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Abstract: This paper presents a critical review of existing Zitterbewegung models of the

electron, assessing their compatibility with Dirac theory, special relativity, and observed

particle physics data. We highlight the strengths and limitations of each model, while

also introducing a perspective of the electron based on field dynamics rather than particle

concepts. Our aim is to determine whether fundamental properties of the electron—such

as spin, charge, mass, and relativistic behavior—can be derived from first principles.

Keywords: Zitterbewegung; spin; electric charge; Schwinger limit; matter wave

1. Introduction

Since the advent of quantum mechanics, numerous scientists have endeavored to

establish a realistic interpretation. Of particular interest is the structure of the electron,

which has persistently defied classical description. The “intrinsic” spin is not to be visu-

alized. As Frank Wilczek stated in [1], “to understand the electron is to understand the

world”. According to the standard model, the electron is a point particle, endowed with

charge, mass, spin, magnetic moment, and quantum waves. Bohr himself pointed out the

shortcomings of his electron model. For example, the electron cannot have an extended

charge or it would explode due to electrostatic repulsion. Also, the electron should radiate

energy when orbiting the proton core under Bremsstrahlung and thus should not be stable.

The Zitterbewegung interpretation of quantum mechanics has a long history. In 1930,

Schrodinger discovered that the Dirac equation contains a rapid oscillatory motion where

the electron appears to move in circles at the speed of light, the “Zitterbewegung” or

“Trembling motion” [2]. The Dirac Hamiltonian of a free particle is as follows:

H = βmc2 +
3

∑
k=1

αk pk c (1)

with m being the mass of the particle and pk the momentum operator, and where β and αk

are related to the 4 × 4 Dirac matrices γµ (β = γ0 and αk = γ0γk). The Dirac Hamiltonian

describes the relativistic dynamics of spin 1/2 particles (fermions). It is a 4 × 4 matrix

that acts on the bispinor ψ. From this Dirac Hamiltonian, the Zitterbewegung oscillatory

component of the position operator obtained is, for k = 1, 2, 3,

xk(t) =
1

2
ih̄cH−1(αk − cpk H−1)

(

e−
2iHt

h̄ − 1
)

(2)

where the frequency of this oscillation is ω = 2E/h̄, with E being the energy of the particle.

Feynman would later encapsulate this jittery electron movement by postulating an

interaction between the electron particle and a sea of virtual particles and photons, what
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we know as quantum electrodynamics (QED). To some extent, all Zitterbewegung electron

models consider the existence of a (point) particle which is moving in specific ways. Some

posit toroidal movements and others circular movements, but it is a movement of the

electron that is postulated.

Clifford Algebras and Zitterbewegung

While we focus on highly visual interpretations of the electron structure, in terms of

particle trajectories, it is crucial to recognize the highly mathematical origins of the field.

The concept of Zitterbewegung has a long and solid pedigree, beginning with Dirac and

his eponymous equation. Dirac initially interpreted the Zitter as “oscillations between

positive and negative energy states”. The evolution of this field has led to the modern

application of Clifford algebras, known as “Space-Time Algebra” (STA), as developed

by Barut [3], Hestenes [4,5], and Hiley [6]. These mathematical structures have been

shown to provide a geometric framework for understanding the Dirac electron, offering a

more intuitive grasp of quantum mechanical spinor phenomena. Basil Hiley in particular

identified the link between Clifford algebras and “pilot-wave” Bohmian models. This

mathematical foundation, spanning from Dirac’s initial formulation to modern Clifford

algebraic approaches, provides a robust theoretical backdrop for the visual models.

In this essay, we will critically review some existing Zitterbewegung particle mod-

els. We chose those of Consa, Kovacs and Vassalo, Rivas, Dos Santos, and Williamson.

The first four belong to the “zitter-particle” electron field, while the last two go back to

the field formalism of electromagnetism; let us call them “zitter-field” electrons. This

is not an exhaustive review of the models. All these models attempt to provide useful

pictures to understand QED. They are not replacements for QED but rather attempts at

visualizing QED.

2. Experimental Observations of the Electron

This section adopts a phenomenological approach, reviewing the experimental evi-

dence regarding the electron’s nature.

2.1. Particle–Wave Duality

In quantum mechanics, elementary particles like the electron have a double nature:

particle and wave. The wave nature of the electron is manifested in the de Broglie wave-

length λ = h/p. The de Broglie wavelength, interestingly linked to the velocity of the

electron, has been observed experimentally, for example, in the Davisson–Germer experi-

ment [7]. The features of the electron associated with its particular character are its energy

E, mass m = E/c2, momentum p = mv, and spin angular momentum h̄/2; the ones associ-

ated with its wave character are its internal frequency ν = E/h and de Broglie wavelength

λdB = h/p.

2.2. Length Scales of the Electron

Experimental observations have revealed distinct scales associated with the electron:

the Compton scale (∼10−13 m) and the Fermi scale (∼10−15 m). These scales represent key

length dimensions at which the electron exhibits specific behaviors or properties.

2.2.1. Compton Scale

The first inner structure observed experimentally in the electron manifests itself at a

scale of around 10−13 m . This is known as the Dirac scale or Compton scale. The Compton

wavelength is evidenced in Thomson scattering and Compton scattering experiments [8].

This scale corresponds to the scale of the “Zitterbewegung” postulated motion. The associ-

ated radius is rc = λc/2π, with λc =
h

mc ≈ 2.42 × 10−12 m being the Compton wavelength.
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It is also worth noting that the ratio between the Compton and Bohr radius—the

distance between the nucleus and the electron in a hydrogen atom in its ground state—

is the fine-structure constant α. The presence of α is due to the electromagnetic (EM)

interaction between the electron and the proton as α is directly linked to the charge of the

electron (and the EM forces) via α = e2

4πϵ0 h̄c .

2.2.2. Fermi Scale

Thomson elastic scattering also reveals a geometrical cross-section associated with the

10−15 m scale, termed the “classical electron radius”, re =
e2

4πϵ0mc2 ≈ 2.83 × 10−15 m (Fermi

scale). The cross-section of σ = 8
3 πr2

e ≈ 66.5 f m2 represents the physical surface observed

during Thomson scattering. Compton scattering observes the Fermi distance through

inelastic field interactions. The Klein–Nishina formula [9], which explains these results,

is a more complex field-theoretic derivation, and its development lacks the immediate

geometric intuition of surface Thomson scattering. This formula also incorporates the

characteristic “classical electron radius”. Significantly, the ratio between the classical

electron radius re and the Compton radius rc is around 1/137, the fine-structure constant α.

This indicates an electromagnetic relationship between the two distances.

2.2.3. No Further Scale

There are, so far, no further experimental observations of any scale below that of Fermi

and this is true down to ∼10−18 m. It should be noted that, out of e, m, h̄, and c, no further

lengths in addition to the Bohr radius can be formed, and the ratio of two such lengths has

to be the fine-structure constant, as this is the only dimensionless ratio that can be formed

out of these four fundamental constants. We will argue in this paper that both e and m are

not fundamental but emerge from α, the fine-structure constant.

3. Critical Review of Existing Zitter-Particle Models

There are quite a few particle-based Zitterbewegung models, which have in common

that they interpret the Zitterbewegung as a circular motion of the charge, at the speed of

light, with an amplitude of the Compton wavelength. Most models separate the center

of charge from the center of mass, given that the particle is moving at the speed of light,

which would be impossible for a massive object like the electron. This motion generates the

quantum properties of the electron of spin and magnetic moment. In this section, we will

analyze the existing Zitter models. The electron model should possess the following criteria:

• The dual nature of particle and wave;

• The ability to predict the values of Zitterbewegung frequency (ω = 2mc2

h̄ ), spin (S = h̄
2 ),

magnetic moment µ = µB = eh̄
2m , and spin g-factor g = −2 obtained from Dirac theory;

• The ability to predict the de Broglie wavelength λdB = h/p;

• Agreement with the observed “anomalous” Landé factor g ≈ −2.002319304;

• The ability to explain the origin of mass and the electric charge;

• Both Fermi and Compton scales;

• Agreement with special relativity.

3.1. Consa’s Toroidal Solenoid Geometry

Oliver Consa proposed a model featuring a toroidal solenoid movement of the electron

at the classical electron radius [10]. Toroidal solenoid geometry is well known in the

electronics field, where it is used to design inductors and antennas. This model posits a

dual motion: a circular movement at the Compton scale coupled with a toroidal movement

about it at the classical electron radius. In this conceptualization, the electron point charge

orbits at light speed around a solenoid geometry encompassing both a small r radius and
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a larger Compton radius (see Figure 1). Oliver Consa stipulates that the normal to the

small surface is tangential to the circular Compton radius movement. He introduces a

g-factor, which is the ratio between the tangential velocity c and the rotational velocity

vr < c: g = c
vr

> 1.

Figure 1. The toroidal solenoid electron model of Oliver Consa. The electron charge moves at the

speed of light along the black line; the trajectory encompasses both a small radius r and Compton

radius (noted as R in the figure). The electron acts as an antenna, where the resonance frequency

coincides with the length of the antenna’s circumference. (Credit: from [10].)

There are several objections one can make:

• The frequency of the rotational motion is fe =
mc2

gh , with g > 1, which is not compatible

with the Zitter frequency 2mc2

h ;

• The spin angular momentum obtained is L = h̄, missing the factor 2 compared to the

true value;

• This model only includes an internal motion and does not include a wave, so it

does not explain the emergence of the de Broglie wave (this fact is highlighted by

the author).

• It does not explain the origin of the charge, even qualitatively. It postulates the charge

as a point charge.

3.2. Kovacs/Vassalo Model with Spherical Charge

Kovacs et al. in [11] present an alternative modern treatment. Their model posits the

electron charge distribution on the surface of a sphere with a radius equal to the classical

electron radius (10−15 m). Integration of electromagnetic energy over this geometry gives

the electron’s mass energy as 511 keV, thus fully accounting for the electron mass as

electromagnetic field energy. This concept, the equivalence of mass with electromagnetic

energy, was previously noted by Hestenes. It also aligns with the definition of the classical

electron radius: the radius at which electromagnetic field energy equates to the electron’s

mass. We observe this scale experimentally, and, when we use it in the EM field energy

calculation, it gives us precisely an electromagnetic field energy measure of 511 keV. This

strongly suggests the electromagnetic nature of mass, and the identification of mass with

field energy. While initially counter-intuitive, it finds support in Einsteinian relativistic

mass–energy equivalence. The fact that the mass of relativistic electrons varies with the

Lorentz gamma factor further suggests its electromagnetic character. The flux is quantized

and rotates on a circle at the Compton radius, by hypothesis (see Figure 2).
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Figure 2. Zitterbewegung model of Vassalo: a charged sphere of Fermi scale is rotating on the circular

trajectory of the Compton radius (noted as re in the figure) with angular frequency ωe. The ball is

counter-rotating with frequency −ωe. (Credit: G. Vassalo from [12].)

We have several issues with some aspects of this model:

• The frequency of the rotational motion is ωe =
mc2

h , which is not compatible with the

Zitter frequency;

• The spin angular momentum obtained is Ω = h̄. When asked about this fact, the au-

thors indicated that h̄ is the intrinsic angular momentum of the electron and that h̄/2

is the component of Ω aligned with an external magnetic field BE. In essence, they

distinguish between intrinsic spin and measured or projected spin. It is said that the

angle θ between angular momentum and BE is always π/3 or 2π/3. However, there

is no restriction concerning angle θ experimentally. This angle has been observed to

take many values between 0 and π (it is determined by the initial orientation of the

electron’s magnetic moment when the magnetic field is applied);

• In this model, the magnetic moment obtained is µ = µB = eh̄
2m . This is the Bohr

magneton that can be obtained from Dirac theory. As the intrinsic angular in this

model is ω = h̄, the Landé factor is g = − µ

µB
Ω
h̄

= −1, not in agreement with the value

g = −2 that is obtained from Dirac theory and measured experimentally (modulo

its anomalies);

• The authors speak of a spherical geometry of the charge distribution. As can be seen

in Figure 2, the charge is assumed to be a sphere at the Fermi scale. The origin of this

spherical charge distribution and confinement is not specified, just postulated. More-

over, such spherical geometry should theoretically explode by electrostatic repulsion.

3.3. Clarification on Spin Angular Momentum Measure

We will focus now on the spin angular momentum in their model (point 2 above).

There is confusion between the projection of the spin angular momentum in a given

direction z and the Larmor precession when a magnetic field is applied to the electron

(see Figure 3). In QM, the norm of the electron spin angular momentum is
√

3
2 h̄, and the

quantum projection of this spin in a given direction z is h̄
2 . The angle of this mathematical

projection is always the same, around 54.7◦. Moreover, when a magnetic field is applied,

there is absolutely no restriction concerning the angle θ between the magnetic moment µ⃗

of the electron and the magnetic field B⃗. The external magnetic field exerts a torque on

the magnetic moment, with norm τ = µB sin θ. Some experiments measure values of spin

precession angles other than π/3 and 2π/3. For example, see [13], which exhibits angles of

0.7◦ and 2.5◦, and [14], which exhibits an angle of 180◦. These observations are in direct

contradiction with the claims of the authors that the angles are fixed.
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Figure 3. (Left) Quantum projection of the spin vector S⃗ in a given direction z. (Right) Larmor

precession (with µ⃗ magnetic moment vector and B⃗ external magnetic field).

3.4. Martin Rivas’s Spinning Particles Model

Martin Rivas’s model represents one of the few approaches that provides equations of

motion for the Zitter electron in an electromagnetic field. Rivas postulated a separation

between the center of charge and the center of mass [15]. See Figure 4.

Figure 4. The spinning point particle model of Martin Rivas. The center of charge −e moves along

a circular trajectory of the Compton radius (noted as r in the figure), generating a spin angular

momentum S. The center charge is separated from the center of mass m. (Credit: from [15].)

In this model, a point charge moves at light speed around the center of mass, which

itself travels at sub-relativistic velocities. The point charge and the point mass are separated

by the Compton distance in the rest frame. The model contains relativistic dynamic

equations, which is a unique feature among the models. The calculation of the forces is

computed at the center of charge but applied to the center of mass, which is treated as a

separate point. A unique and remarkable feature of the Rivas model is that it has relativistic

equations that show a cycloid emergence under relativistic speeds. We have recreated these

Zitter dynamics in computation.

3.5. Mott Scattering in Rivas’s Model

These cycloids are enough to explain the Mott scattering effect visually. Mott scattering,

also referred to as spin-coupling inelastic Coulomb scattering, is the separation of the two

spin states of an electron beam by deflection on an atomic target. Specific experiments

involve 120 keV electrons, with co-planar spin +1/2 or −1/2, which orbit a core of gold [16].

We have simulated these orbits with Rivas’s dynamic equations. As shown in Figure 5,

we consider the orbit of the electron around a gold atomic core (represented by a small

dot in the center on the pictures). The electromagnetic attraction between the orbit and

the core varies depending on the position of the cusp. The force is stronger if the cusp

is closer to the atom core. Very simply, if the cusp is close, the attraction is stronger, if

the cusp is further from the core, the attraction is lesser. This results in a asymmetry of

scattering due to the spin orientation. This dependency of Mott scattering on co-planar spin
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is experimentally observed. See Figure 5 where the cusps of the cycloid interact longer with

the atomic core. Thus spin shows up in the scattering effect. In classical QM we account

for Mott scattering with various steps involved in the calculations. Here Mott scattering is

qualitatively explained with this simple visual cycloid model.

This recreation of Mott scattering through intuitive methods exemplifies the range

of quantum mechanical analogies that Zitter models can provide. It demonstrates that,

despite certain limitations, Zitter models hold substantial didactic and illustrative value

and may even enhance our comprehension of complex quantum phenomena. Specifically,

in this non-trivial example, Mott spin-dependent scattering is conceptualized as a cycloidal

interaction between electron charge cusps and the atomic core (see Figure 5). In contrast,

the conventional quantum mechanical formalism required to compute exact scattering

amplitudes involves numerous mathematically intricate steps.

Figure 5. Cycloid Mott scattering. Electrons come from the bottom up and scatter off a gold core in

the center. To the left (a), a left-spinning electron scattering at −120◦ with decreased exit velocity.

To the right (c), a right-spinning electron scattering at +120◦ with increased exit velocity. In the

middle (b), the Egyptian eye of Ra. An electron enters a semi-captive orbit and exits at −120◦. Mott

asymmetry means there are more in one direction than the other depending on spin.

Despite these remarkable results, some criticisms can be made of Rivas’ model con-

cerning the structure of the electron:

• The author assumes without demonstration that the total spin is h̄/2 by postulating an

ad hoc value for the “intrinsic” spin. This is represented by the value ω. This intrinsic

spin is postulated simply because, like the other circular Zitter models, the spin is 1

and does not match the observed value. We believe a precise derivation of the spin

angular momentum should be the cornerstone of any Zitterbewegung model;

• The charge is treated as a point charge, and there is no explanation of why the electron

has a negative charge and the positron a positive charge;

• The author indicates that the electron has left chirality (L) and the positron has right

chirality (R). However, the Dirac equation, which governs the behavior of fermions,

incorporates both left- and right-chiral components for each particle. All electrons,

being fermions, inherently possess both left- and right-chiral components: ψL/R =
1
2 (1 ± γ5)ψ [17]. Left- and right-chirality electrons interact electromagnetically, just

like any electron. However, note that only the electrons L and the positrons R are

coupled to the weak force.

3.6. On the Anomalous Magnetic Moment

Let us focus here on the magnetic moment of the electron µ. The Dirac equation

predicts g = −2 for the g-factor. Experimentally, the CODATA value observed for the

g-factor and its uncertainty is [18] as follows:

(g/2)exp = 1.00115965218046 ± 1.3 × 10−13. (3)

In quantum electrodynamics (QED), the correction of the anomalous magnetic moment

comes from the contribution of the virtual electron and photon loops from Feynman
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diagrams. The selection of which Feynman diagrams go into the computation of corrections

has been open to interpretation over time, has evolved over time, and is a topic of ongoing

debate and research. See [19] for a historical account of the evolution of this important

derivation and experimental value. The radiative corrections in QED can be viewed as part

of a perturbative series expansion

(g/2)QED = 1 + ∑
n>1

Cn

( α

π

)n
(4)

where the coefficient Cn of the n-loop level comes from the corresponding Feynman dia-

grams. We have C1 = 1/2 (Schwinger term). This series has been calculated analytically up

to order α5: (g/2)QED ≈ 1.00115965218164, with a relative deviation of about 10−12 com-

pared to the experimental value. The 12-digit agreement between theory and experiment is

why QED is considered so successful.

In the Zitter models, the authors [10,11,20] derive a value for the anomalous magnetic

moment g/2 with a different origin than QED. In those models, the anomalous correction

of the magnetic moment comes from the Fermi-scale correction to the Compton orbit.

More precisely, the Schwinger factor α/2π comes from the fact that the ratio between re

(classical electron radius) and rc (Compton radius) is α. Then, through different derivations,

the theoretical value that the authors of Zitter models claim to derive is as follows:

(g/2)zitter = 1 +
α

2π
≈ 1.0011614097320 (5)

with a relative deviation of about 10−6 compared to the experimental value. They obtain

this anomalous factor as a consequence of the geometry of the electron Zitter structure. It is

interesting to note that those simplistic geometrical Zitter models (at least much simpler

than the renormalization process) provide a theoretical prediction with a good precision of

10−6; however, they seem to miss something to reach the precision of QED.

It should be noted that this value is often introduced in an ad hoc manner, primarily

because they already know that they must ultimately reach the Schwinger factor α/2π as a

result. If this first-order correction had not been previously established as the Schwinger

factor, it is unlikely that the authors would have independently derived it.

3.7. What Do We Learn from the Review of Those Models?

As we have seen, the Zitter models have the advantage that they try to re-establish

some visualization in classical terms of the phenomenon typically considered quantum and

beyond visualization in QED in terms of simple electromagnetism. To do so, the models

postulate a charge movement responsible for spin. Calculating spin (even if the values are

wrong, as seen above) becomes a trivial visual matter of calculating a charge flow and a

Compton-scale surface. We repeat that the Mott scattering correctly observed by Rivas is

remarkable in its visual simplicity. We further point out that a six-digit precision calculated

with the Schwinger factor correction is nothing to sneer at. Yes, QED remains the panacea

when it comes to calculating to 12-digit precision, but what we lose in precision, we have

gained in intuition. There are great conceptual leaps to be had if one focuses on these

(dynamic) images. However, there are severe drawbacks to the particle models.

3.8. Impossibility to Obtain Dirac Features with Circular Charge Movement

The Zitterbewegung models studied until now posit the circular motion of some kind

of a charge (either punctual or extended) and moving at the speed of light. However, it

is easy to show that circular motion at the speed of light with radius r = h̄
mc inevitably
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leads to values of ω = mc2/h̄ for internal frequency, S = h̄ for spin, and g = 1 for the

Landé factor:

• Circular motion frequency: ω = c
r = mc2

h̄ ;

• Spin angular momentum: S = r mc = h̄
mc mc = h̄;

• By noting I as the electric current, A as the surface of the circle, and T as the time

period of the circular motion, we have the following: µ = IA = e
T πr2 = ec

2πr = ecr
2 =

ec
2

h̄
mc = eh̄

2m . As S = h̄, we have µ⃗ = g eh̄
2m S⃗, with g = −1.

Therefore, all these models miss the factor 2 that appears in the spin, magnetic moment,

and Zitterbewegung frequency from Dirac theory.

3.9. Impossibility of Point Charges and Static Extended Charges

We have seen that both point-like and extended interpretations of electric charge

present significant conceptual challenges. Bohr encountered this issue, noting that a static

extended charge distribution is problematic—it would inherently repel itself. Ironically,

electrostatic equations actually prevent the existence of stable extended charges. Neverthe-

less, this abstraction has undeniable practical utility, as demonstrated in routine electrical

engineering calculations. This inconsistency hints at a breakdown of electromagnetic princi-

ples at microscopic scales, where the inherent instability in classical electrostatics precludes

stable extended charge formations. Consequently, an electron cannot be a static charge

distribution; as we will explore, it may instead be a dynamic one.

At the same time, however, the electron cannot be considered a point charge as it

is difficult to ascribe physical properties to a mere point. As demonstrated in Rivas’s

work, additional “intrinsic” spin must be postulated to achieve accurate results due to

the mathematical limitations previously outlined. A point, by definition, lacks any spatial

extension and therefore cannot possess the property of charge in any physically meaningful

sense. A true point charge appears contradictory as a point is inherently a mathematical

abstraction rather than a physical entity.

3.10. On the Necessity of Topological Charges in Fields

The two observations, namely, that an electric charge cannot be strictly a point charge

nor an extended physical shape, suggest a fundamental issue in the conventional inter-

pretation of the electron charge. Maxwell’s equations can be approached from two causal

perspectives. The first, standard in electromagnetic engineering, posits that charges create

and modify fields; charges are introduced and manipulated to produce field configura-

tions. The second perspective reverses this causality, instead considering a given field

distribution and deriving topological charges within the field. In this interpretation, one ex-

amines a displacement field and calculates its divergence according to Maxwell’s equations.

Through Gauss’s law, charge can be derived from the field properties themselves. This

alternative, yet mathematically equivalent, ontological interpretation is fully compatible

with Maxwell’s framework. In this view, the “charge” becomes what can be termed a

“topological charge”, a concept rooted in scalar fields rather than in discrete entities. Field

singularities or topological charges—whether point-like or extended—are thus treated as

mathematical abstractions, arising within the field itself. A point charge can topologically

exist; it is a singularity of the field.

4. Critical Review of Zitter-Field Models

This naturally brings us back to considering field-based models, such as those in

quantum electrodynamics (QED). The charge must be understood as topological in nature.

Essentially, this approach revisits QED and standard field theory, but they are now infused

with the intuition derived from Zitterbewegung. We begin with the electromagnetic (EM)
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field rather than from particle concepts. In this section, we will examine two Zitter-field

models (in contrast to the Zitter-particle models discussed previously). These models are

inspired by Zitterbewegung, focusing on a classical EM field framework. They all propose

a form of “captured light”, where the EM field circulates at the Compton scale. From these

fields, we derive charge, mass, spin, and magnetic moment, as will be demonstrated.

4.1. Dos Santos’s Toroidal Electromagnetic Field

The models discussed previously are rooted in the particle ontology, positing various

circular, helicoidal, or toroidal dimensions and movements of particles. In contrast, Carlos

Dos Santos in [20] presents a field-based approach. This model eschews the particle concept,

instead focusing on an electromagnetic wave moving at the Compton radius, by definition

at the speed of light, while confined to a torus of small radius rτ , with E and B field

amplitudes approximating the Schwinger limits. The model proposes a specific ansatz for

the fields E and B, incorporating phases that reflect this helicoidal geometry with azimuthal

and toroidal angles. The ansatz is shown to verify Maxwell’s equations and derive a charge

in the torus as the divergence of the field. This notion of charge is thus purely topological.

This interpretation by Dos Santos uses the reversed causality of Maxwell we alluded to.

Here, fields create (topological) charges. The field is real, the charge is mathematical, and

it does not matter whether it is a point or a circle or a sphere or a ball; for all practical

purposes, it is colocated with the fields. In this case, it is an electrical flow confined to a

torus of Compton radius and Fermi width. There is only the EM field. See Figure 6.

Figure 6. The EM torus of dos Santos. (a) The field is confined to the torus with small radius

rτ = 1/
√

(π) ∗ re, and circulating at speed c at Compton radius (noted rc). (b) shows the toroidal

angle θ. (c) shows the arc length which is the classical electron radius re, and the angle ∆ϕ = α (fine

structure constant). (d) Electromagnetic field with electric field E⃗r (in blue) and magnetic field B⃗z (in

red), with wavelength λ = re and current J⃗ϕ. (e) shows the centripetal Lorentz force F⃗c stabilizing

this orbit around the center. (Credit: C. Dos Santos from [20].)

The relation between the electromagnetic wavelength λ, λc Compton wavelength,

and the α fine-structure constant. In this model, we have λ = αrc = α λc
2π = re. Compared to

the models described in Section 3, this model of Dos Santos has the advantage of proposing

a view of the electron from fundamental fields (the electromagnetic wave) that satisfy

the Maxwell equations. In his article, Dos Santos tried to derive the spin and magnetic

moment from those electric and magnetic fields, and to explain the orbital motion of the

electromagnetic wave with the Lorentz force. There is a reason the electromagnetic wave
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stabilizes in the Compton orbit; the charge computed from this field is confined to the torus

and is “flowing” in the toroidal tube. The Lorentz force computed explains the stable orbit.

However, we note the following things:

• By noting p, the momentum of the electromagnetic wave, the spin is S = rc.p =
λc
2π . h

λ = λc
2π . h

αλc/2π = h
α , which is not the right value of course (the fine-structure

constant α should not appear in the value of the spin);

• The frequency of the internal motion is ωc =
c
rc
= 2πc

λc
= mc2

h̄ , not in agreement with

the Zitterbewegung frequency.

4.2. Williamson Model

Williamson and Van der Mark [21] described the electron as a photon confined in

toroidal topology (double loop). The radius of the double loop is given by r = λc
4π , with a λc

Compton wavelength (which also corresponds to the wavelength of the internal photon).

The electric charge is directly related to the flux of the electric field (q = ϵ0ΦE =

ϵ0

∫∫

S E⃗ · d⃗S), with ϵ0 vacuum permittivity. In the model of Williamson, the electric charge

arises from the twist of the electric field of the confined photon (see Figure 7). The resultant

electric field always points inwards (for the electron with negative charge) or outwards

(for the positron with positive charge). The electric charge then manifests itself as a result

of the reconfiguration of the electric field by the confinement topology to be everywhere

radial. The internal structure of the particle is cyclic, while the distribution of the electric

field is radial at large distances, which explains why the electron appears spherically

symmetric experimentally.

Figure 7. The toroidal model of Williamson. (a) Free photon with circular polarization of electric and

magnetic fields E⃗/B⃗; (b) photon confined on the double loop, making the charge, magnetic moment

µ, and orbital angular momentum L⃗ (spin) appear. The toroidal structure is characterized by a radius

r = λc/4π. (Credit: from [21].)

Compared to the models previously seen, this model has the following advantages:

• It explains the Zitter frequency: ωc =
c
r = 4πc

λc
= 2mc2

h̄ ;

• The value of the spin is obtained: L = r.p = λc
4π . h

λc
= h̄

2 ;

• It leads to the correct factor g = −2 for the magnetic moment;

• The model explains the origin of the mass from the confinement of the photon on

a double loop. Indeed, when a photon is confined, it represents confined energy.

Trapped light acquires an effective mass.

However, there are some negative points that must to be mentioned:

• The authors were not able to derive the exact value of the electric charge q = ±e from

the electromagnetic field;

• They do not provide the precise origin of the confinement of the photon on a dou-

ble loop.
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4.3. What Do We Learn from the Review of the Models of Williamson and Dos Santos?

In the model of Williamson, the factor 2 that appears in Dirac theory in the spin,

magnetic moment, and Zitterbewegung frequency comes from the fact that we have a

double loop (λ = 4πr). The spin is not an intrinsic property of the electron; it emerges as a

tangible, physical phenomenon arising from the underlying electromagnetic dynamics at

the Compton scale.

Moreover in both models, the charge is understood as the divergent signature of

a given self-oscillating electromagnetic field. This reinterpretation of charge, as a field

signature, aligns with the model of the electron as a self-interacting electromagnetic field,

potentially resolving the paradoxes associated with point-like and/or extended charge

distributions. The correct value of the Lorentz force in Dos Santos’s model further jus-

tifies this “closed orbit” assumption. This perspective suggests that charge and charge

density might be emergent properties of field dynamics at the Compton scale rather than

intrinsic properties.

Finally, in this model, and following the lead of D. Hestenes, we identify the electron’s

rest mass with its electromagnetic field energy. This concept aligns with Einstein’s equiva-

lence principle (E = mc2, with c being speed of light), positing that mass is purely a form

of energy.

Those facts suggest that the fundamental properties of the electron, including spin,

charge, and mass, may be emergent phenomena arising from the dynamics of electromag-

netic fields rather than “intrinsic” properties.

5. Dynamics of the Electron and Special Relativity

In this section, we focus on understanding how an electron is seen when it moves at

speed v relative to a reference frame (laboratory frame). The authors mentioned previously

the necessity of introducing a radius of the electron r, of the order of Compton wavelength.

Moreover, in their models, the loop motion becomes a helix/cycloid when the particle has

a speed v relative to a given frame. Of course, such models must be in agreement with

special relativity.

5.1. The Different Dynamical Models

In the model of Oliver Consa, the toroidal solenoid described in Section 3.1 becomes

a helicoidal solenoid for a moving electron, as illustrated in Figure 8. In this model,

the helicity is given by the helical translation motion (v > 0), which can be left-handed or

right-handed. Helicity depends here on the observer; it is not Lorentz invariant. According

to Consa, chirality is given by the secondary helical rotational motion, which can also

be left-handed or right-handed. Chirality is here independent of the observer; it is a

Lorentz-invariant quantity.

In the model of Kovacs/Vassalo, we also have an helix, where its radius depends on

the speed of the particle. See Figure 9.

In the model of Rivas, as discussed before, a cycloid emerges when the spin is co-

planar with the direction of propagation. The main point to make here is that the radius

does not contract like in the case of Vassalo. The typical cycloid of the relativistic dynamics

recreated in 2D is shown in Figure 10.



Symmetry 2025, 17, 360 13 of 16

Figure 8. Helicoidal solenoid electron moving in the z-direction. (Credit: O. Consa from [10].)

Figure 9. Relativistic dynamics of this electron in the model of Kovacs/Vassalo. The radius of the

Zitter internal motion depends on the speed v of the particle (blue color: v = 0; light blue: v = 0.43c;

orange: v = 0.86c; red: v = 0.98c). (Credit: G. Vassalo.)

Figure 10. The cycloid of Rivas. As energy increases to relativistic speeds, here, from 104 eV (a) on the

left to 105 eV (b) on the right, a cycloid emerges. The electron mass trajectory is in red, and it moves

from bottom to top. The electron charge position is in blue and orbits about the center of mass. Here,

the spin is left, and the charge moves counter-clockwise around the center of mass. As the center

of mass reaches relativistic velocities, the cusps appear as the charge is moving counter to the mass.

In all these simulations, the spin is co-planar to the orbit; the spin is in the plane of the picture.

In the Dos Santos model, the internal electromagnetic wave described in Section 4.1

follows a helix path. This is the case, for example, when the electron orbits around the

nucleus in the atom, from this nucleus frame (see Figure 11). In this model, the helix is

characterized by different parameters: length of a coil D, radius of the helix r, helix pitch P,

internal speed c, longitudinal speed v, and transversal speed v⊥ = c/γ (with γ Lorentz

factor). We have the following relations: D2 = P2 + (2πr)2 and c2 = v2 + v2
⊥. From this

relation between speeds, we have v < c, providing an intuitive explanation of why massive

particles cannot go faster than light.
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Figure 11. (Left) The electron at rest. It consists of an electromagnetic wave moving at speed c along

a circle of Compton radius (noted as rc in the figure). (Right) Electron in movement with longitudinal

velocity v⃗n relative to the proton rest frame. (Credit: C. Dos Santos from [22].)

5.2. de Broglie Wavelength

As mentioned, we must consider wave–particle duality and the emergence of the

de Broglie wavelength. As should be clear by now, we have not covered it in any of the

models, for the simple reason that the models do not really say anything. The reason for it

seems just as straightforward; the Zitter models are fundamentally particle models and, by

focusing exclusively on the particle image, do not provide an explanation for the emergence

of distributed waves. No one treats the Zitter-particle electron as a radiating antenna, but it

is a radiating antenna. We will now show that, when we posit physical EM standing waves

surrounding this Zitter electron, we can arrive quite simply at the emergence of the de

Broglie wavelength.

From the laboratory frame, the matter wave manifests a wavelength of λdB = h/p.

This matter wave has group velocity v and phase velocity c2/v. A puzzling feature of the

de Broglie wavelength is its dependence on the velocity of the electron (or particle) in the

observing frame. How to interpret this wavelength? de Broglie first observed theoretically

that a standing wave at the Compton scale would undergo Doppler shifting and exhibit a

beating frequency [23]. Crucially, de Broglie demonstrated that the proper wavelength—the

de Broglie wavelength—would emerge if and only if the starting wavelength was at the

Compton scale.

We consider the waves that are emitted from the particle. In the rest frame, we note ω0

as the frequency of those waves and k0 = ω0/c as their wave vector. From the laboratory

frame, the particle moves at speed v in the z direction. Those waves emitted from the

particle are Doppler shifted with frequency ω = γ(ω0 + v⃗.⃗k) = γω0

(

1 + v
c cos θ

)

with θ

being the angle between the wave vector of the wave k⃗ and the velocity v⃗. We want to see

what is the superposition of the waves ψ+ and ψ− emitted in the direction of the particle

propagation and the inverse direction. We have ψ+ = A ei(ω+t−k+z) with A amplitude,

ω+ = γω0(1 + v
c ) and k+ = γk0(1 + v

c ); and ψ− = A ei(ω−t−k−z) with ω− = γω0(1 − v
c )

and k− = γk0(1 − v
c ) [24]. The superposition of those two waves is

ψ+ + ψ− = A ei(ω+t−k+z) + A ei(ω−t−k−z) = 2A cos
(

ω
v

c
t − kz

)

exp
(

i(ωt − k
v

c
z)
)

. (6)

The exponential term can be written as exp
(

iγω0(t − v
c2 z)

)

. It represents a traveling

wave of frequency ω = γω0 propagating at phase velocity vp = c2

v . The distance in space

between two consecutive wave crests is then

λdB =
2π

ω
vp =

2π

γω0

c2

v
=

h

γm0v
(7)

which is the de Broglie wavelength.

Visually, this phenomenon is readily apparent; a standing wave is the sum of inbound

and outbound waves, as illustrated in Figure 12. Under a relativistic Doppler shift, each
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component modulates differently—one dilates while the other compresses. The resulting

sum exhibits a beating at the proper de Broglie wavelength. In this interpretation, the de

Broglie wavelength is a natural consequence of the relativistic behavior of the Compton-

scale standing waves associated with electrons.

Figure 12. A standing wave at Compton scale becomes a traveling wave under Lorentz boost

(indicated by the black arrow). The superposition of the waves A and B produces the traveling wave

C, which manifests a de Broglie wavelength with phase velocity c2/v. (Credit: from [25].)

6. Discussion

In this article, we have reviewed Zitterbewegung models concerning the electron. Two

primary categories of models have emerged in the literature: those that use a physical

charge (either point-like or extended) and those based solely on the electromagnetic field.

The most promising models appear to be those that describe the electron as a confined

electromagnetic field, arranged in a loop or double-loop structure. A field confined at the

Compton scale exhibits effective mass and spin, and, under specific topological conditions,

can carry an electric charge. We believe that the work of Dos Santos and Williamson has laid

important groundwork for future research. Such models offer a more intuitive visualization

of quantum electrodynamics (QED) results and concepts. In these images, the intrinsic spin

of QM can be visualized. The authors are currently developing a Zitterbewegung-inspired

model in alignment with those of Dos Santos and Williamson, specifically focusing on a

purely electromagnetic field-based approach.

We have concentrated solely on the electron, following the Einstein–Wilczek view that

understanding the electron could provide a foundation for comprehending the physical

world. This approach is justified by the electron’s fundamental role in our understanding

of matter and its interactions. However, it is important to recognize that our model does

not extend to other leptons, such as the muon or tau, nor does it address the structure of

the proton. This omission is notable given the proton’s central role in atomic structure

and nuclear physics. Future research would benefit from applying Zitterbewegung-related

models to these other particles.
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