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Abstract

Interest in the variation of fundamental constants has recently been stimulated by
claims that the fine structure constant, α, was smaller in the past. Physicists are
investigating whether α is currently varying using a number of methods including
atomic clock experiments and quasar absorption spectra. To date atomic clock
experiments have not reached the same level of precision as the quasar results
but the precision to which transition frequencies are being measured is increasing
dramatically and very soon atomic clock experiments based on Earth will be able
to rival or surpass the quasar results. In order to relate the change in transition
frequencies to a variation of α accurate calculations of relativistic effects in atoms
and their dependence upon α are needed. Other effects, such as the small shift of
transition frequencies due to blackbody radiation also need to be accounted for.

In this thesis we perform accurate calculations of the dependence of transition
frequencies in two-valence-electron atoms and ions on a variation of α. The
relativistic Hartree-Fock method is used with many-body perturbation theory
and configuration interaction methods to calculate transition frequencies.

We also consider transitions with an enhanced sensitivity to α variation. In
particular, narrow lines that correspond to atomic transitions between close ly-
ing, long-lived atomic states of different configurations. The small transition
frequency, coupled with differences in the electron structure ensures a strong en-
hancement of the relative frequency change compared to a possible change in
α.

We also show that using the modified form of the Dirac Hamiltonian, as
suggested by Bekenstein, does not affect the analysis of the quasar data pertaining
to a measurement of α variation, nor does it affect atomic clock experiments.

Finally we have performed calculations of the size of the frequency shift in-
duced by a static electric field on the clock transition frequencies of the hyperfine
splitting in Y b+, Rb, Cs, Ba+, and Hg+. The calculations are used to find the
frequency shifts due to blackbody radiation which are needed for accurate fre-
quency measurements and improvements of the limits on variation of α. Our
result for Cs [δν/E2 = −2.26(2) × 10−10Hz/(V/m)2] is in good agreement with
early measurements and ab initio calculations. We present arguments against
recent claims that the actual value might be smaller. The difference (∼ 10%) is
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due to the continuum spectrum in the sum over intermediate states.
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Preface

This thesis will investigate the theory behind using atomic clocks to measure a
variation of the fine structure constant, α.

The introduction will give an overview of the current limits on the variation of
some of the fundamental constants. It will give a very brief background into some
of the theories about how and why fundamental constants may vary. Current
limits on the variation of α will be given and there will be some discussion of how
atomic clock experiments aiming to measure α variation work.

Chapters 2, 3, 4 and 5 will present my work which involves calculations to
assist in a measurement of limits on α variation in the laboratory. Chapter 2
will describe how the energy levels in an atom move if α is varying and how we
calculate these values. In Chapter 3 various ways to increase the sensitivity of
atomic clock experiments to a variation of α will be considered. Chapter 4 puts to
rest a concern raised about whether the method used to measure α variation using
quasar spectra and atomic clocks is correct. In Chapter 5 we consider the effect
of blackbody radiation on the transition frequencies in atoms. This is important
because this effect can have a similar order of magnitude to the a variation of α
and so needs to be accounted for (it also needs to be known accurately for the
definition of the second).

The work in these Chapters 2-5 is based on the following papers published in
peer-reviewed journals:

E. J. Angstmann, V. A. Dzuba, and V. V. Flambaum, Relativistic effects
in two valence-electron atoms and ions and the search for variation of the fine-
structure constant, Physical Review A 70, 014102 (2004) [1]

E. J. Angstmann, V. V. Flambaum, and S. G. Karshenboim, Cosmological
variation of the fine-structure constant versus a new interaction, Physical Review
A 70, 044104 (2004) [2]

E. J. Angstmann, V. A. Dzuba, V. V. Flambaum, A. Yu Nevsky, and S. G.
Karshenboim, Narrow atomic transitions with enhanced sensitivity to variation of
the fine structure constant, Journal of Physics B: Atomic, Molecular and Optical
Physics 39, 1937-1944 (2006) [3]

E. J. Angstmann, V. A. Dzuba, and V. V. Flambaum, Frequency Shift of the



Cesium Clock Transition due to Blackbody Radiation, Physical Review Letters
97, 040802 (2006) [4]

E. J. Angstmann, V. A. Dzuba, and V. V. Flambaum, Frequency shift of
hyperfine transitions due to blackbody radiation, Physical Review A 74, 023405
(2006) [5]

The following paper, which I worked on during my PhD candidature has been
left out of the thesis since it deals with parity nonconservation effects (specifically
the possibility of measuring nuclear anapole moments in atomic Zeeman transi-
tions, which have variable transition frequencies) while this thesis concentrates
on measuring variation of α:

E. J. Angstmann, T. H. Dinh, and V. V. Flambaum, Parity nonconservation
in atomic Zeeman transititions, Physical Review A 72, 052108 (2005) [6]

This thesis retains the use of first person plural, however, I made a significant
contribution to all of the work presented.



Chapter 1

Introduction

1.1 Theories and Varying Constants

All metric theories of gravity, such as general relativity, forbid the temporal and

spatial variation of non-gravitational constants. This is because these theories

are based on Einstein’s equivalence principle which states that in any inertial ref-

erence frame the result of any non-gravitational experiment must be independent

of where in space and when in time it is carried out. So far Einstein’s equivalence

principle has withstood all the tests thrown at it, however, recent measurements

of a possible variation of the fine structure constant, α, (to be discussed later

in the chapter) are the first indications that this theory may only be a good

approximation.

The standard model of particle physics makes no allowances for the variation

of any fundamental constants, for example constants such as α, or the electron-

to-proton mass ratio, me/mp. The standard model has thus far withstood every

test that it has been put through.

Several theories including Kaluza-Klein theories and string theories, that com-

bine gravitational and quantum effects, allow or even require variation of funda-



2 1. Introduction

mental constants. These theories are higher-dimensional theories, our four dimen-

sional constants depend upon the value of some scalar fields and on the structure

and sizes of the extra dimensions. Any evolution of the size of the higher di-

mensions with time could lead to a spacetime variation of our four dimensional

constants. An excellent review by Uzan [7] describes the theories that predict

spacetime variation of constants as well as current limits on variation of these

constants. Investigating the temporal and spatial variation of constants serves as

a way to probe the underlying fundamental physics and can suggest the form that

a unified theory should take. Confirmation of α variation would be exciting since

it would indicate new physics beyond the standard model and general relativity.

1.2 Constants that we try to constrain

To get a clearer understanding of how the universe works it is important to

investigate how several of the fundamental constants are varying (or not varying!).

To obtain a clear picture of the form of the true description of the universe we need

to find the constraints on as many of the parameters as possible. It is important

that the constants that we constrain (such as α or me/mp) are dimensionless,

otherwise a measurement of their variation could in fact be due to a variation of

the system of units used, rather than the constant.

This thesis will concentrate on placing limits on possible variation of α(=

e2/~c). α characterizes the strength of the electromagnetic interaction: it repre-

sents the strength of the interaction between electrons and photons. In atomic

units (me = 1, ~ = 1 and e = 1), which will be used throughout this thesis,

α = 1/c. As its name suggests the fine structure constant plays an important

role in determining the fine structure of atomic energy levels. That is, it is very

important for determining the size of relativistic effects in atoms. As will become

clear throughout the thesis we exploit this dependence to obtain limits on its
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possible variation.

Theories that predict a varying α usually predict that other constants, such

as the QCD scale parameter, ΛQCD, also vary. In fact, many grand unification

models predict that ΛQCD should vary faster than α. For example, Langacker et

al. [8] use a typical model (a grand unified gauge theory with a single coupling

constant) to predict that
∆ΛQCD

ΛQCD

∼ 34
∆α

α

(Calmet and Fritzsch, [9], performed a similar analysis at the same time, and

obtained the coefficient 38± 6, which is in good agreement with Langacker et al.,

who claim a 20% uncertainty). Neutron and proton masses are largely fixed by

ΛQCD. In this same model quark and electron masses scale as ∆m/m ∼ 70∆α/α.

It is thus easy to show that for this model

∆(mq/ΛQCD)

(mq/ΛQCD)
∼ 36

∆α

α

where mq/ΛQCD is dimensionless. While α can be determined from the relativistic

effects in atoms, mq/ΛQCD is involved in determining the size of nuclear effects and

so variation of this parameter is constrained by observations of phenomena such as

nuclear binding energies, resonances, nuclear magnetic moments and molecular

rotational transitions (see for example [10–12]). This thesis is concerned with

constraining α but a measurement of α variation would imply that many of the

“constants” may not actually be constant.

1.3 Current limits on α variation

Recently there has been some very exciting evidence from quasar spectra that

α may have been smaller in the past [13]. Limits can be placed on the amount

of variation in α over several different timescales. Obtaining limits on different

timescales is a useful exercise because it indicates to us the manner in which α
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varies. For example, did it vary relatively rapidly at some time in the past and

is now nearly constant, or is it continually varying at a constant rate? Of course

there are an infinite number of options for the functional form but by increasing

the number of data points we can get a much better idea of the function. Each

different timescale has its own advantages and disadvantages. Assuming that

the rate of change of α is always in the same direction (i.e. getting bigger or

smaller) then the further back in time we look the less precision we need to make

our detection. Of course if you lose the fixed sign of the rate of change of α

then looking back over long timescales can potentially give a null result when

variation is present and definitely will underestimate the amount of variation.

This means that this method could completely miss any oscillatory variation of

α. Also looking back a long time into the past can obviously only tell us of past

α variation and not about the present behavior of α.

A number of theories have been suggested to describe the variation of α

throughout the history of the universe. Sandvik et al. [14] suggest a theory in

which α remains almost constant during the radiation era, then increases slightly

during the matter era but then once again approaches a constant value when the

expansion of the universe starts to accelerate. To distinguish between theories

and to ascertain whether theories such as this one are feasible it is important to

probe α variation on a number of different timescales. Both quasar results and

laboratory experiments have an important place in determining how the universe

works.

There are three main methods used to place competitive limits on the variation

of α; quasar spectra, the Oklo uranium mine, and atomic clock experiments. The

limits obtained to date using each of these methods are discussed below.
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Table 1.1: Limits on α variation from quasar spectra.

Reference ∆α/α Redshift Techniquea

Murphy et al.[15] (−0.574± 0.102)×10−5 0.2 < z < 3.7 MM
Quast et al. [16] (−0.04± 0.19± 0.27sys)×10−5 1.15 RMM
Srianand et al. [17] (−0.06± 0.06)×10−5 0.4 < z < 2.3 MM

a MM stands for the many-multiplet technique and RMM stands for regressional many-
multiplet technique described in [16].

1.3.1 Limits on α variation from quasar spectra

One method of determining whether α has varied is to analyze the absorption

spectrum of dust clouds imposed on quasar emission spectra to see whether α was

different in the past, when the light was absorbed by the dust clouds. The big

advantage of using quasars is that they are situated at relatively large redshifts,

z ∼ 0.5 − 3.5 and so studying them allows us to peer into the ancient history

of the universe. This is a large advantage because if α was varying steadily

through time we would expect to see the largest change in the oldest spectral

lines. Alternatively, if α varied suddenly, then since this data spans a larger

percentage of the universe’s history, the time at which α varied is more likely to

be contained within this data. Several groups are currently working on obtaining

limits on α variation from quasar spectra. There is some discrepancy among the

results obtained by the different groups. The current limits on ∆α/α obtained in

this manner are shown in the Table 1.1.

The results obtained by Murphy et al. [15] indicate that α was smaller in

the past. This observation was based on quasars with redshifts in the range

0.2 < z < 3.7, which corresponds to a time separation of 2.5 − 12.2 Gyr in the

currently popular model with ΩΛ = 0.7, Ωmatter = 0.3, and H0 = 68 kms−1Mpc−1.

If we assume that α varied constantly over this period (there is no reason to

assume this but it is useful as an indication of the kind of accuracies that we

hope atomic clock experiments will achieve to be competitive with the quasar
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results), this corresponds to α̇/α = (−0.72 ± 0.16) × 10−15 per year. However

no indication of α variation was found by other groups also using astrophysical

observations; ∆α/α = (−0.06± 0.06)× 10−5 in the redshift range 0.4 < z < 2.3

[17] corresponding to a constant change α̇/α = (−0.08 ± 0.08) × 10−15 per year

and ∆α/α = (−0.04 ± 0.33) × 10−5 in the redshift range z ' 1.15 [16] which

corresponds to α̇/α = (−0.05± 0.38)× 10−15 per year. Until very recently there

was no obvious reason to consider one group’s data more convincing than another.

However, Murphy et al. [18] have recently claimed that Srianand et al. [17] used a

flawed parameter estimation method and as a result they underestimated the size

of the uncertainties and overestimated the size of α in the past. They estimate

that the correct result from the data is (−0.44±0.16)×10−5 bringing the result for

∆α/α closer to their result. It may also be the case that some other effect, such

as a possible spatial variation of α, could bring all the results into agreement. The

data used in [15] comes from different hemispheres than the data used in [16, 17].

It should be noted that all the groups analyze their results in the same way. The

method they use, once the redshift and observational uncertainties have been

accounted for, are exactly the same as the method used to analyze laboratory

spectra. The calculations of the relativistic energy shifts in atoms performed by

our group are used by the quasar groups to interpret their data.

1.3.2 Limits on α variation from Oklo

Another method to place limits on α variation involves the Oklo uranium mine,

which is situated in Gabon in West Africa. It contained a natural fission reactor

that was active 1.8 × 109 years ago. The present isotopic abundances allow the

reaction rates, from when the fission reactor was active to be extracted. This in

turn allows a bound on changes in α to be extracted [19–23]. The most recent

limit obtained in this way is ∆α/α = 4.5+1.5
−0.7× 10−8 [22], where ∆α is the change

in α since the fission reactor was active, this corresponds to a redshift, z ∼ 0.14.
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Note that this is a positive value, indicating that α was larger in the past, the

opposite of the quasar result (both results could be correct if α was varying in an

oscillatory fashion). One of the problems with a limit on α variation obtained in

this way is that there are a number of assumptions made in deriving the value,

such as model dependent assumptions about how the variation of one constant

affects the variation of another. Flambaum and Shuryak [24] argue that a more

reasonable interpretation of the Oklo data is a variation of the ratio of the quark

mass to the QCD scale, δ(ms/ΛQCD)/(ms/ΛQCD) = −(0.56± 0.05)× 10−9, here

ms is the mass of the strange quark, since a change in the resonance energy is

much (170 times) more sensitive to a change in this parameter than to a change

in α.

1.3.3 Limits on α variation from laboratory clocks

Atomic clock experiments have several advantages over other methods of mea-

suring possible α variation. Firstly, they are more reliable and reproducible than

other ways of measuring α variation since better statistics can be produced and

it is easier to control systematics. This is impossible, for example, with quasars,

only the systematics coming into making the measurements can be controlled, you

can not set up the quasar to produce the ideal results by, for example, choosing

the atomic abundances. Secondly, atomic clocks are extremely sensitive. Great

leaps forward have been made with the introduction of the frequency comb. Mea-

surements of frequency changes have been made to an accuracy of the order of

10−15 in Rb [25], Yb+ [26, 27], and Hg+ [28, 29] and this year a measurement

of the Hg+ ion ultraviolet transition frequency was measured with respect to the

cesium standard with a fractional uncertainty of only 9.1 × 10−16 [30]. Thirdly,

atomic clock experiments are sensitive to an oscillatory variation of α. While

quasars can be used to probe the value of α billions of years ago and compare it

to its current value they could overlook any change over a smaller timescale. In
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contrast atomic clock experiments are able pick up these changes. Atomic clock

experiments look for changes in α over a period of months to a few years. Atomic

clock experiments only probe temporal variations of α, not spatial ones since they

are all conducted on the Earth. This makes the results slightly easier to interpret

than the quasar results that could indicate a temporal or a spatial variation of α.

Laboratory experiments work by comparing the frequency of two atomic clocks

at two different times. The atomic clocks need to be carefully selected so that the

change in frequencies can be related to a change in α. Optical atomic clock tran-

sitions are suitable because the ratio of the frequencies of the optical transitions

depend on α alone. This is because they are either gross structure transitions

(transitions between levels with different n or n∗) or transitions between levels

with a different fine structure (same n but a different j). In these cases we can

obtain a limit on α variation because the dependence of the frequency on α is

well understood. Hyperfine transition frequencies depend upon α but also upon

the nuclear magnetic moment and me/mp, and so it is harder to interpret the

results of a frequency shift since it is unclear how much of the frequency shift is

a result of a change in me/mp or the nuclear magnetic moment (or the proton

gyromagnetic ration, gp that helps to determine the magnetic moment) and how

much of the frequency shift is due to a variation of α. This is discussed in the

review by Karshenboim [31].

Several atomic clock type experiments have placed limits on present day α

variation. These experiments do not yet match the precision of the quasar limits,

though they are getting very close; they are presented in Table 1.2. Note that

the limit obtained from the hyperfine transition Marion et al. [25] is obtained

by assuming that all of the time variation is due to a variation of α, which as

they point out is unlikely to be the case. In fact, this is a problem for all but

the first four results in the Table 1.2. These more recent results were obtained

using multiple transitions to separate the α dependance from the dependance
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Table 1.2: Limits on α variation from atomic clock experiments.

Reference α̇/α per year
First
Atomic
Clock

Reference
Atomic
Clock

Peik et al. [27] (−0.26±0.39)×10−15 171Y b+ 199Hg+a

Cingöz et al. [37] (−2.7± 2.6)× 10−15 163Dy 162Dy b

Peik et al. [26] (−0.3± 2.0)× 10−15 171Y b+ 199Hg+c

Fischer et al. [38] (−0.9± 2.9)× 10−15 H 199Hg+d

Bize et al. [29] |α̇/α| < 1.2× 10−15 199Hg+ 133Cs
Marion et al. [25] −0.4± 16× 10−16 87Rb 133Cs
Prestage et al. [39] ≤ 3.7× 10−14 Hg+ H-maser
Godone et al. [40] ≤ 2.7× 10−13 24Mg 133Cs

a Peik et al. used data from [26, 29] along with the new measurement of the Hg+ transition
frequency with respect to Cs obtained by Oskay et al. [30] to obtain this limit on α variation.

b Cingöz et al. use nearly degenerate levels in dysprosium that are especially sensitive to a
variation of α (this is discussed in Chapter 3). The dysprosium transitions are referenced
to a cesium standard.

c Peik et al. actually used three transition frequencies to obtain their limit on α variation.
They measured the drift of the 171Y b+ frequency against the 133Cs clock frequency and
then used the result for 199Hg+ obtained by Bize et al. [29] to get a limit on α variation
independent of any variation of the magnetic moments.

d Fischer et al. combined their measurement of the drift of the H transition frequency with
respect to the Cs transition frequency with the results obtained by Bize et al. [29] and
Marion et al. [25] to get limit on α variation.

on the magnetic moments. Flambaum and Tedesco [32] calculate the relative

sensitivity of the atomic transitions listed in Table 1.2 and others to a variation

in α and a variation of mq/ΛQCD, where mq is quark mass. It has been suggested

by Nguyen et al. [33] that a sensitivity of |α̇/α| < 1.2× 10−18 per year could be

reached by using the accidentally degenerate levels in Dysprosium, as suggested

in [34]. There are many proposals for the search of variation of α in atomic optical

transitions, such as those suggested in [34–36]. More laboratory experiments are

vital in order to place even more stringent limits on present day α variation.

To date almost all laboratory experiments are compatible with no variation of

α to within 1σ. The outlook for atomic clock experiments is good; the obtainable

accuracy is improving with new techniques and equipment. In order to convert

accurate measurements into accurate limitations on the amount of variation of
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constants such as α we need accurate calculations of the effect of any variation

on the transition frequencies of atomic clocks. This is the focus of this thesis,

predicting how changes in the value of α will shift transition frequencies. We also

suggest some transitions in which the frequencies are very sensitive to α variation

which makes them good probes for variation of α.



Chapter 2

Relativistic effects in two valence

electron atoms and ions

If the fine structure constant, α, is changing it will cause atomic transition fre-

quencies to drift over time. In order to measure how large any change in α it

is necessary to know how shifts in the atomic energy spectrum are related to α

variation. In this chapter an explanation of how to calculate the shift in atomic

transition frequencies with a change of α is given and results are presented. We

have calculated the size of the frequency shift in two valence electron atoms and

ions. Other members of our group have performed these calculations for other

atoms. These calculations are needed to interpret both atomic clock experiments

and quasar results in terms of a varying α.

The work presented in this chapter is based upon the work presented in Angst-

mann et al. published in Physical Review A [1] and the pre-print Angstmann et

al. [41].
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Figure 2.1: If α is increasing over time this will cause a small shift in the energy
spectrum of an atom and hence in the transition frequencies. As a rule of thumb
the energies of the s1/2 and p1/2 levels decrease as α increases and the others
increase. This is shown schematically and not to scale for an unspecified atom in
the figure. The black lines represent the initial energy levels and the grey lines
indicate where the energy levels will move to if α increases.

2.1 Introduction

Laboratory measurements of α variation involve measuring how the difference

between two atomic transition frequencies changes with time. To relate a mea-

surement of the change between two frequencies to a change in α, the relativistic

energy shifts are needed. The relativistic energy shift describes how a level moves

as α varies. Two transition frequencies with very different relativistic energy

shifts are the most desirable candidates for precision experiments as they will

have the largest relative frequency shift between them. This effect is represented

schematically in Figure 2.1.

In this chapter we perform relativistic many-body calculations to find the rel-

ativistic energy shift for many two valence electron atoms and ions. Two valence

electron atoms and ions were chosen since many new optical clocks experiments,
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some of which are currently under construction and some still under considera-

tion, utilize these atoms and ions (e.g.: Al II [42], Ca I [28], Sr I [43–45], In II

[46–48], Yb I, Hg I [49, 50]).

The relativistic Hartree-Fock method is used with many-body perturbation

theory and configuration interaction methods to calculate transition frequencies.

In the rest of the chapter we will give an outline of how we calculate the atomic

energy levels and then how these calculations are changed to evaluate the effect

of α variation.

2.2 Calculations of Atomic Energy Levels

Here we perform calculations for closed sub-shell atoms and ions which can also

be considered as atoms/ions with two valence electrons above closed shells. We

start our calculations from the relativistic Hartree-Fock (RHF) (also known as

Dirac-Hartree-Fock) method in the V N approximation. This means that RHF

calculations are done for the ground state of the corresponding atom/ion with all

electrons included in the self-consistent field. The use of the V N RHF approxima-

tion ensures good convergence of the consequent configuration interaction (CI)

calculations for the ground state. Good accuracy for excited states is achieved

by using a large set of single-electron states. Note that there is an alternative ap-

proach which uses the V N−2 starting approximation (with two valence electrons

removed from the RHF calculations). This approach has some advantages; it is

simpler and ground and excited states are treated equally. However, the conver-

gence with respect to the size of the basis is not as good and the final results are

better in the V N approximation. We use the V N−2 approximation as a test of

the accuracy of calculations of the relativistic energy shifts, while presenting all

final results in the V N approximation.

We use a form of the single-electron wave function that explicitly includes a
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dependence on α:

ψ(r)njlm =
1

r

( f(r)nΩ(r/r)jlm

iαg(r)nΩ̃(r/r)jlm

)
. (2.1)

This leads to the following form of the RHF equations (in atomic units):

f
′
n(r) +

κn

r
fn(r)− [2 + α2(εn − V̂HF )]gn(r) = 0,

g
′
n(r) +

κn

r
gn(r) + (εn − V̂HF )fn(r) = 0, (2.2)

where κ = (−1)l+j+1/2(j + 1/2), n is the principle quantum number and V̂HF

is the Hartree-Fock potential. The non-relativistic limit corresponds to setting

α = 0.

We then use the combination of the configuration interaction (CI) method

with many-body perturbation theory (MBPT)[51, 52]. Interactions between va-

lence electrons are treated using the CI method while correlations between the

valence electrons and the core electrons are included by means of MBPT. We can

write the effective CI Hamiltonian for two valence electrons as:

ĤCI = ĥ1 + ĥ2 + ĥ12 (2.3)

here ĥi (i = 1 or 2) is an effective single-electron Hamiltonian given by

ĥi = cα · p + (β − 1)mc2 − Ze2

ri

+ V̂core + Σ̂1, (2.4)

p is the electron momentum, α is the Dirac matrix, V̂core is the Hartree-Fock

potential created by the core electrons, it differs from V̂HF in Eq. (2.2) by the

contribution of the valence electrons. Σ̂1 is the one-electron operator that de-

scribes the correlation interaction between a valence electron and the core. The

third term in Eq. (2.3) describes the interaction of the valence electrons with

each other and can be written as

ĥ12 =
e2

r12

+ Σ̂2 (2.5)
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where Σ̂2 is a two-particle operator that describes the effects of screening of the

Coulomb interaction between the valence electrons by the core electrons. The

operators Σ̂1 and Σ̂2 are calculated using the second order of MBPT.

We use the same set of single-electron basis states to construct two-electron

wave functions for the CI calculations and to calculate the Σ̂’s. The set is based

on the B-spline technique developed by Johnson et al [53–55]. We use 40 B-

splines in a cavity of radius R = 40aB (aB is Bohr radius). The single-electron

basis functions are linear combinations of 40 B-splines and are also eigenstates

of the Hartree-Fock Hamiltonian (in the V N potential). Therefore, we have 40

basis functions in each partial wave including the B-spline approximations to the

atomic core states. We use a different number of basis states for the CI wave

functions and for the calculations of the Σ̂’s. Saturation comes much faster for

the CI calculations. In these calculations we use 14 states above the core in each

partial wave up to lmax = 3. Inclusion of states of higher principal quantum

number or angular momentum does not change the result. To calculate the Σ̂’s

we use 30 out of 40 states in each partial wave up to lmax = 4.

The results for the energies are presented in Table 2.1. We present the energies

of the nsnp configuration of two electron atoms/ions with respect to their ground

state 1S0 ns2. The states considered for atomic clock experiments are 3P0 and

3P1. However, we present the result for other states as well for completeness, these

also make it easier to analyze the accuracy of the calculations. Also, transitions

associated with some of these states are observed in quasar absorption spectra

(e.g., the 1S0 −1 P1 transition in Ca).

To demonstrate the importance of the core-valence correlations we include

results of pure CI calculations (with no Σ̂’s) as well as the results in which Σ̂1

is included but Σ̂2 is not. One can see that the accuracy of pure CI calculations

is about 10% while inclusion of core-valence correlations improves it significantly

to the level of about 1%. The deviation from experiment of the final theoretical
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Table 2.1: Energies of the nsnp configuration of two electron

atoms calculated using HCI , HCI +Σ̂1 and HCI +Σ̂1 +Σ̂2; com-
parison with experiment (cm−1)

Atom/ State Experiment Theory

ion [56] ĤCI ĤCI + Σ̂1 ĤCI + Σ̂1,2

AlII 3P0 37393 36403 36987 37328
3P1 37454 36466 37053 37393
3P2 37578 36592 37185 37524
1P1 59852 59794 60647 60090

CaI 3P0 15158 13701 14823 15011
3P1 15210 13750 14881 15066
3P2 15316 13851 14997 15179
1P1 23652 23212 24968 24378

SrI 3P0 14318 12489 13897 14169
3P1 14504 12661 14107 14367
3P2 14899 13021 14545 14786
1P1 21698 20833 23012 22305

InII 3P0 42276 37825 39238 42304
3P1 43349 38867 40394 43383
3P2 45827 41168 42974 45904
1P1 63034 62181 64930 62325

YbI 3P0 17288 14377 16352 16950
3P1 17992 15039 17189 17705
3P2 19710 16550 19137 19553
1P1 25068 24231 27413 26654

HgI 3P0 37645 31864 32692 37420
3P1 39412 33751 34778 39299
3P2 44043 38155 39781 44158
1P1 54069 50247 52994 56219

TlII 3P0 49451 43831 43911 49865
3P1 52393 47091 47350 52687
3P2 61725 55988 56891 62263
1P1 75660 74291 76049 74717
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energies for the triplet states of all atoms except Yb is not more than 1%. For

Yb it is 2%. The accuracy of the singlet states is about 1% for AlII, 2% for

TlII, 3-4% for CaI, SrI, InII and YbI and 6% for HgI. The accuracy of the fine

structure intervals ranges from 2 to 7%. The accuracy of calculations for Yb

is not as good as for the other atoms because the two electron approximation

is a poor approximation for this atom. Electrons from the 4f subshell, which

are kept frozen in the present calculations, are relatively easy to excite and the

corresponding configurations give a substantial contribution to the energy. Note

that we do include these excitations perturbatively into the Σ̂ operators. However,

due to their large contribution, second-order treatment of the excitations from the

4f subshell is not very accurate. On the other hand, the CI+MBPT results for

Yb are still much better than pure CI values. The calculations are more accurate

for the triplet states than the singlet states. This is because more mixing occurs

with the singlet state (due to nearby levels with the same parity) than with the

triplet ones.

Note also that the CI+MBPT results presented in Table 2.1 are in good

agreement with similar calculations in Refs. [57, 58].

2.3 Calculations of Transition Frequency Shifts

with α Variation

Now that we have an accurate method of calculating the energy levels of the

atoms and ions, which includes the explicit dependance on α, it is possible to

calculate how these energy levels will change if α varies.

In the vicinity of the α0, the present day value of α, the frequency of a

transition, ω, can be written as:

ω = ω0 + qx, (2.6)
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where x = ( α
α0

)2 − 1, ω0 is the present day experimental value of the frequency

and the q coefficient is the relativistic energy shift that determines the frequency

dependence on α. It is clear from the above expression that q coefficients can be

described by

q =
dω

dx
|x=0.

Thus, in order to calculate q coefficients, the atomic energy levels of the atoms

and ions of interest at different values of x need to be calculated. The relativistic

energy shift, q, is then calculated using the formulae

q =
ω(∆x)− ω(−∆x)

2∆x
(2.7)

and

q =
16(ω(∆x)− ω(−∆x))− 2(ω(2∆x)− ω(−2∆x))

24∆x
. (2.8)

The second formula is needed to check for non-linear contributions to dω/dx. We

use ∆x = 0.1 and ∆x = 0.125. The results are presented in Table 2.2.

As for the energies, we use three different approximations to calculate rela-

tivistic energy shifts: (1) pure CI approximation for two valence electrons, (2) CI

with Σ̂1 and (3) CI+MBPT approximation with both Σ̂1 and Σ̂2 included. The

inclusion of core-valence correlations leads to increased values of the q-coefficients.

This is because the correlation interaction of a valence electron with the core intro-

duces an additional attraction which increases the density of the valence electron

in the vicinity of the nucleus and thus acts to emphasizes the importance of the

relativistic effects.

Note that Σ̂1 and Σ̂2 are of the same order and need to be included simultane-

ously to obtain reliable results. Σ̂1 is much easier to calculate and inclusion of Σ̂1

alone often leads to significant improvements of the results for the energies (see

Table 2.1). However, the results for the q-coefficients show that neglecting Σ̂2

may lead to significant loss in accuracy. Indeed, the results for q’s with Σ̂1 alone

are often smaller than those obtained in pure CI and CI+MBPT approximations
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Table 2.2: Calculated q coefficients (cm−1), for transitions from

the ground state, using HCI , HCI + Σ̂1 and HCI + Σ̂1 + Σ̂2

Atom/ion State ĤCI ĤCI + Σ̂1 HCI + Σ̂1,2 Other
AlII 3P0 138 142 146

3P1 200 207 211
3P2 325 340 343
1P1 266 276 278

CaI 3P0 108 115 125
3P1 158 173 180 230 [34]
3P2 260 291 294
1P1 228 238 250 300 [34]

SrI 3P0 384 396 443
3P1 560 609 642 667 [59]
3P2 939 1072 1084
1P1 834 865 924 1058 [59]

InII 3P0 3230 2932 3787 4414 [36]
3P1 4325 4125 4860 5323 [36]
3P2 6976 7066 7767 7801 [36]
1P1 6147 6103 6467

YbI 3P0 2339 2299 2714
3P1 3076 3238 3527
3P2 4935 5707 5883
1P1 4176 4674 4951

HgI 3P0 13231 9513 15299
3P1 15922 12167 17584
3P2 22994 19515 24908
1P1 20536 16622 22789

TlII 3P0 14535 11101 16267 19745 [36]
3P1 18476 14955 18845 23213 [36]
3P2 32287 28903 33268 31645 [36]
1P1 28681 25160 29418
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and differ from final values by up to 50%. Since neglecting Σ̂2 cannot be justified,

we present results without Σ̂2 only for the purpose of illustration.

The accuracy of the calculation of the q-coefficients can be estimated by com-

paring the CI and CI+MBPT results calculated in the V N and V N−2 approxi-

mations and also by comparing the final results for the energies (including the

fine structure intervals) with experimental values. As one can see from Table

2.2 inclusion of the core-valence correlations can change the values of the q-

coefficients by more than 15%. However, the accuracy of the energies improves

significantly when core-valence correlations are included. It is natural to expect

that the final accuracy for the q-coefficients is also higher when core-valence cor-

relations are included. Comparison with our previous results also shows some

deviation on approximately the same level (the largest relative discrepancy is for

Ca where relativistic effects are small and high accuracy is not needed). Most

of this discrepancy can be attributed to the inaccuracy of our old, less complete

calculations. Comparison between the energies calculated in the V N and V N−2

approximations and the experimental values suggest that 10% is a reasonable es-

timate of the accuracy of the present calculations of the relativistic energy shifts

for Al II, Ca I and Sr I, 15% for In II, 25% for Yb I and 20% for Hg I and Tl II.

In Table 2.3 we present final values of the relativistic energy shifts together

with the experimental energies.

2.4 Planning an Atomic Clock Experiment to

measure α Variation

One of the factors determining the effectiveness of an atomic transition for mea-

suring α variation is the size of the q coefficient. In Chapter 3 further factors such

as line width will be considered. When planning an atomic clock experiment it
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Table 2.3: Experimental energies (cm−1) and calculated q-
coefficients (cm−1) for transitions from the ground state ns2

to the nsnp configurations of two-electron atoms/ions

Atom/Ion Z State Energy[56] q
AlII 13 3s3p 3P0 37393.03 146

3s3p 3P1 37453.91 211
3s3p 3P2 37577.79 343
3s3p 1P1 59852.02 278

CaI 20 4s4p 3P0 15157.90 125
4s4p 3P1 15210.06 180
4s4p 3P2 15315.94 294
4s4p 1P1 23652.30 250

SrI 38 5s5p 3P0 14317.52 443
5s5p 3P1 14504.35 642
5s5p 3P2 14898.56 1084
5s5p 1P1 21698.48 924

InII 49 5s5p 3P0 42275 3787
5s5p 3P1 43349 4860
5s5p 3P2 45827 7767
5s5p 1P1 63033.81 6467

YbI 70 6s6p 3P0 17288.44 2714
6s6p 3P1 17992.01 3527
6s6p 3P2 19710.39 5883
6s6p 1P1 25068.22 4951

HgI 80 6s6p 3P0 37645.08 15299
6s6p 3P1 39412.30 17584
6s6p 3P2 44042.98 24908
6s6p 1P1 54068.78 22789

TlII 81 6s6p 3P0 49451 16267
6s6p 3P1 53393 18845
6s6p 3P2 61725 33268
6s6p 1P1 75600 29418
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is important to choose a couple of atomic transitions with very different q coef-

ficients. Ideally one would be positive and one would be negative. This would

mean that if α was increasing then one of the the transition frequencies would in-

crease and the other would decrease. Note that all q coefficients are presented for

the transition to the ground state, to calculate the q coefficient for the transition

between two levels which are not the ground state the q coefficients are treated

in exactly the same way as the transition energies and are subtracted from each

other.

In order to assist experimental atomic physicists plan appropriate experiments

we have complied a list of the q coefficients calculated by our group for transitions

that could be used in atomic clocks. The wavelength of the transitions rather

than the energy is presented in this table to make it more immediately helpful to

experimentalists. This list is presented in Appendix A. This list also highlights

some interesting relationships between the q coefficients. These relationships are:

• The size of the q coefficients tend to increase with increasing atomic number,

Z. This is not at all surprising since the relativistic correction to the energy

level in an atom is given by [34]:

∆n =
En(Zα)2

ν
[

1

(j + 1/2)
− C(Z, j, l)] (2.9)

where C(Z, j, l) describes the contribution of many-body effects, and is

usually around 0.6, ν is the effective principle quantum number, defined by

En = −(me4/2~2)(Z2
a/ν

2), where the energy of the electron is En. Since it

is only the relativistic correction to the energy level that causes it to shift

as α varies it is reasonable to expect that q coefficients have the same Z2

dependance that the relativistic correction does. The results in Table A.1

approximately follow this Z2 dependance.

• The s1/2 → p1/2 transitions, despite having a slightly smaller energy than

the s1/2 → p3/2 typically have q coefficient a lot smaller. This can be
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understood by looking at Eq. 2.9, the s1/2 and p1/2 levels generally have

a negative relativistic correction while for states with higher j such as p3/2

the relativistic correction is positive, because of the many-body effects.

Since in the s1/2 → p1/2 transition the energy levels are both moving in the

same direction as α changes, we would expect the q coefficient (which tells

us by how much the transition energy changes) to be smaller than in the

s1/2 → p3/2 transition where the levels move apart as α changes.

• Another trend is that as α increases s → p transition energies tend to

increase a little while s → d transition energies increase a lot more. This

has the same explanation as above, since the s1/2 relativistic correction is

negative and the relativistic correction for d states are all positive and on

average have a larger magnitude than the p states we would expect the q

coefficients to follow the same trend. Note that this means that we would

expect the q coefficients for a s → f transition to be even larger.

• Since Hg II has a d → s transition from the ground state (as opposed to

the s → d transition in Sr II) it has a negative q coefficient.

This analysis gives us some hints about what to look for when trying to find

promising transitions for measuring α variation: we should choose atoms with

a large Z and hence large relativistic effects. Since transition frequencies are

always measured relative to each other ideally we should have one transition with

a positive q coefficient and one with a negative q coefficient, to ensure that q is

large we should try and find s → d or even better, s → f transitions. Hg II is very

useful since it has large Z and an unusual negative q coefficient. In Chapter 3

we will consider other things to take into account when choosing suitable atomic

levels for an atomic clock experiment to measure α variation.
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2.5 Conclusion

In conclusion, we have performed accurate calculations of the q coefficients, de-

scribing the size of a relativistic energy shift for many two valence electron atoms

and ions. The results are presented in Table 2.3. These results are needed to

place limits on a value of ∆α/α from measurements of the limits on a change

in transition frequency over time. This measurement can be made using atomic

clocks or can be deduced from absorption lines on quasar spectra.



Chapter 3

Atomic Transitions Sensitive to α

Variation

There are several effects that can enhance the ability to measure a change in

atomic transition frequencies with a variation of the fine structure constant, α.

This chapter will investigate several possible enhancement effects. The work on

using narrow lines that correspond to atomic transitions between close lying,

long-lived atomic states of different configurations is my own. The rest of the

chapter is a literature review, included for completeness.

My work in this chapter is based upon the paper published in The Journal of

Physics B: Atomic, Molecular and Optical Physics, Angstmann et al. [3]

3.1 Introduction

Laboratory limits upon α variation obtained to date have all been obtained as a

by-product of the study of atomic optical or microwave transitions for their use as

frequency standards (atomic clocks). As a result the sensitivity of the transitions

to a variation of α was not very high. The relatively low sensitivity of these
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experiments to α variation is compensated for by the extremely high accuracy of

the optical frequency standards. However, by carefully choosing the transitions

to be measured the sensitivity to α variation can be increased [31, 34].

As discussed in Chapter 2, as α changes relativistic effects cause the energy

levels in an atom to shift. If we choose close energy levels which move differently

as α varies, then the size of the shift in the transition frequency compared to

the size of the transition frequency will be relatively large. An extreme example

of this is in dysprosium. In dysprosium there are two almost degenerate states

of opposite parity with energy of 19797.97 cm−1. In [34] it was demonstrated

that the relative change of the transition frequency between these two levels in

Dy is orders of magnitude larger than the relative change in α. An experiment

is currently in progress utilizing this transition, the limit obtained to date is

α̇/α = (−2.7± 2.6)× 10−15 per year [33, 37]. The disadvantage involved in using

these levels to place limits on α variation is that they have quite a large natural

linewidth, decreasing the accuracy to which the transition frequency between

them can be measured.

In this chapter we consider other promising candidates to measure α varia-

tion, in particular, transitions with narrow linewidths that lie close together in

the energy spectrum and will move relative to each other as α varies. The ad-

vantage of studying narrow transitions with an enhanced sensitivity is that the

experiments involving these transitions should be compatible with experiments

using modern optical clocks, but will involve very different systematic effects,

making the results independent from the present day experiments.
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3.2 Transitions with a narrow linewidth and an

enhanced sensitivity to α variation

As in Chapter 2, we represent the energy of a level by

ω = ω0 + qx (3.1)

where x = (α/α0)
2 − 1, ω0 is the initial value of ω (i.e. the one measured at the

beginning of the experiment) and q is a coefficient that determines the frequency

dependence on a variation of α.

To determine the sensitivity of a transition to α variation we introduce an

enhancement factor, κ, defined by:

∆ω

ω
= κ

∆α

α
(3.2)

where ∆ω is the change in the energy, ω, of the level over the time interval

separating the two measurements, and ∆α is the change in α over the same

period. A big value of κ obviously increases the sensitivity of the transition

frequency to any variation of α. It is straightforward to show that

κ =
2q

ω0

. (3.3)

When considering a pair of levels with energies ω1 and ω2, the enhancement factor

for ω2−ω1 can be written as κ = 2∆q
∆ω0

, where ∆q = q2−q1 represents the difference

in the q coefficients and ∆ω0 is the transition energy. Relativistic calculations

are needed to find the values of the q coefficients and the enhancement factors.

Note that κ can be positive or negative, it is negative when frequency changes

and changes in α go in the opposite direction.

As discussed in Chapter 2 the measurement of the energy shift between two

levels will be easiest to perform when this energy shift is large. It follows that

the best situation would be to have two levels with relatively large shifts but
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with opposite sign. The relative position of these two levels would change rapidly

as time passed. A compromise would be to find two levels with very different q

coefficients. A level with a small q coefficient will not stray much from its initial

value while a level with a large q coefficient will move relatively rapidly with any

change in α. The first level can then act as a reference point for the movement

of the second level. As a rule of thumb the q coefficients are negative for s1/2 and

p1/2 single electron states and positive for other states. The easiest way to ensure

that two many-electron states have different q coefficients is to ensure that they

have substantially different electron configurations.

In order to accurately measure any frequency shift of the transition over time

it is important that the transition is narrow and systematic frequency shifts can

be controlled to a high accuracy. The lifetimes of the two states involved in the

transition (in particular the shorter lived state) play a major role in determining

the transition width. Metastable states, from which all E1 transitions are for-

bidden, are ideal because of their long lifetimes. We made a very rough estimate

of the lifetime of states that are not metastable by using the selection rules for

an E1 transition to occur, namely, the parity of the final state must be opposite

to the parity of the initial state and |∆J | ≤ 1, in the LS coupling scheme the

additional selection rules, ∆S = 0 and |∆L| ≤ 1 also apply. We considered all

the allowed transitions from a given state to the states with lower energy. The

probability of an electric dipole transition from a state i to a state j in atomic

units is given by (see, for example, [60])

W (i → j) =
4

3

(αωij)
3

2Ji + 1
|Aij|2 , (3.4)

ωij is the transition energy and Ji is the total angular momentum of the initial

state. We assumed the transition amplitude, |Aij|, is equal to 1 a.u. for our

rough estimate. The lifetime of a state is then inversely proportional to the total

transition probability, which is obtained by summing the transition probability

of all allowed transitions.
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The Lanthanides fall between the JJ coupling scheme and the LS coupling

scheme and so we can expect transitions violating the approximate selection rules

∆S = 0 and |∆L| ≤ 1 to be suppressed but not forbidden. As an example of the

accuracy that can be expected (from the assumption |Aij| = 1) we performed the

calculation for the accidentally degenerate levels in dysprosium. The calculated

lifetime of the even parity state was 6.4 µs, the experimentally measured lifetime

of this state is 7.9(2) µs [61]. For the odd parity state we calculated ∼ 700 µs,

while experimentally the lifetime of this state has been measured to be greater

than 200 µs [61]. We concluded that this method provides an adequate order

of magnitude approximation to the lifetimes of the states. In some cases the

two coupling schemes (the JJ coupling scheme where the probability amplitude

of transitions between states with ∆S 6= 0 is |Aij| = 1, and the LS scheme

with amplitude |Aij| = 0 unless ∆S = 0 and |∆L| ≤ 1) produce significantly

different answers. We can assume in these cases that the lifetime of the levels lies

between these two values, but closer to the shorter one approximated using the

JJ coupling scheme.

In Table 3.1 we list pairs of long-lived almost degenerate states of different

configurations mainly from the rare earth elements. Here enhancement is mostly

due to the small energy interval between the states. However, the fact that the

configurations are different also contributes to the enhancement. Most of the

transitions presented in the table correspond to s → d or d → f single-electron

transitions. Since relativistic energy shifts, q, strongly depend on l and j of

individual electrons [34] it is natural to expect that ∆q is large for the transitions.

The levels included in Table 3.1 were selected from an extensive list. We included

the levels with the highest κ values that satisfied the requirements: the levels

were within 100 cm−1 of each other, their lifetimes were both greater than 10−6

s, and the change of the total momentum between the levels ∆J ≤ 2. ∆J = 2

corresponds to electric quadrupole (E2) transition in case of the same parity of
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both states and magnetic quadrupole (M2) or electric octupole (E3) transition in

the case of different parity. The latter might be difficult to observe, however we

included one pair of such states because of a very large enhancement factor (see

Table 3.1).

In Table 3.2 we list some metastable states that are close to the ground state.

Here the enhancement is smaller due to the larger energy intervals. However,

measurements using these levels would be easier to perform due to the convenience

of dealing with transitions from the ground state.

Enhancement factors, κ, presented in Tables 3.1 and 3.2 are calculated in a

single-electron approximation. We first found the relativistic energy shifts of the

relevant s, p, d or f valence states of the considered atoms. This was done by

varying the value of the fine structure constant α in the Hatrtree-Fock calculations

(as discussed in more detail in Chapter 2). Then, transitions between real many-

electron states were approximated as single electron transitions (e.g, s − d or

d − f transitions, etc.) and the values of the relative relativistic shifts (q1 and

q2) were found as a difference between the single-electron energy shifts of the

corresponding electrons. This approach doesn’t take into account configuration

mixing and can be considered as a rough estimation only.

The configuration interaction can significantly change the values of κ in either

direction. For example, states of the same parity and total momentum J sepa-

rated by a small energy interval are likely to be strongly mixed. Therefore, the

assignment of these states to particular configurations is ambiguous and the rela-

tive value of the relativistic energy shift ∆q is likely to be small. An enhancement

factor, κ, for such states is difficult to calculate. Its value is unstable because the

transition frequency ∆ω0 is also small. We do not include pairs of states of the

same parity and momentum in Table 3.1. One can still find metastable states

of the same parity and total momentum as the ground state in Table 3.2. Here

mixing of states may be small due to the large energy separation between the
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states.

States of the same parity but different total momentum, J , can be affected

by configuration mixing in a very similar way. They can be mixed with states

of appropriate values of J from other configurations. This would also bring the

values of q1 and q2 for the two states closer to each other. On the other hand,

configuration mixing can cause anomalies in the fine structure [62] or in general

can have different effect on different states within the same configuration which

would lead to increased sensitivity of the energy intervals to the variation of α.

The detailed study of the enhancement in each listed transition goes far beyond

the scope of the present work. It can be done in a much more detailed and

accurate way during the planning stage of a specific experiment.

3.3 Using our calculations to plan an Experi-

ment

By itself a large value of the enhancement factor, κ, is not enough to develop a

highly sensitive search for a variation of fundamental constants. We list below

the necessary conditions.

The general requirements are:

• Two levels (A and B) with different non-relativistic quantum numbers

should be close to each other. Ideally at least one of the valence electrons

should be in a different state, e.g., the s2 and sd configurations. However,

different many-electron states of the same configuration such as d2 S and

d2 D could also be used, but the relativistic corrections in this case would

be smaller. Close levels are levels where the relativistic separation (fine

structure) is substantially bigger than the difference between the two levels

A and B.
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Table 3.2: Metastable states sensitive to variation of α. The energy levels were
obtained from the NIST atomic spectral database [63].

Atom Ground State Metastable State κ
or ion Z Configuration J Configuration J Energy (cm−1)
La I 57 5d6s2 2D 3/2 5d26s 4F 5/2 3010.002 7

5d3 4F 3/2 12430.609 3
La II 57 5d2 3F 2 5d6s 3D 1 1895.15 -10

6s2 1S 0 7394.57 -5
Ce II 58 4f5d2 4H 7/2 4f5d6s 9/2 2382.246 -8
Pr I 59 4f 36s2 4I 9/2 4f 35d6s 6L 11/2 8080.49 2
Pr II 59 4f 36s 4 4f 35d 5L 6 3893.46 5
Nd I 60 4f 46s2 5I 4 4f 45d6s 7L 5 8475.355 3
Nd II 60 4f 46s 6I 7/2 4f 45d 6L 11/2 4437.558 5
Sm I 62 4f 66s2 7F 0 4f 65d6s 9H 1 10801.10 2
Sm II 62 4f 66s 8F 1/2 4f 65d 8H 3/2 7135.06 3
Eu I 63 4f 76s2 8S 7/2 4f 75d6s 10D 5/2 12923.72 2
Eu II 63 4f 76s 9S 4 4f 75d 9D 2 9923.00 2
Gd I 64 4f 75d6s2 9D 2 4f 75d26s 11F 2 6378.146 3
Gd II 64 4f 75d6s 10D 5/2 4f 76s2 8S 7/2 3444.235 -6
Tb I 65 4f 96s2 6H 15/2 4f 85d6s2 8G 13/2 285.500 -100
Pt I 78 5d96s 3D 3 5d86s2 4F 4 823.7 -20
Pt II 78 5d9 2D 5/2 5d86s 4F 9/2 4786.6 -6
Ac III 89 7s 2S 1/2 6d 2D 3/2 801.0 20

6d 2D 5/2 4203.9 5
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• The levels must be narrow and the systematic frequency shifts of the tran-

sition frequency must be small, enabling an accurate determination of the

transition frequency. The ratio of the relative measurement uncertainty,

δω/ω, to the enhancement factor, κ, can be considered as a characteristic

value for comparison with other searches for α variation.

• It should be possible to induce a transition between the states A and B, and

there should an efficient tool to detect the transition. Cooling the atoms is

essential in order to increase the accuracy of the frequency measurements.

The number of successful detection and cooling schemes for precision spectroscopy

is quite limited and this leads to strong limitations on candidates. However, recent

progress in “quantum-logic” spectroscopy [64, 65] opens up new possibilities for

the cooling and high-resolution spectroscopy of a large number of ions.

The advantages of the enhancement are twofold. Firstly, one can make a

measurement with a reduced accuracy and still reach a competitive result. This

allows one to get rid of certain systematic effects present in most precision mea-

surements. Secondly, if a high precision measurement is possible (as we hope

in the case of some of the narrow transitions) the enhancement may offer the

strongest test possible in a laboratory study.

3.4 Other Methods of Enhancing the Energy

Shift

Members of our group have been investigating other situations in which a varia-

tion of α is enhanced (i.e. κ > 1). Below is a summary of several of the promising

situations they have found. As discussed above all measurements of α variation

made so far (apart from the one utilizing the degenerate lines in dysprosium,

currently being conducted by Cingöz et al. [37]) using atomic clocks have come
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about from very accurate measurements of atomic frequency standards. The tran-

sitions have been chosen for their appropriateness as frequency standards, which

means that they have a very high accuracy, rather than for any enhancement of

α variation, which could possibly give a better limit on changes in α variation

even with decreased accuracy in the measurements.

3.4.1 Fine Structure Anomalies

In [62] Dzuba and Flambaum suggest using anomalously small fine structure

intervals in the ground state (or very low excited states) of many electron atoms.

For “normal” fine-structure intervals κ = 2 (there is no fine structure for α =

0 and the fine structure intervals are proportional to (Zα)2 so ∆q = ω0 and

so κ = 2 follows from Eq. 3.3). However, in some atoms the fine structure

interval is strongly perturbed by the configuration interaction with neighbouring

states. This can result in an anomalously small fine structure interval that in

turn can lead to an increased enhancement factor. Dzuba and Flambaum found

an enhancement factor of 106 between the 3P1 and 3P0 states of the fine structure

multiplet in Te I. Using ground state fine structure multiplets has an additional

advantage, the states are metastable, they can only decay by an M1 transition

which is suppressed because of the small transition frequency. As a consequence

the lines are very narrow allowing very accurate measurements to be taken. These

anomalies are not unusual (although the energy interval in Te I is exceptionally

small), practically all elements with the np4 configuration have anomalies in the

fine structure [62].

3.4.2 Narrow transition in the 229Th nucleus

In [66] Flambaum suggests using a very narrow ultraviolet transition between the

ground state and the first excited state in the 229Th nucleus to measure variation
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of constants, including α, because of the 5-6 order of magnitude enhancement

here. In this work Flambaum shows that:

δω

ω
≈ 105(4

δα

α
+

δXq

Xq

− 10
δXs

Xs

)
3.5 eV

ω
,

where Xq = mq/ΛQCD and Xs = ms/ΛQCD. There were several approximations

made in obtaining the result but for the most important implication of this result

these are unimportant: variation of α is enhanced by 5 orders of magnitude

(κ = 4 × 105). Another advantage of using this transition is that the width of

the transition is several orders of magnitude narrower than typical atomic clock

widths (∼ 1− 100 Hz) [66], it can be investigated with laser spectroscopy.

3.4.3 Diatomic molecules with unpaired electrons

In [67] Flambaum suggests using microwave transitions between very close and

narrow rotational-hyperfine levels in diatomic molecules with unpaired electrons

such as LaS, LaO, LuS, LuO and YbF. In this case the enhancement comes about

due to the cancelation between hyperfine and rotational intervals. Flambaum

shows that in this case the enhancement factor, κ is given by:

κ =
4b

ω
(2 + K),

where b is the hyperfine structure constant, and K = (Zα)2(12γ2−1)
γ2(4γ2−1)

where γ =
√

1− (Zα)2 (Z refers to the nuclear charge of the heavier atom). Flambaum

estimates that κ would be around 600 but accurate measurements of the transtion

frequency, ω, are needed to get an accurate value of κ.

3.5 Conclusion

There are a number of effects that can enhance the sensitivity of some transitions

to a variation of α and it is possible to use these transitions to obtain a tighter
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limit on the variation of α than is otherwise possible. We have presented a

number of transitions between narrow states of many-electron atoms with large

enhancement of the change of the frequency of the transitions due to the change

of α. The enhancement factors for atomic clock transitions which have been

used in the search for variation of α were rather small (κ ∼ 1 or even smaller).

This suggests that it should be possible to obtain a much tighter constraints on α

variation even without technical improvements in frequency metrology, by instead

carefully choosing the transition frequencies to investigate.





Chapter 4

Varying Constant or a New

Interaction?

In early 2003 Bekenstein published an article on the pre-print archives [68] that

cast some doubt over the method used by all the groups who measure limits upon

fine structure constant (α) variation from quasar spectra [15–17]. Implicit in the

method put forward in Dzuba et al. [34, 69] and subsequently used by all the

groups investigating α variation in quasar spectra is the assumption that the value

of α in the past can be determined by first of all compensating for the redshift, z,

and then fitting the value of α to the spectrum using the same equations as would

be used for a laboratory spectrum. Bekenstein points out that in performing this

operation we make the assumption that the form of the Dirac Hamiltonian has

not changed between when the light was emitted and now, when it is observed.

He questions the validity of this assumption. We showed that in fact if the Dirac

equation is modified in the way suggested by Bekenstein, the analysis used by

the groups investigating α variation is still correct since the effect of the modified

form of the Dirac Hamiltonian is indistinguishable from a small change in α.

The work presented in this chapter is based upon the Physical Review A

publication Angstmann et al. [2].
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4.1 Introduction

Bekenstein showed that a dynamically varying α can be considered as a pertur-

bation of the Dirac Hamiltonian, Ĥ, for an electron bound by a Coulomb field

(unfortunately no self-consistent quantum electrodynamic theory was derived):

Ĥ = Ĥ0 + δĤ (4.1)

Ĥ0 = (−ı~cα ·∇ + mc2β + eVCI) (4.2)

δĤ = (I − β)(tan2 χ)VC (4.3)

where VC = −Ze2/r, I is the identity matrix. The last term is related to an

effective correction to the Coulomb field due to the dynamic nature of α, and

tan2 χ is a small parameter. The perturbative term, δĤ, vanishes in a non-

relativistic approximation but produces some relativistic corrections which can

be studied both in astrophysical spectra and laboratory conditions.

In the following sections we will show how this perturbation shifts atomic

energy levels. In particular we pay attention to heavy atoms which provide us

with astrophysical data and are the most sensitive to a possible α variation. We

also consider atomic hydrogen, since it is the best understood atomic system for

laboratory experiments.

4.2 Multielectron Atoms

Multielectron atoms are of interest to us since they are the most sensitive to a

varying α. We performed a calculation to show how the modified form of the

Dirac Hamiltonian affects the energy of an external electron in a heavy atom.

The most convenient way to calculate δE is to calculate the matrix element of

the operator δĤ = (I − β) tan2 χ · VC for an external electron in a many-electron

atom or ion using a relativistic wave function. In order to use the relativistic

wave functions for electrons near the nucleus at zero energy it is necessary to
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demonstrate that the major contribution to the matrix element of δĤ comes

from distances r . a/Z, a is the Bohr radius of the atom, where the screening

of the nuclear potential and the external electron energy can be neglected. We

will show that only the contribution at distances r . a/Z has a Z2 enhancement,

the contribution at r ∼ a does not have this enhancement since the atomic

potential at this distance is screened, VC ∼ e2/r, and has no Z dependence. To

demonstrate the Z2 enhancement of the r . a/Z contribution let us consider the

non-relativistic limit of the operator δĤ. The matrix

I − β =


 0 0

0 −2




has only lower components, it follows that the matrix element,

ψ+(I − β)VCψ = −2χ+VCχ, (4.4)

where

ψ =


 ϕ

χ




is the Dirac spinor. In the non-relativistic limit

χ =
σ · p
2mc

ϕ

and this gives

δĤ = − 1

2m2c2
(σ · p)VC(σ · p) tan2 χ. (4.5)

We proceed with the derivation in a very similar fashion to the standard derivation

of the spin-orbit interaction term in the non-relativistic expansion of the Dirac

Hamiltonian (see [60] for example)

δĤ ≈
(
− VC

p2

2m2c2
+

i~
2m2c2

(∇VC · p)− ~2

2m2c2

1

r

dVC

dr
σ · l

)
tan2 χ. (4.6)

Let us now compare the contributions of r . a/Z and r ∼ a to the matrix

element of δĤ. Consider, for example, the last spin-orbit term in Eq. (4.6) which
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is proportional to the usual spin-orbit interaction. The electron wave function at

r ∼ a/Z is given by ϕ2 ∼ Z/a3 [70], the spin-orbit operator is proportional to

1

r

dVC

dr
∼ 1

r3
Ze2

and the integration volume is proportional to r3. As a result we can write:

< δĤ >∼ Z2 ~2e2

2m2c2a3
. (4.7)

For r ∼ a, the wave function is ϕ2 ∼ 1/a3, the spin-orbit operator is proportional

to
1

r

dVC

dr
∼ 1

r3
e2

and the integration volume is still proportional to r3. Therefore

< δĤ >∼ ~2e2

2m2c2a3
, (4.8)

this is Z2 times smaller than at r . a/Z. The same conclusion is also valid

for the first two terms in Eq. (4.5). This estimate demonstrates that the main

contribution to δĤ comes from small distances r . a/Z. This conclusion is

similar to that for the relativistic corrections to atomic electron energy.

We perform the actual calculation of the matrix element of δĤ using the

relativistic Coulomb wave functions for zero-energy electrons near the nucleus.

These can be expressed in terms of Bessel functions as (these wave functions can

be found in [71]):

fnjl(r) =
cnjl

r

(
(γ + κ)J2γ(x)− x

2
J2γ−1(x)

)

gnjl(r) =
cnjl

r
ZαJ2γ(x) (4.9)

where x = (8Zr/a)1/2, γ =
√

(j + 1/2)2 − Z2α2, κ = (−1)j+1/2−l(j + 1/2) and

cnjl =
κ

|κ|
( 1

Zaν3

)1/2

Za,

here Za is the charge“seen” by the external electron, i.e. Za = 1 for a neutral

atom, 2 for a singly ionized atom and Z for a hydrogen-like ion and ν is the
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effective principle quantum number, defined by En = −(me4/2~2)(Z2
a/ν

2), where

the energy of the electron is En; for hydrogenlike ions, ν = n. δE can now be

calculated using these wave functions and δĤ:

δE =

∫
ψ+δĤψdV

= −2 tan2 χ

∫ ∞

0

g+
njlVCgnjlr

2dr

= −2e2Z3α2 tan2 χc2
njl

∫ ∞

0

J2
2γ(x)

dr

r

= −4e2Z3α2 tan2 χc2
njl

∫ ∞

0

J2
2γ(x)

dx

x
.

We now use the relationships between Bessel functions and Gamma functions to

write this as:

δE = −2e2Z3α2 tan2 χc2
njl

Γ(2γ)

Γ(2γ + 1)

= −e2Z3α2 tan2 χc2
njl

γ
.

When we substitute in for cnjl we obtain:

δE = −mc2Z2Z2
aα

4 tan2 χ

ν3γ
.

Finally, we take the non-relativistic limit by replacing γ with j + 1/2,

δE = −mc2Z2Z2
aα

4 tan2 χ

ν3(j + 1/2)
. (4.10)

By dividing this equation by the energy of the electron, E = −Z2
amc2α2/(2ν2),

we obtain the result:
δE

E
=

2(Zα)2 tan2 χ

ν

1

j + 1/2
. (4.11)

It is interesting to note that this correction to the energy of the electron

has exactly the same form as the relativistic correction, ∆, to the energy of an

external electron:
∆

E
=

(Zα)2

ν

1

j + 1/2
. (4.12)
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Note that to obtain Eq. (4.11) we simply divided Eq. (4.10) by E = −Z2
amα2/(2ν2),

the spin-orbit contribution to Eq. (4.12) can be obtained in an analogous man-

ner. We can sum up Bekenstein’s relativistic correction, Eq. (4.11), and the usual

relativistic correction to give

∆′

E
' (Zα′)2

ν

1

j + 1/2
. (4.13)

where α′ = α(1 + tan2 χ).

Finally, we should present a very simple derivation of Eqs. (4.11) and (4.12)

based on the results obtained for the pure Coulomb case, see Eqs. (4.16) and

(4.17). For the high electron orbitals (n À 1) the electron energy at r ∼ a/Z

may be neglected in comparison with the Coulomb potential and the Coulomb

results Eqs. (4.16) and (4.17) are proportional to the electron density at r ∼ a/Z

where ψ2 ∼ 1/n3. For the external electron in heavy atoms the situation is similar.

The external electron wave function in Eqs. (4.9) at r ∼ a/Z is proportional to

the Coulomb wave function for small energy (n À 1). Therefore, to find the

matrix elements for the external electron we should take the Coulomb results

Eqs. (4.16) and (4.17) and multiply them by the ratio of the electron densities

for the external electron in the many-electron atom and the Coulomb electron.

This immediately gives Eqs. (4.11) and (4.12).

The works [15–17] used a method suggested in [69] for the analysis of absorp-

tion lines. A comparison between different frequencies is used. In this method

only the relativistic corrections, ∆′/E, are used to determine α variation since

any variation in the energy in the non-relativistic limit is absorbed into the red-

shift parameter (and it also scales the same way for all elements). Since Eq.

(4.11) and (4.12) are directly proportional, the effect of the modified form of the

Dirac Hamiltonian is indistinguishable from a small change in α2 in Eq. (4.12).

A measurable change in α would in fact be a change of α′ = α(1 + tan2 χ). The

astrophysical data can not distinguish between α and tan2 χ variation.

Note that the proportionality of δE and ∆ has a simple explanation. The
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relativistic corrections to the Schrödinger Hamiltonian (e.g. the spin-orbit inter-

action) and the non-relativistic limit of δĤ have similar dependence on r and

both are proportional to the electron density ψ2 at r ∼ a/Z. The proportional-

ity of δE and ∆ also holds for high orbitals (small binding energy) in the pure

Coulomb case (see next section).

In this derivation we assumed that we could consider the unscreened Coulomb

field, this is clearly not the case for a valence electron in a many-electron atom.

We justify this assumption by once again noting that the main contribution to

δE is given by distances close to the nucleus, r ∼ a/Z. At this distance the main

screening comes from the 1s electrons and we can use Slater’s rules [72, 73] to

estimate the screening corrections to Eq. (4.11) and (4.12):

δE

E
=

2α2(Z − 0.6)2 tan2 χ

ν

1

j + 1/2
(4.14)

∆

E
=

α2(Z − 0.6)2

ν

1

j + 1/2
. (4.15)

This does not affect the proportionality of the two terms and makes very little

difference to the results in heavy atoms (∼ 1/Z). The correction from the non-

zero energy of the external electron is even smaller (∼ 1/Z2). Consideration

of many-body correlation corrections has shown that this does not change the

proportionality relationship either. The point is that the expressions for the

correlation corrections obtained using the many-body perturbation theory (or

the configuration interaction method) contain the single-particle matrix elements

of δĤ and that of the relativistic corrections which are proportional to each other.

This makes the final results proportional. Because of this proportionality it is

not possible to derive values for α and tan2 χ separately in mulitelectron atoms.

However, a separation of these values can be achieved in hydrogen.
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4.3 Calculations Involving the Hydrogen Atom

The case is somewhat simplified for the hydrogen atom and other hydrogen-like

ions as there are no inter-electron interactions. There are also very accurate

experimental measurements of transition frequencies in hydrogen.

We confirm Bekenstein’s result [68] that applying the Hamiltonian (4.1) one

can derive:

δE = −mc2Z4α4

n3

(
1

j + 1/2
− 1

2n

)
tan2 χ . (4.16)

The relativistic correction to the electron energy is

∆ = −mc2Z4α4

2n3

(
1

j + 1/2
− 3

4n

)
. (4.17)

Note that for large n (zero energy), δE is again proportional to the relativistic

correction, ∆.

It is possible to obtain a limit on the tan2 χ parameter by comparing the

theoretical and experimental data for the 2p3/2−2p1/2 splitting. The experimental

value

f2p3/2→2p1/2
(exp) = 10 969 045(15) kHz (4.18)

is derived from two experimental results,

f2s1/2→2p3/2
(exp) = 9 911 200(12) kHz (4.19)

f2p1/2→2s1/2
(exp) = 1 057 845(9) kHz (4.20)

presented in [74] and [75] respectively. It can be compared to the theoretical

value which we take from a compilation [76] (see also review [77])

f2p3/2→2p1/2
(theory) = 10 969 041.2(15) kHz . (4.21)

Noting that δE has not been accounted for in the Eq. (4.21), but will be present

in Eq. (4.18), and using Eq. (4.16) we can write:

mc2α4

16h
tan2 χ = f2p3/2→2p1/2

(exp)− f2p3/2→2p1/2
(theory). (4.22)
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Dividing all the terms by f2p3/2→2p1/2
(theory) and noting that the leading contri-

bution to f2p3/2→2p1/2
(theory) is given by mc2α4/32h, allows us to write:

f2p3/2→2p1/2
(exp) = f2p3/2→2p1/2

(theory)(1 + 2 tan2 χ) (4.23)

Using the values above we can obtain the limit tan2 χ = 2(7)×10−7. It is assumed

here that f2p3/2→2p1/2
(theory) is expressed in terms of α which is extracted from

the measurements of parameters which are not sensitive to tan2 χ (i.e. they

depend on α rather than on α′). Indeed, one of the values of α is derived via

a complicated chain of relations with α eventually coming from the Rydberg

constant which is quite weakly affected by δĤ (the relative value of the correction

is of order of α2 tan2 χ since the matrix element of δĤ vanishes in a leading

non-relativistic approximation). The most accurate result obtained this way is

α−1 = 137.036 000 3(10) [78].

A self consistent quantum electrodynamic theory with a dynamically varying

α should meet some even stronger constraints due to a comparison of the value of

the fine structure constant from the anomalous magnetic moment of the electron

(α−1 = 137.035 998 80(52) [79]) with the Rydberg constant value. Such a com-

parison will likely lead to a limitation on tan2 χ at a level of a few parts in 10−8

since δα/α = 11(8)× 10−9, from comparison of the values for α−1 given above.

Before any modification of QED due to a varying α can be seriously considered

another set of questions need to be answered. These questions should target its

gauge invariance, renormalizability and Ward identities, which supports the same

charge for electrons and protons. The current QED construction is quite fragile

and it is not absolutely clear if it can be successfully extended.
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4.4 Conclusion

In conclusion, using the modified form of the Dirac Hamiltonian Eqs. (4.1)-(4.3)

does not affect the analysis used in [13, 15–17, 80]. They measure the variation

of α′ = α(1 + tan2 χ). The present time limit tan2 χ = (0.2 ± 0.7) × 10−6 is

obtained from the measurement of the hydrogen 2p fine structure using value of

α obtained from different experiments. Note that according to [15] the value of α′

was smaller in the past, the last measurement gave ∆α′/α′ = (−0.54±0.12)×10−5.

If there is no other source of variation of α (i.e if any change in α was in fact a

change in tan2 χ) this would require a negative value of tan2 χ (tan2 χ = (−0.52±
0.14) × 10−5) since the present value of tan2 χ is small. Actually, the choice of

the integration constants in the Bekenstein paper precludes considering epochs

with α′ < α [68], however, this should not be deemed a principle problem.

In summary if a variation of α does perturb the Dirac Hamiltonian in the way

suggested by Bekenstein (which is by no means certain) then the method used to

determine α variation from quasar spectra and atomic clocks is still valid. The

only modification is that a measurement of ∆α/α is in fact a measurement of

∆α′/α′ where α′ = α(1 + tan2 χ).



Chapter 5

Frequency shifts caused by

Blackbody Radiation

When searching for evidence of fine structure constant, α, variation using atomic

clocks it is necessary to take into account other corrections that will change the

transition frequencies and decrease the accuracy to which a measurement of a

limit on α variation can be made. One of the major contributors to the uncer-

tainty in measurements of transition frequencies made with atomic clocks is a

small frequency shift caused by blackbody radiation. We have performed calcu-

lations of the size of the frequency shift induced by a static electric field (present

due to blackbody radiation) on the clock transition frequencies of the hyperfine

splitting in Yb+, Rb, Cs, Ba+, and Hg+. The calculation of the frequency shift

in Cs is of particular interest because this shift needs to be known to accurately

determine the length of a second. This work is important because it explains the

discrepancies between previous calculations of the correction to the blackbody

cesium frequency shift; the difference (∼ 10%) between ab initio and semiem-

pirical calculations is due to the contribution of the continuum spectrum in the

sum over intermediate states, when these states are included all the results are

brought into agreement.
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The work presented in this chapter is based upon the work presented in the

Physical Review A article, Angstmann et al. [5] and the Physical Review Letter,

Angstmann et al. [4].

5.1 Introduction

The hyperfine structure (hfs) transition of the ground state of 133Cs serves as a

primary frequency standard, providing the definition of a metric second. The

definition of the second is:

“The second is the duration of 9 192 631 770 periods of the radiation correspond-

ing to the transition between the two hyperfine levels of the ground state of the

caesium 133 atom.”

At its 1997 meeting the Comitè international des poids et mesures (CIPM) af-

firmed that this definition referred to “the cesium atom at rest at a temperature

of 0K”, in other words the definition of the second refers to a cesium atom un-

perturbed by blackbody radiation so measurements of the second need to correct

for this perturbation.

Many other similar hfs transitions in other atoms and ions are used or are

under consideration for use as secondary microwave frequency standards. Most

frequency standards (atomic clocks) operate at room temperature. This means

that readings from atomic clocks should be corrected to account for the effect

of blackbody radiation (see, e.g., Ref. [81]) so that they can be directly com-

pared to each other. The value of this effect can be found from measurements

or calculations. There are many experimental [82–87] and theoretical [81, 88–

93] works studying the effects of blackbody radiation on microwave frequency

standards. However, the situation is far from being satisfactory. There is dis-

agreement among the different works for cesium which we will discuss in more

detail, while the data for other atoms and ions is very poor or absent.
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Early measurements of the radiation frequency shift in cesium [82, 83, 85]

and ab initio calculations [89, 90] support a value of δν0 which is close to −2.2×
10−10Hz/(V/m)2 while more recent measurements [86, 87] and semiempirical cal-

culations [88, 91, 92] claim that the actual number might be about 10% smaller.

While we can not comment on the experimental results, the source of the dis-

agreement between theoretical values seems to be in the continuum spectrum.

We have performed fully ab initio calculations of the radiation frequency shift

and have identified the source of the disagreement between different theoretical

results as the contribution of the continuum spectrum states into summation over

the complete set of intermediate states. The continuum spectrum was included

in all the ab initio calculations and missed in the semiempirical considerations.

We demonstrate that by adding the contribution of the continuum spectrum to

where it was missed we bring all theoretical results into good agreement with

each other and with early measurements.

5.2 Theory

Blackbody radiation creates a temperature dependent electric field, described by

the Planck radiation law

E2(ω) =
8α

π

ω3dω

exp(ω/kT )− 1
. (5.1)

This leads to the following expression for the average electric field radiated by a

black body at temperature T:

〈E2〉 = (831.9V/m)2[T(K)/300]4. (5.2)

This electric field causes a temperature-dependent frequency shift of the atomic

microwave clock transitions. It can be presented in the form (see, e.g. [81])

δν/ν0 = β(T/T0)
4
[
1 + ε(T/T0)

2
]
. (5.3)
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Here T0 is usually assumed to be room temperature (T0 = 300K). The frequency

shift in a static electric field is

δν = kE2. (5.4)

Coefficients k and β (in Eqs. (5.4) and (5.3)) are related by

β =
k

ν0

(831.9V/m)2 (5.5)

= k × 7.529× 10−5(V/m)2Hz−1 (for Cs),

where ε is a small correction due to the frequency distribution (5.1). We have

calculated the coefficients k, β and ε.

It is convenient to start the calculation of k by considering an atom in a static

electric field. In the case with no other external electric field to set a preferred

direction, the radiation shift can be expressed in terms of the scalar hyperfine

polarizability of the atom. This corresponds to averaging over all possible di-

rections of the electric field. The hyperfine polarizability is the difference of the

atomic polarizabilities between different hyperfine structure states of the atom.

The lowest-order effect is linear in the hyperfine interaction and quadratic in the

electric field. Therefore, its value can be calculated using third-order perturbation

theory (see, e.g. [70])

δεa =
∑
n,m

〈a|V̂ |n〉〈n|V̂ |m〉〈m|V̂ |a〉
(εa − εn)(εa − εm)

− 〈a|V̂ |a〉
∑

n

〈a|V̂ |n〉2
(εa − εn)2

. (5.6)

In our case the perturbation operator V̂ is the sum of the hyperfine structure

operator and the electric dipole operator

V̂ = Ĥhfs − eE · r.

The operator of the hyperfine interaction Ĥhfs is given by

Ĥhfs =
|e|
c

µ · r ×α

r3
>

, r> = max(r, rN), (5.7)

where α is the Dirac matrix, µ is the magnetic moment of the nucleus and rN is

nuclear radius.
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To get the effect of the electric field on the frequency of the hyperfine transition

one needs to go through the following steps:

• Substitute the perturbation operator V̂ into equation (5.6).

• Keep only terms linear in Ĥhfs and quadratic in the electric field.

• Apply equation (5.6) to both components of the hyperfine structure doublet.

• Take the difference.

The resulting expression for the frequency shift consists of three terms. The first

two of them originate from the first term of equation (5.6). In one of them the

Ĥhfs operator is either on the left or right side of the expression (these two terms

are equal and can be combined together), and in the other the Ĥhfs operator

is in the middle. The last term is due to change of the normalization of the

wave function (second term of equation (5.6)). It is proportional to the hyperfine

structure of the ground state.

After angular reduction these three terms become

δν1(as) = e2〈E2〉2I + 1

6
×

∑
n,m,j

Aas,ns〈ns||r||mpj〉〈mpj||r||as〉
(εas − εns)(εas − εmpj

)
, (5.8)

δν2(as) =
e2〈E2〉

6

∑
j

(CI+1/2 − CI−1/2)×

∑
n,m

〈as||r||npj〉Anpj,mpj〈mpj||r||as〉
(εas − εnpj)(εas − εmpj

)
, (5.9)

and

δνnorm(as) = −e2〈E2〉2I + 1

12
Aas

∑
m,j

|〈as||r||mpj〉|2
(εas − εmpj

)2
. (5.10)
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Here

CF =
∑

F ′
(2F ′ + 1)[F ′(F ′ + 1)− I(I + 1)− j(j + 1)]

×




1/2 F I

F ′ j 1





2

, F ′ = |I − J |, I + J,

Ans is the hfs constant of the ns state, Am,n is the off-diagonal hfs matrix element,

I is nuclear spin, F = I + J, J is total electron momentum of the atom in the

ground state (J = 1/2 for atoms considered here), and j is total momentum of

virtual p-states (j = 1/2, 3/2). Summation goes over a complete set of ns, mp1/2

and mp3/2 states.

Expression (5.8) does not include the s−d hfs matrix elements while expression

(5.9) does not include the p1/2− p3/2 hfs matrix elements. Test calculations show

that the total contribution of the off-diagonal (in total momentum j) hfs matrix

elements is of the order of 0.1% of the final answer and can therefore be neglected

in the present calculations.

Expressions (5.8), (5.9) and (5.10) correspond to the static limit when the

energy of the thermal photon is zero. To take into account the distribution (5.1)

one needs to make the following substitutions in terms (5.8) and (5.9):

〈mpj||r||as〉
∆εsp

→ 1

2

[〈mpj||r||as〉
∆εsp + ω

+
〈mpj||r||as〉
∆εsp − ω

]
, (5.11)

and in term (5.10)

1

∆ε2
sp

→ 1

2

[
1

(∆εsp + ω)2
+

1

(∆εsp − ω)2

]
, (5.12)

where ω is the frequency of thermal photon. Integrating the resulting expression

with (5.1) and keeping only terms up to ω2 (since ω ¿ ∆εsp) leads to an expression

of the form (5.3) in which the first term is given by (5.8), (5.9) and (5.10) and

the parameter ε in the second term is given by

ε =
A

k

[∑
i

k
(1)
i

∆ε2
spi

+
∑

i

k
(2)
i

∆ε2
spi

+ 3
∑

i

k
(3)
i

∆ε2
spi

]
. (5.13)
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Here index i replaces all indexes of summation in (5.8), (5.9) and (5.10), k
(1)
i

corresponds to terms in (5.8), k
(2)
i corresponds to (5.9), k

(3)
i corresponds to (5.10)

and k = k(1) + k(2) + k(3). ∆εspi is the energy of the s − p transition number i.

If energies ∆εspi are in atomic units then A = 1.697 × 10−5 (the atomic unit of

energy is 27.211 eV = 315773K). Lowest s − p transitions (e.g., 6s − 6p1/2 and

6s− 6p3/2) strongly dominate in the summation (5.13).

5.3 Calculations

In order to calculate the frequency shift of the hfs transitions due to the electric

field one needs to have a complete set of states and to have the energies, electric

dipole transition amplitudes and hyperfine structure matrix elements correspond-

ing to these states. It is possible to consider summation over the physical states

and use experimental data to perform the calculations. The lowest valence states

for which experimental data is usually available dominate the summation. Off-

diagonal hfs matrix elements can be obtained to a high accuracy as the square root

of the product of corresponding hfs constants: Am,n =
√

AmAn (see, e.g. [36]).

However, the accuracy of this approach is limited by the need to include the

tail contribution from highly excited states including states in the continuum.

This contribution can be very significant and its calculation is not easier than

the calculation of the whole sum. Also, for atoms like Yb+ and Hg+ available

experimental data is insufficient to follow this path.

Therefore, we use an ab initio approach in which high accuracy is achieved by

the inclusion of all important many-body and relativistic effects. We make only

one exception toward the semiempirical approach. The frequency shift is dom-

inated by the term (5.10) which is proportional to the hfs in the ground state.

These hfs constants are known to very high accuracy from measurements for all

atoms considered in the present work. It is natural to use experimental hfs con-
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stants in the dominating term to have more accurate results. Note however that

the difference with complete ab initio calculations is small. It is also instructive

to perform calculations of the hfs and atomic polarizabilities to demonstrate the

accuracy of the method.

Calculations start from the relativistic Hartree-Fock (RHF) method in the

V N−1 approximation. This means that the initial RHF procedure is done for a

closed-shell atomic core with the valence electron removed. After that, states of

the external electron are calculated in the field of the frozen core. Correlations

are included by means of the correlation potential method [94]. We use two

different approximations for the correlation potential, Σ̂. First, we calculate it in

the lowest, second-order of many-body perturbation theory (MBPT). We use the

notation Σ̂(2) for the corresponding correlation potential. Then we also include

into Σ̂ two classes of the higher-order terms: screening of the Coulomb interaction

and hole-particle interaction (see, e.g. [95] for details). These two effects are

included in all orders of MBPT and the corresponding correlation potential is

named Σ̂(∞).

To calculate Σ̂(2) we need a complete set of single-electron orbitals. We use the

B-spline technique [53, 55] to construct the basis. The orbitals are built as linear

combinations of 50 B-splines in a cavity of radius 40aB. The coefficients are chosen

from the condition that the orbitals are eigenstates of the RHF Hamiltonian Ĥ0

of the closed-shell core. The Σ̂(∞) operator is calculated using a technique that

combines solving equations for the Green functions (for the direct diagram) with

the summation over the complete set of states (exchange diagram).

The correlation potential Σ̂ is then used to build a new set of single-electron

states, the so-called Brueckner orbitals. This set is to be used in the summation

in equations (5.8), (5.9) and (5.10). Here again we use the B-spline technique to

build the basis. The procedure is very similar to the construction of the RHF

B-spline basis. The only difference is that new orbitals are now the eigenstates
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Table 5.1: Rescaling parameters for the Σ̂ operator which fit
energies of the lowest s and p states of Rb, Cs, Ba,+, Yb+

and Hg+.

Atom Σ̂ s1/2 p1/2 p3/2

Rb Σ̂(2) 0.868 0.903 0.906

Rb Σ̂(∞) 1.008 0.974 0.976

Cs Σ̂(2) 0.802 0.848 0.852

Cs Σ̂(∞) 0.985 0.95 0.95

Ba+ Σ̂(2) 0.782 0.830 0.833

Ba+ Σ̂(∞) 0.988 0.963 0.967

Yb+ Σ̂(2) 0.866 1.09 1.185

Hg+ Σ̂(2) 0.805 0.890 0.926

of the Ĥ0 + Σ̂ Hamiltonian, where Σ̂ is either Σ̂(2) or Σ̂(∞).

We use the all-order correlation potential Σ̂(∞) for Rb, Cs and Ba+. It has

been demonstrated in a number of works (see, e.g. [95–97]) that inclusion of the

screening of the Coulomb interaction and the hole-particle interaction leads to

very accurate results for alkali atoms. However, for other atoms with one external

electron above closed shells these two higher-order effects are not dominating and

their inclusion generally does not improve the results. Therefore, for the Yb+

and Hg+ ions we use only the second-order correlation potential Σ̂(2).

Brueckner orbitals which correspond to the lowest valence states are good

approximations of the real physical states. Their quality can be checked by

comparing experimental and theoretical energies. Moreover, their quality can

be further improved by rescaling the correlation potential Σ̂ to fit experimental

energies exactly. We do this by replacing the Ĥ0+Σ̂ with the Ĥ0+λΣ̂ Hamiltonian

in which the rescaling parameter λ is chosen for each partial wave to fit the

energy of the first valence state. The values of λ are presented in Table 5.1. Note

that all values are very close to unity. This means that even without rescaling

the accuracy is very good and only a small adjustment to the value of Σ̂ is

needed. Note also that since the rescaling procedure effects both energies and
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wave functions, it usually leads to improved values of the matrix elements of

external fields. In fact, this is a semiempirical method to include omitted higher-

order correlation corrections.

Matrix elements of the hfs and electric dipole operators are found by means

of the time-dependent Hartree-Fock (TDHF) method [94, 98]. This method is

equivalent to the well-known random-phase approximation (RPA). In the TDHF

method, single-electron wave functions are presented in the form ψ = ψ0 + δψ,

where ψ0 is unperturbed wave function. It is an eigenstate of the RHF Hamil-

tonian Ĥ0: (Ĥ0 − ε0)ψ0 = 0. δψ is the correction due to external field. It can be

found by solving the TDHF equation

(Ĥ0 − ε0)δψ = −δεψ0 − F̂ψ0 − δV̂ N−1ψ0, (5.14)

where δε is the correction to the energy due to external field (δε ≡ 0 for the

electric dipole operator), F̂ is the operator of the external field (Ĥhfs or eE · r),

and δV̂ N−1 is the correction to the self-consistent potential of the core due to

external field. The TDHF equations are solved self-consistently for all states in

the core. Then matrix elements between any (core or valence) states n and m

are given by

〈ψn|F̂ + δV̂ N−1|ψm〉. (5.15)

The best results are achieved when ψn and ψm are Brueckner orbitals calculated

with rescaled correlation potential Σ̂.

We use equation (5.15) for all hfs and electric dipole matrix elements in (5.8),

(5.9), and (5.10) except for the ground state hfs matrix element in (5.10) where

we use experimental data.

To check the accuracy of the calculations we perform calculations of the hfs

in the ground state and of the static scalar polarizabilities of the atoms. Polariz-

abilities are given by the expression

α0(a) =
2

3

∑
m

|〈a||r||m〉|2
(εa − εm)

(5.16)
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which is very similar to the term (5.10) for the frequency shift. The most im-

portant difference is that the energy denominator is squared in term (5.10) but

not in (5.16). This means better convergence with respect to the summation over

complete set of states for term (5.10) than for (5.16). Therefore, if good accuracy

is achieved for polarizabilities, even better accuracy should be expected for the

term (5.10) (see also Ref. [91]).

However, the behavior of the other two terms, (5.8) and (5.9), is very different

and the calculation of polarizabilities tells us little about accuracy for these terms.

Therefore, we also perform detailed calculations of the hfs constants of the ground

state. Inclusion of core polarization (second term in (5.15)) involves summation

over the complete set of states similar to what is needed for term (5.8). Comparing

experimental and theoretical hfs is a good test of the accuracy of this term.

The results for polarizabilities, calculated in different approximations, are

presented in Table 5.2. Pure ab initio results obtained with Σ̂(∞) and results

obtained with rescaled correlation potential operators Σ̂(2) and Σ̂(∞) are very

close to each other and to other calculations and measurements.

In addition to term (5.15), we also include two smaller contributions to the

hfs: structure radiation and the correction due to the change of the normalization

of the wave function. The structure radiation term can be presented in the form

Astr = 〈ψn|δΣ̂|ψn〉, (5.17)

where δΣ̂ is the correction to the correlation potential due to external hfs field.

The normalization term is

Anorm = −An〈ψn|∂Σ̂

∂ε
|ψn〉, (5.18)

where An is given by (5.15) with m = n.

The results for hfs are presented in Table 5.3. Here column marked as ‘Brueck’

corresponds to the 〈ψn|F̂ |ψn〉 matrix element. The column marked as RPA is the
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Table 5.2: Static polarizabilities α0 of Rb, Cs, Ba,+, Yb+

and Hg+ in different approximations (a3
0).

Atom Σ̂ αv
a αc

b Total Other works
87Rb 5s Σ̂(2)c 292.7 9.1 301.8 329(23)f

λΣ̂(2)d 309.7 9.1 318.8 293(6)g

Σ̂(∞)e 312.4 9.1 321.5 318.6(6)h

λΣ̂(∞)d 310.5 9.2 319.7 318.5(6)i

133Cs 6s Σ̂(2)c 343.8 15.3 359.1 401.0(6)j

λΣ̂(2)d 383.5 15.4 399.0 401.5h

Σ̂(∞)e 384.0 15.5 399.5 400.4k

λΣ̂(∞)d 384.4 15.5 399.9 400.6(1.0)l

137Ba+ 6s Σ̂(2)c 104.1 9.8 113.8

λΣ̂(2)d 112.5 9.9 122.4

Σ̂(∞)e 112.8 9.9 122.7

λΣ̂(∞)d 112.7 9.9 122.7
171Yb+ 6s Σ̂(2)c 50.9 6.2 57.1

λΣ̂(2)d 55.4 6.1 61.5
199Hg+ 6s Σ̂(2)c 10.5 7.7 18.2

λΣ̂(2)d 11.4 7.6 19.0

a Polarizability due to valence electron.
b Polarizability of the core.
c Σ̂(2) is the second-order correlation potential.
d Rescaled Σ̂. See Table 5.1 for the values of rescaling factors λ.
e Σ̂(∞) is the all-order correlation potential.
f Measurements, Ref. [99].
g Measurements, Ref. [100].
h Calculations, Ref. [101].
i Calculations, Ref. [102].
j Measurements, Ref. [103].
k Calculations, Ref. [104].
l Calculations, Ref. [91].
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Table 5.3: Contributions to the hyperfine structure of the ground
state of Rb, Cs, Ba,+, Yb+ and Hg+ (MHz); comparison with
experiment.

Atom Brueck RPA Str Norm Total Exp
87Rb 5s 2888 559 -27 -33 3386 3417a

133Cs 6s 1957 355 -10 -31 2278 2298a

137Ba+ 6s 3509 601 -21 -73 4016 4019b

171Yb+ 6s 11720 1540 -248 -247 12764 12645(2)c

199Hg+ 6s 38490 3873 288 -1483 41169 40507d

a Reference [105].
b References [106] and [107].
c Reference [108].
d Reference [109].

core polarization correction given by 〈ψn|δV̂ N−1|ψn〉, the notation ‘Str’ stands for

structure radiation given by (5.17), and ‘Norm’ is the renormalization contribu-

tion given by (5.18). In all cases ψn is the Bruckner orbital corresponding to the

ground state of the atom or ion, calculated with the rescaled correlation potential

Σ̂. All-order Σ̂(∞) is used for Rb, Cs and Ba+. Second-order Σ̂(2) is used for Yb+

and Hg+. Comparing the final theoretical results with experiment shows that the

theoretical accuracy is within 1% for all atoms except Hg+ where it is 1.6%. If

the structure radiation and normalization are neglected, accuracy for Rb and Cs

remains within 1%, accuracy for Ba+ becomes about 2% and accuracy for Yb+

and Hg+ becomes close to 5%.

5.4 Results and discussion

Table 5.4 presents contributions of terms (5.8), (5.9) and (5.10) into the total

frequency shift of the hfs transitions for the ground states of 87Rb, 133Cs, 137Ba+,

171Yb+ and 199Hg+ calculated in different approximations. Term (5.10) dominates

in all cases, while term (5.9) is small but still important at least for Rb, Cs and

Ba+. Results obtained with Σ̂(2) and Σ̂(∞) differ significantly (up to 14% for
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Cs). However, after rescaling, the results for both Σ̂(2) and Σ̂(∞) come within a

fraction of a per cent of each other. Naturally, rescaling has a larger effect on

results obtained with Σ̂(2). This means that the rescaling really imitates the effect

of higher-order correlations and should lead to more accurate results. Comparing

the results obtained with Σ̂(∞), rescaled Σ̂(∞) and rescaled Σ̂(2) gives a reasonable

estimation of the accuracy of calculations. If we also combine this with the

calculation of the hfs discussed above we can safely assume that the accuracy of

the calculations for Rb, Cs and Ba+ is on the level of 1%. Note that the frequency

shift due to blackbody radiation can be a little larger (∼ 1%) due to the effect of

frequency distribution at finite temperature (this effect is incorporated into our

result using the ε term in Eq. (5.3), and so should not be considered an additional

uncertainty).

For Yb+ and Hg+ we only have results with rescaled Σ̂(2) and not rescaled

Σ̂(∞). They differ by about 11%. However, there are strong reasons to believe

that the results obtained with rescaling are more accurate. This is supported by

calculations for Rb, Cs and Ba+ as well as our experience with rescaling used in

many earlier works. Therefore, the calculation of the hfs discussed above gives a

more realistic estimation of the accuracy for Yb+ and Hg+ which is about 5%.

Table 5.4 presents values of k (see formula (5.4)). To obtain the frequency

shift at finite temperature one needs to convert k into β using formula (5.5) and

substitute β into equation (5.3). For accurate results one also needs to know the

values of ε. We calculate them using formula (5.13) in a very similar way to how

we calculate parameters k. Our final values of k, β and ε are presented in Ta-

ble 5.5. Parameter ε for Cs was estimated in the single-resonance approximation

in [81] and found to be 0.014. This value is in good agreement with our accurate

calculations.

The frequency shifts of some alkali metal atoms have been calculated and

measured previously. We present previous results for the atoms and ions for
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Table 5.4: Contribution of terms (5.8), (5.9), and (5.10) to
the frequencies of the hyperfine transitions in the ground
state of Rb, Cs, Ba,+, Yb+ and Hg+ (δν0/E

2 × 10−10

Hz/(V/m)2) in different approximations.

Atom Σ̂ (5.8) (5.9) (5.10) Total
87Rb 5s Σ̂(2)a -0.5457 0.0147 -0.6692 -1.2003

λΣ̂(2)b -0.5668 0.0154 -0.6894 -1.2409

Σ̂(∞)c -0.5640 0.0156 -0.7034 -1.2518

λΣ̂(∞)b -0.5620 0.0154 -0.6972 -1.2437
133Cs 6s Σ̂(2)a -0.9419 0.0210 -1.0722 -1.9931

λΣ̂(2)b -1.0239 0.0229 -1.2688 -2.2697

Σ̂(∞)c -1.0148 0.0232 -1.2706 -2.2622

λΣ̂(∞)b -1.0167 0.0230 -1.2695 -2.2632
137Ba+ 6s Σ̂(2)a -0.1027 0.0034 -0.1568 -0.2561

λΣ̂(2)b -0.1095 0.0036 -0.1768 -0.2827

Σ̂(∞)c -0.1104 0.0037 -0.1778 -0.2845

λΣ̂(∞)b -0.1104 0.0037 -0.1773 -0.2841
171Yb+ 6s Σ̂(2)a -0.0672 0.0009 -0.0866 -0.1529

λΣ̂(2)b -0.0714 0.0011 -0.1003 -0.1706
199Hg+ 6s Σ̂(2)a -0.0242 0.0000 -0.0296 -0.0538

λΣ̂(2)b -0.0263 0.0000 -0.0335 -0.0598

a Σ̂(2) is the second-order correlation potential.
b Rescaled Σ̂. See Table 5.1 for the values of rescaling factors λ.
c Σ̂(∞) is the all-order correlation potential.

Table 5.5: Final results for the parameters k
(10−10 Hz/(V/m)2), β (10−14) and ε of the black-body
radiation frequency shift for Rb, Cs, Ba,+, Yb+ and Hg+.

Atom k β ε
87Rb 5s -1.24(1) -1.26(1) 0.011
133Cs 6s -2.26(2) -1.70(2) 0.013
137Ba+ 6s -0.284(3) -0.245(2) 0.004
171Yb+ 6s -0.171(9) -0.094(5) 0.002
199Hg+ 6s -0.060(3) -0.0102(5) 0.0005
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which we perform calculations in Table 5.6 together with our final results.

There is some disagreement for cesium. Our result is in good agreement

with early measurements [82, 83, 85] and ab initio calculations [89, 90] while re-

cent measurements [86, 87] and semiempirical calculations [88, 91, 92] give the

value which is about 10% smaller. Less accurate measurements of Bauch and

Schröder [84] cover both cases. We cannot comment on disagreement between

experimental results. However, the source of disagreement between theoretical

results seems to be clear. It comes from the contribution of the continuum spec-

trum to the summation over the complete set of states in term (5.8). This term

has off-diagonal hfs matrix elements between the ground state and excited states.

Since the hfs interaction is localized over short distances (∼ a0/Z) it emphasizes

the contribution of states with high energies including states in the continuum

(since ∆p∆x ≥ ~, a small area of localization (∆x) allows high momentum (p)

and thus high energy). In our calculations the contribution of states above 7p

into term (5.8) is −0.35× 10−1Hz/(V/m)2 which is 15% of the total answer.

In contrast, states above 7p contribute only about 0.05% of the total value

of term (5.10). This is because the summation goes over the matrix elements of

the electric dipole operator which is large on large distances and thus suppresses

the contribution of high-energy states. It is not surprising therefore that a semi-

empirical consideration, involving only discrete spectrum states, gives very good

results for the atomic polarizabilities (see, e.g. [91]). However, let us stress once

more that the calculation of polarizabilities checks only term (5.10) and tells us

very little about the accuracy of the other two terms, (5.8) and (5.9).

The contribution of the states above 7p is even more important for term (5.9).

Their contribution is about 30% of the total value of this term. However, the

term itself is small and its accurate treatment is less important.

In ab initio calculations by Lee et al [89] summation over complete set of

states is reduced to solving a radial equation (equations of this type are often
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called Sternheimer equation after one of the authors of this work). This approach

does include the contribution of the continuum spectrum and the result is in very

good agreement with ours (see Table 5.6).

In other ab initio calculations by Pal’chikov et al [90] summation is done via

Green functions. This corresponds to summation over the complete set of states

and does include the continuum spectrum. Again, the result is in very good

agreement with other ab initio calculations ([89] and the present work).

Recent calculations by Beloy et al [93] applied a mixed approach, with exten-

sive use of experimental data for lower cesium states and ab initio summation

over higher states including the continuum. The result is in good agreement with

fully ab initio calculations.

In contrast, analysis performed in [88, 91, 92] is limited to discrete spectrum.

Adding −0.34 × 10−1Hz/(V/m)2 (which is total tail contribution from all three

terms (5.8), (5.9) and (5.10) found in our calculation) to the results of Feitchner

et al [88] and Micalizio et al [91] brings them to excellent agreement with ab

initio calculations. The same modification of the result by Ulzega et al [92]

makes it a little bit too large but still closer to other results than without the tail

contribution.

5.5 Conclusion

We performed calculations of the frequency shift of the ground state hyperfine

transition for several atoms and ions caused by a static electric field which can

be used to evaluate the effect of blackbody radiation on the frequency of the

microwave atomic clock transitions. The size of this shift is comparable to the

current error in the measurements of the energy shift caused by variation of α

and so needs to be taken into account in laboratory measurements placing limits

upon α variation.
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Table 5.6: Electrostatic frequency shifts for the hyperfine transi-
tions of Rb, Cs, Ba,+, Yb+ and Hg+ (δν0/E

2 × 10−10 Hz/(V/m)2) ;
comparison with other calculations and measurements.

Atom This Other Ref Measurements Ref
work calculations

87Rb 5s -1.24(1) -1.2094 [89] -1.23(3) [83]
133Cs 6s -2.26(2) -1.9(2) [88] -2.29(7) [82]

-2.2302 [89] -2.25(5) [83]
-2.28 [90] -2.17(26) [84]
-1.97(9) [91] -2.271(4) [85]
-2.06(1) [92] -1.89(12) [86]
-2.268(8) [93] -2.03(4) [87]

137Ba+ 6s -0.284(3) -0.27 [81]
171Yb+ 6s -0.171(9)
199Hg+ 6s -0.060(3) -0.058 [81]

Detailed analysis of the calculations for cesium reveal the source of disagree-

ment between different theoretical approaches. This seems to be the contribution

of the continuum spectrum into summation over complete set of states which

was neglected in semiempirical calculations. Restoring the tail contribution in

works where it was neglected brings all theoretical results into good agreement

with each other. This correction needs to be applied to measurements made of

the hyperfine transition in cesium in order to accurately measure the length of a

second.
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Conclusion

This thesis has considered the theoretical calculations that are needed to interpret

the results of atomic clock experiments, in order to place limits on the variation

of the fine structure constant, α. This is a particularly interesting field of research

at the moment because of indications from quasar spectra that α may have been

smaller in the past [13].

We have considered how the energy levels in two valence electron atoms and

ions will be affected by a change in the value of α. Our calculations of this

effect can be used in conjunction with measurements of the change in transition

frequencies over time to place tight constraints on α variation.

This thesis has also considered several situations in which a change in the

transition frequency over time is greatly enhanced with respect to a change in

α. In particular we have considered using atoms with close, narrow levels that

will move relative to each other if α is varying. Using a scheme such as this

is advantageous for obtaining tight constraints on α variation since less precise

experimental results can give competitive constraints on α variation.

We have shown that if the Dirac Hamiltonian is actually perturbed by a dy-

namically varying α in the manner suggested by Bekenstein [68] then the analysis
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used by the quasar groups and also used to interpret atomic clock experiments is

still valid.

Finally we have considered how blackbody radiation effects the hyperfine en-

ergy levels in some atoms. Blackbody radiation causes the energy levels to shift,

and the effect can be of the same order of magnitude as a change in α and so needs

to be accounted for. We performed the calculation for the hyperfine levels in ce-

sium that are used as a frequency standard to define the second and showed why

there was disagreement among previous results. We also calculated the shift for

other atoms and ions. Experiments to constrain α variation are planned for the

171Y b+ ion [110] and experiments have already been conducted with the 199Hg+

ion and 87Rb for example. It would not be hard for us to calculate the blackbody

shift for many other atoms and ions, of interest for experiments, now that we

have shown that our method works.
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Table of calculated q coefficients

This is a list of many of the q coefficients that have been accurately calculated by

our group. This list may be helpful to an experimentalist planning an experiment

to measure α variation.

Table A.1: Experimental energies and calculated q coefficients for transitions

from the ground state to the state shown.

Atom/Ion Z State Wavelength, Å q (cm−1) Reference

Experiment

Al II 13 3s3p 3P0 2674.30 146 [1]

3s3p 3P1 2669.95 211 [1]

3s3p 3P2 2661.15 343 [1]

3s3p 1P1 1670.79 278 [1]

Ca I 20 4s4p 3P0 6597.22 125 [1]

4s4p 3P1 6574.60 180 [1]

4s4p 3P2 6529.15 294 [1]

4s4p 1P1 4227.92 250 [1]
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Sr I 38 5s5p 3P0 6984.45 443 [1]

5s5p 3P1 6894.48 642 [1]

5s5p 3P2 6712.06 1084 [1]

5s5p 1P1 4608.62 924 [1]

Sr II 38 4d 2D3/2 6870.07 2828 [34]

4d 2D5/2 6740.25 3172 [34]

In II 49 5s5p 3P0 2365.46 3787 [1]

5s5p 3P1 2306.86 4860 [1]

5s5p 3P2 2182.12 7767 [1]

5s5p 1P1 1586.45 6467 [1]

Ba II 56 5d 2D3/2 20644.74 5844 [111]

5d 2D5/2 17621.70 5976 [111]

Dy I 66 4f 105d6s 3[10]10 5051.03 6008 [59]

4f 95d26s 9K10 5051.03 -23708 [59]

Yb I 70 6s6p 3P0 5784.21 2714 [1]

6s6p 3P1 5558.02 3527 [1]

6s6p 3P2 5073.47 5883 [1]

6s6p 1P1 3989.11 4951 [1]

Yb II 70 4f 145d 2D3/2 4355.25 10118 [59]

4f 145d 2D5/2 4109.70 10397 [59]

4f 136s2 2F7/2 4668.81 -56737 [59]

Yb III 70 4f 135d 3P0 2208.63 -27800 [59]

Hg I 80 6s6p 3P0 2656.39 15299 [1]

6s6p 3P1 2537.28 17584 [1]

6s6p 3P2 2270.51 24908 [1]

6s6p 1P1 1849.50 22789 [1]
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Hg II 80 5d96s2 2D5/2 2815.79 -56671 [34]

5d96s2 2D3/2 1978.16 -44003 [34]

Tl II 81 6s6p 3P0 2022.20 16267 [1]

6s6p 3P1 1872.90 18845 [1]

6s6p 3P2 1620.09 33268 [1]

6s6p 1P1 1322.75 29418 [1]

Ra II 88 6d 2D3/2 8275.15 18785 [111]

6d 2D5/2 7276.37 17941 [111]



Appendix B

Acknowledgement of the Atomic

Computer Codes

The atomic computer codes used in this thesis have been adapted from a set

initially written by V. A. Dzuba, V. V. Flambaum and O. P. Sushkov. The codes

begin by generating an approximation of the wavefunction of the core by using

the relativistic Hartree-Fock method [112]. The wavefunctions of the valence

electrons are then calculate in the field of the frozen core [112]. V. A. Dzuba, V. V.

Flambaum and M.G. Kozlov updated the code to using many-body perturbation

theory for the interaction between the valence electrons and the core and the

configuration interaction to account for interaction between valence electrons [51].

These codes have been improved by using B-splines to form a more complete basis

set. This modification was made by V. A. Dzuba based on work he has done with

W. R. Johnson [52].

Specific adaptions to these codes have been made for the work presented in

chapters 2 and 5. In each of these cases the changes made to the code have been

discussed.
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