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Abstract

We investigate the dynamics of the kinks that emerge in a one-dimensional scalar field theory with an
octic potential containing a quartic minimum and two quadratic minima. We show analytically that
kink-antikink and kink-kink pairs interact with a force that scales with the fourth power of the inter-
kink distance, and calculate its strength. This is done using two different techniques. The first employs
a collective coordinate method to approximately solve the equation of motion for the profile of an
accelerating kink. The second is based on modifying the potential to one that is able to support static
solutions containing multiple kinks. We show that the two methods give consistent results. All
calculations are supported by numerical work that confirms the validity of our results.

1. Introduction

Kinks are the simplest example of a topological soliton, appearing in one-dimensional field theories with a single
scalar field and a potential with multiple global minima [1, 2]. They appear as static solutions to the equation of
motion that interpolate between the different minima and are an example of a topologically protected state,
where to remove them requires one to change some topological characteristic of the field. Thus, it is generally
not possible for the kink to be removed or added as a field evolves smoothly under the equation of motion.
Furthermore, they appear with finite spatial extent and well-defined position and mass, so it is possible to view
them as particle-like objects, capable of moving through space and interacting with other kinks as a particle
might.

Kinks, as well as higher-dimensional solitons such as vortices and skyrmions, have found applications in an
enormous range of physical systems. They have appeared in condensed matter [3, 4], where kinks can be used
as a one-dimensional model for the interface separating different phases of matter, in cosmology [5] and in
high-energy physics [1, 6] where they have been used as models for elementary particles.

In this work we will be focussing on the kinks that appear in a ¢® theory [7, 8], where the Lagrangian is given by

= %6@8% - %(1 2, (L)

Unlike the kinks in other well-studied models such as the ¢* model [9, 10] or the Sine-Gordon model [1, 2], this
field theory contains kinks with large spatial extent, capable of interacting over very long distances. One of the
primary questions here has been to calculate the strength of interaction between well-separated kinks. This has
been investigated both analytically [7, 11] as well as computationally [8, 12]. In particular, obtaining accurate
parameters for the interaction strength through numerical work has proved much more challenging than in the
case of short-range kinks. This is because ¢ kinks have a strong, asymmetric sensitivity to the presence of
radiation. This means that one must take extreme care when picking the initial configuration of the field to
directly simulate the dynamics of a kink. Incorrectly initialised fields will result in unwanted radiation being
produced that substantially disrupts the dynamics.

In this article we present two different methods for calculating the interaction strength between kinks in our
theory, supporting both with numerical work. The first closely follows [7], supporting the analytical work
presented there with numerical calculations that verify its validity. Importantly, this numerical work avoids
many of the pitfalls associated with directly simulating the dynamics of the field. We follow this with analysis that

© 2020 The Author(s). Published by IOP Publishing Ltd
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extends the ideas from [11, 13] to accurately predict the interaction strength. This work is supported by
numerical calculations that confirm that it is sound. Furthermore, we show analytically that the two unrelated
methods are consistent with one another.

2. Setting the scene

We begin the discussion by defining the one-dimensional field theory in question and deriving some of the
fundamental properties of the solitons that emerge in this theory, namely the shape of the kink, including the
asymptotic behaviour of its tails and its mass.

The Lagrangian density for a scalar field ¢ (x) with potential V (¢) is given by

= % 001D — V(). @.1)

We are working in Minkowski space, and will use the metric 7, = diag(+1, —1), thus the Lagrangian may be
rewritten as

_ Lo b,
L= 2¢ 2¢ V(). (2.2)

Here dot denotes derivative with respect to time and prime represents spatial derivative.
The Euler-Lagrange equation is the equation of motion (EOM) for the field,

¢ — "+ j—; =0. (2.3)

The Lagrangian does not depend explicitly on the spacetime coordinates. Thus we may invoke Noether’s
theorem to find the conserved energy-momentum tensor,

oL
Tu/ziaz/ - ,/C
= B
= H(Zsayd)in,uuc (24)

with 9, TF = 0.
In particular, the energy density £ and momentum density P may be read directly from components of the
tensor according to

1. 1
Too = 26" + 67 + V(9) = & (2.5)
Toy = ¢¢' = —P. (2.6)
In this work we focus on kinks that emerge in the ¢8 potential
1
V(o) = 5(1 — ¢H)’¢", 2.7)

plotted in figure 1. The potential has three minima, a pair of quadratic minima at ¢ = +1and a quartic
minimum at ¢ = 0. Thusitis able to support four different types of kink. We will label kinks as interpolating
from ¢ = 0 — 1, antikinks from ¢ = 1 — 0, mirror kinks from ¢ = —1 — 0and anti-mirror kinks
from¢p =0 — —1.

Our first task is to derive the form of the kink appearing in this theory, using the Bogomolny trick [14]. The
kink is a static solution to the EOM (equation (2.3)). This means that the time derivative may be discarded,
resulting in the following nonlinear ODE:

" — v 0 (2.8)
do
The potential may be re-expressed in terms of a superpotential Waccording to
2
V= l d_W (2.9)
2\ do¢
with
dw
— =1 - ¢Ho2 2.10
0 (I =090 (2.10)
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Figure 1. Potential in ¢ theory.
Thus we have
1 3 1 5
Wz;(;ﬁ — gqb + c. (2.11)

For the sake of later convenience we set ¢ to be — %, sothat W [1] = 0. We expect the kink solution to have
¢(—00) = 0and ¢(c0) = 1. Furthermore, the solution should be a minimum of the energy. Using the
expression for energy density obtained in equation (2.5), we can write the total energy of the field as

00 2 2
E= lf (d—¢) (V) . (2.12)
2 Jc|\dx do
This can be rearranged by completing the square to give two equivalent expressions, depending on sign,

1 p©(dp _dw)
E= 2fm(dx T d¢)d" + (WIH(0)] — W(—00)]). (2.13)
¢ (£ 00) will always be an element of &, = {—1, 0, +1}. From our expression for Wit can be shown that
Wi-1] = —%, wlo] = —% and W[1] = 0.

Equation (2.12) is a sum of two squares, so E > 0. This means that we should pick the sign to ensure that
(W [p(0)] — W[d(—0o0)]) = 0 forour choice of limits. In the case of the kink, ¢ (—o0) = 0, ¢(c0) = 1,
therefore W [¢(c0)] — W[p(—o0)] = % and so we pick the expression for the energy with a minus sign inside
the integral. The total energy is minimised when the expression in the integral is 0, that is when

% - d—W = 0. (2.14)
dx d¢
This is called the Bogomolny equation. Using equation (2.10) it can be rearranged to give
f % - f dx (2.15)
(1 —-99¢
which may be separated into partial fractions,
1 1 1
qu( + + —) =x—A, (2.16)
f 21+¢)  21—¢) ¢
and integrated to give an implicit expression for the shape of a kink
x—Azllog ﬂ —l. (2.17)
2 1—¢ o)

Here the parameter A determines the position of the kink. This expression must be numerically inverted to give
the form of the kink, shown in figure 2, as there is no explicit expression for the inverted kink profile, ¢ (x). Itis
instructive to examine the asymptotic behaviour of the kink for ¢ close to 0 and close to 1.

On the left hand side of the kink, ¢ = ¢ with e small and positive. In this case, equation (2.14) reduces to

de . .
i = €2, which can be solved to give
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Figure 2. Kink in ¢® theory.

1
A—x
Note that ¢, g divergesatx = A.Ontherighthandside ¢ = 1 — ¢ with ¢ smalland positive and equation (2.17)
can be expanded to first order to give

Prefe = (2.18)

1 1
—log2 — —loge —1=x— A 2.19
> g 5 08 (2.19)

which gives the following expression for ¢,; ght’

Pright = 1 — exp[Z(x —A+1- %logZ)]. (2.20)

We can see that in the case of ¢8 theory, the decay on the left of the kink has an extremely long tail, allowing for
long-range interactions.

To talk about the position of a kink, we will need a convention defining the center of a kink. The kinks in ¢®
theory have large spatial extent, as well as not being symmetric in x. Thus there is no obvious definition for the
centre of a kink and we must make a somewhat arbitrary choice. In this work we define the center of the kink as
the point that crosses the maximum of the potential energy. This is the point where the energy density of the kink
is highest and occursat V (¢) = Vipax»

¢center = % (22 1)

Throughout this work, we will only be concerned with the interactions between kinks in the long-range limit, so
the specific choice of kink center will be of little importance.

Here it is worth introducing the mechanical reinterpretation of the kink solution, since it will be useful later
on. Equation (2.8) may be interpreted as the equation of motion for a ‘particle’ with ‘position’ ¢ moving in a
potential —V (¢), as shown in figure 3. To produce a kink, the particle starts at ¢ = 0, the maximum of the
potential, with infinitesimal positive velocity. It moves quickly through the trough and then slows down to
asymptotically approach the next maximum at ¢ = 1. Energy is conserved in this system (there is no drag term),
so the particle will come to rest at the next maximum. As the particle moves, it sweeps out the profile of the kink.

Finally we discuss the mass of the kink. From equation (2.13) we can see that, once the Bogomolny equation
is satisfied, the total energy of a kink is % Thus, since the theory is Lorentz invariant, the kink may be interpreted

as a particle-like object with mass % Furthermore, since the Bogomolny equation is satisfied locally at every
point in space, the total energy of the field between two points x; and x, is |W [¢ (x)] — W [¢()]]-

3. Forces between accelerating kinks

We now turn our attention to modelling the force between a well-separated pair of kinks. In section 3.1 we look
at the attractive force between a kink and antikink. Then in section 3.2 we calculate the force of repulsion
between a kink and mirror kink. In all cases the kinks are ordered such that the interaction is due to the
overlapping of their long-range i tails. The short-range tail on the other side has exponential asymptotics, so

4



10P Publishing

J. Phys. Commun. 4(2020) 055014 P d’Ornellas

Vig)

0.0 02 04 06 038 1.0

¢

Figure 3. Inverted potential felt by the particle in the mechanical reinterpretation.
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Figure 4. A possible state containing a kink and anti-kink.

interactions where these tails overlap will be largely identical to those in ¢* theory. This theory is well-
understood and so we do not study it here [1]. The force is initially calculated analytically by approximately
deriving a profile for the field containing a pair of interacting kinks. By examining the momentum density of the
field, itis possible to extract the force acting on the pair. The analytical discussion closely follows [7]. In each
case, we support the analysis with numerical results that verify that the method is sound and the approximations
made are valid.

3.1. Kinks and antikinks

To calculate the force between an interacting kink and antikink pair, we must make a guess at an appropriate
field that contains these two objects. The system we are looking at is no longer static—the kinks are accelerating
towards one another—so it will be necessary to account for the distortion of the kink profile caused by this
acceleration. Let us start with a field in which the antikink is at position — A (¢), the kink is at A(¢), and the field is

initially at rest.
The kink and antikink have identical form, but reflected in x, therefore it is reasonable to propose a
configuration that is symmetric, as shown in figure 4. Here the antikink is positioned at x = —50 and the kink is

atx = 50. Note that the field between the kinks does not touch the x-axis. The field is distorted from the static
kink solution, with ¢’ = 0 atx = 0.Itis possible to construct such a solution by finding the profile for a single
accelerating kink and gluing together the tails of the accelerating kink and its reflection.
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Before calculating the shape of this field, we first examine how the force acting on a kink may be determined
from the field configuration. From equation (2.6) it can be seen that the momentum density is given by

P = —¢¢'. Therefore, the rate of change of the total momentum in a region from x, to x, is given by
P d ,
—_—= - dx 3.1
" ” ¢¢ (3.1
[ (EM’ + q’bqﬁ')dx. (.2)

From the equation of motion, ¢ = ¢” — d—V, this expression becomes
-/ (¢"¢>’ -y ¢¢’) (33)
which may be integrated to give an expression for the force acting on the region between x,, and x;,

1 2 1.2 "
=0+ 0" = V()| - (3.4)
2 2 N
In the case of two interacting kinks, shown in figure 4, the force can be determined by setting x, = 0 and

xp = 00. Thefieldat x = oo isin the ground state and does not contribute to the force. We expect the field at

x = 0to have no spatial first derivative and negligible time derivative, since the field starts from rest and is
initially slow moving. Thus we are left with only one contributing term

Fiink = =V [¢(0)]. (3.5)

Now we return to determining a form for the field of a single accelerating kink. The first step is to model the
kink with an expression of the form

P(x, 1) = x(x — A(D). (3.6)

This can also be written as x (y) for y = x — A(t). Substituting into the equation of motion gives
YA — VA — ' + v =0. (3.7)
dx

We are starting with a field at rest, so A is negligible, thus the term y”A* may be ignored. Furthermore we
assume the acceleration is small and constant, allowing us to set A=—a,

x" — ax’ fd—V:O. (3.8)

dx

In the mechanical interpretation, this may be understood as describing the dynamics of a particle moving in

the same potential as figure 3 with the addition of a negative drag term with coefficient —a. The effect of a is

to add energy to the system as the particle moves under the influence of V (). The solution we are looking for
corresponds to the ‘particle’ starting from rest (y’ = 0) atapoint y > 0 and gaining just enough energy over its
motion to make it to maximum in the potential at y = 1, where it comes to rest. For each value of a there is a
position x (0) such that a particle starting at that point and moving under drag —a will gain just enough energy
toreach x = 1and go no further, resulting in a valid accelerating kink solution.

In what follows, we assume that the majority of the influence of the drag term is exerted on the long-range
tail of the kink. This makes sense since, at least in the limit of well-separated kinks, the tail is extremely long. The
drag force is weaker in the tail region than it is around the centre of the kink, but not substantially so, and acts
over amuch larger region. To compare the accelerating kink with the static kink derived in section 2 we match
the shapes of the long tails of both, in particular, aligning them so that the extrapolation of their i tails diverge at
the same point. This is shown in figure 5, where the point at which the tail diverges is marked with a dashed line.

We can assume that y approximately takes the form of an undeformed kink over its long tail, ensuring that itis a
solution of the Bogomolny equation (x’ = ‘3—‘::), with W defined in equation (2.10). Thus, equation (3.8) becomes

v - Laws vy =o (3.9)
dx
Now we define a modified potential V = V 4 aW and integrate equation (3.9),
fX//X/dx f_dX (3.10)
to get
X'?=2V. (3.11)
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Figure 5. Static and accelerating kink with extrapolated tail behaviour. The points at which the extrapolated tails diverge are marked
with a dashed line.

In the long-tail region, x is small, so V ~ %X4 and W ~ —%, thus we obtain

4q
= |x* - —. (3.12)

X X 15
dx
dx

X(—A) = (?—:)IM (whereweused y = x — A). Note that from equation (3.5) this means that the force acting

X takes its smallest value atx = 0 where == = 0. Therefore for equation (3.12) to hold we must have

on the kink is given by

2a
F=-VIx(Ol=—-—, (3.13)
15
which is perfectly consistent with Newton’s law of motion for a kink of mass — and acceleration —a. We wish to fix
the solution of equation (3.12) to ensure that it diverges at x = A (y = 0) since the extrapolation of a static kink
diverges atx = A. We therefore have x (0) = oo. Havingset our limits, we can integrate equation (3.12) to get

f( R Y (3.14)

41)4 4 4a

15

15

1
Making the substitution y = (?—:)4 A gives

4—“)XA. (3.15)

f“d_A:(
M- 15

The left-hand side is a complete elliptic integral of the first kind, and can be evaluated to give [15]

1 1 2
A r(;)
—|A=— . (3.16)
15 V2 avm
Plugging this result into equation (3.13) and evaluating gives
2\4
(L
Pl (4) L L4773 3.17)

8A| 47 At

3.1.1. Numerical investigation

A number of studies have been undertaken to verify the relationship derived above by numerically simulating
the dynamics of the field [8, 12, 16]. We take a different approach to finding the strength of the force acting
between a kink and anti-kink, focussing on carefully approximating the profile of an accelerating kink. Our
starting point is equation (3.8):

' —ay - Y (3.18)
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Figure 6. Plot of the particle’s motion for three different values of a, with x, = 0.003.

Note that in deriving this differential equation, the only approximation we made was to assume that A can be
ignored, thus it is exact for finding the force acting on a static kink, before it has started to move under
acceleration.

We examine the differential equation through the lens of the mechanical interpretation, viewing it as
describing a particle that starts at a position x (—A) and moves under negative drag term —a in the potential
— j_Z' As explained in the previous section, for every value of y (—A) there is a unique corresponding value of a

such that the motion of the particle will correspond to a valid kink solution. If a is too large, the particle will gain
too much energy as it moves through the potential, overshooting the maximum and ‘falling off’ the other side,
accelerating towards xy — +-o00. Ifais too small, the particle will not gain enough energy as it moves through the
potential. This means it won’t make it up to the maximum of the potential at Y = 1and will turn back on itself,
moving back towards negative x. Figure 6 shows the motion of the particle for three values of a, one with an
overshoot, one that is correct and one with an undershoot.

This differential equation is easily solved using python’s inbuilt ODE solver, odeint. We start with a choice
ofinitial values, y (—A), x'(—A) = 0 and g, and solve it to obtain a profile for x (y), with y discretised over an
array of length 2048. It is straightforward to determine if the value of a was an overshoot or an undershoot, so we
can quickly converge to the correct value using a method based on the binary search algorithm.

Once we have determined the value of a, we automatically get an expression for the shape of an accelerating
kink for our chosen y (—A) as the solution of our differential equation. Now the only thing left to do is to find
the center of the kink, A, by looking for the point in space where the kink crosses x (0) = % The force acting on
the kink is given by equation (3.5), F = —V [x(—A)]. Thus we have arrived at a set of values for the force acting
on the kink as a function of the kink separation.

This process was performed for a set of 8000 values of x (—A) spaced evenly between x (—A) = 0.01 and
X (—A) = 0.5. Then, using the 8000 pairs of values for force F and distance A, the force coefficient

C(A) = FA* (3.19)

was calculated. The obtained values for C(A) are shown in figure 7. Based on the results from the previous
section, it is expected that for large separations C(A) should tend towards a constant value (around 1.477...), but
will deviate from this for smaller values of A. We fit to an expression of the form
a Q Cn

ColA) = o+ — S o (3.20)
This amounts to taking a Taylor expansion of C(A) in A~!. We are only interested in extracting the value that C
(A) tends towards for large A, parametrised by ¢y. The higher order terms in C,(A) serve to separate the short-
range effects from the long-range effects, and are themselves discarded. This allows for greater accuracy in
determining ¢y, which should depend only on long-range effects.

Fittings were calculated for values of n between 0 and 10, and the values of ¢, obtained are shown in figure 8.
This was done using the curve fit function from the scipy. optimize library. As nisincreased, and more
terms are added to the fitting, ¢, tends towards a stable value. Table 1 shows the value of ¢, obtained for each n
tested. Furthermore, in order to assess the quality of fit, the normalised sum of squared residuals is evaluated,
given by:
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Figure 7. Plot showing the relationship between force coefficient C(A) and inter-kink separation A for an interacting kink-antikink
pair.
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Figure 8. Value of ¢, computed for a set of C,(A) fittings for n between 0 and 10. The dashed line indicates the predicted value

(C =14771..).
Table 1. ¢y and residuals for varying n.
n: 0 1 2 3 4 5
[ 0.815 62 1.387 17 1.497 64 1.489 74 1.479 78 1.476 95
S: 0.13 0.0026 1.6 x 107 84 x 107% 41 x 107 2.6 x 107%
n: 6 7 8 9 10
Co: 1.476 71 1.476 86 1.476 94 1.476 97 1.476 99
S: 6.4x10710 1.8 x 10710 8.3 x 1071 7.7 x 10711 7.5 x 10711
1 2
S= EZ[C(AI') — Cu(ADF. (3.21)
i

Here N is the total number of points calculated, C(A;) is the measured value for the force coefficient at point A;,
and C, (A;) is the predicted value of C from the fit. This is also shown in table 1.

From this information we conclude that the accuracy of the fit, as well as the validity of the model, improves
for higher values of n. Thus, here and in the subsequent sections, we will use C; o as the model for fitting the data,

9
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Table 2. Fitting values for Gjo(A).

Co q 53 G Cy Cs5 Co ¢ Cg Cy €10

1.476 99 —3.1 -2.9 15 21 =22 620 —950 790 7600 7900

itis possible to go to higher orders, however the effect on ¢, is minimal and the calculations become
computationally expensive.

To further support the validity of this choice of model, we notice that at large n the higher order
contributions to C, are too small to have any effect beyond extremely short distances, as shown in table 2. Even at
even reasonably small distances (A ~ 10) the higher order contributions are negligible when compared to that
from ¢, and so have no effect on the fitting of long range effects beyond removing the influence of the short
range behaviour. The final result for ¢, obtained matches the predicted value of 1.4771 to a precision of four
significant figures.

3.2. Kinks and Mirror Kinks
We now repeat the same analysis, examining the interaction between a kink and a mirror kink. The mirror kink
has the same profile as a kink, but reflected over both the x and ¢-axis. Thus we expect the correct solution to
have symmetry under simultaneous x and ¢-reflection and to pass through the origin. We propose a solution
constructed by gluing together the profile of an accelerating kink to that of an accelerating mirror kink.

Now we return to equation (3.4). The time derivative and potential term are both zero, so the total force
acting on the kink will be

2
F= 1(8—(15) (3.22)

- 2\ox

x=0

We make the same substitution as in the antikink case, ¢ (x, t) = x(x — A(¢)), however this time we choose
positive A = a to get

'+ ay — d_ = 0. (3.23)

Under the mechanical reinterpretation, this corresponds to a particle moving under a positive drag term in the
inverted potential shown in figure 3. In this case, a valid kink solution will correspond to the particle starting at
point x = 0 with positive velocity x’(—A). The particle then loses just enough energy over its motion to
asymptotically approach the maximumat y = 1.
Asbefore, we assume that the drag term acts primarily over the long-range tail of the kink, making the
approximation x’ = ‘;—‘:\; and integrating to get
4a

/ 4

We expect that this solution has x (—A) = 0 and that diverges at X (0), thus we arrive at the integral

f X _ A (3.25)
0 4 4a
N s
Substituting y = (f—:)“)\ gives
o dA da)i
—=—] A 3.26
j; M+ (15) ( )
This is another elliptic integral of the first kind, and can be evaluated to give [15]
2
Loor(s
(4—“) A= Q (3.27)
15 4T
Finally, we plug this result into equation (3.13) to get
2\4
(L
P L (4) . 5.90852... (3.28)

244 4T At

10
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Figure 9. Plot showing the relationship between force coefficient C(A) and inter-kink separation A for an interacting kink-mirror kink
pair.

3.2.1. Numerical investigation
The numerical method here mirrors that undertaken in the case of kinks and antikinks. We start with the
equation

x" + ax — v =0. (3.29)

This time, rather than picking a non-zero initial value of x (—A), weset x (—A) = 0 and pick a starting value of
X'(—A). Then we use an identical method as before to converge on the correct value of a such that we get a valid
kink solution. Once we have our values for x’(—A) and a, we may calculate the force acting on the kink using
equation (3.22), and the distance of the kink from the midpoint between the kink and the mirror kink by looking
for the point in space where the kink crosses y (0) = %

This was done for an array of 8000 values of y/(—A), evenly spaced between 0.005 and 0.4. The force
coefficient (equation (3.19)) was calculated, shown in figure 9. The results were fitted to a curve of the form

d d d
Cio(A) = dy + Xl + Xzz + o+ ﬁ. (3.30)
The procedure for determining the choice of fit closely mirrors that presented in section 3.1.1, and so we do not
restate it here. The analysis gave a d, value of 5.9031, which matches the predicted value of 5.9085 to two

significant figures.

4. Forces from perturbed equation of motion

We now describe a different method for calculating the force between an interacting pair of kinks, following
fromworkin [11, 13] where the % dependence was determined but the coefficient was not. We start with the
potential

V= %(1 ey 4.1)

It has been shown that this potential is unable to support static solutions containing more than one kink. This is
because fields containing multiple kinks will always experience acceleration due to interactions between the
kinks [7].

To study the interacting kinks, we now modify the potential. We add a small extra term that preserves the
fourth order zero at the origin and displaces the value of the potential at the minima at ¢ = +1byasmall
amount A. This gives us a new potential,

Uo) = %df‘(l C Y AgheE - 3), (4.2)

which is plotted in figure 10.
This change has the effect of exerting a force on any kinks in the system. If A is positive, then kinks are
accelerated towards the side that is in the vacuum ¢ = +1. Thus, kinks are accelerated to the right, antikinks and

11
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Figure 10. The potential U (¢) in equation (4.2), with A = 0, 0.01, 0.02 and 0.03.

mirror kinks to the left, locally enlarging the region where ¢ is close to zero. The strength of the force exerted on a
kink is equal to the value of A. This may be intuitively understood in terms of the energy density of the vacuum
on one side of the kink, which also equals A. Sliding a kink towards the right will remove a region of energy
density A and create an equal-sized region of energy density zero. Thus the force experienced by the kink is A.

In this regime, solitary kinks are no longer static solutions of the field equations. Instead we have static
solutions containing bound pairs of kinks. We look separately at the case of kinks with antikinks, and kinks with
mirror kinks.

4.1. Kinks and antikinks
If A > 0 the stationary state of the theory will contain an interacting kink-antikink pair. This is because the
kinks and antikinks attract one another. Aslong as the kink is on the right and the antikink is on the left there will
also be the force—due to A—that pushes them apart. The static solution corresponds to the case where the
kinks are at the right distance to ensure that the force pushing them apart is balanced against the force pulling
them together. Note that this configuration is unstable. If the kinks are not at precisely the correct distance from
one another they will be accelerated away from the static separation distance.
To derive the profile of the bound kink-antikink pair, we examine the static equation of motion,
d?¢ dU
dx*  do¢
In the context of the mechanical interpretation, this can be understood as the equation of motion for a particle
movingin the inverted potential — U, shown in figure 11.
The solution corresponding to abound kink and antikink is equivalent to the particle starting at ‘position’
¢ = 1with infinitesimal velocity in the negative ¢ direction. The particle then almost makes it to the maximum of
the potential at ¢ = 0, but does not quite reach it, and so has its direction reversed at ¢ = « after which it returns
toits starting position at ¢ = 1. This trajectory, and thus the shape of the bound kink-antikink pair is shown in
figure 12. We consider the position of each kink to be the point at which the field crosses the maximum of the
potential energy, which we willlabel ¢.. For astatickink thisisat ¢ = % (equation (2.21)), however the value is

—0. (4.3)

displaced slightly in the case of the modified potential. In the following work we will label this point as ¢..

We now wish to find an expression for the position of the kink, A, as a function of A. This can be done by
integrating the equation of motion (4.3) between the points (x = 0, ¢ = a, ¢’ = 0)and
(x=A, ¢ = ¢c ¢ > 0). Weintegrate

Eoa0_av »
dx? dx dx
to get
2
%(%) — Ul6()] - Ulal, (4.5)
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Figure 11. Plot of the potential felt by the particle in the mechanical interpretation of equation (4.3), with A = 0.005. & marks the
smallest value of ¢ reached by the particle over its motion. ¢ marks the minimum of the potential, this is the value of ¢ that we
consider to be at the centre of the kink.
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Figure 12. A bound kink-antikink pair for A = 0.0001. The value ¢, marks the point where the kinks cross the minimum of the
inverted potential energy — U (¢), which we consider to be the centre of a kink. The minimum value of ¢ is marked as «v. The inter-
kink half-separation can be read off the graph as ~20.

which is then further integrated and rearranged to give

e — (4.6)
V2 Ja JU@) - U(a)

Since U () = A, we may re-express the term in the square root as
U@) ~ Ule) = 26'(1 = 6% = A26° — 36") - A (47)
We now factorise this polynomial to rewrite the integral as

éc do
A= . 4.8
fa (1 — D) o' — 4A¢? — 2A o

Before we continue we must derive expressions for o and ¢.. For «, we find the zeros of U (¢) — A. This canbe
rewritten as

(1 — ¢D?*(p* — 4A9> — 2A) = 0. (4.9)
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This has two obvious solutions at ¢ = =1. The second polynomial has roots ¢?> = a?and ¢? = — 32, with
a? =2A + 2A(1 + 24) (4.10)
3= —2A + J2A0 + 2A) (4.11)

For ¢ we solve
dUu

i 0, (4.12)

to get the solution
Oc = %\/2 + 12A. (4.13)

Thus we end up with the following integral

% do
A= . (4.14)
fw (1 — 3 (@ — D (P + B

We evaluate this integral in the limit of small A. Looking at the expressions for «and 3, we see that in this limit

ot = 3=~ 2A (4.15)

and so we can re-express the integral as

a=[" d¢ (4.16)

@A (1 = ¢2) ot — 2A .
This integral diverges for A — 0; clearly the divergence occurs at the lower limit. Thus we separate the integral
into two parts

N

d¢ T f‘ﬁjc d(b
M (1 - ¢ Jot — 28 Ji (1 - gD et — 20"
where s is some small parameter we have chosen such that (2A)!/4 < s < 1. The first integral here, from

QA 4tosis divergentas A — 0, but the second part is not and so may be discarded. Furthermore, now that
(2A)'/* < land s < 1wecanassume that (1 — ¢?) ~ 1 in the first integral. We arrive at the following

(4.17)

s d¢
A~ e (4.18)
ea)™t ot — 2A

Now we make a substitution ¢ = (2A)!/41) to get

1 sQA) 14 dy
f1 L (4.19)

A ey Jo 1

The upper limit approaches infinity for small A and so we are left with a complete elliptic integral of the first
kind. This is evaluated to give
1\2
1 ()

A= — 4.20
QAT 4w (20
and rearranged to arrive at the final expression
2\4
(L
_ 1 (4) _ 14771306... 421

8A| 47 At

Remembering that A is just the force of attraction between the kinks, we can see that we have recovered the
identical force as in equation (3.17).

4.1.1. Numerical investigation
To verify that the approximations made are sound, we numerically calculate the integral in equation (4.8).
Values were found using the quad function from Python’s scipy. integrate library. An array of 1,000,000
values of A were used, evenly spaced between A = 5 x 107 8and A = 1 x 1073,

As before, the values obtained for distance and force were used to calculate the force coefficient C(A) = FA*
and this was fitted to a function of the form
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Figure 13. Plot of the potential felt by the particle in the case A = —0.005. Once again ¢ marks the centre of the kinks.

¢ c ¢

Cio(A) = co + Zl + XZZ + o+ ﬁ. (4.22)
We use the same procedure for choosing the fit as in section 3.1.1. The value of ¢, obtained using this method was
1.477 133 6, agreeing with the predicted value, 1.477 130 6, to six significant figures, suggesting that the
approximations used were valid.

4.2. Kinks and mirror kinks

We can now repeat the same method to find the force of repulsion between a kink and mirror kink. We use the
same modified potential, equation (4.2), however this time A must be negative. This is because our kink and
mirror-kink repel one another, so we must add a force of attraction between them, arriving at the mechanical
potential shown in figure 13.

In this case, the kink solution corresponds to the particle starting at ¢ = —1 with infinitesimal positive
velocity. The particle then passes through the point ¢ = 0 with ‘velocity’ ¢/(0) = v2A (obtained from
conservation of kinetic and potential energy). It then crosses over ¢ and comes torestat ¢ = 1. The resulting
kink shape is shown in figure 14.

Again, we must find an expression for the inter-kink distance, which is done by integrating between the
points (x = 0, ¢ = 0, ¢' = V2A)and (x = d/2, ¢ = ¢p, ¢’ > 0). Expression 4.4 integrates to give

1(do(x) )2 1
—| = - —(V2A)?=U . 4.23
2( o 2(\/ ) [¢(x)] (4.23)
We rearrange and integrate again to get:
1 bc do
A= — T (4.24)
V2 J VU@ + 14
The term in the square root is now
1
S - ¢ (" + 4|A[9% + 2|A]) (4.25)

so we obtain an expression of the form
é
a=[" dé . (4.26)
O (1= @Yo+ 4AIP? + 204
We factorise the polynomial in the square root to get

dc do
A= , (4.27)
fo (1 — ¢)Y (P> — a?)(P? — B?)

with
a? = =2|A] + {4|AP - 2]|A] (4.28)
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Figure 14. Plot of a bound kink-mirror-kink pair, for A = —0.0001. The points ¢ and — ¢ mark the positions of the centre of each
kink and the inter-kink half-separation can be read off as ~30.

B2 = —2|A| — JHAPR - 2[A]. (4.29)

& is again determined by equation (4.13). Taking A to be small, we can set a? ~ —(3? & i,/2|A|. Thus from
equation (4.27) we get

éc do
A= f ‘ . (4.30)
0 (1= ¢Ho! + 24
This integral diverges at the lower limit, as A — 0, so we split it into two integrals.
A= do (431)

s do &
+
j‘; (1 — ¢Hyo' +2|1A| ‘[5 (1 = ¢)yo* + 2|A]|

with (2A)'/* < s < 1. The second integral is not divergent so we may discard it. Furthermore, the value of s is
small so we may ignore the (1 — ¢?2) term in the first integral. Thus, after making a substitution ¢ = (2A)"/*y)
we get another complete integral of the first kind, since the upper limit approaches infinity for small A.

1 sQAy4 dy
fo _w (4.32)

TN Jor+ 1

This integral can be evaluated and rearranged to give

1 F(i)z ' _ 5.9085225...

4.33
24| 4vT A *33)

Again, we have arrived at an identical force as in equation (3.28).

4.2.1. Numerical investigation

As before, we verify these results by integrating equation (4.24) numerically. It is done using the same methods as
the previous section, using 1,000,000 values of A, equally spaced from —0.00000005 to —0.001. After finding the
force coefficient, C(A), and applying the same fitting as equation (4.22) we obtain a value of dy = 5.908496.
These results match the prediction (equation (4.33)) to five significant figures, confirming that the method
outlined in section 4.2 is sound.

5. Conclusions and outlook

We have calculated the forces between the kinks that emerge in a special ¢® theory, where the kinks have large
spatial extent and are able to interact over long distances. This was done using two different methods. The first,
following [7], looked at approximately solving the equation of motion for an accelerating kink. Collective
coordinate methods were used to reduce the equation of motion to a modified Bogomolny equation that could
be solved approximately. The second method adapted the techniques in [11]. A small perturbation was added to
the potential in order to construct static solutions containing pairs of interacting kinks. In both cases, the
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Table 3. Predictions and numerical results for the force coefficient.

Predicted Second
value First method method
Kink— 1.477 131 1.476 99 1.477 133
Antikink
Kinks—Mir- 5.90852 5.903 5.808 49
ror Kink

strength of force acting between kink-antikink and kink-mirror kink pairs at large separation was found to have
a % dependence on the inter-kink half-separation and the prefactor was calculated. Furthermore we
demonstrated analytically that both methods make identical predictions for the prefactor.

In both cases, we supported our calculations with numerics, calculating the strength of the force between the
kinks. In the first section this was done by numerically solving the modified Bogomolny equation and extracting
the separation and force between the kinks from the solution. This required us to tune the input parameters of
the equation to obtain a valid kink solution, a step that substantially increased the computing time. In the second
case we were able to reduce the problem to an integral that could be numerically evaluated. The second method
proved much less computationally expensive, allowing us to sample the parameter space extremely finely. This
meant that the results obtained using the second method had a greater accuracy, matching the prediction to six
and five significant figures for the kink-antikink and kink-mirror kink cases respectively. In comparison the
results from the first method matched the prediction to three and two significant figures for the kink-antikink
and kink-mirror kink cases. These results are shown in table 3. This suggests that the second method is
preferable when calculating the long-range force between pair of kinks.

Potential further work could be to generalise the methods presented here to different systems, in which the
potentials could have higher-order minima. We expect that the techniques presented will be transferable to a
number of variations on the theory. Our work is limited to cases where the kinks are well-separated, thus it
would be interesting to investigate the interactions between kinks when the condition of large separation has
been relaxed. Additionally we have only calculated the force acting between initially static field configurations,
which represent an extremely limited range of the configurations available to such a system. It would be valuable
to investigate how these forces change for kinks in motion relative to one another. The interactions between
kinks in our theory with radiation would be worth studying, since there is evidence that such interactions can
display many interesting characteristics [17, 18].
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