

Role of surface energy coefficients in cluster decay

N. S. Rajeswari^{1,*}, C. Nivetha¹, and M. Balasubramaniam²

¹Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women - University, Coimbatore - 641043, INDIA and
²Department of Physics, Bharathiar University, Coimbatore - 641046, INDIA

Introduction

Radioactive heavy nuclei reaches stable region by emitting clusters, apart from emitting α particle, which are heavier than α particle and lighter than the lightest fission fragment, a phenomenon named cluster radioactivity. Poenaru and Greiner [1] interpreted the equivalence between the fission model and preformed cluster model, by stating that the preformation probability in fission models can be considered as the penetrability of the pre-scission part of the barrier. Shi and Swiatecki [2] estimated the half-lives of cluster emission by using a interpolation formula for fused region and a combination of proximity and Coulomb potential for the post-contact region. Proximity potential plays a vital role in deciding the characteristics quantities of a decay. We have analysed the role of nuclear surface energy coefficients in Shi and Swiatecki model in estimating pre-formation probability and half-lives in cluster decay.

Shi and Swiatecki [2] used Coulomb plus proximity potential for the post-touching region and for the pre-touching part they have used power law as given below:

$$V(L) = \frac{Z_1 Z_2 e^2}{R} + V_P - Q, \quad L \geq L_c \quad (1)$$

$$V(L) = a(L - L_0)^x, \quad L_0 \leq L \leq L_c \quad (2)$$

where L indicates the extreme extension of the configuration with L_c corresponds to the contact of the fragments. a and x are calculated using smooth continuity relation between the potentials of pre and post touching

regions. V_P is the nuclear proximity potential term given as

$$V_P = 4\pi \bar{R} \gamma b \Phi(\xi). \quad (3)$$

$\Phi(\xi)$ is the universal function of proximity potential and \bar{R} is the mean curvature radius of the reaction partners, characterising the gap. Nuclear surface energy coefficient is given by,

$$\gamma = \gamma_0 \left[1 - k_s \left(\frac{N - Z}{A} \right)^2 \right] \text{MeV fm}^{-2}, \quad (4)$$

Here γ_0 and k_s are parametrised by different authors [3]. Half-life is given by

$$T_{1/2} = \frac{\ln 2}{\nu P_0 P} \quad (5)$$

Here ν is assault frequency and P_0 indicates pre-formation probability which is the penetrability for the pre-touching region and P penetrability for the post-touching region; both the penetrabilities are calculated using WKB method.

Results and discussions

We have incorporated, the idea of Poenaru *et al* [1], i.e. considering the penetrability for the pre-touching region as pre-formation probability, in Shi and Swiatecki [2] model for different parametrization of nuclear surface energy coefficients. Shi and Swiatecki does not include preformation probability in his model. Experimentally identified 15 cluster emitters with $221 \leq A \leq 242$ are considered for study with emitted clusters such as ^{14}C , ^{20}O , ^{24}Ne , ^{28}Mg and ^{32}Si [4]. Based on the advancements in theory and experiments, the

*Electronic address: raj123sashi@gmail.com

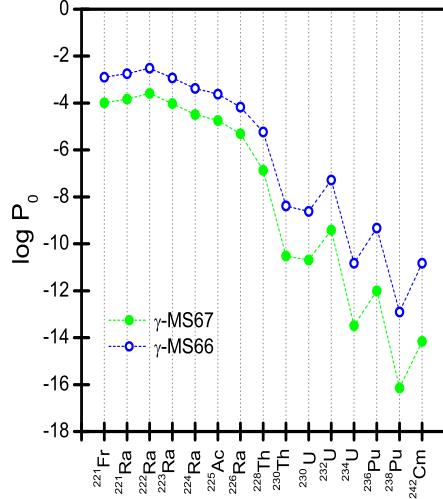


FIG. 1: Calculated $\log P_0$ values for cluster decays of different parent nuclei.

values of γ_0 and k_s of nuclear surface energy coefficients were parametrised. Here we have used two parameter sets $\gamma_0 = 1.01734$ MeV/fm 2 , $k_s = 1.79$ denoted as γ -MS66 and $\gamma_0 = 0.9517$ MeV/fm 2 , $k_s = 1.7828$ denoted as γ -MS67 [3]. These values enter the calculation of P_0 in the proximity potential through continuity equation. Shi and Swiatecki employed γ -MS67 in his work. Fig. 1 represents the P_0 values calculated using WKB integral for the use of potential given by Eq. (2) for the use of these two γ 's. From the structure of P_0 , it is clear that, it decreases as the size of the cluster increases, indicating the size dependence of the P_0 in cluster decay. This structure resembles Fig. 3 of our previous work (Ref. [4]) which is the discrepancy between experimental and calculated half-life assuming P_0 as 1. However magnitude of P_0 differ due to the calculation in the penetrability factor for the post touching region in both the models. Preformation probability values due to use of γ -MS67 are found to be lower than that calculation due to γ -MS66. Half-life is calculated for these 15 parent nuclei for cluster decays using Eq.

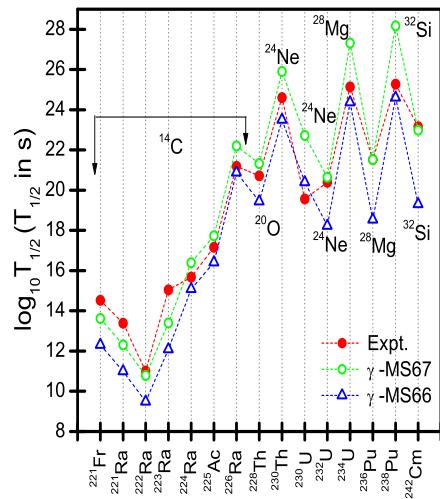


FIG. 2: Experimental and calculated $\log_{10} T_{1/2}$ values for cluster decays of different parent nuclei.

(5) with P_0 due to both γ 's. In Fig. 2 calculated half-lives and experimental half-lives are presented. Solid circle represents the experimental half-lives and open circle and open triangle represent the calculations due to γ -MS67 and γ -MS66 respectively. For the use of γ -MS67, experimental and calculated half-lives coincides for ^{14}C decay from ^{222}Ra , ^{24}Ne decay from ^{232}U . In the case of γ -MS66, better matching between experimental and calculated half-lives are noted, for the emission of ^{14}C from ^{224}Ra , ^{225}Ac and ^{226}Ra and ^{28}Mg from ^{234}U , ^{32}Si from ^{238}Pu .

References

- [1] D. N. Poenaru and W. Greiner, *Physica Scripta* **44**, 427 (1991).
- [2] Yi-Jin Shi and Swiatecki, *Nucl. Phys. A* **438**, 450 (1985).
- [3] Ishwar Dutt, *Pramana* **76**, 921 (2010).
- [4] M. Balasubramaniam *et al*, *IJMPE* **23**, 1450018 (2014).