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Abstract
We investigate the dynamics of the kinks that emerge in a one-dimensional scalarfield theory with an
octic potential containing a quarticminimumand two quadraticminima.We show analytically that
kink-antikink and kink-kink pairs interact with a force that scales with the fourth power of the inter-
kink distance, and calculate its strength. This is done using two different techniques. Thefirst employs
a collective coordinatemethod to approximately solve the equation ofmotion for the profile of an
accelerating kink. The second is based onmodifying the potential to one that is able to support static
solutions containingmultiple kinks.We show that the twomethods give consistent results. All
calculations are supported by numerical work that confirms the validity of our results.

1. Introduction

Kinks are the simplest example of a topological soliton, appearing in one-dimensional field theories with a single
scalarfield and a potential withmultiple globalminima [1, 2]. They appear as static solutions to the equation of
motion that interpolate between the differentminima and are an example of a topologically protected state,
where to remove them requires one to change some topological characteristic of the field. Thus, it is generally
not possible for the kink to be removed or added as afield evolves smoothly under the equation ofmotion.
Furthermore, they appear withfinite spatial extent andwell-defined position andmass, so it is possible to view
them as particle-like objects, capable ofmoving through space and interacting with other kinks as a particle
might.

Kinks, as well as higher-dimensional solitons such as vortices and skyrmions, have found applications in an
enormous range of physical systems. They have appeared in condensedmatter [3, 4], where kinks can be used
as a one-dimensionalmodel for the interface separating different phases ofmatter, in cosmology [5] and in
high-energy physics [1, 6]where they have been used asmodels for elementary particles.

In thisworkwewill be focussing on the kinks that appear in a f8 theory [7, 8], where the Lagrangian is given by

f f f f= ¶ ¶ - -m
m

1

2

1

2
1 . 1.12 2 4( ) ( )

Unlike the kinks in otherwell-studiedmodels such as the f4 model [9, 10] or the Sine-Gordonmodel [1, 2], this
field theory contains kinkswith large spatial extent, capable of interacting over very long distances. One of the
primary questions here has been to calculate the strength of interaction betweenwell-separated kinks. This has
been investigated both analytically [7, 11] as well as computationally [8, 12]. In particular, obtaining accurate
parameters for the interaction strength through numerical work has provedmuchmore challenging than in the
case of short-range kinks. This is because f8 kinks have a strong, asymmetric sensitivity to the presence of
radiation. Thismeans that onemust take extreme care when picking the initial configuration of thefield to
directly simulate the dynamics of a kink. Incorrectly initialisedfields will result in unwanted radiation being
produced that substantially disrupts the dynamics.

In this article we present two differentmethods for calculating the interaction strength between kinks in our
theory, supporting bothwith numerical work. Thefirst closely follows [7], supporting the analytical work
presented therewith numerical calculations that verify its validity. Importantly, this numerical work avoids
many of the pitfalls associatedwith directly simulating the dynamics of the field.We follow this with analysis that
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extends the ideas from [11, 13] to accurately predict the interaction strength. This work is supported by
numerical calculations that confirm that it is sound. Furthermore, we show analytically that the two unrelated
methods are consistent with one another.

2. Setting the scene

Webegin the discussion by defining the one-dimensional field theory in question and deriving some of the
fundamental properties of the solitons that emerge in this theory, namely the shape of the kink, including the
asymptotic behaviour of its tails and itsmass.

The Lagrangian density for a scalar field f x( ) with potential fV ( ) is given by

f f f= ¶ ¶ -m
m V

1

2
. 2.1( ) ( )

Weareworking inMinkowski space, andwill use themetric h = + -mn diag 1, 1( ), thus the Lagrangianmay be
rewritten as

f f f= - ¢ - V
1

2

1

2
. 2.22 2 ( ) ( )

Here dot denotes derivative with respect to time and prime represents spatial derivative.
The Euler–Lagrange equation is the equation ofmotion (EOM) for thefield,

f f
f

-  + =
Vd

d
0. 2.3̈ ( )

The Lagrangian does not depend explicitly on the spacetime coordinates. Thuswemay invokeNoether’s
theorem tofind the conserved energy-momentum tensor,

f
f h

f f h

=
¶

¶ ¶
¶ -

= ¶ ¶ -

mn m n mn

m n mn






T

2.4

( )
( )

with ¶ =m n
mT 0.

In particular, the energy density  andmomentumdensity  may be read directly from components of the
tensor according to

f f f= + ¢ + = T V
1

2

1

2
2.500

2 2 ( ) ( )

ff= ¢ = -T . 2.601 ( )

In this workwe focus on kinks that emerge in the f8 potential

f f f= -V
1

2
1 , 2.72 2 4( ) ( ) ( )

plotted infigure 1. The potential has threeminima, a pair of quadraticminima at f = 1 and a quartic
minimumat f = 0. Thus it is able to support four different types of kink.Wewill label kinks as interpolating
from f = 0 1, antikinks from f = 1 0, mirror kinks from f = - 1 0 and anti-mirror kinks
from f =  -0 1.

Our first task is to derive the formof the kink appearing in this theory, using the Bogomolny trick [14]. The
kink is a static solution to the EOM (equation (2.3)). Thismeans that the time derivativemay be discarded,
resulting in the following nonlinearODE:

f
f

 - =
Vd

d
0. 2.8( )

The potentialmay be re-expressed in terms of a superpotentialW according to

f
=V

W1

2

d

d
2.9

2⎛
⎝⎜

⎞
⎠⎟ ( )

with

f
f f= -

Wd

d
1 . 2.102 2( ) ( )
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Thuswe have

f f= - +W c
1

3

1

5
. 2.113 5 ( )

For the sake of later convenience we set c to be- 2

15
, so that =W 1 0[ ] .We expect the kink solution to have

f -¥ = 0( ) and f ¥ = 1( ) . Furthermore, the solution should be aminimumof the energy. Using the
expression for energy density obtained in equation (2.5), we canwrite the total energy of the field as

ò
f

f
= +

-¥

¥
E

x

W
x

1

2

d

d

d

d
d . 2.12

2 2

⎜ ⎟
⎡
⎣
⎢⎢
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )

This can be rearranged by completing the square to give two equivalent expressions, depending on sign,

ò
f

f
f f=  ¥ - -¥

-¥

¥
E

x

W
x W W

1

2

d

d

d

d
d . 2.13

2⎛
⎝⎜

⎞
⎠⎟ ( [ ( )] [ ( )]) ( )

f ¥( )will always be an element of F = - +1, 0, 1vac { }. Fromour expression forW it can be shown that
- = -W 1 4

15
[ ] , = -W 0 2

15
[ ] and =W 1 0[ ] .

Equation (2.12) is a sumof two squares, so E 0. Thismeans thatwe should pick the sign to ensure that
f f ¥ - -¥ W W 0( [ ( )] [ ( )]) for our choice of limits. In the case of the kink, f f-¥ = ¥ =0, 1( ) ( ) ,

therefore f f¥ - -¥ =W W 2

15
[ ( )] [ ( )] and sowe pick the expression for the energy with aminus sign inside

the integral. The total energy isminimisedwhen the expression in the integral is 0, that is when

f
f

- =
x

Wd

d

d

d
0. 2.14( )

This is called the Bogomolny equation. Using equation (2.10) it can be rearranged to give

ò ò
f
f f-

= x
d

1
d 2.15

2 2( )
( )

whichmay be separated into partial fractions,

ò f
f f f+

+
-

+ = -x Ad
1

2 1

1

2 1

1
, 2.16

2

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )

and integrated to give an implicit expression for the shape of a kink

f
f f

- =
+
-

-x A
1

2
log

1

1

1
. 2.17

⎛
⎝⎜

⎞
⎠⎟ ( )

Here the parameterA determines the position of the kink. This expressionmust be numerically inverted to give
the formof the kink, shown infigure 2, as there is no explicit expression for the inverted kink profile, f x( ). It is
instructive to examine the asymptotic behaviour of the kink forf close to 0 and close to 1.

On the left hand side of the kink, f =  with ò small and positive. In this case, equation (2.14) reduces to
= 

x

d

d
2, which can be solved to give

Figure 1.Potential in f8 theory.
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f =
-A x

1
. 2.18left ( )

Note that fleft diverges at x=A. On the right hand side f = - 1 with  small andpositive and equation (2.17)
can be expanded tofirst order to give

- - = - x A
1

2
log 2

1

2
log 1 2.19( )

which gives the following expression for fright,

f = - - - + -x A1 exp 2 1
1

2
log 2 . 2.20right

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

Wecan see that in the case of f8 theory, the decay on the left of the kink has an extremely long tail, allowing for
long-range interactions.

To talk about the position of a kink, wewill need a convention defining the center of a kink. The kinks in f8

theory have large spatial extent, as well as not being symmetric in x. Thus there is no obvious definition for the
centre of a kink andwemustmake a somewhat arbitrary choice. In this workwe define the center of the kink as
the point that crosses themaximumof the potential energy. This is the point where the energy density of the kink
is highest and occurs at f =V Vmax( ) ,

f =
1

2
. 2.21center ( )

Throughout this work, wewill only be concernedwith the interactions between kinks in the long-range limit, so
the specific choice of kink center will be of little importance.

Here it is worth introducing themechanical reinterpretation of the kink solution, since it will be useful later
on. Equation (2.8)may be interpreted as the equation ofmotion for a ‘particle’with ‘position’fmoving in a
potential f-V ( ), as shown infigure 3. To produce a kink, the particle starts at f = 0, themaximumof the
potential, with infinitesimal positive velocity. Itmoves quickly through the trough and then slows down to
asymptotically approach the nextmaximumat f = 1. Energy is conserved in this system (there is no drag term),
so the particle will come to rest at the nextmaximum.As the particlemoves, it sweeps out the profile of the kink.

Finally we discuss themass of the kink. From equation (2.13)we can see that, once the Bogomolny equation
is satisfied, the total energy of a kink is 2

15
. Thus, since the theory is Lorentz invariant, the kinkmay be interpreted

as a particle-like object withmass 2

15
. Furthermore, since the Bogomolny equation is satisfied locally at every

point in space, the total energy of thefield between two points x1 and x2 is f f-W x W x1 2∣ [ ( )] [ ( )]∣.

3. Forces between accelerating kinks

Wenow turn our attention tomodelling the force between awell-separated pair of kinks. In section 3.1we look
at the attractive force between a kink and antikink. Then in section 3.2we calculate the force of repulsion
between a kink andmirror kink. In all cases the kinks are ordered such that the interaction is due to the
overlapping of their long-range

x

1 tails. The short-range tail on the other side has exponential asymptotics, so

Figure 2.Kink in f8 theory.
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interactionswhere these tails overlapwill be largely identical to those in f4 theory. This theory is well-
understood and sowe do not study it here [1]. The force is initially calculated analytically by approximately
deriving a profile for the field containing a pair of interacting kinks. By examining themomentumdensity of the
field, it is possible to extract the force acting on the pair. The analytical discussion closely follows [7]. In each
case, we support the analysis with numerical results that verify that themethod is sound and the approximations
made are valid.

3.1. Kinks and antikinks
To calculate the force between an interacting kink and antikink pair, wemustmake a guess at an appropriate
field that contains these two objects. The systemwe are looking at is no longer static—the kinks are accelerating
towards one another—so it will be necessary to account for the distortion of the kink profile caused by this
acceleration. Let us start with afield inwhich the antikink is at position-A t( ), the kink is atA(t), and the field is
initially at rest.

The kink and antikink have identical form, but reflected in x, therefore it is reasonable to propose a
configuration that is symmetric, as shown infigure 4.Here the antikink is positioned at = -x 50 and the kink is
at x=50.Note that the field between the kinks does not touch the x-axis. Thefield is distorted from the static
kink solution, with f¢ = 0 at x=0. It is possible to construct such a solution by finding the profile for a single
accelerating kink and gluing together the tails of the accelerating kink and its reflection.

Figure 3. Inverted potential felt by the particle in themechanical reinterpretation.

Figure 4.Apossible state containing a kink and anti-kink.
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Before calculating the shape of this field, wefirst examine how the force acting on a kinkmay be determined
from the field configuration. From equation (2.6) it can be seen that themomentumdensity is given by

ff= - ¢  . Therefore, the rate of change of the totalmomentum in a region from xa to xb is given by

ò ff= - ¢
P

t t
x

d

d

d

d
d 3.1

x

x

a

b

( )

ò ff ff=- ¢ + ¢ xd . 3.2
x

x

a

b

( ̈ ) ( ) 

From the equation ofmotion, f f=  -
f
Vd

d
̈ , this expression becomes

ò f f
f
f ff= -  ¢ - ¢ + ¢

P

t

V
x

d

d

d

d
d 3.3

x

x

a

b ⎛
⎝⎜

⎞
⎠⎟ ( ) 

whichmay be integrated to give an expression for the force acting on the region between xa and xb

f f f= - ¢ + -F V
1

2

1

2
. 3.4

x

x
2 2

a

b⎡
⎣⎢

⎤
⎦⎥( ) ( )

In the case of two interacting kinks, shown infigure 4, the force can be determined by setting xa= 0 and
= ¥xb . Thefield at = ¥x is in the ground state and does not contribute to the force.We expect the field at

x=0 to have no spatial first derivative and negligible time derivative, since thefield starts from rest and is
initially slowmoving. Thuswe are left with only one contributing term

f= -F V 0 . 3.5kink [ ( )] ( )

Nowwe return to determining a form for the field of a single accelerating kink. Thefirst step is tomodel the
kinkwith an expression of the form

f c= -x t x A t, . 3.6( ) ( ( )) ( )

This can also bewritten as c y( ) for = -y x A t( ). Substituting into the equation ofmotion gives

c c c
c

 - ¢ -  + =A A
Vd

d
0. 3.72 ̈ ( )

Weare starting with afield at rest, so A is negligible, thus the term cA2 may be ignored. Furthermore we
assume the acceleration is small and constant, allowing us to set = -A ä ,

c c
c

 - ¢ - =a
Vd

d
0. 3.8( )

In themechanical interpretation, thismay be understood as describing the dynamics of a particlemoving in
the same potential as figure 3with the addition of a negative drag termwith coefficient-a. The effect of a is
to add energy to the system as the particlemoves under the influence of cV ( ). The solutionwe are looking for
corresponds to the ‘particle’ starting from rest (c¢ = 0) at a point c > 0 and gaining just enough energy over its
motion tomake it tomaximum in the potential at c = 1, where it comes to rest. For each value of a there is a
position c 0( ) such that a particle starting at that point andmoving under drag-a will gain just enough energy
to reach c = 1and go no further, resulting in a valid accelerating kink solution.

Inwhat follows, we assume that themajority of the influence of the drag term is exerted on the long-range
tail of the kink. Thismakes sense since, at least in the limit of well-separated kinks, the tail is extremely long. The
drag force is weaker in the tail region than it is around the centre of the kink, but not substantially so, and acts
over amuch larger region. To compare the accelerating kinkwith the static kink derived in section 2wematch
the shapes of the long tails of both, in particular, aligning them so that the extrapolation of their

x

1 tails diverge at

the same point. This is shown infigure 5, where the point at which the tail diverges ismarkedwith a dashed line.
We can assume thatχ approximately takes the formof anundeformedkinkover its long tail, ensuring that it is a

solutionof theBogomolny equation (c¢ =
c
Wd

d
), withWdefined in equation (2.10). Thus, equation (3.8)becomes

c
c

 - + =aW V
d

d
0. 3.9( ) ( )

Nowwe define amodified potential = +V V aW˜ and integrate equation (3.9),

ò òc c
c

c ¢ =x
V

d
d

d
d 3.10

˜
( )

to get

c¢ = V2 . 3.112 ˜ ( )
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In the long-tail region,χ is small, so cV 1

2
4 and -W 2

15
 , thuswe obtain

c c¢ = -
a4

15
. 3.124 ( )

χtakes its smallest value at x=0where =c 0
x

d

d
. Therefore for equation (3.12) to holdwemust have

c - =A a4

15

1 4( )( ) (wherewe used = -y x A). Note that from equation (3.5) thismeans that the force acting

on the kink is given by

c= - = -F V
a

0
2

15
, 3.13[ ( )] ( )

which is perfectly consistentwithNewton’s lawofmotion for a kink ofmass 2

15
and acceleration-a.Wewish tofix

the solutionof equation (3.12) to ensure that it diverges at x=A (y= 0) since the extrapolationof a static kink
diverges at x=A.We therefore have c = ¥0( ) .Having set our limits, we can integrate equation (3.12) to get

ò
c

c -
=

¥
A

d
. 3.14

a4 4

15

a4
15

1
4( )

( )

Making the substitution c l= a4

15

1
4( ) gives

ò
l

l -
=

¥ a
A

d

1

4

15
. 3.15

1 4

1
4

⎜ ⎟⎛
⎝

⎞
⎠ ( )

The left-hand side is a complete elliptic integral of the first kind, and can be evaluated to give [15]

p
=

Ga
A

4

15

1

2 4
. 3.16

1

4

2
1
4

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

Plugging this result into equation (3.13) and evaluating gives

p
= -

G
-F

A A

1

8 4

1.47713 ...
. 3.17

4

1

4

2 4

4

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )
( )

3.1.1. Numerical investigation
Anumber of studies have been undertaken to verify the relationship derived above by numerically simulating
the dynamics of the field [8, 12, 16].We take a different approach tofinding the strength of the force acting
between a kink and anti-kink, focussing on carefully approximating the profile of an accelerating kink.Our
starting point is equation (3.8):

c c
c

 - ¢ - =a
Vd

d
0. 3.18( )

Figure 5. Static and accelerating kinkwith extrapolated tail behaviour. The points at which the extrapolated tails diverge aremarked
with a dashed line.
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Note that in deriving this differential equation, the only approximationwemadewas to assume that A can be
ignored, thus it is exact for finding the force acting on a static kink, before it has started tomove under
acceleration.

We examine the differential equation through the lens of themechanical interpretation, viewing it as
describing a particle that starts at a position c -A( ) andmoves under negative drag term-a in the potential

-
c
Vd

d
. As explained in the previous section, for every value of c -A( ) there is a unique corresponding value of a

such that themotion of the particle will correspond to a valid kink solution. If a is too large, the particle will gain
toomuch energy as itmoves through the potential, overshooting themaximumand ‘falling off’ the other side,
accelerating towards c  +¥. If a is too small, the particle will not gain enough energy as itmoves through the
potential. Thismeans it won’tmake it up to themaximumof the potential at c = 1andwill turn back on itself,
moving back towards negativeχ. Figure 6 shows themotion of the particle for three values of a, onewith an
overshoot, one that is correct and onewith an undershoot.

This differential equation is easily solved using python’s inbuilt ODE solver,odeint.We start with a choice
of initial values, c -A( ), c¢ - =A 0( ) and a, and solve it to obtain a profile for c y( ), with y discretised over an
array of length 2048. It is straightforward to determine if the value of awas an overshoot or an undershoot, sowe
can quickly converge to the correct value using amethod based on the binary search algorithm.

Oncewe have determined the value of a, we automatically get an expression for the shape of an accelerating
kink for our chosen c -A( ) as the solution of our differential equation.Now the only thing left to do is tofind

the center of the kink,A, by looking for the point in spacewhere the kink crosses c =0 1

2
( ) . The force acting on

the kink is given by equation (3.5), c= - -F V A[ ( )]. Thuswe have arrived at a set of values for the force acting
on the kink as a function of the kink separation.

This process was performed for a set of 8000 values of c -A( ) spaced evenly between c - =A 0.01( ) and
c - =A 0.5( ) . Then, using the 8000 pairs of values for force F and distanceA, the force coefficient

=C A FA 3.194( ) ( )

was calculated. The obtained values for C A( ) are shown infigure 7. Based on the results from the previous
section, it is expected that for large separationsC(A) should tend towards a constant value (around 1.477...), but
will deviate from this for smaller values ofA.Wefit to an expression of the form

= + + + +C A c
c

A

c

A

c

A
... . 3.20n

n
n0

1 2
2

( ) ( )

This amounts to taking a Taylor expansion ofC(A) in -A 1.We are only interested in extracting the value thatC
(A) tends towards for largeA, parametrised by c0. The higher order terms inCn(A) serve to separate the short-
range effects from the long-range effects, and are themselves discarded. This allows for greater accuracy in
determining c0, which should depend only on long-range effects.

Fittings were calculated for values of n between 0 and 10, and the values of c0 obtained are shown infigure 8.
This was done using thecurvefit function from thescipy.optimize library. As n is increased, andmore
terms are added to thefitting, c0 tends towards a stable value. Table 1 shows the value of c0 obtained for each n
tested. Furthermore, in order to assess the quality offit, the normalised sumof squared residuals is evaluated,
given by:

Figure 6.Plot of the particle’smotion for three different values of a, with c = 0.0030 .
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å= -S
N

C A C A
1

. 3.21
i

i n i
2[ ( ) ( )] ( )

HereN is the total number of points calculated, C Ai( ) is themeasured value for the force coefficient at pointAi,
and C An i( ) is the predicted value ofC from thefit. This is also shown in table 1.

From this informationwe conclude that the accuracy of the fit, as well as the validity of themodel, improves
for higher values of n. Thus, here and in the subsequent sections, wewill useC10 as themodel forfitting the data,

Figure 7.Plot showing the relationship between force coefficientC(A) and inter-kink separationA for an interacting kink-antikink
pair.

Figure 8.Value of c0 computed for a set ofCn(A)fittings for n between 0 and 10. The dashed line indicates the predicted value
(C=1.4771...).

Table 1. c0 and residuals for varying n.

n : 0 1 2 3 4 5

c0 : 0.815 62 1.387 17 1.497 64 1.489 74 1.479 78 1.476 95

S : 0.13 0.0026 ´ -1.6 10 05 ´ -8.4 10 06 ´ -4.1 10 07 ´ -2.6 10 09

n : 6 7 8 9 10

c0 : 1.476 71 1.476 86 1.476 94 1.476 97 1.476 99

S : 6.4´ -10 10 ´ -1.8 10 10 ´ -8.3 10 11 ´ -7.7 10 11 ´ -7.5 10 11
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it is possible to go to higher orders, however the effect on c0 isminimal and the calculations become
computationally expensive.

To further support the validity of this choice ofmodel, we notice that at large n the higher order
contributions toCn are too small to have any effect beyond extremely short distances, as shown in table 2. Even at
even reasonably small distances ( ~A 10) the higher order contributions are negligible when compared to that
from c0, and so have no effect on thefitting of long range effects beyond removing the influence of the short
range behaviour. Thefinal result for c0 obtainedmatches the predicted value of 1.4771 to a precision of four
significantfigures.

3.2. Kinks andMirrorKinks
Wenow repeat the same analysis, examining the interaction between a kink and amirror kink. Themirror kink
has the same profile as a kink, but reflected over both the x andf-axis. Thuswe expect the correct solution to
have symmetry under simultaneous x andf-reflection and to pass through the origin.We propose a solution
constructed by gluing together the profile of an accelerating kink to that of an acceleratingmirror kink.

Nowwe return to equation (3.4). The time derivative and potential term are both zero, so the total force
acting on the kinkwill be

f
=

¶
¶ =

F
x

1

2
. 3.22

x

2

0

⎜ ⎟⎛
⎝

⎞
⎠ ( )

Wemake the same substitution as in the antikink case, f c= -x t x A t,( ) ( ( )), however this timewe choose
positive =A ä to get

c c
c

 + ¢ - =a
Vd

d
0. 3.23( )

Under themechanical reinterpretation, this corresponds to a particlemoving under a positive drag term in the
inverted potential shown infigure 3. In this case, a valid kink solutionwill correspond to the particle starting at
point c = 0with positive velocity c¢ -A( ). The particle then loses just enough energy over itsmotion to
asymptotically approach themaximumat c = 1.

As before, we assume that the drag term acts primarily over the long-range tail of the kink,making the

approximation c¢ =
c

dW

d
and integrating to get

c c¢ = +
a4

15
. 3.244 ( )

Weexpect that this solution has c - =A 0( ) and that diverges at c 0( ), thuswe arrive at the integral

ò
c

c +
=

¥
A

d
. 3.25

a0 4 4

15

( )

Substituting c l= a4

15

1
4( ) gives

ò
l

l +
=

¥ a
A

d

1

4

15
. 3.26

0 4

1
4

⎜ ⎟⎛
⎝

⎞
⎠ ( )

This is another elliptic integral of thefirst kind, and can be evaluated to give [15]

p
=

Ga
A

4

15 4
. 3.27

1

4

2
1
4

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

Finally, we plug this result into equation (3.13) to get

p
=

G
F

A A

1

2 4

5.90852 ...
. 3.28

4

1

4

2 4

4

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )
( )

Table 2. Fitting values for C A10( ).

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1.476 99 −3.1 −2.9 15 21 −22 620 −950 790 7600 7900
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3.2.1. Numerical investigation
The numericalmethod heremirrors that undertaken in the case of kinks and antikinks.We start with the
equation

c c
c

 + ¢ - =a
Vd

d
0. 3.29( )

This time, rather than picking a non-zero initial value of c -A( ), we set c - =A 0( ) and pick a starting value of
c¢ -A( ). Thenwe use an identicalmethod as before to converge on the correct value of a such that we get a valid
kink solution.Oncewe have our values for c¢ -A( ) and a, wemay calculate the force acting on the kink using
equation (3.22), and the distance of the kink from themidpoint between the kink and themirror kink by looking
for the point in spacewhere the kink crosses c =0 1

2
( ) .

This was done for an array of 8000 values of c¢ -A( ), evenly spaced between 0.005 and 0.4. The force
coefficient (equation (3.19))was calculated, shown infigure 9. The results were fitted to a curve of the form

= + + + +C A d
d

A

d

A

d

A
... . 3.3010 0

1 2
2

10
10

( ) ( )

The procedure for determining the choice offit closelymirrors that presented in section 3.1.1, and sowe do not
restate it here. The analysis gave a d0 value of 5.9031, whichmatches the predicted value of 5.9085 to two
significantfigures.

4. Forces fromperturbed equation ofmotion

Wenowdescribe a differentmethod for calculating the force between an interacting pair of kinks, following
fromwork in [11, 13]where the

A

1
4 dependencewas determined but the coefficient was not.We start with the

potential

f f= -V
1

2
1 . 4.12 2 4( ) ( )

It has been shown that this potential is unable to support static solutions containingmore than one kink. This is
becausefields containingmultiple kinkswill always experience acceleration due to interactions between the
kinks [7].

To study the interacting kinks, we nowmodify the potential.We add a small extra term that preserves the
fourth order zero at the origin and displaces the value of the potential at theminima at f = 1by a small
amountΔ. This gives us a newpotential,

f f f f f= - - D -U
1

2
1 2 3 , 4.24 2 2 4 2( ) ( ) ( ) ( )

which is plotted infigure 10.
This change has the effect of exerting a force on any kinks in the system. IfΔ is positive, then kinks are

accelerated towards the side that is in the vacuum f = 1. Thus, kinks are accelerated to the right, antikinks and

Figure 9.Plot showing the relationship between force coefficientC(A) and inter-kink separationA for an interacting kink-mirror kink
pair.
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mirror kinks to the left, locally enlarging the regionwheref is close to zero. The strength of the force exerted on a
kink is equal to the value ofΔ. Thismay be intuitively understood in terms of the energy density of the vacuum
on one side of the kink, which also equalsΔ. Sliding a kink towards the right will remove a region of energy
densityΔ and create an equal-sized region of energy density zero. Thus the force experienced by the kink isΔ.

In this regime, solitary kinks are no longer static solutions of the field equations. Insteadwe have static
solutions containing bound pairs of kinks.We look separately at the case of kinkswith antikinks, and kinkswith
mirror kinks.

4.1. Kinks and antikinks
IfD > 0 the stationary state of the theorywill contain an interacting kink-antikink pair. This is because the
kinks and antikinks attract one another. As long as the kink is on the right and the antikink is on the left therewill
also be the force—due toΔ—that pushes them apart. The static solution corresponds to the case where the
kinks are at the right distance to ensure that the force pushing them apart is balanced against the force pulling
them together. Note that this configuration is unstable. If the kinks are not at precisely the correct distance from
one another theywill be accelerated away from the static separation distance.

To derive the profile of the bound kink-antikink pair, we examine the static equation ofmotion,

f
f

- =
x

Ud

d

d

d
0. 4.3

2

2
( )

In the context of themechanical interpretation, this can be understood as the equation ofmotion for a particle
moving in the inverted potential-U , shown infigure 11.

The solution corresponding to a boundkink and antikink is equivalent to theparticle starting at ‘position’
f = 1with infinitesimal velocity in the negativefdirection. Theparticle then almostmakes it to themaximumof
thepotential at f = 0, but does not quite reach it, and so has its direction reversed at f a= afterwhich it returns
to its starting position at f = 1. This trajectory, and thus the shape of the boundkink-antikink pair is shown in
figure 12.We consider the position of each kink to be thepoint atwhich thefield crosses themaximumof the
potential energy, whichwewill label fC. For a static kink this is at f = 1

2
(equation (2.21)), however the value is

displaced slightly in the case of themodified potential. In the followingworkwewill label this point as fC.
We nowwish tofind an expression for the position of the kink,A, as a function ofΔ. This can be done by

integrating the equation ofmotion (4.3) between the points f a f= = ¢ =x 0, , 0( ) and
f f f= = ¢ >x A, , 0C( ).We integrate

f f
=

x x

U

x

d

d

d

d

d

d
4.4

2

2
( )

to get

f
f a= -

x

x
U x U

1

2

d

d
, 4.5

2

⎜ ⎟⎛
⎝

⎞
⎠

( ) [ ( )] [ ] ( )

Figure 10.The potential fU ( ) in equation (4.2), withD = 0, 0.01, 0.02 and 0.03.
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which is then further integrated and rearranged to give

ò
f

f a
=

-

f
A

U U

1

2

d
. 4.6

a

C

( ) ( )
( )

Since a = DU ( ) , wemay re-express the term in the square root as

f a f f f f- = - - D - - DU U
1

2
1 2 3 . 4.74 2 2 6 4( ) ( ) ( ) ( ) ( )

Wenow factorise this polynomial to rewrite the integral as

ò
f

f f f
=

- - D - Da

f
A

d

1 4 2
. 4.8

2 4 2

C

( )
( )

Beforewe continuewemust derive expressions forα and fC. Forα, we find the zeros of f - DU ( ) . This can be
rewritten as

f f f- - D - D =1 4 2 0. 4.92 2 4 2( ) ( ) ( )

Figure 11.Plot of the potential felt by the particle in themechanical interpretation of equation (4.3), withΔ=0.005.αmarks the
smallest value off reached by the particle over itsmotion. fC marks theminimumof the potential, this is the value off that we
consider to be at the centre of the kink.

Figure 12.Abound kink-antikink pair forΔ=0.0001. The value fC marks the point where the kinks cross theminimumof the
inverted potential energy f-U ( ), whichwe consider to be the centre of a kink. Theminimumvalue off ismarked asα. The inter-
kink half-separation can be read off the graph as»20.
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This has two obvious solutions at f = 1. The second polynomial has roots f a=2 2 and f b= -2 2, with

a = D + D + D2 2 1 2 4.102 ( ) ( )

b = - D + D + D2 2 1 2 4.112 ( ) ( )

For fC we solve

f
=

Ud

d
0, 4.12( )

to get the solution

f = + D
1

2
2 12 . 4.13C ( )

Thuswe end upwith the following integral

ò
f

f f a f b
=

- - +a

f
A

d

1
. 4.14

2 2 2 2 2

C

( ) ( )( )
( )

Weevaluate this integral in the limit of smallΔ. Looking at the expressions forα andβ, we see that in this limit

a b» » D2 4.152 2 ( )

and sowe can re-express the integral as

ò
f

f f
=

- - D

f

D
A

d

1 2
. 4.16

2 2 4

C

1 4 ( )
( )

( )

This integral diverges forD  0; clearly the divergence occurs at the lower limit. Thuswe separate the integral
into two parts

ò ò
f

f f

f

f f
=

- - D
+

- - D

f

D
A

d

1 2

d

1 2
, 4.17

s

s2 2 4 2 4

C

1 4 ( ) ( )
( )

( )

where s is some small parameter we have chosen such that D s2 11 4( )   . Thefirst integral here, from
D2 1 4( ) to s is divergent asD  0, but the second part is not and somay be discarded. Furthermore, now that
D2 11 4( )  and s 1 we can assume that f- »1 12( ) in thefirst integral.We arrive at the following

ò
f

f
~

- DD
A

d

2
. 4.18

s

2 41 4
( )

( )

Nowwemake a substitution f y= D2 1 4( ) to get

ò
y

y
~

D -

D -

A
1

2

d

1
. 4.19

s

1 4 1

2

4

1 4

( )
( )

( )

The upper limit approaches infinity for smallΔ and sowe are left with a complete elliptic integral of the first
kind. This is evaluated to give

p
=

D

G
A

1

2

1

2 4
4.20

1 4

1

4

2( )
( )

( )

and rearranged to arrive at the final expression

p
D =

G
=

A A

1

8 4

1.4771306 ...
. 4.21

4

1

4

2 4

4

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )
( )

Remembering thatΔ is just the force of attraction between the kinks, we can see that we have recovered the
identical force as in equation (3.17).

4.1.1. Numerical investigation
To verify that the approximationsmade are sound, we numerically calculate the integral in equation (4.8).
Values were found using thequad function fromPython’sscipy.integrate library. An array of 1,000,000
values ofΔwere used, evenly spaced betweenD = ´ -5 10 8 andD = ´ -1 10 3.

As before, the values obtained for distance and forcewere used to calculate the force coefficient =C A FA4( )
and this was fitted to a function of the form
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= + + + +C A c
c

A

c

A

c

A
... . 4.2210 0

1 2
2

10
10

( ) ( )

Weuse the same procedure for choosing thefit as in section 3.1.1. The value of c0 obtained using thismethodwas
1.477 133 6, agreeingwith the predicted value, 1.477 130 6, to six significant figures, suggesting that the
approximations usedwere valid.

4.2. Kinks andmirror kinks
Wecannow repeat the samemethod tofind the force of repulsion between a kink andmirror kink.We use the
samemodified potential, equation (4.2), however this timeΔmust be negative. This is because our kink and
mirror-kink repel one another, sowemust add a force of attraction between them, arriving at themechanical
potential shown infigure 13.

In this case, the kink solution corresponds to the particle starting at f = -1with infinitesimal positive
velocity. The particle then passes through the point f = 0 with ‘velocity’ f¢ = D0 2( ) (obtained from
conservation of kinetic and potential energy). It then crosses over fC and comes to rest at f = 1. The resulting
kink shape is shown infigure 14.

Again, wemust find an expression for the inter-kink distance, which is done by integrating between the
points f f= = ¢ = Dx 0, 0, 2( ) and f f f= = ¢ >x d 2, , 0C( ). Expression 4.4 integrates to give

f
f- D =

x

x
U x

1

2

d

d

1

2
2 . 4.23

2
2⎜ ⎟⎛

⎝
⎞
⎠

( ) ( ) [ ( )] ( )

We rearrange and integrate again to get:

ò
f

f
=

+ D

f
A

U

1

2

d
. 4.24

0

C

( ) ∣ ∣
( )

The term in the square root is now

f f f- + D + D
1

2
1 4 2 4.252 2 4 2( ) ( ∣ ∣ ∣ ∣) ( )

sowe obtain an expression of the form

ò
f

f f f
=

- + D + D

f
A

d

1 4 2
. 4.26

0 2 4 2

C

( ) ∣ ∣ ∣ ∣
( )

We factorise the polynomial in the square root to get

ò
f

f f a f b
=

- - -

f
A

d

1
, 4.27

0 2 2 2 2 2

C

( ) ( )( )
( )

with

a = - D + D - D2 4 2 4.282 2∣ ∣ ∣ ∣ ∣ ∣ ( )

Figure 13.Plot of the potential felt by the particle in the caseD = -0.005. Once again fC marks the centre of the kinks.
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b = - D - D - D2 4 2 . 4.292 2∣ ∣ ∣ ∣ ∣ ∣ ( )

fC is again determined by equation (4.13). TakingΔ to be small, we can set a b» - » Di 22 2 ∣ ∣ . Thus from
equation (4.27)we get

ò
f

f f
=

- + D

f
A

d

1 2
. 4.30

0 2 4

C

( ) ∣ ∣
( )

This integral diverges at the lower limit, asD  0, sowe split it into two integrals.

ò ò
f

f f

f

f f
=

- + D
+

- + D

f
A

d

1 2

d

1 2
4.31

s

s0 2 4 2 4

c

( ) ∣ ∣ ( ) ∣ ∣
( )

with D s2 11 4( )   . The second integral is not divergent sowemay discard it. Furthermore, the value of s is
small sowemay ignore the f-1 2( ) term in thefirst integral. Thus, aftermaking a substitution f y= D2 1 4( )
we get another complete integral of the first kind, since the upper limit approaches infinity for smallΔ.

ò
y

y
~

D +

D -

A
1

2

d

1
. 4.32

s

1 4 0

2

4

1 4

( )
( )

( )

This integral can be evaluated and rearranged to give

p
D =

G
=

A A

1

2 4

5.9085225 ...
. 4.33

4

1

4

2 4

4

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )
( )

Again, we have arrived at an identical force as in equation (3.28).

4.2.1. Numerical investigation
As before, we verify these results by integrating equation (4.24)numerically. It is done using the samemethods as
the previous section, using 1,000,000 values ofΔ, equally spaced from−0.00000005 to−0.001. After finding the
force coefficient,C(A), and applying the samefitting as equation (4.22)we obtain a value of =d 5.9084960 .
These resultsmatch the prediction (equation (4.33)) tofive significantfigures, confirming that themethod
outlined in section 4.2 is sound.

5. Conclusions and outlook

Wehave calculated the forces between the kinks that emerge in a special f8 theory, where the kinks have large
spatial extent and are able to interact over long distances. This was done using two differentmethods. Thefirst,
following [7], looked at approximately solving the equation ofmotion for an accelerating kink. Collective
coordinatemethodswere used to reduce the equation ofmotion to amodified Bogomolny equation that could
be solved approximately. The secondmethod adapted the techniques in [11]. A small perturbationwas added to
the potential in order to construct static solutions containing pairs of interacting kinks. In both cases, the

Figure 14.Plot of a bound kink-mirror-kink pair, for D = -0.0001. The points fC and f- C mark the positions of the centre of each
kink and the inter-kink half-separation can be read off as»30.
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strength of force acting between kink-antikink and kink-mirror kink pairs at large separationwas found to have
a

A

1
4 dependence on the inter-kink half-separation and the prefactor was calculated. Furthermorewe

demonstrated analytically that bothmethodsmake identical predictions for the prefactor.
In both cases, we supported our calculations with numerics, calculating the strength of the force between the

kinks. In thefirst section this was done by numerically solving themodified Bogomolny equation and extracting
the separation and force between the kinks from the solution. This required us to tune the input parameters of
the equation to obtain a valid kink solution, a step that substantially increased the computing time. In the second
casewewere able to reduce the problem to an integral that could be numerically evaluated. The secondmethod
provedmuch less computationally expensive, allowing us to sample the parameter space extremelyfinely. This
meant that the results obtained using the secondmethod had a greater accuracy,matching the prediction to six
andfive significantfigures for the kink-antikink and kink-mirror kink cases respectively. In comparison the
results from thefirstmethodmatched the prediction to three and two significantfigures for the kink-antikink
and kink-mirror kink cases. These results are shown in table 3. This suggests that the secondmethod is
preferable when calculating the long-range force between pair of kinks.

Potential further work could be to generalise themethods presented here to different systems, inwhich the
potentials could have higher-orderminima.We expect that the techniques presentedwill be transferable to a
number of variations on the theory.Ourwork is limited to cases where the kinks arewell-separated, thus it
would be interesting to investigate the interactions between kinks when the condition of large separation has
been relaxed. Additionally we have only calculated the force acting between initially staticfield configurations,
which represent an extremely limited range of the configurations available to such a system. It would be valuable
to investigate how these forces change for kinks inmotion relative to one another. The interactions between
kinks in our theory with radiationwould beworth studying, since there is evidence that such interactions can
displaymany interesting characteristics [17, 18].
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