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Abstract: This paper presents a critical review of existing Zitterbewegung models of the
electron, assessing their compatibility with Dirac theory, special relativity, and observed
particle physics data. We highlight the strengths and limitations of each model, while
also introducing a perspective of the electron based on field dynamics rather than particle
concepts. Our aim is to determine whether fundamental properties of the electron—such
as spin, charge, mass, and relativistic behavior—can be derived from first principles.
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1. Introduction

Since the advent of quantum mechanics, numerous scientists have endeavored to
establish a realistic interpretation. Of particular interest is the structure of the electron,
which has persistently defied classical description. The “intrinsic” spin is not to be visu-
alized. As Frank Wilczek stated in [1], “to understand the electron is to understand the
world”. According to the standard model, the electron is a point particle, endowed with
charge, mass, spin, magnetic moment, and quantum waves. Bohr himself pointed out the
shortcomings of his electron model. For example, the electron cannot have an extended
charge or it would explode due to electrostatic repulsion. Also, the electron should radiate
energy when orbiting the proton core under Bremsstrahlung and thus should not be stable.

The Zitterbewegung interpretation of quantum mechanics has a long history. In 1930,
Schrodinger discovered that the Dirac equation contains a rapid oscillatory motion where
the electron appears to move in circles at the speed of light, the “Zitterbewegung” or
“Trembling motion” [2]. The Dirac Hamiltonian of a free particle is as follows:

3
H=pmc*+ Y axpic (1)
k=1

with m being the mass of the particle and pj the momentum operator, and where 8 and
are related to the 4 x 4 Dirac matrices v, (B = yo and a; = o7x). The Dirac Hamiltonian
describes the relativistic dynamics of spin 1/2 particles (fermions). It is a 4 x 4 matrix
that acts on the bispinor ¢. From this Dirac Hamiltonian, the Zitterbewegung oscillatory
component of the position operator obtained is, for k = 1,2, 3,

1 i
() = EihCH_l((Xk —cpeH™Y) (e_% - 1) ()
where the frequency of this oscillation is w = 2E /i, with E being the energy of the particle.

Feynman would later encapsulate this jittery electron movement by postulating an
interaction between the electron particle and a sea of virtual particles and photons, what
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we know as quantum electrodynamics (QED). To some extent, all Zitterbewegung electron
models consider the existence of a (point) particle which is moving in specific ways. Some
posit toroidal movements and others circular movements, but it is a movement of the
electron that is postulated.

Clifford Algebras and Zitterbewegung

While we focus on highly visual interpretations of the electron structure, in terms of
particle trajectories, it is crucial to recognize the highly mathematical origins of the field.
The concept of Zitterbewegung has a long and solid pedigree, beginning with Dirac and
his eponymous equation. Dirac initially interpreted the Zitter as “oscillations between
positive and negative energy states”. The evolution of this field has led to the modern
application of Clifford algebras, known as “Space-Time Algebra” (STA), as developed
by Barut [3], Hestenes [4,5], and Hiley [6]. These mathematical structures have been
shown to provide a geometric framework for understanding the Dirac electron, offering a
more intuitive grasp of quantum mechanical spinor phenomena. Basil Hiley in particular
identified the link between Clifford algebras and “pilot-wave” Bohmian models. This
mathematical foundation, spanning from Dirac’s initial formulation to modern Clifford
algebraic approaches, provides a robust theoretical backdrop for the visual models.

In this essay, we will critically review some existing Zitterbewegung particle mod-
els. We chose those of Consa, Kovacs and Vassalo, Rivas, Dos Santos, and Williamson.
The first four belong to the “zitter-particle” electron field, while the last two go back to
the field formalism of electromagnetism; let us call them “zitter-field” electrons. This
is not an exhaustive review of the models. All these models attempt to provide useful
pictures to understand QED. They are not replacements for QED but rather attempts at
visualizing QED.

2. Experimental Observations of the Electron

This section adopts a phenomenological approach, reviewing the experimental evi-
dence regarding the electron’s nature.

2.1. Particle-Wave Duality

In quantum mechanics, elementary particles like the electron have a double nature:
particle and wave. The wave nature of the electron is manifested in the de Broglie wave-
length A = h/p. The de Broglie wavelength, interestingly linked to the velocity of the
electron, has been observed experimentally, for example, in the Davisson-Germer experi-
ment [7]. The features of the electron associated with its particular character are its energy
E, mass m = E/c%, momentum p = mv, and spin angular momentum 7/2; the ones associ-
ated with its wave character are its internal frequency v = E/h and de Broglie wavelength
)LdB = l’l/ p.

2.2. Length Scales of the Electron

Experimental observations have revealed distinct scales associated with the electron:
the Compton scale (~10~13 m) and the Fermi scale (~10~' m). These scales represent key
length dimensions at which the electron exhibits specific behaviors or properties.

2.2.1. Compton Scale

The first inner structure observed experimentally in the electron manifests itself at a
scale of around 107!3 m . This is known as the Dirac scale or Compton scale. The Compton
wavelength is evidenced in Thomson scattering and Compton scattering experiments [8].
This scale corresponds to the scale of the “Zitterbewegung” postulated motion. The associ-
ated radius is 7. = A /27, with A, = % ~ 2.42 x 10712 m being the Compton wavelength.
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It is also worth noting that the ratio between the Compton and Bohr radius—the
distance between the nucleus and the electron in a hydrogen atom in its ground state—
is the fine-structure constant a. The presence of & is due to the electromagnetic (EM)
interaction between the electron and the proton as « is directly linked to the charge of the

electron (and the EM forces) via o« = ﬁzohc'

2.2.2. Fermi Scale

Thomson elastic scattering also reveals a geometrical cross-section associated with the
2
101> m scale, termed the “classical electron radius”, 7, £ ~283%x107®m (Fermi

" 4megme?
scale). The cross-section of o = §7tr2 ~ 66.5 fm? represents t(ile physical surface observed
during Thomson scattering. Compton scattering observes the Fermi distance through
inelastic field interactions. The Klein—Nishina formula [9], which explains these results,
is a more complex field-theoretic derivation, and its development lacks the immediate
geometric intuition of surface Thomson scattering. This formula also incorporates the
characteristic “classical electron radius”. Significantly, the ratio between the classical
electron radius r. and the Compton radius . is around 1/137, the fine-structure constant «.

This indicates an electromagnetic relationship between the two distances.

2.2.3. No Further Scale

There are, so far, no further experimental observations of any scale below that of Fermi
and this is true down to ~10718 m. It should be noted that, out of ¢, m, 11, and ¢, no further
lengths in addition to the Bohr radius can be formed, and the ratio of two such lengths has
to be the fine-structure constant, as this is the only dimensionless ratio that can be formed
out of these four fundamental constants. We will argue in this paper that both e and m are
not fundamental but emerge from &, the fine-structure constant.

3. Critical Review of Existing Zitter-Particle Models

There are quite a few particle-based Zitterbewegung models, which have in common
that they interpret the Zitterbewegung as a circular motion of the charge, at the speed of
light, with an amplitude of the Compton wavelength. Most models separate the center
of charge from the center of mass, given that the particle is moving at the speed of light,
which would be impossible for a massive object like the electron. This motion generates the
quantum properties of the electron of spin and magnetic moment. In this section, we will
analyze the existing Zitter models. The electron model should possess the following criteria:

*  The dual nature of particle and wave;

e  The ability to predict the values of Zitterbewegung frequency (w = 2”52 ), spin (S = %),

magnetic moment y = yp = 2%, and spin g-factor ¢ = —2 obtained from Dirac theory;
e The ability to predict the de Broglie wavelength A5 = h/p;
e Agreement with the observed “anomalous” Landé factor ¢ ~ —2.002319304;
e The ability to explain the origin of mass and the electric charge;
e Both Fermi and Compton scales;
e  Agreement with special relativity.

3.1. Consa’s Toroidal Solenoid Geometry

Oliver Consa proposed a model featuring a toroidal solenoid movement of the electron
at the classical electron radius [10]. Toroidal solenoid geometry is well known in the
electronics field, where it is used to design inductors and antennas. This model posits a
dual motion: a circular movement at the Compton scale coupled with a toroidal movement
about it at the classical electron radius. In this conceptualization, the electron point charge
orbits at light speed around a solenoid geometry encompassing both a small r radius and
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a larger Compton radius (see Figure 1). Oliver Consa stipulates that the normal to the
small surface is tangential to the circular Compton radius movement. He introduces a
g-factor, which is the ratio between the tangential velocity c and the rotational velocity
v <cig= U% > 1.

! R—
X1~
L4
~ l'
._*__. 4
A

Figure 1. The toroidal solenoid electron model of Oliver Consa. The electron charge moves at the
speed of light along the black line; the trajectory encompasses both a small radius » and Compton
radius (noted as R in the figure). The electron acts as an antenna, where the resonance frequency
coincides with the length of the antenna’s circumference. (Credit: from [10].)

There are several objections one can make:
*  The frequency of the rotational motion is f. = ";—';, with ¢ > 1, which is not compatible

2mc2 .

with the Zitter frequency <7~;

¢  The spin angular momentum obtained is L. = 7, missing the factor 2 compared to the
true value;

¢  This model only includes an internal motion and does not include a wave, so it
does not explain the emergence of the de Broglie wave (this fact is highlighted by
the author).

* It does not explain the origin of the charge, even qualitatively. It postulates the charge
as a point charge.

3.2. Kovacs/Vassalo Model with Spherical Charge

Kovacs et al. in [11] present an alternative modern treatment. Their model posits the
electron charge distribution on the surface of a sphere with a radius equal to the classical
electron radius (10~!°> m). Integration of electromagnetic energy over this geometry gives
the electron’s mass energy as 511 keV, thus fully accounting for the electron mass as
electromagnetic field energy. This concept, the equivalence of mass with electromagnetic
energy, was previously noted by Hestenes. It also aligns with the definition of the classical
electron radius: the radius at which electromagnetic field energy equates to the electron’s
mass. We observe this scale experimentally, and, when we use it in the EM field energy
calculation, it gives us precisely an electromagnetic field energy measure of 511 keV. This
strongly suggests the electromagnetic nature of mass, and the identification of mass with
field energy. While initially counter-intuitive, it finds support in Einsteinian relativistic
mass—energy equivalence. The fact that the mass of relativistic electrons varies with the
Lorentz gamma factor further suggests its electromagnetic character. The flux is quantized
and rotates on a circle at the Compton radius, by hypothesis (see Figure 2).
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Figure 2. Zitterbewegung model of Vassalo: a charged sphere of Fermi scale is rotating on the circular
trajectory of the Compton radius (noted as 7, in the figure) with angular frequency w,. The ball is
counter-rotating with frequency —w,. (Credit: G. Vassalo from [12].)

We have several issues with some aspects of this model:

*  The frequency of the rotational motion is w, = *~, which is not compatible with the

Zitter frequency;

*  The spin angular momentum obtained is (2 = /i. When asked about this fact, the au-
thors indicated that 7 is the intrinsic angular momentum of the electron and that 7 /2
is the component of () aligned with an external magnetic field Br. In essence, they
distinguish between intrinsic spin and measured or projected spin. It is said that the
angle 0 between angular momentum and B, is always 7t/3 or 271/3. However, there
is no restriction concerning angle 6 experimentally. This angle has been observed to
take many values between 0 and 7 (it is determined by the initial orientation of the
electron’s magnetic moment when the magnetic field is applied);

¢ In this model, the magnetic moment obtained is y = yup = % This is the Bohr
magneton that can be obtained from Dirac theory. As the intrinsic angular in this

model is w = 7, the Landé factor is g = — p E5 = —1, not in agreement with the value
B
g = —2 that is obtained from Dirac theory and measured experimentally (modulo

its anomalies);

*  The authors speak of a spherical geometry of the charge distribution. As can be seen
in Figure 2, the charge is assumed to be a sphere at the Fermi scale. The origin of this
spherical charge distribution and confinement is not specified, just postulated. More-
over, such spherical geometry should theoretically explode by electrostatic repulsion.

3.3. Clarification on Spin Angular Momentum Measure

We will focus now on the spin angular momentum in their model (point 2 above).
There is confusion between the projection of the spin angular momentum in a given
direction z and the Larmor precession when a magnetic field is applied to the electron
(see Figure 3). In QM, the norm of the electron spin angular momentum is \/7323, and the
quantum projection of this spin in a given direction z is % The angle of this mathematical
projection is always the same, around 54.7°. Moreover, when a magnetic field is applied,
there is absolutely no restriction concerning the angle 6 between the magnetic moment ji
of the electron and the magnetic field B. The external magnetic field exerts a torque on
the magnetic moment, with norm 7 = uB sin . Some experiments measure values of spin
precession angles other than 71/3 and 27t/3. For example, see [13], which exhibits angles of
0.7° and 2.5°, and [14], which exhibits an angle of 180°. These observations are in direct
contradiction with the claims of the authors that the angles are fixed.
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Figure 3. (Left) Quantum projection of the spin vector Sina given direction z. (Right) Larmor
precession (with ji magnetic moment vector and B external magnetic field).

3.4. Martin Rivas’s Spinning Particles Model

Martin Rivas’s model represents one of the few approaches that provides equations of
motion for the Zitter electron in an electromagnetic field. Rivas postulated a separation
between the center of charge and the center of mass [15]. See Figure 4.

e
e =g-%.g
K= om z P *om

S=Z+W=—rxy(v)mu

Figure 4. The spinning point particle model of Martin Rivas. The center of charge —e moves along
a circular trajectory of the Compton radius (noted as r in the figure), generating a spin angular
momentum S. The center charge is separated from the center of mass m. (Credit: from [15].)

In this model, a point charge moves at light speed around the center of mass, which
itself travels at sub-relativistic velocities. The point charge and the point mass are separated
by the Compton distance in the rest frame. The model contains relativistic dynamic
equations, which is a unique feature among the models. The calculation of the forces is
computed at the center of charge but applied to the center of mass, which is treated as a
separate point. A unique and remarkable feature of the Rivas model is that it has relativistic
equations that show a cycloid emergence under relativistic speeds. We have recreated these
Zitter dynamics in computation.

3.5. Mott Scattering in Rivas’s Model

These cycloids are enough to explain the Mott scattering effect visually. Mott scattering,
also referred to as spin-coupling inelastic Coulomb scattering, is the separation of the two
spin states of an electron beam by deflection on an atomic target. Specific experiments
involve 120 keV electrons, with co-planar spin +1/2 or —1/2, which orbit a core of gold [16].
We have simulated these orbits with Rivas’s dynamic equations. As shown in Figure 5,
we consider the orbit of the electron around a gold atomic core (represented by a small
dot in the center on the pictures). The electromagnetic attraction between the orbit and
the core varies depending on the position of the cusp. The force is stronger if the cusp
is closer to the atom core. Very simply, if the cusp is close, the attraction is stronger, if
the cusp is further from the core, the attraction is lesser. This results in a asymmetry of
scattering due to the spin orientation. This dependency of Mott scattering on co-planar spin
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is experimentally observed. See Figure 5 where the cusps of the cycloid interact longer with
the atomic core. Thus spin shows up in the scattering effect. In classical QM we account
for Mott scattering with various steps involved in the calculations. Here Mott scattering is
qualitatively explained with this simple visual cycloid model.

This recreation of Mott scattering through intuitive methods exemplifies the range
of quantum mechanical analogies that Zitter models can provide. It demonstrates that,
despite certain limitations, Zitter models hold substantial didactic and illustrative value
and may even enhance our comprehension of complex quantum phenomena. Specifically,
in this non-trivial example, Mott spin-dependent scattering is conceptualized as a cycloidal
interaction between electron charge cusps and the atomic core (see Figure 5). In contrast,
the conventional quantum mechanical formalism required to compute exact scattering
amplitudes involves numerous mathematically intricate steps.

(a) (b) (c)

Figure 5. Cycloid Mott scattering. Electrons come from the bottom up and scatter off a gold core in
the center. To the left (a), a left-spinning electron scattering at —120° with decreased exit velocity.
To the right (c), a right-spinning electron scattering at +120° with increased exit velocity. In the
middle (b), the Egyptian eye of Ra. An electron enters a semi-captive orbit and exits at —120°. Mott
asymmetry means there are more in one direction than the other depending on spin.

Despite these remarkable results, some criticisms can be made of Rivas” model con-
cerning the structure of the electron:

e The author assumes without demonstration that the total spin is 1 /2 by postulating an
ad hoc value for the “intrinsic” spin. This is represented by the value w. This intrinsic
spin is postulated simply because, like the other circular Zitter models, the spin is 1
and does not match the observed value. We believe a precise derivation of the spin
angular momentum should be the cornerstone of any Zitterbewegung model;

e The charge is treated as a point charge, and there is no explanation of why the electron
has a negative charge and the positron a positive charge;

*  The author indicates that the electron has left chirality (L) and the positron has right
chirality (R). However, the Dirac equation, which governs the behavior of fermions,
incorporates both left- and right-chiral components for each particle. All electrons,
being fermions, inherently possess both left- and right-chiral components: ¢ /g =
$(1 £ 95)9 [17]. Left- and right-chirality electrons interact electromagnetically, just
like any electron. However, note that only the electrons L and the positrons R are
coupled to the weak force.

3.6. On the Anomalous Magnetic Moment

Let us focus here on the magnetic moment of the electron y. The Dirac equation
predicts g = —2 for the g-factor. Experimentally, the CODATA value observed for the
g-factor and its uncertainty is [18] as follows:

(§/2)exp = 1.00115965218046 £ 1.3 x 1013, 3)

In quantum electrodynamics (QED), the correction of the anomalous magnetic moment
comes from the contribution of the virtual electron and photon loops from Feynman
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diagrams. The selection of which Feynman diagrams go into the computation of corrections
has been open to interpretation over time, has evolved over time, and is a topic of ongoing
debate and research. See [19] for a historical account of the evolution of this important
derivation and experimental value. The radiative corrections in QED can be viewed as part
of a perturbative series expansion

(8/2)grp =1+ ¥ Cu( =) @

n>1

where the coefficient C;, of the n-loop level comes from the corresponding Feynman dia-
grams. We have C; = 1/2 (Schwinger term). This series has been calculated analytically up
to order a%: (g/ 2)oEp =~ 1.00115965218164, with a relative deviation of about 10712 com-
pared to the experimental value. The 12-digit agreement between theory and experiment is
why QED is considered so successful.

In the Zitter models, the authors [10,11,20] derive a value for the anomalous magnetic
moment ¢/2 with a different origin than QED. In those models, the anomalous correction
of the magnetic moment comes from the Fermi-scale correction to the Compton orbit.
More precisely, the Schwinger factor « /27t comes from the fact that the ratio between 7,
(classical electron radius) and 7. (Compton radius) is «. Then, through different derivations,
the theoretical value that the authors of Zitter models claim to derive is as follows:

(/2)itter = 1 + % ~ 1.0011614097320 )

with a relative deviation of about 107¢ compared to the experimental value. They obtain
this anomalous factor as a consequence of the geometry of the electron Zitter structure. It is
interesting to note that those simplistic geometrical Zitter models (at least much simpler
than the renormalization process) provide a theoretical prediction with a good precision of
10~°; however, they seem to miss something to reach the precision of QED.

It should be noted that this value is often introduced in an ad hoc manner, primarily
because they already know that they must ultimately reach the Schwinger factor a /27 as a
result. If this first-order correction had not been previously established as the Schwinger
factor, it is unlikely that the authors would have independently derived it.

3.7. What Do We Learn from the Review of Those Models?

As we have seen, the Zitter models have the advantage that they try to re-establish
some visualization in classical terms of the phenomenon typically considered quantum and
beyond visualization in QED in terms of simple electromagnetism. To do so, the models
postulate a charge movement responsible for spin. Calculating spin (even if the values are
wrong, as seen above) becomes a trivial visual matter of calculating a charge flow and a
Compton-scale surface. We repeat that the Mott scattering correctly observed by Rivas is
remarkable in its visual simplicity. We further point out that a six-digit precision calculated
with the Schwinger factor correction is nothing to sneer at. Yes, QED remains the panacea
when it comes to calculating to 12-digit precision, but what we lose in precision, we have
gained in intuition. There are great conceptual leaps to be had if one focuses on these
(dynamic) images. However, there are severe drawbacks to the particle models.

3.8. Impossibility to Obtain Dirac Features with Circular Charge Movement

The Zitterbewegung models studied until now posit the circular motion of some kind

of a charge (either punctual or extended) and moving at the speed of light. However, it

h

is easy to show that circular motion at the speed of light with radius r = .- inevitably
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leads to values of w = mc?/h for internal frequency, S = 7 for spin, and ¢ = 1 for the

Landé factor:
2

e Circular motion frequency: w = = 5—;

¢  Spin angular momentum: S = r mc = % mec =T;

* By noting I as the electric current, A as the surface of the circle, and T as the time
period of the circular motion, we have the following: y = IA = £7r? = £ = & =
Z—C% = % As S =h,wehave ji = g%g, with g = —1.

Therefore, all these models miss the factor 2 that appears in the spin, magnetic moment,
and Zitterbewegung frequency from Dirac theory.

3.9. Impossibility of Point Charges and Static Extended Charges

We have seen that both point-like and extended interpretations of electric charge
present significant conceptual challenges. Bohr encountered this issue, noting that a static
extended charge distribution is problematic—it would inherently repel itself. Ironically,
electrostatic equations actually prevent the existence of stable extended charges. Neverthe-
less, this abstraction has undeniable practical utility, as demonstrated in routine electrical
engineering calculations. This inconsistency hints at a breakdown of electromagnetic princi-
ples at microscopic scales, where the inherent instability in classical electrostatics precludes
stable extended charge formations. Consequently, an electron cannot be a static charge
distribution; as we will explore, it may instead be a dynamic one.

At the same time, however, the electron cannot be considered a point charge as it
is difficult to ascribe physical properties to a mere point. As demonstrated in Rivas’s
work, additional “intrinsic” spin must be postulated to achieve accurate results due to
the mathematical limitations previously outlined. A point, by definition, lacks any spatial
extension and therefore cannot possess the property of charge in any physically meaningful
sense. A true point charge appears contradictory as a point is inherently a mathematical
abstraction rather than a physical entity.

3.10. On the Necessity of Topological Charges in Fields

The two observations, namely, that an electric charge cannot be strictly a point charge
nor an extended physical shape, suggest a fundamental issue in the conventional inter-
pretation of the electron charge. Maxwell’s equations can be approached from two causal
perspectives. The first, standard in electromagnetic engineering, posits that charges create
and modify fields; charges are introduced and manipulated to produce field configura-
tions. The second perspective reverses this causality, instead considering a given field
distribution and deriving topological charges within the field. In this interpretation, one ex-
amines a displacement field and calculates its divergence according to Maxwell’s equations.
Through Gauss’s law, charge can be derived from the field properties themselves. This
alternative, yet mathematically equivalent, ontological interpretation is fully compatible
with Maxwell’s framework. In this view, the “charge” becomes what can be termed a
“topological charge”, a concept rooted in scalar fields rather than in discrete entities. Field
singularities or topological charges—whether point-like or extended—are thus treated as
mathematical abstractions, arising within the field itself. A point charge can topologically
exist; it is a singularity of the field.

4, Critical Review of Zitter-Field Models

This naturally brings us back to considering field-based models, such as those in
quantum electrodynamics (QED). The charge must be understood as topological in nature.
Essentially, this approach revisits QED and standard field theory, but they are now infused
with the intuition derived from Zitterbewegung. We begin with the electromagnetic (EM)
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field rather than from particle concepts. In this section, we will examine two Zitter-field
models (in contrast to the Zitter-particle models discussed previously). These models are
inspired by Zitterbewegung, focusing on a classical EM field framework. They all propose
a form of “captured light”, where the EM field circulates at the Compton scale. From these
fields, we derive charge, mass, spin, and magnetic moment, as will be demonstrated.

4.1. Dos Santos’s Toroidal Electromagnetic Field

The models discussed previously are rooted in the particle ontology, positing various
circular, helicoidal, or toroidal dimensions and movements of particles. In contrast, Carlos
Dos Santos in [20] presents a field-based approach. This model eschews the particle concept,
instead focusing on an electromagnetic wave moving at the Compton radius, by definition
at the speed of light, while confined to a torus of small radius r, with E and B field
amplitudes approximating the Schwinger limits. The model proposes a specific ansatz for
the fields E and B, incorporating phases that reflect this helicoidal geometry with azimuthal
and toroidal angles. The ansatz is shown to verify Maxwell’s equations and derive a charge
in the torus as the divergence of the field. This notion of charge is thus purely topological.
This interpretation by Dos Santos uses the reversed causality of Maxwell we alluded to.
Here, fields create (topological) charges. The field is real, the charge is mathematical, and
it does not matter whether it is a point or a circle or a sphere or a ball; for all practical
purposes, it is colocated with the fields. In this case, it is an electrical flow confined to a
torus of Compton radius and Fermi width. There is only the EM field. See Figure 6.

4s
(d) M 4¢r[. =

Figure 6. The EM torus of dos Santos. (a) The field is confined to the torus with small radius
re = 1/+/(7) * 1o, and circulating at speed ¢ at Compton radius (noted 7). (b) shows the toroidal
angle 6. (c) shows the arc length which is the classical electron radius ., and the angle A¢ = « (fine
structure constant). (d) Electromagnetic field with electric field E, (in blue) and magnetic field B, (in
red), with wavelength A = r, and current f(p. (e) shows the centripetal Lorentz force E stabilizing
this orbit around the center. (Credit: C. Dos Santos from [20].)

The relation between the electromagnetic wavelength A, A, Compton wavelength,
and the « fine-structure constant. In this model, we have A = ar, = océ‘—fr = .. Compared to
the models described in Section 3, this model of Dos Santos has the advantage of proposing
a view of the electron from fundamental fields (the electromagnetic wave) that satisfy
the Maxwell equations. In his article, Dos Santos tried to derive the spin and magnetic
moment from those electric and magnetic fields, and to explain the orbital motion of the
electromagnetic wave with the Lorentz force. There is a reason the electromagnetic wave
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stabilizes in the Compton orbit; the charge computed from this field is confined to the torus
and is “flowing” in the toroidal tube. The Lorentz force computed explains the stable orbit.
However, we note the following things:

* By noting p, the momentum of the electromagnetic wave, the spinis S = r..p =

é\—;% = %Crm% = %, which is not the right value of course (the fine-structure
constant « should not appear in the value of the spin);
*  The frequency of the internal motion is w, = ;= = Z/CC = mTCZ, not in agreement with

the Zitterbewegung frequency.

4.2. Williamson Model

Williamson and Van der Mark [21] described the electron as a photon confined in
toroidal topology (double loop). The radius of the double loop is given by r = i‘—;r, witha A,
Compton wavelength (which also corresponds to the wavelength of the internal photon).

The electric charge is directly related to the flux of the electric field (g = eg®r =
e [Js E - d5), with ey vacuum permittivity. In the model of Williamson, the electric charge
arises from the twist of the electric field of the confined photon (see Figure 7). The resultant
electric field always points inwards (for the electron with negative charge) or outwards
(for the positron with positive charge). The electric charge then manifests itself as a result
of the reconfiguration of the electric field by the confinement topology to be everywhere
radial. The internal structure of the particle is cyclic, while the distribution of the electric
field is radial at large distances, which explains why the electron appears spherically
symmetric experimentally.

C

a) —_—
B ]
E C —_—
— L

b)

Figure 7. The toroidal model of Williamson. (a) Free photon with circular polarization of electric and
magnetic fields E/B; (b) photon confined on the double loop, making the charge, magnetic moment
#, and orbital angular momentum L (spin) appear. The toroidal structure is characterized by a radius
r = Ac/4m. (Credit: from [21].)

Compared to the models previously seen, this model has the following advantages:

. . 2
e Itexplains the Zitter frequency: w. = { = 4T7ICC = 2”;16 ;

¢  The value of the spin is obtained: L = r.p = 2—7;)% = %;

*  Itleads to the correct factor g = —2 for the magnetic moment;

¢  The model explains the origin of the mass from the confinement of the photon on
a double loop. Indeed, when a photon is confined, it represents confined energy.
Trapped light acquires an effective mass.

However, there are some negative points that must to be mentioned:
*  The authors were not able to derive the exact value of the electric charge g = +e from
the electromagnetic field;

¢  They do not provide the precise origin of the confinement of the photon on a dou-
ble loop.
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4.3. What Do We Learn from the Review of the Models of Williamson and Dos Santos?

In the model of Williamson, the factor 2 that appears in Dirac theory in the spin,
magnetic moment, and Zitterbewegung frequency comes from the fact that we have a
double loop (A = 47r). The spin is not an intrinsic property of the electron; it emerges as a
tangible, physical phenomenon arising from the underlying electromagnetic dynamics at
the Compton scale.

Moreover in both models, the charge is understood as the divergent signature of
a given self-oscillating electromagnetic field. This reinterpretation of charge, as a field
signature, aligns with the model of the electron as a self-interacting electromagnetic field,
potentially resolving the paradoxes associated with point-like and/or extended charge
distributions. The correct value of the Lorentz force in Dos Santos’s model further jus-
tifies this “closed orbit” assumption. This perspective suggests that charge and charge
density might be emergent properties of field dynamics at the Compton scale rather than
intrinsic properties.

Finally, in this model, and following the lead of D. Hestenes, we identify the electron’s
rest mass with its electromagnetic field energy. This concept aligns with Einstein’s equiva-
lence principle (E = mc?, with c being speed of light), positing that mass is purely a form
of energy.

Those facts suggest that the fundamental properties of the electron, including spin,
charge, and mass, may be emergent phenomena arising from the dynamics of electromag-
netic fields rather than “intrinsic” properties.

5. Dynamics of the Electron and Special Relativity

In this section, we focus on understanding how an electron is seen when it moves at
speed v relative to a reference frame (laboratory frame). The authors mentioned previously
the necessity of introducing a radius of the electron r, of the order of Compton wavelength.
Moreover, in their models, the loop motion becomes a helix/cycloid when the particle has
a speed v relative to a given frame. Of course, such models must be in agreement with
special relativity.

5.1. The Different Dynamical Models

In the model of Oliver Consa, the toroidal solenoid described in Section 3.1 becomes
a helicoidal solenoid for a moving electron, as illustrated in Figure 8. In this model,
the helicity is given by the helical translation motion (v > 0), which can be left-handed or
right-handed. Helicity depends here on the observer; it is not Lorentz invariant. According
to Consa, chirality is given by the secondary helical rotational motion, which can also
be left-handed or right-handed. Chirality is here independent of the observer; it is a
Lorentz-invariant quantity.

In the model of Kovacs/Vassalo, we also have an helix, where its radius depends on
the speed of the particle. See Figure 9.

In the model of Rivas, as discussed before, a cycloid emerges when the spin is co-
planar with the direction of propagation. The main point to make here is that the radius
does not contract like in the case of Vassalo. The typical cycloid of the relativistic dynamics
recreated in 2D is shown in Figure 10.
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Figure 9. Relativistic dynamics of this electron in the model of Kovacs/Vassalo. The radius of the
Zitter internal motion depends on the speed v of the particle (blue color: v = 0; light blue: v = 0.43c;
orange: v = 0.86¢; red: v = 0.98¢). (Credit: G. Vassalo.)

(a) (b)

10 keV 100 keV

Figure 10. The cycloid of Rivas. As energy increases to relativistic speeds, here, from 10* eV (a) on the
left to 10° eV (b) on the right, a cycloid emerges. The electron mass trajectory is in red, and it moves
from bottom to top. The electron charge position is in blue and orbits about the center of mass. Here,
the spin is left, and the charge moves counter-clockwise around the center of mass. As the center
of mass reaches relativistic velocities, the cusps appear as the charge is moving counter to the mass.
In all these simulations, the spin is co-planar to the orbit; the spin is in the plane of the picture.

In the Dos Santos model, the internal electromagnetic wave described in Section 4.1
follows a helix path. This is the case, for example, when the electron orbits around the
nucleus in the atom, from this nucleus frame (see Figure 11). In this model, the helix is
characterized by different parameters: length of a coil D, radius of the helix r, helix pitch P,
internal speed c, longitudinal speed v, and transversal speed v, = c/v (with 7 Lorentz
factor). We have the following relations: D? = P? + (27rr)? and ¢* = v 4 v4 . From this
relation between speeds, we have v < ¢, providing an intuitive explanation of why massive
particles cannot go faster than light.
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al

Figure 11. (Left) The electron at rest. It consists of an electromagnetic wave moving at speed ¢ along
a circle of Compton radius (noted as r. in the figure). (Right) Electron in movement with longitudinal
velocity 7, relative to the proton rest frame. (Credit: C. Dos Santos from [22].)

5.2. de Broglie Wavelength

As mentioned, we must consider wave—particle duality and the emergence of the
de Broglie wavelength. As should be clear by now, we have not covered it in any of the
models, for the simple reason that the models do not really say anything. The reason for it
seems just as straightforward; the Zitter models are fundamentally particle models and, by
focusing exclusively on the particle image, do not provide an explanation for the emergence
of distributed waves. No one treats the Zitter-particle electron as a radiating antenna, but it
is a radiating antenna. We will now show that, when we posit physical EM standing waves
surrounding this Zitter electron, we can arrive quite simply at the emergence of the de
Broglie wavelength.

From the laboratory frame, the matter wave manifests a wavelength of Ay = h/p.
This matter wave has group velocity v and phase velocity c?/v. A puzzling feature of the
de Broglie wavelength is its dependence on the velocity of the electron (or particle) in the
observing frame. How to interpret this wavelength? de Broglie first observed theoretically
that a standing wave at the Compton scale would undergo Doppler shifting and exhibit a
beating frequency [23]. Crucially, de Broglie demonstrated that the proper wavelength—the
de Broglie wavelength—would emerge if and only if the starting wavelength was at the
Compton scale.

We consider the waves that are emitted from the particle. In the rest frame, we note wy
as the frequency of those waves and kg = wy/c as their wave vector. From the laboratory
frame, the particle moves at speed v in the z direction. Those waves emitted from the
particle are Doppler shifted with frequency w = y(wp + 7.k) = yawy (1+ Zcosh) with 6
being the angle between the wave vector of the wave k and the velocity 7. We want to see
what is the superposition of the waves 1. and _ emitted in the direction of the particle
propagation and the inverse direction. We have ¢ = A ¢/(“+!=k+2) with A amplitude,
wy =qwo(l+%)andky = vko(1+ %);and - = A el@w—t=k-2) with w_ = qwp(1 — 9
and k- = vko(1 — %) [24]. The superposition of those two waves is

v+ =A gllwrt=kiz) L A pllw-t=k-2) — 2 cog (w%t - kz) exp (i(wt — kgz)). (6)

The exponential term can be written as exp (i’ywo (t— C%z)) . It represents a traveling

. . 2 . .
wave of frequency w = ywy propagating at phase velocity v, = % The distance in space
between two consecutive wave crests is then

27 27t 2 h

Aap="—vp=——— = 7
dB va YWwo 0 Ymopo ()

which is the de Broglie wavelength.
Visually, this phenomenon is readily apparent; a standing wave is the sum of inbound
and outbound waves, as illustrated in Figure 12. Under a relativistic Doppler shift, each
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component modulates differently—one dilates while the other compresses. The resulting
sum exhibits a beating at the proper de Broglie wavelength. In this interpretation, the de
Broglie wavelength is a natural consequence of the relativistic behavior of the Compton-
scale standing waves associated with electrons.

Figure 12. A standing wave at Compton scale becomes a traveling wave under Lorentz boost

NS

A\
0

oI

e
de Broglie Wavelength

(indicated by the black arrow). The superposition of the waves A and B produces the traveling wave
C, which manifests a de Broglie wavelength with phase velocity ¢?/v. (Credit: from [25].)

6. Discussion

In this article, we have reviewed Zitterbewegung models concerning the electron. Two
primary categories of models have emerged in the literature: those that use a physical
charge (either point-like or extended) and those based solely on the electromagnetic field.
The most promising models appear to be those that describe the electron as a confined
electromagnetic field, arranged in a loop or double-loop structure. A field confined at the
Compton scale exhibits effective mass and spin, and, under specific topological conditions,
can carry an electric charge. We believe that the work of Dos Santos and Williamson has laid
important groundwork for future research. Such models offer a more intuitive visualization
of quantum electrodynamics (QED) results and concepts. In these images, the intrinsic spin
of QM can be visualized. The authors are currently developing a Zitterbewegung-inspired
model in alignment with those of Dos Santos and Williamson, specifically focusing on a
purely electromagnetic field-based approach.

We have concentrated solely on the electron, following the Einstein-Wilczek view that
understanding the electron could provide a foundation for comprehending the physical
world. This approach is justified by the electron’s fundamental role in our understanding
of matter and its interactions. However, it is important to recognize that our model does
not extend to other leptons, such as the muon or tau, nor does it address the structure of
the proton. This omission is notable given the proton’s central role in atomic structure
and nuclear physics. Future research would benefit from applying Zitterbewegung-related
models to these other particles.
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