive enough to show that wrapped M2-branes do not condense.

Equation (4.52)) can be used to find a lower bound on the gravitational potential
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Figure 4.6: The bound for the potential for probe M2-branes wrapping a
two-cycle C, expressed as multiples of TMQ‘ /. c wg‘ and normalized so that it vanishes at
the horizon. Each solid curve corresponds to a different temperature. The dashed line
represents the analytic approximation @, valid close to the extremal horizon. This

bound is saturated for the cycles (4.57) and (.61) in M1 and QUML) respectively.

for a wrapped M2-brane:

VE(r) = 4TM26_£X\/56_%V01(C) > 4TM2€_%X\/§€_% (e™ 4 €™)

g

(4.53)

C

Combining this equation with the expression for the electrostatic potential (4.51f), we

find that the total potential satisfies

‘/tgt 2 Vijcound’ Vbcound = Tm2 [46*%X\/§€*% (6771 + €n2> - (I):| (454)

C

From eq. (4.53)) it also follows that at the horizon V< (ry) = V€ 4(rn), because

Vgc(rh) = 0. From figure , we see that in a gauge where ® vanishes at the horizon,

Ve 4(r) >0 for all > 7, implying that

‘/tgt(r) > V;gt(rh) ) for r > 1. (4.55)

This inequality means that the wrapped M2-branes do not condense.

One can check analytically that the wrapped M2-branes are attracted by the
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horizon at extremality by evaluating the lower bound in (4.53) and the electrostatic

potential (4.51)) on the exact solution (4.32)). The result is

c
9 w
V;C,extremal(,r,) _ :|:4\/;TM2€_20(’I"4 _ 1) (/ a)Q) .
C

One can see that the gravitational force (which is always inwards) is larger in magnitude

VC,extremal(r> _ 47—M2€_%(7’4 _ 1)

g,bound ’

(4.56)

than the electrostatic one by at least a factor of %, so all these branes tend to fall
into the black hole horizon at extremality. (See figure for a comparison between
the analytic formulae and the numerical results.) By taking a scaling limit of
the exact solution one can show that these wrapped branes are also always
attracted by the extremal horizon in the case of the AdSs, x R? x squashed Y solution

@37).

Example 1: Probe branes wrapping a two-cycle in M1

The manifold M*"! is a U(1) fiber bundle over CP* x S2. It can be parameterized
by seven angles: u1, 61, ¢1, and 1, parameterizing CP?, 6, and ¢, parameterizing S?,
and 1) parameterizing the fiber. In another description, M"! is a U(1) quotient
of S° x 83. One can parameterize S° by three complex coordinates u!, i = 1,2, 3,
with |ut]® + |u2]® 4 [u®]> = const and S3 by two complex coordinates v/, j = 1,2,
satisfying |v!|° + [v2|* = const. The U(1) quotient acts by identifying u’ ~ ¢2u’ and
v ~ e73y7. An explicit Einstein metric on M5! as well as more details on this
space such as topological properties or the relation between the (u’,v/) coordinates
and the angular ones can be found in Appendix

As mentioned above, we want to find the two-cycles of M1 (or of the squashed

variant thereof M1 as in ([4.48)) that are local volume minimizers in their homology

class. The second homology of M'b! is Hy(MUM:Z) = 7, so there is only one
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generator class for it. A minimal volume cycle representing the generator of the second

homology of M1b! is

(

0, = 2arctant® = T
2
Ul 2 U1 3
0y = 2 arctan t3 11 = const. (—2) = (—)
C — u v2 (4.57)
1= 2¢ 1) = const. W =0
P2 = —39¢.

(
In order to cover C only once, the ranges of t and ¢ should be taken to be t > 0
and 0 < ¢ < 27TE| This cycle is well-defined as it satisfies eq. (see also the
discussion at the end of Appendix , and has minimal volume since it saturates
the bound , as can be checked by direct computation.

Using the explicit metric on M5! given in Appendix and the explicit
parameterization of the cycle , one obtains the following gravitational potential:

Vgc(r) = GWTMQB_%X\/EB_%<67“ +e™). (4.58)

Similarly, one can use (4.38) to find the electrostatic potential

VE(r) = F o s (4.59)

The potential for these branes saturates the bound (4.54]), as a consequence of the

fact that the cycle they wrap saturates (4.52)).

Example 2: Probe branes wrapping a two-cycle in Q!!

The manifold @Y™ can be described as a U(1) fibration over S? x S? x S2%, so

it can be parameterized in terms of three sets of angles (6,,¢.), a = 1,2,3, each

3Similar cycles have been considered in five-dimensional Sasaki-Einstein manifolds. See for
example [98].
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set parameterizing one of the spheres, and a fiber angle ). Another description
of Q41! is as a U(1)? quotient of S? x S3 x S3: One can parameterize the S3’s
by three sets of two complex coordinates, a’, v/, c*, with 4,5,k = 1,2, satisfying
a'|* + |a2” = b + [12)* = |} + |2 = const, and take a quotient by a U(1) that
acts by a' ~ e?a’, bV ~ e7¥b % ~ ¥ and by another U(1) that acts by a’ ~ e?a’,
b ~ b, ~ e Pk More details about QY including an explicit Einstein metric,
the relation between the complex coordinates and the angles, and some information
about its topology are given in Appendix [£.A.2]

The second homology of QY1 is Ho(Q111; Z) = 7Z2. Tts generators can be repre-

sented by the following minimal volume cycles

"

91 = (92 ¢ 1 61
—2 = —
05 = const. @ 2
Cy — ¢! — const. (4.60)
¢1=—p2
¢ = const.
| #3 = const. )
p
91 = 93 armt &
2 =
6, = const. @ €2
C, A b' = const. (4.61)
1= —¢3
b* = const.
| ¢2 = const.

It is straightforward to compute the gravitational and electrostatic potentials for probe
M2-branes wrapping these cycles:
Vgc1 (r) = 47TTM2672X\/§e’%e’71 , VE(r) =0,

(4.62)

w 7T
Vgc2 (r) = ZWTMge’%X\/Ee’?(e’“ +e”), Ve (r) = $§TM2<I>.
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The cycle Cy saturates the bounds (4.52)) and (4.54)), while C; does not.

4.5 Field theory interpretation

Let us discuss a dual 3-d gauge theory interpretation of our brane solutions carrying
topological charges. The solutions are asymptotic to AdS,; x Y7, with the Sasaki-
Einstein space Y7 having by, > 0. The classic examples of such backgrounds known
since the 80’s are AdSy x M1b AdS, x Q%Y. and AdS, x Q*?2. The search for
the 3-d NV = 2 superconformal field theories dual to them began in the late 90’s; see,
for example, [99]. Following the major progress on formulating the world volume
theories of coincident M2-branes [23||100-103], a recent wave of research has produced
compelling proposals for the Chern-Simons (C-S) quiver gauge theories dual to these
M-theory backgrounds [104-108]. Interestingly, all these proposals involve U(N )2+
gauge theories with a certain set of Chern-Simons levels kq, ko, ..., k24, that add up
to zero.

The discussion of the Abelian U(1)2*%2 subgroup of the gauge group requires special
care. None of the matter fields are charged under the diagonal U(1) corresponding to

the gauge field A, ~ Z?J_rbZ A;. The existence of magnetic monopole configurations

7=1
for this diagonal U(1) means that another combination of the U(1)’s A, ~ Z?Z? kj A,
gets gauge fixed to a discrete subgroup. The remaining b, gauge fields
2+bo
A~ myA; (4.63)
j=1

may be chosen to be orthogonal to each other; they are orthogonal to A, and A, due
to the conditions 1 - k = 173 - [ = 0, where [ = (1,1,...,1). The gauge fields Az have
C-S terms and are coupled to massless charged matter. For each of them one can
define a conserved global current Jz ~ *dAz. Thus, the C-S gauge theory possesses

U(1)" global symmetry. Using the equation of motion for A, one can write J in
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terms of the bi-fundamental superfields in the quiver gauge theory.

The gauge fields A,; are reminiscent of the “statistics gauge fields” for quasi-
particles in the effective description of the fractional quantum Hall effect (FQHE) [109]
(for a review, see [50]). If A is one of these U(1)*2 gauge fields for which the Chern-

Simons term in the action is
k
— /.A/\ dA , (4.64)
47

the equation of motion for A implies that an excitation with charge ¢ under A is also
a vortex with 2mwq/k units of magnetic flux. Interchanging two such vortices results in

an additional phase

2

Ap = W% , (4.65)

showing that the coupling to A may change the statistics of the excitations that couple
to this gauge field. This situation is reminiscent of the effective description of the
FQHE at filling fraction 1/k where quasi-particles have non-trivial statistics due to
coupling to a Chern-Simons gauge field.

However, our construction differs in an important way from standard FQHE
systems because we are studying conformal Chern-Simons gauge theories coupled
to massless scalars and fermions. Instead of massive quasi-particles we can only
talk about quasi-particle creation operators (a term recently coined for this situation
is “quasi-unparticles” [110]). Such operators create vortices that contain the C-S
magnetic fluxes and are therefore known as monopole operators. Instead of the
diagonal magnetic flux d.A,, which is known to correspond to the Kaluza-Klein charge
in M-theory [23], these operators excite the by non-diagonal monopole fields d.A;.
Thus, the non-diagonal monopole operators are the only objects that are charged

under the U(1)” global symmetry of the C-S gauge theory. It has been argued quite
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convincingly that the M-theory objects dual to such non-diagonal monopole operators
are the M2-branes wrapping some of the by topologically non-trivial cycles [92}/111].
The dimensions of the monopole operators in the non-interacting diagonal U(1)
have been studied in [112-114] following [115], but the dimensions of the “non-diagonal”
monopole operators appear to be harder to calculate on the gauge theory side. The
AdS/CFT correspondence predicts that the dimensions of the operators dual to the
wrapped M2-branes scale as v/N for large N, but presumably, this is difficult to test.
Nevertheless, if we simply accept the proposal of [92/111], we find an interesting picture
where the by topological wrapped M2-brane charges in AdS, x Y7 are mapped to the
by U(1) global charges in the dual quiver Chern-Simons gauge theory. In particular, a
uniform density of such a topological charge corresponds to a uniform U(1) magnetic
field in the C-S gauge theory. The magnetic field here is not quite the same as in
the duals to the dyonic black holes of |93], where the magnetic field was added as
an external background. We may nevertheless speculate that the zero-temperature
entropy of our topologically charged brane solution is due to the degeneracy of Landau

levels on the gauge theory side.

4.5.1 Boundary conditions in AdS; and wrapped branes

In the AdS/CFT correspondence, a conserved current of a field theory is mapped to
a massless gauge field in the bulk. The gauge fields corresponding to the conserved
currents J;; are then the AW, i = 1,..., by, that enter the fluctuation 645 in .
An additional phenomenon special to AdS, is that the dual gauge fields A® in 1'
correspond to the C-S gauge fields Ay in the gauge theory. Indeed, as shown in [91],
any two gauge fields A and A in AdS, that satisfy dA = %,dA should be quantized so
that one corresponds to a gauge field A in the dual field theory and the other one to

the dual conserved current J = *3dA.
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Let us write the AdSs metric in the form

1
ds’ = = (=dt* +d&* +d2°) | (4.66)

and pass to a gauge where A, = A, = 0. Near z = 0, the fields A and A have the

following expansion

A=a0dz™ 4 za\Vdz™ + O(2%log 2)

(4.67)
A =aWda™ + zaVdax™ + O(2*log 2) .
The duality relation between A and A implies that
da® = %35V da©® = x3a®) . (4.68)

Without loss of generality, let us assume that A is dual to the conserved current 7.
This means that a(® should be interpreted as an external source for 7, while a(!) as
the expectation value of J (up to normalization). Adding an external source a(®) for

J means that the action changes by

5S:/d3x —gasg)jm:/a(o)/\*gj:/da(o)/\A

(4.69)
:/*3&(1)/\./4:/d3x —gallAm,

where we integrated by parts and used . Equation shows that if a© is
an external source for J = %34, then a!), which is related to a(®) through , is
an external source for A. So indeed, if A is dual to J then A is dual to A, provided
dA = %4dA and J = 3d A. Similarly, if we assumed that A was dual to A we would
conclude that A should be dual to J = *3A.

There are thus two possible boundary conditions for the Abelian gauge fields
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A and A in AdS,. From now on we will assume that A is one of the topological
gauge fields A® appearing in the expression for §A;, while A is its dual, as in (.1).
The first (and the more conventional) choice of boundary conditions corresponds to
fixing the boundary value of A but allowing the boundary value of A to fluctuate.
With this choice, the M2-branes wrapping a certain two-cycle are gauge invariant
because they couple electrically to the gauge field A that vanishes at the conformal
boundary, but the Mb5-branes wrapping the dual cycle are not. This statement may
seem puzzling, but it agrees with the gauge non-invariance of the baryonic operators
in the dual C-S gauge theory [92]. Indeed, operators of the form det X where X is
one of the bi-fundamental fields are not invariant under the U(1) subgroups of the
U(N)2*%2 gauge group. Another choice of boundary conditions corresponds to fixing
the boundary value of A but allowing the boundary value of A to fluctuate. Now the
wrapped Mb-branes are gauge invariant, while the wrapped M2-branes are not. This
choice should correspond not to the U(N)*™ Chern-Simons gauge theories, but to
their appropriate Legendre transforms [30,91) that turn the U(N)’s into SU(N)’s ]
In the Legendre transformed theories, baryonic operators like det X are fully gauge
invariant, while it is no longer possible to write down non-diagonal monopole operators

that correspond to wrapped M2-branes.

4.5.2 An example: AdSy x MY /7,

The theory conjectured to be dual to M-theory on AdSy x MU /Z, [104,]105] is
the N/ = 2 superconformal U(N); x U(N)y x U(N)3 C-S gauge theory with levels
(—2k, k, k) coupled to three sets of bifundamental chiral superfields X},, X35, X%,

i =1,2,3 (see figure[1.7). The SU(3) x U(1)p invariant superpotential is

W~ e Tr(Xi, X5, X5) . (4.70)

4We are grateful to D. Jafferis for discussions on this issue.
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X, k

Figure 4.7: The quiver diagram for the C-S gauge theory dual to AdS; x M4 /7,
as conjectured in [104,105]. The numbers next to the gauge nodes represent the C-S
levels.

The level assignments break the Zs symmetry of the quiver diagram, and the R-charges
of the chiral superfields are taken to be [116] R(X15) = R(X31) = 7/9, R(Xa3) = 4/9.

The natural way to combine the three U(1) gauge fields is

A=A+ A+ Ay, A= 24+ A+ A, A=V2A—A;) . (471)

The gauge field A has the standard Chern-Simons term (4.64), and it also enters the

covariant derivatives for bi-fundamental fields. Therefore, the A equation of motion is

k
o€ 0 A =T, (4.72)

where J* is the U(1) current
Ty ~ %tr [X{,D, X}, + X}, D, X} —2X3,D, X3, + c.c. + fermionic terms, (4.73)

and D, is the gauge covariant derivative acting on the bi-fundamental fields X!, in
the fundamental of U(N), and anti-fundamental of U(N),. The manifold M /Z;
has by = 1, and there is one topological U(1) gauge field in AdS,. In the C-S gauge
theory, the current dual to it is %e‘“”\&,fh.

Some results on matching of the chiral operators in this gauge theory with su-
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pergravity fluctuations are available |[107], but none of these operators carry the
topological U(1) charge. To construct the operators corresponding to the wrapped
M2-branes one has to include the monopole operators with the magnetic flux for the
field A. If we place a unit charge at the origin, J° = §2(x), then (4.72)) requires that
A, = % This azimuthal gauge field produces phase 27/k when another unit charge
circles the one at the origin. This simple field theory argument thus predicts the
existence of fractional statistics. It would be interesting to study how this effect arises
for wrapped M2-branes in AdS; x M /7, but we leave this for future work. We
further note that a brane carrying a uniform topological charge density corresponds in
the U(N)? gauge theory described above to the presence of a constant magnetic field
dA. The ground state of the charged fields in this background is expected to exhibit
the Landau level degeneracy. It would be interesting to investigate if this degeneracy
may help explain the large T = 0 entropy found on the gravity side.

As reviewed above, the standard boundary conditions in AdSy allow the wrapped
M2-branes but make the wrapped M5-branes transform under the corresponding U (1)
gauge transformations [92,|111]. This agrees with the fact that operators like det Xo3
transform under the A gauge transformations in the U(N)? gauge theory. One can,
however, change the AdS; boundary conditions to make the wrapped Mb-branes
allowed and M2-branes forbidden. The corresponding operation in the gauge theory is
a Legendre transform [3091], which turns the U(1) into a global symmetry. Since
the gauge field A becomes non-dynamical, we can no longer use monopole operators
involving this gauge field; this agrees with the fact that the wrapped M2-branes are not
allowed. In the Legendre transformed theory we can, however, write down baryonic
operators like det X,3 of dimension 4/N/9. This dimension agrees with the volume of
one of the five-cycles in M1 [99]. This discussion of baryonic operators is rather
sketchy, and a number of issues remain to be elucidated. In particular, it would be

interesting to study the Legendre transformed theory in more detail.
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4.6 A BTZ black hole in type IIB theory

It is interesting to study a reduction of our M-theory membrane solutions to string
theory. Since all fields are independent of the two spatial directions z' and 22, we
may consider the following strategy. First, we compactify these directions on circles of
radii R; and Ry, respectively. Then we reduce to type IIA string theory along the z?
direction and perform T-duality along the z' direction to obtain a type IIB background
with eight compact dimensions consisting of S* times a warped Y7, and with warp
factors depending on the radial coordinate r. What makes these transformations
particularly interesting is that our analytic solution (4.32]), which seems to have
unacceptable large r behavior in M-theory, acquires conventional AdS3 asymptotics
in the type IIB theory. Furthermore, the type IIB background, supported by F; flux
only, turns out to be the product of a squashed Y space and an extremal BTZ black
hole [941|95].

Some of the reasons for this simplicity can be traced back to our original M-brane
construction. We start with a stack of N M2-branes spanning the (¢, z!, 2?) directions
placed at the tip of the cone over Y7, and then add a density of M2-branes wrapping
two-cycles inside Y7. Upon reduction to IIA, the N M2-branes wrapping 77 turn

! circle, while the other wrapped

into N fundamental strings winding around the x
M2-branes turn into wrapped D2-branes. Upon T-duality, the winding modes turn
into momentum modes which affect the metric only and do not source the NS-NS
two-form By, while the wrapped D2-branes turn into wrapped D3-branes. The type
1B background therefore describes D3-branes wrapping a two-cycle in Y7 and a circle,
with N units of momentum flowing along the circle. This setup is very similar to
the original D-brane constructions of supersymmetric black holes with non-vanishing
Bekenstein-Hawking entropy [117-H119]. For example, one such construction involves

two stacks of D3-branes wrapping two-tori embedded inside T and intersecting over

a circle, while we instead have D3-branes wrapping more complicated cycles inside a
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squashed Y7. As a result, our background does not appear to be supersymmetric.
We give the reduction of our general background f from M-theory to
type ITA and the T-duality to type IIB in Appendix [£.D] In this section we will
restrict our attention to a slightly generalized version of the exact solution from
section [4.3.1}, which we will connect through dimensional reduction and T-duality to a
locally AdS5 x squashed Y7 type IIB background. We do this starting from the type
IIB solution in section [4.6.1] In section [4.6.2] we discuss the corresponding M-theory

background.

4.6.1 The type IIB background

Let us start with the following ten-dimensional string frame background describing a

product of a locally AdSs space and a squashed Y 7:

r? L?
ds?y = [L_g (=dt* +da?) + —dr? + o (dt + d:c)ﬂ
2 2 1 2 4 2
+ 8L3 |dsy, + §d5V2 + g(dw + o1 +02)°|

2 512
F = 8\/;’[“dt Adx Adr A (2w; — wsy) — ?ngl A (wy —wi) A (dY + 01 + 03),

(4.74)

where L3 is the radius of the asymptotically AdS; space and « is an arbitrary constant.
The Lorentz boosts  —t — A~} x —t), x +t — Az + t) act as @ — A\%«; therefore,
there are only three distinct cases: a > 0, & = 0, and o < 0. The locally AdS3 space
with positive a describes an extremal BTZ black hole [94,95], which has the smallest
mass for a given angular momentum.

This IIB background describes a state in the (14 1)-dimensional CFT on D3-branes
wrapped around the z-circle as well as a two-cycle in the internal space. Not much is

known about this gauge theory, but using the gauge/string correspondence one can
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extract the central charge from the Weyl anomaly [120]:

3 Ls Ls
=228 o8 475
¢ 2G3 ﬂ-li% ’ ( )

where k3 is the effective gravitational constant in three dimensions. The 3-d gravita-
tional constant can be expressed in terms of the gravitational constant of the type

IIB theory, k19, through

1 2 1
e 210\@ LIVol(Vi)Vol(Va) Ap—-, (4.76)

Kio

the factor multiplying 1/k%, in this equation being just the volume of the internal
space.

To estimate the number of D3-branes we compute the number of Fy flux units
through a non-trivial five-cycle in the internal space. One of the simplest such five-
cycles spans V; and the fiber direction. The number of units of D3-brane flux through

it can be computed from the standard formulae

1 2 1 2
Nps = F = — = 4.
D3 2/{%07_[)3 / 5 TD3 95(2W€5)4 ) 2/{%0 93(277'65)8 3 ( 77)
which give
29 4
Nps = Vol(V1) A . (4.78)

N ?ﬁlilo

Comparing this expression with the one for the central charge above, we notice that
c ~ N?,, suggesting an interpretation of the central charge in terms of intersecting
D3-branes.

The gravity background above does not correspond to the vacuum state of the

gauge theory—the vacuum has o« = 0. Nonzero « translates into a nonzero expectation
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value of the stress-energy tensor. The AdS/CFT dictionary gives

«

so in the field theory there is conformal matter moving at the speed of light in the
negative x direction. If we compactify the x direction on a circle of radius R, the

entropy of this state can be computed in gravity from the area of the horizon at r = 0:

g (27r)2a%Rz |

2
K3

(4.80)

There is a way of understanding this entropy from field theory considerations,
which provides a consistency check on the above formulae. Since the z direction is a
circle of radius R,, the momentum along it needs to be quantized in units of 1/R,.

The number of momentum units is

aR?

m .
/i%Lg

N = R, |p,| = 27R; |(Ty2)| = 2 (4.81)

Combining this relation with (4.75) and (4.80])) we verify the Cardy formula

S = zm/%, (4.82)

which can be derived by assuming that the entropy comes from the number of ways of

partitioning the N units of momentum into smaller momentum quanta.
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4.6.2 The dual M-theory background

T-dualizing (4.74)) along the compact direction x and lifting to M-theory by introducing

a new coordinate y, one obtains the metric

ds?, = h~3 —r—4dt2 +dz? + dy?| + h%L—gdﬁ
1= A Y 2

3 ) (4.83)
1o | .9 1., 4 2 _r
+ 8h3 L3 [dsvl+§dsv2+§(d¢+01+02):| ; h:L—§+a.
The four-form £} is
2
Fy = —Q%dt Adx Ady Ndr — 8\/grdt Adr A (2w — we) . (4.84)
3

For o < 0 the metric contains a naked singularity at finite r, while the o = 0 case
also appears to be singular. We are therefore primarily interested in the o > 0 where
the M-theory metric is equivalent to .

In going from type IIB to type ITA string theory, the circle of radius R, gets
replaced by a circle of radius R, = (?/R,, s = Vo' being the string length. In
addition, the string coupling constant gs of the type IIB theory becomes §s = g5/ R,
in type IIA. The lift to M-theory introduces the new compact direction y of radius
Z?y = gsls and sets the Planck length in eleven dimensions equal to ¢, = g§ ls. The
11-d gravitational constant xq; is related to the gravitational constant iy in the 1IB
theory by w2, = 27k3 R, R,/ R, as follows from the relations 2x%, = (27(,)°/(27),
2k3, = (274,)8¢%/(27) and the duality transformations described above.

Using the relations between the various constants in M-theory and type IIB
mentioned in the previous paragraph, one can easily check that the Bekenstein-
Hawking entropy of the 11-d black hole in (4.83)) with an event horizon at r = 0 agrees

precisely with the expression (4.80) that we found in ten dimensions. One can also
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check that the number of M2-branes filling the (¢, z,y) directions,

No L / j2 (4.85)

5.2

agrees with the number of units of momentum in the = direction in the 10-d background
that was computed in eq. .

It is not hard to check that for Ls = 2163716 and a = 2_%3%, the change of
coordinates 7 — 2- 535 Vrf — 1, ¢ — 293 Te 2%t g — 32', and y — 322 brings
the eleven-dimensional metric (4.83]) into the form of the exact solution . When
the size of the torus parameterized by x and y in eleven dimensions is small in Planck
units, one can thus view the effective IR theory described by the attractor solution
(4.37)—which is the IR limit of —as defined through the asymptotically AdSs
background in type IIB theory that we discussed above. In this limit, one can argue
that at nonzero charge density the effective IR description of the (2 + 1)-dimensional
C-S gauge theory dual to AdS,; x Y7 is the same as that of a chiral sector of a
(1 + 1)-dimensional CFT dual to AdSs; x squashed Y.

4.7 Discussion

We have constructed new charged membrane backgrounds of M-theory that are
asymptotic to AdS,; x Y7 where Y7 is a Sasaki-Einstein manifold with non-vanishing
by. In particular, we considered Y7 that is a circle bundle over a product of two
Kahler-Einstein manifolds, V; x V5. Instead of the U(1)g charge corresponding to
translations of the circle, that was used in previous M-theory constructions [39}41}/42],
we turned on a “topological” charge corresponding to a component of §As along
the universal harmonic form w = w; — 2wy. As the Hawking temperature of the
black membrane horizon is decreased, a U(1)g-charged solution typically undergoes

a phase transition due to condensation of charged fields. We showed that such a
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phase transition does not occur for our topologically charged solutions. At T = 0
the near-horizon region becomes AdS, x R? x squashed Y7, which signals emergent
quantum criticality. This throat region is by itself a solution of the 11-d supergravity
equations.

If we compactify the brane coordinates z* and 2% on a two-torus, then the resulting
black hole has two kinds of charge. One of them is proportional to the number of
M2-branes wrapping the T2, the other to the number of M2-branes wrapping the
two-cycle inside Y7. To study whether charge condensation occurs, we calculated
the potential as a function of r for the different types of wrapped M2-branes. We
found that the M2-branes wrapping the internal cycles experience attractive forces at
any temperature; the M2-branes wrapped over T? experience an attractive force that
tends to zero as T" — 0 for all r. Thus, unlike the R-charged brane solutions or the
type IIB 3-brane solution with a baryonic charge from chapter [3, the new M-theory
solution does not suffer from an instability with respect to expulsion of toroidal branes
to large r [75,/76,/78].

The fact that there is a moduli space for the M2-branes wrapped over 17 is
consistent with the conjecture that gravity is the weakest force, which implies that
there should be a charged object not attracted to an extremal charged black hole
horizon [45]. Nevertheless, it is very surprising to find the vanishing of the potential
for a probe space-time filling M2-brane in a background which apparently does not
preserve any supersymmetry. It would be interesting to investigate if this moduli
space is lifted by higher-derivative corrections to the 11-d supergravity action, which
are expected to correspond to 1/N corrections in the dual Chern-Simons gauge theory.

When a string or M-theory background does not preserve any supersymmetry, one
should be concerned about various potential instabilities. We have shown that there
is no low-temperature condensation of charged objects, but one should also check the

perturbative stability of neutral fluctuations. We have carried out some preliminary
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checks for neutral scalars, but clearly more should be done. Finally, there may be
some non-perturbative gravitational instabilities which were not studied here.

If our zero-temperature solution is completely stable, we should try to explain the
microscopic origin of its large Bekenstein-Hawking entropy. One approach may be to
study a dual quiver Chern-Simons gauge theory with a constant background magnetic
field d.A which produces a uniform U(1) global charge density. Our membrane solution
implies that this gauge theory develops IR quantum criticality corresponding to the
appearance of the AdS; throat. We would like to gain some understanding of this
phenomenon. It would also be interesting to study the apparent fractional statistics
of the wrapped M2-branes in the AdS; x MYV /Z,; background.

Another possible microscopic approach to the IR theory is motivated by the type
IIB background which is related by string dualities to the M-theory exact
solution (4.31)) with different large r asymptotics. In this type IIB background, the
near-horizon AdS; region arises from a reduction of the extremal BTZ black hole
on a circle. The extremal BTZ times squashed Y7 background should be dual to
the (1 + 1)-dimensional CFT on D3-branes partially wrapped over the squashed Y.

Calculating the central charge of this CF'T would provide a way of explaining the

charged black hole entropy via (4.82)).

4.A Metrics for the regular Sasaki-Einstein spaces

In this section we give the explicit metrics for the regular Sasaki-Einstein manifolds
described in section We also discuss the non-trivial cycles found in the bases of
these manifolds that are useful for the probe brane computations in section and
Appendix 1.C]

Let us first describe the general approach to computing the range of the coordinate

¢ appearing in (4.2]). When the scalars x and 7; vanish identically, (4.7 solves the
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eleven-dimensional SUGRA equations with M = AdSj,. Insisting that the radius of
AdS, should be L, one finds that the metric on V;, ¢ = 1,2, should be normalized
so that the curvature two-form is related to the Kahler form through R; = 8w;. By

definition, the first Chern class of V; is ¢;(V;) = %Ri, SO

2
a (Vi) = —w; = —do;, (4.86)
m

where in the second equality we used (4.3]). Note that ¢;(V;) does not depend on the
overall normalization of the metric on V;, but of course the proportionality constant
between ¢;(V;) and w; does. By definition, the first Chern class of the fiber bundle

YT =V x Vyis

1
cl = —d(O’l + 0'2) s (487)
Ly

where Ly is the length of the fiber, i.e. the range of ¢. From comparing to
we see that in order to compute the length of the fiber we need to know the
relation between the first Chern class ¢; of the fiber bundle and the first Chern class
c1(V1) 4+ ¢1(Va) of the base. Using a Thom-Gysin sequence, one can show [97,/121]
that the only requirement is that ¢, (V1) + ¢1(V2) should be an integer multiple of ¢;.
Recalling that ¢; and ¢;(V;) represent cohomology classes with integer coefficients, we
denote by a; the largest integers so that aiicl(‘/;) € H*(V;;Z). Since c1(V1) + c1(Vs)

must be an integer multiple of ¢;, one can take

o — % (@(V1) + er(Va) (4.88)

where a can be any common divisor of a; and ay. The length of the fiber is then

Lf = —a. (489)



Seven-dimensional Sasaki-Einstein spaces like the ones above have N' = 2 su-
persymmetry. The two Killing spinors are proportional to e** [121], and they are
well-defined as long as the range of ¢ is an integer multiple of 7/2. Equation ({4.89))

shows this is indeed the case.

4.A.1 ML

The manifold M1 is the homogeneous space SS({J(?Q)XXSUU((IQ))XXUU((II)) and by construction

its isometry group is that of the standard model, SU(3) x SU(2) x U(1) [99]. The
cone over M5! is a Calabi-Yau four-fold that can be described as a Kahler quotient
C®//C* as follows. One starts with C° parameterized by the complex coordinates

(u', u? v, v! v?) and endowed with the Kahler potential
s 1
K = (21,67'@1‘)4 (3UJT)j) 2. (490)

One then takes the Kéhler quotient of this space with charges (2, 2,2, —3, —3), meaning

that we restrict our attention to a submanifold of C® defined by
2 (Jul P+ o2+ [*[*) =3 (Jo' [P+ |o2) | (4.91)
which we further mod out by the equivalence relation

uz ~ 6215uz’ U] ~ 6737,51]] ) (492)

The space described by equations (4.91)) and (4.92)) is precisely the cone over M1,
This space is a cone because both of these equations are invariant under u’ — Au!
and v/ — A’/ with A € R;. One can check that the induced metric coming from the

Kihler potential (4.90]) is Ricci flat, so the cone over M1 is indeed Calabi-Yau. One
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can check that the holomorphic four-form €24 on the cone is given by
Qy ~ dQs, Qs = (€qip5,u du’ A du) A (5,507 dv”?) (4.93)
The space M1 can be obtained by fixing the overall magnitude of u* and v:
(WP P o o) =3 (jof 4 ) =1 o

An explicit Sasaki-Einstein metric can be found from (4.90)) by using the parameteri-

zation
1 0, 1 0y
_ : = (p1+Y1+Ru) — 2 = (p2+Rut))
U1 = —= SIN L COS —e2 , V] = —= C0S —e2 ,
SV R P32
V2 2 ’ VR ’

1 i

U3 = —= COS U g2t

V2

for any R, and R, satisfying 3R, + 2R, = 1. This metric has the form (4.2)) withE|

3 1
dsy, = 1 {duz + —sin’ pu (87 + 55 + cos® us3) |

4
1 (4.96)
@@:§P%+gﬁ%mﬂ,
and
3 |
o = gsin” sy, 07 = 7 €08 Oodops . (4.97)

5The metric obtained from (4.90)) does not depend on the angle § appearing in (4.92). One way to
see this is to promote (4.92) to u’ — A\2u?, v/ — A73v? with A € C* and think of (4.94)) as a gauge
fixing condition for this transformation. Since the Kéhler potential is independent of A, which can be

regarded as a complex coordinate in C?, the metric on C® following from (4.90) is degenerate in the
A direction.
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In the above equations we have defined

sp =dby, So = sinfid¢y , s3 = dipy + cosb1do . (4.98)

The metrics describe Vi = CP? and V, = CP.

Let the hyperplane divisor H be the generator of Hy(CP*; Z) = Z. H is the homol-
ogy class of a CP' ¢ CP?, so in homogeneous coordinates H can represented by the
two-cycle {[0, 21, 22] : 21, 20 € C}. Let us denote by D the generator of Hy(CP';7Z) = Z.

From (4.86]), one can compute

Jat=3, [ az-2. (4.99)

so in this case a; = 3 and ay = 2. There is only one possibility for a| ged(ay, as),

namely @ = 1. The length of the fiber is 7/2.

4.A.2 Q"' and Q**?

The space Q%! is also a homogeneous space, SU(QE(*E)U; ([2])&)5 U@ 199]. The cone over it

is Calabi-Yau and can be constructed from taking a Kéhler quotient C°//C*2. If the

coordinates on C° are (a',a? b, 0%, c*, c?), the Kahler quotient can be thought of as

the level sets
P+ [ = P R = [ e (4:100)

and the following identifications

at ~ ePql, Vo~ e o~k
(4.101)

al ~eat, Vo~ ek
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With the Kahler potential
K = (d'a)? (V5,)7 (de)* . (4.102)
the cone over Q%!'! is Calabi-Yau. The holomorphic four-form Q4 is in this case
Q4 ~ dQs, Q3 = (eimaildai?) A (ej1j2bjldbj2) A (ek1k2ck1dck2) . (4.103)

In order to find a metric on Q%% itself, one needs to restrict to the base of the

cone by fixing the overall magnitude of a’, ¢/, and c*:
|a'[* + |a?” = [o'* + 07" = | + | = 1. (4.104)

From (4.102)) one can obtain an explicit metric on Q%! using the parameterization

a' = cos %eé(‘z’l*R‘“p) , a? = sin ﬁe%(—mﬂ%aw) ,
1 02 L(pa+Rud) 2 .03 i(—¢o+Rpt)

b — COS 562 2 b 5 b — SIDEQQ 2 b , (4105)
1 93 (ps+Ret) 2 . 93 i(—¢s+Ret))

c 2008562 BT c :sm§e2 stRey)

for any R,, Ry, and R. such that R, + R, + R. = 1. The metric takes the form (4.2))

with
1< 1
ds?, = < > [d&f + sin? Qidgb?} . dst, = 3 [deg + sin? 93d¢§} : (4.106)
=1
and
1 1
o1=7 (cos b1dgy + cos badgs) | 0z = 7 Cos Osdps . (4.107)
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The spaces V; are V, are in this case CP!' x CP* and CP', respectively.

Let us denote the two generators of HQ(CPI x CP!: Z) = 7? by Cy and C, where
C, is the homology class of the first CP* factor and C, of the second. As in the case
of M1 let us denote the generator of Hy(CP';Z) = Z by D. Starting from (4.86)

it is easy to see that

/Cl(;l(vl):/Czcmva):/Dcl(vQ):z, (4.108)

so in this case a; = ay = 2. Therefore there are two possibilities for the integer
a| ged(ay, as): taking a = 1 we obtain the space Q) and taking a = 2 we obtain
Q*?2. From (4.89)) we see that the circle fibers of Q! have length 7, while those of

Q?*%? have length 7 /2.

4.A.3 Circle bundles over dP, x CP!

The last class of seven-dimensional regular Sasaki-Einstein manifolds comes from
principal U(1) fiber bundles over dP, x CP', dP, being the nth del Pezzo surface, and
3 < n < 8. Topologically, dP, can be constructed from CP? blown up at n generic
points. (The points being generic means that no three points should be collinear and no
six points should lie on a conic.) The del Pezzo’s are known to admit Kéhler-Einstein
metrics with positive Ricci curvature |122,/123], but unfortunately these metrics are
not known analyticallyﬁ Despite this fact, we can still describe some of the properties
of the corresponding Sasaki-Einstein spaces.

We take V; = dP, and V, = CP'. The metric on V; is not known, but the metric
on V5 is given by

1
dsy, = 3 [deg + sin? 02d¢§} , (4.109)

6See [124] where a Kihler-Einstein metric on dP; was computed numerically.
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and

1
09 = Z COS 92d¢2 y (4110)

as in the previous two cases.

The second homology group of dP, is Hy(dP,;Z) = Z"*!, so there are n + 1
generators which we will denote by H and E;, 1 < ¢ < n. In algebraic geometry
language, H is a hyperplane divisor and E; are the exceptional divisors of the blown-up
points. As in the previous two sections, we denote by D the generator of Hy(CP';Z).

Using algebraic geometry, one can show

/Hcl(vl)::a, [Eicl(m:l’ /Dcl(Vg):Z (4.111)

It follows that a; = 1 and ay = 2, so again the only possible value of a is a = 1, giving

fibers of length /2.

4.B Other supergravity fluctuations around the ex-
act solution

It might be interesting to consider supergravity fluctuations around the extremal
solution found in section and see whether these fluctuations cause a run-away
instability. Let us focus on fluctuations depending only on the radial variable r. They
typically satisfy second order differential equations whose solutions near the extremal
horizon behave as (r — 1)*. The exponent « can be either real or complex. When it
is real, the corresponding fluctuations correspond to either a source or a VEV of an
operator in the effective quantum mechanics. When it is complex, the corresponding

fluctuations are oscillatory as a function of r and typically cause an instability.
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Investigating the behavior of supergravity fluctuations near the extremal horizon is a
hard task, because these fluctuations depend on the details of the Sasaki-Einstein spaces
Y7. We will only examine a particularly simple fluctuation in the case Y7 = Q%!
For QU1 V; = CP' x CP', and the background (£.7)-(#11)) is symmetric under
interchanging the two CP' factors. The mode that we will look at is the leading
Zy-0dd mode that changes the sizes of the two CP'’s. We call this mode .

There is a non-linear consistent truncation that includes this additional mode .

The eleven-dimensional metric is

1
ds® = e ™22, + §L2@X {em“(def + sin? 0,d¢?) + ™ (dh2 + sin® Byd¢?)

1
+ ™ (df?3 + sin? 93d¢§)} + ZLQGX_4771_2772 (dip + cos 01dep; + cos Oady 4 cos Odps)?

(4.112)
and the four-form is
3 _ 21 36_%_%X 21 4+2X :
F, = —ze 2 Xvoly + QL 5 dt Adr A [e T sin 61dby A doy
" (4.113)

+ €2~ gin odfy A dpy — 2€%™ sin O5dbs A dﬁb?l .

When A = 0, equations (4.112) and (4.113]) reduce to equations (4.7) and (4.9),

respectively.
The linearized equation for A\ following from the eleven-dimensional supergravity
equations of motion is (we set L = 1)

A”—’—A/ (2

— 611 —2n9—2
. g_/ _ %) + )\w [265771+2772r4 gt 468m+2n2+3xQ2} —0.
T g 2

rig

(4.114)

When evaluated on the extremal solution (4.32)), equation (4.114]) has analytical
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solutions:

A=t — 1) 20VE) o )3 0-VE) (4.115)
In the effective quantum mechanics, the solutions multiplying ¢, and ¢_ correspond
respectively to a source and a VEV of an operator of dimension A = % (1 + 4 /%) ~
1.69. Since the exponents of r* — 1 are real, we conclude that these fluctuations do

not cause an instability.

4.C Comments on wrapped branes

In this section we tie up some loose ends from our discussion in section [4.4.2] of
M2-branes wrapping an internal two-cycle in Y7. We first discuss in section m
some topological properties of two-cycles in a general Sasaki-Einstein manifold Y
whose Kéahler-Einstein base is V; x V5. In section we give a proof of the bound

[@.52) on the volumes of the two-cycles of Y7,

4.C.1 The second homology of Y7’

Topologically, two-cycles in Y7 are classified by the second homology of Y7 with integer
coefficients, H,(Y";Z). The homology of Y7 can be calculated from the homology
of the base of the fibration, the product manifold Vi x V5. In turn, the homology
of V; x V4 can be computed from the homology of Vi and that of V5. For all of the
regular Sasaki-Einstein spaces we are interested in, V5 = CP! and the generator of
Hy(Va; Z) = Z is represented by V5 itself. Let us call this generator D. The homology
of the Kahler-Einstein spaces V; is in all cases of interest Hy(Vi;7Z) = ZF and let us
denote its generators by C; with 1 <7 < k. We have k = 2 for V| = CP! x (CIP’I; k=1

for Vi = CP?% and k = n+1 for Vi = dP,. We pick the orientations of C; and D so that
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they can be represented by holomorphic surfaces as opposed to antiholomorphic ones.
The second homology of V; x Vs is then Hy(V; x Vi Z) = ZF1, and its generators
are constructed as follows. Given a surface that represents C; in V; we can take
the direct product between this surface and a point in V5; this product is a closed
surface in V; x V4 and represents a generator of Ho(V) x Va;Z). Similarly, the direct
product between V5 and a point in V] is also a closed surface in V; x V5 representing a
generator of Hy(Vy x V4;Z). By abuse of notation we will denote the first k& generators
of Hy(Vy x Vo;7Z) by C; and the (k4 1)th one by D, as they are constructed from the
corresponding generators of Hy(Vi;Z) and Hy(Va;7Z) in a straightforward way.

It turns out that if Hy(V;Z) = ZF then Ho(YT;Z) = ZF. The reason why
Hy(Y7;Z) is smaller than Hy(V;7Z) is that whereas all topologically non-trivial closed
surfaces in Y7 project down to topologically non-trivial closed surfaces in V', not every
closed surface in V' can be lifted to a closed surface in Y. In fact, any two-dimensional
surface S in V can be lifted to a three-dimensional surface S in Y7 by restricting the
circle fibration over V' to a circle fibration over S. In order for a two-dimensional
closed surface S in V to be liftable to a two-dimensional closed surface in Y7, one
has to specify what the fiber coordinate i) should be at each point in S. There is a
topological restriction on the types of closed surfaces S one can lift precisely because
it may be impossible to specify consistently what v is at all points of S. In algebraic
topology language, a consistent assignment of 1 to every point in S gives a global
section of the pull-back bundle S, and it is known that any circle bundle, in particular
S, admits a global section if and only if it is trivial. Since circle bundles are completely
classified by their first Chern class (the cohomology class of the curvature of the U(1)
fibration), it follows that a closed surface S in V is liftable to Y7 if and only if the

first Chern class of the circle bundle S (which is nothing but the pull-back of the first
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Chern class of Y7 to S) is zero in cohomology. In particular,
S is liftable <= / =0, (4.116)
S

where ¢ is the first Chern class of Y7. The above argument works only in the case
where the surface S is connected—if S is not connected, then the condition (4.116)
should be satisfied for each connected component separately.

Equation suggestd| how to construct Hy(Y;Z) given Ho(V;Z): Ho(Y;Z)
is isomorphic to the kernel of the map that assigns to each element C' in Ho(V';Z) the

integer | o €1 In other words, if we parameterize the homology classes in Hy(V'; Z) by
k

C=> a,C;+ 8D, (4.117)
i=1

with «;, 8 € 7Z, then there is a one-to-one correspondence between elements of the
homology Ho(Y";Z) of the total space Y7 and classes C' in the homology Ho(V;Z) of

the base V satistying

k
Zai/ cl—i—ﬁ/cl:(). (4.118)
i=1 Ci D

Such classes form a Z* subspace of Hy(V;Z) =2 ZF! so indeed Ho(Y7;7Z) =2 Z*. Note
that only connected surfaces representing C' can be lifted to Y7 as embedded closed
surfaces, as discussed above.

The first Chern class of the fibration, ¢, is by definition the cohomology class of
the curvature of the connection one-form o, + 05 appearing in the metric (4.2)). By

equation (4.3)), ¢; is proportional to the sum w; + wo of the Kéhler forms on V; and

"The following argument is not intended to be a proof. One can prove the result ({4.118) using a
Gysin sequence. See [99] for the cases Y7 = Qb4 and Y7 = MbLL
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V3, so equation (4.118]) becomes

k
Zai/ w1+ﬁ/w2:0. (4.119)
i=1 G D

What’s nice about this equation is that since V; and V5 are Einstein spaces, the
integrals of the Kahler forms over the cycles C; and D are topological invariants that
are known even when an explicit Einstein metric on V; or V5 is not known.

As an example, for Y7 = MUV, = CP?, V, = CP!, and the dimension of
Hy(V1;2Z) is k = 1. Algebraic geometry arguments combined with the condition for an
Einstein metric (see also Appendix give fol w; = %Tﬂ and [ pw2 = 5. Equation
(4.119]) shows that the generator of the homology of Y7 has oy = 2 and 8 = —3. An
explicit cycle representing this homology class is given in (4.57]).

As another example, for Y7 = Q! V; = CP! x CP*, V, = CP!, and k = 2. In this
case, [, o Wi = f02 wy = pw2 = 5. The second homology of Y7 is therefore generated
by (a1,as,8) = (1,—1,0) and (a1, as, ) = (1,0,—1). Explicit cycles representing
these homology classes are given in f.

As a last comment, note that the above discussion does not change if we replace
Y7 by Y7 because the curvature of the U(1) fibration stays unchanged. Moreover,
any cycle C in Y7 should satisfy because C is in the same homology class as a

two-cycle C' constructed by lifting a closed surface S in V', and for C’ equation (4.50)

is equivalent to (4.116]).

4.C.2 A lower bound on the volumes of closed two-surfaces
in Y7
The bound (4.52) can be proven by finding a calibration. A calibration (for two-

dimensional surfaces) is a closed two-form €2 with the property that for any orthonormal
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tangent vectors v and v

Qu,v) < 1. (4.120)
Consequently, the volume of any closed two-dimensional surface C in Y7 satisfies

Vol(C) > / Q. (4.121)

c

Since (2 is closed, the right-hand side of (4.121)) depends only on the homology class

of C. In the space Y7 with the metric (4.48) we will show that

Q = seXMw; + teX P w, (4.122)

is a calibration for any —1 < s,# < 1. Here, by w; and wy we mean, as usual, the
pull-backs of the Kahler forms on V; and V5, respectively. Clearly, since we fix r, ) is
a closed two-from. To understand why €2 is in fact a calibration, let us pick a point p
in Y7 and define the orthonormal basis f;, i = 1,2,...,7, for the tangent space Tpfﬂ
and the dual basis ej, j = 1,2,...,7 for Tz’,“fﬂ. Since w; are the pull-backs of the

Kahler forms on V;, we can require

XMy =e;  ANey+esAey,
X TPy = e5 A eg, (4.123)

e%x%m*m(dw + 01+ 09) =e7,
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and thus the metric on Y7 is ds%, = Zzzl(ei)z. Now for any two arbitrary orthonormal

tangent vectors u = ZZZI u; f; and v = ZZZI vif; in T,Y7 we have

Qu,v) = s(u1vy — ugvy + uzvy — ugvs) + t(usvg — ugvs)
1 1
< [$*(u] + uf + uf + uf) + 7 (ud 4 ug)]® [o] + 03 + 05 + v + 02 + vg] 2
<|Jull ]| =1,

(4.124)

where in the second line we used the Cauchy-Schwarz inequality and in the last line we
made use of the fact that —1 < s,# < 1. Equation (4.124)) holds for any orthonormal
vectors u, v at any point p, so Q is indeed a calibration. For a surface C in Y7 we

therefore have

Vol(C) > eXt™ + eXtm

(4.125)

C C

In obtaining (4.125]) we chose s and ¢ to be =1 in such a way that the bound we got

would be as restrictive as possible.

Combining (4.125)) with (4.50)), we obtainﬂ

5/DW2 /Cw2

This inequality is saturated when both inequalities in (4.124]) are saturated at every

Vol(C) > eX (e™ + e™) =eX (e 4 e™) (4.126)

point p of C, u and v being an orthonormal basis for the tangent space to C at p. The
first inequality in is saturated when the projection of C to V; is given by a
holomorphic (s = 1) or anti-holomorphic (s = —1) surface and the projection to V5
is also given by a holomorphic (¢ = 1) or anti-holomorphic (t = —1) surface. The

second inequality in (4.124)) is satisfied when the tangent space to C is “horizontal,”

8In the case of AdS5xT"! a similar inequality was proven in [98] using an explicit parameterization
of two-cycles.
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meaning intuitively that C does not “move” in the fiber direction. Only very special
surfaces satisfy these two conditions. That said, two such surfaces are the one given
in (4.57) in the case of M1 and the one given in (4.61]) in the case of QY1 a direct

computation of the volumes of these surfaces shows that they indeed saturate (4.52)).

4.D Reduction to type ITA and T-duality

In this section we reduce the M-theory background (4.7)—(4.9)) to type IIA along the
22 direction and then T-dualize to type IIB along the ! direction. The type IIA

string frame metric is

21 2 d 2
ds?i = e ixl —ge dt* + r—(dx1)2 +
L L? g
(4.127)
+ 4L2€_%X% [eMdsy, + e™dsy, + e TR (dY + 01 + 02)°]
The dilaton is given by
21y 3 r
Dijp = ——2 + Zlog — . 4.128
1A 3 + 5 0g 17 ( )
The NS-NS three-form flux is
1 21 7’2
HIA = Be 2B Xt A dx' Adr. (4.129)
Out of the R-R forms, only F} is non-vanishing:
1A 13, L 2 2
F,y* = =8Qe 2" 2X—dt Adr A (e Mwy — 2e ng) ) (4.130)

r2
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The type IIB background we obtain has only Fj flux. In string frame, the metric is

2 L3

21 d 21
dstip = 677)‘% [—gewdtz + %} +erXx (d:c1 — P(T)dt)2

r3

+ 4L2€_%X% [eMdsy, + e™dsy, + e MR (dyY 4 01 4 02)?]

where the function P(r) satisfies

where *yw was defined in (4.5)).
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Chapter 5

Conclusions

Since its formulation by Maldacena in 1997 [1], the AdS/CFT duality has seen
tremendous amounts of activity. The duality is now well-enough understood that
a number of attempts exist at using it to derive results about empirically relevant
theories. This thesis focused on some applications of AdS/CFT with relevance in
condensed matter physics.

The first of these applications showed that a large class of (3 + 1)-dimensional
gauge theories with gravitational duals exhibit a phase transition in which an operator
O develops a nonzero expectation value. This is reminiscent of superconductivity, and
echoes similar results obtained for M theory [39], raising hopes that string theoretic
methods can provide insights into superconductivity at strong coupling. Compared
to the M theory results, this work went further, by embedding one of the unstable
modes in a non-linear truncation that allows to understand the phase diagram of
the corresponding field theory operator. Using the universality of the instability, a
suggestion was made about the identity of the universal condensing operator.

Working in a different direction, in search of a theory that is stable at arbitrarily
low temperatures, a black hole deformation of the conifold was considered. In the

string theory picture, D3 branes were wrapped around the topologically non-trivial
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cycle of TH1; in the dual picture, the conifold gauge theory was studied at nonzero
baryonic chemical potential. It was found that the IR limit of the geometry was nearly
AdS,, warped by slowly-varying logarithmic factors of the radial direction. This can
be interpreted as a new type of emergent quantum near criticality. The solution seems
stable under scalar fluctuations, but unfortunately suffers from ’Fermi seasickness’, a
term coined in [78], referring to nucleation of spacetime filling D-branes at the AdS
boundary.

A similar construction was considered in M theory, where several scenarios of black
holes with topological charges were studied by using a universal consistent truncation.
Zero-temperature solutions were analyzed, including an analytical solution that is
ill-behaved in the UV, and a numerical solution that has the same IR behavior, but is
asymptotically AdS in the UV. Dimensionally reducing the former solution to type
ITA string theory, and T-dualizing to type IIB yields a well-behaved solution that is
a product of a squashed Sasaki-Finstein manifold and an extremal BTZ black hole.
Some checks of stability were performed, raising hopes that the backgrounds we found,

though not supersymmetric, are stable.
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Appendix A

Differential forms, conventions and

some 1dentities

I briefly review the conventions used for differential forms in this thesis, as well as

some useful identities.

The components of a differential form are defined by

1
wp = mem“p dxt N - N datr

In components, the wedge product between two forms is given by

(p+q)

gl Sl hsepa]

(G A 77q)u1---up+q =

where antisymmetrization is defined with a factor of 1/k!,

1
ﬂﬂlmuk] = E Z Sgn(a) Tlla(l)---ﬂa(k) :

oESK

(A.1)

(A.2)

(A.3)

Note that using this definition, the antisymmetrization of a fully antisymmetric tensor
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is equal to itself, ¢.e. for a p-form w,,

Wiptopp] = Wpneopy - (A.4)

The components of the exterior derivative are given by

(dwp)m---upﬂ = (p + 1) v[ulwug...,upﬂ] . (A5)

Here V denotes any torsion-free connection on the manifold.

We have

d(Cp N 77q) =dCy N1g + (=1)” G Adng. (A.6)

The Hodge dual maps p-forms to (n — p)-forms, where n is the dimensionality of

the space. Its action can be described in component notation as

(*wp>,u14..,un7p = eyl...yp,ul...,un_p wl/lml’p ) (A7)

where € is the Levi-Civita tensor. In an orthonormal basis {e;}, this is equivalent to

x(e1 N...Nep) =Fep1 Al Aey, (A.8)

where the sign is given by the product of g(e;,e;) for i = 1,...,p (since this is an
orthonormal basis, g(e;, e;) = £1).

The Levi-Civita tensor obeys

eMrtre, o =snl. (A.9)

Here s is the sign of the determinant of the metric, e.g. s = 1 for Riemannian manifolds
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and s = —1 for Minkowskian manifolds. This fixes the tensor € up to a sign, which

can be chosen by deciding on a “right-handed” coordinate frame. We can then write
e=/|gldz" A AN dz™, (A.10)

where ¢ is the determinant of the metric tensor.

Contractions of the Levi-Civita tensor are given by
LRI oy = S (M — B)LRLGWEgnd (A.11)
The Levi-Civita tensor is the same as the volume form on the manifold,
€ = vol. (A.12)
The normalization of the Hodge dual has been chosen so that
wy A swy = |wp|® vol = (wy, w,) vol . (A.13)
Here we have used the inner product on p-forms induced by the metric,
1
(Mp, Gp) = o g g Gy - (A.14)
More directly, eq. (A.9) can also be written as
xvol = s. (A.15)
The Hodge dual is an involution up to a sign,

s kW, = (1P Ps . (A.16)
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