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| ntroduction

The goal of this thesis is realized at BABAR experiment in the asymmetric b-factory
PEP-I1 at SLAC (Stanford Linear Accelerator Center, Stanford, USA). The history of
CP violation is one of experimental discovery overturning untested assumptions. Ob-
servation of the & — 7 puzzle in the early 1950s marks the inception of the discovery
of the symmetry-violating properties of the weak interaction. Two spin-zero particles
of the same mass and lifetime (now known to be charged kaons) were found to decay
into different final states of opposite parity, one to two pions and the other to three,
seemingly violating parity conservation. In 1956, Lee and Yang showed that parity
conservation, while well-tested in strong and electromagnetic interactions, was not ex-
perimentally constrained for weak interactions, and proposed a list of experimental
tests [1]. Shortly thereafter, C.S. Wu and collaborators performed one of these ex-
periments, and showed that parity was not conserved in nuclear  decay, conclusively
demonstrating the uniqueness of the weak interaction among the forces [2].* However,
the combined CP transformation was still widely assumed to be a symmetry of na-
ture due to the difficulty of explaining the weak interaction without it. The discovery
eight years later of CP violation in neutral K mesons by Christenson, Cronin, Fitch
and Turlay provided the basis for both far-reaching insight (the Kobayashi-Maskawa
prediction of a third family of quarks and leptons, a year before even the charm quark
was discovered, and 4 years before the b) [3, 4].

Before 1964, no one realistically expected C'P symmetry to be violated. Acco-
modating CP violating involves a significant increase in the complexity of weak in-
teraction theory that was just not motivated at the time, as only the first 3 quarks had
been discovered at that moment. Fitch later remarked that “not many of our colleagues
would have given credit for studying CP violation, but we did so anyway” [5]. The
beam that was used contained pure K9 (= KY) mesons. A two-arm spectrometer was

INote however that parity conservation is still poorly experimentally constrained in gravity.
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used in order to detect the decay products. After two months of data taking, a sig-
nificant peak was indeed observed for a 7 ™7~ decay of the KJ. If mass eigenstates
and CP eigenstates were equivalent, K9 would be the purely CP-odd (and slightly
heavier) counterpart to the CP-even K¢ (= K?). But the 7"~ final state is CP-even,
thus the (presumably) CP-odd K29 should not be able to decay into it unless CP were
violated. Fitch and Cronin observed a significant peak for a =7~ -hypothesis decay at
the K9 mass, consisting of 45 4- 9 two-pion events out of a total of 22,700 K decays.
Although the experiment did result in a slowly increasing acceptance in the physics
community that CP was violated, immediately following the measurement strong dis-
belief did exist. Alternative explanations were proposed, including regeneration of
K?, anon-bosonic version of the pion as the actual decay product, and violation of ex-
ponential decay laws. These alternatives were at least as unpleasant for theory as the
violation of CP itself, and successive experiments refuted their possibility, eventually
eliminating all but the Kobayashi-Maskawa quark mixing picture as the description
of Cronin and Fitch’s results. Thirty-seven years of experimental study of the kaon
sector after CP violation was discovered has yielded only recently the observation of
direct CP violation, and has merely helped to confirm the counterintuitive picture of
a small complex coefficient in a 3 x 3 unitary matrix as the source of the CP asym-
metry. The smallness of CP violating effects in the kaon system is an impediment to
progress in that sector, although the potential remains for measurements of the decays
Kt— 7t and K%— 7%, which directly probe the imaginary part of the coeffi-
cient. The present and near future lie in B decays, which, as shown by BABAR and
Belle?, exhibit significant CP asymmetries, as is predicted by the Standard Model.
However, the predictions of the Standard Model regarding CP have yet to be fully ex-
amined experimentally, and, as seen above, one cannot take untested ideas for granted.
Many well-motivated theoretical extensions of the Standard Model produce strikingly
different predictions for CP violation; and the manifest baryon asymmetry of the uni-
verse poses great difficulty for reconciliation with the small amount of CP violation
predicted by the Standard Model. Such tests are the primary purpose of the BABAR
experiment — the goal was to either confirm or refute the Standard Model picture of
CP violation.

B meson decay channels useful for CP violation studies have a very little branch-
ing fractions, in the order of 10~ or less, with a Y (4S)2 cross section of 1.2 nb. To

2similar experiment to BABAR in the KEK-B accelerator (Tsukuba, Japan).
37 (4S) isaresonance composed by a quark couple bb with mass 10.58 GeV and decadesin a couple
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observe CP violation a high luminosity collider is necessary (a so called b-factory?).
Time dependent measurements of asymmetries depend on the ability of evaluating de-
cay vertices of the two B mesons coming from T (4S) meson decay. In BABAR exper-
iment the measurement of this vertices is due to asymmetric collider (e~ with 9 GeV
and e* with 3.1 GeV) where T mesons are produced with impulse in the laboratory
frame. The B mesons boosts make distances run by particles measurable.

The Milan group studies hadronic charmless B meson decays. These processes
are manifestations of suppressed penguin or tree diagrams and are very sensitive to
new physics; fondamental measurements of parameters, joined with CP violation, are
linked to this decay channels studies. In this thesis work will be describe the study of B
meson decays in ' K in the final quasi-two body states composed by »’ and K mesons,
for subchannels with " in p%y and nzr, with 1) in 4y and 77~ 7" and with K meson
in K9 — 7%%and K*. Analysis has been done on a on-peak T (4S) resonance data
sample of 210.9 fb~' (232.0 x 10° BB pairs). An unbinned multivariate maximum
likelihood (ML) analysis is the analysis tecnique. In the first step we wrote modules for
the reconstruction of real and MC events and we used different kinds of variables both
topological and kinematical. The events are selected with cuts on variables and then
we proceeded with definition of PDFs (probability density function) for variables used
in fits. After that, we evaluated systematic errors, due to analysis program tecnique and
fitting dependent parameters of PDFs. All the results obtained have been discussed and
added to standard channels®.

of mesons BB (50% neutral BB and 50% charged BB). Quantum numbers of this resonance are
JOP=1--.

4b-factory is usual expression to describe an accelerator that is able to produce a large number of B
mesons (greater than 107 B for year).

SPlease see Chapter 7-8.






Chapter 1

CP Violation in the B Meson System

1.1 Overview of CP Violation

1.1.1 Discrete Symmetries

The set of operators on the Hilbert space of state functions on the quantum field con-
tains both discrete and continuous transformations that preserve the Minkowski inter-
val t> — 2. The set of continuous transformations that preserve this interval are the
familiar Lorentz transformations, comprised of the product space of rotations, transla-
tions, and Lorentz boosts. The three independent discrete transformations that also pre-
serve 2 — #2 are the charge conjugation operator (C), the parity operator (P), and the
time-reversal operator (7'). These form a complete set of discrete Minkowski interval-
preserving transformations of the Hilbert space. Although other discrete interval-
preserving transformations exist in the Standard Model (SM) [6, 7, 8], all can be
formed from C, P, T, and the group of continuous Lorentz and gauge rotations.!
The action of the three discrete transformations on, as an example, the special case of
a spin 1/2 (Dirac) field, is discussed below.

Parity

The parity operator P reverses the signs of the 3 spatial elements of a four-vector:
(t,7) — (t,—7) and (E,p) — (F,—p). One can easily visualize parity as a mirror-

1For example, consider the set of discrete transformations M, which takes the mirror image of
space with respect to a plane defi ned by a unit vector 7. Thisissimply parity combined with arotation
of 7 about 7. Minimal supersymmetry adds a single independent L orentz-invariant transformation (R-
parity), of which the symmetry is broken at observable energy levels, producing mass differences.

1



2 CP Violation in the B Meson System

image plus an 180-degree rotation normal to the plane of the mirror (which works
for any mirror angle) — this reverses the momentum of a particle but leaves its spin
unchanged:

%

Figure 1.1: Effects of P symmetry

Consider the action of parity on the particle and antiparticle annihilation operators
of the Dirac field a; and by. Parity should transform the states a;|0) and b3|0) to a™- |0)
and b~ |0) as shown in the figure above. This implies

PayP~! =nea’,,  and  PayP~' = b’ (1.1)
where 7, and 7, are phases. Since P? =1 = n,,n, must equal &1 (the parity group,
as with the other two discrete operators, is idempotent, ie. P~! = P, so the equation
above could just as easily have been written Pa 3P, etc.). To find the matrix represen-

tation of P and the phases 7, and 7, consider the action of P on ¢(z). Decomposing
¢ into eigenstates of spin and momentum gives:

P¢( ) \/ﬁ/ 271' 3 Z naa - U (p)e_ipx +7]Zbiipvs(p)eipx) (1.2)

The key is to change variables to (not surprisingly) p’ = (p°, —p) = p-z =
p' - (t,—) and p’ - o (where o is the four-vector of 2 x 2 Pauli matrices) = p - o7+°
(where ~? is the 0-th Dirac matrix) = p - &, where

o'y? (1.3)

o

Thus the four-spinors «(p) and v(p) can be written as:
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i = (Y2 )= (Y2 ) =
v(p) = ( B p}; U; ) = ( B p];,' E; ) = —%(p') (1.4)

where ¢ is a generic two-component spinor. Thus (1.2) can be written as:

d3p’ .
—ip! (t,~ %)
PolaP” == [ & (w0
b 0 (p)e ) (15)
But,
1 a3y’ A .
) — S 015 (! —ip’-(t,— )
gb(tv ZL’) \/ﬁp*,/ 271' 3 Z (ap/u (p )6
+ 57 ve(p)e? (=) (1.6)
=n,=1,1n=—1,and

Time Reversal

The time reversal operator reverses momentum and spin and also flips the sign of the
time component of a state. Therefore we want the transformation of the Dirac particle
and antiparticle annihilation operators to be:

s —1 —s s —1 —s
Ta;T :néa:p and T, T :n{,b:p (1.8)

We can start to compute the transformation of the fermion field ¢:

To(t, 7

Je P+ bfvt(p)e) T (1.9)

-1 1 d3 5,8
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However, if 7 were to only act on the operators a and b, the situation would be the
same as with parity and the spatial coordinates would flip sign instead of time (also
the operators would reverse spin but not the spinors, which would be an unphysical
nonlinearity). 7 therefore must act on more than just the operators.

The solution is to let 7 act on complex numbers in addition to operators. Let

Tz=2T VzinC (1.10)
Thus (1.9) becomes
Z u*(p)) e + b =T (0¥ (p)) e P (1.11)
\/ﬁ 271' 3 Ui ~p p

We need to find a constant matrix M such that Mu=*(p") = (v*(p))* (and simi-
larly for v*(p)) — then we can change variables to p’ and (—t¢, &) so that we can obtain
an answer for the action of the transformation in terms of ¢(—t, Z).

We can see that:
Tk S* 2 0 2 0 K S%
ey = V2 )= L ) e | =
p . E*gs* O o 0 o p . E*gs*
L ( _2:0.2 /p R U*gs* ) (112)

and can then use the identity

i% — &//

Figure 1.2: Effects of T symmetry
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o*\/p-o* =\/p - o0? (1.13)

and the fact that

. * 0 1 gl* gQ* —S
R ( -0 ) ( ¢ ) - ( — ) - .

to obtain for (1.13):

VP o(—io?s®* oS .,
—7'y? ( ) S*) = —y'y° | =) (115)
VD' T (—io%c™) P TS

and similarly for (v*(p))*. Thus (1.15) becomes

d3/

\/ﬁ/ 27T3Z

ezt (pf e
+nl/)*b st s( )ezp (— tf)) =

Charge Conjugation

The charge conjugation operator is defined to be the transformation of a particle into
its antiparticle without changing momentum or spin. Thus,

CasC~' =mnjby  and CosC~! = nya (1.17)

so the transformation of the Dirac field is

zpm+asT s(p)eipx) (118)

Cola)C \/ﬁ/zwsz (b5

We want to find what this is in terms of ¢ = ¢+, so we need a relation between
u®(p) and v**(p), and between v*(p) and u**(p):
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W) = [ VEITST ) (VR oT) _ivoTete (1.19)
p'5*§s* p'5*§s* Z’\/p_—ﬁ*oigfs

However, from the identity (1.13) we can see that:

Voot =0%/p-o (1.20)
Thus,
. i02\/p-o¢ " 0 —io? D-o¢® 9
U(p)z(.2 L=l _ | =)
104/p-0¢ 10 0 —+/p- 0%
(1.21)

Similarly, v¥*(p) = —iy?u®(p), so (1.18) becomes:

CQS(x)Cil _ \/ﬁ/ 27T 32 Z,}/st s*( ) pr+l’}/2 sT S*(p)eipm)
= iy’ (x) =i(¢7°*)" (1.22)
CPr

The combination CP7 operator has a rather special property: it is guaranteed to be a
fundamental symmetry of nature, with only the basic assumptions of Lorentz invari-
ance, locality, and the spin-statistics relation.? A proof for the restricted case of the
Dirac field follows.

It’s summarized and shown in the Table 1.1 how scalars, pseudoscalars, vectors,
pseudovectors, and tensors are affected by the discrete symmetries:

The Lagrangian £ is a Lorentz scalar, and as we can see above, any contraction of
indices to form a Lorentz scalar must result in an eigenstate with a +1 CP7 eigenvalue.

°Note that the spin-statistics relation itself is implied from Lorentz invariance, positive energies,
positive norms, and causality.
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C P T CP CPT
Scalar +1 +1 +1 +1 +1
Pseudoscalar | +1 -1 -1 -1 +1
+1 +1 —1
- —1 —1 +1 -
Vector —1 1 1 41 —1
—1 -1 +1
—1 +1 —1
- +1 —1 +1 -
Pseudovector | +1 41 1 41 -1
+1 -1 +1
+1-1-1-1 —14141+1 1414141
Tensor _1 —1+1+1+1 +1-1-1-1 +1-1-1-1 +1
—1+1+1+1 +1-1-1-1 +1—-1—-1-1
—1+1+1+1 +1-1-1-1 +1—-1—-1-1
+1 —1 +1
Derivative - -1 +1 -1 -
Operator + —-1 +1 -1 -1
—1 +1 —1

Table 1.1: Summary of discrete symmetries for scalars, pseudoscalars, vectors, pseu-
dovectors and tensors.

1.1.2 CP

The CP transformation properties of the fermion field bilinears are listed in the col-
umn next to CPT". As we can see, if we restrict our attention to scalars, pseudoscalars,
vectors, and the derivative operator, a Lagrangian formed from only such quantities
must remain CP-invariant. Thus a massless spin 1/2 field with real coupling constants
cannot violate CP. This is in fact true for quantum fields of any spin. Charge conju-
gation ensures that the fields themselves transform to their Hermitian conjugates (we
have seen this above for the special case of spin 1/2). However, particle masses and
coupling constants do not transform under C'P (as complex numbers such as these are
only transformed by, of the discrete operators, 7, as previously seen). If any of these
quantities is not purely real, it will suffer a phase shift relative to the quantities that are
transformed by CP, thus potentially violating CP symmetry.

Such phase differences must be robust against gauge modifications in order to
manifest themselves as CP violation. If simple redefinitions of the phases of any of
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the fields can remove overall phases in each field coupling, the theory remains CP-
conserving. As will be shown in Section 1.4, if only two fermion generations are
present, such a redefinition always exists, hence the Kobayashi-Maskawa prediction
of a third generation. The effect of irreducible C'P-violating phases will be elucidated
in the following sections.

1.2 Mixing and Time Evolution of Neutral Mesons

The four pairs of conjugate neutral mesons that decay weakly, K°, D° B° and B,,
can each mix with their respective antiparticle via a pair of box diagrams:

(ol
Nl
ol

gl

Qul

S

2|
!

BY Wt wW- B0 B

S

Figure 1.3: Feynman diagrams mixing B° — B

The ability to mix implies that the flavor eigenstates may not be equivalent to the
mass eigenstates; the observed presence of mixing (into conjugate flavor-specific de-
cays) implies that the mass and flavor eigenstates are in fact different.

Lack of CP symmetry implies a third set of eigenstates, CP eigenstates, which can
differ from the mass and flavor eigenstates, as will be seen below.

1.2.1 Mixing of a “Generic” Neutral Meson

Consider a weakly-decaying neutral meson X° (which could be any of K°, D°, B° or
By). An arbitrary linear combination of the flavor eigenstates

al X% + g1X°) (1.23)
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mixes according to the time-dependent Schrédinger equation

ig(a):H(a> (mn—%mn m12—%i712)(0é) (1.24)
ot 5} 5} mo1 — %i%l Moo — %WQQ B

The m and ~ parts represent the mixing and decay parts, respectively, of the time
dependence. Each of the off-diagonal elements can be complex: the angle in the com-
plex plane of m, represents the phase of the mixing, and ~,, represents the (complex)
coupling to common decay modes of X° and X (for example, BO/F0 — J/YK? or

7t7~). We can see that CPT" invariance guarantees that m; = moy and 11 = oo,
and that mo; = mj, and yo; = =3, — the CPI'-conjugate pairs of equations are:

oo 1. 1,
Yo T (M1 — 51711)04 + (maz — 51712)6
0 1. I
Zﬁ_f = (ma1 — 51721)04 + (ma2 — 51722)6 (1.25)
and
0P L. S S
ZE = (mll — 5@’}/11)B + (m12 - 57}/12)&
ZE = (my — 51721)5 + (Mo — §Z’Y22)0‘ (1.26)

which must be equivalent. Thus, setting 11 and ma, to m and ~;; and ~,, to =y, we

have:
ZQ a | _ m — %W mia — %Z:”le a (1.27)
ot \ 8 My — 512 M~ 5l 5}

The mass eigenstates are the eigenvectors of the Hamiltonian:

1X1) = p|X°) +¢[X")
[ Xi) = p|X°) — q[X°) (1.28)

where | X ) and | X) are the lighter and heavier mass eigenstates,
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* 1 %
My — 51712

1 .
mi2 — 59712

q= (1.29)

and  |p]*+]q* = 1. (1.30)

The difference in the magnitude of ¢/p from 1 is reponsible for CP-violation that
is purely due to mixing — this will be discussed in section 1.3.2. The mass difference
Am = my — my, and decay width difference AI' =I'y; — I';, can also be obtained by
diagonalizing the “mixing matrix” shown in Equation 1.27. Let

a = ma|? — i\%ﬂza B = Re(miz7i,) (1.31)
then,
Am = /20 — 2\/a® = ? (1.32)
and
AT = 48/Am (1.33)

An initially pure | X°) state will, therefore, time evolve as a superposition of the
mass eigenstates | X', ) and | X ). Equation 1.29 may thus also be expressed as

Am — LAT
2(m12 - 52’712)

1.2.2 The Neutral K System

Mixing between the two neutral K weak eigenstates K° and K’ was first predicted
in 1955 by Gell-Mann and Pais [9]. The two physical states, |K;) = %(K0 + FO)
and |K,) = —5(K° - ), would thus be CP eigenstates with eigenvalues +1 and
—1. The dominant decay of neutral X mesons is 7+, due to helicity constraints
and the fact the 3-body phase space is strongly suppressed at these mass scales (due
to the well-known (Am)5 scaling rule). However, 7+ 7~ is itself a CP eigenstate with
eigenvalue +1. Thus, if CP were exactly conserved, only the | K1) physical state could
decay into it.

The limited phase space to decays other than =7~ forces the lifetime of the eigen-
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state with opposite CP K, to be far larger (3 orders of magnitude) than the lifetime of
the K, thus the nomenclature K and K? (for short and long lifetimes) is used. The
lifetime difference is very convenient since it allows for simple experimental separa-
tion of the two physical states.

In 1964, Fitch and Cronin made their discovery that K can in fact decay into
77~ with a branching fraction of 2 x 1073 (see the Introduction). Since CP is thus
not strictly conserved, the general formalism detailed in the previous subsection must
be used. Thus we have

|Ks) = p|K°) + ¢[K")
K1) = p|K°) — q[K") (1.35)

where p and ¢ are commonly parametrized as:

1 1-—
pm ¥ g loe (1.36)

SO R
The real part of ¢ is a measure of CP violation purely in mixing whereas the imaginary
part is a measure of CP violation in the interference between mixing and decay (see
the following section). The former is simplest to measure experimentally and was the
effect seen in the orginal 1964 discovery. Since, in the K system, AT is of the same
order as Am, these effects are of similar magnitude, quite unlike the neutral B system,
where the latter is far more prevalent.

1.2.3 The Neutral B System

In the case of neutral B mesons, in contrast with the neutral K system, the lifetime
difference AI' between the two mass eigenstates is small compared with the mixing
frequency due to the difference in masses Am. This difference in behavior of the K
and B is due to the larger mass of the B meson and thus far greater phase space for
flavor-specific decays in the B system, which dominate the partial width (in contrast
to the K system) and give equivalent contributions (by CPI" symmetry) to the width of
both neutral B eigenstates. The resulting lack of decay suppression of either eigenstate
implies nearly equivalent lifetimes.

Due to this simplification in formalism, the time evolution of neutral B mesons
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which are initially created (at time ¢ = 0) as pure flavor eigenstates can be written as:

|BYys(8)) = F+(O)|B%) + (a/p) /(1) B) (1.37)
| Bopys(D)) = f+(1)B%) + (a/p) f-(1)| B) (1.38)
where
fo(t) = e ™M T2 cos(Amt /2) (1.39)
fo(t) = e"™Me T2  sin(Amt /2) (1.40)

This approximation holds up to the condition that

AT < Am (1.41)

Since AT = O(10~3)Am in the B system, corrections to it are not considered in CP
asymmetry measurements with the current statistics (furthermore, BABAR will have the
capability of measuring AT as statistics of reconstructed B decays increase).

1.3 Three Types of CP Violation

Three types of CP violation can potentially be observed at B physics experiments:3
1) CP violation in decay (often referred to as direct CP violation): this occurs when
multiple amplitudes with different weak phases as well as different strong phases con-
tribute to a given final state, the result is visible as differing magnitude of the amplitude
to a decay versus its CP conjugate.

2) CP violation purely in mixing: this occurs when the mass eigenstates of a neutral
meson are different from the CP eigenstates.

3) CP violation in the interference between decays of mixed and unmixed mesons:
this occurs for decays which are common to a neutral meson and its antiparticle.

1.3.1 CP Violation in Decay (Direct CP Violation)

Direct CP violation manifests itself as a difference in the magnitude of the amplitude
to a given decay as compared with its CP conjugate, thus resulting in differing rates to

3There can be other manifestations of CP violation, eg. CP violation in interaction, however ob-
servable CP violation at B-factories can al be classifi ed into the 3 categories.
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the two elements of the CP conjugate pair. It can occur for both neutral and charged
decays.* Amplitudes from B° and B to a final state and its CP conjugate may be
written as

A =Y AGCH and A=y Y Ao (142)

where 7, is the CP eigenvalue (multiplied by a convention-dependent phase) if f is
a CP eigenstate, ¢ are the weak phases, and ¢§ are the strong phases. CP violation
can only occur when the different weak phase contributions also have different strong
phases (or else a simple rotation can remove the strong phase and thus the ratio would
clearly have unit magnitude). It can also only occur when weak phases are nontrivial,
i.e. when exists a relative phase between them (that is therefore irreducible by a ro-
tation of the Lagrangian). Only when both different weak phases and different strong
phases are present can one have the condition:

A/ A #1 (1.43)

This is CP violation in decay. CP violation in decay has been observed in the kaon
system and recently in the B system too. Since the strong phases that enter into mea-
surements of CP violation in decay involve hadronic uncertainties, the relation of such
measurements to CKM factors (see next section) cannot be calculated from first princi-
ples, but the strong phases may themselves be measured if the CKM factors are known
from other measurements. These strong phase measurements can then be used as in-
puts to other measurements which have equivalent strong phases (thus allowing the
extraction of other parameters), and thus measurements of CP violation in decay can
(indirectly) provide a useful handle on fundamental quantities.

1.3.2 CP Violation Purely in Mixing

From section 1.2.1, recall that the mass eigenstates of the neutral meson system are the
eigenvectors of the Hamiltonian

0
| X1) = plX°) +qlX7)

“4For charged decays, it is the only potential manifestation of CP violation.
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1 Xi) = p|X°) — ¢[X°) (1.44)

where
1 .
miy — 39712

1 .
M1z — 51712

q= (1.45)

If ¢ and p have different magnitudes, the CP conjugates of the mass eigenstates clearly
will differ from the mass eigenstates themselves by more than a trivial phase. Thus the
mass eigenstates will not be CP eigenstates and CP violation will be manifest. CP
violation from

la/p| # 1 (1.46)

is purely an effect of mixing and is independent of decay mode. Thus it may be referred
to as CP violation purely in mixing.

In neutral B decays, as discussed in section 1.2.2, this effect is expected to be very
small. Since

Am = O(10*)AT (1.47)

this implies that
[maa| > |12 (1.48)

and thus the factor in equation 1.34 simplifies to a near-phase. CP violation purely in
mixing should thus only enter the neutral B system at the 10~3 level. An asymmetry
in the measurements of the overall rate to flavor tagged B° vs. Bwould be a signature
of CP violation purely in mixing. With greater statistics, evidence for this may be
seen; at present, experimental limits exist. It has been clearly observed, however, in
the neutral kaon system (where it is the prevalent effect); the discovery of CP violation
in 1964 was a detection of C'P violation purely in mixing (see Section 1.2.2).

1.3.3 CP Violation in Interference Between Decays of Mixed and
Unmixed Mesons
Final states which may be reached from either B° or B’ decays can exhibit a third

type of CP violation, which results from the interference between the decays of mixed
and of unmixed neutral B mesons which both decay to the final state. Consider the
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CP-violating asymmetry in rates between B° and B" as a function of time:

seplt) = LBoe0) =+ 1) = DB t) = 1)
CcP F(thys<t) - B N

(1.49)

To calculate each of the time-dependent rates I'(¢), one can form the inner product
of equations 1.37 and 1.38 with the final state f and then take the magnitude squared
of the resulting amplitudes:

I'(B(t) — f) x
[(fIH|B ()2 = e Tt {(

|(f|H|B")|? (1.50a)

<

~2i6m gin(Amt)(f|H|B°)(f|H|B")*

q

p

3

J2ions Sin(Amt)<f\H!BO>*<f\H|EO>}

T(B(t) — f)
FIHB ) = e eos? (S00) (7B

2
+ sin? <_Amt> b
2 /g

|(fIH|B%)? (1.50b)
e 2 sin(Amt)( f|H|B%) (f|H|B")"

_|_

DN | .

QI RIS

2i0nr Sin(Amt)(f]H\BO)*<f\H|§0>}

IR

where 2¢,, is the phase of ¢/p. Since, as shown above, for the B system |¢/p| =~ 1,
we can thus write

(FIHIB (1)) = ne > |A[(fIH|B(1)) (1.51)

where ¢p is the phase of the decay, 7 is the CP eigenvalue of f, and
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\_ UIHIB)
p {fIH|B)

the expressions simplify greatly:

— |)\‘€*2i(¢>M+¢>D)’ (1.52)

(FIH|IBY)? = A% "1 — Ccos(Amt) — Ssin(Amt)} and (1.53)
(FIHIB'0)))> = A% {1+ Ccos(Amt) + Ssin(Amt)} (1.54)

where A% = |(f|H|B")|? and

1— |\ —2sin(2(¢nm + ¢p))
= d =
e TP

Thus the time-dependent asymmetry

(1.55)

acp(t) = L(Bys : i ~r ; (Amt) + Ssin(Amt)

L(Bphys (1)

(1.56)

In the absence of CP violation, S and C must both go to zero, since they occur
only when weak phases do not cancel. Cis only nonzero when the ratio of the ampli-
tude norms differs from unity, which is the signature of direct CP violation (detailed
in section 1.3.1). S, however, represents a distinct type of CP violation that can oc-
cur even in the absence of CP violation purely in decay or in mixing. It results from
the interference of the decays of mixed mesons with those of unmixed mesons; if the
mixing contains a phase that is not cancelled by the decay itself, this observable time-
dependent asymmetry above will result. Unlike CP violation in decay, no nontrivial
strong phases are required.

As will be seen in the next section, CP violation in interference between decays
of mixed and unmixed mesons is a large effect in the Standard Model picture of the
neutral B system. Since this is a measurement of an asymmetry rather than an absolute
rate, many experimental and model-dependent uncertainties (such as reconstruction
efficiency) that would otherwise contribute to experimental error, instead cancel out in
the ratio. Thus it provides an excellent mechanism for precision measurements of CP
violation and the study of the Standard Model picture of CPV.
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1.4 CP Violation in the Standard Model

CP violation within the context of the Standard Model SU(2) x U(1) electroweak
symmetry was introduced by Kobayashi and Maskawa in 1973 via the postulation of
a third family of quarks. This occurred a year prior to the discovery of charm; only
3 quarks existed at the time, so the prediction was quite prescient. The b-quark was
then first observed in 1977. The prediction of additional quarks did not occur entirely
without precedent, however. Theoretical interpretation of quark mixing via the weak
interaction has closely followed experimental result, and the development of the 3 x 3
CKM matrix and its CP violating phase was a steady and piecewise process.

1.4.1 Weak Interactions and the CKM Matrix

The observed suppression of flavor-changing neutral current decays indicates that the
quark sector is separated into families, similar to the lepton sector. However, lepton
flavor is conserved,® whereas quark generation is manifestly violated (e.g. in weak de-
cays of kaons). However, strangeness-changing decays have an additional suppression
compared with strangeness-conserving weak decays. This “Cabibbo factor” may be
accounted for by considering that, similar to neutral mesons, the quark mass eigen-
states differ from the weak eigenstates. Thus a mixing matrix describing transitions
between quark generations is necessary.

Such a matrix must be unitary since quark number is manifestly conserved.® With
2 generations, a unitary matrix can be described by a single parameter ©,.:

Arnass _ cos®, sinO, d (157)
Simass —sin®,. cos O, s

where d,,.ss and s,,qss are the mass eigenstates nearest to the flavor eigenstates d and
s respectively.

The same matrix (experimentally) holds for the (u,c) quark pair (although the
¢ quark was of course discovered afterwards in 1974, four years after its prediction
via the GIM mechanism that required charm to explain the absence of weak flavor-
changing neutral currents[10]). The Cabbibo angle ©. is thus a full description of
2-generation mixing.

SDiscounting, for the purposes of this document, recently discovered neutrino oscillations and thus
lepton mixing.
8in contrast with the number of neutral mesons
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More generally, we can write the charged-current coupling j.. with 2 generations
as

STTLGSS

t=(m 6)7“(1—75)(dma88)=(ﬂ E)W(l—y‘”’)%-(j) (1.58)

where V;j is the 2 x 2 Cabbibo matrix parametrized by ©. above. With an arbitrary
number of generations, the charged current (1 *) Lagrangian becomes:

9
V2
with u” representing the vector of up-type quarks and dZ representing the down-type
quarks. Applying the C'P operation to the Lagrangian, one obtains:

Ly = == {aly" Wyt Viyd? + diy" W, Vil (1.59)

] 7]

Ly = % {dfy" W, Vigul + abye W vial) (1.60)

which is exactly the same except for the complex conjugation of V. Thus, if we can
find a basis for which V' (as well as the quark masses) are real, then CP is a symmetry.

Unitary matrices of dimension N form a group, the Lie group SO(N). Elements of
SO(N) may be specified by N2 — 2NV + 1 real parameters. With 2 quark generations,
V is defined by a single real parameter, the Cabibbo angle ©.. However, with 3 quark
generations, 4 parameters are required. The real rotations may be taken to be the 3
Euler angles, but this leaves an extra parameter. The extra parameter is an irreducible
complex phase. If this phase is nonzero, one can no longer find a basis for which V' is
real. Thus CP would cease to be a symmetry, and indeed that is the case in nature.

1.4.2 Unitarity Conditions and the Unitarity Triangle

Unitarity of the CKM matrix V' requires that

VIV=vvi=1 = Y ViVi=> VyVi=0da (1.61)
J J

With a 3-generation CKM matrix
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Vud Vus Vub
V=| Vi Vi Va (1.62)
Vie Vis Vi

this results in 9 independent equations, 3 of which (for the diagonal of the product
unit matrix) equal one and 6 of which equal zero. The equations for the off-diagonal
elements, each containing a sum of 3 complex numbers which equals 0, will each
describe a triangle in the complex plane:

VeaVgg + VesVils + Va Vi, = 0 (1.63a)
VeaVia + VesVis + Va Vg = 0 (1.63b)
VuaVig + VausVis + Vi Vi = 0 (1.63c)
VisVua + ViVea + VigVia = 0 (1.63d)
VisVus + Vi Ves + VipVis = 0 (1.63¢)
ViVaa +ViVea + VigVia =0 (1.63f)

The differences between these 6 triangles are purely empirical. There is no theoreti-
cal motivation at present for the fact that 4 of them are nearly degenerate and only 2
describe triangles that have each of their sides being the same order of magnitude in
length — the 4 parameters that describe the CKM matrix are not predicted by the Stan-
dard Model and can only be determined experimentally. It is emprically the case that
only equations 1.63c and 1.63f above describe triangles which are not nearly degen-
erate. Of these, the last equation, 1.63f, is the one that is typically used to pictorially
represent the irreducible CP violating phase and is referred to as the Unitarity Triangle.

They exist many CKM parametrizations. The standard one uses 65, 023, 613 and a
phase d:3, called PDG [?] parameterization, given by

1013

C12C13 S12C13 S13€
_ is is
V= | —si9c93 — €12523513€"13 12023 — S12523513€"" $23C13 (1.64)
013

i is
S12893 — C12C23513€ —C12823 — $12C23813€"°'  (€23C13

with ¢;;=cosf;; and s;;=sind;; for quark families labelled with i,j=1,2,3. The empirical
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n B) »m'n ,pn*,...

B — vz, tvp,... _
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-

B (1,0) p

B - Jjy K, DV DY 'K 0K ...
Figure 1.4: Unitary triangle and main decays to measure the sides and the angles.

fact that 4 of the triangles are nearly degenerate allows for a convenient parametrization
of the CKM matrix via an expansion around the order parameter A = s15(= 0.2205 +
0.0018)7, sinus of Cabibbo’s angle and function of real parameters A, A and complex
parameter p+in :

1-— )‘72 A AN(p—in)
V= -\ -2 AN +O(M) (1.65)
AN (1 —p—in) —AN 1

with (A, A, p, n) as the 4 real parameters describing the CKM matrix, the latter 3 being
of order 1. This approximate parameterization, first proposed by Wolfenstein.

Unitary triangle obtained by (1.63f) can be rotated and scaled choosing a conven-
tional phase in a way that V; V., is real, and so aligning related side to real axis, and
dividing lenght of all sides for |V,;V_;| so lenght is normalized to 1. Obtained triangle
(show in figure 1.4) will have two fixed vertexes at (0,0) and at (1,0) and coordinates
of remaining vertex will depends by (p,n) corresponding to Wolfenstein’s parameters;
leghts of complex sides become:

Vuqud ‘/tb‘/td

=/ p? 2 R, =
VerVea PR TV

"Notethat this Cabibbo parameter A = sin O, differsfrom thetime-dependent asymmetry parameter
A detailed in Section 1.3.3.

R, =

—J(l—p2+n2.  (166)
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The three angles of out unitary triangle, denoted with «, 5 and ~, are:

a = arg [— “//tj“?i] , [=arg [— “/Z‘;f] , Y =arg [— “/}j“;ﬁb] . (1.67)
ud YV yb tb ca v ch

These quantities are physical and can be measured from CP asymmetries in B
decays. Consistency among different experimental values help in Standard Model
verification. Particularly, 5 angle yields, with a good approximation, Standard Model
phase between mixing amplitude of neutral B and their decay amplitude.

1.4.3 Measurement of CKM parameters

We show in the following lines the measurement of CKM parameters and fixing,
briefly, processes to evaluate them. More informations can be found in [11].

|Vua| @ analysis has been done using nuclear 3 decays:

|Vaual = 0.9738 4 0.0005. (1.68)

|Vus| @ they used semileptonic decays of kaons and hyperons:

|Vius| = 0.2200 4 0.0026. (1.69)

|Vea| : due to charm neutrino-antineutrino pairs production:

Voa| = 0.224 4 0.012. (1.70)

|Ves| : from ratio between hadronic decays of 1 and leptonic decays, measured by
LEP:
V.| = 0.996 4 0.013. (1.71)

|Ves| @ with exclusive semileptonic decays and inclusive charm B meson becays:

|Vis| = 0.0413 £ 0.0015. (1.72)

|Vus| : value has been obtained combining measurement with exclusive method (from
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B® — p~{*v, channel) with an inclusive method (from b — wf~7,):

V| = 0.00367 % 0.00047. (1.73)

| Vis| : with hypotesis on unity of triangle:

Vis| = 0.9470:31, (1.74)

All informations on absolute values of CKM elements evaluated both with direct
measurements and unitariety conditions can be summed up as:

0.9739 — 0.9751 0.221 —0.227  0.0029 — 0.0045
V| = 0.221 —0.227  0.9730 — 0.9744  0.039 — 0.044 (1.75)
0.0048 — 0.014  0.037 —0.043  0.9990 — 0.9992

All the values of CKM matrix parameters founded so far, of angles and sides of
unitary triangle, let us determinate an area in which we had to find the position of the
third vertex. In the figure 1.5 we can see a possible triangle, where we have the area
(dots on white field) in which it is possible to find vertex with a confidence level of
95%.

1.4.4 Penguin and tree processes

Direct CP violation depends both weak phases difference and strong phases differ-
ence. So, we need to distinguish which diagrams give a contribution to total amplitude
with different phases. In Standard Model meson decays, composed by a heavy quark
happen through charged interactions described by Lagrangian [12]. Generally, ampli-
tudes are divided in two classes, so called tree and penguin. If all complications due
to long distance strong interactions or final state interactions or hadron-hadron inter-
actions are negligible, this split is easily explained through weak diagrams. So called
penguin diagrams are ones with 17 boson is emitted and reabsorbed in the same line
of emitter quark (figure 1.6), while tree diagram, that havo no loop in weak diagram
(figura 1.7). Tree diagrams are further split in spectator (light quark is disconnected by
starting meson in the weak diagram), exchange (¥ boson is swapped between starting
meson quark) and annihilation (starting meson quarks are annihilated to make ).
This separation between different kinds of tree diagram is not important in CP
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Figure 1.5: Constraint from the text on the position of the apex, A, of the unitarity
triangle following from |V,,;|, B mixing, ¢ and sin 2/3. A possible unitarity triangle is

shown with A in the preferred region.
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Figure 1.6: Penguin diagram for b — sg* process.

5
gl

Figure 1.7: Tree diagram for b — uW ~ process.

violation cause two kinds of diagrams, that contribute to decay amplitude, have same
CKM matrix element and so the same weak phase. Different from tree diagram, in
b — g with ¢ = d, s process, penguin terms contribute with different combinations of
CKM elements depending by the quark within loop i = u, ¢, t:

Vig = VipVig- (1.76)

So weak phase differences in the asymmetry are the ones due to penguin and tree
contributions; it becomes important to know intensity and weak phases related to both
diagrams. In penguin diagram are considered strong interactions too. The quark in
the loop emits a gluon to compensate for mass difference between initial and final
quark. Gluon can produce a quark-antiquark pair o be reabsorbed and re-issued from
other gluons that can be found in this kind of process. When we evaluate direct CP
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asymmetry, strong phase differences are caused by penguin diagrams.

1.4.5 Measurement of angles of unitary triangle

The simplest way to see relationship between measurement of asymmetry a ;.. and an-
gles of unitary triangle o, 3 e y is due to decays dominated by only one amplitude with
particular final states, CP eigenstates. In this case, relationship that links asymmetry
with angles is simply. In B mesons system we have, in first approximation (neglecting
ATl'g):

(g) ~ M, _ (Vg Via)? _ VisVid _ Q2B
) Mol [VpVal?  VaVig

Combinations of CKM parameters can be seen directly from box diagram in figure

(1.77)

1.3: in Standard Model they are responsible of not-diagonal elements of mass matrix
defined on flavour eigenstates. Box diagrams, where mixing happens through « and ¢
quarks, are negligible for many cases.

To avoid hadronic uncertainties, we need to choose decay modes dominated by
only one diagram. Most of channels, instead, has contributions both penguin and tree
diagrams. There are three cases in which CP violation is caused by phase: tree dia-
grams dominate penguin ones because they are forbidden; tree diagrams are forbidden
and so penguin diagrams dominate; both diagrams have same weak phase.

Dominant tree diagrams

Tree diagrams are dominant when CKM parameters of penguin diagrams are not
greater than tree ones, or when this condition is verified:

Vi Via
— W< 1.78

An example of dominating tree diagram is B — 7 decay that corresponds to b — uwd
where CKM parameters of this penguin and tree process are in the order of \3. So, tree
diagram results dominant in a good approximation. In this case, we measure « angle
and from (1.77) we obtain

V44 ViVia VeV
o p AT ViV ViV

= e2ia (1.79)
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that corresponds to first equation of (1.67). Hadronic uncertainties rise from penguin
diagrams contribution, estimated about 10% and it can be reduced.

Forbidden tree diagrams

In the Standard Model they expect flavour changing decays but not decaying quark
charge: in this case tree diagrams are forbidden. An example of these decays is B —
¢oKsorb — sssat quark level. Because we have a K meson we had to consider kaons
mixing too that involves an addition of a factor

Ves Vi
(g) ~ o5 Ved (1.80)
p K V* ‘/cd

cSs

to A\ expression that becomes:

S \p)p \ ) AT ViV ViVea Vi Vis

Diagram with only one weak phase

B — ¢ Kg decay, b — ccs, is representative in the case which a single weak phase
dominates. Neglecting corrections in the order of \* we have V;;V;, = —V,, V%, where
first CKM elements combination is related to penguin diagram while second one is
related to tree diagram. In this way, with a good approximation, we can assume same

phase for both diagrams.

YT ) s \p) e AT VAV ViV ViVes

Hadronic uncertainties are estimated about 1073,

1.5 Rare B meson decays

All B meson decays that not happen through b — ¢ reaction are known as rare B
decays. Due to little value of |V,;|, b — u are suppressed, so, we expect observable
contributions from other diagrams for some hadronic decay channel.

There are many processes that contribute to rare B decays. B mesons can decay
with or without strangeness change. (JAS| = 1 or 0). Rare decays with |[AS| =
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1 produce, in their final state, strange mesons (K or K*), and they happen through
a process with a Cabibbo-suppressed spectator quark b — wuus and a gluonic loop
(penguin) b — sg*. In these decays penguin diagrams are dominant. In these diagrams
the favourite side from CKM matrix, that corresponds to b — s transition, should be
rare decays amplitude in final states with one or three s quarks.

Viceversa, for decays with |[AS| = 0, we expect a dominant Cabibbo-favoured
spectator quark process b — wud, because b — dg* is suppressed by V4, but it
shouldn’t be negligible for decays in final states without s or ¢ quarks. A signifi-
cant contribution of b — dg* would mean presence of so called penguin pollution. We
can note loop diagram is more significative for B meson decays rather than D decays
because b — s loop is sensitive for strong coupling of ¢ quark through V;;, and Vg,
while corresponding ¢ — w« loop contributions are suppressed cause of weak V., and
V. coupling and due to small s and d masses [13].

1.6 Formalism for BB coherent states

B°and B° mesons produced by T'(4S) decay can be found in a coherent quantum state
with L = 1 (p wave). In this state two particle form one system that can be considered
as one B meson evolving in time with two mesons propagating in the space with the
same phase between them. This means that for every time the state is composed exactly
by B and B” . When one of two particles decays, we will be able to have events with
B° and B’ whose decay probabilities are controlled by time difference of two decays.
Two mesons produced in Y (4S) decay are identified with ¢ angle that form with
electron beam in T frame. Coherent state is described by antisymmetric function:

S(Tla 7—2) = %{thys(Tlv 07 gb)Eghys(TQv ™= 07 ¢ + 7T)
_Eghys(Tla 07 gb)B](y]hys(TQ? ™= 07 ¢ + 0)} Sln<0) (183)
and replacing 1.37 and 1.38, we can write as
S(m,m) = %e*(r/”im)(“+72){cos[AmB(7'1 — 7'2)/2](3??2 — E?Bg)
—isin[Amp(r — 72)/2)(EBYBY — 9B\ By)}sin(6;).  (1.84)
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where 7, is B; own time, which we identify with B meson decaying forward (0, <
7/2), and 7y is By own time moving in the opposite direction. Cause in Y frame two
B mesons have same but opposite momenta, we can consider, until one of two meson
will decay, 7, = 7, and in this case the equation (1.84) contains B° and B’. When one
of the two particles decays, its own timer stops, so proportional terms sin[Amg (7 —
7o) /2] assume importance.

From equation (1.84) it’s possible the following result: decays amplitude in which
one of two mesons decays in a final state f; at ¢; time while the other one decays in a
state f5 at ¢, time is obtained in this way

A(tl, t2) =1 6_(F/2+im)(t1+t2)<<t1, tg){cos[AmB (tl — tQ)/Q](Ale — ZlAz)
—1 sin[AmB (tl — t2)/2](§A1A2 — ]%XlXQ)} sin(ﬁl), (185)

S

where A; means B° decay amplitude in a f; state, A, is B’ decay amplitude in the
same state f;.

A particular B decay state that allows us to identify such flavour meson (tagging
decays) has one of two amplitudes A, or A, equal to zero. In the equation (1.85) we
introduce following brief notation to mantain same signs with (1.84)

+1 =71, ta =1

t, b)) =
C(l 2) {—1 tlzTQ,tQITl
but this factor vanishes in decay rate calculation.

We can evaluate production rate of combined states f; and f, that results time
dependent:

R(t1,ts) = Ne "+ {(|A1? + [Ai*) (| Ao]? + [As[*) — 4Re(2ATA1)Re(2A545)
— cos(Amp(ty — £2))[(|A1]> — [A1[?)(| Aal® — [Aa]?) + 4Im(LATA ) Im(L A3 7))
+2sin(Amp(t — 12)) IM(LATA) (| Agf? — [A2]) — (A = [Ay[2)Im(2A34,)]}
(1.86)
In this formula, it was estimated an integral on all possible directions of both B
mesons so we could delete angular dependence and showing a normalization factor .
We used also this approximation |¢/p| = 1.
To measure C'P asymmetry we seek for events in which a B (B¢p) decays ina CP
eigenstate fcp at ¢y, time, while other meson (B,,) decays in a way that allows us to
identify its flavour, so called tagging mode, at ¢.,, time. For example, it’s possible to
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consider a way to tag with A, = 0, Ay = Ay,,. This identifies B meson decaying in
a CP eigenstate as a B at t; = t,, time in with the tagging decays. Furthermore we
had to underline how this it is true when tagging decay happens afterwards the decay
in CP eigenstate. In this case, Bcp, for every time ¢, < t,,, is described by a state
evolving in a way to be tagged as B® at t; = 1., time. So, the expression with two
times it is reduced to

Rtrag, tyep) = Ne Thestton) [ A 2| Ay {1+ [Agep
_'_COS[AmB(thP - ttag)]<1 - ‘)\fCP|2)
—2 Sin[AmB (tfcp - ttag)]lmO‘fcp)} (1-87)

with Ay, defined in 1.52.

If final tagging state has A, = 0, Ay = Ay, that identifies Bep as a B’ at tiag time,
usually it is used an expression similar to equation (1.87) where signs of cosinus and
sinus terms are opposite. Hypotesis |q/p| = 1 guarantees us amplitudes for opposite
tags are same. With these rates, we can evaluate time dependent CP asymmetry that
results to be equal to expression 1.56, where ¢t = ¢, — tiag-

Expression (1.87) is function of two temporal variables ¢,, and ¢, representing
respectively passed time from BB’ pair creation for Bep and Bi,,. This requires
reconstruction of pair creation time but it’s pratically impossible to realize it. So to
solve this problem, we replace variables

{ttag7 thP} - {5 = trag T Lfep, At = Ufep — ttag}
with these new ones, assuming values:

—00 < At < +00

1.88
|At] < s < +00 (1.88)

Integrating on s, we obtain relationship between decay rate and Bep — fop to At:
R(At) o< e U121 4+ Ssin(AmpAt) T C cos(AmpAt)] (1.89)

where C'and S are defined, respectively, in 1.55 and signum + (—) refers to By,, When
we have B° (EO). Necessity of the At measurement is main cause of contruction of
asymmetric collider (please see Chapter 2 for more details).
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1.7 Latest results on CP violation measurements

BABAR has already published the results on the measurement of time-dependent CP-
violating asymmetries in the neutral B mesons decays. The results was obtained using
analyzed data corresponding to 232 millions BB pairs acquired in the period 1999-
2004. The selected events are the ones with a neutral B completely reconstructed in
a charmonium final state, while the flavour of the other B is determined through de-
cay products. Asymmetry amplitude, proportional to sin2/3 in the considered decays,
comes from lifetime distributions of these events. The result obtained is:

sin 23 = 0.722 £ 0.04044¢ £ 0.02345¢
It has been also determined |\| value:
|A] = 0.950 = 0.03144¢ &= 0.013,,;

consistent with the absence of direct CP violation, according with the Standard Model
results for these decay modes. Furthermore BABAR for the first time has measured the
direct CP asymmetry in the decay B° — K7~ [43] with the following result:

Agr = —0.133 £ 0.030540¢ = 0.009y5

Also Belle collaboration at KEKB (Tsukuba, Japan) has published measurements on
CP violation, obtained with a statystics of 152 millions B pairs:

sin283 = 0.728 £ 0.056 54 £ 0.023,

|A| == 1007 j: 0~04]-stat j: 0.0335y5t

The results founded by BABAR and Belle are in a good agreement with the Standard
Model prediction.



Chapter 2

The BaBar Detector

2.1 Overview — B-Factories

Exploring CP violation in the B system and its potential impact on the Standard
Model, baryogenesis, and cosmology, requires copious production of B mesons, accu-
rate measurement of the B flight time and flavor, and reasonably low background for
reconstruction. There are several potential options for experiments which can fulfill
these criteria:

1. Hadron colliders (1(9;_9)): The cross section for BB production at TeV hadron col-

liders is very high compared with e*e~ B factories, approximately 100 b vs.
1.2 nb. This large advantage does compete with several disadvantages, however.
Hadronic collisions have far more background, making reconstruction of final
states which do not contain a J/i) very challenging. Purely hadronic final states
with non-negligible background in e*e~ colliders at the Y (4S), such as DD or
77%, may be extremely difficult at a hadronic collider and it is not clear that it
will be possible to reconstruct such decays. Nevertheless, these experiments do
have a statistical advantage and also have the potential for observing CP viola-
tion in the B, system, which is beyond the reach of Y (4S) experiments. LHC-b
at CERN is a new experiment currently under construction.

2. Fixed target proton beam experiments: Fixed-target experiments also offer the
potential of a higher rate of B production, but have even greater levels of back-
grounds, superimposed interactions, and boost which compresses all tracks in a
small solid angle. A significant effort was undertaken at DESY to build such an

31
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experiment, HERA-B.

. ete™ colliders at the Z-pole: The Z-pole presents a relatively clean environment

for B-physics with a relatively large cross section (~ 6 nb). However, the lu-
minosities achieved at this energy are low, the only two colliders in the world
which can reach it, LEP and SLD, are both dismantled, and the cost of building
new experiments at this energy prevents this from being a viable option.

. Symmetric and asymmetric e*e~ B-factories: The T (4S) resonance provides a

very clean environment for B reconstruction. Asymmetric et and e~ beams
provide a boost to the B meson pair that is produced, allowing for reconstruc-
tion of B flavor as a function of flight time through the separation of the B
vertices in the lab frame, Az . Statistical limitations, of which luminosity is the
critical factor, are the dominant source of error for time-dependent C'P asymme-
tries. Two asymmetric B-factories have been built and are currently producing
physics: PEP-11/BABAR and KEK-B/Belle. Previously, the symmetric B-factory
CLEO (at the CESR ring at Cornell) was able to produce precision B physics re-
sults, however the symmetric design precluded measurement of time-dependent
CP-violating asymmetries.

Figures 2.2 and 2.3 show the BABAR and Belle detectors. The experiments are very

similar, with the following important differences: the KEK B factory has a nonzero

beam crossing angle (4.2 mr) at the interaction point (IP), whereas the PEP-11/BABAR
B factory has a more traditional collinear IP. The KEK design potentially allows a
greater number of beam bunches to be stored in the ring, due to absence of parasitic
crossings at + 1m, as are present in the PEP-11 design. However KEK-B is a highly
non-traditional design; concerns over higher-order mode resonances at the IP led the
PEP-IlI B factory to use a collinear crossing. So far, both KEK-B and PEP-1I have
performed well. At the time of writing, PEP-II has integrated 254.6 fo~'and KEK-B
has integrated 443.2 fb~!.



"U01193s [euIpnBuO] 1010313p YvaYS T°Z 21nbi4

\
0

BABAR Coordinate System

Cryogenic
Chimney

Cherenkov
Detector
(DIRC)

Scale

ylé/
X
V4

4m

~114

—~1015

Detector G

P
|

1749
4050

Instrumented
Flux Return (IFR))

Ba

1149 —

— =370

)

rrel )
Superconducting

Coil
/ Electromagnetic
Calorimeter (EMC)

Drift Chamber
(DCH)

Silicon Vertex
Tracker (SVT)

IFR
Magnetic Shield 12¢25 Endcap
for DIRC Forward
/ End Plug 20%°
Bucking Coill g
1375
Support J
Tube 810‘
Ly ot
3500
3-2001

8583A50



34 The BaBar Detector

-2

Figure 2.2: BABAR detector cutout diagram.
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Figure 2.3: Belle detector cutout diagram.
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2.1 Overview — B-Factories

The HERA-B Experiment
at DESY

Side View
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Figure 2.4: Diagrams of: (top) the HERA-B detector (at DESY, first beam in 2000)
and (bottom) the LHC-b detector (CERN, to be completed in 2007).
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Figure 2.5: The PEP-II asymmetric storage ring and the SLAC linear accelerator. The
SLAC linac is the injector for PEP-II. The single interaction point of PEP-II is at
Interaction Region 2, where BABARis situated.

The particle identification method also differs between BABAR and Belle: as will
be described in Section 2.6, BABAR uses quartz bars to internally reflect Cerenkov light
to a backward-mounted detector (the DIRC), whereas Belle uses an aerogel Cerenkov
detector. In addition, BABAR has a 5-layer silicon vertex detector (SVT, see section
2.3) that can do standalone tracking (important for D D), whereas Belle uses a 3-layer
silicon vertex detector.

Figure 2.4 shows the design of the HERA-B and LHC-b experiments. Each of
these experiments uses hadron beams, with, in the case of HERA-B, a fixed (tungsten
wire) target in the beam halo, and, for LHC-b, colliding proton beams. Hadrons do
present a challenging (but potentially very rewarding) environment for B physics.

2.2 The PEP-11 Asymmetric Collider

The design of PEP-II is shown in figure 2.5. The 9 GeV electrons and 3.1 GeV
positrons are injected from the SLAC linac via bypass lines in the linac gallery. The
beam parameters are listed in Table 1. PEP-II has surpassed design goals both in in-
stantaneous and in average integrated luminosity.
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Figure 2.6: PEP-II -BABAR integrated lum

inosity since startup.

Parameters Design Typica
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.21/2.04
# of bunches 1658 889
Bunch spacing (ns) 4.2 4.2-8.4
oLz (pm) 110 110
oLy (pm) 33 41
or, (Mmm) 9 9
Luminosity (1033 cm =257 1) 3 89
Luminosity (pb~'/d) 135 423

Table 2.1: PEP-II beam parameters. Values are given for the design and for colliding
beam operation at time of writing. HER and LER refer to the high energy e~ and low
energy e ring, respectively. o, o1, and oy, refer to the R.M.S. horizontal, vertical,

and longitudinal bunch size at the IP.
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Most of the data is taken at the Y (4S) resonance (10.58 GeV), however approxi-
mately 12% are taken at 40 MeV below the resonance to allow studies of non-resonant
background in data. A plot of PEP-II integrated luminosity as a function of time is in
figure 2.6.

2.3 Overview of Experimental Technique at the T(4.5)

Fully
Reconstructed B

(Flavor
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CP modes such
as J/(,UK§, JIYK,,
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B-Flavor Tagging
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Figure 2.7: Experimental reconstruction technique used for measuring time-dependent
CP-violating asymmetries at an T (4S) asymmetric collider. A coherent BB pair is
produced from the Y'(4S) decay, which allows determination of reconstructed neutral
B flavor as a function of decay time.

In order to measure time-dependent C'P-violating asymmetries at the Y (4S), one must
(of course) first reconstruct a neutral B decay mode that can exhibit CP violation, such
as B® — DD or B® — Jjy K2, However, that is merely the first step. After signal
event reconstruction, the additional tracks in the event (which correspond to the decay
products of the other B [the “tag side B”]) must be used to determine whether the
other B in the event was a B or EO, due to the fact that the CP asymmetry is opposite
for B® and B’ (see equations 1.53 and 1.54).

After both the event reconstruction and the flavor tagging are completed, the difference
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Figure 2.8: Technique used for tagging the flavor of the opposite-side B. Lepton and
kaon charge is correlated with the flavor of the B. For events with no obvious lepton
or kaon, a neural net is used to attempt to extract the flavor.

in vertex z-position® between the reconstructed B vertex and the tag side B vertex
must be determined. This difference, Az, is (very nearly) proportional to the decay
time difference At between the two B decays. At is the time measurement over which
the C'P-violating asymmetry can occur, and is input (as ¢) in equations 1.53 and 1.54.
Figure 2.7 gives an overview of this reconstruction method.

Figure 2.8 briefly describes the technique used for flavor tagging. The sign of
charged leptons and kaons in the event (which are not part of the reconstructed B)
is correlated with the flavor of the tag side B. A cut-based selector using BABAR’s
electron, muon, and kaon identification capabilities is used to select signal events with
a lepton or kaon on the tag side, and from this determine the flavor of the tag side
B. For events which are not cleanly tagged by the cut-based selector, a neural net
algorithm is used to extract the flavor of the tag side B. The neural net uses information
including slow pion charge, jettiness of the tag side tracks, and recovery of leptons and
kaons which are not cleanly identified in order to reconstruct the tag side flavor. The
overall efficiency of tagging is 74.0% and the fraction of tagged events which are given
an incorrect tag is 16.8%. The error on time-dependent asymmetries is proportional to
Q = ¢(1 —2w)? where € is the efficiency and w is the wrong-tag fraction. This quality

1The z-axisin BABAR s along the direction of the beam line, with electrons (and the center-of-mass
boost) pointing toward +z in the lab frame.
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Figure 2.9: At measurement and resolution function. The difference in reconstructed

z-position of the tag and reconstructed B decay vertices is used to determine the time
difference At.

factor ) is 29.7% for BABAR’s tagging algorithm.

Figure 2.9 briefly describes the At measurement and resolution function. A clus-
tering algorithm is used to determine the vertex position for the tag side B decay; the
error on this position dominates the resolution. CP violation evinces itself as a differ-
ence in At distribution depending on whether the flavor tag is B° or B, but this decay
time distribution is convoluted by the error of At. Fully reconstructed B events which
have definite flavor (such as B°— D**x~ or D**p~) are used to determine both the
mistag fractions and the parameters of the resolution function (which is modelled as a
triple gaussian) in data (for more details please see Section 7.4.2).
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Figure 2.10: Fully assembled SVT. The sil-
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as is the carbon-fiber space frame (black
structure) that surrounds the silicon.

Figure 2.11: Transverse section of the SVT.

2.4 The Silicon Vertex Tracker (SVT)

The SVT contains 5 layers of silicon, double sided with conductive strip sensors. Strips
on the opposite sides of each layer are orthogonal: ¢ strips run parallel to the beam
axis and z strips run transverse to the beam direction.
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Figure 2.12: Longitudinal section of the SVT.
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Together, the SVT and the central tracking drift chamber (DCH) form the charged
particle tracking system (see also the following 2 sections). Precise and efficient mea-
surement of track 4-momentum is necessary for full reconstruction of B meson decays,
which tend to have multiple charged decay products. In addition, good vertex (and
Az ) resolution and accurate extrapolation to the outer subdetectors is essential for re-
construction and background subtraction. Thus, accurate charged particle tracking and
vertexing is required.

The 5 layers and relatively long radial separation between SVT detector layers pro-
vide both standalone track pattern recognition and refinement of drift chamber tracks
via addition of SVT hits. The necessity of precise measurements close to the inter-
action point for Az measurement and for background rejection using vertex quality,
and for efficient reconstruction of low momentum tracks (such as slow pions from
D*decays), drive the requirements for the SVT.

The SVT silicon is composed of n-type substrate with p™ and n™ strips on opposite
sides. The bias voltage ranges from 25-35 V. The layers of the SVT are divided radially
into modules, shown as line segments in Figure 2.11. The modules in the inner 3 layers
are straight along the z-axis, while those in layers 4 and 5 are arch-shaped, as shown
in Figure 2.12. The arch design was selected to minimize the amount of silicon as well
as increase the angle of incidence of tracks originating at the IP which cross the arch
“lampshades” near the edges of acceptance. The total active silicon area is 0.96 m2.

The strip pitch (width) varies from 50 to 210 ym depending on the layer (inner
layers are more closely bonded). The strips are AC-coupled to the electronic readout.
Only approximately half the strips are read out; most have an unconnected “floating
strip” between each pair of active strips (to reduce cost of readout electronics without
adversely impacting performance). Digitization is performed by an ATOM (“A Time-
Over-Threshold Machine”) chip at the end of each set of 128 strips, which amplifies,
digitizes, and buffers the signal from each channel. The ATOM chip compares the
charge accumulated on each strip with an (adjustible) threshold of 0.95 fC, and records
the time in clock intervals (30 MHz for the SVT) for which each strip is over threshold.
This information is then delivered to a computer farm for further processing upon an
accept signal from the Level 1 Trigger (see section 2.9).

A variety of monitoring checks and calibrations must be performed on the SVT
to maintain data quality. Perhaps the most important of these from an avoidance-of-
equipment-damage perspective is radiation protection. Currently, twelve silicon PIN
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diodes surround the support cones and monitor both instantaneous radiation and accu-
mulated dose. The beam is automatically aborted if radiation levels are above 1 Rad/ms
threshold. So far, the SVT is well below the operational limit of 4 MRad integrated
dose. The silicon PIN diodes have a temperature-dependent leakage current that in-
creases with absorbed radiation dose. Due to absorbed doses of over 2 MRad in some
diodes, the leakage current in these diodes is much higher than the current induced
by the radiation. The temperature is monitored very precisely but it is a challenge to
correct for the temperature dependence of the leakage current, and the annealing and
reverse-annealing effects due to radiation damage. During the 2005 summer shutdown
it will be installed a system of diamond sensors inside the SVT. Diamond sensors
grown by chemical vapor deposition (CVD) have no significant leakage current and
are much more radiation hard than silicon PIN diodes. With a bias voltage of 500V
applied across a 500-um-thick polycrystalline CVD diamond sensor, the size of the
signal due to a minimum-ionizing particle is more than 50% of that for a signal from
a 300-pm-thick silicon sensor. The existing twelve silicon PIN diodes are mounted on
the outside of support rings at the small end of each of the SVT support cones. We
are assuming that the SVT will not be disassembled for replacement of SVT modules
in the summer of 2005 and hence we will not have access to the existing PIN-diode
sensors. However, we are assuming that the SVT will be removed from the beam-pipe
so that we have access to the inside of the support cones for installation of diamond
sensors. The diamond sensors will then augment (rather than replace) the existing
silicon PIN-diode radiation sensors. For data quality calibration, channel gains and
noise must be individually calibrated, and these are done online via an integrated pulse
generator and calibration electronics. The offline reconstruction has the responsibility
for calibration of the alignment of each SVT module. Alignment is critical for accu-
racy of vertexing and of tracking reconstruction, and is done in two steps. The local
SVT alignment uses dimuon and cosmic ray events to calibrate the relative position of
each of the 340 wafers. The global alignment then determines the overall position and
rotation of the SVT with respect to the DCH.

The SVT has performed according to design essentially since its inception. A
combined hardware and software hit-finding efficiency greater than 95% is observed,
excluding the 4 (out of 208) readout sections which are defective. Single hit resolution
for tracks originating from the IP averages 20 um in both z and ¢ for hits on the inner
3 layers and 40 um in z and 20 in ¢ for hits in the outer 2 layers. Before the summer
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2002 shutdown there were 9 readout sections out of 208 that were not used in the DAQ.
During the shutdown it was recabled the SVT and there was the possibilty to inspect
closely all the modules with problems. This allowed us to fix 5 of the 9 problems and
the last 4 sections do not have significantly impact on performances.

2.5 The Drift Chamber (DCH)

The DCH contains 40 layers of gold-coated tungsten-rhenium sense wires and gold-
coated aluminium field wires in a mixture of 80% helium and 20% isobutane gas.
There are a total of 7,104 sense wires and 21,664 field wires, with one wire per elec-
tronics channel. Wires are each tensioned (30 grams for sense wires, 155 grams for
field wires) and pass through the aluminium endplates via feedthroughs made from
Celenex insulating plastic around a copper wire jacket. The layers are grouped by four
into 10 superlayers, with the wires in each superlayer oriented as either axial (directly
parallel to the z-axis) or “stereo” (at a small angle in ¢ with respect to the z-axis, in
order to obtain longitudinal position information). 6 of the 10 superlayers are stereo,
and the other 4 are axial.> The DCH is asymmetric in z about the interaction point,
as shown in Figure 2.15, to accommodate the forward boost of the center of mass of
physics events.

2The arrangement is, from inner to outer, AUVAUVAUVA (A = axial, U = u stereo (+¢), V = v
stereo (—9)).
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Figure 2.14: DCH installation (August 1998).
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Figure 2.17: DCH cell drift isochrones for

Figure 2.16: DCH cell pattern (for a sec-  cells in layers 3 and 4 (axial). Isochrones
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Figure 2.18: Partial view of drift chamber front-end electronics.

The endplates are 24mm thick aluminium, except for the outer 33.1 cm of the for-
ward endplate, which is reduced to 12 cm to minimize the amount of material in front
of the forward calorimeter endcap. The inner cylinder is fabricated from beryllium (to
minimize the multiple scattering for the section of inner cylinder within the tracking
fiducial volume) and aluminium (for the rest). The outer cylinder is 1.6 mm carbon
fiber on 6 mm thick honeycomb Nomex core. The total thickness of the DCH is 1.08%
Xo.

The cells are arranged in a hexagonal pattern, each with a sense wire at the center
and field wires at the corners, as shown in figure 2.16. Cells on a superlayer bound-
ary have a slightly different arrangement, with two guard wires taking the place of a
single field wire. The nominal operating voltage is 1930 V. Isochrones and drift paths,
calculated using the GARFIELD simulation, are shown in figure 2.17.

The DCH electronics are designed to provide accurate measurements of signal
time and integrated charge (as well as providing information to the Level 1 Trigger,
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see Section 2.9). Service boards plug directly onto the wire feedthroughs on the rear
endplate. These boards distribute the high voltages as well as pass signal and ground
to the front-end electronics assemblies. The front-end assemblies (FEAS) plug into the
service boards and amplify, digitize, and buffer (for 12.9 ps) the signals. A view of
the front-end electronics including (enclosed) front-end assemblies and service boards
below can be seen in figure 2.18. The digital data is sent, upon receipt of a level 1
trigger accept signal, via 59.5 MHz serial link to a data 1/0O module which transmits
the signal to the external electronics via fiber-optic cable. Extraction of hit time and in-
tegrated charge from the digital waveform takes place in the readout modules (ROMs)
in external electronics.

Online calibrations of channel gain and threshold are performed daily via internal
pulse generation. The data are monitored online to check for FEA or other electronics
failure or for miscalibrated output. Monitoring and control of high voltage, radiation
protection (using silicon PIN diodes similar to the SVT, as well as RadFETSs for inte-
grated dose measurement), the gas system, and temperature are performed, similar to
other subsystems, via a slow control system based on EPICS.

Offline calibrations of the time-to-distance relation within cells, as well as of the
deposited charge used for particle identification via dE/dz measurement, are per-
formed. The time-to-distance relation is determined from two-prong events (Bhabha
scattering events and dimuons) and is fit to a sixth-order Chebychev polynomial for
each cell layer, with separate fits to right and left sides of wires (to account for £ x B
asymmetries). A correction for time-to-distance variations as a function of track en-
trance angle to the cell is detemined via simulation (not calibration) and added to the
calibrated entrance-angle-averaged relation. The energy loss per unit length of tracks,
dFE/dx, contains particle type information due to the dependence of dFE/dz on par-
ticle velocity (Bethe-Bloch relation), and is derived from measurements of integrated
charge deposited in each cell along the track path. An overall multiplicative correc-
tion to the charge measurements due to gas pressure and temperature variations is
performed once per run; additional calibrations due to variations with track entrance
angle in ¢ and in 6 are performed only when high-voltage settings are changed.

The design goal for the average drift distance resolution was 140 um. An average
resolution of 110 um is achieved. The drift distance resolution as a function of drift
distance can be seen from the offline monitoring plot shown in figure 2.19 (left side).
Particle identification using the drift chamber provides significant information up to
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high momenta, as can be seen in figure 2.19 (right side).
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Figure 2.19: DCH drift distance resolution as a function of the drift distance in the cell
(left); DCH particle identification as a function of momentum using d£'/dx (right).
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Figure 2.21: Trigger L1 scheme.

Cell-by-cell channel efficiency is also monitored; typical efficiency is 90-95%, as may
be seen in figure 2.20 (including a small region damaged from a high-voltage accident
early in the commissioning phase, this can be seen towards the lower right of the figure
as a higher concentration of points).

2.6 The Trigger and the Tracks Reconstruction

The BABAR trigger needs to provide high efficiency that is well-understood and stable
for physics events. Since the events which pass the trigger must be fully reconstructed
in the offline event reconstruction, the output rate must be no higher than 120 Hz to
satisfy computing limitations of the offline processing farm. Since events with either a
DCH track or a > 100 MeV EMC cluster occur at 20 kHz, the trigger is responsible for
scaling this rate down by a factor of > 150 while accepting over 99% of B events, over
95% of hadronic continuum, and over 90% of 77~ events. It also must be flexible
enough to deal with changing background conditions, as this can happen at any given
time at BABAR, without impact on physics or increase in online dead time (which must
be < 1%). The BABAR trigger is implemented in two levels, a Level 1 hardware trigger
(called L1), and a Level 3 software trigger (called L3); a Level 2 trigger is used in
some other high energy particle physics experiments, but was not needed for BABAR.
The Level 1 trigger consists of four subsystems: the Drift Chamber Trigger (DCT)
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a trigger for charged particles, the Calorimeter Trigger (EMT) for neutral particles, an
IFR Trigger used for calibration and works as cosmic trigger (IFT), and global elec-
tronics for producing the final L1 accept signal (GLT stands for Global Level Trigger).
The DCT and EMT receive information from the Drift Chamber and Calorimeter de-
tectors, respectively, process it, and send condensed data to the Global Trigger. The
GLT attempts to match the angular locations of calorimeter towers and drift chamber
tracks, and flexibly generates Level 1 triggers and sends them on to the Fast Control
and Timing system (FCTS), based on the results of the processing. The GLT also
uses the IFT information to independently trigger on cosmic ray and mu-pair events.
The Level 1 trigger has been upgraded since 2004 with a new DCT system which
performs 3D tracking using stereo wire information from the Drift-Chamber to obtain
~ 4cm resolution in track Z (along beamline) coordinates of tracks to imporve back-
ground rejection. The Level 1 trigger rates are typically 2.5 Khz at a luminosity of of
L = 8x10%em~2s~L. The various stages of the L1 system operate at 4Mhz to 15MHz
intervals with a total L1 trigger latency of ~ 11 microseconds.

The Level 3 then analyzes the event data from the Drift-Chamber and Calorimeter
sub-systems in conjunction with the L1 trigger information to further reduce back-
ground events. Besides the physics filters. L3 trigger also performs Bhabha veto, se-
lection of various calibration events and critical general online monitoring tasks. The
L3 operates on an online farm which consists of 28 Dell 1650 (dual Pentium-I11 1.4
GHz) computers with fast algorithms processing at ~ 4ms per event. The L1 triggers
are reduced by typically a factor of ~ 10 after the L3 filtering, before logging to the
data storage system

The DCT is further subdivided azimuthally into Track Segment Finders (TSF), a
binary link tracker for producing tracks from the segments (BLT), and a p; discrim-
inator (PTD). The set of TSF modules received 7104 “hit” signals originating in the
7104 cells of the drift chamber. The search for track segment is organized in terms
of pivot cells. Physically, pivot cells are the cells in the third layer, called pivot layer,
of each superlayer. Each pivot cell and seven neighboring cells constitute a pivot
group. Some of the cells are shared with other pivot groups, but each pivot group has
one unique pivot cell (see Fig. 2.22): Each segment finder engine reeives continuous
digital-discriminator signals from the eight cells of the pivot group assigned to that en-
gine. The cells in a pivot group are numbered 0 through 7, as shown in Fig. 2.22 (cell
4 is the pivot cell). Note that if the pivot group template (the black circles in the figure)
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Figure 2.22: Showing the definitions of pivot cell and pivot group. Numbers indicate
the cell number within a pivot group; the pivot cell is number 4. 4a and 4b indicate
adjacent pivot cells.

were to move one cell to the right, a new pivot cell (cell 4a) and a new pivot group
would be defined. Note also that the signals from some cells are needed for more that
one engine. In particular, cells labeled “7, “3” and “0” are associated with two other
pivot groups.

The complete Segment Finder consists of 1776 track segment finder engines, one
of each of the 1776 pivot cells (pivot groups). Each engine processes data from the
eight cells in its assigned pivot group to find valid track segment that pass through its
pivot cell and other cells in the pivot group. The engine can be programmed to require a
hit in each of the four layer (4/4), or in at least three of the four layers (3/4), to accept a
track segment as valid. Typically, valid segment patterns consist of hits, close together
in time and in three of four layers, that could represent acceptable tracks which fall
within a pre-defined range of azimuthal angles. Sets of valid segment patterns are
stored in a pattern memory within each engine.

A two-bit counter is associated with each wire (cell). When a segment is hit its
counters start being incremented at regular time intervals. At any given time the 16
bit pattern formed by the counters gives the segment address. A lookup table (LUT)
is written to the read-out modules of each configure transition from the database. The
LUT is calibrated to translate segment addresses to track ¢ position estimates and
“weights”. Five bits are available for ¢. =0 corresponds to weight 0 and values 29-31
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are not used. ¢, therefore, ranges between 1 an 28 and the integer values correspond
to:

01-07: half of the left neighboring segment

08-14: left half of the segment

15-21: right half of the segment

22-28: half of the right neighboring segment

In this numbering scheme the pivot wire is at 14.5, the segment boundaries are at 7.5
and 21.5 and the neighboring pivot wires are at 0.5 and 28.5.

The weight ranges between 0 and 3. For the LUT used at the time of this writing
the meaning of the weight is the following:

0 - pattern is not in the LUT. ¢ is set to 0.

- 1-no ¢ to estimate for the pattern (¢ is set to 14), or ¢ lies outside the segment.

2 - ¢ inside the segment.

3 - ¢ inside the segment, better resolution that weight 2.

L3 tracking algorithms do not use weight O segments. For weight 1 the pivot wire
position is used as the track ¢ coordinate. For weight 2 and 3 segments integer ¢
estimates are converted to absolute track ¢ position estimates.

Considering a pattern of hits in a superlayer, all the wires in the pattern can be
attributed to one TSF segment (delineated with a solid line). However, this segment
shares wires with a neighboring segment (delineated with a broken line), therefore,
there will be hits in two TSF segments for this pattern. Once the principal segments
(typically with higher weight) have been used to find a track pattern, remaining ghost
segments can form another track pattern to produce an additional “ghost” track, as may
be seen in Fig.2.23

The binary link tracker (BLT) receives this information and detemines whether
segments lie in a road defined by “supercells,” which are sectors of a superlayer cover-
ing to 1/32 of the DCH in ¢. Patterns of segment-containing supercells that appear to
correspond to tracks (according to the BLT look-up table) are output to the L1 global
trigger. In parallel with the BLT, the p; discriminator (PTD) checks TSF segments in
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Figure 2.23: Ghost segment.

axial superlayers to see if they are consistent with a track having a greater p, than a
configurable minimum cutoff value. This information is also output to the GLT.

The level 1 calorimeter trigger (EMT) divides the EMC into 280 “towers” of 24
crystals each (22 for the endcap). All crystal energies within a tower which are above
a 20 MeV threshold are summed and supplied to the EMT trigger processor boards
(TPBs). The TPBs digitally filter the energy deposition (to smooth the output wave-
form of noise) and compare neigboring towers to look for clusters which span more
than one tower. Trigger line “primitives” (bytes corresponding to trigger type and in-
formation) are output to the GLT corresponding to the energy and placement of found
clusters.

The global level 1 trigger (GLT) receives the trigger line primitives from the EMT
and DCT, along with information from an IFR trigger (IFT) which is used for cosmic
ray and dimuon calibration purposes, and performs timing alignment to reduce jitter.
The GLT does some rudimentary matching between DCT tracks and EMT clusters,
and performs a logical AND of the input trigger primitives, which defines the output
trigger line. The combined L1 trigger efficiency is > 99.9% for generic B Bevents,
99% for continuum, and 94.5% for 77~ events.

Complete reconstruction of B decays (in addition to other major BABAR analysis
techniques, such as tagging) requires precise and efficient charged particle tracking. As
will be seen later, separation of decays in these modes from combinatoric background
requires precise determination of mass and energy, which in turn requires precision
measurement of track momentum. The majority of other modes are just as dependent
on charged particle tracking. Data from the DCH and SVT is combined to satisfy the
stringent charged particle tracking requirements of BABAR.

Charged tracks are parametrized by the 5 variables dy, ¢g, w, zo, tan A and their
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Figure 2.24: A level 3 trigger event display for a multihadron event.

error matrix. The parameters are defined as: dj is the distance of the track to the z-axis
at the track’s point of closest approach to the z-axis, z, is the distance along the z-axis
of that point to the origin, ¢, is the azimuthal angle of the track at that point, A is
the dip angle with respect to the transverse plane, and w is the curvature of the track

and is proportional to 1/p,. After tracks are recognized by the pattern recognition

alorithms, these 5 variables are fitted, and error matrices are extracted. Offline track

reconstruction begins with tracking and event time information from the L3 Trigger.
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2.6.1 ty Reconstruction

L3 provides both tracks and an estimate of the time at which the interaction occured
(with a resolution of approximately 5 ns), referred to as the ¢,.2 Reconstruction of the
event interaction time, or ¢, is necessary for both fitting DCH tracks (since the DCH
time-to-distance relation is necessary for position information of a track within a given
cell, a time must be provided as input) and for rejecting out-of-time hits within the
SVT to reduce background. ¢, reconstruction takes place in several steps, iterated with
track pattern recogition since the two are interdependent, during offline reconstruction.
The value of ¢, is used for drift time to drift distance conversion. The drift distances
are used in track fits, therefore, t, finding and tracking efficiency and resolution are
directly related. For example, tracks coming from the interaction point will be missed
if ¢, finding latches on background hits, or a cosmics track instead. Beam background
typically produces clusters of adjacent TSF segment hits. These are looked for and
removed from ¢, finding. Note, that for an ioninzing particle the time-of-flight in the
DCH (of order of several ns) is much smaller than typical ionization drift time (of
order of 500 ns). Only segments belonging to track patterns found in event are used
for initial ¢, finding. The initial ¢, estimate is obtained by subtracting a constant value
of 220 ns from the drift time average for all the wires in those segments. Time-of-flight
is not taken into account.

If no track patterns have been found 500 ns is used as the initial guess, but ¢,
finding will very likely fail. The initial ¢, estimate is iteratively improved. Iterations
are stopped after 5 iterations or if the time estimate changes from iteration to iteration
by less than 5 ns. If ¢, finding fails on first iteration on second the initial time estimate
is incremented by 200 ns. If ¢, finding fails again on third iteration initial time estimate
is decremented by 200 ns. t, estimates calculated are only calculated for TSF segments
in which all 4 wires (2, 3, 4, 5) or (4, 5, 6, 7) (Fig. 2.22) are hit. ¢, finding efficiency
could possible be improved if other patterns are also used. Time-of-flight is crudely
taken into account by assuming that the particle’s flight length is equal to the radius
of the pivot layer. (A better estimate of the flight length could be obtained for TSF
segment belonging to tracks, by using track parameters). TSF segment time estimates
are accumulated in a histogram. (Two binnings are used to avoid splitting a peak
into two bins.) If no bin contains 3 entries or more -20000 is returned, otherwise the
average of entries in the highest bin is returned.

STheeTe™ interaction timeisreferred to asthe “bunch ¢ ,,” often shortened to “¢ ,.”
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Inefficiency in ¢, finding for these events directly translates into tracking ineffi-
ciency. tq finding algorithm should be modified to use more hit configurations for
segments and use associated track information, if available. This should allow to re-
cover to for most of these events. ¢, finding efficiency then could be as high as 93%.

2.7 Track fitting

Before tracks are fitted a second pass of track pattern finding is done. However, this
time a fit is attempted to every track pattern found. For a successful fit hits will be
removed from the hit map for the cells used in the fit. Because the hit map is cleared of
hits in a different manner track patterns found in pass two will in general be different
from those found in pass one.

Fitting for track parameters is done by a least squares minimization of

=) (¢ipt(k7 do, ¢o, t, 20) — cbest)2

The sum runs over DCH superlayers, ¢est are the estimates for TSF segments and ¢ipt
are track intercepts that have a non-linear dependence on the track parameters. The
system is solved iteratively. Given a seed track the expression for ¢ipt is linearized
around seed track parameters using track intercept derivatives to obtain an easily solv-
able linear system. The iterations are described below.

The seed track corresponding to a track pattern is used to perform prefitting. TSF
¢ estimates are used for the prefit. d, and z, are fixed to zero and the other 3 track
parameters are allowed to vary. The fitted track is used as the seed track in the next fit.
Fits 1 - 4 are 5 parameter fits, each iteratively improving on the previous one. For each
intercepted cell two cells to the left and two to the right are considered. The one with
the ¢ estimate for TSF segment closest to the intercept is selected. Fitting fails if fewer
than 6 TSF segments are available, of if for seed track P, < 225 MeV or |dy| > 15 cm.
For each layer ¢ errors are estimated and outlier hits (beyond 3 ¢ errors) are counted.
If there are no outliers and 10 segments were used for the fit it is declared successful.
For fit number 4 it’s only required that there be no outliers.

Finally if the fit does not succeed after 4 iterations a final fit is done where segments
used in fit number 4 are refitted using with the fit number 4 output used as the seed
track.
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Figure 2.25: View of DIRC mechanical ~ Figure 2.26: DIRC schematic show-

stucture. ing the principle behind PID measure-
ments. The Cerenkov angle is preserved
through specular internal reflection.

The L3 tracking efficiency is about 95% above 2 GeV/c in transverse momentum,
sinks to about 80% for 1 GeV/c and further down for lower transverse momenta until
it reaches O for a transverse momentum of 180 MeV. This is the transverse momentum
of a track which curls in the drift chamber.

2.8 The DIRC

BABAR has stringent requirments for = — K separation over a large momentum range.
At the lower end of the range, primarily at momenta < 1 GeV, flavor tagging using
kaons from cascade decays is an efficient way of determining B flavor. At the high
end of the range, reconstructing B® — #+7~ and B® — K*rT requires separation
at momenta up to 4.2 GeV in the lab frame. At intermediate energies, reducing back-
ground in charm decays such as D° — K is necessary for B — DD reconstruction.
The particle identification device must exhibit sufficient 7 — K separation throughout
this wide range of momentum with a minimum of material in order to avoid adversely
impacting calorimeter resolution.

The DIRC (Detector of Internally Reflected Cerenkov light) principle uses internal
reflection within quartz bars to propagate Cerenkov light to readout phototubes while
preserving the Cerenkov angle. This requires extremely flat surfaces in order to avoid
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Figure 2.27: Longitudinal section of the DIRC. Length units are mm.

dispersing the reflected angles. Fused, synthetic silica quartz is used due to the excel-
lent optical surface it allows through polishing, as well as other favorable properties
such as long attenuation length, low chromatic dispersion, small radiation length, and
radiation hardness. As shown in figure 2.26, the light is internally reflected down to
a wedge to reflect photons into a water-filled “standoff box.” The standoff box is en-
closed by an array of 10752 photomultiplier tubes, which are each 29 mm. in diameter.
The Cerenkov light from a particle passing through the DIRC forms a ring (essentially
a conic section) imaged on the phototubes. The opening angle of this conic section
contains information on particle type via the typical relation cos 8. = 1/n3, with /3 be-
ing the particle velocity normalized to the speed of light, and »n being the mean index
of refraction (= 1.473 for fused silica).

Both efficiency and the timing of the electronics are critical for DIRC performance.
Timing is critical for two reasons: one, for background hit rejection, resolving ambigu-
ities, and separation of hits from differing tracks within an event; and two, timing gives
information on the photon propagation angles, allowing an independent measurement
of the Cerenkov angle. The intrinsic timing resolution of the PMTs is limited to 1.5 ns
by transit time spread. Data from the phototubes is read out to front-end electronics,
which performs the amplification, digitization, and buffering. Reduction of data from
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Figure 2.28: Display of an ete™ — putu~ event reconstructed in BABAR with two
different time cuts. On the left, all DIRC PMTs with signals within the +300 ns
trigger window are shown. On the right, only those PMTs with signals within 8 ns of
the expected Cherenkov photon arrival time are displayed.

out-of-time or noisy PMTs is performed in in the external electronics and reduces the
data volume by 50% using rough timing cuts. Online calibration of PMT efficiency,
timing response, and electronics delays uses a light pulser system which generates
precise 1 ns flashes from blue LEDs inside the SOB.

The DIRC has performed well throughout BABAR’s operational lifetime: 99.7% of
PMTs are operating with design performance. The measured time resolution is 1.7
ns, very close to the intrinsic resolution of the PMTs. The Cerenkov angle resolution
for dimuon events is 2.5 mrad, close to the design goal of 2.2 mrad. This results in
m — K separation at 3 GeV of 4.20. The mean kaon selection efficiency and pion
misidentification for a “loose” selection are 96.2% and 2.1% respectively, as can be
seen in figure 2.29. This results in dramatic background rejection with little signal loss
for charm reconstruction, as may be seen in figure 2.30.

2.9 The Electromagnetic Calorimeter (EMC)

The design parameters for the BABAR EMC are driven by the requirements of precisely
measuring energies over a spectrum from 20 MeV to 9 GeV ina 1.5 T magnetic field
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and a high radiation environment. At the high end of the spectrum, measurements of
QED processes such as Bhabha and two-photon scattering, as well as (at slightly lower
energies) photons from the critical physics processes B° — 7%7% and B° — K*y
decays, present the motivating incentive. The need for efficient detection of photons
from high multiplicity B decays containing 7°’s determines the requirement for the
low end of the spectrum. BABAR uses a thallium-doped cesium iodide (CsI(TI)) crystal
calorimeter in order to achieve the necessary energy and angular resolution to meet
these physics requirements.

The EMC contains a cylindrical barrel and a conical endcap containing a total of
6580 Csl(TI) crystals. The crystals have nearly square front and rear faces with a trape-
zoidal longitudinal cross-section. They range in length from 29.6 to 32.4 cm with a
typical front face dimension of 4.7 x 4.7 cm. A diagram can be seen in figure 2.31.
The crystals are mounted in thin (300 m) carbon-fiber composite housings which are
mounted on an aluminium strong-back (see figure 2.32). Although light incident on
the crystal boundary is internally reflected, the small part that is emitted is reflected
back with a coating of white reflective TYVEK on the outer surface. Surrounding that
are thin layers of aluminium and mylar to act as RF shielding and electrical insula-
tion respectively. On the rear face of the crystal, two 1 cm? silicon PIN diodes with
quantum efficiency of 85% for Csl(TI) scintillation light are mounted via transparent
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Figure 2.31: Longitudinal section of the EMC. Length units are mm.

polystyrene substrate.

Each diode is connected to a low-noise preamplifier which shapes and amplifies
the signal by a factor between 1 and 32. The signal is then transmitted to mini-crates
at the end of the barrel (see figure 2.32) where a digitization CARE (“custom auto-
range encoding”) chip provides an additional variable amplification factor. Unlike
other subsystems (except for the IFR), the EMC does not buffer the data on front-
end electronics; rather it outputs the full digital datastream to the read-out modules in
external electronics, which perform, on receipt of a level 1 accept signal, a parabolic
fit to the digitally filtered datastream to derive energy and time measurements.

A variety of online calibrations and checks is performed, including a neutron
source which produces a monoenergetic 6.13 MeV calibration signal and a xenon flash
light pulser system. Offline energy calibrations are necessary for higher energy cor-
rections. The relation between polar angle and energy of Bhabha and radiative Bhabha
scattering events is used to calibrate the 0.8-9 GeV range. The middle range is covered
by 7V calibration, which constrains the mass of a sample of 7°’s to the known value,
extracting correction coefficients.

The clustering pattern recognition uses a seed crystal algorithm to establish energy
clusters. Local energy maxima within a cluster are used (if there are more than 1) to
separate the cluster into bumps. Charged particle tracks are associated with bumps
using a x? consistency cut. In an average hadronic event, 15.8 clusters are detected, of
which 10.2 are not associated to a track.
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Figure 2.32: The EMC barrel support structure, modules, and mini-crates.

Energy resolution is determined using C'hitoJpsig and Bhabha scattering events

to be

op _ (2:3240.30)% @ (1.85+0.12)% (2.1)

K 4/ E(GeV)

and angular resolution is determined using 7° and » decays to be

(3.87i 0.07

+0.00+ 0.04 | mrad. 2.2)
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As can be seen in figure 2.33, the reconstructed #° average width is 6.9 MeV. The
separation of electrons from charged hadrons using the ratio of shower energy to track
momentum (F/p) and other variables may be seen in figure 2.34:
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Figure 2.35: The instrumented flux return modules, structure, and RPCs.

2.10 The Instrumented Flux Return (IFR)

Detection of neutral hadrons (primarily K9’s) and muons is necessary for several
BABAR analyses and analysis techniques. Muons provide a very clean B flavor tag,
extremely useful for increased efficiency in tagging the opposite-side B for time-
dependent CP violation measurements. Muons are also necessary for reconstructing
Jh— ptp~, as well as for measuring semileptonic branching fractions, required
for extracting magnitudes of C KM elements. KY reconstruction is critical for the
B° — J/p K? channel. Initially, BABAR used an Instrumented Flux Return (IFR) com-
posed of layers of resistive plate chambers (RPCs) and steel plates in order to provide
enough material to separate pions and kaons from muons and to efficiently detect the
presence and position of both . and K? over a large solid angle. As shown in fig-
ure 2.35, the IFR consists of layers of planar RPCs in a barrel and endcap (red lines)
as well as 2 layers of cylindrical RPCs (green lines) between the EMC and the mag-
net. Between the RPC layers are steel plates of thickness varying between 2 cm (inner
plates) to 10 cm (outer plates). The total mass of the IFR is 870 metric tons. Planar
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RPCs contain a 2 mm Bakelite gap with ~ 8 kV across it. lonizing particles which
cross the gap create streamers of ions and electrons in the gas mixture (which is typ-
ically 56.7% Argon, 38.8% Freon, and 4.5% isobutane) which in turn creates signals
via capacitive coupling on the “x-strips” and “y-strips” on opposite sides of the RPC.
Strip width varies between 16 mm and 38.5 mm. The 2 mm gap is kept constant us-
ing polycarbonate spacers spread at 10 cm intervals and glued to the Bakelite. The
Bakelite surface is smoothed with an application of linseed oil. Cylindrical RPCs are
composed of a special thin and flexible plastic, rather than Bakelite, and have no lin-
seed oil or other surface treatment. They are laminated to cylindrical fiberglass boards.
In 2003 they decided to replace the present RPCs in the gap of the BABAR IFR with
plastic Limited Streamer Tubes (LST). After testing, they were persuaded that LST’s
are the most straightforward, practical and reliable detectors among the various options
to instrument the barrel region, access to which has been and will be continue to be
difficult and in some cases impossible. A “standard” LST configuration consists of a
silver plated wire 100 pm in diameter, located at the centre of a cell 9x9mm? section.
A plastic (PVC) extruded structure, or “profile”, contains 8 such cells, open on one
side 2.36.

The profile is coated with a resistive layer of graphite, having a typical surface re-
sistivity between 0.2 and 1 MQ/square. The profiles, coated with graphite and strung
with wires, are inserted in plastic tubes (“sleeves”) of matching dimensions for gas
containment. The signals for the measurement of one coordinate can be read directly
from the wires, but it has become customary instead to read both coordinates with strip
planes, thereby avoiding the complications of feedthroughs and DC-blocking capac-
itors. For such tubes the operating voltage is typically 4.7kV; the efficiency plateaus
are at least 200V wide; the signals on the wire are of the order of 200/300mV (into
5012), typically 50ns at the base, sometimes with an afterpulse. The gas mixtures are
strongly quenching: the original one (25% Ar, 75% n-pentane) being explosive has
been replaced in accelerator use by a non-flammable one based on C'O.

The LST geometrical efficiency is limited by the ratio of active versus total volume
in the cell. The effect is mitigated by the fact that most tracks do not impinge perpen-
dicularly. In the gap between iron slabs is wide enough, the inefficiency can be greatly
reduced by using larger cells or, alternatively, a double-layer geometry.

The LST tubes are somewhat fragile mechanically so careful design, handling, and
operation are of paramount importance in preventing failures. The “mortality” of the
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LST’s depends on the cell size, on the care and attention given during construction and
installation, and on the strictness of the acceptance tests. If we consider the perfor-
mance isses, we have:

- minimize dead spaces. These include the profile walls, separation between tubes,
dead areas at the tube ends, both inside the sleeves and outside, for electronics,
gas and cabling

- reduce tube mortality and/or introduce redundancy to decrease its effect on de-
tector efficiency

- arrange tubes into modules that can be extracted and replaced without removing
corner pieces

- feed each tube with one or more independent HV channels

- locate HV distribution boxes and front end electronics on the outside of the de-
tector to avoid having to doors to repair.

The cell efficiency was studied by a simple Monte Carlo simulation, reproducing
tracks going through standard-cell LST and it’s esistimated around 5-10%. Results
from measurements made with cosmic rays on stardard tubes and on the first batch
of double layer prototypes are consistent with these numbers. In addition the overall
efficiency of the detector depends on the dead space at both ends of the LST and in
between the LST.

Instead of recycling the existing IFR Front End Cards (FEC), it has been decided
to build a new FEC. The new FEC’s have a different input section but with the same
interface to the existing IFR-FIFO boards, which is used for the readout of the LST’s
and are well integrated in the BABAR Data Acquisition (DAQ). The data format will
be the same as it was in the RPC system. This choice allows us to use the present
DAQ software and electronics also with the LST system. Compared to the old FEC’s,
two new functions are provided: front-end amplification and a settable threshold. The
electronics is located just outside the detector in a set of 12 crates. The new system
will be based on boards which serve 64 channels: 4 input connectors, 64 amplifiers and
comparators, and a Field Programmable Gate Array (FPGA) which will contain all the
digital logic (delay, gate with the trigger, latch) for the 64 channels. The baseline
plan is to route the utilities (gas, HV) to the detector layers of a sextant, as well as
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the signals from the z cathode strip planes thorughout 2 dedicated conduits located
at the backward end of each sextant. The ®-strip signals will be routed throughout
2 dedicated conduits located at the forward end of each sextant. The baseline plan
includes suitable fixtures to the LST endplugs to help in an orderly routing of the
utilities and the signal cables at the detector layer. These structures will occupy about
8cm at the backward end and 3cm at the forward end.

Reconstruction of clusters proceeds via two methods: a standalone method where
groups of hits along 1 dimension within a module are joined to form one-dimensional
clusters, which are then combined with opposite-side hits to form two-dimensional
clusters, and then with other modules to form 3D clusters; and a “swimmer” method,
where charged tracks are propagated to the IFR — 1D clusters within 12 cm. of the
expected path are combined to form 2D or 3D clusters. Clusters which are not matched
to a charged track are considered as neutral clusters. Muon identification uses variables
such as number of expected vs. actual interaction lengths tranversed and the 2 match
to the charged track.
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Chapter 3

BaBar software

3.1 Introduction

In this and in the following chapters will be presented framework and software tools
used during this thesis work. This section includes a presentation of the simulation and
the reconstruction programs used in BABAR collaboration.

The system includes two parts: online system (data acquisition, checking and mon-
itoring) and offline system (reconstruction, simulation and data analysis). It is imple-
mented on PC with commercial Unix operative systems (SunOS e OSF/1) and Linux.

3.2 Programming choices

In the BABAR experiment it is used a software developped using Object Oriented pro-
gramming implemented on Unix machines.

We have a big choice in using object oriented codes [17]; among all possibilities,
in BABAR collaboration C++ has been choosen for its specific demands: for example,
large disponibility for compilers, distributed with free open-source licenses, compat-
ibility with different platforms, efficiency of the code and tools for development and
debugging and large disponibility of libraries.

3.2.1 Object oriented programming

The main feature of object oriented coding can be simplified through a analogy with
real world: utilization of an object is not linked to knowledge, for an user, of its internal
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operation. For example, to drive a car we hadn’t to know how engine is and how it
functions, but this (substantial) difference doesn’t influence our driving.

This is an example of separation between what an object offers in functionality
terms and how it realizes this functionality; the way to interface with an user should be
costant in the time, but system can be modified, expanded and optimized. This feature
is fundamental in complex software system codes, as used in BABAR.

In C++, tool that allows us to use object oriented programming is class, data types
defined by programmer; they are composed of a public interface that give us functions
to operate on contained data, and a hidden, private, structure that tipically includes
both internal data representation and utility functions to operate on themselves. This
way to hide effective implementation is called encapsulation and it’s tipical for object
oriented programming.

So, classes can be thought as boxes that speak each other with messages: we can
operate on data for a class (that is most the interesting thing for an user) only through
some function in public interface; these functions are called methods.

Such a way to operate can give us some advantages cause we can shield data from
illegal operations and verify finished operations (verification on variation interval of
a quantity, as in data input stage). Much more, it allows a re-utilization of the code
(for example, a classes set to operate on vectors and matrices with usual addition,
product and convolution operations etc.) and it reduces the development and software
debugging times.

Another object oriented feature is objects hierarchy, illustrable with a real world
example: it’s possible to define some abstract data types with certain very general
properties; in fact we are able to think to abstract objects, like a particle, and derive
from these ones other objects with more definite properties, “boson or fermion?”. Con-
tinuing in this hierarchy, we can specify more detailed properties, “if fermion: lepton
or quark?” and reach up for more internal levels maintaining general class properties,
leaving them as before or modifying parts of them. This feature is called heredity and
we can have single heredity (if it derived by only one more general class) or multiple
heredity (if derived by more classes).

Polymorphism is a concept strictly linked to heredity: it is the language ability to
use some specific objects (derived by more or less generic classes) as if they were like
generic class objects: for example, | could want a list with all particles with a fixed
momentum, independently if they are bosons or leptons, and I’d want to use them in a
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uniform way (for a fixed particles class definition).

3.3 Object oriented database

Recently, BABAR’s data storage has changed to a completely new system. The new
model is called CM2 (“Computing Model 27).

The original BABAR Event Store used two data-storage formats. The Objectiv-
ity database was a large object-oriented database with several levels of detail stored
for each event. It could be used for almost any analysis or detector study. Kanga
(“Kind ANd Gentler Analysis”) datasets stored only the micro (see below) level infor-
mation in ROOT-type files (architecture for object oriented data analysis developped
by CERN) [18]. This is the level of detail required for most physics analysis jobs, and
avoided the complication of interacting the full Objectivity database and the compli-
cations that often arose with it. The idea was to have Objectivity as the main database,
and use Kanga files at remote sites.

The Objectivity database had four levels of detail: raw, reco, micro and nano (or
"tag"). Raw and reco were very big databases that kept virtually all of the details
from every event. Micro was a smaller, more user-friendly database that kept only
information likely to be useful for physics analyses, rather than detector studies, or
more refined analysis tasks. Nano (“tag") contained even less detail, and was used
only to skim data for a few given key characteristics to save loading in the whole
event information for each event (a time-consuming process). The original idea was
to keep raw and reco information for jobs like detector studies. Raw and reco were
infrequently used, and only a small part of the information was ever accessed.

The new CM2 Event Store has just one database, the Mini. The Mini database is
basically an extended version of the micro, however with the additional capability to
store information written into "skims" by users (“user data”, see below). The Mini
contains all of the information from the old Micro database, plus the small part of
Raw and Reco. The new data storage format is more like Kanga than anything else,
so we may refer to the CM2 Mini database as "CM2 Kanga," "new Kanga" or (since
old-kanga is obsolete) just "kanga". Another difference between the CM2 Mini and
the old database system is that the CM2 Mini allows for the storage of "user data":
user-defined composite candidate lists and user-calculated quantities.

Here’s a summary table of the differences between the old Objectivity/Kanga sys-
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tem and the new CM2/Mini system:

Old Objectivity/Kanga New CM 2/Mini/Kanga
Level of detail Objectivity: high detail Mini: intermediate detail
Old Kanga: low detail
Portability Objectivity: central Mini: central, but easily
Old Kanga: portable skimmed to make
portable collections
User data Objectivity: None (central database) Mini: some
user datain
central database
Old Kanga: Lots (small,
user-defi ned
collections)

Table 3.1: Differences between the old system and CM2.
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3.4 Code organization

BABAR software is accessible to all registered users through NFS system file (Net-
worked File System) or AFS (Andrew File System), mounted on every UNIX worksta-
tion at SLAC.

The scheme is replied in all calculus labs in the countries that collaborate in this
experiment: USA, France, England, Italy and Germany.

Analysis presented in this thesis work has been developped only on SLAC PCs.

3.4.1 BaBar Framework

BABAR software is organized like a framework for the event reconstruction coming
from detector. For example to figure out what programming inside a framework means,
it’s possible to compare it with reality: in every home we find water, electricity, tele-
phones, etc. and these services are supplied without worrying about how they realized
them.

In software engineering, a framework supplies base services as /O, graphic man-
agement, data scheme management. The obvious advantage is: low-level function
problems have already been solved and generally in a very efficient way with few
faults. So, the user can only work in his specific domain; in this way, it is favoured a
re-use of a work (a well written code can so be re-used to solve similar problems even
if not identical). A drawback can be operating inside the framework, but this stiffness
can be considered not significant if framework has been planned cunningly.

3.4.2 Package

BABAR software is completely modular, and his base element is the package, defined
as a classes set planned to solve certain exact problems very closer among them (for
example a selectors package, or planned classes that assign a specific identity to a
candidate particle). In every package we can find classes with same tasks, that differ for
chosen approach or chosen operative tecnique. Many dozen of packages are avalaible,
to cover a large spectrum of possibilities and requests coming from reconstruction and
event analysis.
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3.4.3 Release

We define release the set of all packages, each defined in his specific version. Like
packages are updated with new classes added, releases are updated with new packages.
Particularly, we can divide release in two parts: ones with a testing function for code
implementation and ones considered stable, used for official analyses.

For this work it has been used the official stable release tagged with 12.5.2 (so
called anal ysi s- 21), using Linux 7.2 platforms.

3.4.4 Module

BABAR framework base unity is defined as module and it can be or a package class or a
user defined class based on other packages classes. The modules hold code that draws
data from every event, runs specific algorithms and it can eventually give back results
in the event in a such way that they can be used in next phases.

An executable analysis program is formed by one or more compiled and linked
modules; each of them can be enabled or disabled during execution if it is useful in
data processing.

Framework functionality management is left to TCL (Tool Command Language)
language that has two features: it can interpret and so it can be an interface among user
and framework, and for that, it can be used as a scripting language to check exactly
the operations for every module, in a similar way with a Unix shell. It can be used on
many platforms and it is a big advantage.

Modules can be added in a sequence in which they are executed in apparition order.
Modules and sequences can be combined in a path, completed sequences start with an
input module and finish with an output module.

The presence of particular filter modules can allow that a path will be finished
before exiting and so a processed event won’t reach output module. Multiple paths can
be specified and each of them can be enabled or disabled.

3.5 Online system

BABAR Online software comprehend detector check and monitoring systems, processes
related to data flow from front-end electronics to storaging in database or run checking
programs. These tasks are solved by main Online system components: Data Flow,
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Run Control, Online Event Processing (OEP) and Prompt Reconstruction. Another
component exists, Detector Control, and it’s not joined to event: it checks software
and hardware detector components (for example DCH high tension system).

3.5.1 Online Data Flow (ODF)

Data acquisition system has a software and a hardware component; first one is called
Data Flow while the hardware one is called Platform. Often, we refer to both of them
as BABAR Data Flow [19].

Data Flow has task of joining all the data coming from front-end electronics, pro-
cessing them in a preliminar way (so called feature-extraction) and delivering them to
OEP.

Main platform elements are: checking masters that form trigger interface and dis-
tribute clock and command system, read-out modules (ROM), particular modules that
catch data from front-end electronics and execute feature-extraction, and bulk data
fabric that transport data inside-outside the platform.

Every platform needs a clock and an external trigger system; it has 32 input lines
for the trigger that produce level 1 trigger acceptance signal (L1 accept) and then it
propagates overall the platform. A platform can manage electronics for more than one
sub-detector and they are able to operate independently, can’t be independent because
they are on a same platform. To maximize resources, such platforms are partitioned:
in this way operations related to different detectors are done in parallel.

Data Flow platform has been drawn considering rigorous conditions due to exper-
iment for dimensions and events frequency.

Components are organized in a hierarchy that permits to execute operations with a
high-grade of parallelism.

3.5.2 Online Event Processing (OEP)

OEP receives completed events from Data Flow’s Event Builder, executes level 3 trig-
ger algorithms, checks data quality through so called Fast Monitoring processes and
develops other tasks as supporting functions to calibration activities. Furthermore,
OEP allows avalaible events for the reconstruction to Prompt Reconstruction.

Work done by OEP is distributed among knots of a farm composed by Unix ma-
chines. On every machine are solved identical processes parallelly.
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3.5.3 Prompt Reconstruction

Prompt Reconstruction task is to reconstruct, in short times, all events that passed
level 3 trigger filter, to furnish calibration constraints and informations on data qual-
ity. This allows us to diagnose immediately detector problems in such a way that they
can be solved without losing integrated luminosity. This function has been specially
important in the preliminar phases of the experiment. Many calibration constraints,
like pedestals and electronics component gain, are evaluated through special runs, oth-
ers, like DCH time-distance relationship and relative corrections of alignment between
chamber and vertex detector, need a large number of reconstructed events. Prompt Re-
construction receives these quantities from a previous (but recent) dataset and applies
to current data. Generated constraints by every reconstructed events block are storaged
in Condition Database to be read again during following reconstruction block.

The Prompt Reconstruction results are monitored by Prompt Monitoring that checks
for example chamber performances, data quality and reconstruction and calibration
algorithms of reconstruction. Unlike Fast Monitoring, Prompt Monitoring analyzes
reconstucted events and has a large numbers of informations on tracks.

3.6 Simulation

Completed simulation of the detector is formed by three parts: events generation, par-
ticles tracing through the detector and detector reply simulation.

3.6.1 Generators

Simulation process starts with event generation, using one of available different gen-
erators, of BB events with the corresponding decay channels, gg with ¢ = u, d, s, ¢
background events, e e~ diffusion events, and other backgrounds linked with acceler-
ator operation. Furthermore, energies beams and interaction point position smearing
are simulated; for each beam is used a single gaussian with width 5.5 MeV for the
high energy beam, and 3.1 MeV for the low energy beam. Smearing for interaction
point is in the = and y coordinates, respectively 160 xm and 6 pm, and it’s simulated,
for each coordinate, with a single gaussian. The z beam position is modelled on a flat
distribution 1 cm long.

Most important events generator for BB is EvtGen. This generator furnishes a
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scheme in which specific decay channels can be implemented as modules. Such mod-
ules, called EvtGen patterns, can solve different functions; for example, they can eval-
uate decay amplitudes. EvtGen introduces mixing, generating Y (4S) decays in a user
defined proportion of BB, B'B" and B° B final states with correct At distributions;
CP asymmetries are generated in modules which modify producted B mesons mean
life distributions. They are available generic patterns to simulate two body decays in a
scalar mesons pair, a scalar and a vectorial mesons, a tensorial and a scalar mesons or a
vectorial mesons pair. Decay features (branching ratio, numbers of sons and patterns)
are planned in a ASCII file called DECAY. DEC.

Generator manages only exclusive final states; for quarks to hadrons fragmentation
we use Jetset7.4, and for this reason it is used for ¢g background generation, cc states
and weak baryons decays. Jetset7.4 decay table has been updated to latest measure-
ments.

3.6.2 BOGUS

BOGUS simulator (Babar Object-oriented Geant4-based Unified Simulation), using
Geant4 package developped by CERN, allows us an unified simulation, in the sense
that permits a completed and a faster simulation.

Geant includes tools to simulate detector geometry, charged and neutral tracks rev-
elation through the detector, interactions and decays of every kind of particle, magnetic
field and detector reply.

BOGUS is structuralized in some packages, one for every underdetector, in each
of them are contained standard routines recalled in different simulation phases. Ge-
ometries of all under detectors are re-created starting from parameters hold in a format
ASCII data bank, in which they are specified materials, dimensions, positions and ori-
entations for every enabled and disabled under detectors and also the quantities for
materials concerned an enabled detector.

Monte Carlo tracks hits are called in the BABAR terminology GHits. These contain
all needed informations to obtain in a second phase detector reply simulation. GHits
are written, with Monte Carlo truth, on an output file.
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3.6.3 Detector reply

Tracks hits digitalization happens in another process called SimApp. This process is
added as GHit input information and produces digitalized data as output in the same
format of those producted by real detector. At the end of such a process, Monte Carlo
data are processed by same code of real data. This code is organized like a subsystems
packages set. These packages contain routines to give simulated data sample as most
similar as data coming from detector.

Another function of SimApp packages code is to add background hits: rather than
simulate background in the detector, it is preferred to catch a random trigger sample
and mix (using correct luminosity factors) them with Monte Carlo simulated events.

3.7 Reconstruction software

We already gave prominence to packages as base element of BABAR software; in the
following sections will be described main packages used for analysis done.

3.7.1 Bet a package

Bet a is a data analysis program developed for BABAR, and it is the base interface
for data reconstruction. Bet a main task is to furnish a solid and simple basement to
write detailed physical analysis programs; to do that it gives needed tools to particles
identification, tagging, vertexes reconstruction, etc.

All the Bet a structure, and so the reconstruction mechanism, is based on four
fundamental concepts:

- Candidate. A candidate is the representation that Bet a gives to the particle that
could be existed in the considered event. There are many kinds of candidates:
for example a charged track, reconstructed thanks to vertex detector and DCH,
can be a 7 candidate, while calorimeter neutral cluster can be a photon candi-
date. The important thing is that all candidates have same interface (they are
Bt aCandi dat e objects) and they can be used in a general way.

- Operator. An operator acts on one or more candidates, combining them in new
candidates (for example defining a mother particle by two charged tracks) or
extracting informations as mass, charge etc. by them.
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- Selector. A selector is a particular structure that creates candidates with certain
features starting by avalaible candidates. For example a selector for 7° selection
can seek among photons candidates pairs the ones with invariant mass close
to nominal 7% mass and combine them with a right operator in 7° candidates.
Selectors can be generic or destined to a specific physical analysis, and they can
be used in different analyses (for different decay channels) without modifying
anything.

- Combiner. It creates an agreement between two candidates. For example, re-
constructed candidates can be combined to respective Monte Carlo generated
candidates and so on.

For every BABAR event, reconstructed Bt aCandi dat e objects are gathered in
lists. Each list has a different identity hypothesis and different selection criteria. In
table 3.2 are listed some default lists avalaible in the Micro database level.

3.7.2 ConpositionTool s package

This package [20] contains functions for the creation of Bt aCandi dat e lists that
describe a fixed decay reaction, for example 7° — ~~, starting by Bt aCandi dat e
existing lists (for a little example, lists described in table 3.2). Candidates obtained are
tree-like decay. For these trees we can impose kinetical and geometrical constraints.
So, composite candidates are decay trees that combine tracks, neutral clusters, PID and
fitting. In this way, using all the informations given by detector, Conposi ti onTool s
is the package for reconstruction of every kind of composite particle.

In the package there are base modules for particles composition through a specific
decay channel like Conposi t eSel ect or that offers a common interface, while for
other decays and for every particles it creates a module called Conposi t eSel ect or,
derived by the selector (cfr. 3.7.1).

- We can give at maximum six input lists (parameters are modifiable through
file.tcl, but default lists are Char gedTr ack);

- ithas a Bt aCandi dat e list as output;

- We can impose masses, energies, momenta, composite candidate reconstruction
probability and reconstruction daughters chain cuts.
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Name of the list

Description

Char gedTr acks Candidates with charge not equal to zero. Pion
mass hypotesis is assigned.
Cal or Neut r al Candidates are single bumps not associated to

any tracks. Photon mass hypotesis is assigned.

Cal or d ust er Neut r al

Candidates that correspond to multi-bump neu-
tral or single bumps not associated to any clus-
ter related to a track.

Neut r al Had

Candidates that correspond neutral clusters in
hadronic calorimeter not associated to any
tracks.

GoodTr ackLoose

Char gedTr acks list candidate with:
e Min momentum: 0.1 GeV
e Max momentum: 10 GeV
e DCH min # hit: 12
e Max DOCA in XY plane: 1.5cm
e Min Z DOCA: —10 cm

e Max Z DOCA: 10 cm

GoodPhot onLoose

Cal or Neut r al list candidate with:
e Min energy: 0.030 GeV
e Min # of crystals: 0

e Max “lateral momentum”: 0.8 Gev

Table 3.2: Main avalaible lists in Micro database.
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- we can impose kinematical and geometrical constraints on reconstruction chains
and fit and evaluate vertexes;

- the name of Conposi t eSel ect or we want to create is given as constructor
argument.
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Chapter 4

Statistical tecnique and software for
physical analysis

4.1 Introduction

In this chapter it will be described the developed software to do analysis presented
in this thesis work. In the first part it will be shown the analysis tecnique based on
unbinned maximum likelihood fit, that BABAR collaboration chosen as the official one.
This kind of analysis shows a better efficiency, the possibility of consider errors with
a better precisions and correlations between variables. Then it will be presented the
procedures that allow us to pass through reconstructed events to the ones which we
fit, starting from identification of the problems and showing identified solutions; in the
end, it will be described fitting software, illustrating features and functionalities. To
develop analysis software has been choosen an object oriented coding technique (C++
language); we also use ROOT framework classes and a particular classes package
developed by BABAR, called RooFit. We’ll briefly present features of both.

4.2 Maximum Likelihood analysis

Analysis has been done using EML, Extended Maximum Likelihood, through a pro-
gram that does an unbinned fit.

Now we consider a = casual variable distributed with a distribution function f(x;@).
We suppose the expression f(x; ) well-known, but at least a parameter value 6 (or
parameters = (6,...,0,)) should be unknown. So, f(z;0) expression represents,
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after normalizing it, hypotized probability density function (PDF) for = variable. Max-
imum likelihood method is a technique to estimate parameters value given a finite data
sample. Furthermore, we suppose to perform an experiment where a measurement
has been repeated N times, supplying x1,...,zy Vvalues, where x can represent a
multidimensional casual vector, the probability of z; included between the interval

[z, x; + dx;] for every i is
N

P = H f(zi; 0)dz; (4.1)

=1
If the hypotized expression f(z;6) for PDF and the parameters ¢ are correct, this
probability will have an large value for measured data. While, a parameter value very
different by real one gives us a small probability for realized measurements. Cause dx;
doesn’t depend with parameters, same considerations can be effected for the function

L, defined as:
N

L(0) =[] f(=::0) (4.2)

i=1
called likelihood function. It is clear that to estimate parameter value we had to maxi-
mize this function. We should underline that x; values are well-known and so £ only
depends by parameters we want to fit.

Often it happens that number of measurements NV is a random variable following
a Poisson distribution with a mean value n. So, experiment result can be understand
as N number and NV values z,...,zy. In this case likelihood function is given by
Poisson probability product to evaluate N for the function (4.2)

-n N

Ln,0) = = [[nf(x::6) (4.3)

This function is called extended maximum likelihood. In this case to evaluate
parameters values and n value it needs to determinate corresponding parameters that
maximize the function.

Now we see how extended maximum likelihood technique allows us to measure
the number of signal events and the number of background events in a data sample
where every measurement has constituted by observable quantities.

We suppose that parameters we have to evalutate are the number of events nq, ..., n,,
each one corresponding to a particular species of events (signal, continuum back-
ground, non-continuum background...), where s is index of such a species. To dis-
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tinguish the events of each species between them, we determine the variables distri-
butions that present an high discriminant power between those species. We fit these
distributions with corresponding PDFs, indexed with £/, ..., f/ (j = 1,...,s)whereh
is the number of PDFs for each species. When observations are independent (if no, we
should consider correlation terms), extended maximum likelihood function becomes:

e~ Z;:l nj N s
: i=1j=1
where ,
Pi(xi) = [1 £ () (4.5)
=1

The evaluation of maximum for the extended maximum likelihood £, or equivalently
the minimum of x? = —21In(£), can be done in a numeric way.

4.3 ROOT

BABAR software uses ROOT, an object oriented framework dedicated to scientific data
analysis [18]. The project was born in CERN in the middle of *90s to furnish tools for
data analyses that would offer a better stability with respect to FORTRAN traditional
tools. At the same time, many people needs the necessity of a programming that
allow them to manage quickly big projects, realized by huge and mixed groups, using
advanced software programming tecniques: it has been chosen the object oriented
programming, that in the 90s stood out as optimal choice to realize complex projects.

Several of the most used ROOT components are fitting and hystogramming for
statistical analysis and for 2D and 3D graphics.

ROOT framework has been developed using a liberal and informal style where it
is necessary an interaction between developers and users, roles very similar and often
superimposed: this allows to maintain a continuous evolving project.

ROQT architecture is really portable: released version for more common com-
mercial Unix versions (SunOS/Solaris, IBM AlX, HP-UX, SGI IRIX, Compag/DEC
OSF1), for Linux, for Windows NT and for MacOs are avalaible. Furthermore avalaibil-
ity of the source code give adaption to specific necessities of operative system possible.

The ROQOT basic structure is formed by a hierarchy of over 300 classes, divided in
14 categories and organized as a tree with one common root, or a large part of classes
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inherits from common class TObject. Among categories we find:

container classes that implement a series of complex data structures as vectors,
lists, sets and maps used very often in ROOT

- histogram classes and minimization procedure that offer advanced functionali-
ties for statistical data analysis as histograms in one, two or three dimensions,
profiles, fitting, minimization and evaluation of mathematical formulas

- tree classes and ntuple that estend potentialities of PAW? n-tuples, 2D and 3D
graphical classes and classes for both graphical and textual interface for the user

- operative system interface that represents the only link with Operative System
(OS) and favoures framework portability, classes for the documentation that al-
lows a careful and complete documentation generation during project develop-
ments.

ROOT is based on C/C++ interpreter called CINT [21]; his goal is to process pro-
grams (script) which not need high performance but they are important for a quick
development. CINT supports about 95% of ANSI C code and about 85% of C++.

ROOT version used for the analysis described in this thesis is 3.10/02 con CINT
5.15.115.

4.4 RooFit

RooFit package is formed by a set of classes constructed on ROOT framework ded-
icated to unbinned maximum likelihood fit, and uses a natural and intuitive notation,
that not needs a direct knowledge of ROOT programming[22, 23].

RooFit is composed by two packages: RooFitModels e RooFitCore. Former con-
tains all the classes for the PDFs definition and complex models (as sum or product of
PDFs). Latter puts at everybody disposal a set of classes to define a fitting model and
fitting methods; it extends ROOT graphical functions allowing to project fitting mod-
els in function of several parameters; it allows data and both discrete and continuous
variables management.

RooFit scripts are executed inside ROOT, loading external library in the initialization
phase.

! Framework for statistical analysis developed in FORTRAN[?]
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4.4.1 Main classes
Variables: RooRealVar and RooCategory

The first operation we have to do when we create a fit model is to define variables and
parameters: it is not done a type distinction between them because they are all objects
of RooRealVar class. A RooRealVar object is featured with a value, a minimum and
maximum limit, an error, a name, an unit of measurement, a description and other
attributes (for example, to establish if the object defines a constant or a variable).

The RooRealVar objects can be used to construct more complex structures as vec-
tors, matrices or lists in the traditional way but RooFit already offers a container class
adapted to multidimensional structures called RooArgList and RooArgSet. It allows to
create a list of different variables to use them with other classes (for example as PDFs
parameters).

If RooRealVar are used to describe continuous variables, RooCategory permits to
manage discrete variables. Examples of discrete variables can be the B tagging, num-
bers of run of the events or a naive identification between different sub-channels in a
combined fit. The RooCategory is important in the fits for the time dependent CP-
violating parameters cause it allows to do simultaneous fits (in this case for 5° and B’
and for the different tagging categories) splitting fitting data in subsets.

Data sets: RooDataSet

A class useful to manage a complex data structure to fit is called RooDataSet. It
permits to organize the data as a matrix, in which single variables are represented
in columns while in the other the single events. For rows the constructor allows to
initializate an object in a direct way through a number of RooRealVar (from one to five)
or with a arbitrary number of variables using a RooArgList. This way is more flexible
but much more complicate to manage due to the presence of a middle structure.

Data are read through r ead() method. This method allows to access to both
text-like files (ASCII) and binary-like ones with ROOT tree format.

Distributions: RooAbsPdf

The distributions used are the most common for the physics analyses, so we can
use a gaussian (RooGaussian), an asymetric gaussian (RooBifurGauss), polinomi-
als (RooPolynomial), an Argus [24] function (RooArgusBG), a Breit-Wigner function
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(RooBreitWigner), an exponential (RooExponential and RooL ifetime) and some others.
The single classes inherits from the abstract class RooAbsPdf and we can define new
functions in a quick and simple way.

The RooAbsPdf class puts at the people’s disposal a series of generic methods to
the events random generation based on a try—reject technique that can be redefined in a
more efficient way for the subclasses. This class offers a fundamental method defined
fitTo(RooDat aSet *data,...) that effects a fit creating a specific object
TMinuit; it is possible to set up some options to perform a binned fit or to minimize the
likelihood function with a certain algorithm (M GRAD, M NOS, HESSE). It offers
some other options for plotting and drawing [25].

It’s useful to note that RooAbsPdf distributions are automatically normalized (with
unitary area).

Furthermore we can compose single PDFs through sum (RooAddPdf), product
(RooProdPdf) and convolution (RooConvPdf). Single classes inherit from the same
abstract class RooAbsPdf.

The RooAddPdf class permits to declare a model obtained with the sum of an
arbitrary number of PDFs, each weighted with a parameters. This model furnishes the
basis for the declaration of the extended maximum likelihood function.

4.5 Software for the cut optimization: Selector

The variables determined during the event reconstruction are saved in ROOT files
(. root ) contained in particular structures called tree. These files represent the out-
put of the event reconstruction process; during this stage loose cuts are applied on
several variables that caracterized our event. To discriminate signal from background.
This permits to reduce files dimension because we save only the events that pass cuts
(preliminary cuts). After the reconstruction we can optimize the values of such cuts
(obviously, using tighter cuts). To do that it’s necessary a program that allows us to
read values of the variables held in the tree to establish the number of these ones pass-
ing the applied cuts. ROQOT realizes that with a solid and flexible method: selector.
This procedure is based on the realization of a user’s personalized class (depending
on the analyses to realize) that is derived from the TSelector class. These following
methods are implemented in it:

- TSel ect or : : Begi n: This function is called every time we start to read val-
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ues of the variables of the tree. It’s possible to furnish a configuration parameter
that permits to effect several kind of operations for a fixed selector. For example,
the selector used for the analysis in this thesis work allows to prepare input to
the fitting program, to perform cut and count analysis, to draw variables distri-
butions, to select a number of events and much more. Configuration parameter
is only a alfanumeric string: reading of this parameter and the identification of
the operation requested is performed in this function Begi n.

- TSel ector: : Process: This function is called for every single event. In-
side, they are defined the cuts to apply on the variables values. After every cut,
we have a counter that allows us to determine the number of the events that pass
them. If an event is analyzed and its variables pass all the cuts, this event passes
to the following procedures. In this case the event is counted in all the coun-
ters. If, viceversa, a determined cut is not respected, the event is rejected and
the counting operation is interrupted in the last passed cut. All the operations
requested are done with the configuration program, as saving on a file or filling
a histogram.

- TSel ector:: Term nat e: This function is called at the end of variables
reading of all the events. It performs the conclusive operations as closing a file,
drawing histograms, showing at screen the number of the events after all the cuts
and so on.

Cause different analyses differ essentially for the variables and for the cut values
on them, from the description given for the methods, we can guess that the method that
should be much more personalized is Pr ocess. For all the other functions is possible
to realize a model for the selector which we can refer to.

4.6 Fitting program: MIFIT

As we said in the previous sections, we use an unbinned extended maximum likelihood
(ML) fit in our analysis. After the events selection describer in the section 4.5, we
prepare an input file (in .root format) to the ML program with the events we want to
fit. This program, developed in Milan group by Alfio Lazzaro in C++, is called MIFIT.
It uses the ROOT and RooFit classes, but it is a standalone executable code. For the
work of this thesis we have used MIFIT version 3.0. Essentially, the main goal of
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the program is to provide a very simple interface to perform several operations used
in the different analyses. It is not requested any skills about ROOT and RooFit, but
any configuration of the program is given using an intuitive configuration text files:

mipdf.cfg and mifit.cfg. The first file is used when we make the PDF plots of the
variables while the second one for any other function of the program. The structure
of the two files is very similar but to avoid any confusion about them we decide to

consider the operation of PDF plots as different from the other ones and therefore we
use two different files.
MIFIT is based on four main classes:

1. MFConfiguration: the goal of this class is to read the configuration file (mipdf.cfg
or mifit.cfg) and to interpret it line by line. If no errors occur (there is a syn-
tax spelling and declarations consistence check), it provides to other classes the

necessary informations to declare objects requested in the configuration reading.
The configuration file is divided in different parts:

config: they are fixed some features as title for each PDF, best candidate
choice selection criteria, number of BB pairs, blind procedure parameters

embedded tree: some tests (called toy experiments) require the generation
of a sample of data from PDFs, so, we add some events taken by an external
sample. In this part we declare these MC samples and the number of events
to embed to the generated sample.

input: they are listed all fitting variables. Definition sintax is given by:
name (same name of the variable in the ntuple), description, definition in-
terval used to normalize the PDF and eventually unity of measurement.

category: there are written the discrete variables used for tagging informa-
tions (tag and category) and indices of different sub-decays.

correction: the PDFs obtained fitting on MC data have small discrepancies
with respect to what we could obtain from the real data. This is due to a not
good MC simulation. For example, in some cases the resonances masses
have a small difference in the central value and in the width. Using a con-
trol sample, we study this effect and we take it in account applying correc-
tions to the parameters. In some cases, this corrections are run-dependent,
i.e. they are different for each run of data. In this part of the configuration
file we declare these run-dependent corrections.
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e pdfparam: here we consider the declared PDFs parameters fixed in the fit.
Sintax is: name of the variable, fixed value, error value and eventually the
unity of measurement.

e floatpdfparam: we consider the declared PDFs parameters floating in the
fit. There are some options that we can consider for each parameter de-
clared here: constant, if we want that the parameter didn’t change from the
initial value, and blind, if we want that parameter was blinded.

e KEYSpdf: in this section we declare the KEY Spdf (aka “Kernel Estimating
Your Shapes”™) is a non-parametric PDF that describes a distribution empir-
ically, without referring to any model of the expected shape. In some cases
it is difficult to fit a distribution with a standard PDF so this kind of PDF
helps us in doing it.

e pdf: here we define the PDFs used to fit variables. They exist several
kind of avalaible PDF: more common used ones are gaussians (single, dou-
ble and triple), asymetric gaussians, polinomial and Chebychev polinomial
(first, second and third) and combinations of these ( for example gaussian
plus a first degree polinomial). For each PDF we must give the name of the
variable to fit (declared in input section) and the names of the parameters
(declared in pdfparam and in floatpdfparam). In this section we declare
also the resolution models for Time-Dependent analysis.

e CPpdf: here we declare the PDFs for the Time-Dependent analysis. These
are special PDF because they have as input parameters also the B tagging
discrete variable (declared in category section) and the resolution model
(declared in pdf).

e yieldvar: we declare here the variables which correspond to the numbers
of the events for each species (signal and background).

e extendedpdf: in this section we consider the product of the PDFs declared
in KEYSpdf or pdf section to obtain the total PDF for each species (sig-
nal and background) times the correspondent yield variable, declared in
yieldvar.

e fitpdf: the PDFs declared in extendedpdf are summed to obtain tht final
extended PDF for the fit.
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o simfitpdf: in this sectionwe declare special PDFs for simultaneous fit, i.e.
fit of different categories of events or different sub-decays. It is possible,
using a discrete variable (called label), to assign a different label value to a
fitpdf PDF. It is also possible to have a simultaneous PDF of simultaneous
PDFs and so on.

2. MFDataFile: this class performs the reading of input events from the ROOT
files. It verifies the correspondence between declared variables in input and cat-
egory sections and the variables of the tree in the ROOT file. If no errors occur,
it performs final cuts on such input variables, the best candidate choice selection
(if requested) fpr events with multiple candidates (we can make a random selec-
tion or using a best y? selection), calculate the correlation matrix for the input
variables, write in an output file two sample: first one after the applied cuts and
the other one after best choice selection (corresponding to the final sample for
the fit).

3. MFModels: this class instances all PDFs declared in the section KEYSpdf, pdf,
CPpdf, extendedpdf, fitpdf, and simfitpdf. It controls if the number of parameters
for each PDF is correct. This class performs also the generation of events from
PDF and the drawing of one PDF.

4. MFFits: the goals of this class is to perform ML fits for one variable or extended
ML fits for yield extraction. In this class we also have defined the toy experiment
procedures, upper limits calculations, likelihood function plots, contour plots of
the likelihood function, and output of the fit results.

Now we will describe some functions of MIFIT. Further description can be found in
the web page

http://pcbabar4d. m.infn.it/lazzaro/ M Fi t

4.6.1 Making PDFs

After launching MIFIT executable, the program shows a text menu. The option “1”
allows us to perform a fit of the distribution of one variable. After reading the con-
figuration file (in this case mipdf.cfg), if no errors occur during the configuration file
reading, the program asks which variable we want to use in the fit. At the end of the
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fit, the plot is visualized for the fitted variable, with overimposed the PDF, the values
of the PDF parameters and the x2 value. We can choose the number of bins for the
distribution (just a graphical reason because the fit is unbinned) and the logarithmic
scale for the y-axis. The parameters of the PDFs can be copied in the file mifit.cfg to
perform the rest of the analysis.

4.6.2 Making Fit

The option “2” of MIFIT is used to perform extended ML fit for the determination of
the number of events for every hypothesis. Of course in the fit we can determine other
parameters of the PDFs which are floating (like S and C'). After choosing the option
“2”, MIFIT asks (in order):

- if we want to apply correction for MC/data matching. This facility is requested
if in the configuration file we have declared PDF parameters with MC/data cor-
rections.

- if we want the results of the fit in blind or unblind mode.
- the extended PDF (declared in fitpdf or simfitpdf) to use.

When the fit is completed, the results are shown.

4.6.3 Making Toy Experiments

The third option of MIFIT is useful to study the causes for biases and correlations with
respect to the results. In other words, we want to verify all the hypotheses done on the
PDFs and the lack of knowledge on the parameters. That’s why we use a statistical
technique called “toy experiments” generation. In this method we generate several
samples of data (with the data generated from PDFs or taken from MC samples) and
we fit on them. Cause we know the composition of the sample (how many signal and
background events are inside it), we expect that the distribution of the results of the fits
should be a Gaussian distribution with central value as used in the generation of the
events. Eventually, biases in the mean of the Gaussian used to fit the distributions of
the results are considered as systematic effects. We can decide also to correct the final
results in the fit on real data to take in account these biases. These studies are applied
to the number of events and to the parameters .S and C.
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4.6.4 Making Projections

The option “4” of MIFIT allows to draw projections of variables. In this case is nec-
essary to work in two steps. First of all, if we want to project a variable X, we need
to emphasize the signal in the data sample with respect to the background. For this
reason we apply a cut on likelihood function L, evaluated without the x variable. So,
the first step consists in the evaluation of the cut value on L: we use a sample of signal
events and a sample of background events to optimize this cut. After that, the second
step is to apply the cut to the data and then show the distribution of the variable with
the signal and background PDFs superimposed.



Chapter 5

Event reconstruction

5.1 Particles identification and reconstruction

To study B° meson decay in n' K, with o’ decaying in py and nr* 7~ (n in v v and
n in 77~ x%), are very important a correct photons identification and charged tracks
reconstruction. In the following paragraphs it will be shown methods used to verify
the detector reply and to identify particles inside BABAR.

5.1.1 Control Sample

A “control sample” is a high statistics data sample useful to study resonances. Data
coming from “control sample” have been used to some goals:

- study of the reply for the subdetectors,
- evaluate the performance of the algorithms for the particles identifications,
- estimate systematic uncertainties.

Pure samples of a particle are selected using only kinematical informations. For
example, a pure pions sample is selected using

K% — ntr

decay channel and applying tighter cuts on several variables as: angle between K7
candidate direction and the direction of the decay vertex, the distance of the vertex
from interaction point and the mass of reconstructed K candidate.

97
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Figure 5.1: Mass distribution for K candidates used to select pions control sample.

Invariant mass distribution of === pairs is shown in the Fig. 5.1: purity of the
sample is greater than 99%.

For a K mesons data sample with a very high purity, we can use selected tracks
coming from the decay chain

Dt - 7tDY DO — gt K~

and its charge conjugation. In the Fig. 5.2 it’s shown the distribution of the mass
difference between K7 and Kn, 0.139 < AM < 0.162 GeV/c?. With a tight cut on
this variable, the combinatorial background is equal to 13% for a kaons sample with
90% of purity.

5.1.2 Track reconstruction

Please see Sec. 2.6 for more details.

5.1.3 Electrons

Inside BABAR detector, electrons are mainly divided by charged hadrons through en-
ergy, lateral momentum of the shower and tracks momentum. To obtain a better preci-
sion, we have to check that energy loss dF /dx in the drift chamber and the Cherenkov
angle of DIRC will be consistent with electron hypotesis. One of the most impor-
tant variables for hadrons discrimination is the ratio between the energy left in the
calorimeter and track momentum (£'/p).
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Figure 5.2: Distribution of mass difference for D* and D° candidates, used to select
kaons control samples.

Fig. 5.3 shows efficiency for the electrons identification and probability of an un-
correct pions identification; both of them are function of the momentum and the polar
angle, measured in the lab frame. Efficiency for electrons identification has been stud-
ied using electrons coming from radiative Bhabha and events vy — 4e. Probability of
an uncorrect pions identification is measured using 7 three body decays and charged
pions coming from K? decay.

Selection criterium tight has an average efficiency of 94.8% in the momentum
interval 0.5 < p < 2 GeV/c while probability of an uncorrect identification is ~ 0.3%.
With very tight criterium, the efficiency is 88.1% with an average uncorrected pions
identification of 0.15%.

5.1.4 Muons

Muons identification is performed almost completely in the IFR, other detectors fur-
nish only additional informations. Charged particles are reconstructed in the SVT and
DHC; u candidates should satisfy criteria for particles at minimum ionization energy
in the EMC. Charged tracks, reconstructed in the drift chamber, are founded using a
detailed map of the not uniform magnetic field and evaluating the expected average
energy loss. The average position of the intersections with active plans of the detector
is calculated including the uncertainty due to multiple scattering.

To divide muons from charged hadrons, mainly pions, it’s applied several selection
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Figure 5.3: Efficiency of the electrons identification and probability of a uncorrect
pions indentification vs momentum (top) and polar angle (bottom).
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criteria. First of all, found hits in every reading plan, within a maximum distance from
studied intersection point, are linked with charged tracks. Then, inside acceptance of
the calorimeter, we usually cut on left energy, asking for such a loss of consistence
with the expected one for a particle at minimum ionization energy. It’s requested the
presence of a signal in at least two layers in the IFR, and then we apply a cut on total
number of interaction lenghts run in every subdetectors; we have to compare this value
with the number of interaction lenghts given by a muon with same momentum and
angle. Mean value and r.m.s.* for the strip pattern through different layers furnish the
w/m discriminant power.

Muon selector performances have been evaluated on real data sample; for muons
have been considered puee processes and iy in the final states, instead for pions
sources, 7 three body decays and K0 — wtn~. Selection of the control sample is
based on kinematical variables and not on used variables for muons identification. The
selector with loose criterium reaches an efficiency of 90% in the momentum interval
1.5 < p < 3.0 GeV/c with an uncorrect pions identification of 6-8%. Tighter selection
criteria halves uncorrect hadrons identification and give us an efficiency for muons of
80%.

5.1.5 Photons

Photons identification is performed inside EMC. Usually an electro-magnetic shower
is distributed on many adjacent crystals forming a cluster of a certain left energy. We
can distinguish two kind: single cluster with a single energy maximum and merged
cluster where we have more local energy maxima called bumps. The reconstruction
and the identification algorithm has been developed in a way to identify efficiently the
clusters, distinguish them from bumps and determine if they are generated by a neutral
or charged track.

A cluster has at least one crystal with energy greater than 10 MeV and the adjacent
crystals are considered part of a cluster if their energy exceeds the 1 MeV threshold.
To establish the local energy maxima inside a cluster it’s requested that candidate crys-
tal would have an energy, E.canqz, greater than every adjacent crystal. Furthermore
it must be verified the following condition: 0.5(N — 2.5) > ELEN# where Enaraz 1S

the maximum energy for N adjacent crystals with energy greater than 2 MeV. All the
clusters are divided in many bumps in the same number of local maxima. The energy

! Root mean square (standard deviation).
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Figure 5.4: Efficiency for muons identification and probability of an uncorrect pions
identification with loose selection criterium versus momentum (top) and polar angle
(bottom) with 1.5 < p < 3.0 GeV/c.
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for every crystal is associated with each bump with a simultaneous adjustment, start-
ing from the shape of electro-magnetic shower, the centers and energies of the bumps.
Then all the reconstructed charged tracks in the tracking volume are estrapolated until
the EMC entrance and for every track-bump pairs is evaluated the association proba-
bility. All the bumps with a low probability are considered photons candidates. A little
percentage of these candidates is rejected if the shape is not compatible with the one
expected for an electro-magnetic shower.

In this analysis have been used photon candidates with a total energy left in the
EMC greater than 50 MeV in the n — ~v decay while greater than 100 MeV in

n — py.

5.1.6  Mesons 7" and » reconstruction

Neutral pions and n mesons are formed starting from photons pairs (or three pions in
the case of  — 7% 7~) and we assume as their origin the primary interaction point.
The spectrum of the invariant mass for the v pairs is shown in Fig. 5.5 for different
E, and E.,, ranges; it’s possible to distinguish peaks for 7° and 7. The mass resolution
for 70 is 6.9 MeV in the multi-hadronic events while 6.5 MeV for 77 events.

The detector segmentation and the spatial resolution allow to reconstruct 7° with
the EMC photons separation until 5cm without a significative worsening in the mass
resolution. The little fraction of high energy «° in which we cannot separate the pho-
tons, about 10% in the 4-6 GeV region, are distinguished through single photons with
the help of the cluster shape.
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Figure 5.5: Mass spectrum for v~ pairs in the hadronic events in the 7° and 7 regions.
E,>30 MeV, E,., >300 MeV (top), £, >100 MeV, E,, >1 GeV (bottom).
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5.2 BY — 'K event reconstruction

All event selections make use of BABAR’s (2Body user package. The results are
obtained with the anal ysi s- 21. Charged tracks and electromagnetic showers iden-
tified by the detector are combined to form particle candidates using tools from the
Conposi ti onTool s package.

52.1 =Y

Two photons taken from the GoodPhot onLoose list are combined to form a 7° can-
didate, kinematically fitted to the true pion mass, using the standard tool
Pi 0ToGG Def aul t Mass. We made a cut on unfitted mass between 0.100 and
0.155 GeV/c?.

522 p°

The p° mesons have been reconstructed using the standard tool
RhoOToPi Pi _Def aul t. As input list we used GoodTr acksLoose with all the
charged particles considered as pions. p° candidate mass was required to be between
0.470 and 1.000 GeV/c?,

523 mny,

The 1 mesons have been reconstructed in 7 — ~~ decay channel by using the standard
tool Et aToGG _Def aul t Mass. Input list is the GoodPhot onLoose for the two
photons. The 7., mass is kinematically fitted to the true » mass, and the unfitted mass
is cut between 0.470 and 0.620 GeV/c?.

5.2.4 LIRT

The n mesons have been reconstructed in n — 7 7~ 7% decay channel by using the
Et aToPi Pi Pi O_Def aul t module. Input list for charged tracks is the
GoodTr acksLoose list with all the charged particles considered as pions. The 73,
mass was cut between 0.470 and 0.620 GeV/c>.
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525 n,,

The n’ mesons have been reconstructed in n” — p°y decay channel by using the
Et aPToRho0G_Def aul t. The photons have been taken from GoodPhot onLoose
list. The 7/, candidate is accepted if the mass is in the interval 0.900 — 1.010 GeV/c>.

526 1.

The i’ mesons have been reconstructed in ” — nr* 7~ decay channel with n —
or n — w7~ 7° by using the Et aPToPi Pi Et a_Def aul t . Input list for charged
tracks is the GoodTr acksLoose list with all the charged particles considered as pi-
ons. The 7, . candidate is accepted if the mass is in the interval 0.900 — 1.010 GeV/c?.

527 K9 — mwtm-

The K2 — 77~ candidates come from the KsDef aul t input list. Beam spot is used
in the selector, three dimensional flight distance from the event primary vertex > 2 mm
and two-dimensional angle between the line-of-flight and momentum vectors < 40
mrad. We applied a cut of 0.010 GeV/c? around the nominal mass of K9 (0.488 —
0.508 GeV/c?) (See Fig. 5.6).

5.2.8 Kg — 7070

The K9 — %70 candidates come from KsToPi OPi OLoose list (input list was
GoodPhot onLoose for gammas and Pi 0ToGGDef aul t Mass for pions).

For the K2 — #%7° the decay point is chosen at the origin, the angles between gammas
are understimated which leads to too low invariant masses, so the K decay vertex is
fitted along a line of the initial momentum using a decay position of »’ as a geometrical
constraint using the Wal kFi t vertexing algorithm. We applied a cut of 0.030 GeV/c?
around the nominal mass of K? (0.468 — 0.528 GeV/c?) (See Fig. 5.6).
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Figure 5.6: K mass plots for neutral pions (left) and charged pions (right).
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5.2.9 B candidates

The neutral B® — ' K? candidates have been formed combining »’ and K candi-
dates and for the charged B* — K+ combining n’ with a charged track form the
GoodTr ackLoose list. For the B selection we made some preliminar cuts specific
for a quasi-two body analysis: a cut between 1.9 GeV/c and 3.1 GeV/c on the mo-
mentum of the B daughters (n" and K mesons) in the B rest frame and a cut on B
mass between 4.7 GeV/c? and 5.7 GeV/c?. Other cuts will be described in detail in
the Chapter 7 after describing the discriminant variables used in the analysis.



Chapter 6

Discriminating variables

6.1 Introduction

In this chapter it will be described the discriminating variables used to separate signal
from background events.

It will be considered kinematical and topological variables linked with spatial struc-
ture of the events. This analysis present two different kind of background: con-
tinuum background ete~ — ¢g (¢ = u,d, s, c) and the background coming from
ete” — bb — BB events with charm or charmless final states.

At Y(4S) resonance energy, we have a number of e*e~ — ¢g events abouth three
times with respect to BB events. The ¢g continuum background can be studied using
collected data under the resonance (off-peak data), while the study of 55 background
using simulated data with Monte Carlo method.

Topological variables furnish a separation between BB events and the continuum
background ones; kinematical variables allow us to discriminate signal from BB back-
ground and further by the continuous one.

6.2 Topological variables

From the kinematical study of ete~ — ¢g we deduce that background and signal
events have a different geometry. Cause beam energy in the center of mass (CM) is
equal to 10.580 GeV, kinetical energy at c¢ or uw@, dd, s5 (uds) pairs’ disposal is
very high: the event jets will be almost anti-parallel between them. In the case of a

109
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process ete~ — T(4S) — BB the kinetical energy for B mesons will be low, so,
the event will be much more isotropic. Topological variables used in the background
discrimination are:

- cosine of the thrust angle, cos O+

- Fisher discriminant

6.2.1 The 61 angle

The thrust axis is defined as the following expression:

T = max 7= (6.1)
with p;, particles momenta used to calculate it and 7 is versor that maximizes the value
of thrust T. 61 is the angle between the thrust axis of the B candidate and the thrust
axis of the rest of the event, calculated in CM frame. The cos 61 variable has a nearly
flat distribution for B candidates while is sharply peaked at 4+1 for continuum back-
ground events (Fig. 6.1). The | cosét | < 0.9 condition has been applied in the cuts
during the events reconstruction. This cut allows us to lose a big amount of continuum
background with a loss of signal event efficiency of 10%.
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Figure 6.1: |cosfr | : comparison between off-peak data and Monte Carlo signal
events.
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6.2.2 Fisher discriminant

For every reconstructed event we need to decide if it agrees better with signal or back-
ground hypotesis. To do that, we introduce a statystical test t(x), function of several x
event variables. Such a function will have different distributions for those two hypote-
Ses.

The simplest choice is represented by Fisher discriminant that is a linear combina-
tions of more variables:

where «; coefficients are chosen in the way to maximize the separation between F
distributions in signal and background hypoteses. In the variables choice we consider
quantities that furnish us informations on spatial shape of the event.

For the CP time-dependent analysis we used a F Fisher discriminant with four
variables: the absolute value of the cosine of the angle between the B direction and
the beam axis, the absolute value of the cosine of the angle between the thrust axis of
the B candidate and the beam axis, the two monomials L, and L, with L,, defined as
[26]:

= 3 pix|cos(8y)]" (6:3)

1=ROE
where the sum is over the list of the rest of event (all tracks and neutrals which do
not belong to the B candidate), p; is the momentum of particle 4, and 6; is the angle
between the direction of particle ¢ and the thrust axis of the B candidate. We called
this variable F ;op (“Legendre Fisher”). It was noticed that F ;. p is correlated with
the tagging category. The Tag04 tagging algorithm is designed to tag the flavor of
the B in two stages: first of all the information relative to a particular physics precess
are combined in a Neural Network to obtain a sub-tagger; then all the sub-taggers are
combined in a larger Neural Network that determines the probability for the entire
event. Based on the output of the various neural nets, each event is assigned to a
physics category. The algorithm uses 9 input sub-taggers and has 6 output Physics
Categories:Lepton, Kaon I, Kaon Il, Kaon&Pion, Pion, Others . Lepton contains the
events in which flavor identification is possible through a lepton identification or if
present a kaon. Events with kaons or weak pions with opposite charge but similar flight
direction are assigned to Kaon | category. Events with only a kaon tag are assigned to
Kaon I or Kaon Il category following the probability of an uncorrected identification.
Kaon Il category contains the residual events with a weak pion. Kaon&Pion category
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has events where both a charged kaon and a slow pion candidates are present. Tag
is assigned by requiring a kaon and a slow pion tag with agree (i.e. the kaon and the
slow pion candidate must have opposite charge) and additionally exploiting the angular
correlation between the two tracks. Events coming from slow pions are assigned as
Pion category. All the other events are assigned to Others category or excluded no Tag
if the probability of an uncorrected identification is too high. In order to remove this
correlation, a new variable (F o4, “Legendre-Tagging-Category Fisher”) was defined
as a linear combination of F ;p and the tagging categories. This variable was used
in the analysis whose results was sent to ICHEPO4 [15]. For the published results [16]
we have decided to use a new definition of F 1o, (called F 7,,) where the category is
not in combination but it is based on a category by category correction.

Definition of F g4

The purpose of F 1o, IS to remove to first order the correlation between the shape
of the Fisher distribution and the tagging category. The correlation is illustrated in
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Figure 6.2: Variation of the mean of a bifurcated Gaussian fitted to the F ;op dis-
tribution for each Tag04 tagging category, for signal MC (left) and onpeak sidebands
(right). Category 69 is the untagged category.

Fig. 6.2 for the mode B* — 5 K. The plots show the fitted mean of a bifurcated
Gaussian to the F ;p distribution for each Tag04 tagging category, for signal and
continuum background. A polynomial of degree 1 is fitted to the distributions, showing
the different slope for signal Monte-Carlo and background (defined here as the onpeak
sidebands: Mps < 5.27 GeV/c? or 0.1 < |AE | < 0.2 GeV).

Since the data sample is dominated by continuum background events, the corre-
lation in continuum is most important to remove. We therefore use the parameters
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from the onpeak sideband to reduce the effect. We checked that the slope of the fit

to the variation of the mean is compatible among all four B — »' K modes (1}, K™

—0.077 £ 0.019, i, K1 —0.062 & 0.004, n;mKO: 0.052 £+ 0.027, n;,YKO: 0.056 +

0.007). We take the weighted average as our correction value: —0.0604 + 0.0036.
Finally, we define the new Fisher variable F 1y, as

F T04 — F LGD + 0.0604 - Cat(Tag04) — 4067 (64)

where Cat(Tag04) is the Tag04 category of the candidate (Cat(Tag04) = 63 — 68
for tagged events, and is set to 69 for untagged events), and the constant —4.06 is an
arbitrary factor.

Properties of F o4

We describe here checks that were made to validate the new F 7¢,. We checked that
the correlation between the F o, mean and the tagging category was indeed reduced
for continuum. Fig. 6.3 shows the fitted mean of a bifurcated Gaussian to the F 1, dis-
tribution versus the Tag04 tagging category. The correlation for continuum is clearly
small compared to F ;5p. The increase in the correlation for signal was checked to
be negligible for the purpose of the ML-fit [27], and this will be checked again with
toy Monte-Carlo sample.
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Figure 6.3: Variation of the mean of a bifurcated Gaussian fitted to the F 1, distribu-
tion for each category, for signal MC (left) and onpeak sidebands (right).

Finally, we determined directly from the data the correlation between F ¢, and
the Tag04 tagging category. For all ' K modes, we obtain the raw correlations given
in Table 6.1. For comparison, we show both the correlations for F ;op and F 14, and
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for signal MC (SIGMC) and onpeak side-bands (ON-SB).

Table 6.1: Correlation between F rcp, F 104 OF F 7y, and the tagging category
Cat(Tag04), for signal (SIGMC) and onpeak sidebands (ON-SB).

Correlation of Cat(Tag04) and
Mode Data fLGD fT04 flTO4
mKJ [SIGMC | % % %
ON-SB | —12.1% | +5.9% | +3.1%
%Kg SIGMC | +1.6% | +21.5% | +14.8%
ON-SB | —13.7% | +2.6% +1.0%
Mo KT [ SIGMC | +1.3% | +21.0% | +14.6%
ON-SB | —17.1% | +0.2% —2.1%
Kt [ SIGMC | +0.3% | +20.0% | +13.9%
ON-SB | —15.4% | +1.1% —0.2%

We conclude that the dominant correlation between the Fisher discriminant and the
tagging category is removed for continuum with the variable F 7.

Definition of F 7.,

Like for F 14, the purpose of F 7.,, is to remove to first order the correlation between
the shape of the Fisher distribution and the tagging category. The correction is done on
a category by category basis. For each tagging category, we shift the value of F ;qp
such that the distribution for all category have the same average.

We define the new Fisher variable F /-, as

Fros = F rap + 6(Catragos), (6.5)

where

d(Catragos = 0) = +0.106,
§(Catragos = 63) = +0.010,
§(Catragos = 64) = —0.294,
§(Catragos = 65) = —0.070,
§(Catragos = 66) = —0.005,
( )

) CatTago4 =67 = —0024,
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5(CatTag04 = 68) = +OOO8

Properties of F /-,

We checked that the correlation between the F 7.,, mean and the tagging category was
reduced for continuum. Fig. 6.4 shows the fitted mean of a bifurcated Gaussian to the

o4 distribution versus the Tag04 tagging category. The correlation for continuum
is clearly small compared to that of F ;p, and the mean is also more constant over
categories than it is for F 14. The residual variations come from the fact that the plot
shows the mean of a fitted bifurcated gaussian while the correction was determined
from the average of the distribution for each category.
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Figure 6.4: Variation of the mean of a bifurcated Gaussian fitted to the F /., distribu-
tion for each category, for signal MC (left) and onpeak sidebands (right).

Finally, we determined directly from the signal and onpeak sideband data the corre-
lation between F /., and the Tag04 tagging category. For four ' K modes, we obtain
the raw correlations given in Table 6.1. The correlations for both signal and onpeak
sidebands are improved relative to that for F 7.

We conclude that the dominant correlation between the Fisher discriminant and the
tagging category better removed with the variable F 7.,,. Furthermore, the correlations
in signal are significantly reduced relative to F 704 (~ 14% VS ~ 21%).

6.3 Kinematical variables

The B candidates, coming from e*e~ — Y (4S) — BB reaction, have been character-
ized kinematically by AE and Mgg . The invariant AE' is defined as the difference
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between B candidate energy and beam energy, calculated in the CM:

29yas)qB — S
AE = ——2——— 6.6
N (6.6)
where gy(s) and gp are four-momenta of the T (45) and the B candidate. In the
Fig. 6.5 we can see that AE presents a gaussian distribution for the signal events
while linear for the continuum background.
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Figure 6.5: AFE : comparison between continuum background (off-peak) and Monte
Carlo signal events.

Other kinematical variable is the B candidate mass that has a little correlation with
AFE . The Mgg isthe beam-energy substituted mass, computed in the LAB frame and
independent of mass hypotheses assigned to B candidate daughters:

2 + fris) - 7s)?
s = [ LT B o
T(45)

where s = (gr(s))? is the square of the CM energy, pr(s) and pp are three-momenta
of the T'(45) and the B candidate in the LAB frame and Exs) = g, is the energy
of the T(4S5) in the LAB frame. The comparison between Mg distributions for
signal and background are shown in Fig. 6.6; in the background events M s has been
described through ARGUS [24] function:

F(2) = Ca\J1 = (Mps/ Bjpuy)? € S0 05/ Bacio)®), (6.8)

fascio
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where C'is a normalization factor and £ is a shape parameter.
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Figure 6.6: Mpg variable distributions for off-peak background events (dashed line)
and Monte Carlo signal events.
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Chapter 7

Signal yield extraction and
measurement of CP time-dependent
asymmetry in the B — ' K decay

7.1 Introduction

In this chapter will be presented the analysis for the signal yield extraction and mea-
surement of CP time-dependent asymmetry in the B — n’'K decay. In this decay
channel we consider the following sub-decays of r’ and K2 mesons:

- p/in prr and py withn — yyand n — 7977~
- K2in KY — ntr~ and K9 — 7070

We consider as main sub-decays the ones with »’ in pvy, n(yy)rr and K2 — 77~
because they have a higher statistics. In this thesis work our goal is to add events from
sub-decays with r’ in (777~ )7mr and K2 — 797° to increase the number of signal
events used in the Time-Dependent CP violation analysis. So in this thesis we have
studied the following decays:

- B® — Y K2 with o/ in prrmr (nin 7%t 7)) and KO in w7
- B — Y K2 with o’ in p%y and K? in 707°

- B — Y K2 with o' in nmr (n in ) and K9 in 7070

- B* - ¢ K* with ' innrr (nin 7% +77)

119
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These channels are interesting for the CP violation studies: the tree diagrams con-
tribution is expected to be little and so the interference between these diagrams and
the penguin ones can allow CP violation. The difference between the measurement
of CKM matrix phase obtained by these channels and the one obtained by charmed
channels can be considered as evidence of new physics. The analysis has been done
through extended maximum likelihood technique (EML) and it’s divided in two steps.
In the first step we determine the signal event number in the on-peak sample. In this
case tagging and At informations aren’t used to avoid any result alterations. Before
extracting the number of signal events we have to choose useful variables, optimized
cuts, corrections, PDFs etc.: this is a very important part of the analysis. Once obtained
the number of signal and background events, we determine the .S and C' parameters. In
this second step we introduce tagging and At informations and the B mesons decay
rate PDF. The result of the fit is represented by mean value and by the errors of .S and
C parameters.

The analysis, following collaboration choices, has been done in two parts. First one
consists in a blind phase where all decisions are taken without operating on data we
want to extract signal yields. Then, we pass to the second (unblind) phase, where we
analyze the taken data at the T (4S) resonance energy (onpeak) and it’s not possible
to modify all the things done before. This way to work can erase the possibility to
introduce distortions in the results due to prejudices or corrections to push results in
a predefined direction. For the measurement of CP time-dependent asymmetry in the
blind phase we analyze onpeak sample to determine statistic and systematic errors.
The blind procedure in this case consists in moving of a certain unknown quantity the
results obtained by the fit for both C'P-violating S and C' parameters, leaving the same
errors.

In August BABAR measured these terms and they had been submitted to ICHEP2004 [15]:

Sy ry = 027+0.14 (stat) = 0.03 (syst) Sy k+ = —0.10=£0.07 (stat)
Cyry = —021+£0.10 (stat) £0.03 (syst) Cy k+ = —0.054+0.06 (stat)

All the results obtained and described in this chapter have to be contextualized in the
Milan working group on behalf BABAR collaboration; analysis of these decay channels
is described in B.A.D.(Babar Analysis Document) #907 [29] and in B.A.D. #906 [28].
These results have been presented at “Meeting of APS, Division of Particles and
Fields”, Tampa FL(USA), April 16th 2005.
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7.2 Datasample

The analysis presented in this work is based on the data taken by BABAR in the period
1999-2004 (“Summer2004” sample composed by Runl-4). Results in this thesis are
based on the following samples:

e On-resonance data:

— 210.9 fbo 1, (232.0 + 2.5) million of BB pairs.
e Off-resonance data:

— 117 fb L.
e BB Monte Carlo:

— 206.6 millions events for the B'B".

— 207.4 millions events for the Bt B~

e Signal Monte Carlo: statistics used for the different modes can be seen in Ta-

ble 7.1.
n;),ng (K2 — 7979) ng(w)ng(K(s) — 07Y) ng(gﬂ)ﬂﬂKg(Kg — ) 77;7(37F)W7TK+
65000 67000 96000 105000

Table 7.1: SP6 Monte Carlo signal events

7.3 Extended maximum likelihood analysis

7.3.1 Input to Maximum Likelihood

An unbinned multivariate maximum likelihood (ML) analysis has been done, using
MiFit [30]. The events, after the initial selection with the reconstruction cuts described
in the Sec.5.2, are selected with further cuts. We summarize all cuts to produce the
input to maximum likelihood. All the energies and momenta are given in the lab
frame. The cuts done at ntuple level are:
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the B — 1 K decay

a minimum number of charged tracks in the event equal to the number of charged
tracks of B candidates plus 1;

|cos Ot | < 0.9;

E, > 0.050 GeV for for n — ~v, E, > 0.030 GeV for the v in 7 and
E, > 0.100 GeV forn' — p%;

525 < Mgg < 5.29 GGV/CQ;
IAE | < 0.2 GeV;
Charged tracks from 7’ candidates satisfy electron, kaon and proton vetoes;

7% mass between 0.120 and 0.150 GeV/c? (between 0.100 and 0.155 GeV/c?
for K — 707 analysis) ;

Eo > 0.200 GeV,
p° mass between 0.510 and 1.000 GeV/c?;

for K2 — 77~ we consider K mass between 0.486 and 0.510 GeV/c?, fit
probability x> > 0.001 and flight lenght > 30; for K2 — 797 analysis, K?
mass is between 0.468 and 0.528 GeV/c?;

the p° helicity H) = cosfy (cosine of the vector meson’s rest frame decay
angle of a pion respect to »' flight direction) with |} | < 0.9;

n mass between 0.490 and 0.600 GeV/c? for n — ~y GeV/c? and between
0.520 and 0.570 GeV/c? forn — nra—7?;

n’ mass between 0.930 and 0.980 GeV/c? for 7 — p%y and between 0.945 and
0.970 for ' — nntn—;

Fisher discriminant: —4 < F <5

The cuts done for Time Dependent analysis are:

|At] < 20 ps;

oar < 2.5PpS;

For charged B we have also done at ntuple level the following cuts:
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e bachelor track satisfies electron and proton vetoes;

e number of measured DIRC Cherenkov photons (/V,) for bachelor track at least
equal to 5;

e kaon DIRC hypothesis pull (pullK) inside the range [—5, +2]. The pulls have
been corrected for momentum, polar angle, charge and run number dependences
with a prescription for DIRC thetaC resolutions and offset from expected values
for kaons and pions [31]. We show in Fig. 7.1 the DIRC pull for n;WKi and
7" for kaon hypotesis. In the distribution the area has been normalized to 1
and we applied a cut between [—6, 6]. This pull has been cut between [—5, +2]

0.05

0.04

0.03

0.02

0.0

=

[=2]
L.
N-
o

Figure 7.1: DIRC pull for Bt — 1/ Kt (black solid line) and B* — »’z* (red dashed
line) in kaon hypothesis.

for pion and badly reconstructed candidates rejection.

If an event has multiple combinations, the program selects the best one using a \?
quantity computed with »’ mass and also n mass in the n7 7~ modes.

All efficiencies after successive cuts are shown in Table 7.2, Table 7.3, Table 7.4,
Table 7.5.

7.3.2 “Self-Cross-Feed”

Due to the presence of neutrals and soft tracks, some of the signal events are misre-
constructed: it could happen that there is a permutation between two tracks or gammas
coming from signal events (denoted as PP) or a particle reconstructed taking a fake
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‘ Signal MC ‘ on-res ‘ off-res ‘ BtB~ ‘ BB’
# Events Generated or Integrated Luminosity
| 65000 | 1108 fb~' | 11.7 fb~' | 32.3-10° | 64.5-10°
# Candidates after the preliminary cuts
| 19684 | 164618 [ 17517 | 1371 | 1488
Candidates after the following cuts (%)
e K, p vetoes 95.61 64.01 63.93 51.13 59.74
0.510 <m0 < 1.000 GeV/c? 98.66 91.22 91.52 94.29 91.23
0.468 < myo < 0.528 GeV/c? 84.52 61.83 62.10 60.21 62.89
0.100 < m,o < 0.155 GeV/c? 100.0 100.0 100.0 100.0 100.0
pro > 0.200 GeV/e 98.20 95.05 94.93 91.71 96.08
E, > 0.200 GeV 75.90 62.72 63.08 46.03 48.57
IHS | < 0.9 97.25 89.60 89.92 85.71 88.66
0.910 < m, < 0.990 GeV/c? 94.96 74.74 74.20 76.39 76.30
# Events Input to ML fi t (with the best candidate chosen)
| 8476 | 18270 | 1930 | 83 | 134

Table 7.2: Candidate yields after successive selection criteria in the sub-decay 7/, K9
(K% — 797Y) .

0

‘ Signal MC ‘ on-res ‘ off-res ‘ BtB~ ‘ B°B
# Events Generated or Integrated Luminosity
| 67000 | 1108 fb~' | 11.7 fb~' [ 32.2-10° | 67.4 - 10°
# Candidates after the preliminary cuts
| 21163 | 11068 | 1186 | 52 | 69
Candidates after the following cuts (%)
e K, p vetoes 97.59 73.59 73.44 67.31 62.32
0.468 < Mo < 0.528 GeV/c? 84.81 62.68 57.63 57.14 76.74
0.100 < m,o < 0.155 GeV/c? 100.0 100.0 100.0 100.0 100.0
pro > 0.200 GeV/e 98.10 95.20 94.22 100.0 96.97
0.490 < m,, < 0.600 GeV/c? 89.92 75.74 75.26 95.00 53.12
0.930 < m,y < 0.990 GeV/c? 90.96 60.42 55.62 57.89 52.94
# Events Input to ML fi t (with the best candidate chosen)
| 9774 | 1545 | 150 | 7] 8

Table 7.3: Candidate yields after successive selection criteria in the sub-decay

?7;7(77)71”#[(2’ (Kg - 7TO7TO) :
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0

‘ Signal MC ‘ on-res ‘ off-res ‘ BtB~ ‘ BB
# Events Generated or Integrated Luminosity
| 96000 | 110.8 fb~' | 11.7 fb~' | 278 -10° | 275 10°
# Candidates after the preliminary cuts
| 206691 | 9870 | 1031 | 297 | 925
Candidates after the following cuts (%)
e K, p vetoes 95.31 62.92 59.26 27.95 60.22
0.120 < myo < 0.150 GeV/c? 64.08 58.37 56.63 71.08 57.27
pro > 0.200 GeV/c 92.13 91.89 84.68 96.61 87.77
0.488 < myo < 0.508 GeV/c? 95.49 84.75 89.42 70.18 86.07
0.520 < m,, < 0.570 GeV/c? 54.28 48.07 42.75 30.00 42.74
0.930 < m,y < 0.990 GeV/c? 89.27 75.46 63.39 58.33 49.51
# Events Input to ML fi t (with the best candidate chosen)
| 17143 | 413 | 35 | 4] 25

Table 7.4: Candidate yields after successive selection criteria in the sub-decay
?7;7(37r)7r7rKg (Kg - 7T+7T—) :

0

‘ Signal MC ‘ on-res ‘ off-res ‘ BtB~ ‘ BB
# Events Generated or Integrated Luminosity
| 105000 | 110.8 fb—" [ 11.7 fb~' | 277-10° | 264 - 10°
# Candidates after the preliminary cuts
| 265168 | 99620 | 11267 | 5554 | 2808
Candidates after the following cuts (%)
e K, p vetoes 94.04 56.64 58.45 45.89 4541
0.120 < myo < 0.150 GeV/c? 63.91 58.46 57.61 61.28 62.51
pro > 0.200 GeV/c 92.17 90.87 89.62 92.64 93.60
0.520 < m, < 0.570 GeV/c2 54.44 46.04 45.76 44.92 42.46
0.930 < m,y < 0.990 GeV/c? 89.31 73.70 74.16 63.85 56.33
Ny >5 87.79 85.34 86.83 87.23 88.20
—5 < pullK <2 90.52 39.74 36.33 34.53 13.38
# EventsInput to ML fi t (with the best candidate chosen)
| 18114 | 1419 | 153 | 56 | 9

Table 7.5: Candidate yields after successive selection criteria in the sub-decay
?7;7(37r)7r7rK+'
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one from rest of event (ROE) (denoted as self-cross-feed or SXF). Since those events
still contain useful CP information, we retain and model them separately from true
signal. In Table 7.6 we summarized, after choosing the best candidate, the number of
input events, the events with fake B and an n’ or a K meson correctly reconstructed
and between them the events reconstructed with PP (gammas for K0 and pions for n
and ") and SXF.

| | Mnee K8 | Ty KS | Myamen B8 | Myamymn K |

Input to maximum likelihood
| 9063 | 9326 | 13820 | 15778
B Truth (%)
| 58.7] 56.8 | 62.5 | 61.6
Eventswith fake K and n’ correctly reconstructed (%)
32.7 33.3 1.0 0.0
PP events 14.7 14.5 — —
SXF events 18.0 18.8 1.0 0.0
Eventswith faker” and K correctly reconstructed (%)
4.1 5.0 36.0 384
PP events — — 18.0 9.6
SXF events 4.1 5.0 18.0 28.8
Eventswith faken’ and K (%)
4.6 5.0 0.6 0.0
PP events 0.6 0.9 0.2 —
SXF events 4.0 4.1 0.4 0.0
SXF fraction for al events (%)
| 26.1 | 279 | 194 | 28.8

Table 7.6: Signal input and self-cross-feed results.

For 7/,..K¢ we studied all the possible combination to reconstruct a fake K
considering PP events (the possible permutations between gammas coming from n, n’
or from the two 7° in decay K2 — 7%7°) and SXF events, i.e. a gamma taken from rest
of event. The results are shown in Table 7.7. In the last row of this table we considered
cases where a K is reconstructed taken more that one gamma from ), " or ROE.
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| e B9 | M KD

Total Input To ML Fit 9063 9326
Ks Truth (%) 62.7 61.8
Gammas Permuted (%) 15.3 15.5
One Gamma From ROE (%) 20.6 21.7
One Gamma Fromnorn' (%) 1.4 1.0

Table 7.7: K2 cross feed study
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In our ML fit we consider the two components for signal events:

e MC truth events: the sum of signal correctly reconstructed and of signal events
reconstructed with permutated gammas or pions (PP events);

e SXF events: the SXF fraction will be fixed in our fits.

7.3.3 Fit description

In our sample of events we have considered three components: signal, “self-cross-
feed” (see section 7.3.2) and continuum background. For ' — p°y sub-decay is
necessary to add a BB background component. We will indicate with the index j the
species of the event. The discriminating variables used in the fits are: Mgs, AE , F
and At . In the Tag04 tagger we have 6 tagging categories plus the untagged events
(which we call category 0)(for more details see Sec.7.4.1). We use the index ¢ = (0,
1, 2, 3, 4,5 ,6) to indicate that the event belongs to one specific category. For each
species j and each category ¢, we define a total PDF for the events i as:

Pl.=Pi(Mps") - Py(AE") - Py(F 1) - Pj(AL, oy, ) (7.1)

where the index j is the species of the event. If with ng;, we indicate the number of
signal events and with f;, . the fraction of signal events for each category, then the
number of events for each different category is:

Nsig,e = nsigfsig,c- (72)

Introducing the “self-cross-feed” (SXF) events category, we defined the fraction of
SXF events respect to total signal events as fsxx; so for each input event ¢ belonging
to a specific tag category c, the likelihood function is defined as:

Li = nsz’gfsig,c(l - fSXF)P;zg et nSingig»CfSXFPg’XF,c + nqﬁvcpéﬁ' (7.3)

We fixed in our fits SXF fractions obtained from MC studies. The extended likelihood
function for all events belonging to category c is:

.. Z Nic) Hﬁ (7.4)
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where N, is the total number of input events in category c.
Finally the total likelihood function for all categories can be written as:

£=1]c. (7.5)
To fit two (or more) different sub-decay modes, the total likelihood becomes:
£=1]c (7.6)
d

where the index d runs over the fitted sub-decay modes. Our fitter minimizes the
expression — In £ with respect to a set of free parameters.

7.3.4 Discriminating Variables and their Probability Distribution
Functions

The discriminating variables used in the ML fits are: Mgs, AE , F . In this section
we describe the PDFs of the discriminating variables for signal, SXF and background.
PDFs for signal, SXF and BB background have been done using Monte Carlo sim-
ulated events. PDFs for continuum background have been done using on-peak side-
bands, defined as:

e Grand Side Band (GSB): 5.25 < Mgs < 5.27 GeV/c?

e AFE Side Band (DESB): 0.1 < |[AE | < 0.2 GeV

The values of background PDFs parameters obtained in these fits are used as initial
values in the ML fits where they are floating. Appendix A shows PDFs plots and
correlations between input variables. The parameters for the Mg background dis-
tributions are determined by fits to DESB sidebands, while the other parameters are
determined from GSB data. The Table 7.8 reports the parametrization chosen for the
different PDF(G is for Gaussian, A for Argus, CH for Chebychev polynomial, K for
KEYS [22]). From control sample studies, we apply these MC/data matching correc-
tions for signal PDF parameters when we fit on real data:

- we scale the sigma of core Gaussian of AE PDFs by 1.05;

- we shift the central value of core Gaussian of Mggs PDFs by (MeV/c?): +0.8,
+0.6, +0.4, +0.1 for Runl, Run2, Run3 and Run4 data, respectively.
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| | A ] s | 7]

SIGNAL (without SXF) PDF parametrisation

), K double G double G asymmetric G
() B S double G double G asymmetric G
M (3m)mn I 5 double G double G G + asymmetric G
S double G double G asymmetric G
SXF PDF parametrisation

1, K2 G double G asymmetric G
() K8 G double G asymmetric G
1 (3m)rr B | 1°" Order CH+G | G+ asymmetricG double G
. double G double G asymmetric G
CONTINUUM BACKGROUND PDF parametrisation

1, K2 15 order CH A | 15" order CH + asymmetric G
() K8 1%* order CH A | 1% order CH + asymmetric G
) (3m)rr K8 15" order CH A asymmetric G
S 1% order CH A | 1°" order CH + asymmetric G
BB BACKGROUND PDF parametrisation

0, K2 ] K ] K] asymmetric G

Table 7.8: PDF used for signal, SXF and background parametrisation.
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7.3.5 Correlations among Discriminating Variables

The likelihood function we are using in our fits is based on the assumption that the
variables used in the fit are uncorrelated. We show in Appendix A the correlation
coefficients for all pairs of Mgs, AE , F, At and o, in Monte Carlo signal events
and in side band on-resonance data. As you can see the correlations are below 10% so
we can assume that our initial assumption is correct.

7.4 Time-dependent CP fitting

7.4.1 Overview

Defining At = tep — tiag, Where top and ¢y, are the proper decay times of the CP
and tagged B'’s, respectively, the decay rate distribution f, (f_) for Bcp — f when
Biag isa B° (B") is given by

o 1Atl/T

fe(dt) = [1 £ Sfsin(AmgAt) F Cycos(AmyAt)], (7.7)

where 7 is the average B lifetime, Am, is the mixing frequency, and

2TmA 1— AP
S Cy = 7.8
TP TP (79)
A is defined as: o ¥
_qAy —2ipf
= — — = (& — (79)
pA;r A

where e~*7 is the mixing phase, A (A7) is the amplitude for the decay
B — f (EO — f), ny is the CP eigenvalue of the final state. No CP violation in
mixing (|¢/p| = 1) is assumed. CP violation effects can arise from interference be-
tween different decay amplitudes (’Z?/Af’ = 1) and interference between the mixing
and decay weak phases. C'; parameter measures direct CP violation and if we assume
Cy =1, we obtain S; = sin 23, where 3 is an angle of unitary triangle.

In the case of imperfect tagging, Eq. 7.7 must be modified to include the mistag

probabilities:

fBOtag = (1 - wBO)f+ + wﬁfﬂ
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féotag = (1 —wg)f- +wpofy, (7.10)

where wpo (wgg) is the probability that a true B (EO) meson is tagged as a B’ (BY).
Defining the average mistag (w), and the mistag difference Aw,

(w) = B
Aw = wpgo — wgg, (7.11)
the decay rate distributions, assuming perfect vertex resolution, are then
e—|ALl/T
IBOtag = 1 [1—Aw+ (1 — 2(w)) (Sfsin(AmgAt) — Cy cos(AmgAt))],
T
—|At|/r
fz0, . = c 1 14+ Aw — (1 = 2(w)) (Sfsin(AmgAt) — Cy cos(AmgAt)N7.12)
2, T

The final (observed) distribution F'(At) is the convolution of f(At) with the signal
vertex resolution function R, (At)

Fpo tag  — fBO tag ® Rsiga
© Reig. (7.13)

EO tag EO tag
For the time-dependence fit, we proceed as discussed in the section 1.2, while
adding the quantity A¢ and its error. We require |dt| < 20 psand oa; < 2.5 ps.

In our fits we fix the values of Am, and the B lifetimes to the PDG values [11]:
Amg = 0.502 £ 0.007 ps~!, 75+ = 1.671 £ 0.018 ps, and 750 = 1.536 % 0.014 ps.

In order to tag the flavour of the "tag"” side of the event, we use a tagger called
“Tag04”. This tagging algorithm is designed to tag the flavor of the B in two stages:
first of all the information relative to a particular physics precess are combined in a
Neural Network to obtain a sub-tagger; then all the sub-taggers are combined in a
larger Neural Network that determines the probability for the entire event. Based on
the output of the various neural nets, each event is assigned to a physics category.
The algorithm uses 9 input sub-taggers and has 6 output Physics Categories:Lepton,
Kaon I, Kaon II, Kaon&Pion, Pion, Others . Lepton contains the events in which
flavor identification is possible through a lepton identification or if present a kaon.
Events with kaons or weak pions with opposite charge but similar flight direction are
assigned to Kaon | category. Events with only a kaon tag are assigned to Kaon |
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or Kaon Il category following the probability of an uncorrected identification. Kaon
Il category contains the residual events with a weak pion. Kaon&Pion category has
events where both a charged kaon and a slow pion candidates are present. Tag is
assigned by requiring a kaon and a slow pion tag with agree (i.e. the kaon and the
slow pion candidate must have opposite charge) and additionally exploiting the angular
correlation between the two tracks. Events coming from slow pions are assigned as
Pion category. All the other events are assigned to Others category or excluded no
Tag if the probability of an uncorrected identification is too high. We also include
the untagged events in the fit, with mistag fraction fixed to 0.5 and mistag difference
fixed to zero. We split several quantities according to these tagging categories: signal
fraction, mistag fractions and mistag differences, background yields, and core offset
of the signal At resolution function.

The signal fraction, mistag fractions and mistag differences, and the parameters of
signal At resolution model are obtained from fits to the BReco samples with the same
PDF strategy used in previous BReco fits. BReco sample is a data sample with events
completely reconstructed useful to determine B° flavor.

7.4.2 Fits on BReco data

We fit on BReco data to obtain the signal fraction, mistag fractions and mistag differ-
ences, and the parameters of signal At resolution model in order to fix them in our
CP fit for our decay modes. We fit on both MC and real data. We use Mpgg distri-
bution to discriminate between signal and background events. As signal PDF we use
a double Gaussian obtained from fit on MC signal events, while for backgorund we
use an Argus function. We find the Argus shape parameter separately for each tagging
category, and leave them floating in the fit. We fit the At for both signal and back-
ground using the BMixing physics model convoluted with a resolution model. The
BMixing physics model uses as parameters six quantities: lifetime, Am 4, mistag frac-
tion, mistag difference, tag and reco efficiency differences. We have four components
for At :

e signal
The lifetime and Am, are fixed to their PDG values for neutral B. We use a
triple Gaussian as resolution model (core, tail and outlier), where the core and
tail biases and resolutions are scaled to o 5, (with the tail scale factor fixed at 3.0),
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and the outlier Gaussian has mean value fixed at zero and width fixed at 8 ps. The
signal efficiency, mistag fraction, mistag difference, tag efficiency difference for
each tagging category are listed in Table 7.9 for real data and Table 7.13 for MC
events. The signal resolution parameters are given in Table 7.11 for real data and
Table 7.14 for MC events.

e peaking background
The lifetime is fixed to his PDG value for charged B and Am, is fixed to zero.
The mistag differences are fixed at zero. We fix the fraction of peaking back-
ground to signal component at 1.5 %. The resolution model, tag and reco effi-
ciency differences are the same of the signal component.

e lifetime background
The mistag differences, Am, and tag and reco efficiency differences are fixed to
zero. The mistag fractions and the background lifetime are listed in Table 7.10.
We use a double Gaussian resolution model (core and outlier) where the core
bias and resolution are scaled to oA, and the outlier Gaussian again has a fixed
mean and width. The background resolution parameters are shown in Table 7.12.

e prompt background (i.e. zero lifetime)
The lifetime, mistag differences, Am, and tag and reco efficiency differences
are fixed to zero. The resolution model is the same of lifetime background com-
ponent. The fraction of prompt background and background mistag fractions are
listed in Table 7.10.
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Table 7.9: Breco signal tagging fractions (f), mistag fractions ({w)), mistag dif-
ferences (Aw) and tag efficiency difference (u) for each tagging category deter-
mined from fit to the neutral Breco sample. The reco efficiency difference is v =
0.0019 £ 0.0056.

Category fsig (w) Aw 1

Lept on 0.0873 +0.0011 0.0187 £ 0.0048 —0.0015 £ 0.0087  0.0030 4 0.0157
Kaonl 0.1089 £0.0013 0.0521 £ 0.0051 —0.0197 +0.0092 —0.0276 4+ 0.0151
Kaonl | 0.1716 £0.0016 0.1415+ 0.0056 —0.0148 +0.0092 —0.0042 4 0.0136
Kor PI 0.1368 +0.0015 0.2182 4+ 0.0070 —0.0022 £ 0.0110 —0.0109 £ 0.0156
Pi ons 0.1433 +0.0015 0.3215 4 0.0074  0.0658 = 0.0110  —0.0208 £+ 0.0157
Q her 0.1005 4+ 0.0013 0.4004 £+ 0.0091  0.0447 4+ 0.0132 0.0105 £+ 0.0185
Unt agged 0.2516 + 0.0034 0.5 0 0

Table 7.10: Fit results for Breco prompt background and lifetime mistag fractions and
the fraction of prompt background for the neutral Breco sample. The fit background
lifetime is 1.202 + 0.032 ps.

Category fr (wy) {wp)

Lept on 0.3067 £ 0.0942 0.4788 £ 0.0758 0.0774 £ 0.1350
Kaonl 0.6738 £0.0222 0.2377 £ 0.0276 0.1880 £ 0.0133
Kaonl | 0.6850 £ 0.0166 0.3097 &£ 0.0201  0.2457 £ 0.0096
Kor PI 0.6728 £0.0190 0.3595 £ 0.0235 0.3435 £ 0.0119
Pi ons 0.6892 £ 0.0173 0.4550 £ 0.0233  0.4255 £ 0.0111
O her 0.7311 £ 0.0182 0.4930 £ 0.0295 0.4613 £0.0118

Unt agged

0.7589 + 0.0122

0.5

0.5
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Table 7.11: Summary of Breco signal resolution function parameters.

Parameter B

Scale (core) 1.0199 £+ 0.0277
0(At ) Lept on (core) —0.0294 + 0.0422
0(At) Kaonl (core) —0.0975 £ 0.0422
0(At) Kaonl | (core) —0.1814 £+ 0.0331
0(At) Kor Pl (core) —0.2177 £+ 0.0350
0(At) Pi ons (core) —0.1953 £ 0.0341
0(At) O her (core) —0.1419 £ 0.0407
0(At) Unt agged (core) —0.1918 + 0.0266
Scale (tail) 3.0 (fixed)

f (tail) 0.1147 +0.0114
0(At) (tail) —1.1510 £ 0.1590
f (outlier) 0.0044 + 0.0008
Scale (outlier) 8.0 (fixed)
0(At) (outlier) (ps) 0.0 (fixed)

Table 7.12: Summary of Breco background resolution function parameters.

Parameter B°

Scale (core) 1.3147 + 0.0093
0(At ) (core) —0.0205 4+ 0.0070
f (core) 0.9802 £ 0.0012
Scale (outlier) 8.0 (fixed)

0(At) (outlier) (ps) 0.0 (fixed)
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Table 7.13: BReco signal tagging fractions (f), mistag fractions ((w)), mistag dif-
ferences (Aw) and tag efficiency difference (u) for each tagging category deter-
mined from fit to the neutral MC BReco sample. The reco efficiency difference is

v = 0.0043 £ 0.0047.

(w)

Aw

1

Category fsig

Lept on 0.0879 + 0.0010
Kaonl 0.1127 £ 0.0011
Kaonl | 0.1709 + 0.0013
Kor PI 0.1401 £ 0.0012
Pi ons 0.1494 + 0.0012
O her 0.0987 + 0.0010

Unt agged 0.2403 £ 0.0028

0.0098 £ 0.0040

0.0570 £ 0.0046

0.1429 + 0.0061

0.2540 £ 0.0083

0.3416 £ 0.0061

0.4330 £ 0.0075
0.5

—0.0020 £ 0.0071

0.0008 £ 0.0076

—0.0061 £ 0.0075

—0.0216 £ 0.0090

0.0751 £ 0.0089

0.0554 £ 0.0110
0

—0.0163 £ 0.0137

0.0014 £ 0.0127

—0.0145 £ 0.0113

0.0035 £ 0.0128

—0.0358 £ 0.0127
—0.0050 £ 0.0154

0

Table 7.14: Summary of MC BReco signal resolution function parameters.

Parameter

BO

Scale (core)

0(At) Lept on (core)
0(At ) Kaonl (core)
0(At) Kaonl | (core)
0(At) Kor Pl (core)
0(At) Pi ons (core)
0(At) O her (core)
0(At ) Unt agged (core)

Scale (tail)
f (tail)
0(At) (tail)
f (outlier)

Scale (outlier)

1.1337 £ 0.0239

—0.0345 £ 0.0370
—0.2037 £ 0.0353
—0.1978 + 0.0277
—0.2602 + 0.0289
—0.2360 £ 0.0275
—0.2376 £ 0.0335
—0.2371 £ 0.0216
3.0 (fixed)

0.0795 £ 0.0121
—1.4997 £ 0.2670
0.0056 £ 0.0007

0(At) (outlier) (ps)

8.0 (fixed)
0.0 (fixed)
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7.4.3 At Parametrization

The vertex of the fully reconstructed B has been determined using the GeoKi n algo-
rithm [32]. The decay vertex of the tagged B is determined with the Vt x TagBt aSel Fi t
algorithm [32], with the full beam-constraint. The time interval At is determined from
the vertex separation Az between B,,, and B¢ p using the average 75 approximation
[32].

Vertex resolution is independent of the reconstructed B decay mode so parameters
of the At resolution function can be taken from fit on BReco sample.

For our C'P sample we use the CP model PDF convoluted with the resolution func-
tion described in Eq. 7.14. The resolution function R, () is the same triple Gaussian
as described for BReco (naturally since the parameters are in common):

RSig(t) = (1 - ftail - fOUt) G (t7 Sgoreat7 Sgoreo-t) + ftaﬂG (t7 Sélaﬂo-h Sgailo-t>
+ foutG (t, Hout Jout) (714)

where G(z, x¢, o) is a Gaussian with bias x, and standard deviation o.

The ¢g background At distribution is modelled using on-peak sideband data, de-
fined as 5.25 < Mps < 5.27 GeV/c? and |AE | < 0.2 GeV. It is parameterized as
the sum of three Gaussians. For BB background, we use a Triple Gaussian fitted on
BB MC events.

The PDF for both ¢g background and BB background distributions are shown in
Appendix A.
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7.4.4 \ertexing Validation

To check and validate the K vertexing reconstruction we made a comparison on ver-
texing resolution between charged and neutral K° decay mode (K0 — #%z° and
K? — 77~ ) using MC truth signal events. We fit the distributions of z¢p, zop
pull on MC truth events with a triple gaussian for zop . The results are shown in
Table 7.15 and 7.16.

The results for neutral K? decay are in good agreement with the ones for the
charged K? decay, so we verify that the vertexing reconstruction depends mostly from
the informations on the " meson.

| | 0 K7 | KO (nta) |
MC events 38000 67000
Bep feore | —0.0009 £ 0.0006 | —0.0001 4 0.0001

Ocore | 0.0099 4 0.0013 | 0.0062 = 0.0002
Bep PUll | pieore | 0.0056 & 0.0161 | —0.0006 + 0.0094
Ocore | 0.860540.0166 | 0.9708 4 0.0096
At PUll | fieore | —0.1612 4 0.0198 | —0.2100 £ 0.0111
Ocore | 1.055540.0188 | 1.0409 4 0.0119

Table 7.15: Results for vertexing validation.

| ARG
MC events 39000 67000
Bep Leore | 0.0003 £ 0.0002 0.0001 + 0.0002

Oeore | 0.0058 & 0.0003 | 0.0133 & 0.0004
Bep Pull | fieore | 0.0404 £0.0168 | —0.0032 £ 0.0085
Ocore | 0.922440.0153 | 0.9381 4 0.0080
At PUll | fieore | —0.1819 4 0.0226 | —0.2323 4= 0.0110
Ocore | 1.0706 4 0.0231 | 1.0766 4 0.0110

Table 7.16: Results for vertexing validation.
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7.4.5 Effects of SXF on CP asymmetry parameters

We made some checks in order to understand how the SXF events contribute to the
CP asymmetry parameters. Because the vertexing reconstruction is made using the
information on the »" meson for the neutral channels and 7’ together with K for the
charged channel, we study the At resolution for signal events with n” misreconstructed
(¢.e. reconstructed with particles not belonging to the true »’, denoted as SXF,, events)
and with 7’ true or with permutated daughters. Due to the fact that most of the SXF,,
contributions come from the decays with ' — ns, 77, we decided to study these
subdecays.

We show in Fig. 7.2, 7.3, 7.4 and 7.5 the At and oA, distributions. There isn’t any
significant difference between the distributions.
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Figure 7.2: At distributions (left: linear, right: logarithmic) for true events (black
continuos line) and SXF,, events (red dashed line) in 771’7(%)”[(2.
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Figure 7.3: o, distributions (left: linear, right: logarithmic) for true events (black
continuos line) and SXF,, events (red dashed line) in 7 5, . K.
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Figure 7.4: At distributions (left: linear, right: logarithmic) for true events (black
continuos line) and SXF,, events (red dashed line) in 7, ) K.
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Figure 7.5: on, distributions (left: linear, right: logarithmic) for true events (black
continuos line) and SXF,, events (red dashed line) in n; 5, K.
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We calculate and fit with a double Gaussian the A¢ pull in the channels with " —
nrtr~ and n — w77 for events with and without SXF,, contribution. The results
are shown in Table 7.17. The At pull distributions are shown in Fig. 7.6 and 7.7.

Table 7.17: Results for vertexing validation.
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We also check At residual for no SXF,, and SXF,, signal events. Both events
are fitted using PDF defined as Eq.7.14. Results are shown in Tab 7.18 and 7.19.

Parameter M(3m)en 2
no SX F,, events SXF, events
Scale (core) 1.1550 +0.0119 1.1802 £ 0.0242

0(At) Lept on (core)
0(At) Kaonl (core)
0(At) Kaonl | (core)
0(At) Kor Pl (core)
0(At) Pi ons (core)
0(At) Ot her (core)
0(At) Unt agged (core)
Scale (tail)

[ (tail)

0(At) (tail)

f (outlier)

Scale (outlier)

d(At) (outlier) (ps)

—0.0994 £ 0.0370
—0.2209 + 0.0348
—0.2297 + 0.0300
—0.2668 £ 0.0335
—0.2665 £ 0.0321
—0.2865 -+ 0.0394
—0.1968 =+ 0.0254
3.0 (fi xed)
0.1009 4 0.0075
—1.3357 £ 0.1327
0.0107 £ 0.0015
8.0 (fi xed)
0.0 (fi xed)

—0.1866 -+ 0.0886
—0.2182 =+ 0.0790
—0.1437 £ 0.0559
—0.3994 £ 0.0613
—0.3457 £ 0.0586
—0.1996 £ 0.0677
—0.2285 + 0.0430
3.0 (fi xed)
0.1151 =+ 0.0156
—1.1962 £+ 0.2198
0.0260 £ 0.0038
8.0 (fi xed)
0.0 (fi xed)

Table 7.18: At residual parameters for no SXF signal and SXF events.

Parameter (3 mn IS
no SXF, events SXF, events
Scale (core) 1.1157 £ 0.0127 1.1660 £ 0.0157

0(At) Lept on (core)
0(At) Kaonl (core)
0(At) Kaonl | (core)
0(At) Kor Pl (core)
0(At ) Pi ons (core)
0(At) Ot her (core)
0(At) Unt agged (core)
Scale (tail)

[ (tail)

0(At) (tail)

f (outlier)

Scale (outlier)

0(At) (outlier) (ps)

—0.1207 £+ 0.0423
—0.2146 + 0.0365
—0.3038 £ 0.0301
—0.2441 + 0.0367
—0.3379 %+ 0.0355
—0.2347 + 0.0456
—0.2787 £ 0.0276
3.0 (fi xed)
0.0828 + 0.0071
—1.0538 + 0.1462
0.0048 4 0.0010
8.0 (fi xed)
0.0 (fi xed)

—0.1249 + 0.0630
—0.2823 £ 0.0520
—0.2980 £ 0.0391
—0.2515 £ 0.0453
—0.2715 + 0.0452
—0.1776 =+ 0.0565
—0.3494 £ 0.0336

3.0 (fi xed)
0.0906 £ 0.0.0089
—0.3573 + 0.1608
0.0062 4 0.0015

8.0 (fi xed)

0.0 (fi xed)

Table 7.19: At residual parameters for no SXF signal and SXF events.
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We calculate the CP parameters C' and S for MC signal events, considering sep-
arately events with SXF (where the cross feed regards now all the particles in the re-
constructed event, as it’s defined in Sec 7.3.2) and without SXF. The results are shown
in Table 7.20. As shown in the table, the CP asymmetry parameters are quite similar
for the two categories, so the effect of the SXF events on .S and C' is negligible. For
this reason we decide to fit the asymmetry parameters with the same S and C' value for
both kind of event.

Decay mode S C
1 K
SXF events 0.744 £ 0.156 | —0.022 +0.102
no SXF events | 0.639 £+ 0.058 0.046 4 0.040
/ 0
77n(w)MKS
SXF events 0.648 +0.138 | —0.006 + 0.089
no SXF events | 0.640 £+ 0.062 0.027 4 0.040
77;7(37r)7r7rKg
SXF events 0.658 4= 0.068 0.011 £0.048
no SXfevents | 0.687 + 0.031 0.003 + 0.022
My(emyen I
SXF events —0.063 = 0.054 | —0.007 £ 0.039
no SXfevents | 0.009 + 0.034 0.031 £ 0.024

Table 7.20: CP asymmetry parameters for signal and SXF events.
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7.5 Background sources

From the fits on BB generic samples, off-peak data and from our previous analyses
[33, 34], we know that in our target decays the main source of background is contin-
uum udsc events. While for the decays with »” — nzt7~ this is the only source of
background, in the decays with 7 — p°~ we have a contribution from non continuum
BB background. The procedure followed in the analysis of such background con-
sists in the definition of the categories which can contribute to cross feed by looking
at the pattern of BB events seen in the input of the ML fit of the BB generic MC
samples and in the introduction of a BB term in the ML fit for these specific decay
modes. We have done a carefully study of BB background for B® — n;ng decay
mode with K2 — 77~ and we have done the assumption that the BB background is
the same if you consider the sub-decays with K2 — 7%7%. So we use what we have
done for K — 77~ sub-decay in sub-decay with K% — 7%z We have run MC
BB’ generic events (274.5 millions) and B* B~ generic events (260.7 millions) to
reconstruct B — 7/, K9 with K¢ — 7*x~. From visual inspection of these events
entering in our ML input, we have defined a class of different kinds of BB decay
modes able to give some contribution to our ML input sample. For each of these decay
modes we have reconstructed the specific MC events. Then the reconstructed events
of the categories have been summed together, taking into account the total number of
input MC signal events, reconstruction efficiencies and branching fractions. Finally
these summed events have been used to prepare the BB PDFs. The results are shown
in Tables 7.21 and 7.22. We took best central value for branching fractions for each
decays, taken from HFAG groups [35]. In the last column of these table we have put
the estimated numbers of BB for each sub-decays that we should have in our on-peak
sample.

These BB PDFs are able to eliminate all BB background in Monte Carlo BB
simulated events (see Yields Verification Tests).
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B+ B~ decays | MCe (%) | TIB: (%) | e x []B: (%) | B(x10~°) | # BBbkg |
BT —af K" 1.74 50.0 0.87 15.0 1 15.9
BT — K*T(K%7)p° long. 2.83 22.9 0.65 10.6 8.4
Bt — ptK?° 1.14 50.0 0.57 2.5 1.7
Bt — 0/ (p%y)K*H(Krt) 2.61 6.7 0.17 6.3 1.3
Bt —» K*H(Kyrt)K° 1.06 16.7 0.18 1 0.2
Bt — ¢(ntr— a0 K*H(K3nt) 0.23 3.5 0.01 9.7 0.1
Bt — wK*(K3nt) long. 0.11 20.4 0.02 3.5 0.1
BT — ad (n(yy)rT)K° 0.90 13.5 0.12 1 0.1
BT — K*T(KTn%) K" 0.23 16.7 0.04 1 0.1

Table 7.21: B*B~ background categories. { Branching ratio estimates from
BY — af (p°nH)K~.

| B°B’ decays | MCe (%) | T1B: (%) | e x [1B: (%) | B(x10~°) | # BBbkg
BY — 0K 5.02 50.0 2.51 5 16
BY — ¢(rTr=m)KO(rTm) 8.08 5.35 0.43 8.3 4.4
BY — K*t (K% H)n~ 0.45 33.3 0.16 15.3 2.8
BY — wKO(xt77) 1.11 30.64 0.34 5.5 2.3
BY — o/ (nrtr ) KO (ntn™) 0.34 6.02 0.02 65 1.6
B — ¢(r T n") K*O(K2n0) 0.26 1.8 0.01 10.7 0.1

Table 7.22: BB’ background categories.
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7.6 \erification Tests

In the blind phase, to check if the fitting model is right and if the program works well,
we made some checks on the exctraction of signal yield and S and C'. For the yield
and CP-violating parameters we used some repeated Monte Carlo tests (so called Toy
Experiments) to verify how data were reproduced.

7.6.1 Yield Verification Tests

We decided to check our SXF fractions leaving them floating when we fit events MC
signal and we compare the results with the estimated values obtained in Table 7.6. We
found a good agreement. The results are shown in Table 7.23.

Decay Mode | Input Fit output

Signal | ggbkg. | BBbkg. | SXF (%)
Mo KO 9063 | 9016.37952 | 46.77137 —247£1.1
1, KO 9326 | 9091.177995 | 85.57 9% [ 149.47355 [ 22.8 + 1.3
Mhsmee K8 | 13820 | 13669.77 1155 | 150.3753 ] — 145405
Mosmyme /S~ | 15778 [ 15457271385 | 320.87573 — 1298409

Table 7.23: Yield verification tests on MC signal to estimate SXF fraction.

Furthermore, in the first step of the analysis when not all the data were avalaible,
we had made verification tests for the charged and neutral decay modes on off-peak,
B*B-, B°B” and Monte Carlo signal events with SXF fixed. Results of this anal-
ysis are shown in Tables 7.24. In this case we do not fit using the At and tagging
information.

The number of background events found as signal by the fitter in these samples can
be considered compatible with zero.

From the results shown in Tables 7.24 we can conclude that our fitter is able to
extract correctly signal and background events.
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Decay Mode | Event Sample | Input Fit output

Signal | ¢g continuum | BB

M en K3 Off-peak | 150 0.0798 150.0713°5 —

B*B~ 7 0.0795 7.0739 -

BB’ 8 0.0+97 8.0132 -

MC signals | 9774 | 9726. 1+3§§ 48.01158 -

1, K Off-peak | 1930 007521 193007533 | 0.0732

BtB~ 83 0. 0*0 7 58.7709 | 24.3780

BB’ | 134 0.0732 79.57124 | 54 5113

MC signals | 8476 | 8290.0792:¢ 1617121 1 170.3%37:2

T 3myen K8 Off-peak 35 0.079% 35.07%3 —

BtB~ 4 0.0592 4.0 —

BB’ 25 0.3%3¢ 24742 -

MC signals | 17143 | 171 103%;3 32.7H1%1 —

T Off-peak | 153 0.0550 153.01135 —

B*B~ 56 0. 0+2 i 56.0t§;3 -

B"B’ 9 0.0 9.073:3 -

MC signals | 18114 | 18034. 3%32? 79. 9%3, g -

Table 7.24: Yields verification tests with SXF fixed.
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7.6.2 Yield Pure Toy Test

We check how data are reproduced by toy Monte Carlo generated events. We have
generated 500 experiments for each decay mode, each experiment with the number of
signal and background events as found in data. Events were generated from the PDFs
used in the data fit; we don’t generate BB events. We fit the distributions of signal
yields and their errors using a Gaussian. We show in Tables 7.25 the central values of
these Gaussians. We show also the values of mean and sigma of the pull distributions
fitted with a Gaussian.
Fit on the generated events agree well with input data and no biases are seen.

| Decay Mode | #Sg. | #Bkg | SgValue | SgEm. [ PulMean | Pullo. |
e K 29 [ 1545 | 294404 | 7.56+0.04 | 0.02£0.05 | 1.03+0.05
1, K3 44 [ 18270 | 42.740.7 | 13.96 £ 0.06 | —0.07 £ 0.05 | 0.96 & 0.04
MameK8 | 46 | 413 | 456£0.3 | 7.79£0.03 | —0.02£0.05 | 0.97 £ 0.04
Msmyee KT | 161 | 1419 | 160.8 0.7 | 14.56 = 0.03 | —0.06 £ 0.05 | 0.96 + 0.04

Table 7.25: 500 Pure Toy experiments (Runl+Run2+Run3 data sample).

7.6.3 Yield MC Toy Test

We have generated 500 experiments for each decay mode, each experiment with the
number of signal and background events as found in data. In this case the signal events
are taken from MC events while the background events are generated from PDFs and
we don’t generate BB background. We fit the distributions of signal yields and their
errors using a Gaussian. We show in Tables 7.26 the central values of these Gaussians.

| Decay Mode | #Sg. | #Bkg | SgValue | SgErr. |
e K9 29 | 1545 | 29.24+0.2 | 7.50 4+ 0.03
1, K2 44 | 18270 | 44.2+0.5 | 13.61 +0.06
0
Mysmyras | 46 | 413 | 465£0.2 | 8.09£0.02
Mamar KT | 161 | 1419 | 158.9£04 | 14.42 £0.02

Table 7.26: 500 MC Toy experiments (Runl+Run2+Run3 data sample).
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7.6.4 CP Verification Tests

We fitted the asymmetries parameters on MC signal events using MC BReco parame-
ters. Monte Carlo signal events are simulated with S = 0.7 and C' = 0.0 for neutral
modes while S = 0.0 and C' = 0.0 for the charged ones. The results are shown in
Table 7.27.

Decay Mode | Input Fit output

Signal | S | C
1 KO 8326 8281.7+91.7 | 0.690 +0.041 | 0.025 £ 0.026
1, K2 8943 | 8863.8 +102.6 | 0.668 +0.035 | 0.012 £+ 0.024
77;7(37r)7r7rKg 13347 | 13282.2 4+ 116.3 | 0.724 £ 0.028 | —0.016 £ 0.020
T smee K+ | 15332 [ 15046.1 £ 124.2 [ 0.008 +0.026 |  0.023 +0.019

Table 7.27: Time dependent verification tests on MC signal events.

7.6.5 CP Pure Toy Studies

We performed several different analyses in order to validate the ability of our fitter to
extract correctly time-dependent asymmetry present in data and Monte Carlo simulated
events. We performed pure toy experiments for the neutral channels n;,ng K?,
Thneamyr i g @nd for the charged channel 7, ., K* with the number of signal and
background events as found in the data. The events are generated according to the
PDFs shown in Appendix A. We don’t generate BB events.

We have performed 500 toy experiments for each sub-decay with C' = 0.0 and S =
0.7 (S = 0.0 for charged channel). We summarize in Table 7.28 the mean values, the
errors on mean value, and pull for the signal yield and for the asymmetry parameters
with corresponding errors obtained from a Gaussian fit of their distributions.

/
! ?77’]71'71'
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| e 52
Signal events 44
Bkg. events 458
Sg S C
Value 441404 |0.732+£0.037 | —0.039 + 0.023
Value Error | 8.89 +£0.03 | 0.720 +0.008 | 0.457 + 0.004
Pull Mean 0.01 +0.04 0.06 £ 0.05 —0.09 £ 0.05
Pull o 0.92 +0.03 1.02 +£0.05 1.01 +0.04
| LS
Signal events 94
Bkg. events 12461
Sg S C
Value 100.4+£0.9 | 0.729+0.031 | 0.031 £ 0.038
Value Error | 20.89 4+ 0.07 | 0.544 +0.006 | 0.624 £ 0.011
Pull Mean 0.21 +0.05 0.18 £ 0.06 0.01 £0.05
Pull o 0.97 £0.04 1.14 4+ 0.06 1.14 4+ 0.04
‘ U;(gw)TrﬂKg
Signal events 54
Bkg. events 106
Sg S C
Value 52.7+0.3 |0.704+0.029 | 0.011£0.018
Value Error | 8.114+0.02 | 0.538 +0.005 | 0.354 £ 0.002
Pull Mean | —0.074+0.03 | 0.01+0.05 0.06 £+ 0.05
Pull o 0.74 +0.03 1.05 + 0.04 1.09 + 0.05
| My(amen B
Signal events 205
Bkg. events 373
Sg S C
Value 204.7+0.6 | 0.012+£0.012 | 0.001 + 0.009
Value Error | 15.43+0.02 | 0.246 +0.001 | 0.179 4+ 0.001
Pull Mean | —0.02£0.04 | 0.09 4+ 0.05 0.06 £+ 0.05
Pull o 0.80 +0.03 0.97 4+ 0.04 1.04 £0.04

Table 7.28: Mean values of CP violating parameters and their errors for pure toy
experiments.
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7.6.6 CP MC Toy Studies

We performed MC toy experiments for the neutral channels 7/, K2, 17, K¢, 0, 30,0 K8
and for the charged channel ; ., .. K. The signal events are taken from MC events
while background events are generated according to the PDFs shown in Appendix A.
We don’t generate any BB background. The number of events for each toy experiment
is the measured value in the data. We use MC BReco parameters for resolution and
fitting models. We summarize in Table 7.29 the mean values of signal yield and of the
asymmetries parameters with corresponding errors, obtained from Gaussian fit of their
distributions.

| Myrr K2 |
Signal events 44
Bkg. events 458
Sg S C
Value 45.54+0.3 | 0.753 +£0.038 | —0.001 £ 0.021
Value Error | 8.9340.02 | 0.721 +0.007 | 0.432 £ 0.003
| M, s |
Signal events 94
Bkg. events 12461
Sg S C
Value 100.3 £ 0.8 | 0.683 = 0.027 | —0.001 £ 0.012
Value Error | 20.35+0.06 | 0.509 + 0.005 | 0.361 + 0.003
‘ n;z(gw)TrﬂKg ‘
Signal events 54
Bkg. events 106
Sg S C
Value 53.9+0.2 | 0.748+0.026 | —0.010 + 0.017
Value Error | 8.194+0.01 | 0.505+ 0.005 | 0.328 + 0.002
| My(amen B
Signal events 205
Bkg. events 373
Sg S C
Value 196.7+ 0.3 | 0.014 +0.012 | 0.008 £ 0.008
Value Error | 15.12+0.01 | 0.242 +0.001 | 0.178 +0.001

Table 7.29: Mean values of CP violating parameters and their errors for MC toy ex-
periments.
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7.7 Results

After all checks, we extract the results for the onpeak sample. We show in Tables 7.30
and 7.31 the numbers of events to fit, the numbers of signal yield, the various efficien-
cies and the product of branching fractions and, in the bottom part of the tables, the
results of Time-Dependent analysis.



Signal yield extraction and measurement of CP time-dependent asymmetry in

154 the B — 'K decay
Quantity 0 K 9 (7979) N K 9 (797%)
Yield-only fi ts.

Eventsinto fi t 13505 564

Fit yield 69 £ 25 51 £ 11
BB Fityidd 38 +27 —

MC Combinations/event 1.29 1.31
On-Peak Data Combinations/event 1.30 1.33
ML-fit e (%) 100.5 100.7
MC ¢ (%) 14.3 13.5
[18; (%) 9.16 5.42
TDfits

Eventsinto fi t 12555 502

Fit yield 94 + 23 4449
BB Fityield 47 £ 22 -

S —0.45 £ 0.68 —0.04 £ 0.57
C 0.41 £0.40 —0.65 £ 0.42

Table 7.30: Summary of ML fit results for the decays #/, K7 and »; KJ for Final
Run1-4 dataset.

Quantity n;?(sﬂ)MKg (7T77) 771’7(3W)WK+
Yield-only fits.

Eventsinto fi t 165 596

Fit yield 55 £ 8 215 £ 16
MC Combinations/event 2.2371 1.617
On-Peak Data Combinations/event 2.45 2.34
ML-fi t € (%) 101.1 98.7
MC e (%) 14.4 15.0
[18; (%) 6.90 10.01
TDfits

Eventsinto fi t 160 578

Fit yield 54+ 8 205 £ 16
S 0.79 £0.47 —0.174+£0.23
C 0.114+£0.35 0.05 £ 0.17

Table 7.31: Summary of ML fit results for the decays 7, ;... K¢ and 1, . K+ for
Final Runl1-4 dataset. 1 Multiple candidates with n’ permutated daughters counted as
single candidate.
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7.7.1 Projections

We have done the Mg and AE projections. To reduce the contribution of continuum
background, we make a cut on the quantity:

Psig

R=——"9__
Psig+Pbkg

(7.15)
where Py, and Py, are the probability for the event to be a signal or a background
respectively. These probabilities are calculated from PDFs, excluding in the computa-
tion the variable being plotted. The optimal cut for R has been determined using MC
signal events and offpeak events. These projections are shown in Fig. 7.8. Fit curves
shown are not a fit to the data in the histogram but the projection of the overall fit
scaled to take into account the effect of the cut on R.

@ +

Events / 2 MeV
N
7

,_\
. o
Events / 20 MeV

20F -
+ 4
ol AAS S S J o, ; :
525 526 527 528 529 -0.2 -0.1 0 0.1 0.2
M (GeV) AE (GeV)

Figure 7.8: The B candidate Mps and AE projections for B — n’ K° with K? —
7070 (a, b),.B0 — 13m0 With K — (¢, d) and BT — . KT (e,
f). Points with errors represent the data, solid curves the full fit functions, and dashed
curves the background functions. The shaded histogram represents the 7, . K¢
subset.
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7.8 Systematic Uncertainties for the Time-Dependent
Asymmetry Fit

Because we merge the signal yield obtained in this analysis with the one from main
sub-decays, due to a higher statistics with respect to the latter, we have studied the
following contributions to the systematic errors only for the main sub-decays:

e For PDF shapes, we estimate the errors principally by variation of the fit param-
eters. In Table 7.32, we summarize all of the variations and their results. All
changes are combined in quadrature to obtain an error which we round to 0.01
for both S and C.

e We correct for a possible dilution of S due to BB background and assign an
uncertainty of 0.01 in .S due to the uncertainty in this correction.

e Toy studies show that there are no significant biases in .S and C other than the
BB background issue just discussed. We assign an uncertainty of 0.01 for the
modeling of the signal to cover the statistical uncertainties of these toy studies.

e We vary the SVT alignment parameters in the signal Monte Carlo events by the
size of mis-alignment found in the real data [36], and assign the resulting shift
in the fit results as the systematic errors. There are five different SVT configu-
rations which are considered. Four configurations simulate time dependent mis-
alignment and one (labeled “boost™) simulates the radius-dependent z shift of
entire layers. The difference for each configuration between the nominal values
of S and C and those from the mis-aligned configuration are presented in Table
7.33. The nominal value was extracted by running signal MC in refit mode with
a perfect SVT alignment. We take an uncertainty of 0.01 on both S and C.

e \We vary the beam-spot y position and error in the signal Monte Carlo events. The
values of the change were provided by Max Baak and are considered realistic for
real data. The variations in the beam-spot parameters and the changes in .S and
C' are presented in Table 7.34. We take an uncertainty of 0.01 on both S and C.

e The effect of interference between the CKM-suppressed b — 7icd amplitude
with the favored b — cud amplitude for some tag-side B decays [37]. This is
negligible for S, but contributes an uncertainty of 0.012 to C.
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Table 7.32: Results of systematic variations. We show the nominal values, the amount
that we vary these, the source of this variation amount, and the change of .S and C for
this amount of variation. We group similar quantities together after combining their
variations in quadrature.

Quantity ~ Nominal 4 variation Source of ChangeinS ChangeinC

variation
Amy 0.502 0.007 PDG 0.0044 0.0002
TB 1.536 0.014 PDG 0.0007 0.0002
w Table 4 Table 4 Table 4 0.0030 0.0016
ow Table 4 Table 4 Table 4 0.0011 0.0067
Signal f.,, Table 4 Table 4 Table 4 0.0055 0.0025
Signal At Table 6 Table 6 Table 6 0.0005 0.0002
Total 0.0078 0.0074

Table 7.33: The change in .S and C' due to different SVT configurations. The overall
is calculated by taking the largest positive and negative contributions of the four time
dependent configurations adding them in quadrature to the “Boost” contribution.

My K 1, K°

Configuration Changein S ChangeinC' Changein S ChangeinC

Timel 0.0070 0.0006 0.0006 -0.0027
Time2 0.0084 0.0003 0.0037 0.0008
Time3 0.0075 -0.0035 0.0001 -0.0008
Time4 0.0056 -0.0010 0.0014 -0.0005
“Boost” 0.0071 -0.0014 0.0000 0.0000
Overall +0.0110 ++0.0006 +0.0037 +0.0008

—0.0000 —0.0037 —0.0000 —0.0027
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Table 7.34: The Beam Spot y position was varied by +20 um and the error on y was
independently increased to 20 um. The Overall contribution to the systematics was
evaluated by averaging the absolute contributions from the shift in y and adding that
in quadrature to the contribution from the error on .

My K 1, K°
Beam spot Changein .S ChangeinC' ChangeinS ChangeinC
position y + 20 um -0.0046 0.0035 0.0043 -0.0059
position y — 20 pum 0.0011 0.0056 0.0073 -0.0050
error on y 20 um 0.0011 0.0041 0.0079 -0.0054
Overall +0.0031 +0.0061 +0.0098 + —0.0077

For the channels studied in this thesis work, we have to add another contribution to
the systematic error coming from SXF fraction. We made fits for S and C by varying
the SXF fraction by + 1 o. Results of this analysis are shown in Table 7.35. We find

Decay Mode Biason S Biason C
Jsxp+ 1o | fsxp—10 | fsxr+10 | fsxr — 1o
0, Ko (') +0.003 —0.003 +0.002 —0.002
M (707°) 0.000 +0.001 0.000 +0.001
n;z(?m)ng (wr7™) +0.001 +0.002 0.000 0.000

Table 7.35: Results of systematic variations due to SXF fraction (fsxr) on S and C
parameters, when we vary SXF fraction + 1 o.

that the maximum bias for S is 0.003 and for C' is 0.002. We take these values as
systematics errors due to SXF and we will sum all systematics errors in quadrature we
find 0.02 for both S and C.



Chapter 8
Conclusions

The goal of this work was to add events to the main decay modes and reduce the statys-
tical error for the measurement of S and C' parameters. So, the previous results for the
decays studied in this thesis have been added to the main ones to obtain a combined fit
for the C'P-violating parameters. The results have been reported below in Table 8.1:

Table 8.1: Results with statistical errors for the B® — r’ K time-dependent fits. First
result is only for decays with KY — 77—, the latter is the combined fit for decays
with K? — 77~ and K? — 790,

Mode Signal yield S C
77;7(~,~,)mK7?+r 188 £ 15 0.01 £0.28 —0.18 £0.18
KO 4304£26  044+0.19 —0.30+0.13
B—nKY(K?—rrn7) 618 +£30 0.30+£0.16 —-0.25+0.11
T myen ot 54+ 8 0.7940.47  0.11+0.35
M ymyen B 2o 0 44+9  —0.04+0.57 —0.6540.42
Ulngowo 94 + 23 —0.454+0.68 0.4140.40
Combined fit 804 4+ 40 0.30+0.14 —-0.21£0.10

As it’s shown in the rows with the results, adding decay modes studied in this thesis
work we have an improvement on statistical error. The measured time-dependent CP
violation parameters in B® — 5’ K2 are S = 0.3040.14+0.02and C = —0.2140.10+
0.02. Our result for S differs from that measured by BABAR in B — J/y K? [14] by
3.0 standard deviations; it also represents an improvement by a factor 2.4 (1.9) in pre-
cision over the published results of BABAR [38] (Belle [39]). All these measurements

159
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supersede our previous published results [38].

These results have been presented “Meeting of APS, Division of Particles and
Fields”, Tampa FL(USA), 16th April 2005 and published on PRL [16].



Appendix A

PDF libraries

We show here for each decay mode the signal and background PDFs used in ML fits.
We show also the correlation coefficients between the input variables used in the ML
fits.

Signal PDFs are determinated from MC signal events. For continuum background
PDFs we have used on-peak sidebands. For BB background PDFs we have used MC
events.
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PDF libraries

A.l n;),ng (Kg — w'n?)

MES AE F At O At
Mgs  1.000
AFE 0.060 1.000
F —0.039 —0.017 1.000
At 0.005 0.014 0.013  1.000
OAL —0.018 —0.026 0.002 —-0.029 1.000

Table A.1: Correlation matrix for MC signal.

MES AFE F At O At
Mpgs  1.000
AE  —0.005 1.000
F 0.006  —0.059  1.000
At 0.003  0.009  0.008 1.000
Ot —-0.016 0.014 —0.103 0.034 1.000

Table A.2: Correlation matrix for on-peak side band data.

Fl oati ng Paraneter
bMass_xi _bg
dE cl1 bg

deltaT _fracl_bg
deltaT frac2 bg
del taT_nul_bg
del taT_nu2_bg
del taT_signal_bg
del taT_si gna2_bg
fisher _Miul_bg
fisher_Sigml_bg
fisher_Sigma2_bg

Fi nal Value +/- FError
-1.4461e+01 +/- 2.27e+00
-3.8897e-01 +/- 1.45e-02

3.1856e-01 +/- 1.78e-02

3.1169e-02 +/- 2.69e-03
1.9638e-02 +/- 1.07e-02
1.2741e-01 +/- 3.80e-02

6. 9959e-01 +/- 1.56e-02

1.9311e+00 +/- 6.01le-02

1.5242e+00 +/- 2.15e-02
8.0508e-01 +/- 1.50e-02
9.4038e-01 +/- 1.45e-02

Final values for the parameters which were allowed to float in the fit.
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Figure A.1: AFE signal PDF (left): double Gaussian; SXF events (right): single Gaus-
sian.
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Figure A.4: AE background PDF (left): linear Chebyshev polynomial; Mgs back-

ground PDF (right): Argus.
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Figure A.7: BB data F Fisher PDF: asymmetric Gaussian.

Moy Ks (Kg->n°n°) background

, 0 =
——— Moy Ks (Kg->T1P) BB background | [ (50
o P TTTTTTTTTTTTTTTT TR T TITTT 20,1157 £ 0.0471 ps o T T T My = -0.2016 £0.1179 ps
o 10°L 0,=1.9429 + 0.0768 ps = L 0,y = 24576 £ 0.2841 ps
S E 1, = 0.0000 ps = el uwiro.usuo.does ps
- r 0, =8.0000 ps g E 0, = 4.8386 + 0.5983 ps
£ Ll M, = 0.0425 + 0.0141 ps g F Heore = -0.1197 £ 0.0932 ps
2 we 0, =0.7266 £ 0.0205 ps @ f o ® 152;33; 2%5329 ps
E f,=0.3215 +£0.0234 ps tail = 0 +0.f
L f,=0.0322 +0.0034 ps 101 ., = 01280 +0.0632
10 % E C |
s E 1t 4
1le- £ B
20t L i e L L gotbece M et i it N
20 -15 -10 -5 0 5 10 15 20 20 -15 -10 -5 0 5 10 15 20
At (ps) At (ps)

Figure A.8: At background PDF (left): Triple Gaussian; BB data At PDF (right):
Triple Gaussian.



166

PDF libraries

A.2 77:7(77)7777Kg (Kg — w'n?)

AFE

MES F At OAt
Mgs  1.000
AFE 0.087  1.000
F —0.025 —0.016  1.000
At —0.004 —0.001 0.001  1.000
OAt 0.001 —0.011 -0.010 —0.008 1.000
Table A.3: Correlation matrix for MC signal.
MES AFE F At O At
Mgs  1.000
AFE 0.024  1.000
F —0.037 —0.024  1.000
At —0.030 0.002  0.066 1.000
OAt 0.037  0.006 —0.093 0.019 1.000

Table A.4: Correlation matrix for on-peak side band data.

Fl oati ng Paraneter
bMass_xi _bg

dE _c1_hg

deltaT _fracl_bg
deltaT frac2 bg
del taT_nul_bg
del taT_nu2_bg
del taT_signal_bg
del taT_si gna2_bg
fisher _Miul_bg
fisher_Sigml_bg
fisher_Sigma2_bg

Fi nal Value +/- FError
-3.3316e+01 +/- 1.18e+01
-2.5201e-01 +/- 7.87e-02

2.7591e-01 +/- 1.17e-01

3.0656e-02 +/- 1.34e-02
7.7064e-02 +/- 8.40e-02
-1.6437e-01 +/- 2.86e-01
1.0196e+00 +/- 1.11le-01
2.2574e+00 +/- 3.49e-01
1.3353e+00 +/- 1.14e-01
6.0339e-01 +/- 7.59e-02
8.3322e-01 +/- 8.01e-02

Final values for the parameters which were allowed to float in the fit.
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A.3 777’7(377)7”7Kg (K3 — whm™)

MES AFE F At O At
Mgs  1.000
AFE 0.113 1.000
F —0.063 —0.051 1.000
At —0.025 —0.004 0.015 1.000
OAL —0.015 —0.006 —0.009 —0.008 1.000

Table A.5: Correlation matrix for MC signal.

MES AFE F At O At
Mgs  1.000
AE  —0.140 1.000
F 0.011  —-0.022 1.000
At 0.115 —0.085 0.024 1.000
OAt 0.089  0.005 —0.110 -0.049 1.000

Table A.6: Correlation matrix for on-peak side band data.

Fl oati ng Paraneter
dE _c1_hg

deltaT _fracl_bg
del taT_nul_bg

del taT_nu2_bg

del taT_sigmal_bg
del taT_si gna2_bg
fisher _Mil bg
fisher_Sigml_bg
fisher_Sigma2_bg

Fi nal Val ue +/- FError
-3.3808e-01 +/- 1.64e-01
2.6707e-01 +/- 1.27e-01
6. 4950e-02 +/- 2.06e-01
-3.7289e-01 +/- 1.73e-01
1.5175e+00 +/- 1.91e-01
4. 4026e-01 +/- 1.63e-01
7.4112e-01 +/- 4.31e-01
6. 3659e-01 +/- 2.42e-01
1.5181e+00 +/- 2.87e-01

Final values for the parameters which were allowed to float in the fit.
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Figure A.14: AE signal PDF (left): double Gaussian; SXF events (right): single
Gaussian plus linear Chebyshev polynomial.
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Figure A.17: AFE background PDF (left): linear Chebyshev polynomial; Mg back-
ground PDF (right): Argus.

g Kg background o N's, K background

X?n = 0.037
o ! 1 20,4399 £ 01920 ~ T T T 5, -0.3588 + 0.2004 ps
S 10 0,=0.4805+0.1213 = 0,=0.3621+ 0.1790 ps
; C 0, = 1.5529 + 0.1850 g &, =0.0000 ps
s L ] 2 10 0,=8.0000 ps
i L E § F 3, =-0.1885 + 0.2120 ps
L e B w C 0, =1.4794£0.1739 ps
L P r f,=0.2173 +0.1267
f,=0.0230 +0.0141
1 + -
E ] e E
PTe | R RN RN ST R N P R 1071""\HH\HH\"“HMMH*HH\HH\HH
-4 -3 -2 -1 0 1 2 3 4 5 -20 -15 -10 10 15 20
Fisher Discriminant At (ps)

Figure A.18: F Fisher background PDF (left): asymmetric Gaussian. At background
PDF (right): Triple Gaussian.



172

PDF libraries

VRN o

AFE

MES f At OAt
Mgs  1.000
AFE 0.129  1.000
F —0.057 —0.036  1.000
At 0.004  0.014 —0.002 1.000
OAt —0.020 —-0.012 —-0.023 —0.011 1.000
Table A.7: Correlation matrix for MC signal.
MES AE F At O At
Mgs  1.000
AE  —0.115 1.000
F —0.079  0.016  1.000
At —0.054 0.075 —0.019 1.000
At 0.026 —0.000 —0.046 0.095 1.000

Table A.8: Correlation matrix for on-peak side band data.

Fl oati ng Paraneter
bMass_xi _bg

dE _c1_hg

deltaT fracl bg
deltaT frac2 bg
del taT_nul_bg
del taT_nu2_bg
del taT_signal_bg
del taT_si gma2_bg
fisher _Miul_bg
fisher_Sigmal bg
fisher_Sigma2_bg

Fi nal Value +/- FError
-5.1398e+00 +/- 1.35e+01
-4.5049e-01 +/- 8.58e-02

1.1508e-01 +/- 6.81le-02

1.5135e-02 +/- 1.26e-02
7.5036e-03 +/- 5.35e-02
-3.6210e-01 +/- 4.56e-01
7.5084e-01 +/- 5.77e-02
2.0088e+00 +/- 8.05e-01
1.5253e+00 +/- 1.31le-01
7.6652e-01 +/- 9.27e-02
8.0308e-01 +/- 8.97e-02

Final values for the parameters which were allowed to float in the fit.
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Figure A.19: AFE signal PDF (left): double Gaussian; SXF
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Figure A.20: Signal Mgs PDF (left): double Gaussian; SXF events (right): double
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Figure B.1: 500 yield pure toy experiments: signal yield (left), error on signal yield
(right).
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Figure B.2: 500 yield pure toy experiments: pull value and sigma distribution.
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Figure B.3: 500 yield MC toy experiments: signal yield (left), error on signal yield
(right).
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Figure B.4: 500 CP pure toy experiments: signal yield (left), error on signal yield
(right).
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Figure B.5: 500 CP pure toy experiments: pull value and sigma for signal (Ieft) S
parameter value (right).
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(right).
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Figure B.10: 500 CP MC toy experiments: error on S (left); 500 CP MC toy experi-
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Figure B.13: 500 yield pure toy experiments: pull value and sigma distribution.
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Figure B.17: 500 CP pure toy experiments: error on S (left), pull value and sigma for

S (right).
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Figure B.18: 500 CP pure toy experiments: C' parameter value (left), error on C (right).
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Figure B.19: 500 CP pure toy experiments: pull value and sigma for C' (left); 500 CP
MC toy experiments: signal yield (right).
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Figure B.20: 500 CP MC toy experiments: pull value and sigma for signal (Ieft) 500
CP MC toy experiments: S parameter value (right).
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Figure B.21: 500 CP MC toy experiments: error on S (left); 500 CP MC toy experi-
ments: C' parameter value (right).
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Figure B.22: 500 CP MC toy experiments: error on C.
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Figure B.23: 500 yield pure toy experiments: signal yield (left), error on signal yield

ents: pull value and sigma distribution.
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Figure B.25: 500 yield MC toy experiments: signal yield (left), error on signal yield
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Figure B.27: 500 CP pure toy experiments:

parameter value (right).
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Figure B.28: 500 CP pure toy experiments: error on S (left), pull value and sigma for
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Figure B.29: 500 CP pure toy experiments: C' parameter value (left), error on C (right).
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Figure B.30: 500 CP pure toy experiments: pull value and sigma for C' (left); 500 CP
MC toy experiments: signal yield (right).
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Figure B.31: 500 CP MC toy experiments: pull value and sigma for signal (left); 500
CP MC toy experiments: S parameter value (right).
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Figure B.32: 500 CP MC toy experiments: error on S (left); 500 CP MC toy experi-
ments: C' parameter value (right).
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Figure B.33: 500 CP MC toy experiments: error on C.
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Figure B.34: 500 yield pure toy experiments: signal yield (left), error on signal yield

(right).
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Figure B.35: 500 yield pure toy experiments: pull value and sigma distribution.
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Figure B.36: 500 yield MC toy experiments: signal yield (left), error on signal yield

(right).
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Figure B.37: 500 CP pure toy experiments: signal yield (left), error on signal yield
(right).
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Figure B.38: 500 CP pure toy experiments: pull value and sigma for signal (left), S
parameter value (right).
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Figure B.39: 500 CP pure toy experiments: error on S (left), pull value and sigma for
S (right).
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Figure B.40: 500 CP pure toy experlments C parameter value (left), error on C (right).
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Figure B.41: 500 CP pure toy experiments: pull value and sigma for C' (left); 500 CP
MC toy experiments: signal yield (right).
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Figure B.42: 500 CP MC toy experiments: pull value and sigma for signal (Ieft) 500
CP MC toy experiments: S parameter value (right).
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Figure B.43: 500 CP MC toy experiments: error on S (left); 500 CP MC toy experi-

ments: C' parameter value (right).
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Figure B.44: 500 CP MC toy experiments: error on C.
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