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Abstract: In recent decades, there has been growing interest in the quantization of black holes

using techniques developed in loop quantum cosmology. Due to the quantum geometry effect, the

resulting quantum-corrected black hole provides non-singular models. The quantization scheme can

be roughly divided into four types: (1) the µ0 scheme, (2) the µ̄ scheme, (3) the generalized µ0 scheme,

and (4) the quantum collapsing model. This paper provides an introduction of the loop quantum

black hole model, a summary of the progress made in this field, as well as the quantum effective

dynamics and physical applications of these models.
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1. Introduction

Building a consistent model that unifies quantum mechanics and general relativity
(GR) is a Holy Grail for theoretical physicists. Loop quantum gravity (LQG) serves as one
of the promising candidates for quantum gravity, which is featured by its non-perturbative
characteristics [1–4]. In recent years, LQG has achieved notable progress, including making
natural predictions of the discrete geometrical spectrum and providing a reasonable micro-
scopic interpretation to the Hawking–Bekenstein black hole entropy [5–13]. We refer to [13]
for a complete review of the results on black hole physics in the framework of loop quan-
tum gravity. This non-perturbative LQG quantization framework has also recently been
extended to metric f (R) theories, Weyl gravity, scalar–tensor theories, higher-dimensional
gravity, and so on [14–19]. Despite these remarkable achievements, the LQG dynamics
are still not fully understood. In order to understand the dynamics of LQG, one often
utilizes symmetry-reduced models to test the quantization technologies developed in full
LQG, particularly regarding the Friedmann–Robertson–Walker (FRW) Universe model,
leading to the field of loop quantum cosmology (LQC) [20–22]. The most striking feature
of LQC is that it can naturally replace the classical Big Bang singularity of the Universe
with a quantum bounce, resulting in a nonsingular evolution of the Universe. We refer
to [20,23–25] for more complete reviews on LQC.

In addition to Big Bang singularity in cosmological models, another well-known
singularity lies at the center of a black hole. For instance, the simplest model is the
Schwarzschild interior spacetime, which contains singularity at r = 0. The interior of a
Schwarzschild black hole can be isometric to the Kantowski–Sachs model [22,26]. Thus,
the techniques developed for LQC can naturally transport to the spherically symmetric
Schwarzschild black hole model. This leads to the field of so-called loop quantum black
hole models; we refer to [22,26,27] for detailed constructions of the model. LQC can solve
the Big Bang singularity of the Universe. In the loop quantum black hole model, the black
hole’s interior singularity can also be resolved, as expected. In [13], concerns were presented
about the results on black hole physics in the framework of loop quantum gravity, while
in this review, we focus on the loop quantum black hole models utilizing the techniques
developed in loop quantum cosmology.
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Moreover, in contrast to LQC, which has consistent treatment for various models, in
the loop quantum black hole model, different models usually choose different quantum
parameters to regularize and quantize the Hamiltonian constraint. Generally, these loop
quantum black hole models can be divided into the following four schemes. The first
strategy is the µo scheme. In this scheme, the quantum regularization parameters are set to
be constants by certain considerations [22]. The second strategy is the µ̄ scheme [26,27] with
the quantum regularization parameters chosen as functions of the phase space variables.
The third is the so-called generalized µ0 scheme [28]. The fourth type is the quantum
collapsing model [29]. Although the singularity resolution of the Schwarzschild interior
holds in both of these methods, the detailed construction of the effective dynamics is quite
different. In some schemes, inconsistent physical results will occur. For instance, in µo

scheme, the quantum bounce that replaces the classical singularity of the Schwarzschild
interior could appear in the low curvature region [22,30,31]. In µ̄ scheme, the quantum
corrections to the Schwarzschild black hole horizon could be large; however, since the
curvature in the horizon is usually very small, one generally believes that the horizon can
be considered the classical region and should not receive quantum corrections that are too
large [26,27]. To cure these weaknesses, recently, some authors proposed new schemes, the
generalized µ0 scheme as well as the quantum collapsing model [28,29,32]. Moreover, as
suggested by the authors of [33], it is perhaps not suitable to use the µ̄ scheme near the
horizon since a spatial coordinate will become null at the horizon. Hence, they suggest
implementing the µ̄ scheme in a set of particular (spatial) coordinates that will not become
null at the horizon. By utilizing the areal gauge and Painlevé–Gullstrand coordinates, they
obtained a quantum-corrected Schwarzschild metric, which had the correct semi-classical
limit [33]. The aim of this paper is, thus, to provide a summary of these progressions as
well as the quantum effective dynamics and physical applications of these models.

We organize the paper as follows: We first recall the Hamiltonian framework of
the classical Schwarzschild black hole interior in Section 2. We then study the quantum
effective dynamics in Section 3, with different types of quantum parameters. The physical
applications of the loop quantum black hole are discussed in Section 4. The conclusions and
outlooks are summarized in Section 5. Throughout the paper, we work on the convention
c = 1.

2. Classical Theory

2.1. Preliminaries

The action of GR reads:

S =
1

16πG

∫

d4x
√

−gR. (1)

We begin with this action and choose the spatial metric qab and its conjugate momen-
tum pab as canonical variables. We can cast the whole system into the geometrical dynamics
with the Hamiltonian as follows [2]:

Hgrav =
∫

d3x(CaNa + CN), (2)

where the diffeomorphism and Hamiltonian constraints read

Ca = Db pab = 0, (3)

C =
2κ√

q

(

pab pab − 1

2
p2

)

−
√

q

2κ
R = 0, (4)

here, q is the determinant of metric qab and κ = 8πG. We can further cast this Arnowitt–
Deser–Misner (ADM) Hamiltonian formalism into a connection dynamical formalism. By
performing the canonical transformation, we introduce Ea

i (x) =
√

qea
i –with ea

i ebi = qab

denoting the densitized triad and A
j
a(x) denoting the conjugated connection—as the canon-

ical variables. Since we use a triad rather than a metric, the additional Gaussian constraint
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Gi emerges. Moreover, the diffeomorphism and Hamiltonian constraints should also be

re-expressed in terms of new variables (A
j
a(x), Ea

i (x)). Hence, the whole Hamiltonian
reads [2]

Hgrav =
∫

d3x
(

GiΛ
i +CaNa + CN

)

, (5)

where
Gi =∂bEb

i + ǫ k
ij A

j
aEa

k = 0,

Ca =
1

κγ
Eb

j F
j
ab = 0,

C =
1

2κ

Ea
i Eb

j√
q

ǫ
ij

k

(

Fk
ab − (1 + γ2)ǫk

mnKm
a Kn

b

)

= 0,

(6)

represent, respectively, the Gaussian, spatial diffeomorphism, and Hamiltonian constraints.

Moreover, γ denotes the Immirzi parameter [2]. In addition, Fi
ab = ∂a Ai

b − ∂b Ai
a + εi

jk A
j
a Ak

b

and Ki
a relates to the extrinsic curvature Kab through Ki

a = Kabebi.
Classically, the spherically static solution to GR is the so-called Schwarzschild solution

and the spacetime metric reads

ds2 = −
(

1 − 2GM

r

)

dt2 +

(

1 − 2GM

r

)−1

dr2 + r2dΩ
2, (7)

where M stands for the Arnowitt–Deser–Misner (ADM) mass of the compact object. When
2GM > r, this solution represents the exterior region of the Schwarzschild spacetime. On
the contrary, when 2GM < r, the Schwarzschild interior metric reads

ds2 = −
(

2GM

r
− 1

)−1

dr2 +

(

2GM

r
− 1

)

dx2 + r2dΩ
2. (8)

In this case, the killing vector ( ∂
∂r )

a becomes time-like; hence, we can use the radius r to
represent the evolution. Given the Schwarzschild interior spacetime, it has two well-known
singularities, one is the true singularity at r = 0 and the other one is located at r = 2GM,
which can be removed by suitable coordinate transformations.

It is easy to see that in the Schwarzschild spacetime, the homogeneous spatial Cauchy
slices Σ possess topology R× S2. To manifest this symmetry, one usually introduces the
following fiducial metric q̊ab on Cauchy slices Σ

q̊abdxadxb = dx2 + r2
odΩ

2. (9)

Here, x ∈ (−∞, ∞), and ro has dimensions of length. Note that in the x direction,
the spatial slice Σ is non-compact. Hence, an elementary cell C ∼= (0, L0) × S2 with a
finite L0 should be introduced in slice Σ. We then calculate all integrals with respect to this
elementary cell rather than the divergent x-direction to avoid possible divergence problems.

The connection Ai
a(x) and triad Ea

i (x) will be greatly simplified due to the symmetry
as follows [22]

Ea
i τi∂a = pcτ3 sin θ ∂

∂x + pb
L0

τ2 sin θ ∂
∂θ −

pb
L0

τ1
∂

∂φ , (10)

Ai
aτidxa = c

L0
τ3dx + bτ2dθ − bτ1 sin θdφ + τ3 cos θdφ, (11)

where τi is a basis of the su(2) Lie algebra. The non-vanishing Poisson brackets between
canonical variables now read

{pb, b} = −Gγ, {c, pc} = 2Gγ. (12)
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With the help of Equations (10) and (11), we can express the curvature Fi
ab and the

extrinsic curvature Ki
a as follows:

Fi
abτidxadxb =

bc

L0
τ1dθ ∧ dx +

bc sin θ

L0
τ2dφ ∧ dx + (−b2 sin θ + sin θ)τ3dφ ∧ dθ, (13)

γKi
aτidxa =

c

L0
τ3dx + bτ2dθ − bτ1 sin θdφ. (14)

The Gaussian Gi constraint and spatial diffeomorphism constraint Ca vanish automati-
cally. We only need to consider the Hamiltonian constraint. By using Equations (13) and (14),
the smeared Hamiltonian constraint (6) now reduces to [34,35]

H :=
∫

C
NC = − 1

2Gγ

((

b +
γ2

b

)

pb + 2cpc

)

, (15)

here, the lapse function N is chosen as

N = γsgn(pb)

√

|pc|
b

. (16)

The spacetime metric with spherical symmetry is then [22]

ds2 = −N2dT2 +
p2

b

|pc|L2
0

dx2 + |pc|dΩ
2.

2.2. The Classical Dynamics

By using the Hamilton constraint (15). The equations of motion read

ṗc = 2pc,

ċ = −2c,

ṗb =
pb

2

(

1 − γ2

b2

)

,

ḃ = −1

2

(

b +
γ2

b

)

. (17)

The solutions to the above equations read [34,35]

pc(T) = 4m2e2T , (18)

c(T) =
γL0

4m
e−2T , (19)

pb(T) = −
(

e−T − 1
)

1
2
2mL0eT , (20)

b(T) = γ
(

e−T − 1
)

1
2
, (21)

where ∞ < T ≦ 0 is the time corresponding to the lapse N = γsgn(pb)

√
|pc |
b .

It is easy to see that pcc is a constant of the phase space; therefore, we denote pcc =:
mL0γ.

By comparing this solution with the Schwarzschild metric (7), we can identify that
r = 2meT . Moreover, the singularity is located at r = 0 (or T = −∞) and the black hole
horizon is located at r = 2m (or T = 0).

3. Quantum Theory

To construct a viable quantum framework for Schwarzschild black holes, we adopt
the standard LQC treatment for Schwarzschild black holes, which requires introducing
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holonomy corrections. Hence, in this section, we will provide a summary of the main steps
and constructions.

The holonomy of an SU(2) connection Ai
a is a path-ordering exponential integral

along an edge ea [2,26]

h(A) := P exp
∫

ei

dt A
j
aτje

a, (22)

with P path-ordering labels.
The effective dynamics of LQC for sharply peaked coherent states are known to

provide an excellent approximation to the full quantum dynamics [24]. Although it is
currently not fully clear whether the effective dynamics of the loop quantum Schwarzschild
black hole model will also provide a good approximation of the full LQG dynamics for
Schwarzschild black hole spacetimes, the success of LQC makes people believe that, at least
for observables whose relevant physical length scales are much larger than Planck scales,
the effective dynamics of the loop quantum Schwarzschild black hole model could also be
used as a good approximation to the quantum dynamics of semiclassical states. Based on
this expectation, we will mainly focus on the effective theory of the loop quantum black
hole model here.

Inspired by LQC, a lot of models on quantum black holes have been proposed to solve
the singularity inside the black hole’s interior. Generally, [22,36], in the quantum effective
Hamiltonian constraint, the holonomy correction is simplified by replacing the components
of the Ashtekar connection b and c with

c 
sin(δcc)

δc
, b 

sin(δbb)

δb
, (23)

where the quantum corrections are controlled by the quantum parameters δc and δb due to
the fundamental discreteness of LQG. Thus, the effective Hamiltonian of the loop quantum
Schwarzschild black hole can be obtained as follows:

Heff = − 1

2Gγ

[(

sin(δbb)

δb
+

γ2δb

sin(δbb)

)

pb + 2
sin(δcc)

δc
pc

]

. (24)

Under different choices of δb and δc, the current existing quantization schemes of
the loop quantum Schwarzschild black hole can be divided into four main classes [37,38]:
(1) The µ0 scheme [30,39], (2) the µ̄ scheme [26,40], (3) the generalized µ0 scheme [28,32,34,41],
and (4) the quantum Oppenheimer–Snyder collapsing model [29]. In the following, we will
discuss these four different models in more detail.

3.1. µ0 scheme

In the µ0 scheme, the quantum regularization parameters of δb and δc are simply
taken as constants of the whole phase space [22]. For instance, in [26], the author takes
δb = δc = δ. In loop quantum cosmology, the µ0 scheme suffers a severe problem; it will
lead to a bounce in any value of matter density and, therefore, is unphysical. Moreover,
in [42], the authors show that when we consider the black hole formation in the µ0 scheme,
it will suffer another drawback, which is in the µ0 scheme; unless an unacceptable value
of the Barbero–Immirzi parameter is used, no trapped surfaces could be formed for a
non-singular collapse of a homogeneous dust cloud in the marginally bound case.

In this scheme, a particular LQG-corrected Schwarzschild spacetime should be men-
tioned. The authors constructed a spherically symmetric spacetime through holonomy
correction, known as the self-dual solution of LQG [30,39]. In particular, it has been shown
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that this solution is regular and free of any spacetime curvature singularity. The metric of
the self-dual spacetime by the usual Schwarzschild coordinates is given by [39]

ds2 = −g(r)dt2 + f (r)dr2 +

(

r2 +
a2

0

r2

)

dΩ
2, (25)

where

g(r) =
(r − r+)(r − r−)(r − r∗)

r4 + a2
0

, (26)

f (r) =
(r + r+)2(r4 + a2

0)

(r − r+)(r − r−)r4
. (27)

Here, r+ = 2M
(1+P)2 , r− = 2MP2

(1+P)2 and r∗ =
√

r+r− = 2MP
(1+P)2 . Moreover, a0 = ∆

8π , with ∆

being the minimal area predicted by LQG [2] and P is the regularization parameter that
depends on small δ ≪ 1 as

P =

√

1 + γ2δ2 − 1
√

1 + γ2δ2 + 1
. (28)

It is clear that when a0 = P = 0, the above solution (25) reduces to the Schwarzschild
black hole exactly.

3.2. µ̄ scheme

Since the µ0 scheme is unphysical and would lead to wrong semiclassical behavior, to
cure this problem, the more complicated quantization scheme of “improved” dynamics,
which is usually referred to as the µ̄ scheme, was formulated. In this scheme, the quantum
parameters δb and δc are chosen as adaptive discreteness variables. The µ̄ scheme’s quantiza-
tion dynamics were first developed in LQC [24] and later generalized for Kantowski–Sachs
models [27].

This µ̄ quantization scheme usually has two choices for δb and δc. The first choice is
the so-called µ̄ scheme with

δb =

√

∆

pb
δc =

√

∆

pc
. (29)

The second choice is usually referred to as the µ̄′ scheme, as

δb =

√

∆

pc
δc =

√

∆pc

pb
. (30)

Although the µ̄ and µ̄′ scheme has some advantages over the µ0 scheme, it is still not
ideal due to its large quantum correction at the horizon, a region typically expected to have
little quantum influence.

However, as suggested by some authors [33], it is perhaps not suitable to use the µ̄
scheme near the horizon because the spatial coordinate becomes null at the horizon due to
the fact that the physical length along that coordinate, in this case, will tend to 0. Hence, the
authors suggested implementing the µ̄ scheme in terms of another set of coordinates that
will not become null at the horizon. By maintaining the areal gauge for pc in the classical
theory and using the Painlevé–Gullstrand coordinates, they obtained a quantum-corrected
Schwarzschild metric, as:

ds2 = − f (τ)dτ2 + f−1(τ)dx2 + τ2dΩ
2, (31)
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where f (τ) = 1 − 2GM
τ + γ2

∆
4G2 M2

τ4 . This modified metric has the correct classical limit
at a large distance. The quantum correction decays vary rapidly at large distances, and
curvature scalars R are bounded by the Planck scale, which is independent of the black
hole mass M [33]. Moreover, this form of the metric was also obtained by other methods,
such as the quantum Oppenheimer–Snyder collapsing model [29].

Moreover, an attractive polymerized black hole [37,43] solution belongs to a specific µ̄
scheme was constructed recently. In this scheme, the quantum regularization parameters
are chosen as

δb = ±
4λj

γ|pb|
, δc = ± 8λk

γ
√

|pc|
, (32)

where λj and λk are the regularization constants that are related to the inverse Planck curva-
ture and the Planck length after rescaling the fiducial cell [43]. This solution leads to quan-
tum extensions of the Schwarzschild black hole. The quantum-corrected Schwarzschild-like
metric in this scheme reads [37,43–45],

ds2 = −8AF(r)M2dt2 +
dr2

8AM2F(r)
+ G(r)(dθ2 + sin2(θ)dφ2). (33)

where

F(r) =
1

G(r)

(

r2

8AM2
+ 1

)(

1 − 2M√
8AM2 + r2

)

, (34)

G(r) =
512A3M6 +

(√
8AM2 + r2 + r

)6

8
√

8AM2 + r2
(√

8AM2 + r2 + r
)3

, (35)

here, M represents the mass of the asymptotic Schwarzschild black hole, and the dimen-
sionless parameter A is given by A = 1

2 (λk/M2)2/3. The type of extension applied to the
Schwarzschild black hole also allows for a bounce from a black hole to a white hole [37,43].
In addition, to date, the black holes found in the universe typically exhibit rotation. With
this in mind, the rotational extensions of (33) through the Newman–Janis algorithm were
found by the authors in [44].

3.3. Generalised µ0 Scheme

By considering the weaknesses of µ0 and µ̄ schemes, recently, the authors proposed
a new scheme [28,32], which is usually referred to as the Ashtekar–Olmedo–Singh (AOS)
approach [28,32,46–48]. The AOS scheme can be regarded as an average of the µo-type
and µ̄-type schemes. The quantum regularization parameters δb and δc are set to be Dirac
observables, i.e., δb and δc are constants along each dynamic trajectory but still may be
allowed to vary from one to another. This scheme provides a viable effective description
for the Kruskal extension of both the exterior and interior of the Schwarzschild black holes
with large mass. The effective dynamics, on the one hand, resolve the interior singularity
Schwarzschild black holes in the Planck region, and on the other hand, keep the classical
horizon regime unchanged, thus overcoming the drawback of the usual µ̄ scheme. By
requiring the physical area of the transition surface to be the minimal area ∆, they fix the
δb as

δb =

( √
∆√

2π(γ)2GM

)
1
3

. (36)

Meanwhile, δc takes

δcL0 =

(

(

∆

2π

)2 γ

8GM

)
2
3

. (37)
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The AOS approach has been generalized to the Janis–Newman–Winicour space-

time [35]. In these quantum models, the Kretschmann scalar K = 144M2

p3
c

[28,32] is uniformly

bounded as

K = RabcdRabcd ≤ 768π2

γ4∆2
. (38)

The quantum-corrected Schwarzschild metric in this scheme reads

ds2 = −G(r)dt2 + F(r)dr2 + H(r)dΩ
2, (39)

where

G(r) =

(

r

rs

)2ǫ (1 − ( rs
r )

1+ǫ)(2 + ǫ + ǫ( rs
r )

1+ǫ)2((2 + ǫ)2 − ǫ2( rs
r )

1+ǫ)

16(1 + ǫ)4(1 + δ2
c L2

o γ2r2
s

16r4 )
, (40)

F(r) =

(

1 +
δ2

c L2
oγ2r2

s

16r4

) (ǫ +
(

r
rs

)1+ǫ
(2 + ǫ))2

(
(

r
rs

)1+ǫ
− 1)(

(

r
rs

)1+ǫ
(2 + ǫ)2 − ǫ2)

, (41)

H(r) = r2

(

1 +
δ2

c L2
oγ2r2

s

16r4

)

. (42)

Here, rs = 2GM denotes the Schwarzschild radius and

ǫ =

√

√

√

√1 + γ2

( √
∆√

2π(γ)2GM

)2/3

− 1. (43)

When quantum correction vanishes, i.e., ǫ = δb = δc = 0, it is clear that the metric (39)
goes back to the Schwarzschild solution. It should be mentioned that this model suffers
some criticism [49]; the reply to the criticism can be found in [48].

3.4. Quantum Oppenheimer–Snyder Collapsing Model

The gravitational collapse process plays an important role in understanding the for-
mation of black holes. In [29], the authors proposed a quantum Oppenheimer–Snyder
gravitational collapse model. First, the interior region, M−, consists of a dust ball. This
region can be described by the Friedmann–Robertson–Walker (FRW) cosmological model.
We can write down the flat FRW cosmological line element as follows:

ds2
in = −dτ2 + a2(τ)

(

dr2 + r2dΩ
2
)

. (44)

Consider a constant r = r0 slice, the induced line element on this slice reads

ds2
in = −dτ2 + a2(τ)r2

0dΩ
2. (45)

For the outside region M+, we assume that this stationary metric can be expressed as

ds2
out = − f (r)dt2 + g−1(r)dr2 + r2dΩ

2. (46)

Again, the induced metric on the constant r slice reads

ds2
out = −( f ṫ − g−1ṙ2)dτ2 + r2(τ)dΩ

2, (47)

here, a dot denotes the derivative with respect to τ. Since the collapse is spherical, the
interior of the Schwarzschild BH characterized by the Kantowski–Sachs spacetime, exhibits
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isometry. By matching the exterior effective spacetime with the interior, the effective LQC
model can describe the interior Kantowski–Sachs spacetime. The authors found that [29]

g(r) = 1 − H2r2, (48)

where H = ȧ
a is the Hubble parameter. By using the classical Friedmann equation H2 =

8πG
3 ρ, we have g(r) = 1 − 2GM

r with M = 4π
3 ρr3 denoting the total mass of the collapsing

ball. If we consider the LQC-corrected Friedmann equation

H2 =
8πG

3
ρ

(

1 − ρ

ρc

)

. (49)

Then g(r) = 1− 2GM
r +γ2

∆
4G2 M2

τ4 , which takes the same form as that in (31). Moreover,
this kind of metric is also obtained [50] by investigating the gravitational collapse of a
homogeneous Gaussian dust cloud.

4. Physical Applications

At the present stage, although there is no completely satisfactory unique solution,
even for the loop quantum-corrected Schwarzschild black hole, many physical applications
have already been carried out based on the current version of loop quantum black hole
models. This is done especially in quantum-corrected metric formalism, such as quasi-
normal modes [29,51–53], black hole shadow [29,51], gravitational lens [54], solar system
tests [45,55], or even galaxy scale tests for a loop quantum black hole. These physical
applications can constrain the quantum parameter and, therefore, help us to confirm or rule
out some models. For example, recently, a polymer quantum black hole in a µ̄ generalized
scheme was proposed [43,44]. However, in this model, the quantum parameters cannot be
fixed by theoretical considerations. In [45], the solar system test was applied to such a loop
quantum black hole model and the quantum parameter could be constrained.

Moreover, the Hawking radiation process was calculated in [56]. It was found that
the discrete quantum geometry introduces a correction much smaller than the leading
contribution for large black holes. In addition, using the effective metric (39), the resulting
Hawking temperature of this quantum-corrected black hole horizon also receives a small
quantum correction as [48]

TH =
h̄

8πKM

1

1 + ǫm
, (50)

where

ǫm =
1

256

(

γ∆
1/2

√
2πM

)
8
3

. (51)

5. Discussion and Outlook

We presented a summary of loop quantum Schwarzschild models in this paper, and
both the classical and effective quantum dynamics were considered. We presented a
brief overview of these topics. We started with the classical Hamiltonian framework
of the Schwarzschild black hole spacetime. Then, to provide a better understanding
of quantum dynamics, we discussed the quantum effective dynamics with four types
of quantum regularization parameters, δb and δc. These four types of parameters are
commonly used for describing quantum dynamics. All corresponding quantum-corrected
models can resolve the singularity inside the Schwarzschild black hole. However, they also
exhibit some significant differences. Moreover, we summarized the physical applications
of these models.

The loop quantum black hole field is still in its infancy stage, unlike LQC, where one
has a unique way to fix the quantum parameters. At the present stage, there is still no
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completely satisfactory unique solution, even for a Schwarzschild black hole. Moreover,
there are still many open issues in the current paradigm, for example, how does one
realize the Hawking radiation in such a loop quantum black hole scenario? Can we resolve
the black hole information paradox in the loop quantum gravity setup? Moreover, in
loop quantum black hole models, the general covariance of spacetime is often discussed.
Some authors stated that covariance cannot be addressed in spherical symmetrical models
because of slicing dependence [57]. This is currently still an open issue and is under debate.
Some possible general covariance models were constructed [58,59]; comments on these
models can be found in [60]. These open questions require a deeper understanding of the
loop quantum black hole model.
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