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Kurzfassung

Das Standardmodell der Elementarteilchenphysik ist eine hochst erfolgreiche Theorie, welche
die elektromagnetische, starke sowie die schwache Wechselwirkung von Materieteilchen bis
zu Energieskalen von einigen hundert Giga Elektronvolt beschreibt. Trotz dieser grofien Er-
folge besteht kaum Zweifel dariiber, dass es sich bei diesem Modell um eine effektive Theorie
handelt, d.h. die Theorie verliert bei hoheren Energien ihre Aussagekraft.

Daher muss das Standard Modell in geeigneter Art und Weise erweitert werden. Ein duflerst
viel versprechendes Konzept fiir eine solche Erweiterung ist jenes der Supersymmetrie, in
dem zu jedem bekannten Teilchen des Standardmodells ein oder mehrere supersymmetrische
Partnerteilchen vorausgesagt werden. Die einfachste und attraktivste supersymmetrische
Erweiterung des Standardmodells wird als minimal supersymmetrisches Standardmodell
(MSSM) bezeichnet. Minimal verweist darauf, dass die Anzahl neuer Wechselwirkungen
und Felder so gering wie moglich gehalten wird. Genau genommen besteht das MSSM
aus den Feldern des Standardmodells und deren supersymmetrischen Partnern sowie einem
zusitzlichen Higgsdublett. Die Anwesenheit dieses zusétzlichen Higgsdubletts fiihrt zur
Existenz von fiinf physikalischen Higgsteilchen.

Die Suche nach diesen supersymmetrischen Teilchen sowie Higgsbosonen ist deshalb eines
der wichtigsten Ziele des Large Hadron Collinders (LHC) am Teilchenforschungszentrum
CERN, bei dem hinreichend hohe Kollisionsenergien fiir die Erzeugung von diesen neuen
Teilchen zur Verfiigung stehen, weshalb die Existenz von Supersymmetrie bestatigt werden
konnte. Fiir die Entdeckung dieser neuen Teilchen sind genaue Vorhersagen ihrer Zerfalls-
breiten sowie Verzweigungsverhaltnisse unerlasslich. Um der Prézision am LHC und dem
zukiinftigen ILC gerecht zu werden, miissen Feynman Amplituden zumindest bis auf Ein-
schleifenniveau berechnet werden. Da es bei diesen Rechnungen auf Einschleifenniveau zu so-
genannten UV— und IR—- Divergenzen kommt, wird eine Renormierungsprozedur, in der diese
Divergenzen durch eine geeignete Wahl von Countertermen abgezogen werden, unerlasslich.

Ziel dieser Arbeit war die Entwicklung eines Computerprogramms HFOLD, das alle Zer-
fallsbreiten sowie Verzweigungsverhaltnisse aller MSSM Higgsboson Zweikorperzerfalle auf
vollem Einschleifenniveau berechnet. Bisher verfiighare Programme approximieren diese Kor-
rekturen durch den Gebrauch von Renormierungsgruppen-Gleichungen. Aufgrund der Tat-
sache, dass bei der vollen Einschleifenrechnung dieser Prozesse fast alle Parameter des MSSM
renormiert werden miissen, und daher eine Berechnung von einer entsprechend grofien Anzahl
von Feynmandiagrammen erforderlich ist, gestaltet sich diese Aufgabe als duflerst komplex.
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Die erforderliche Renormierungsprozedur wurde in Ubereinstimmung mit der SPA Kon-
vention konsistent im DR Schema durchgefiihrt. Besondere Aufmerksamkeit wurde auf die
Unterscheidung zwischen den fithrenden SUSY-QCD und den elektroschwachen Korrekturen
gelegt. Diese wurden im Detail herausgearbeitet und konnen getrennt ausgegeben werden.

Im Rahmen dieser Arbeit wurden dann mittels des Programms HFOLD Higgszerfélle in
mehreren sogenannten high scale Szenarien untersucht, in denen die erforderlichen Mod-
ellparameter von einem Satz weniger Parameter auf der GUT Skala durch die Verwen-
dung von Renormierungsgruppen-Gleichungen abgeleitet werden (z.B. minimal Supergravity
(mSUGRA) oder Non Universal Higgs Mass (NUHM)). Fiir andere Szenarien dieser Art kann
das Programm leicht adaptiert werden.

Dabei stellte sich wie zu erwarten heraus, dass die SUSY-QCD sowie die elektroschwachen
Korrekturen fiir die Higgsbosonzerfalle in Quarks der dritten Generation unerlésslich sind.
Sollten die supersymmetrischen Teilchen im Vergleich zu den Higgsbosonen jedoch relativ
leicht sein, wie z.B. in NUHM Szenarien, aber auch in Teilen des mSUGRA Parameterraums,
konnen die Zerfallskanéle in Charginos und Neutralinos die grofiten Verzweigungsverhaltnisse
aufweisen. Der Unterschied fiir diese fithrenden Zerfallsbreiten kann dann zwischen der
niedrigsten Ordnung und der entsprechend vollen Einschleifenrechnung mehr als 10 Prozent
betragen. Daher konnen diese Korrekturen fiir prizise Analysen nicht mehr vernachlassigt
werden.






Abstract

The Standard Model of elementary particle physics is a highly successful theory, describing
the electromagnetic, strong and weak interaction of matter particles up to energy scales to
a few hundred giga electronvolt. Despite its great success in explaining experimental results
correctly, there is hardly no doubt that the SM is an effective theory, which means that the
theory loses its predictability at higher energies.

Therefore, the Standard Model has to be extended in a proper way to describe physics at
higher energies. A most promising concept for the extension of the SM is those of Supersym-
metry, where for each particle of the SM one or more superpartner particles are introduced.
The simplest and most attractive extension of the SM is called Minimal Supersymmetric
Standard Model (MSSM). Minimal refers to the additional field content, which is kept as
low as possible. In fact the MSSM consists of the fields of the SM and their corresponding
supersymmetric partner fields, as well as one additional Higgs doublet. The presence of this
additional Higgs doublet leads to the existence of five physical Higgs bosons in the MSSM.

The search for supersymmetric particles and Higgs bosons is one of the primary goals of the
Large Hadron Collider (LHC) at the CERN laboratory, producing collisions at sufficiently
high energies to detect these particles. For the discovery of these new particles, precise pre-
dictions of the corresponding decay widths and branching rations are utmost mandatory. To
contribute with the precision of the LHC and the future ILC, Feynman amplitudes should be
calculated at least to one-loop order. Since these calculations lead to so called UV— and IR~
divergences, it is essential to perform a renormalization procedure, where the divergences
are subtracted by a proper definition of counterterms.

The goal of this work was to develop a program package, which calculates all MSSM two-
body Higgs decay widths and corresponding branching ratios at full one-loop level. Up to
now public available programs approximate these contributions using renormalization group
improved born level amplitudes. Due the fact that the full one-loop calculation requires the
renormalization of almost all parameters of the MSSM, a large number of Feynman diagrams
has to be computed, which makes this task very complex and challenging.

The necessary renormalization procedure was performed consistently in the DR scheme fol-
lowing the SPA convention. Special attention has been given to the distinction between the
leading SUSY-QCD and the full electroweak contributions, which have been worked out in
detail and can be output separately.
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In this work we then used the program HFOLD to study Higgs decays in some so called
high scale scenarios, where the necessary parameters are derived from a few parameters
specified at the GUT scale using renormalization group equations (e.g. scenarios like mini-
mal Supergravity (mSUGRA) or Non universal Higgs Mass (NUHM)). The program can be
most easily adopted to any other scenario of this kind.

It was found as expected that the SUSY-QCD as well as the electroweak corrections for
Higgs decays into third generation quarks are mandatory. If the Higgs bosons are relatively
heavy compared to the supersymmetric particles like in NUHM scenarios, but also in parts
of the mSUGRA parameter space, the decay channels into charginos and neutralinos can
exhibit the largest branching ratios. The difference for these leading decay widths between
the born level and the corresponding full one-loop calculation can be more than 10 percent.
Therefore these contributions can not be neglected for precise analysis.
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Chapter 1

Supersymmetry

The Standard Model (SM) of elementary particle physics [1, 2] is an extremely successful
theory describing the electroweak and strong interactions of quarks and leptons. Quarks and
leptons occur in three generations:

e the leptons: the electron, the muon, the tau and their corresponding neutrions.

The left-handed doublets
<e> (M> (T>
Ve L’ v Lu v, . )

couple to U(1)y and SU(2)., in contrast to the right-handed singlets

€R; MR, TR
only couple to U(1)y.

e the quarks: the up, down, charm, strange, top and bottom quark.

The left—-handed doublets
<u) (C) (t>
d L’ s L’ b L’

couple to U(1)y, SU(2), and SU(3)¢, the right-handed singlets
ug, dr, Cr , Sk tr bR ,
couple only to U(1)y and SU(3)¢.

The SM is based on local gauge invariance described by the gauge group SU(3)c® SU(2), ®
U(1)y in which the electroweak SU(2), ® U(1)y symmetry is spontaneously broken down to
the U(1) gas electromagnetic symmetry. In the SM the mechanism of spontaneous electroweak
symmetry breaking (EWSB) [3] is based on a non vanishing vacuum expectation value v of
a fundamental scalar field (Higgs field). This Higgs field gives masses to all particles which
couple at tree-level to the Higgs boson, in particular to the W* and Z° vector bosons.
Although the SM describes almost all phenomena (except neutrino oscillations and neu-
trino masses) presently known at energies up to ~ 100 GeV, there are several fundamental
questions that remain unanswered:
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e The hierarchy problem

In the SM, radiative corrections to the squared Higgs mass m?, depend quadratically on
the ultraviolet cut-off scale A. If the scale A, where possibly new physics enters is high,
the theory produces an unnatural large Higgs mass. To show the problem, consider
the one-loop contributions to the Higgs mass, of a fermion f with a repetition number
Ny and a Yukawa coupling given by Ay = V2m 7/v. Assuming for simplicity that the
fermion is very heavy so that one can neglect the external Higgs momentum, one
obtains for the fermionic Higgs mass correction

Figure 1.1: One-loop corrections to the Higgs mass m?, (a) fermionic, (b) and (c) scalar .

/\2
Am3, = Nf8_7:2 — A%+ Gm?logmif —2m7| + O(1/A?),
which shows the quadratically divergent behavior Am? oc A% If we chose the cut—off
scale A to be the GUT scale, mgur ~ 10'® GeV, or the Planck scale, Mp ~ 10
GeV, the Higgs boson mass, which is supposed to lie in the range of the electroweak
symmetry breaking scale v ~ 250 GeV, will become huge. For the SM Higgs boson to
stay relatively light, at least my < 1 TeV, we need to add a counterterm to the mass
squared and adjust it with a precision of O(1073%), which seems highly unnatural.

o Electroweak symmetry breaking
In the SM, the masses of fermions and gauge bosons are generated by the Higgs mech-
anism. A negative Higgs mass squared in the Higgs potential V(¢) leads to a non
vanishing vacuum expectation value v. However the negative squared mass parame-
ter p? is introduced by hand and without any deeper justification, which is from the
theoretical point of view unsatisfactory.

e Gauge coupling unification and GUTs
If the SM is part of a Grand Unified Theory (GUT) the fundamental forces should
unify at a high scale. However, recent measurements of energy behavior of the couplings
indicate that gauge unification is not possible with the particle content of the SM .

e Baryogenesis
One of the most fundamental open questions is the origin of the observed baryon asym-
metry of the universe. Although the SM fulfills all the requirements for baryogenesis [5],
the electroweak phase transition is too weak to preserve the generated baryon asymme-
try. Therefore, baryon asymmetry generated at the electroweak phase transition claims
for new physics at the electroweak scale.



e Dark matter
The cosmic microwave background data strongly indicate that only about 5% of the
total matter density of the universe consist of particles of the SM, while there is about
five to six times more mass in the form of invisible cold dark matter. The SM does not
provide a reliable candidate with the right properties to describe this kind of matter.

Therefore, the Standard Model has to be extended to describe physics also at higher ener-
gies. In the early 70’s, J. Wess and B. Zumino found an attractive symmetry relating the
two fundamental species of elementary particles, bosons and fermions, by a supersymmetry
transformation given by

Q| Fermion) = | Boson) ()| Boson) = | Fermion) . (1.1)

In such supersymmetric models for each particle a superpartner equal in mass and quantum
numbers, but differerent in spin by 1/2 is introduced. Due to this boson <+ fermion symmetry
the scalar masses are protected from quadratically divergent loop corrections, providing an
elegant solution to the hierarchy problem.

Since none of the predicted supersymmetric particles have been observed up to now, SUSY
must be a broken symmetry in nature. If this supersymmetry breaking is of a certain type
known as soft breaking [6], it doesn’t forfeit some of its advantages, e.g. it does not reintroduce
quadratic divergences of scalar particle masses.

Even though theories including SUSY have to explain why the masses of the predicted
superpartners are that high and up to now there is no direct evidence that the fundamental
structure of nature is supersymmetric, such theories provide many remarkable features:

e Hierarchy problem
One of the main reasons for introducing SUSY theories is their ability to solve the
hierarchy problem [7]. By grouping fermions and bosons together in supermultiplets,
the quadratically divergent radiative fermionic corrections to the Higgs boson mass are
canceled by the corresponding bosonic loop contributions of opposite sign. Therefore
SUSY stabilizes the hierarchy in the sense that the ‘natural” mass of the Higgs boson
lies in the range of electroweak symmetry breaking scale.

To show the cancellation let us assume the existence of Ng scalar particles with masses
mg and with trilinear and quartic couplings to the Higgs boson given by vAg and Ag.
They contribute to the Higgs boson self-energy via the two diagrams of Fig. 1.1b,
which lead to a contribution to the Higgs boson mass squared

AsNg A A% Ng A 1
Am3, = — A? 4 2m3l — )| - =2 -1+ 2 — — ] .
M = e { +2my og(ms)] 16.2" + 2log e +0 A2

Here again the quadratic divergences are present. However, if we make the assumption
that the Higgs couplings of the scalar particles are related to the Higgs—fermion cou-
plings in such a way that A7 = 2m3/v®> = —\g, and that the multiplicative factor for
scalars is twice the one for fermions, Ng = 2/Nf, we then obtain, once we add the two
scalar and the fermionic contributions to the Higgs boson mass squared

AN A 1
_ ARV ms
Am3, = 2 {(m? - m%)log(m—s) + 3m3log (m_f)] +0 (P) :
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As can be seen, the quadratic divergences have disappeared in the sum [7]. The log-
arithmic divergence is still present, but even for values A ~ Mp of the cut—off, the
contribution is rather small. This logarithmic divergence disappears also if, we assume
that the fermion and the two scalars have the same mass mg = my. In fact, in this
case, the total correction to the Higgs boson mass squared vanishes altogether. How-
ever, if this symmetry is badly broken and the masses of the scalar particles are much
larger than their corresponding fermionic superpartners, the hierarchy problem would
be reintroduced again in the theory, since the radiative corrections to the Higgs mass
x (mfc — m%)log(A/ms) become large again. To keep the Higgs mass in the range of
the electroweak symmetry breaking scale my = O(100 GeV), we need the mass dif-
ference between the SM particles and their corresponding SUSY partners to be rather
small. Therefore, the new particles should not be much heavier than the TeV scale

mgr = O(1 TeV).

Electroweak symmetry breaking

As already indicated, in the SM an effective Higgs potential V (h) oc u?h? + A\h* with
p? < 0 is introduced ‘by hand’ to trigger EWSB. In renormalizable (supersymmetric)
theories, however, the mass parameters which enter in the Lagrangian are also scale—
dependent, and renormalization-group equations can be used to evolve the parameters
from the unification scale of the order of 10'® GeV down to the weak scale of order
102 GeV. Using the renormalization group equations the Higgs mass parameter p is
driven to a negative value due the top—Yukawa coupling, thus providing a plausible
explanation of electroweak symmetry breaking (EWSB)[S], [Q].

Gauge coupling unification

It can further be shown that in the minimal supersymmetric extension of the SM,
the extrapolation of the low energy values of the gauge couplings unify at a scale
Mgyt ~ 3 x 10'® GeV [10], well in agreement with the limits on the proton lifetime.

Cold dark matter

As we have seen, supersymmetric models can solve many problems of the SM. However,
without any additional structure, they can give rise to baryon and lepton number viola-
tion at unacceptable levels, e.g. proton decay can be mediated by the superpartners of
quarks, i.e. p — 7%e*. The non-observation of such decays has lead to the introduction
of a discrete symmetry known as R-parity [11], to forbid such decays and to ensure
baryon and lepton number conservation in an elegant way. As a consequence, the light-
est supersymmetric particle (LSP) is absolutely stable, and, if electrically neutral it
provides a nice cold dark matter candidate.



Chapter 2

The Minimal Supersymmetric
Standard Model (MSSM)

2.0.1 The SUSY Algebra

The generators of SUSY must turn a bosonic state into a fermionic state, and vice versa.
This implies that the generators themselves carry half-integer spin, i.e. are fermionic. This is
in contrast with the generators of the Lorentz group, or with other gauge group generators,
which are all bosonic. The simplest choice of SUSY generators is a two-component Weyl-
spinor @ and its conjugate Q. Since these generators are fermionic, their algebra can be
mostly written in terms of anti-commutators

{Qa. Qs = 0, (2.1)
{@o‘u@,{%} = 0, (22)
{Qa,Qs} = QUZBPM, (2.3)
[Qa, Pu] = 0. (2.4)

2.1 Construction of the MSSM Lagrangian

2.1.1 Superfields

To construct the MSSM Lagrangian we will need two kinds of superfields: the chiral su-
perfields and the vector superfields. Each type of superfield is an irreducible representation
of the SUSY algebra. Superfields can be understood as functions of Grassmann valuable
"fermionic’ coordinates # and # and the spacetime coordinates x,. An infinitesimal SUSY
transformation can be written as

_ ~ o _9J - 0 -
ds(a,@)®(x,0,0) = g + Qg 1 (20,0 — 0o,a) a—x“ O(x,0,0) , (2.5)

where ® is a superfield and «, @ are again Grassmann variables. This corresponds to the
following explicit representation of the SUSY generators

bt
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One can introduce SUSY-covariant derivatives, which anti-commute with the SUSY gener-
ators ) and @) by

0 . - 0 .
D, = — k070 Dy =—— —i0%*.9, . 2.7
500 10,5070, o i0” 0540, (2.7)

2.1.2 Chiral superfields

This name is derived from the fact that the SM fermions are chiral, because their left— and
right-handed components transform differently under SU(2), x U(1)y. Therefore, we need
to introduce superfields with only two physical fermionic degrees of freedom, which can then
describe the left— or right-handed component of a SM fermion. The same superfields will
also contain their bosonic superpartners, the sfermions. Chiral superfields are defined by the
following constraints

Doy,
Dop

0 (®gisleft — chiral),
0 (®g is right — chiral) .
@, can be expanded in complex space (y* = x# + ifo*f) by

Oy, 0) = ¢(y) + V20*%aly) + (00)F(y) , (2.10)
where the fields ¢ and F' are complex scalars fields and ) is a Weyl spinor.

2.1.3 Vector superfields

Vector superfields describe the spin—1 gauge bosons and their fermionic superpartners the
gauginos. Vector superfields are constrained by

V(z,0,0) =VT(x,0,0). (2.11)
The vector superfield can be expanded (after using the Wess—Zumino gauge) by
V(x,0,0) = (00"0)A, + i(00)(ON) — i(00)(OX) + (00)(60)d , (2.12)

where A, is a real vector field, A a compex Weyl spinor field and d denotes a real scalar field.

2.1.4 SUSY-invariant Lagrangian
By definition, the action is invariant under SUSY transformations
55/d4:v£(:v) =0. (2.13)

This is satisfied, if £ itself transforms into a total derivative. The highest components of the
superfields (those with the largest number of 6 and 6 factors) satisfy this requirement, so
they can therefore be used to construct a SUSY invariant Lagrangian. The action S can be

written in more detail by
S = /d4m (/ d*0Lp —I—/d29d29£,3) : (2.14)



2.1 Construction of the MSSM Lagrangian

2.1.5 Yukawa interactions and mass terms

The product of two left—chiral superfields writes as

O Dy = <¢1 + V200, + ‘99F1) <¢2 + V20 + 9@F2> ;
= Gign + V20 (V102 + G1902) + 00 (d1F2 + ¢oFy — 1hs) (2.15)

performing the integration over the Grassmann variables the expression has the form (A
detailed description of the integration over Grassmann variables can be found in the appendix

Bl)
/d29 Q1 Por = (01Fo+ ¢oFy — P11)s) . (2.16)

The product of two left—chiral superfields is again a left—chiral superfield, since it does not
depend on 6, it is a candidate for a contribution to the £p term in the action (ZI4)). The
last term in eq. (2.I6]) gives rise to a fermion mass term. The product of three left— chiral
superfields takes the following form after integration

/d2 0011 Po 1 P31 = Q12Fs + d1F2d3 + Pr1d2Fs —h19aths — Prihathy — hiihady ,  (2.17)

Yukawa interactions

and gives rise to Yukawa interactions. If ¢; is the Higgs field, and ¢ and 3 the left—and
right-handed components of the top quark, eq. (2.I7) will not only produce the desired Higgs—
top—top interaction, but also interactions between a scalar top £, the fermionic “higgsino” E,
and the top quark, with equal strength. This is a first example of relations between couplings
enforced by supersymmetry.

2.1.6 Kinematic terms

Let us now consider the product of a left-chiral superfield and its conjugate with

ol (2,0) = ¢ — 2i00,00"¢" — 2 (00,0) (00,0) 00" ¢"

+ V200 — 2v/2i (05,0) 0" (0) + 00 F*. (2.18)

Obviously the product ® LQDTL is self-conjugate and is therefore a vector superfield. It is a
candidate contribution to the “D—terms” in the action (2.14))

/ d*0d*0D ) = FF* — ¢0,0"¢" — itha,0"). (2.19)

As can be easily seen eq. (2.19) does not contain a kinetic terms for the field F', therefore
this field does not propagate, it is an auxiliary field, which can be integrated out, using its
algebraic equation of motion.
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2.1.7 The superpotential

The interactions of a renormalizable supersymmetric theory can be generalized by the intro-
duction of the superpotentail W. The superpotential W is defined by

chp i metb@ + 2 Zg,]kqwq)k, (2.20)
zyk

where the ®; are all left—chiral superfields, and the k;, m;; and g, are constants with
mass dimension 2, 1 and 0, respectively. The contributions to the Lagrangian that we have
identified so far can be written compactly as

L => / d*0d*0D; D! + [ / d2OW (D;) +h.c}

_ Z (FLF7 + 10,0 — ithi0,0" 1)

Note that in the last line of eq. (221]), W is understood to be a function of the scalar fields ¢;,
rather than of the superfields ®;. Using eq.(2.20) it is easy to convince oneself that the last
line in eq.(221]) indeed reproduces the previous results (2Z.I6) and (Z.I7)). Using the equation

of motion one can integrate out the auxiliary fields F};. Their equation of motions are simply

(2.21)

given by
oL  [ow(en)]”
reinserting this back into eq. (Z221]) gives
0*W (¢y) oW (¢,) |
Lin 7 Vite + hc (2.23)
‘o [Z 90;0¢, " Z]: 00,

The Lagrangian (2Z23]) describes fermion masses and Yukawa interactions, while the last
term describes scalar mass terms and scalar interactions. Since both terms are determined
by the single function W, there are clearly many relations between coupling constants.

2.1.8 Gauge interactions

The coupling of the gauge (super)fields to the (chiral) matter (super)fields is accomplished
by a SUSY version of the familiar “minimal coupling” by

/ d*0d*00Td  — / d*0d*0DT eV & (2.24)
= Do) — itho, DM+ g¢* D+ igV2 ("M — Mpop) + |F?

in the second step the W-Z gauge has been used. We introduce the usual gauge—covariant
derivative D, = 0, +1ig A}, T,, where the T, are group generators. This part of the Lagrangian
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does not only describes the interactions of the matter fields (both fermions and scalars) with
the gauge fields, but also contains gauge—strength Yukawa—interactions between fermions v,
sfermions ¢, and gauginos A. Finally, the kinetic energy terms of the gauge fields can be
described with the help of the superfield by

W, = (DdDBEdB> e 9DtV | (2.25)

where D and D denote the SUSY—covariant derivatives, which carry spinor subscripts. For
abelian symmetries, this reduces to W, = (DdDBﬁd6> D,V. Since DyD,; = 0 and DWW, =
0, W, is a left—chiral superfield. One can show that the product W,W* is gauge invariant,
it is also a left—chiral superfield, therefore its 80 component can be used the Lagrangian

1 1 1
— W,W® = —-F® [ 4 _D, D"
3242 g lwte T g

T _
i (_%nguau)\a + §gfab0)\a0MA5/\c + h.c.) . (2.26)

In addition to the familiar kinetic energy term for the gauge fields, this also contains a kinetic
energy terms for the gauginos )., as well as the canonical coupling of the gauginos to the
gauge fields, which is determined by the group structure constants f%°. Equation (Z.286]) does
not contain a kinetic energy term for the D, fields. Therefore these fields have just auxiliary
nature, and can again easily be integrated out. Equations (2.24]) and (2.26) show that their
equation of motion is given by

=g Z G115, (2.27)

where the group indices have been written exphmtly. The third term in the second line in
eq. (Z24) and the second term in eq. (2:26]) then combine to give a contribution

—VD———Z Z 99 T30,

to the scalar interactions in the Lagrangian. These interactions are completely fixed by the
gauge couplings. This completes the construction of the Lagrangian for a renormalizable
supersymmetric field theory.

: (2.28)

2.2 Field content of the MSSM

The simplest and most attractive extension of the Standard Model is the Minimal Super-
symmetric Standard Model (MSSM).Minimal refers to the additional field content, which is
kept as low as possible. In particular, the field content of the MSSM consists only of the SM
fields and their supersymmetric partners, and one additional Higgs doublet.

e Gauge fields
In order to respect the SU(3)c®SU(2),®@U(1)y gauge symmetry of the SM, the spin—1
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gauge bosons are described by the corresponding vector superfields. In particular, the
eight gluons of QCD, G}, get eight spin—% partners G* called gluinos, the SU (2) gauge
bosons W;L get three winos W' as partners and the U (1) gauge boson B,, gets a bino
B. Note that since SU(2), x U(1)y is broken in the SM, the winos and the bino
do not form mass eigenstates but mix with fields with the same charge but different
SU(2), ® U(1)y quantum numbers.

Superfield | spin-1 | spin-1/2 | SU3)c @ SU(2), @ U(1)y Names
Ve G G* (8,1, 0) gluons, gluinos
Vv W W (1, 3,0) W-bosons, winos
1% B, B (1,1, 0) B-boson, bino

Table 2.1: Gauge supermultiplet fields in the MSSM.

e Matter fields
The matter content of the SM is described by three generations of leptons and quarks,
i. e. for each generation two SU(2);, fermion doublets and three singlets for the right-
handed fermions,

L:(”L), E=¢, Q:(ZL), D=d, U=u. (2.29)
L

€r

Therefore, one generation of the SM is represented by five left-chiral superfields which
contain the leptons and quarks given above plus their supersymmetric partners, the
sleptons and squarks:

£:<”L), B—g. @:@L), Ded, U—i (2.30)
L

er,

e Higgs sector
Contrary to the SM, two chiral superfield doublets with hypercharges £1 are required
to break SU(2), x U(1)y invariance and to give masses to both up— and down—type
fermions. One reason is that if there would be only one single chiral superfield doublet,
the gauge symmetry would suffer a fermion triangle gauge anomaly. This can easily be
seen from the conditions for anomaly cancellation, Tr[Y?3] = Tr[T7Y] = 0, where T3 and
Y denote the third component of the isospin and the weak hypercharge, respectively,
and the electric charge given by @Q = T5+Y/2. In the SM these conditions are satisfied
by a complete generation of SM fermions. To cancel the contribution from one superfield
doublet, one needs a second doublet to get a consistent quantum theory. The two Higgs



where the hatted quantities H]’, Q. L7,U, D, E are the chiral superfields given in Ta-
ble 2.2l Due to better readability we have suppressed all colour, weak isospin and
generation indices.

The superpotential determines two kinds of interactions mentioned in eq. (2.40)). Firstly,
the Yukawa potential V3 can be obtained by replacing two superfields in the superpo-
tential by the corresponding fermionic fields and the remaining superfield by its scalar

representative,
Vw =
+
+
+

-amyy+mmwy+m%QW—mmﬂ
-ﬁmyﬁ+@m@ﬁ+m@@W]

B HIL B 4 ha QY D + b HIQ'U|

(2.33)
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Superfield | spin-1/2 | spin-0 | SU3)c® SU(2), @ U(1)y Names
Q (ur,dp) | (g, dp) (3,2, 3)
quarks, squarks
Ue g i (3,1, -4
f ’ (x 3 families)
De dr dy (3,1, 2)
L (ve,er) (U, €r) (1, 2,-1) leptons, sleptons
E* Er e, (1,1, 2) (x 3 families)
ﬁl (‘Elllrf{lz) (HllaHIQ) (17 2, _1)
R o higgsinos, Higgs
H, Hl, H? Hl H? (1,2, 1)
Table 2.2: Chiral supermultiplet fields in the MSSM.
doublets and their superpartners, the higgsinos H ZJ , are given as follows:
H! H!}
me ()i )
- H} - H}
le( ~1), 2:( ~2). (231)
b H
In general, interactions in the MSSM have two different sources:
e Superpotential
The superpotential for the MSSM is given by
W= ey [ L B 4 haBi QP D+ Q0" — ) (2.32)
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The F'-term potential Vi originates from using the equations of motion for the auxiliary
fields Fj,
2

W ()
o (2.34)

Ve = Y FF =)

A 7

where the sum is taken over all scalar components ¢; of the superfields.

¢ Gauge Symmetry
The MSSM contains the usual gauge interactions, but there are also gauge—strength
interactions involving neither gauge bosons nor gauginos arising from the D-term po-
tential in eq.(2.28).
In fact, there exists one additional kind of interaction allowed by gauge invariance
involving the gaugino fields. The corresponding potential Vi, is given by

Vews = iV20a0k AT iy + hc. (2.35)

where (¢,1) are the spin—0 and spin spinf% components of the chiral superfield, re-

spectively, and A* denoting the gaugino field.

e SUSY breaking sector
Sine no SUSY particle has been observed up to now, SUSY must be broken to be
in agreement with experiment. Therefore it is necessary to introduce explicit SUSY
breaking terms in the Lagrangian. The last term in the full Lagrangian of the MSSM
Lo involves the soft SUSY—breaking terms and can be written as

e Mass terms for the gluinos, winos and binos:
3 8
1 . - ~
— Lgaugino = 3 M,BB + M, E WeW, + Ms E G"G, + h.c. (2.36)

a=1 a=1

e Mass terms for the scalar fermions:

- Esfermions - Z mz}léfj@z + mélijiz + mgl‘ﬂRl 2 + mikZRl 2 + mzlgRl 2
i=gen
(2.37)
e Mass and bilinear terms for the Higgs bosons:
— Litiges = Mg, HyHy + m% HHy + Bu(Hy-Hy +h.c.) (2.38)

e Trilinear couplings between sfermions and Higgs bosons

Lo = > [A;;.Yi;agiﬂg-@j+A§j5gjj*RiH1-Qj+A§j§g§.é’;%iﬂl-ij + he.
i,J=gen

(2.39)
The complete Lagrangian of the MSSM can be written as
*CMSSM - ﬁkinetic - VY - VF - VD — VGQZ”ZJ + £soft s (240)

where Lyinetic stands for both the standard kinetic terms for each particle and their inter-
actions with the gauge bosons. The interactions are described by the potentials Vx and the
last term Ly includes the SUSY-breaking terms.
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2.3 MSSM spectrum

2.3.1 Higgs sector

As stated before, two complex Higgs doublets (eight degrees of freedom) are required to
keep the MSSM anomaly free. Three of the eight degrees of freedom become the longitudi-
nal modes of the vector bosons Z° and W¥, therefore these bosons become massive. The
remaining five degrees of freedom, correspond to three neutral Higgs bosons h?, H%, A and
the two charged ones H*™ and H~. In the MSSM the scalar Higgs potential Vy has three
different sources :

i) The D terms containing the quartic Higgs interactions, eq. (Z28)). For the two Higgs fields
H, and Hy; with Y = —1 and +1, these terms are given by

1[g 2

Uty ¢ Vh =[S0 - 1| 2.41)
1 . &

SU@2), : Vj= 5 [g(Hi*TZH{ + H?TZH%)} : (2.42)

with 7¢ = 2T Using the SU(2) identity 757 = 203101 — 04j0x, one obtains the potential

2
Vp = % A\ H{-Hof* = 2|H\ P | Hof* + (|H\ ) + (\H2|2>2] + %(|H2|2 = [H[")*. (243)

ii) The F' term of the Superpotential eq. (2.32) can be written as Vi = >, [0W (¢;)/0¢;|>.

From the term W ~ ,uI:I 1-]:12, one obtains the component
Vi = ((HL[* + | Hof?) - (2.44)

i71) Finally, there is a part originating from the soft SUSY—-breaking scalar Higgs mass terms
and the bilinear term

Viots = my, HYHy +m%, HY Ho + Bu(Hy-Hy +h.c.) . (2.45)
The full scalar potential involving the Higgs fields, is the sum of these three terms

Vi = (| +mE) [ H* + (|pf* + m3,)|Hol* — pBey (H{Hj + h.c.)
g+ g?
8

using the abbreviations m? = m¥, + |u|* and m3, = uB, the scalar Higgs potential can be
expressed in a more compact form by

Vi = mi|Hy[* + m3| Hof* — miy(Hy Hy + H{HJ)

1
+ (|Hyf” - \H2\2)2+§92’HIH2’2a

1 g*
+§(92+9/2)(\H1\2— ’H2’2)2+§!HIH2’2- (2.46)

In the MSSM Higgs sector we have three free parameters: m?, m3 and m?,. The two com-
binations m%h u, t \u|? are real, only By can be complex. However, any phase in By can
be absorbed into the phases of the fields H; and Hs. Therefore the scalar potential of the
MSSM is CP conserving at tree-level. In contrast to the SM, where the strength of the
Higgs self-interaction is an unknown free parameter, the quartic interactions in the MSSM
are completely determined by the electroweak gauge couplings ¢ and g¢.
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Electroweak symmetry breaking (EWSB)

To break electroweak symmetry, we demand that the minimum of the potential V breaks
the SU(2), x U(1)y group down to the electromagnetic symmetry U(1)q. At the minimum
of the potential V2™ we can always choose the vacuum expectation value of the field H; to
be zero (H; ) = 0, this can be done due to the SU(2) symmetry without loss of generality.
At 0V/OH; =0, one then automatically obtains (H, )=0. Since both charged components of
the Higgs scalars remain unaffected, electromagnetism is not spontaneously broken, which
is in agreement with experiment. Therefore, only the neutral Higgs boson fields acquire a

non-vanishing VEV| i.e.
. U1 o O
(Hy) = ( 0 ) . (Hy) = ( o ) . (2.47)

To have electroweak symmetry breaking, one needs a combination of the HY and HY fields
to have a negative squared mass term. This occurs only if

miy, > mims (2.48)

if not, Vi will have a stable minimum and there is no EWSB.In the direction |H}|=|HY|,
there is no quartic term. Vy is bounded from below for large values of the field H; only if

m3 4+ m3 > 2|m3,| (2.49)
is satisfied. To have explicit electroweak symmetry breaking and, thus, a negative squared

term in the Lagrangian, the potential at the minimum should have a saddle point and
therefore

O*Vy )

Det(— < 0= m2md<mb, . (2.50)
OHOOH?

The two conditions above on the masses m; are not satisfied if m? = m2 and, thus, we must

have non-vanishing soft SUSY-breaking scalar masses my, and mpy,

mi # mj = mi, #my, (2.51)

Therefore, to break the electroweak symmetry, we need also to break SUSY. This provides
a close connection between gauge symmetry breaking and SUSY-breaking. In constrained
models such as mSUGRA, the soft SUSY-breaking scalar Higgs masses have equal values at
a high—energy scale (m%,1 = qul > 0). However, in the running to lower energy scales via
RGESs, one obtains m3;, < 0 or mj, < mj;, which thus triggers EWSB: this is the radiative
breaking of the symmetry [103]. Thus, electroweak symmetry breaking is more natural and
elegant in the MSSM than in the SM since, we do not need to make the ad hoc choice ;% < 0,
in the MSSM this comes simply from radiative corrections.

2.3.2 MSSM Higgs mass matrices

For the two Higgs doublets we choose the following common parameterization:

H = ( gli ) — ( o +(¢?;ix(l))/*/§) L Yp =1, (2.52)

H:(H2+>—( ¢ ) Yig, = +1 (2.53)
TAH ) \wt@+ad)/v2 ) T |
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The minimum of the Higgs potential can now be obtained easily by solving the equations
ov ov
OHY [img)=v,  OHZ ()=,
resulting in the two minimization conditions
1
miv =~y — (¢ + g0~ 0d), (2.55)
1
mavs = —mivr + 7(9° +¢”)(vi —v3). (2.56)
The weak boson masses can be expressed with the VEVs v; and vy by
2 2 2
my =L i), who= L), (257)
and hence
2m?
2 2 .2\ zZ . 2
v = (Ul + U ) = W ~ (174 GGV) s (258)

is very well known from experiment, we can express both VEVs in terms of one single
parameter,

tanf = 23>0, 0<p<Z. (2.59)
(%1 2
Egs. (2.57) and (2.56) may now be written as
1
m} = —mi,tanf — émQZ cos 203, (2.60)
1
mi: = —mi,cotf+ szz cos2(3. (2.61)

Therefore, the Higgs sector at tree level only depends on two free parameters.
The Higgs mass spectrum is obtained by evaluating the second derivatives of the Higgs
potential, taken at its minimum,

2,Higgs 1 aQVH

Y 2 OH,0H, (2.62)

<H2>:Un '

At tree level, M%’Higgs splits into four independent 2 x 2 mass matrices which can be separately
diagonalized. In terms of the original gauge eigenstate fields, the mass eigenstates are given

by
H° cosa  sina @Y
( h? ) N ( —sina cos« ) ( ¢é ) ’ (2.63)
G° _ —cosf3 sinfs %!
( A° > B ( sin 8 cos 3 ) ( Xé ) ’ (2.64)

G* B —cosf sinf OF
(Hi) - ( sin 3 cosﬁ><¢;i)' (2.65)
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The Goldstone bosons G° and G are ‘eaten’ by the longitudinal components of the massive
vector bosons Z° and W¥, respectively. The five remaining physical Higgs bosons form two
CP-even states (hY, H°), one CP-odd state A° and the two charged Higgs bosons H*. As
already mentioned above, the two free parameters in the Higgs sector are conventionally
chosen to be the mass of the pseudo-scalar Higgs boson A° and the ratio of the two VEVs,

m 40 and tan 3. (2.66)

The remaining parameters such as the masses and the mixing angle o can be expressed using
these free parameters as

1
mquo =3 [mio +m% F \/(mio +m%)? — dm?ym7% cos? | | (2.67)
mye = mio +miy, (2.68)
2 2
tan2a = tan 25m‘240—+m2z, i <a<0. (2.69)
mie — My 2

2.3.3 Sfermion sector

The sfermion mixing is described by the sfermion mass matrix in the left-right basis ( fr, fR),
and in the mass basis (f1, f2), f =t,b or 7,

m?  aymy ) m2 0 i

M2 = i — (RO R/, (2.70)

f arme  m2 0 m?
Frer fr f2

where R/ is a 2 x 2 rotation matrix with rotation angle 6;,

i cosef siné’f
;= ( —sian cosﬁf ’ (271)

which relates the mass eigenstates fi, 1= 1,2, (m]z1 < mﬁ) to the gauge eigenstates fa,
a=L,R, by fi =Rl f, and

mi = Mg+ (If" —essin®y) cos 26 m7 +mj, (2.72)
mi = M?ﬂ,cié} + ey sin®Oy cos 28 m; +m7 (2.73)
aj = A~ pltan )" (2.74)

Mg, My, Mz, Mz and M; are soft SUSY-breaking masses, Ay is the trilinear scalar coupling
parameter, i the higgsino mass parameter, [ })’L denotes the third component of the weak
isospin of the fermion f, ey the electric charge in terms of the elementary charge ey and 6y,
denotes the Weinberg angle.

The mass eigenvalues and the mixing angle in terms of primary parameters are

1
2 _ L o 2 2 _ 22 2,2
mp, = 3 <me +m: F \/(me mfR) +4afmf) , (2.75)
cosf; = Rl 0<0; <), (2.76)
d (m% —m?2 )2 + a2m? d
fr f 0
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and the trilinear breaking parameter A, can be written as

1
myAp = i(m%—m%)sinQ@Jz—l—mfu(tanﬁ)’y?L. (2.77)

The mass of the sneutrino 7, is given by

1Z

1
m; = M: + 5 m% cos 23 . (2.78)

2.3.4 Chargino and Neutralino sector

The fermionic superpartners of the gauge bosons, the gauginos, and the superpartners of the
Higgs bosons, the higgsinos, mix to form mass eigenstates called charginos and neutralinos.
The charginos are therefore the superpartners of the gauge bosons W+ and the charged
Higgs bosons H*. In the Weyl representation, the chargino fields [12]

Yt = (=W, HY), (2.79)
Y~ = (=W, Hy), (2.80)

enter in the mass term of the Lagrangian in the following form:

1 r +
£:—§(¢+,w—)-(§’( )g >-<¢_>+h.c., (2.81)
with
B M. V2myy sin 8
X = ( ﬁmWZCOS 3 p ) : (2.82)

Since we work in the CP—conserving MSSM, the mass matrix X can be diagonalized by two
real 2 X 2 matrices U and V' according to

Mgt 0

UXV = ( 0 mes ) ; |m)~<%| < |m>~<2i‘ (2.83)
X1

In the Dirac representation, the mass eigenstates are related to the gauge eigenstates by

oV

As these matrices are only of rank 2, the mass eigenvalues can be given analytically:

1 .
mii = 3 24t 2mi, F \/(M22 + p? +2m¥,)? — 4(m¥y sin 20 — pMs)?|(2.85)

The superpartners of the neutral gauge bosons, Bu and Wi’, and of the neutral Higgs bosons,
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H? and HY, mix to form four neutral mass eigenstates called neutralinos. In the interaction
base one can combine the four Weyl states as

W) = (—iB, —iW?, HY, HY) . (2.86)
In terms of the vector ¥° the neutralino mass terms in the Lagrangian are
Lo\ 0
L = —§(¢) Y ° + h.c., (2.87)

where we used the neutralino mass matrix defined as

M, 0 —myzSw cos B mzSy sin 8
v 0 My mycy cos S —mygcy sin 3 (2.88)
—myzSw cos 8 mygcy cos B 0 —
mzswsinf3  —mgew sin 8 — I 0

We use the short forms sy and ¢y for the sine and the cosine of the Weinberg angle.
Due to the Majorana nature of the neutralinos, the matrix can be diagonalized using only
one single rotation matrix,

ZY 77! = diag(mge, myg, msg, myg), Imgo| < Imgg| < mgol < [mgol, (2.89)

where we again assume the mixing matrix to be real and allow the eigenvalues to be negative.
The 4-component Majorana spinors for the neutralino fields can be constructed as

= Zijz/?;? : (2.90)

with the corresponding mass term Lagrangian

4
1 ~0 ~0

2.4 The unconstrained and constrained MSSMs

In the general unconstrained MSSM, where one allows intergenerational mixing and complex
phases, the soft SUSY—breaking terms introduce a huge number (105) of unknown parame-
ters, in addition to the 19 parameters of the SM [13]. This large number of parameters makes
any phenomenological analysis in the MSSM very complicated. Many sets of these param-
eters are excluded by various phenomenological constraints. A phenomenologically viable
MSSM can be defined by making the following assumptions:

e All the soft SUSY-breaking parameters are real and as a consequence there is no new
source of CP—violation, in addition to the one from the CKM matrix.

e The matrices for the sfermion masses and for the trilinear couplings are all diagonal,
implying the absence of FCNCs at tree-level.
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e The soft SUSY-breaking masses and trilinear couplings of the first and second sfermion
generations are the same at low energy to fulfill the severe constraints from K°-K°
mixing.

Using these three assumptions leads to only 22 input parameters:

e tan 3: the ratio of the vevs of the two—Higgs doublet fields

° m%h, mf%: the Higgs mass parameters squared

e My, My, M3: the bino, wino and gluino mass parameters

® Mg, May, Mj,, Mj, Meg: the first /second generation sfermion mass parameters
o A,, Ay, Ag: the first /second generation trilinear couplings

® Mg, My, My, Mf, Mz the third generation sfermion mass parameters

o A; Ay, A,: the third generation trilinear couplings

The Higgs—higgsino mass parameter |u| (up to a sign) and the soft SUSY-breaking bilinear
Higgs term B are determined, given the parameters above, through the electroweak symmetry
breaking conditions.

Alternatively, one can express the values of m3; and m}, with the “more physical” pseu-
doscalar Higgs boson mass m 4o and the parameter p. Since the trilinear sfermion couplings
will be always multiplied by the fermion masses, they are in general important only in the
case of the third generation; there are, however, a few exceptions such as the electric and
magnetic dipole moments for instance.

Such a model, with this relatively moderate number of parameters has much more pre-
dictability and is much easier to investigate phenomenologically, compared to the uncon-
strained MSSM, given the fact that in general only a small subset appears when one looks
at a given sector of the model. One can refer to this 22 free input parameters model as the
“phenomenological” MSSM or pMSSM [14].

Almost all problems of the general or unconstrained MSSM are solved at once if the soft
SUSY-breaking parameters obey a set of universal boundary conditions at the GUT scale.
If one takes these parameters to be real, this solves all potential problems with CP violation
as well. The underlying assumption is that SUSY-breaking occurs in a hidden sector which
communicates with the visible sector only through gravitational-strength interactions, as
specified by Supergravity. Universal soft breaking terms then emerge, if these Supergravity
interactions are “flavor—blind”. This is assumed to be the case in the constrained MSSM or
minimal Supergravity (mSUGRA) model [15, [16].

Besides the unification of the gauge coupling constants ¢, g, g, which is verified given the
experimental results from LEP1 [I7] and which can be viewed as fixing the Grand Unification
scale, My ~ 2-10' GeV, the unification conditions in mSUGRA, are as follows [15]:
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e Unification of the gaugino [bino, wino and gluino] masses

My (My) = My(My) = My(My) = ma s . (2.92)

e Universal scalar [i.e. sfermion and Higgs boson| masses [i denotes the generation index]:

mg,(My) = mag, (My) =mg, (My) =m; (My) =mg, (My) ,
= Mgy, (MU) = mHQ(MU) =mg . (293)

e Universal trilinear couplings:

Ajj(My) = A;‘ij(MU) = Afj(MU) = Ay ij - (2.94)

Besides the three parameters m; /5, mg and Ay, the supersymmetric sector is described at the
GUT scale by the bilinear coupling B and the supersymmetric Higgs(ino) mass parameter
1. However, one has to require that EWSB takes place at some low energy scale. This results
in two necessary minimization conditions of the two—Higgs doublet scalar potential which
fix the values p? and By with the sign of ;1 not determined. Therefore, in this model, one is
left with only four continuous free parameters, and an unknown sign

mo , My ,tan B, sign(u) , Ao . (2.95)

All soft SUSY-breaking parameters at the weak scale are derived via RGEs [18], 19, 20].
There are also other constrained MSSM scenarios like anomaly mediated SUSY-breaking
(AMSB) models [21) 22] and gauge mediated SUSY-breaking [27, 28, 29] models.

2.4.1 Non Universal Higgs Mass (NUHM) scenario

In the more general MSSM with non—universal Higgs masses (NUHM), the soft SUSY-
breaking scalar masses for the Higgs multiplets m; and msy or alternatively the pairs p and
m o become free again [23], 24, 25]. Thus one may use the parameters

(mo, myje, tanf, sign(p), Ao, mi, ms) to parametrize this more general NUHM. In the

NUHMI1 scenario m; and mso have the same value, in NUHM2 they have different values at
the GUT scale.

2.5 The Higgs sector in the decoupling regime

The decoupling limit is reached for m40 > my. For the discussion of the other parameter
regimes in the MSSM Higgs sector we refer to [26]. When the pseudoscalar Higgs mass
becomes large compared to m, the lighter CP—even Higgs boson h° approaches its maximal
mass value, when the dominant radiative corrections are taken into account. In this limit
the masses of the heavier CP—even Higg boson H? and the charged Higgs bosons mj,. =
m?%, + miy,, become very close to m4o. The existence of only one light Higgs boson is one
important aspect of the decoupling regime in the MSSM. The other Higgs particles are very
heavy and degenerate in mass mpyo >~ mpg+ =~ m go.



2.5 The Higgs sector in the decoupling regime

2.5.1 Higgs couplings to fermions

Expressing the couplings of the CP—even Higgs bosons to isospin % and —% fermions in

terms of cos(f — a) with the latter given by eq. (2.98)) in the decoupling limit one obtains
the following results m 40 > mzo [104]

2 2
m 40 >my m7, sin4f tan B>1 2m7,
: — 1+ = 1l—-—"—=1, 2.96
ghouu 2m?40 tan 5 mio tanz B ( )
2 2
> m n 2m
Jhodd - G g sin4/ tan 3 b —B>>>1 1+ 22 — 1,
2mA0 mAO
2 2
> m ) 2m
JHOw Al —cot 5+ g sin4f tan 1 —cot 8 (1 + 2Z> — —cot 3,
2mi Mo
2 2
> my . 2m
JHO4d - AL tan § + g sin4p tan Sl tanfg | 1 — 2—22 — tan (.
2m?o m%e tan®

The couplings of the h° boson become SM like, grou, = gnoaq = 1, while the couplings of the
H° boson reduce, up to a sign, to those of the pseudoscalar Higgs boson, grou, ~ Gaouu =
cot f and gpogs ~ gaogq = tan 3. The H® boson coupling to down type fermions becomes
enhanced by tan § which is phenomenologically very important. Again, as a result of the
presence of the tan [ factors in the denominators of the expansion terms in eq. (2.96)), these
limits are reached more quickly for large values of tan (3, except for gpoqq and ggoy,. These
results are not significantly altered by the inclusion of the radiative corrections in general.
For large values of tan 3, the decoupling limit is already reached for m 0 2 my at tree—level,

but the inclusion of the radiative corrections shifts this value to m o 2 m;g™~.

2.5.2 Higgs couplings to vector bosons

CP-invariance does not allow tree-level couplings of the pseudoscalar and charged Higgs
bosons to two gauge bosons. The couplings of the CP—even h° and H® bosons to WW and
Z 7 states are suppressed by mixing angle factors but are complementary, the sum of their
squares being the square of the hgy V'V coupling. For large values of m 40, one can expand
these couplings in powers of my/m 40 to obtain at tree—level

2 2
™40 >m m . tan 8>>1 2m
grovy = cos(B—a) 57 5 Z_sin4p3 s> ———Z— 50, (2.97)
M40 m4o tan 15}
4 4
: > m . 1 2m
grovy =sin(8 —a) "B 1 - 2 sin?4p S 1 - Z 1,

mio mi, tan? 3
where we have also displayed the limits for large values of tan § using the relation
sin4f = 4tan B(1 — tan® 3)(1 + tan? B) 2 AT 4 ot B . (2.98)

For mao > myz, gyoyy vanishes while g0y, reaches 1, the SM value. This occurs more
quickly if tan § is large, since the first term of the expansion involves this parameter in the
denominator.
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This statement can be generalized to the couplings of two Higgs bosons and one gauge boson
and to the quartic couplings between two Higgs and two gauge bosons, which are proportional
to either cos(f — «) or sin(f — «) [there are also several angle independent couplings, such as
the yHYH—, ZH*H~ and W*HTA couplings and those involving two identical gauge and
Higgs bosons as well as the H* A states]. In particular, all couplings involving at least one
gauge boson and exactly one non-minimal Higgs particle A, H°, H* vanish for m 40 > my,
while all the couplings involving no other Higgs boson than the lighter h° boson reduce to
their SM values.

2.5.3 Trilinear Higgs couplings

In the case of the trilinear Higgs couplings, one has to take the radiative corrections into
account, as without these contributions, many of the tree-level couplings would vanish. Using
the abbreviations

vy = M}/m%, 1z = \/(xo — ezsin? B)(1 — z¢ + €z sin® B) (2.99)
€z = €/m%, (2.100)
one obtains for the self-couplings among the neutral Higgs bosons in the € approach [10§]

ma0>myz

)\hhh — 31’0 , (2101)
Mo ST 2 — 3(x0 — €y) (2.102)
Maa Bz —ez) (2.103)
Mwn 3™ 301 — 3ezsin feos B (2.104)
1 m 40>m
AHHH ™~ §)‘HAA A 321 — 3ez cot Bcos? B .
At high tan 3, the expressions simplify to
)‘hhh ~ 3M,§/TI’LQZ, )\hHH ~ )\hAA = -1 s /\Hhh ~ /\HHH ~ )\HAA ~ 0 . (2105)

To summarize:

e The lighter CP-even Higgs boson h° approaches its maximal mass value
mpo S 140 GeV.

e The other Higgs bosons are very heavy and degenerate in mass, mpg ~ mpy+ >~ m 4o
o H° coupling to WW and ZZ becomes supressed

e 1P coupling to WW and ZZ becomes SM like

e 1Y couplings to up and down type fermions become SM like

e HY and A° couplings to down type fermions becomes tan 3 enhanced

e HY and A° couplings to down type fermions becomes tan 3 supressed



Chapter 3

Renormalization

Amplitudes beyond-tree level can suffer so called UV divergences originating from integrals
with infinite loop momenta. Therefore these integrals have to be treated in a proper way. In
order to give such expressions a physical meaning, the divergences have to be absorbed into
redefinitions of the fields and parameters of the Lagrangian. However, before we can start
with the renormalization procedure, we have to regularize the integrals. Therefore, we will
briefly discuss the technique of dimensional regularization and reduction.

3.1 Dimensional regularization (DREG)

In the dimensional regularization approach, the integration over the loop momentum g is
taken from 4 to D dimensions with D = 4 — xe (with = 1, 2 depending on the literature)

/dq4 —>/L4_D/qu, (3.1)

where p denotes an arbitrary reference mass. The introduction of the mass p in D dimensions
is necessary in order to keep the dimensions of the integrals the same as in D = 4 dimensions.
The coupling constant g is replaced by

@ = gutr, (3.2)

once again this is necessary to keep the dimensions of the Green’s function unchanged. The
Lorentz covariants ¢"” and y* are simply extended to D dimensions by

99 = D, (3.3)
{2 = 29™1, (3.4)
Tr(1) = 4 (per definition), (3.5)
Yy, = DI1. (3.6)

Problems arise with the definition of the ¥° matrix in D dimensions, because of the unre-
stricted number of dimensions, it is not possible to construct the equivalent 4-dimensional
object ’yé4) as a product of all the y—matrices. One can either take the product ¥5 o< v172Y3v4

23



CHAPTER 3. RENORMALIZATION

or construct a total anticommuting object 75 [102]. The matrix 45 will not be totally anti-
commuting, and 7 is not the product of all v~matrices. DREG violates SUSY, because
fermion and gauge fields have different degrees of freedom in D dimensions. For example a
massless gauge field has (D — 2) degrees of freedom in D dimensions, but a fermion field has
still 2 degrees of freedom in D dimensions. This violates SUSY, since the fermion and the
gauge field are located in the same supermultiplet. Therefore DREG is not applicable for
MSSM calculations.

3.1.1 Dimensional reduction (DRED)

In dimensional reduction, the loop integration is still performed in D dimensions, but all other
tensors connected to vector fields are kept 4-dimensional. In DRED it will be necessary to
introduce two different metric tensors ¢g"” and " which fulfill the conditions

9" 4up = 9, Gupg”* < D. (3.7)

Since DRED keeps the degrees of freedom of the components of the super—multiplets equal
in D dimension, it is the appropriate regularization scheme for MSSM calculations at least at

one-loop level. Analogously to the MS scheme, one can define a minimal-subtraction scheme
in DRED which is then called DR .

3.1.2 Multiplicative Renormalization

We will make use of the so—called multiplicative renormalization. In this scheme all bare
parameters and fields entering in the original Lagrangian are replaced by their corresponding
renormalized ones, which are obtained by the multiplication with appropriate renormalization
constants:

G = Z,g = (1+%’)g, (3.8)

1
6o — 76 = (1+§5z¢)¢. (3.9)

Expanding the renormalization constants Z, and Z, ;/ % around the value 1, the original La-
grangian splits into a renormalized Lagrangian and a part containing the counter terms dg
and 07y, i.e.

ﬁ(go,gbo) = E(g,gb) —i—&C(g,gzﬁ, 5g,5Z¢) . (310)

In order to absorb the divergences and to give the parameters a well-defined meaning, these
counter terms have to fulfill several requirements depending on the chosen renormalization
scheme.

In the program package HFOLD, we use the DR renormalization scheme. In the following
we will review some results from the renormalization of the Standard Model and discuss the
renormalization of two—point—functions. Furthermore, we give all renormalization conditions
of the parameters needed for the explicit calculation. In our approach the tree-level couplings



3.2 SM gauge sector

are defined in the DR scheme at the scale (). This implies that there are no coupling CTs at
all. The DR scheme is defined by setting the UV divergence parameter A = 0. However, in
our calculations we work with A # 0 and take for the coupling CTs only the divergent part
o A. This is very helpful because having a UV finite renormalized amplitude is equivalent
to the RG invariance proof of the ordinary DR scheme.

3.2 SM gauge sector

The gauge sector of the Standard Model is not affected by its minimal extension, the MSSM.
Thus, the treatment of the electroweak gauge sector is identical to the renormalization proce-
dure in the SM, which is discussed in detail in [31],[32]. For the gauge fields the renormalization
constants are given by

W, = (L+36Zw) W, , (3.11)
( A ) = ( L+30Zun 30%az ) ( A ) . (3.12)
Z# %5ZZA 1+ %5ZZZ Z/i

Since the photon stays massless also after renormalization, only the weak gauge bosons Z°
and W receive mass corrections, i.e.

miy — miy + omyy, my — my + omy. (3.13)

Decomposing the vector two—point—functions and the associated self-energies into their
transverse and longitudinal parts,

T (k) = —zgw(/{Q—m%,V)—Z(guy—%)ﬂy(ﬁ)—z (). (3.14)
re (k) = —ng(kQ—mg)éab—z(gW—2—2)11;(/@2)—@2—2@(1{;2), (3.15)

with a,b = {A, Z}, the corresponding renormalized self-energies in

k
—> .
1742 %44 M =iegh(k) le;(k) e (k)

m v

can be written as
(k) = TV (K + (K —md) 02" — omi, (3.16)
(k%) = TPk + 1 (K —m?2) 62 + L (k> —m) 62% — Supom?,  (3.17)

valid for both the transverse and longitudinal parts with m? = dm% = 0. Applying the
on—shell renormalization conditions to FZ?,(]{:),

Re I (k)e" (k) = 0, lim

2 2
k2=m2 k2-m2 k? —m?

Rel'® (k)e”(k) = —e"(k), (3.18)
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which means that the poles of the propagators are determined by the physical (pole) masses
and the residua are set to 1 on shell (k* = m?), the counter terms are given by

67° = —Rell§*(m?), 62" = —Rell¥(m}), (3.19)
2

027 = o RellE(mi), a#b, (3.20)

om% = RellZ%(m?%), smiy, = RellW(mi,), (3.21)

with II(m?) = Wn(kj)}l#:nﬂ'
Since the weak mixing angle is a derived quantity in the on—shell scheme, determined by the
condition my = myz ey (ew = cosby) [30], its renormalization constant can be expressed

in terms of the mass counter terms of the weak gauge bosons

2 2 2 2 2 52
oc _ omy,  dmy osy Gy Ocy (3.22)
& m? m% s2, s2, ¢k, '

w w Z w w Cw

3.3 Electric charge

For the renormalization of the electric charge one only has to renormalize one single vertex,
for which usually the electron—positron—photon vertex is taken. In requiring for the renor-
malized elementary charge to describe the electromagnetic coupling in the Thomson limit,
i.e. for on—shell external particles and vanishing photon momentum,

a(p) T2 (p, p) u(p) = dea(p)y.u(p), (3.23)

p?=m?
the counter term for the electric charge in eg = e + de is given by

sw 1147(0)

5 1 1 1.
0 o _SezAA W sz74 — ZTIAA(0) + ;

e 2 Cw2 2

(3.24)

However, the scale of high energy processes lies in the range of hundreds of GeV and thus
far away from the Thomson limit. In addition, contributions of light hadrons in IT44(0) lead
to large theoretical uncertainties [33], 32]. To avoid this problem, we use as input an effective
MS running coupling at Q = my, where the contributions from light fermions are already
absorbed [34], 35],

2y a o1
1— Aot (my) 1277

(3.25)

Here, a is the fine structure constant given in the Thomson limit, o = 1/137.036, and

. a (5 5D a
Aagig(my) = — (5 + 5 (1 it ;)) + Aaep (M) + Aajo (m%) | (3.26)
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where Aaye,(m%) ~ 0.031497687 are the leptonic and A@fi)d(mQZ) = 0.02769 £ 0.00035 are
the hadronic contributions [36]. The counter term for the electric charge de is then given by

%: [42Nf (A+log )+ZZNf (A+log QQ)
+4Z( )—i—i;(A—i—log V" )—22<A+log%>],

(3.27)

with x; = mz V. m; < mz and z, = my. Né is the colour factor, Né = 1,3 for (s)leptons
and (s)quarks, respectively. A denotes the UV divergence factor A =2/e —~+logdm, with
v being the Euler-Mascheroni constant v = hm (Zk 1 k — log m) ~ 0.577216.

3.4 Renormalization of two—point functions

Before starting with the renormalization of the remaining parameters and fields of the MSSM,
which are necessary for our calculations, i.e. the ones of the Higgs and sfermion sector, we
will have a short look on the subject of renormalizing two—point functions, as they are the
basic building blocks for calculating higher order corrections.

3.4.1 Scalar particles with mixing

According to multiplicative renormalization, the unrenormalized fields ¢, and mass param-
eters myg; in the bare Lagrangian

= _¢3,i 51']' (8H3“ + mg,i) ¢0,j (3.28)

are replaced by the corresponding renormalized ones, i.e.

L = —¢;0;(0,0"+m?) o, (3.29)
VZik b = (656 + 56 Zi) o + O(627), (3.30)

For the full renormalized two—point—function

k
—>

¢; —— P —— —>—— ¢ M = iTy(k?) = idi;(k*—m?) + ill;(k?)

we demand the on—shell renormalization conditions

k2:mj2. k2—m?2 k2

A 1 ~
Rel;;(k?) =0, lim —2Rel“ii(k2) = 1. (3.32)
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Inserting the renormalized self-energy f[ij(kQ) = II;(k?) + HEJC-)(kQ) with the self-energy
counter—term

M9 (k) = =6y 0m? + 5 (k* = m?) 02+ § (K — m?) 623, (3.33)
into eq. (8.32) leads to
om; = Relly(m7), (3.34)
2 S,
0Zij = e —m? Relly;(m5)  i#3j, (3.35)

3.4.2 Fermionic particles with mixing

Like in the previous chapter we have the same structure for the physical as well as for the
bare Lagrangian:

Lo = o0 (i D —mos) o (3.38)

The relation between the unrenormalized and the renormalized quantities is given by attach-
ing multiplicative renormalization constants to the unrenormalized fermion fields v, and
the mass parameter my;, i.e.

Vo, = (Ojk+ 3025 Pr+ 1625 Pr)y (3.39)
Yo; = 1;1<5il + %525TPL + %5ZEPR) ; (3.40)
mo; = MMy + 5mz s (341)

where the ‘dagger’ T in 525 R indicates hermitian conjugation with regard to the spinor
indices. For the renormalized one particle irreducible (1PI) two—point—function

s M = (k) (k) ()

¥, Y R .
L'ij(k) = 05 (F — mi) + 1L;;(k)
with the renormalized self-energy
(k) = kP IL(k)+ J PrII(k) + 1" (k) Py, + 117 (k) Pr (3.42)

we require the on—shell renormalization conditions

A

Re Fij (k?) UJU{)

= 0, lim

212 2 W m.
k2=m3 k2—m; k m;

Inserting the counter-term Lagrangian

0L = ; (KPLCL+ JPRCE — CE’LPL — cngPR)wj , (3.44)
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into /;0 =L+ (SE,
kS M = i( ¥P,CE + }PRCE
— ot P, — CPy)

(U > s > Y

we get for the coefficients Czij'

Ck = 62k +6z5, (3.45)
CF = Yoz 4oz, (3.46)
O3 = L(m;6Z% +m;625) 4 6,5 6m,, (3.47)
Cot = L(mi6Z8 +my6ZE) + 6,5 0m; . (3.48)
Thus the renormalized self-energies can be written as
ME = 1k + (625 +62L), (3.49)
e = nE+ (628 + 625", (3.50)
O5E = 55— Lm0z +m; 628 — 6,5 6m,, (3.51)
O5F = 15" — 3 (mi6ZE +m; 625") — 6,5 6m,. (3.52)

Taking the renormalization conditions in eq. (8.43) into account, we obtain the counter terms
for the mass parameter and the wave—function corrections

1
om; = 5 Re|m:(IE(my) + T (i) ) + 15" (m) + 11537 (my)| (3.53)
2 S S
? J
6zE = —IIE(my) + 5 — |15 (my) = 1" (m)|
myg
9
i [T () + T (R) + T (0 + T )] | (355)
Oi? P

K3

and the corresponding right-handed terms, (5Zi(f)’R = (5Zi(f )’L(L <~ R).

3.5 Sfermion sector

According to the results of section [3.4] where we have derived the mass corrections and the
wave—function renormalization constants in terms of self-energies, these counter terms are
given in the sfermion sector by

om% = Rellf(m?) (3.56)
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and
67} = —Relt(m?), i=(1,2), (3.57)
f 2 f . .
0Zf; = ——— Relljj(m7), i#]. (3.58)
fi i

3.5.1 Renormalization of mixing angles

In order to renormalize the parameters entering in the sfermion mass matrix /\/lf2 (see
eq. (Z70)), we have to look at its counter term 5/\/1%,

SM2 5RmeJ%1 0 Rf Rffém% 0 Rf Rme% 0 SR

mfz f2 me
(3.59)
with
SR = —( smbr —eosfr ) sy (3.60)
COS@f sin9f I

The renormalization constant of the rotation matrix lej is determined such as to cancel the
anti—-hermitian part of the sfermion wave—function corrections,
~ 2 1 ~ ~ ~
OR = Y (02} —oZ[)R];. (3.61)
k=1

Therefore, the counter term for the sfermion mixing angle 0 is given by [38] 39]

o= I 1) = 1 F (2 F (2
005 = Z<5Z12—5Z21>—WR6 (nham?) + 1, (m2)) . (3.62)
and thus
1S, 7 . i )
(M2, = 5D (R Re|ttfy(m?) + 11f, (m?) | R (3.63)
k,l=1

3.6 Higgs sector

The renormalization of the Higgs mixing angle « is treated in a similar way as the sfermion
mixing angle 7. Consider the mass matrix of the CP even Higgs bosons R and H (cf.

section 2.3.1)),
245,92 20,2 : 2 2
ME(HO ) — sin® B m3, + cos® fmy  —sin S cos f(m5e +my)
—sin (3 cos ﬂ(mio +m%) cos?f mio +sin? B m%

0 m%o

m?2 0
= (RHO)T . ( e ) . RHO , mpo < Mo (3.64)
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with the rotation matrix

R = Rij(a):( (3.65)

cosa sina
—sina  cos o

Analogously to the case of the sfermion mixing angle, the renormalization constant of the
rotation matrix Rgo is determined such as to cancel the anti-hermitian part of the Higgs
wave—function corrections,

2
0 1 0 0 0
ORG = > ;02 —0Zi0 )R (3.66)
k=1

which leads to the counter term
1

_ 1 H _ HY)\ _
ja = 4(5221 5212)_2(%0_7”%0)

Re(Tf(m30) + T (mis)) . (3.67)
Note that the indices the wave—function renormalization constants 6Z50 are interchanged
due to the conventional nomenclature labelling the light Higgs boson by an index 1 and the
heavy one by an index 2.

For the correct definition of the wavefunction counterterms in the Higgs sector, we have to
be careful of the contribution originating from the tadpoles. We will discuss this issue in the
next section.

3.7 Renormalization of tan 3

Due its close connection to spontaneous symmetry breaking SSB, tan S enters almost all
sectors of the MSSM. As a consequence, it has a major effect on allmost all MSSM ob-
servables. The problem with the renormalization of tan § is, that it does not correspond to
direct measurable observable. Several renormalization schemes for tan g suffer from specific
disadvantages, leading either to gauge dependences or numerical instabilities [42].

Dabelstein-Chankowski-Pokorski-Rosiek Scheme (DCPR) [79, 37]

This scheme is based on an on-shell renormalisation scheme in the Higgs sector working in
the usual linear gauge. The definition of tan g however is difficult to connect with an on-shell
quantity that represents a direct interpretation in terms of a physical observable. One first
introduces a wavefunction renormalisation constant 07y, for each Higgs doublet H;, i.e.
before rotation

1
The vacuum expectation values are also shifted such that the counter term for each v; writes
as
ov; 1
Uy

obtaining
5t Jor vy 1
anf_ Su_0u 5021, = 7). (3.70)

tanff v Vs
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In the DCPR scheme one takes % = ‘% [99], leading to the expression

dtanfg 1
g 5(5ZH2 —0Zy,) - (3.71)

The counter term dtan 8 can be now defined by requiring that the renormalized A° — Z°
transition vanishes at p* = m?,

Re Y4040 (m%0) =0 | (3.72)
with
o 2 2 Mz
EAOZO(on) = ZAOZO(on) + 27825 (5ZH2 — 5ZH1) =0 s (373)
one then obtains
ot '
M0 T Resop(m2). (3.74)

tanf Mz 5283

This definition is obviously not related to an observable. Moreover ¢ tan 8 is expressed in
terms of unphysical wavefunction renormalization constants.

A0_——= Zg M= —1 k! HAZ<k2> €Z<k>

Figure 3.1: A°Z° mixing self-energy relevant for the renormalization of tan 3.

3.7.1 DR scheme

In the DR scheme the counter term for tan 3 is simpliy defined by

dtanfB . ¢

= Re X 2 3.75
tan 3 ——— e AOZD(mA())a ( )

where = takes only terms proportional to % into account.

3.8 Tadpole contributions

To treat correctly the tadpole contributions, we have to look at the mass matrices and the
minimization condition of the Higgs potential. We will use the scheme proposed by Pierce and
Papadopoulos [100], where the terms linear in A° and H are to be thought as counterterms
for the tadpole contributions. To each order in the loop expansion, we require that the
tadpole contribution vanishes.
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3.8.1 The CP-even Higgs mass matrix

The mass matrix of the CP-even Higgs system has the following form

7 7
3¢°v; g% | 397 g 2u3 2 1,2 1,72 2
M2 . 3 - T+ 3 - 73 +m1 —Zg V1V — Zg V1V — Miqy <3 76)
LA 12 172 2 g | 3¢%3 g%} | 3¢"%3 2 | N
—7197V1V2 — 1 “U1V3 — Miy —— t—g - g Tt g Tm;
/ .
We can reexpress V1, U9 1n terms of Mz, cg and sz as
) b ) Y ﬁ ﬁ
3c2m?2 m2 s2
5My 2 758 2 2
M2 = 7 T —CpMzSp — My (3.77)
H — 2,2 2 .2 . .
- 2 . 2 _ Cgmyz + 2 + 3stB
CpMzSp — My 2 my; T ——

The tadpoles T correspond to the terms linear in the fields ¢9 and ¢9 in the Higgs potential

Vy. Due the minimization condition of the Higgs potential 77 and 75 are zero, therefore they

2,2 2
relate my, m3 and mi, by

c2m2 m2 S m2 82 T
md = L2 e T T (3.78)
2 cg 2 U1

2,2 2 2 2
CpMz i cgmiy  Mzsz T

2
m, = )
2 2 S8 2 Uy

It is illuminating to express the mass matrix in terms of the tadpole parameters T;

2.2 2 2, T 2 2
2 — cgmy +miyoes; + U—ll —CgM0Sp — CgMZSp (3.79)
H —cgm’ess — Cgmysg  ChmYy +mysh + 12

In the next step we express the tadpoles T} and 75 in terms of the tadpoles of the physical
fields Tjo and To by

Tho \ T T\ [ cosadpo —sinalpo
( Tho ) = 0la) < T, ) - ( T, ) - ( sin aTyo + cosaTho ) (3:80)
We then introduce the tadpole matrices

{iN
(o) — o (2 ) ot

tropo  TRORO

( tgogo  tgo 40 ) — 0(8) ( % g )O(B)T _ ( lgtgx lorp* ) : (3.81)

tAOGO tAOAO Ug tH:tgi tH:tH:l:

with the help of relations v; = v cos 3, v, = vsin 3, gv = 2my and e = gs,, we find that

tHOHO tHOhO . Ca Sa % 0 Co —Squ N
thOHO thDhO N —Sa Ca 0 Z:—j Sa Ca

r 2 2 3 3
e sZc c.s & s
tgogo = Tho a?_ af + Tyo [ =4+ -2 ,
2mw Sy | 53 cg cg 8B
e | s2ch S sy Sicq
tHOhO == Tho + + THO — + y
2mw sy | c 53 cp 58
r 3 3 2 2
e c s sZc c.s
thOhO == Tho = _ = + THO o + a"a .
2mw sy | 53 cp cg 53

(3.82)
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Thus, we can express the Higgs potential up to terms linear and bilinear in the Higgs fields

1 m2,6 + t oo Lgopo H°
B 0 0 1 0 10 HO HOH' HOK
VH = ‘/()“‘H TH0+hThO+2(H h >< thoHo mio +th0h0 ) < ho

1 tcogo to 40 GO
100 4o felJe GoA

+ Q(G A )(tAoGo mio‘i‘tAOAO )(AO)
1
2

(G- H ) ( ta-a- fotas ) ( f]: ) +.. (3.83)

+
ty+o+ m%[i + iyt

From the minimalization condition it follows that the terms linear in the fields h° and H°
must vanish at tree-level. This condition can be satisfied by setting the tadpole parameters
zero (Tho = 0, Tyo = 0), which leads to the tree-level mass matrices. However, beyond tree—
level the tadpole parameters Tj0 and Tyo receive loop-corrections from tadpole diagrams 70
and 7,0. Therefore we introduce the following renormalization condition

5T, +7,=0, (3.84)

where the tadpole contributions are exactly canceled by their corresponding counterterms.
Then the counterterm for the mass matrix M7 reads as

,U_
! 5Ty

SM2 — dcymy + czomy + om3oss + m3odsh + MM —§s95(mPe + m%) — sap(0m%, + dm?%)
N —0895(m%0 +my) — s25(dm%e + 0m%)  deFmio + chOmE + Imysh +mydsh + 52

After rotating to mass eigenstates the counterterm for the H°h"-system reads as

SM?2, + 5t go o Ot g7op0
2 _ HO HYH HOA
OMpopo = ( Otho g0 5M,§0 + Otpop0 ) (3.85)
with
1 2 (6% 2 (0% 2 (0% 2 (0%
Stpopo = dtpopo = —— lrho (S“C y Ga® ) + Tgo (— fo¥a | Saf )} . (3.86)
v Cﬁ Sﬂ Cﬂ 85

Therfore we have to take the tadpole contributions in the wavefunction renormalization
constants into account by

5Zh0h0 = —Re Hhoho(mi()) s (387)

§Zporo = —Rellgogo(mis), (3.88)
2

(SZhOHO = m (Re HhO,HO (mio) — 5th0H0) s (389)
2

(SZHOhO = S 3 (Re HHOhO<m%{o) - (StHOhO> . (390)

mHO - mho
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3.8.2 The CP-odd Higgs mass matrix
The mass matrix of the CP-odd Higgs system has the following form

I

2,2 2,2 2,2 2,2
g'vy _ g97v gTvy _ 97v 2 2
MQ _ ) ] + 8 8 +my Mg (3 91)
P 2 g0 g*d g%} g% 2 | '
m3y e e 1()>

We can reexpress ¢, ¢ ,v1, Vo in terms of My, cg and sg by

2,2 2 .2
cgmy 9 Mzs 9
M2 = ( 7 T ) 5 12 ) . (3.92)

2 2 .2
2 Mz 2 | MzS3
mis ——5 tmy+ —3

We can then express m? and m3 with the tadpole parameters T} and T, using eqs. (3.78) as

T 2 .2 2
M2 U—ll +Mu0Ss  CgMYoSp (3.93)
P cgm>oS Ami,+ L2 )0 '

B g0 B B A0 V9

then the counterterm of the matrix M3 reads

5T 1 1
SME = 5?&03% + migés% + 52 50523m%0 + 5325571’%; (3.94)
55325m?40 + 53255m?40 5C%m?40 + c%5m?40 + U—;
Again we introduce the tadpole matrices for the AyGy—system
taogo  taogo o —C3 Sp % 0 —C3 Sp N
taogo  T4040 - Sp Ca 0 % Sp (&%
e
lgogo = [Tho (—Sacs + Spca) + Tho (csca + S55a)] s
2mw Sw
e
tgogo = [Tho (8aSs + csca) + Tho (—S5Ca + €5Sa)]
2Mmw Sw
2 2 2 2
e —5%8 ;e 548 5
taoq0 = Tho [ —222 4+ 222} 4+ T | 222 4 272} | (3.05)
2myy Sy cg 53 e 53
After rotation to mass eigenstates the counterterm for the G®A%-system reads as
cgdT1 + 53015 cgdT> . 530711
(5Mévo = CﬁgT2 B 55gT1 Sm? :_ 0Toc? ! s30T (3.96)
v v A0 sgv veg

Reexpressing the tadpoles T7 and T5 in terms of Tjo and Txo leads to

Ot oo Ot 400
2 _ [exe A0G
OMgo 0 = ( Stgoao  OmPo + 0t 40 40 ) ’ (3.97)

with
OT: oT;
Staoge = 2072 %071 (3.98)
v v
1
= -3 [(cgSa — 88Ca)THo + (caCa + SpSa)Tho] - (3.99)
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with (5THO = —THO and 5Th0 = —Tpo.
The wavefunction renormalization constants for the GY A°—system are then given by

6Zjo0 = —Rellqog0(m>o) , (3.100)
6Zcoco = —Rellgogo(mio) , (3.101)
2
5ZA0G0 = S 5 (Re HAOGO (mio) — 5tAOG0) s (3102)
mAO - mGO
2
5ZG0A0 = 5 3 (Re Hgvo (mQGO) — 5tA0G0) . (3103)

mgo - mAO

3.8.3 The charged Higgs mass matrix
The mass matrix of the charged Higgs system is given by

M2 = ( Shmi b miy) 4 O + miy) ) (3.104)
C s26 (2 2 20,2 2 T, :
5 (mAU + miy) Cﬁ(on +miy) + v

The corresponding mass counterterm can be written as

5M(2; _ ‘33%(7”,240 +mi,) + 3%(5mio + omi,) + % &STZB(miO +miy) + 2895(0m?%e + dm3y)
822‘3 (m%o + miy) + 2s95(dm?%e + 0m3y,) 50%(771?40 +m3,) + c%(émio + omi,) + %
(3.105)
Performing the rotation to mass eigenstates the counterterm reads as
Otgoco Otgo 40
2 lellel GOA
6MGi o ( 0t q060 5m§{i + 0t 40 40 > ’ (3'106)

with dm?2.. = dm?,+0m3,. The wavefunction renormalization constants for the charge Higgs
system G*H™* can then be expressed as

(SZH+H+ = —Re fIH+H+ (miﬁ) s (3107>
§Z(;+G+ = —Re H(;+G+ (méJr) y (3108)
2
0l g+a+r = — (Re Mg+e+ (m%pr) — (StH+G+) , (3.109)
M — Mg
2
5ZG+H+ = 5 95 (Re HG*H+ (m%”r) - 5tH+G+) . (3'11())

2
TTLG+ - mH+



Chapter 4

MSSM two—body Higgs decays at full
one-loop level

4.1 Introduction

The search for the Higgs boson(s) is one of the main goals of the LHC. The Standard
Model predicts one Higgs boson, with the present lower bound of its mass my > 114.4 GeV
(at 95% confidence level) [43]. Extensions of the SM allow the existence of more than one
Higgs bosons. As already mentioned, the Minimal Supersymmetric Standard Model (MSSM)
contains five physical Higgs bosons: two neutral CP—even (h° and H?), one neutral CP-odd
(A% and two charged ones (H*) [44, 45]. The existence of a charged Higgs boson or a CP-
odd neutral one would give clear evidence for physics beyond the SM. For a MSSM Higgs
discovery precise predictions for its decay modes and branching ratios are mandatory. The
goal of this thesis was to develop a program package, that calculates all two-body MSSM
Higgs boson decays at full one-loop level. Therefore the program code HFOLD (Higgs Full
One Loop Decays) was developed. In the following section we will discuss the MSSM Higgs
decay modes, the renormalization used in HFOLD and details of the program code. Since
there are many decay modes, we will keep the discussion on a quite general level.

4.1.1 Decay patterns

As fermion number is conserved we only have four possibilities of Feynman graphs (at any
loop level) for a two-body decay of a scalar: the decay into two scalars, into two fermions,
into a scalar and a vector boson, and into two vector bosons, see Fig. (]). The following
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a)

scalar
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Figure 4.1: Four possibilities of two-body decays of a scalar particle

MSSM Higgs boson decays have been calculated:

Fig. dIb: ¢
H+

HO

Fig. Ib: ¢
¢

¢

H+

H+

Fig. A1 : A°
H+

Fig. B1d : H°
¢

A

fifrG,5=1,2),
flf]/*7

RORY . A A0 A0 70
fr,

WX (kl=1,...,4),
Xi Xs (rs=1,2),
rr,

i Xe

h z° HO 70

RPw+, HWT
2070 Wrw-,

vy, 99, vZ° (loop induced)

¢ =h',H°, A and f=u, e, u, 7, u, d, ¢, s, t, b, f denotes the isospin partner to
foeg. f=t f =b f; and f]/ denote the SUSY partners of f and f, Y and YT are
the neutralinos and charginos, respectively. The Higgs bosons couple to fermions via their
Yukawa couplings. Therefore, the branching ratios (BRs) into top quark(s) are large, if they
are kinematically allowed. The BRs of h® — bb and to 777~ are dominant, especially for large
tan 8. The decays into the third generation sfermions may become dominant when they are
kinematically possible. The decays into quarks and squarks can have large one-loop SUSY—
QCD corrections. The decays into charginos and/or neutralinos can have significant one-
loop contributions from the third generation (s)fermions depending on the gaugino/higgsino

mixing.
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4.2 Calculation at full one-loop level

Beyond tree level one has to deal with so called ultraviolet (UV) and infrared (IR) diver-
gences. The UV divergences originate from the infinite momentum in loops. These diver-
gences have to be subtracted in a consistent way to obtain finite amplitudes at one-loop
level. The IR divergencies arise form photons or gluons in loops. Since these particles are
massless, they cause divergences for zero momentum. These IR divergences can be cured by
adding the corresponding three-body process decay with one additional photon/gluon in the
final state.

At full one-loop level one has to deal with hundreds of Feynman diagrams in the MSSM, this
makes a correct calculation per hand almost impossible. Therefore tools for generating the
amplitudes and for their tensorial reduction are necessary. We have generated all amplitudes
with the tool FeynArts 3.3 (FA) and the corresponding Fortran code was produced with the
help of FormCalc 5.4 (FC)[91]. It was also necessary to work out all counterterms for the
whole MSSM. Since there are many decay channels it was worthwhile to develop tools at
Mathematica level, that perform the renormalization automatically.

4.2.1 Renormalization of two—body decays

The definition of the counterterms has been given in the previous section. Now we want to
discuss the renormalization of two—body decay processes. The renormalized finite one-loop
amplitude M? is the sum of all vertex diagrams, the amplitudes arising from the coupling
counterterms M7 and the amplitudes arising from the wavefunction renormalization con-
stants MWI'E,

Ml :Mvertez+MCT+MWFR ) (41)

Since the renormalization in HFOLD is performed in the DR scheme, the counterterms
contain only UV divergent parts. We first calculated the counterterms in the on-shell scheme,
where we checked the UV and IR convergence of our amplitudes. This was a good check
for the correctness of the calculated amplitudes. Then we modified the counterterm file so
that the CTs contain only the UV divergent part. However, to maintain IR convergence of
our amplitudes we take into account the finite parts of the wavefunction renormalization
constants. The formulae for the wavefunction and mass counterterms (CTs) for sfermions,
fermions and vector bosons in the on-shell scheme and the corresponding renormalization
conditions can be found e.g. in [88], 89, [90]. The results for the DR scheme are then simply
the UV divergent parts of the on-shell CTs. The renormalized one-loop amplitude is the sum
of the tree-level amplitude and the one-loop contributions, see Fig [E.4l

The vertex corrections and all selfenergy contributions can be directly calculated with
FA/FC.

The total two-body Higgs decay width can be written in one-loop approximation as

I — Ngx kin x (|MO|2 +2 Re(Mng)) ,

kln fi(m%,m%7m§) ,

1670m}
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— <
Ml MV MCT MWFR

Figure 4.2: One-loop renormalization procedure of a 1 to 2 process schematically

with the colour factor Ng = 3 for decays into quarks and squarks and Ng =1 for decays
into other particles, respectively.

4.3 Setup for automatic renormalization

4.3.1 Coupling renormalization

For the coupling renormalization we shift every inpendent coupling by ¢° — g + dg, where

g denotes the renormalized parameter and d¢g denotes the corresponding counterterm. Then

we only take into account terms in linear in dg. This procedure has been implemented at the

Mathematica level. For example: the charged Higgs decay Ht — tb is described at tree-level

by the matrix element

h(ﬁﬁ
tp

Muy+ 5 = P+ hthtng . (4.2)

Now we perform the shift in the parameters:

s — Sg+ 083,
cg — cg +dcg
tg — tg+ Otg
hy — hy + hy |
hy — hy + ohy .

Plugging this back into eq. ({.2]) and taking only terms linear in dg, we obtain the coupling
counterterm matrix element
cT _ 1 S 2 S 2 A 2 )
MH"'%tB = —@ ( CﬁPthtﬂ + SBPLhttg —+ Ca tgPRtghb tanﬁ — tgPLSBtght) . (43)

4.3.2 Wavefunction renormalization

We have also automatized the necessary procedure of wavefunction renormalization at the
Mathematica level with the use of generic formulae. In our renormalization approach the
one—loop induced particle mixing has been taken into account at the stage of wavefunction
renormalization for all the Higgs systems (H°h?, G°A°, G* H*), the chargino system Y;- and
the neutralino system x9. Therefore we need the Lagrangians, where one external particle of
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the original configuration is exchanged by its corresponding mixing partner due wavefunction
renormalization. The four generic Lagrangians for the decay modes are given by

Lsrr = 1(gPrL + grPr)Yag0 , (4.4)
Lsss = goop192 , (4.5)
Lsyy = gpoViVa, (4.6)
Lssy = goop1Va . (4.7)

(We skipped Lorentz indices in this section, since they don’t provide further insight.) We will
perform the explicit calculation for a scalar decay into two fermions. Replacing successively
every external field in eq. (€.4]) by its corresponding mixing partner leads to three Lagrangians
given by

L8 = (9P + g’ Pr)vagy (4.8)
LU = Qeml(gzﬂPL + g5 Pr)acho (4.9)
Lo = (9P Py + g2 PR)Ymad - (4.10)

Where the mixing partner fields will be denoted with an upper index m. Now we peform the
wavefunction renormalization of the field ¢p* (The wavefunction renmormalization matrix
can of course be larger than 2 x 2.)

()= () () 1)
o 307y 1+ 3672 ) \&7) '
we only need the term
1 1
o = §5Z21¢o +(1+ §5Z22)¢6” , (4.12)

plugging this back into eq. (48], we obtain the following expression

1 1
Lp = h1(97° P + gEOPR)wz(§5Zzl¢o +(1+ 55222)%1) . (4.13)

As can be seen the resulting term gives a contribution to the ¢° decay, neglecting the term
proportional to ¢f' in eq. (£13) leads to

- 1
Lpp =1 (7P + QEOPR)¢2§5Z21¢0 : (4.14)

The rest of the calculation with the two remaining external fermions is straightforward.
Therefore we will just give the results for all four generic structures

1 1 1 1
MUER = §gLPL5Z¢O +5 —grPrOZ) + 5 S97OPLOZ + 95 "ProZ}, (4.15)
1 1 1
+ §QRPR(5Z£1>T+_QLPL(5Z¢1) + gRlP (0Zy )t + ngP (62 )!

1 1 1 1
+ §gLPL5Z¢'2 + QgRPR(SZd)Q + 2g7Ln2PLézwm + 29}?213]{(5 s
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1 m 1 1, 1 1,
MR = 595 + go 825 + 5952;1 + 591 02} + 59020, + 9502y (4.16)

1

My = géZv2+ 950 2y + g(SZT + gmdzT + chZT + gmaz;m, (4.17)
1 1 1

MGHE = 5987, + 5980 Zvp + 5957}, + go 17 + gazT + g{nazT o (418)

Example: HT — tb, the top and bottom quark don’t mix at one-loop level with other
particles, therefore we have to choose:

0Zfm = 0, 0 Zjm =0, (4.19)
L _ R —
0Zfm = 0, 0 Z g =0 (4.20)

The charged Higgs boson H' mixes with the charged Goldstone boson G therefore we have
to choose

0Zgm = 0Zp+a+ - (4.21)
Choosing the other wavefunction renormalization constants by
8zy, = 0Z, VAE VA (4.22)
82y, = 07Z;, 825 =677,

5Z¢0 = 5ZH+H+>

plugging eqs. ([E2THA22]) in the generic formlua in eq. (£I5), we finally obtain the matrix
element originating from the wavefunction renormalization by

sshid 21 sp0 2 b 1 M) P, (4.23)

WFR
I - S A R
MH+—>tb ( 2t5 2?5/3 28/8 H+Gg+'"t 2t5
1 iy 1 i L st 1 R
+ —§Cgt5hb5Zt — §C,BtB52H+H+hb + 50562H+G’+hb — §Cgt552b hy | Pr .

4.3.3 Types of vertex diagrams

There are four different topological types of vertex diagrams shown in fig. (£3H44). For the
complete discussion of these diagrams with gerneric couplings and fields in terms of Passarino
Veltman integrals, we refer to e.g. [101].

Figure 4.3: different types of vertex topologies
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e
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Figure 4.4: diagrams with a transition

4.3.4 SUSY Parameter Analysis (SPA) convention

The definition of the parameters is not unique beyond the leading order and depends on
the renormalization scheme. Therefore, a well-defined theoretical framework was proposed
within the so-called SPA (SUSY Parameter Analysis) project [87]. The ”SPA convention”
provides a clear base for calculating masses, mixing angles, decay widths and production
processes. It also provides a clear definition of the fundamental parameters using the DR
renormalization scheme which allows one to extract them from future data.

e Masses of SUSY particles and Higgs bosons are defined as pole masses.

e All SUSY Lagrangian parameters are defined in the DR scheme at the scale Q = 1
TeV.

e All elements in mass matrices, rotation matrices and corresponding mixing angles are
defined in the DR scheme at the scale Q = 1 TeV, except agopo the (h® — HY) mixing
angle, which is defined on-shell at p = myo.

e SM input parameters are: G permi, @, Mz, as(myz) and the fermion masses.

4.4 Input parameters

HFOLD is designed to be applied to SUSY models like mSUGRA, NUHM, AMSB etc. where
the low energy model parameters are given at some scale Q. The low energy spectrum is
derived from a few parameters defined at a high scale using renormalization group equations.
At the program start, HFOLD reads the spectrum, where the Yukawa couplings, the gauge
couplings ¢/, g, gs, the soft breaking terms, the VEVs, m 4o, tan 3, u and the on-shell Higgs
masses are taken as input parameters. The input parameters are understood as running
parameters in the DR scheme at the scale Q. In loops we are free to use DR masses because
the difference is of higher order in perturbation theory. Since our renormalization is done in
the DR scheme the coupling counterterms contain only UV-divergent parts. Therefore we
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do not fix dmy with Grerm; as input parameter. In the Higgs sector we use m4o and the
running tan 3 as inputs. We can then simply derive the DR running Higgs mixing angle «
at the scale Q. We do not take aeys as input parameter because we consider our calculation
a self consistent one—loop expansion.

/
Gauge sector : 9,9, 9s
Higgs sector : tan 3, v, f, m o
pole pole pole pole
Myo > Mpo Mo Mps
Yukawa—couplings : Yu, Yd> Yi
Sfermion—masses : M;, Mg, Mg, Mp

Soft-SUSY-breaking—terms : A., A,, A4

Gaugino masses : My, My , M3

Table 4.1: Input parameters for HFOLD (generation and sfermion indices are suppressed)

4.5 Resummation of tan 3

The down-type fermions couple to the up-type Higgs doublet with radiative corrections,
— yy H9bb — yp Ay cot BHIbD . (4.24)

The selfenergy A, is proportional to tan S and can be enhanced for large values of tan (.
This term can be resummed (in the effective potential approach) by replacing the bottom

Yukawa coupling [92]
Yo

14+ A,

=
8

-

P LZ\ ,2\ B 2\
/ \ / \ / \
by \ / bR br \ / bR br \ / br
g 2

X1, X1.4
Figure 4.5: tan S-enhanced selfenergy diagrams with gluinos, charginos and neutralinos.

The resummation can also be performed in the diagrammatic approach [93]. Different renor-
malization schemes correspond to different choices of counterterms. Therefore the analytic
form of the tan 8 enhanced corrections depend on the chosen renormalization scheme. In the
on-shell scheme one takes the measured bottom mass as input parameter. The choice of dmy,

fixes dyp, by
my omy,
Yp=— > 0Yp = —— . (4.26)
Vd Vd
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The quark mass counterterm dm, is a source of tan S-enhanced corrections. The selfenergy
Y RE(my,) contains terms proportional to 1, sin 8 and is therefore tan 3 enhanced,

SEY = my Ay, (4.27)
Ap= A+ AT 4 AT (4.28)
In leading order this means : dm;, = —Ef‘L = —mye, tan S. We write the bare Yukawa
couplings as yéo) = yp+ 0y, Where y, is the renormalized coupling and dy, is the counterterm.
The choice of dmy fixes oy, through
(5mb
oypy = —— = —yp€p tan f. (4.29)
VUq

The supersymmetric loop effects encoded in €, enter physical observables only through dys.
Choosing e.g. a minimal subtraction scheme like the DR scheme for dm;, removes the tan -
enhanced terms and there is nothing to resum anymore. Since we do not use the measured
bottom mass as input, the resummation of tan 5 is absent in our approach. However, the
resummation eq. (4.28) is implemented in the code and can be turned on.

4.5.1 Gauge used

The code of HFOLD is derived in the SPA convention in the general linear R, gauge for the
W= and Z%boson. The gauge fixing Lagrangian in the general linear R¢ gauge is

1 1
LOF = ——FTF~—|FAP?, A=12Z7,g,
Ew &a

with Ft = (9MW“+ + iﬁwmwG-i_, FZ = 8NZ“ + fzszO,F’y = "}/MA“, and FY = ’}/MGG'“.

The Higgs-ghost propagators are i/(¢*> — &ymi,) and the vector-boson propagator in the R
gauge reads
T (9“” -(1- fv>%>

2 2
qc —my,

The ¢-dependent part is a product of two propagators leading to a (n+1)-point loop inte-
gral. Performing an expansion into partial fractions, it can be split into a form with single
propagators only,

o _ 19" +L( ¢ ¢ )
v (

¢=my - my \(@—mi)  (—Emi)

We have implemented this second form into FA in order to check gauge independence for W
and Z. For the massless particles v and gluon we get derivatives of loop integrals. In these
cases it is possible to proof gauge invariance analytically.
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Numerical results

5.1 Comparison at mSUGRA—-benchmark point SPS1a’

In the following section we will compare HFOLD with existing programs at the mSUGRA
point SPS1a’, which was proposed in the SPA project [87] (in the meantime already ex-
perimentally excluded). Our comparison with other programs is based on the same input
file with the MSSM spectrum given in the SUSY Les Houches accord form [86] created by
SPheno3.0beta50 [95].

A list of available decay programs is given at http://home.fnal.gov/ skands/slha/. In
the following tables the Higgs bosons partial and total decay widths are compared to
HDECAY 3.53[97] and FeynHiggs 2.7.4[96]. In FeynHiggs 2.7.4 the Higgs decays in fermions

mo my /2 tan 8 sign(u) Ao

SPSla’ 250 [GeV] 70 [GeV] 10  + -300 [GeV]

are evaluated at full one-loop level. HDECAY 3.53 has implemented higher order QCD and
some EW corrections. Most of these corrections are incorporated into running masses.

In table (B.]) the SM input parameters for SPheno are shown, the tables (5.2[5.3]) exhibit
the relevant DR parameters and the SUSY breaking parameters at the scale of 1 TeV.
Table (5.4 shows the numerical values of the SUSY particle masses calculated with HFOLD
and SPheno.

The total widths of the MSSM Higgs bosons calculated with various programs is shown in the
tables (BOB.GI5.75.8). The partial decay widths are given in the tables (BB TOETTH.T2).
To avoid confusion the column SQCD (=SUSY-QCD) in the tables exhibiting the partial
decay widths, denote the corrections arising form the gluons and the gluino, these corrections
only exist at one—loop level, if the external particles have color charge. Therefore the SUSY—
QCD corrections to e.g. HY — ¥x! are zero, since the neutralinos have no color charge and
do not couple to SUSY-QCD at one-loop level. Thus the SUSY-QCD corrections have the
same numerical value as the tree—level calculation for Higgs decays into uncolored particles.

46



5.1 Comparison at mSUGRA-benchmark point SPS1a’

At the SPS1a’ point, Higgs decays into bottom quarks have the largest BRs for all neutral
Higgs bosons. Decays into the lightest neutralinos, charginos and sleptons are also kinemat-
ically allowed. These decays can receive sizeable corrections up to 20 percent for the neutral
Higgs bosons. For H* the difference between the tree-level and full one-loop calculation for
H*™ — x{x{ is 12 percent. However, the corresponding branching rations are small. Since
the main focus of this work is on the evaluation of the decay widths and corresponding BRs
of the heavy Higgs bosons at full one-loop level, we have implemented only these corrections
for h°. For precise predictions of h? decays it is necessary to consider also below treshold
decays as well as leading two—loop contributions. This explains the deviation for the total
widths of h° compared to the other programs exhibited in table (5.5).

Detalils of the comparison

For our comparison with the other programs the bremsstrahlung in HFOLD is calculated
using the hard bremsstrahlung approach, the on—shell masses of the SUSY particles are
calculated with the corresponding one-loop selfenergy shifts from the DR masses

(mpPole = mPR — 33l (;mPR)). For sfermions we also take the off-diagonal elements in the
one—loop corrected mass matrix into account. The flags for the generation of the particle

spectrum using SPheno can be found in the appendix [Dl

SM input value

aZMS(m ) | 127.932

G, 1.167 1075 [GeV 2
aMS(my) | 0.118

mbole 91.188 [GeV]

mMS (my) 4.2 [GeV]

mbee 171.2 [GeV]
mbole 1.777 [GeV]

Table 5.1: SM input parameters for SPheno
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Parameter | value | Parameter | value
g 0.364 | yq 0.862
g 0.647 | yp 0.137
gs 1.080 | y- 0.104

Table 5.2: DR parameters at the scale Q = 1 TeV

Parameter | value Parameter | value
M, 103.589 | My, 180.817
M, 193.499 | M. 180.811
Msj 568.361 | M3 179.057
Mg, 115.632 | Mg, 522.271
Mg, 115.612 | Mg. 522.269
Mpgs 109.940 | Mgs 468.245
My 503.598 | Mp, 501.395
My 503.596 | Mpo 501.393
Mys 384.882 | Mps 497.174
Ay -565.868 | m? 25352.31
A, -937.403 | m2 -140313.122
A, -444.542

Table 5.3: SUSY breaking parameters in GeV at the scale Q = 1 TeV
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Particle ‘ SPheno mass ‘ HFOLD mass ‘ Particle ‘ SPheno mass ‘ HFOLD mass
h° 110.699 110.699 g 611.445 608.299
H° 421.139 421.139 dz 566.228 562.645
A° 420.982 420.982 d; 542.859 539.647
H* 428.942 428.942 Us 560.749 557.135
X! 97.973 96.235 Uy 543.163 539.863
X3 183.869 183.846 So 566.228 562.645
Xg 396.727 396.742 S 542.854 539.643
XZ 410.499 410.471 Ca 560.761 557.148
X1+ 183.631 183.598 C1 543.146 539.847
X; 411.93 411.949 b, 502.661 499.933
é, 125.253 125.212 by 541.697 538.623
€- 189.659 189.625 t, 361.071 360.615
Uer 172.308 172.301 ts 583.088 579.591
2 189.681 189.647 1 108.001 107.96
1 125.19 125.15 To 194.65 194.65
’;ﬂL 172.301 172.294 Urr 170.253 170.26

Table 5.5: Comparison of the total decay widths of the CP-even Higgs boson h° (in MeV)

Table 5.4: SPheno vs. HFOLD pole-masses in GeV at SPS1a’

hO

HF-tree

HF-SQCD

HF-full

FH 2.7.4

HD 3.53

]_‘\total

e

1.9

HF-tree

3.0

2.8

3.2

3.7

HF-SQCD ‘ HF-full | FH 2.7.4 | HD 3.53

Ftotal

Table 5.6: Comparison of the total decay widths of the CP-even Higgs boson H°

AO

0.8389 ‘ 1.0171 ‘ 1.0274 0.9890 1.0495

HF-tree

HF-SQCD

HF-full

FH 2.7.4

HD 3.53

]_‘\total

Table 5.7: Comparison of the total decay widths of the CP-odd Higgs boson A°

1.2471

1.4405

1.5256

1.4183

1.4139
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Table 5.8: Comparison of the total decay widths of the charged Higgs boson H*

H~+

HF-tree

HF-SQCD

HF-full

FH 2.7.4

HDECAY

Ftotal

0.7534

0.9057

0.8948

0.7875

0.9671

h° | BR-tree | HF-tree | HF-SQCD | HF-full | 1-SQCD/full FH 2.7.4 | HD 3.53
bb | 0.8044 0.0015 0.0026 0.0024 -0.102 0.0025 0.0029
77 | 0.1544 0.0003 0.0003 0.0003 -0.076 0.0003 0.0003
cc | 0.0403 0.0001 0.0001 0.0001 -0.002 0.0001 0.0001

Table 5.9: Comparison of the partial decay widths of the CP-even Higgs boson h°

H° | BR-tree HF-tree HF-SQCD | HF-full | 1-SQCD/full | FH 2.7.4 HD 3.53
bb 0.5546 0.4652 0.6262 0.6216 -0.007 0.6283 0.6466
TT 0.1058 0.0887 0.0887 0.0914 0.029 0.0983 0.0909
tt 0.0549 0.0460 0.0631 0.0564 -0.119 0.0607 0.0937
XX 0.0539 0.0452 0.0452 0.0465 0.047 0.0429 0.0442
X xi | 0.0515 0.0432 0.0432 0.0527 0.181 0.0528 0.0568
T1T1 0.0212 0.0177 0.0177 0.0184 0.037 0.0183 0.0095
T1T2 0.0206 0.0173 0.0173 0.0191 0.093 0.0183 0.0262
XX 0.0205 0.0172 0.0172 0.0206 0.168 0.0210 0.0225
xIx? 0.0172 0.0144 0.0144 0.0140 -0.03 0.0122 0.0127

Table 5.10: Comparison of the partial decay widths of the CP-even Higgs boson H°
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A° | BR-tree | HF-tree | HF-SQCD | HF-full | 1-SQCD/full | FH 2.7.4 | HD 3.53
bb 0.3741 0.4665 0.6282 0.6250 -0.005 0.6269 0.6439

X%y | 0.1800 0.2245 0.2245 0.2862 0.216 0.2395 0.2389
tt 0.0862 0.1074 0.1389 0.1289 -0.078 0.1881 0.1815
xXIx9 0.0755 0.0942 0.0942 0.0972 0.097 0.0890 0.0871
XX 0.0729 0.0909 0.0909 0.1166 0.22 0.0975 0.0955
TT 0.0713 0.0889 0.0889 0.0919 0.032 0.0980 0.0911
T1T2 0.0225 0.0280 0.0280 0.0297 0.055 0.0292 0.0272
xIx? 0.0170 0.0212 0.0212 0.0205 -0.03 0.0181 0.0183
Table 5.11: Comparison of the partial decay widths of the CP-odd Higgs boson A°
H* | BR-tree | HF-tree | HF-sqcd | HF-full | 1-SQCD/full | FH 2.7.4 | HD 3.53
tb 0.6171 0.4649 0.6170 0.5989 -0.03 0.5060 0.6850
)21’_)2(1) 0.1712 0.1290 0.1290 0.1306 0.012 0.1194 0.1228
TV, 0.1203 0.0906 0.0906 0.0944 0.04 0.0922 0.0927
UrT1 0.0809 0.0610 0.0610 0.0643 0.052 0.0630 0.0581

Table 5.12: Comparison of the partial decay widths of the charged Higgs boson H™
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5.1.1 Checks of IR and UV correctness

Processes generated with FA /FC provide a good opportunity for checking their correctness.
The UV divergence parameter A and the photon/gluon mass A are implemented in the
code. The one-loop corrected widths should be independent of the numerical value of these
parameters. To check the correctness of our calculated processes, we set A = 10° and then
A = 10'%%, To perform the checks of UV and IR convergence, it is necessary to set the HFOLD
flags osmasses and susymasses to zero.

It (A =0,A=0) T (A=10°,A=0) I'***(A=0,A=10'°)

h®  0.00153052817 0.00153052817 0.00153052817
H° 0.665873399 0.665873399 0.665873399
A% 1.09668832 1.09668832 1.09668832
H* 0.77892842 0.778929415 0.77892842

Table 5.13: Dependence of the total withs on the UV and IR parameters A and A

As can be seen in table (B.13]), the difference between the various total widths is tiny, which
indicates that our calculated amplitudes are IR and UV convergent.

5.2 High scale scenarios

Studying the radiative corrections for MSSM Higgs boson decays for the complete mSUGRA
parameter space would be beyond the scope of this work. However, we have created three
benchmark scenarios to show important trends of these corrections. Since the program is
public available it can be most easily adopted to any other high scale scenario.

e scenario mSUGRA1 :
(mo, my2, tan 3, sign(pn), Ag) = (700 — 1300, 200, 3, +, 0)

e scenario mSUGRA2 :
(mo, mq/2, tan 3, sign(p), Ay) = (700 — 1300, 200, 10, +, 0)

e scenario NUHM :
(Mo, mq/2, tan 3, sign(p), Ao, m1, ms) = (250,250, 10, 4,0, 550—1650, 550)

The parameters mg, mi/2, mi, my and Ay are given in GeV.
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5.2.1 Scenario mSUGRA1

In scenario mSUGRA1 we will vary the universal scalar mass mg from 700 to 1300 GeV,
keeping the other parameters fixed. This area in mSUGRA space is in agreement with recent
CMS and ATLAS measurements e.g. [106]. Figure (B.I]) exhibits the mq dependence of the
mass spectrum. As can be seen, the Higgs sector is in the decoupling regime. The heavy
Higgs boson masses are highly degenerate in mass around 900 GeV, the mass of light CP—
even Higgs boson A’ remains almost constant about 100 GeV. The neutralino masses my 0,
mygo and the chargino mass Mgy show a strong strong increasing behavior with my. ThlS
can be explained by looking at the approximation formulae for the chargino and neutralino
masses. In the limit of large |u| values, |u| > M o > My the neutralino masses simplify to
[104]

M2 9
0 ~ Ml—?(Ml—F/LSQﬁ)SW, (51)
M?2
myo =~ MQ—M—QZ(MQ—FMSQ/B)C%/V,

1 M2
4 20 (0 o) (2 Moy F D)

12

(5.2)

where €, = p/|p| is the sign of . The chargino masses reduce in the limit of |p] > My, My,
to
My =2 My — M2 (M + psag) (5.3)

mez = |ul + Mipp~e, (Masas + )

X2

The heavier neutralinos and chargino masses show a linear dependence on p without any
suppression factor, which explains their increasing behavior. Figure (5.2)) shows the BRs in
the tree-level and full one-loop approximation for H°, A° and H". The dominant BRs are
in both cases H°/A® — tt (since the tan 8 — enhancement for Higgs decays into down type
fermions is not active for tan 8 = 3 ), which also receive sizeable full one-loop corrections.
Figure (5.3) and (5.4) exhibit the relevant partial decay widths for the Higgs bosons H® and
AY. The stop loops entering the Higgs wavefunction corrections cause a pseudo-threshold
for H® — tf and H® — Y1 x5 at mg ~ 1080 GeV.

In both cases, the difference between the leading SUSY—-QCD and the full electroweak calcu-
lation for HY/A® — tt is about 10 percent. Therefore these contributions are mandatory for
precise predictions. The second largest BR in both cases is H°/A® — x{ x5, where the dif-
ference between the tree—level and the full one—loop calculation for the partial decay widths
is rather small and shows a decreasing behavior for increasing values of mg down to two
percent.

The charged Higgs boson H* has the largest BR into H™ — tb shown in fig. (5.2)), followed
by the decays into a neutralino and chargino. The BR H* — tb receives sizeable corrections,
the BRs into neutralinos and charginos have corrections up to a few percent.
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The partial decay widths of the charged Higgs boson are exhibited in fig. (B.5]). The dif-
ference between the leading SUSY-QCD calculation and the calculation including the full
electroweak contributions is about 10 percent. Again these contributions are necessary for
precise predictions. The partial decay widths into neutralinos and charginos have corrections
about three percent. Therefore the tree-level calculation for Higgs decays into neutralinos
and charginos is a sufficient approximation in this area of mSUGRA space.

Finally figure (5.6]) shows the total decay widths for H°, A% and H™ in the tree-level, SUSY—
QCD and full one-loop approximation. As can be seen, the difference between the tree—level,
SUSY-QCD and full one-loop calculation becomes larger with increasing values of mg. This
behavior can be explained, since with increasing values of mg, more decay channels into pairs
of neutralinos and charginos become kinematically available. These new decay channels re-

ceive only electroweak corrections at one—loop level, therefore they cause a larger deviation
from the SUSY-QCD and tree-level calculation.
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Figure 5.1: Mass spectrum in scenario mSUGRA1
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Figure 5.2: H°, A° and H" branching ratios (solid = full one-loop, dashed = tree-level)
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Figure 5.3: H® decay widths in GeV (blue=tree, red=SUSY-QCD, solid = full one-loop)
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Figure 5.4: A decay widths in GeV (blue=tree, red=SUSY-QCD, solid = full one-loop)
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Figure 5.6: Total widths in GeV in scenario mSUGRA1



5.2 High scale scenarios

5.2.2 Scenario mSUGRA2

Our next mSUGRA scenario is the same as mSGURA1L, except for tan 3. We now take
tan f = 10. This has important phenomenological consequences, the leading BRs of neu-
tral Higgs decays into pairs of top quarks are now suppressed from ~ 30 percent (scenario
mSUGRAT1) down to approximately two percent in scenario mSUGRAZ2. Therefore decays
into pairs of charginos and/or neutralinos have the largest BRs for the whole range of my.
The BRs of H°, A° and H* calculated in the tree-level and full one-loop approximation are
exhibited in fig. (5.8)). One might suspect that the BR A° — x{ x; is larger than A% — x{ x5,
since there is more phase space available. However, this behavior can be explained by the
tree-level coupling of A° — x5 which is larger than A° — x| in this parameter set.
The radiative corrections for the leading chargino decay modes are rather small, only the
BRs of neutral Higgs decays into pairs of bottom quarks receive corrections of the magnitude
of a few percent.

The relevant partial decay widths of H°, A and H* are shown in fig. (5.9, 5.I0) and (5.1T]).
As can be seen the leading decay widths into pairs of charginios and/or neutralinos receive
corrections up to four percent. The difference between the leading SUSY-QCD and full one—
loop widths for neutral Higgs decays into pairs of bottom quarks are increasing with mg
up to three percent, for the charged Higgs the difference between both calculations is five
percent at my = 1300 GeV .

Finally figure (5.12)) shows the total decay widths for H°, A% and HT in the tree-level,
SUSY-QCD and full one-loop approach. Since the corrections for the relevant partial decay
widths are of the magnitude of a few percent, the difference for the corresponding total
decay widths between the three approximations is small, e.g. the difference for T'™!( H°) at
tree-level and at full one-loop level is two percent.
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Figure 5.7: Mass spectrum in scenario mSUGRA2
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Figure 5.9: H® decay widths in GeV (blue=tree, red=SUSY-QCD, solid = full one-loop)
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Figure 5.10: A° decay widths in GeV (blue=tree, red=SUSY-QCD, solid = full one-loop)
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Figure 5.11: H* decays widths in GeV (blue=tree, red=SUSY-QCD, solid = full one-loop)
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Figure 5.12: Total widths in GeV in scenario mSUGRA2
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5.2.3 Scenario NUHM

In this Non Universal Higgs Mass (NUHM) scenario, we will vary the Higgs mass param-
eter my given at the GUT scale, keeping the other parameters fixed. As a consequence we
will obtain heavy Higgs bosons, while the SUSY particles will remain relatively light. The
corresponding mass spectrum is shown in fig. (5.I8).Thus, there will be more kinematically
allowed Higgs decays into SUSY particles compared to usual mSUGRA scenarios.

Figure (5.14) shows the most important BRs for H°, A° and H". The BRs are calculated
in the tree-level and the full one-loop approximation. This scenario is almost dominated
by decays into charginos and neutralinos. This behavior can be explained since the Higgs
couplings to top quarks are suppressed while the enhancement of the coupling to bottom
quarks is not strong yet. The domination of the chargino and neutralino decay modes become
even more pronounced with increasing values of my. The following table exhibits the partial
widths of neutralino/chargino decays of the heavier Higgs bosons H°, A’ and H™ in units of
G, M2 My, /(4v/27) in the limit of M4 > |u| > M,. Thus in this limit the neutral Higgs
decay into charginos are equal to 1, while the neutral Higgs decays into pairs of neutralinos
are suppressed by a factor 1/2.

I'(H — xx) I'(A = xx) I'(H* = xx)
XIX3 | tan?0y (14 sin2B) | ttan?0y (1 —sin28) || xix3 1
XIxXG | Stan6y (1 —sin2p) | Ltan®0y (1 +sin28) || xi'x§ 1
3 (1 +sin2p) (1 —sin2p) xax? tan? Oy
Xoxi | 5(1—sin2p) 3(1+sin28) || X 1
XTX3 1 1 - -

The difference for the BRs between the two calculations is about a few percent and becomes
even smaller with increasing values of m;. However, the partial decay widths exhibited in
fig. (5.15) show a different behavior: For the partial decay width H° — bb the difference
between the leading SUSY-QCD and the full one-loop calculation does not become larger
than five percent. The leading partial decay widths into pairs of charginos receive corrections
up to 10 percent between the tree—level and the full one-loop calculation. Therefore these
contributions are mandatory for precise predictions.

The situation for the pseudoscalar Higgs A° boson is similar to CP-even Higgs boson HY.
Only the BR A% — Y{x; shown in fig. (5.14]) remains longer dominant for a wider range of
mq. Again the partial decay width into pairs of charginos show a difference up to 10 percent
between the tree-level and the corresponding full-loop calculation.

The largest BR for the charged Higgs boson is HT — x5 x3. Here the BRs receive corrections
up to a few percent. The difference between the tree-level and full one-loop approximation
for the BR becomes smaller with increasing values of m;. However, the leading partial decay
widths into pairs of charginos and neutralinos, show a different behavior. These decay widths
receive corrections more than 10 percent.
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One might suspect that the Higgs decays into squarks e.g. H° — #,£; have the largest BR,
since there would be enough phase space available. (In detail the BR H® — #1£; at m; =
1650 GeV is only one percent in the full one-loop approximation.) However, these decays are
inversely proportional to the Higgs masses, therefore the sfermion decays are suppressed for
large Higgs masses compared to the decays into fermions and chargions/neutralinos which
increase with the Higgs mass. In the asymptotic regime, myo a0 g+ > my, the decay widths
of the H°, A% and H* bosons into sfermions are proportional to sin® 28m%/mgo 40 g+ and
can be significant only for low values of tan 8 where sin® 23 ~ 1.

The total decay widths of H°, A and HT are exhibited in fig. (5.I8). For values of m;
between 550 and 800 GeV the SUSY-QCD or even the tree—level calculation is a sufficient
approximation for the total decay widths. Then the deviation between the SUSY-QCD and
the full electroweak calculation becomes larger. This behavior can be explained similarly as
in scenario mSUGRA1. New decay channels into pairs of neutralinos and charginos become
kinematically possible and with increasing Higgs masses more phase space becomes available
for these decays. At m; ~ 1650 GeV, the difference for the total width of HY between the
SUSY-QCD and full one-loop approximation is about 10 percent.
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Figure 5.13: Mass spectrum in scenario NUHM
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Chapter 6

Program description

6.0.4 Requirements

e Fortran 77 (g77, ifort77)
e C compiler (e.g. gee)
e LoopTools [94]

6.0.5 About version 1.0

e The CKM matrix is set diagonal
e Real SUSY input parameters

6.0.6 Installation
1. Download the file hfold.tar at

http://www.hephy.at /tools

2. expand the file, go to the folder hfold/SLHALib-2.2 and type

./configure
make

3. to create the Fortran code for hfold, go back to the folder hfold and type
./configure
make

4. To run HFOLD type
hfold

76
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6.0.7 The input file hfold.in

1.

name of the spectrum (SLHA format)

. Higgs boson = 1,2,3,4,5

1=h0, 2=H" 3=A° 4=H+ 5= All

. contribution = 0,1,2

0 = tree-level calculation
1 = full one—loop calculation
2 = SUSY-QCD (only diagrams with a gluon/gluino are taken into account)

. bremsstrahlung = 0,1,2

0 = off, 1 = hard bremsstrahlung, 2 = soft bremsstrahlung

. resummation of bottom yukawa coupling = 0,1

0 =off, 1 = on

. esoftmax

cut on the soft photon(gluon) energy, if soft strahlung is used

name of output-file
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6.0.8 Description of all subroutines

subroutine

description

hfold/1to2.F

calculates the soft bremsstrahlung for a 1 — 2 process

hfold /bremsstrahlung.F

contains all generic formulae for the hard Bremsstrahlung processes

hfold/CalcContributions.F

calculates the SUSY—QCD contributions

hfold/Contributions.F

sets right flags for different contributions

hfold/definitions.F

some initial definitions, necessary for the renormalization constants

hfold/getslhapara.F

loads the input spectrum (SLHA)

hfold/LHoutput.F

writes the total decay decay widths and the corresponding BRs to
a file in the SLHA format

hfold/model_mssm.F

all parameters for the MSSM are initialized

hfold /mssmhdecay.F

calls all subroutines to calculate the partial decay widths and the
corresponding branching ratios for the selected MSSM Higgs parti-
cle

hfold /resumbottomyuk.F

contains the formula for the resummation of the bottom Yukawa
coupling

hfold/SetKinematics.F

sets up the kinematics

hfold /softstrahlung.F

adds up the contributions from soft-photon/gluon emission

print routines

hfold/PrintBR.F

prints all relevant branching ratios and partial decay widths

hfold/PrintDrbarPara.F

prints Yukawa couplings, soft SUSY—-breaking parameters

hfold/PrintMSSMPara.F

prints the MSSM mass spectrum

external programs

hfold /util

utilities for e.g. kinematics (part of FormCalc)

hfold/SLHALib-2.2

Supersymmetry Les Houches Accord program library
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automaticaly generated code

description

hfold /mssmhiggs/sqmes/sqmesh0
hfold /mssmhiggs/sqmes /sqmesHH
hfold /mssmhiggs /sqmes/sqmesAQ

hfold /mssmhiggs/sqmes/sqmesHp

all necessary squared amplitudes generated
with FeynArts/FormCalc

hfold/renconst

all renormalization constants

hfold /mssmhiggs/processes/h0
hfold /mssmhiggs/processes/HH
hfold /mssmhiggs /processes /A0

hfold /mssmhiggs/processes/Hp

Sets the right flags (masses, helicities, kine-
matics, bremsstrahlung) for each decay chan-
nel (for each decay channel there is a separate
subroutine).
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subroutine(s)

description

hfold/mssmhiggs/calcwidth0.F
hfold /mssmhiggs/calewidthHH.F
hfold /mssmhiggs/calcwidthA0.F

hfold /mssmhiggs/calcwidthHp.F

Calculates all partial decay widths

hfold /mssmhiggs/sumwidthh0.F
hfold /mssmhiggs/sumwidthHH.F
hfold /mssmhiggs/sumwidthA0.F

hfold/mssmhiggs/sumwidthHp.F

Calculates branching ratios, sums up the total decay widths
and sets the right SLHA code for each decay channel

hfold/osmasses/OSmasses.F

hfold/osmasses/CalcOSMasses1.F
hfold /osmasses/CalcOSMasses2.F
hfold/osmasses/CalcOSMasses3.F
hfold/osmasses/CalcOSMasses4.F
hfold /osmasses/CalcOSMassesb.F
hfold/osmasses/CalcOSMasses6.F
hfold/osmasses/CalcOSMasses7.F
hfold /osmasses/CalcOSMasses8.F

hfold/osmasses/CalcOSMasses9.F

hfold/osmasses/CalcOSMasses10.F

Calculates the on-shell masses of the SUSY particles;
subroutine CalcOSMassesl.F - CalcOSMasses10.F contain
all the necessary selfenergies
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The screen output when running HFOLD is as following:

Higgs Full One Loop Decays by W. Frisch,

H. Eberl, H. Hlucha

error O
abort 173248520
nslhadata 5504

FF 2.0, a package to evaluate one-loop integrals

written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam

for the algorithms used see preprint NIKHEF-H 89/17,
’New Algorithms for One-loop Integrals’, by G.J. van

Oldenborgh and J.A.M. Vermaseren, published in
Zeitschrift fuer Physik C46(1990)425.

ffxdb0O: IR divergent BO’, using cutoff 1.
ffxcOi: infra-red divergent threepoint function,
working with a cutoff 1.

Flags:

Using onshell Higgs masses from : SPSlaprime.spc

the output SLHA will be written to : output.slha

Decay Table :

Total width : 0.905677243
H+ -> mu+ nu_mu

H+ -> tau+ nu_tau

0.320441E-003 / BR :
0.906196E-001 / BR :
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H+
H+
H+
H+
H+
H+
H+
H+
H+
H+

c sb

t bb

“chi_10 “chi_1+
“chi_30 “chi_1+
h W+

“nu_el "el_2+
“"nu_mul. "mu_1+
“"nu_mul. “mu_2+

“nu_taul “tau_1+ :
“nu_taul “tau_2+ :

O O O O O OO O oo

.349004E-003
.617035E+000
.128997E+000
.699102E-003
.277014E-002
.126903E-002
.237453E-003
.124702E-002
.609862E-001
.114467E-002

O O O O O OO O oo

.00
.68
.14
.00
.00
.00
.00
.00
.07
.00



Appendix A

Loop—integrals

The integrals at one-loop level can be simply generalized by

27‘(#)47D Quy----4q
TN S 2 2 — (—/d D Hp1 up A.l
,ul...,up( 1y ooy RN =1, M, ’mN*l) 272 4 Dy..Dn_1 "’ ( )

where T,ﬁ\lf _up 18 a tensor of rank P. We use the following abbreviations in the denominators
D; = (q + k;)*> — m?2. The inner loop-momenta k; are defined using the following relations

pis1 = kg — ki with 5,7 €{0,..,N -1}, (A.2)
J
i=1

(A.4)

i is an arbitrary mass (renormalization scale). The momenta in the nominator originate
from inner fermion propagators or from momentum dependent couplings. A basis of scalar

p1 P2
\\\ q+ ki ///

ma

q 4 My

my—1

/ q+kN_1 \
PN

Figure A.1: Kinematics of the external momenta in the loops. The arrows denote the direction
of the corresponding 4-momenta.

PN-1
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integrals can be defined by:

Ao(mg) = Ty(mg) , (A.5)
BO(k%[)am(Z)vm%) = T()Q(klam(%vm%) )
Oo(kfovk%%k%mm?)?m%?mg) - Tg(klvk%k&mgﬂm%’mg) )

Due dimensional regularization maintains Lorentz covariance it is possible to construct ten-
sorial expressions with the use of the scalar basis

BN - kluBla (A6)
B;w = glwa

2
Cu = Y kG,
=1

2
Cuw = Cy+ Z kipkinCij

1,j=1

The coefficients By, C;, C;j, ... can be determined by multiplying the expressions in [A.0]
with their corresponding external momenta. This leads to a system of equation, which can
then be solved.

A.0.9 Analytic expressions for scalar Passarino—Veltman integrals
Analytic epression for Ay(m?)

The scalar integral Ag(mZ) is defined as

4-D D
! dq 1 1
Ao(md) =" /(2 i = A s (A7)

i ) q> — m? 6 — @ —m?

To process further we perform a Wick rotation from MP to EP by substituting gy = i qo g

, 1
Ag(m?) = —za/ P . (A.8)
0,E

7+

Using the ['-function we can perform the spherical integration as follows

, . FD-1 , D-1
Ag(mg) = —za/dQ/drm =—am~ QD/dTT—Z—Q—l , (A.9)

m
substituting r = r'm (v — r) leads to

)Dfl )Dfl

. _1 (T’ITL
[ 0 dr———
mowm D/ 7 2 1

Ag(m?) = —iam2QD/drm(Tm

— Al
r2+1 (A-10)

o FD-1
= —iam” “Qp drm, (A.11)
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substituting again r? = t, we obtain the expression

) . Do 1 tD/Q—l
Ag(mg) = —iam”~ Qpé/dt T (A.12)
, _ 1T(D/2)T'(1 — D/2)
. D20 1
= —iam QD2 XD : (A.13)
4-D
H 1 D-2_ LD D
= — 2['(1——). A.14
2 (QW)D—4m w2 I 2) ( )
(A.15)
Setting D = 4 — x¢< leads to
Ag(m2) = —m2< = ) rE -1y, (A.16)
22 pu* 2

using y * =1 — (logy)z and ['(e — 1) = =1 — 1 + . + O(e), leads to

Ap(md) = —m? (1—log( m )5) (—3—1+%+0(5)), (A.17)

203 xe

2 2 v
= —m2(———1+’y€+—log< m£ )+O(€)).
xe x 282 p®

Setting x = 2 we obtain the following result

2

Ag(m3) = m? (é + 1+ log(4m) — e — log(m—) + O(s)) : (A.18)

112
the result can be expressed more compactly by introducing the UV-parameter A = % +
10g(4ﬂ') — Ve

2

Ag(m3) = m? (A — log(%) +1+ (9(5)) . (A.19)

In the Minimal Subtraction scheme MS, the counterterms contain only the UV-divergent
parts proportional to % However the terms + log(4m) — 7. lead to large finite shifts. To get
rid of these large finite terms it is convenient to introduce the Modified Minimal Subtraction
MS , where the scale y is transformed by

[iats — Hagg e~ AT e (A.20)

Analytic epression for B
Using the technique of the Feynman-parameters the integral By can be expressed by

+ (1 —2)m? — 2(1 — z)k?
12

2 2 2 ' xmg
By(k*,mg,mi) = A — [ dxlog + O(e). (A.21)
0
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To evaluate the integral further, it is necessary to reexpress the argument of the log—function
of eq. (A.21)) in terms of the corresponding roots z; and x5 with

k2 +m? —m2 4 \/(k2 +m? —md)? — 4m?2k2

= A.22
T1/2 )2 ( )
Now the integral can be written as
]{Z2 1 1
Bo(k*,mZ, m3) = —log — = / dzlog(z — x1) — / dzlog(z — x2) . (A.23)
H 0 0

Using [ dzlogz = xlogz —x, we obtain the analytic solution for the scalar integral By with
general arguments

B
Bo(k*,m3,m3) = A+2—log T g (1 —z;)log(l — z;) + x; log(—x;)]
i=1
2 1 1
= A+2+logu—2 + 21 log (1 — —) + x5 log (1 — —) . (A.24)
my T To

Now we want to investigate in some special cases of the integrals By. We will start with
Bo(k?,0,m?), which can be expressed by

12 1 1 2
Bo(k*,0,m}) = A — logE — /0 dzlog(z — 1) — /0 dzlog (% — 1) : (A.25)

Using fol drlog(z — 1) = —1 and

1 2 2 2 2 2
my B mj my my my
2 2 2 2 2
B my — k my — k mj
= —1- 12 log w2 + log 72 (A.26)

the result can be written as

p? mi—k* mi—k?

2 2
We can take the limit m? — k%, which leads to
2
Bo(m?,0,m?) = A+ 2+ log (A.28)

m2’
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Some important relations for the scalar integral By with special arguments

By(p*,mg,mi) = Bo(p*,mi,mg),
Bo(m?,0,m?) = Aoqg;zz) +1,
By(0,0,0) A

By(m?,0,0) Bo(m?,0,m?) +ir,

By(0,0,m*) = By(m?0,m?) —1,
Bo(0,m?*, m?) = By(m? 0,m? —2,

m?By(0,m*,m?) = Ag(m?) —m?,
(mg —mi)Bo(0,mg,mi) = Ao(mg) — Ao(mj),
2
Bo(0,m3,m}) = Bo(k* mi mi)+ Qf (2B + By) (k*, m5, m7)
0~ i

BQ (m )\2 2)
Bo(m?,m?,\?)
By (0, m?, m?)

lim

lim ()\QBO(AQ, 0, 0))

Some important relations between By, By

and A

Bi(k*,m3,m3) = —Bo(k* m3,m3) — By(k? mo,mf) (A.42)
2k* By (K?,mg,my) = Ao(mg) — Ao(m?) + (mi — mg — k*) Bo(k*,mg,m3), (A.43)
1 2 1
By(m?,0,m?) = -3 (A+1+10g ”—2) =3 (Bo(m?,0,m*) —1), (A.44)
m

By(m*,m?,0) = Bi(m?*0,m? —1. (A.45)

Expressions for the derivative of the B;
Bumtm? ) = —— (32108 ) = —hy(m? % m) 4 —— . (A6
1(m*,m?, )—ﬁ 108y —By(m”, ’m)+2_m?’ (A.46)

. 1

2 y2 2
Bi(m*,\*,m*) = 5 (A.47)
. 1
I ()\QB A2 ) _—— Ad

)\21?0 1( 707()) 9 < 8)
The scalar integral Co(m?2, mg, m3 A2, m%, m3) can be expressed in a simple analytic form

given by

2 2 2 32 2 2
Re{C0<m17 Mg, Mo, A , Ty, mQ)}

1 k27 . )
p {log Bo log VIl T - le(ﬁ%) - Ll2<5§)
2 2 K
—log” 51 — log” 35 + log " log Bo| (A.49)
0
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with the factors £y, 81 and fs given by

integral

o= T RNy MG g, MRS IESK (4 s0)
integral UV-—divergent part
Ao(m?) m? A
Ai(m?) -m?A
Aoo(m2) mT4 A
By A
B, 1A
Boo(k?,m3, m3) | —4(5 —md —m})A
Bu 1A
Coo %
Cooi —5A

Table A.1: UV-divergent parts of Passarino-Veltman integrals (A = 1 + log(4m) — )

IR—divergent part

By(m?, A2, m?) = By(m?, m?,\?)
By(m?,m2,\?)

Bi(m?, X2, m?)

Re [Co(m%, m%, m%, )\27 TTL%, m%)]

_In)?
2m?2

In \2
2m?

0

In 3 2
_TO hl)\

Table A.2: IR-divergent parts of Passarino—Veltman integrals
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Weyl spinors

Left handed spinors ¥, = (Z1> transform under the (%, 0)-representation of the Lorentz
2
i

group. In contrast to the right handed spinors Wi = (Z ) , which transform under the (0, %)f

2

representation. Every dottet index belongs to the (%, 0)-representation and every undottet

index belongs to the (0, %)frepresentation. Lorentz invariant combinations can be written as

U, = ¢y, (B.1)
Ul Wg = (B.2)
complex conjugation transforms an undottet into a dotted index and vice versa
(o) =t () =0". (B.3)
Raising and lowering of spinor indices can be performed using spinor metrics € and &
¢a - éabwb ) 1/}11 = éabl/)b ) (B4
,&(’1 = €ab7/’i, 5 &d = 5d5¢b > (B b

with

~ ~a 0 —1
5ab:£b:<1 0) , (B.6)
e = Eup = (_01 (1)) . (B.7)

B.0.10 Dirac & Majorana spinors

Dirac and Majorana spinors are the composition of a pointed and an unpointed Weyl spinor,
therefore they have four indices. The Dirac spinors ¥ and ® can be expressed by

- () e (5 ®3)
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with
§ . (01 .
Uy =Yy = (Ya, X*) (1 0) = (X", %a) , (B.10)
b4 =W = 3.0 () = 00,5 (B.11)

The Lorentz scalar U® = U, 4 takes the form
D = o+ . (B.12)
In the chiral representation the y-matrices have the following index structure
0o o
Yap = (_&,uizb 6b> ) (B.13)
50
s = (T 53) | (B.14)

The charge conjugation operator C' can be expressed in the chiral representation by

—&, 0
Cap = ( 0 ’ _gai)) ; (B.15)
(B.16)
fulfilling the condition for Majorana spinors ¥, = CW7 .
B.0.11 Calculations with Weyl spinors
(00) = 20'6* (B.17)
(A9) = 266" (B.18)
the most important billinear forms
@10V = ") = () (B.19)
—i®Lo" Vg = ¢atp* = (P0) (B.20)
Ohot Uy = ¢"0" Y = (p0"¢) (B.21)
O} G = ¢°5" 0" = (65" 0) (B.22)
B.0.12 Differentation with Weyl spinors
0, = 504 0" = a0, (B.23)
0y = 0 0" = 9 (B.24)
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Following the differentation rule for Grassmann numbers leads to the relations

0,0° = 6%, "0y = 0y,
0,0" = 8¢, 00, = 67 .

This rules can also be expressed using anti-commutators

{0,,0y = {0",0,} =4d",
{aaa eb} évaLb )
{aa7 eb} — _é:ab 7

this relations are similar for dotted indices. Since 8 and 6 belong to different representations

we have

{04, 00} = {04,0;} =0 .

B.0.13 Integration over Grassmann numbers

The Lorentz invariant volumes can be expressed by
d*0 = 1dﬁ“d@a ,
4
fe:iwﬂm,
d*0 = d*0d*9
d*0 = %dé’ld@g ,
P= 0,0
(d?0)" = d°0 .
Equivalence between integration and differentation leads to

9 .
/ﬂ%_a%_a,

a_ 9 _
/w._%a_@.

Integrals can therefore be expressed by differentation operators

2 — _1/ a/ __1 a_la _12
/lze = — [ [ .= 0,00 = [0'0, = 10"
_ 1 _ _ 1. 1-_-. 1-
2 _ = ) a:__a.:__a:_2
/ﬁe - 4/d@/ﬁ9 100 = 10,0 = 10

1 o5 1
4 — —22:—8282
/d9 1688 T ,

(B.32)

(B.41)
(B.42)

(B.43)
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this leads to the following relations

/ 26(69) iaaaa(ee) _1, (B.44)
/ 26(00) %a‘aéa(e‘é) 1, (B.45)
/ 440(00)(90) = 1. (B.46)
Let now assume a superfunction f given by
F(0) = £(0) + f0a + FP(00) , (B.47)
/ de*f(e) = f@ . (B.48)

As can be seen, the integration works as a projector, because

/d921 = /d921 =0, (B.49)
/d926 = /d929: 0. (B.50)



Appendix C

Special functions

C.1 The I'function

The I'-function is defined by

I(z) = /OO dit+let (C.1)
C.1.1 Properties

ra) = 1, (C2)
T(n) = (n—1), (C.3)
F(e—l) == _%_14_7«3""0(5) ) (04)
e = Jﬂo(i% —logm) ~ 0.577216 , (C.5)

R F(oz)F(_ﬁ —a)
/0 ¢ T NOEE (C.6)
(C.7)

D-dimensional spherical integration [ dQ2p=p can be expressed with the following relations

and the I'-function
/ / dry...dx, = /dQ/drr”l, (C.8)
_ 1

/_Ze ‘de = \/;, (C.9)
/ a0 = ;g;;. (C.10)
(C.11)
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C.1.2 The Spence—function Li,
The Spence—function Lis(x) is defined by

Liy(z) = — /Ox %log(l —t). (C.12)

C.1.3 The Kallen function
the totally symmetric Kallen function & is defined by

k(z,y,2) = (r—y—2)? —4yz . (C.13)




Appendix D

SPheno flags

We used the following flags in SPheno for the generation of all spectra.

# SM values are taken from: C. Amsler et al. (Particle Data Group)
# Physics Letters B667, 1 (2008) (URL: http://pdg.lbl.gov)
# where MW = 80.398+/-0.025 GeV

#

Block MODSEL

1

1

Block SMINPUTS

2
3
4
5
6

7

1.
1.
9.
4.
1.
1.

16637000E-05
17600000E-01
11876000E+01
20000000E+00
71200000E+02
77684000E+00

Block MINPAR

1
2

4
5

2.
7.
1.
1.
0.

50000000E+02
00000000E+01
00000000E+01
00000000E+00
00000000E+00

Block SPhenolInput

1

2
11
21
25
31
32
33
51
52
61

-1.
.00000000E+00
0.
0.
0.
.00000000E+00
0.
.00000000E+00
.10998910E-04
.056658367E-01
.00000000E+00

1

-1

-1

00OOO0O00E+00
0O00O00000E+00
0000O0000E+00
00000000E+00

00000000E+00

H OH H H OH OH OH OH H H OH OH OH OH OH OHHHHHHHHEHHHH

Select model

mSugra

Standard Model inputs

G_F, Fermi constant

alpha_s(MZ) SM MSbar

Z-boson pole mass

m_b(mb) SM MSbar

m_top(pole)

m_tau(pole)

Input parameters

mO

ml2

tanb

sign(mu)

AO

SPheno specific input

error level

if =1, then SPA conventions are used ~ scale = 1000 GeV
calculate branching ratios

calculate cross section

if 0 no ISR is calculated, if 1 ISR is caculated
m_GUT, if < O than it determined via g_l=g_2

require strict unification g_l=g 2=g 3 if ’1’ is set
Q_EWSB, if < 0 than Q_EWSB=sqrt(m_"tl1 m_"t2)
electron mass

muon mass

scale where quark masses of first 2 gen. are defined
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62
63
64
65

3.00000000E-03
1.20000000E+00
6.00000000E-03
1.20000000E-01

# m_u(Q)
# m_c(Q)
# m_d(Q)
# m_s(Q)

1.56-3.3 MeV

1.27 +0.07 -0.11 MeV
3.5-6.0 MeV

104 +26 -34 MeV



Appendix E

Bremsstrahlung

E.1 Infrared divergences

Infrared (IR) divergences originate from the fact that photons and gluons are massless parti-
cles, this causes a divergent behavior in loop integrals for vanishing photon/gluon momenta.
To regulate the divergent expressions, one introduces a small photon/gluon mass A e.g.

2

0 1 [4 1 B 1 m
a_pzm_Q/d%q?—vn(wp)?—mﬂ = —5a(2-trz) (E-1)

p2=m?2

as can be seen easily this integral diverges for A — 0.

Following a theorem by Bloch and Nordsieck [53], the IR—divergences can be canceled by
the inclusion of hard Bremsstrahlung processes which contain one additional emission of a
single photon/gluon in the final state.

E.2 Hard Bremsstrahlung

For an 1 to 3 process with a massless particle the three-body phase space can still be
integrated out analytically. We have implemented this radiation by using self-derived generic
formulae for all four generic decay structures fig. .1l where every charged line can radiate off
a photon (or a gluon for colored particles). The width containing the real Bremsstrahlung
processes can be written as

N d3k A3k B3k
Fhard = ¢ / 1 / 2 / 3 2 454 ki ko —k hard |2
2myg J (2m)32E, ) (2m)32E, (2%)32E3( )70 (p— Rtk — k) | M,

where N¢ denotes the color factor. The phase—space integrals I, and [, in the convention
of [32] are given by
1 Ak d3ky Ak

Ljiv=— | =0 p =k + ke — k
win = 73 | 9F, 9F, 2F, 0 P TRtk =k

1
(£2k;, - k3) ... (£2k;, - k3) '

(E.2)

where the plus signs belong to the momenta of the outgoing particles k1 and k3 and the
minus signs to the momenta p and ky. The IR—convergent decay width I'°®* for the physical
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value A = 0 is then given by

D — fafp) = T(®) = fafp) + TN = fafsv/9) (E.3)

1
4o — fafpy/g) = Poman? (IMsrrl?, [Msssl?, [IMssv ] [Msvv]?)  (E4)
d = K, H A° H*. (E.5)

The generic couplings gg, g1 and g for the hard photon radiation are setup by

go = —e charge(0) , (E.6)
g1 = —e charge(1) ,
g2 = —e charge(2) ,

where e.g. charge(0) = —1 for a H" decay. For the hard gluon radiation gy, ¢; and g, are
defined by

go = —gs strongC(0) , (E.7)
g1 = —gs strongC(1) ,
g2 = —gs strongC(2) ,

where gg denotes the strong coupling constant, strongC/(i) is equal to one for colored particles
and zero for non—colored particles.

E.2.1 Analytic expressions of the relevant phase—space integrals

In this section we will give the Analytic expressions for all phase—space integrals, necessary
for all the two—body decays in the program package HFOLD.
For the discussion of the phase—space integrals it is necessary to introduce the functions

2 9 2) (m% - m% - m% + /f(mg, m%,m%))

50(7”0’ my, My

)

(2m1m2)

(m2 —m? +m3 — k(md, m?,m3))
ﬁl(m(%?m%amg) = ¢ ! (272710m2) = L= )

(m2 +m? —m3 — k(mZ, m3,m3))
62(m37m%7m§) = 0 ! (2;n0m1> 0 L 2 )

where k denotes the Kallen function. In the further discussion we will skip the arguments of

the Killen function x(m32, m?, m3) and just write x.



E.2 Hard Bremsstrahlung

99

Type I;

Type

)e

(2

Iy = L2( — 2mj log () — 2mj log(B1) — ’i)
mp

I, = 4%71%( — ng log(B,) — 2m3log(By) — /<a)
1

I, = 4_mg( — 2mglog (1) — 2m7 log(fo) — k)

1
dmg 2

1
T3 (milog(B2) — m3(2mg — 2m] + m3) log(B1) —
mj log(1) — mi(2mg — 2m; + my) log(Be) —

mg log(B2) — ma(2mi — 2mg + m3) log(Bo) —

my log(B1) — mi(2m3 — 2mg + m7) log(f) —

(
(
(m3log(Be) — mg(2m; — 2m3 + mg) log(Ba) —
(
(m1og(Bo) — m§(2m3 — 2m7 + m§) log(1) —

K
7 (5 (mg + mi +m3) + 2mgmilog(a) + 2mgm; log(B1) + 2mim; log (o))

(m(z) - 3m% + 5mg))
(mg — 3m3 + 5m]

(m7 — 3mg + 5m;

(m3 — 3m§ + 5m]

))
)
(mi — 3mj + 5mg))
)
))

(m3 — 3m? + 5m?

1N [ ST [ SN B SO B S R



100 APPENDIX E. BREMSSTRAHLUNG
Type 1;,;,
1 K2 By
I 1 S o 2 2 1 My 21
0 = g (V1B () log(2) — i log(%)
K2 B
I loo(— N e (2 — m2) loa (22 — m21
11 A (“ 0g )\mom1m2) K — (mg — m3) log( 2) mj Og(&))
K Bo
I — (klog(—————) — k — (M? 1 2]
» 4mamg (H Og()\mom1m2) r mp = ml) Og(ﬁl) 2 Og(ﬁ2))
1 Amomim
Iy = (= 2log(=—5—)log(fh) + 2log(fh)? — log()° — log(8)’
0
2Liy(1 — 33) — Lio(1 — B7) — Lis(1 — 533))
1 AMgmim
ho = (= 2log(=—5—)log(Ba) + 2log(82)* — log(5n)* — log(5)*
0
2L12(1—52) —L12<1—60) L12 1—51))
1 AMomim
Ly = (= 2log(==5)log(51) + 2log($1)* — log(fh)° — log(fn)?
0
QLIQ(l—Bl) _L12(1_60) LIQ 1—/62))
Type 12]112]22
11 1 2/ 2 K?
Ing Am2 ((2m2(m0 +mj —m7)log(B1) + G2 + 2’””2)
my
21 1 K 2
I —ﬁ((ml log(B2) + m3log(By) + 6_ 1 (3m1 + 3m3 — mo))
my
22 1 2 K 2
1o ( (2m3 (m§ + m7 —m3)log(fB2) + 62 + 2kmf7)
mo
00 1 2/, 2 2 2 kP 2
I 2 ((2m2(m1 +m5 — mg) log(Bo) + 62 + 2/<m2)
mg my
20 1 4 4 K K 2 2 2
I3y __((mo log(B2) + mylog(Bo) + — + - (3mg + 3m; — m1)>
4m om; 4
1 K3
B = e (g i — ) logl) + oy + 2
00 1 2/ 2 K 2
I35 4—7”%((27711 (m3 +mi —mg)log(By) + 6_m§ + 2""”1)
K3 K
1) I3 ((mo log (1) + mjlog(So) + ezt 1(37”3 +3mi —m3))
2
11 1 2/ 2 2 2 kP 2
I3 4m(2) ((2m0(m0 +my —my)log(B1) + G_m% + 2’“”0)
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E.3 Scalar— Fermionl + Fermion2 (SFF)

k1
g1
ko s g <
— —>
""" —==-9--QG } =====-QGt } ====--QG:
9o
\]@ g2

Msrr M? M! M?
Figure E.1: Hard Bremsstrahlung process with one scalar and two fermions

The generic matrix elements are given by

Mo = a(k)i(g; PL+ g/ Pr)

i . .
(ko — F3)? — m2 igo (2ko — k3)ue™ (ks, N v(ke) , (E.8)
0

Py + P (ks N (k). (£.9)

| (—to— Wy +ma) .,
My = alkilgh P+ g P S I g ol (B10)
2

My = u(k) 191V
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The squared matrix element |[Mgpp|? = | Mo+ M; + Mo|? reads as

|-/\/ISFF’2

I+ + +

+ 4+ L+

e e i o

+

+ o+ + 4

2979 gL*I D4 207979l I + 29590 90 Iy + 2959( 9" 1y — 29591 9/ i (E.11)
2909197 gt “Ti+ 2909291 90 Tt — 4919291 90" Tt — 2959/ 97 Ii + 2g0919{ 9{™ I

491929/ gt “li — 6gag; f*fomﬁ + 2goglgfgf*fom§ + 290929595*107”3 — 6959 9, Tomy
2909191" gt “lomg + 2909297 gt “lomj — 4909197 gt “img + 491929) gt “Limg

491929; 9, Tymg — 490929{ 9 om +491929t 97 Iomg — 490929/ gt *Img

49591 91 *]oomo g59i'y *Ioomo 490919 9 flomo 4909191 97" flomo

490929{ 9t Taomg — 49092% 9{" Lygmg — 49192% 90" Iymig — 4919291 9{™ Iymy

29597 f*loml + 2909191 9" Tomi + 290929/ 91 Lom’ + 2939/ f*loml

2009291 9, Tom? + 4gig; g [rm? + 4g7g[ g/ Lym? + 4g0gag 91" Iy}

4909291 9{" Iam} — 4919291 9{" Lam} + 4939/ 9 *IOOmOml +4939; 9 Toomim};

4939/ 91 *fnmoml — 4g79{ g/ Tumim? + 890929/ 91 Laomizm? + 890929/ 9" Ioomiym?
8919291 g1 Ioymigm? + 891929/ g Iymgm? + 490919595”‘flomiL + 4goglgﬁgﬁ*1 10my
49%9 ,:L*[11m1 +4919 f*]nml 49092% 9,: 120m1 49092975 gt [20m1

4g1929F 97 Iim — 4619291 9" Ioim? + 49597 g ]0m1m2 + 490919, 94 ]0m1m2
490929,5*9510m1m2 + 4939159?*107”17”2 + 49091915 gt *Tomame + 490929t gt *lomimes
4909195*95%[17711?712 + 49%9,5*95[177117”2 - 4919295*95117”1777}2 + 490919595*[177117712
4939 91" Tymymy — 4919291 917 ymamy + 4gogagl™ g/ lymama — 491929, g/ Lymyms

49597 gl Iamima + 4g0ga9/) 9 omima — 491929/ 9 Lmyms + 49§9tLgtR Irymimg

8959¢ " 91 Toomgmama + 8g39/ g *Ioomomlmz + 8909191 g{ lomgmams

8909291 * g, Iomgmama + 8gogagy 91 Ioomimams + 891929, * 9/ Iymgmam

8909191 9f liomima + 8gogrg7 9 lomima + 843 g/ * gl [ymim,

8909291 gi Isgmima — 840g29; 91 Isomima — 819297 gi Ioymimy
8909197 g7 Tgmymi — 890919tLgtR*—710m1mg + 890929 * g Tagmam’3

891929; " 9{ Iymymiy — 89192!% 9{" Ioymams + 8929 *9{ Ty + 8g591 g/ Irymam
2959¢ f*lomg + 2909191 9¢ Iomg + 2909291 9t Iom2 + 295919 *Iom2

29092979, Tom + 4909197 91 Ty — 4919297 97" [ym3 + 4gogr gy 9i" [yms
Ag397 9" Lo + 463919, Tom3 + 4959, 9" Toymgmi + 4gogt Fgl Toomms,

8909191 9, liomgm3 + 89og19; 9, Tiomgm3 + 891929/ 9 * Ioymgm3

4g59f 95*122”@07"2 4g5gft tR*bzmomz +4gigl gt lumim3 + 4gigftg [ymim3
8919291 gt *Iyymim; — 891gzgt 9 Ioymim3 + 49395 9" Lamim3 + 4g59; g Iamim}
4909197 gt *Liomy — 4gog19;" gt *Tioms + 490929/ 95" Toomis + 490920; 91+ Ioomiy
4919297 gt *Iymy — 491929/ 91" f2lm2 +4g3gf gt Trams + 4929 g{" Iy

890919 9 Liomgmams + 8919297 gt *Iymgmams + 290929, 9; Ii — 490919, 91 Tmg
4glgzgfgf*lzmo + 8¢y} 95*1 nmims — 8glgzgfgf*l2lm?mz + 89092gtLgt *Lygmams
290919/ gt “lom3 — 4919297 9{" [ym3 + 8919291 9" Inmim3 + 290919 9" Tom]
4919297 91 Iom? .
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E.3.1 One massless external fermion

If one external fermion has zero mass, one has to take the limit ms — 0 and reexpress the
phase-space integrals.

2 2 2
my+mi—m;— K

e = 2momy
1
Iy = 4—77%2)(—27”%10%(52)_@
1
L = 4—771%(—2”1310%(52)_“)
. mo (m2 — m2)?
Iy = ——(milog(— — —) — - —1+1 Yo
o o (1082 = 0 = (mo — ) (mg +ma) (=1 +log(“—75 )
3
21 0
+ mi Og(m%ml —m3 )
I 1(1(1+m%)+21(m3)
— —F—= | M, 10 D) mq 10 )
11 4m0 0108 m2 1 gm%—m%
(m§ —mi)?
_ — 141
(mg — mq)(mo +mq)(—1 + log( Am2m; )))
- 0 og(— — —)*—2lo gl v
10 4m2 g mo & mi; My g mo (m% - m%)z
ma2 mg
— log(——9% _ 2Lis(1 — —
0g<m0 )+ 2Lia(1 — 28)
1
= (= miemd—2m}+m?)log(8y) + 7 (mi — 3m3 + 5m}))
4mg 4
1
Ii = —Z(E(mg + mi + m3) + 2mgm; log(52))
4mi 22
1 K
I} = (= mi(2mt = 2m3 + mf) log(By) — - (md + 5mp))
mg 4

The squared matrix element | Mgpp|* then takes a much simpler form compared to my # 0,
given by

Msrrl® = 297979/ 17 — 2959 9/ Ii + 290919/ 9/ Ii — 6g59{ 9" Tom{ ~ (E.12)

%m%%%%—@m%%h% Ag89{ 97" Toomy
— 4g0g19{ 9" Liomg + 2959/ 9/ Tom3 + 2909191 91 Tom
+ 499l gl" Lim? + 4gi g g Tomim? — 4g3g{ g [umgm]

+ dgoqrglgl Lioms + 4giglgl* [ymy .
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E.4 Scalar — Scalarl 4 Scalar2 (SSS)

‘ g1 VW I
I' I' I'
--6--4qg 4 ===-- ®G + =====- ® g
go N N N
“\ “\ gQ A Y
MO Mt M?

Figure E.2: Hard Bremsstrahlung process with 3 scalars

The generic matrix elements are given by

19190(2ko — ks3) e (ks, )

My = (o — )2 — 2 : (E.13)
) 2k + k3) " (ks, A
M, — gt!h((kl 14];3)3);1 (137 ) ’ (E.14)
My thg"’((]ikﬂ;?’)_ ni’;“) . (E.15)
(E.16)
The squared matrix element |[Mggs|?> = [Mg + M + M;|* then reads as
(Msss® = —490919:9; Io — 49092019, To — 490919:97 Ty + 491929:9; 11 (E.17)

+ 491920:9; I» — 4959:9; Loom§ — 49091gt9t Liomg — 49092997 Taom

— 49192997 Iovm — 490919197 Tiom — 493919, Tiim + 490929195 Lrom?
+  491920:9; Ioami + 490919195 Tiom3 — 490929197 Toom3 + 49192909 Toymis
— 49399 Toam3 — 490929:9; I -
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E.5 Scalar — Vectorl 4+ Vector2 (SVV)

Since there is only one Higgs decay into two charged on—shell vector bosons allowed in the
MSSM, there is no necessity to calculate the full generic formula. Therefore we just give the
result for H+ — W,

Figure E.3: Hard Bremsstrahlung process with 2 vector bosons in the final state

The squared matrix element |Mgyv|*> = | Mo + M;|? then reads as

a?ct m?
Msvyl =~ (= I 4617 — 1313} — 1001} — 8077 — I3} — 46133 (E.18)

— 10013 — 801y — 13414 + 641,m{ + 641,m7 — 161;mg — 9615 mg

Lym} I
— 162220 4 16 2”"0 —1921,m? — 192I;m2 — 1311} — 16 I,ym},

mj mi
+ 64]11m0m1 + 320]21m0m1 + 64]22m0m1 192]117711 — 384]21m1

0 I? 19 I Ii I

— 192Lm? + 42 1m° + 4271 mo + 42722 mo +42°2 m“ IRV 1mo)

2
ml m1 m1 ml my ml
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E.6 Scalar — Scalarl 4+ Vector2 (SSV)

I’/ kl I’ I’
ko Tk g R g1, SN\
e V4 V4
_?: [Rp— T— == w=m -— - gt + ————— gt
90
N
Mgy P Mt M?
V4 V4
V4 V4
V4 V4
V4 V4
V4 V4
+ === gt T o
g4
g3
M3 M3

Figure E.4: Hard Bremsstrahlung process with one scalar and a vector boson in the final
state

The generic matrix elements are given by

1

My = (ko — k3)? — mggtgo(ko + ki = ka)y (2ko — ka)uey " (Ba, M) (ks ) . (E.19)
1 * *
M, = (b + s)? — m%gtgl(ko + k1 + k3),(2ky + k3)u€}jv (K2, )\2)€u<k3a A, (E.20)
i (gpa _ Mw>
My = = 5 (ko + k1)0 9192 (E.21)

(]{32 + k3)2 — ms3
((—2]{32 — k‘g)ug”” + (k’Q — kg)pg"” + (k‘g + 2k3)yg“p>ezv*(k:2, )\2)67;(]63, )\)
Ms = igi(go+ g1)g" e} (k2, Aa)eu(ks, A) . (E.22)
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The squared matrix element | Mgy |2 = | Mg + My + My + Ms|? then reads as

Mssvl® = g09:9: 15 — 909190971 — 909290915 — 9o01909; It + 92997 13 + 9192997 13 (E.23)

2059197 195 — 4959097 133 + 2939:9; s — 890929:9; I — 891929197 15

5909:9: Ti — 29091909 Ti + 597909, Ti — 690929097 1i — 291929:9; 1t — 939,97 1

8969197 Lom¢ + 890919:9; im§ — 891929:9; Tym§ + 490929095 Tami — 49192997 lami

4939197 Iomg + 8959195 Toomy + 1290919095 Tiomyg + 490929:9; T2omi

1291 929:97 Iovmyg — 4959:9; Ioomg + 89091919 Tom; + 80g29:9; Tomy + 847 gr gy [ym;

490929:9; Lo — 491920197 Tam? + 493909, Iom? + 893.9:9; Toomam? + 8gog19:9; lomom?

89%91&9:[11771(2)771% + 89092%9:[207”3771% - 891929t92k1.21m(2)m? + 893%9:[22771(2)771?

1290919:9; Tiom? + 8919:9; Inm} — 1290929:9; Iom — 4G1929:9; Taym]

4959197 Loam’t — (9ogagegi 1'mg)/m3 + (91929:9; 1'mg) /miy + (g3g:97 1'mg) fmiy

90929:9; T*mg) / (2m2) (91929197 I°m3) /(2m3) + (93909, I*m3) / (2ms3)

90929t9; ]Zmo)/ — (9192997 Izmo)/m2 (gggtgt Izmo)/m2 (90929t9:]1m%)/m3

9192009; T'm7) fm = (g5 9197 1'm3) /mi + (gogageg; Pm3) /(2m3)

919299, [2m1)/(2m2) (QQQtQ:Ile)/(2m2) (290929:9; Iim%m%)/mé‘

291929:9; Timgm?) [miy + (2939.9; Timgm?) /m3 + (gogageg; Timy) /mi

1920097 Tim3) fm — (939:9; [Zml)/mZ (29092919 15 1) /m3 — (29192097 I3 1) /3
92gtgt1 1) /m5 + (290929197 1) /M3 — (201920097 1) /m3 — (2939:971") /3

909:9: 1) /m3 — (290919097 17) /mi3 + (919:9: 1) /m3 — (390929:9; )/ (2m3)

39192909, %)/ (2m3) + (939:9, %)/ (2m3) — (495.9:9; Toog) /3

4g 90919t9; Immg)/mi - (49092%9:]20”18)/7”% - (491929159;[217718)/7%3

gggtgtféémo)/mQ (2gogtgtfgémo)/m2 (gogtgt]ggmo)/”h

9o9:9: fgmo)/mz (9091997 Lo ) /mi — (gogagegi Tom) /mi + (gogrgeg; Timg) /m3

gr 0197 1img) /m3 — (91929197 [im3) /m3 — (290929197 Iym3) /m

29192009 Iymi) / m2 + (20399, Tymg) /m5 — (39599 Timg) /m3 + (49091919, Timg) /m3

590929:9; Timg) / mz (91929197 [img) /m3 — (g5 Timg) /m3 — (89§9t9? Iomg)/m3

490919:9; Tomg) / mz (490929:97 Tomg ) /m3 — (490919097 Tymg) /m

4192997 Lymg) /m3 — (690g29:9; T2mg) /m + (691929097 Tamg) /m3

2959197 Iamg) /m3 — (49091909 Tiom?) /m — (493 grgt lums) /m3

490929197 Toon) /mi + (491929:9; Toxm?) /m35 — (g5 gegi [3m3) /mi

9091997 1 ml)/mz (90929:9; Igm?) /m5 — (g19:9; f??ml)/mg

20; gigi [m3) /m3 — (g1 gigi ITm3)/m3 — (gogrgegi [ymi)/ms3

o+t o+t

_|_

+

o+ o+

(
(
(
(
(
(
(2
(9
(
(
-
(
(
(
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(97997 Iim3) Jm3 + (91920097 [im7) /m3 + (290929097 Iym7) fm
(20192909, Iym?) /m3 — (2939:9, Tym?) /m3 + (49091909, Tim7)/m3 — (3g;grg; [im3) /mi
(390g29:97 Lim3 ) /m3 — (Tg1929:9; Tim?) /m35 — (3gzgtgthm1)/m2 + (8959:9; Tomgm3) /mj
(8919:9; ymgm?)/ mz (1290929:9; fzmﬁm?)/ m3 — (12g1929:9; Iomgmy) /m3
(4959197 Lymgm?) /m3 + (895997 Toomgmi) /m3 + (490910197 Lomgm3) /ms
— (4g gtgtlllmoml)/”% (1290929t9t—f20m0m1)/m2+(1291929t9:121m3m%)/m§

(

(

(

(

(

+

+ +

490919:9¢ Iom1)/m2 (490929:9; Tom?) /m3 + (4gog1ge9; [ymy) /m3

891919 [imy) /m3 — (49192909, [ym7) /m3 — (690g29:9; Iami) /m3

691929:9; ]2m1)/m2 (2929t9t Ile)/mQ (4939t9:]00m(2)m11)/m§

Agogrgegi Lomgmy) /ms + (891 geg; Tumomi)/m3 — (12gogageg; lomgmy) /mi
12919209, Ioamgm?) /m3 — 490919:9; lom3 — 490929:9; Toms — 490g19:9; Timi

+ 49192009 im3 + 290929095 Tom — 291929097 Tomiy — 6939095 Toms — 439197 Toomgms
—  1290g19:97 liomom3 + 490929197 omgmy — 1291929:9; Inmoms + 8939:9; Tramoms
— 129091919, iomim3 — 4gigrg; Tumim3 + 12g0g2:9; loomim3 — 4¢1929:9; Iymim;
+ 8959197 Lamim3 + 4gog19:9; ioma — 490929:9; Ty + 49192919 To1m

— 4639197 Lo .



Appendix F

Electroweak Interactions in the
MSSM

This chapter has been obtained from [I07]. In the following we give all couplings which are
necessary for the calculation of electroweak corrections to Higgs decay processes. For the
whole set of Feynman rules and a complete list of all terms of the MSSM Lagrangian we
refer to [60].

F.1 Higgs—Sfermion—Sfermion couplings

For the neutral and charged Higgs fields we use the notation HY = {h°, H° A° G}, H =
{H*,G*,H~,G"} and H, = (H)" = {H",G",H",G"}. t/t stands for an up-type
(s)fermion and b/b for a down-type one. Following [44] 45] the Higgs—Sfermion—Sfermion

!

couplings for neutral Higgs bosons, Gj;;, can be written as

ijk

v

Gl = GUHUT) = [RGB (F.1)

109
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The 3rd generation left-right couplings Gi ., for up— and down-type sfermions are given by

ol _ —V2himyco + gzmz(IPF —e15%,) 5015 —%(At Co + 11Sa) (£2)
bt — 85 (As o+ p150) —V2himica + gzmzeisiysars |
(F.3)
b V2hymysa + gzmz (" —eysiy)sas TE(Ap 5o+ pica)
GLR,I = &<A \/ﬁh 2 ) <F4)
/3 Ab Sa + [Cq) bMpSa + 9zMZEpSTy Satp
G{RQ = G{RJ with a = a —7/2, (F.5)
. 0 —E(AtCﬁ—F,LLS[g)
GtLR,3 = _\/éht i ’ ) (¥.6)
5 (At cg+ 35> 0
- 0 —1<Ab85+[£05>
Gips = —V2h | | ? : (F.7)
5 (Ab S8 + Cg) 0
G][;/RA = GiR,Iﬂ with 8 — 8 —m/2, (F.8)

where we have used the abbreviations s, = sinz, ¢, = cosx and sy = sin . « denotes the
mixing angle of the {h°, H°}-system, and h; and h,, are the Yukawa couplings

gmy gmny
hy = —2F——— hy = —F———. F.9
! V2myy sin 1G] ’ V2myy cos 16 (F9)
The couplings of charged Higgs bosons to two sfermions are given by (I = 1,2)
. s - R AT
ol = o(mir) = ol = (welf(r)) (F.10)
]

o _ hymy sin 8 + hymy cos B — ng;’sin 26 hy(Apsin B+ pcos ) (F11)

Lt hi(A¢ cos B + psin 3) hymy cos B + hymysin 8 )
i _ hymy sin 8 + hymy cos B — ng;V sin28  hy(A;cos f + psin 5) (F.12)

Ll hy(Ap sin 8 + pcos 5) hymy cos B + hymysin 8 )

) ) . T

Glhy = Gihy  with 8 — §— 3 (F.13)

f' denotes the isospin partner of the fermion f, i. e. ¢ = b, ¥, = #; etc. Note that only the
angle (3 explicitly given in the matrices above has to be substituted; the dependence of 3 in
the Yukawa couplings has to remain the same.

The Feynman rules for the Higgs—sfermion—sfermion couplings are (for k =1,...,4; 1 =1,2)
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o i i
// //
/1 /1
0 d - ~f + d b
Hk ——————— ‘\ ZGZJk H ———}—_—./\ ZGZJZ
\ \
\, \,
* *
AN AN
\\ ~ \\ ~
fi bj
F.2 Higgs—Fermion—Fermion couplings
For the Higgs—fermion—fermion couplings the interaction Lagrangian reads
2 4 2
L= sHff+> sLHf+) [Hﬁ (y'Pr+ylPr) b+ h.c.] (F.14)
k=1 k=3 =1
with the couplings
= s = A COSO, = Gomens = yasina,
5 = ~Umnnimg =~ yssina, = ey = A0S,
st = ig%;t/ﬁ = i%cosﬂ, sh = ig%awnﬁ = i%sinﬁ,
(F.15)
si = iggm = z\’}—% sin 3, s = —iggmt = —i% cos 3,
vi = 9UE2E = hycosf, v = gmme = hysinf,
Yy = g\@”:riw = hysin f, yh = —g\/g:l’w = — hycosf3.
The Feynman rules for the couplings to the Higgs bosons are
f t
isl .. h0 HO
H) ——————- Hf ———>——- i(y; Pr + y{ Pr)

ialy LAY GO
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F.3 Higgs—Gaugino—Gaugino couplings
The interaction Lagrangian for Higgs bosons and gauginos is given by

2
g
5 Z HY X} Fiyg X — 15 ZHk Xt Fipi Vs Xon

_gZHk X’L zngR+F;szL) Xj +ZQZHI€ XZ F;—ji_kPR+F]szL) 56;_

k=3
—g > [Hi X (FfPa+ FiPL) R +hee | (F.16)
k=1
with
Fow = 5 |:Zl3Zm2 + Zm3Zip — tan Ow (Z13 21 + Zm3le)i|
+% [ZMZmQ "V Zona Zio — tan Oy (Zia Zom + Zm4Z”)] — F0.  (F.17)
Ff = LQ (exViaUjo — diVioUjr) (F.18)
and

1
FE = 4 [wz 4 —(Zy + Zpy tan V}
lk k+2 1414 \/E( 2 1 W) 2

1
Fif = —erus [Uﬂle - E(Zn + Zi tan QW)UZQ} : (F.19)

U,V and Z are rotation matrices which diagonalize the chargino and neutralino mass ma-
trices (see chapter 2:34)), and dy and ey take the values

dp = {—cosa, —sinq, cos 3,sin 5}, er, = {—sinq, cosa, —sin 3, cos 5} .
Xi
—ig (FjPr+ Fj3PL) .. h° HO
H - —————
—g (F5Pr + FiiyPL) LAY QO
v
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S0

Xi
—igFp 0 770
Hl(c) _______ Zgﬂmk ... h ,H
—gFp(Pr — Pp) LAY GO
Xon
Xi
Hy—mmmmee —ig (Ffi.Pr+ Fij,Pr)
X7

F.4 Vector boson—Fermion—Fermion couplings

The Lagrangian describing interactions of vector bosons to fermions in the MSSM is given

by
L o= —eep Aufy"f = 922p fy"(CLPL + ChPR) f
g — —

V2 (Wt B PLfy + W v Pufy ) (F.20)
where Cf and CY, are defined as Cf = I — epsyy and Cl, = —eps?,. Here and in the
following the arrows 1 and | attached at (s)fermions denote up— and down—type (s)fermions,
respectively.

[ 1y
—ie ey CAy
A 2% WE —igzVu(CLPL+ ChPR) .. 2,
. g .
—ZE’YMPL . Wﬂ

fi
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F.5 Vector boson—Gaugino—Gaugino couplings

The interaction of a vector boson with two gauginos is described by the Lagrangian

L= gXiy"(OLPL+OLPR )W, + g% (05 P + OFPR)XF Wy

—e A IV + 9220 <O;§PL + o;fPR> O

gz = " " ~
+5 2" (OijLPL + OinPR> X) (F.21)
with the 4 x 2 coupling matrices for the W*-chargino-neutralino vertex
OiLj = ZipVji — \%Zm‘/ﬂ? Of} = ZipUji + \/LﬁZi:;sz, (F.22)
and the symmetric 2 X 2 and 4 X 4 coupling matrices
O;JL = —VauVy — %Vﬂvjz + 51‘3‘512/1/, (F.23)
O;f = —UuUj — %Uijz + 5ij5%/V7 (F.24)
Zij, Uij, Vij are the neutralino and chargino mixing matrices, respectively.
X;(X7)
Wi i97, (0L Py + OFPy)
X ()
Xi
—ie 5@"}/“ ca A#
Ay, ZS
1927, (O P+ OfPR) ... 20
el
@
z, —197 Y O;IJ'L(PR —Pp)

o
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F.6 Four—Scalar couplings (F— and D-terms)

In this section we will derive all couplings involving four scalar particles in the MSSM. These
interactions have two different sources originating from ‘F—term’ and ‘ D—term’ contributions,
which build up the complete scalar potential V' = Vr 4 V), discussed in the following.

F.6.1 F—term potential
We start with the superpotential

W = hethl HY + hy bab  HY + hy 77, HY — by £5b HY — hy Uit  HE — h 70, HF .26)
aw
DA
where A; denotes all scalar (super)fields numbered by the index i, 4; = {#y, by, Uy, 71, th, bR,
TR? HZ(L)’ HS, H12> Hl}

The potential Vi then reads

from which we can derive the F—term interaction potential Viy = —L;,; = F F; with F; =

Vi = (hetgHY —hy b HE ) (he T HY — by b HY) + (ho bpHY = hy tr HY ) (h U HY — hy T H3)

+ (£ HY — 52H21*) (L HY — bpHy) + B (b HY — T3 HEY) (b HY — {1, HY)

+ h27RHY ThHY + hZ pHY ThHY + W2 (7 HY” — vfHY ) (7 HY — 0. HY)
+ (hobrb}, + ho7r7y) (Robibr + ho i) + b (Erty) (Extr)
+ (hobgty, + he7rirt) (hobjtr + he7hos) + b (Erb}) (Erbr)
= W2 |HY|" (Fin + T0c) + h2 [HY| (Dabg + bybr) + W2 |HY|* (Fr7r + 7571)

+ W2 |HY (Tin + b5be) + 02 [HE| (Dpbe + T500) + W2 | H2|* (77m + 00,)

— (6o HY Hy + byt Hy HY) — hi (by i HY HY + €3b, HY HY)

— h2(7 o HY) HY + 037 HY HY)

— hehy (E*RBRHf*Hg bR HY H? 4 Bip HY HO + EEERH?*H21>

+ 1 ((Fre) (Fiin) + (Frbe) (Bifn) ) + b (Bibe) (5:bm) + (Bifs) (Frbr) )

+ R (%ﬁ%ﬁ}jﬁa n %;;ma:%@

+ hyhy (B;;BL%;%R + b briniL + D bR, + B*RfLﬁ:%R) (F.27)
with the couplings of the neutral Higgs bosons and sfermions in the first line, those of the

charged Higgs bosons in the second, the couplings of a neutral Higgs boson with a charged
one and two sfermions and the four—sfermion couplings. Note that in the detailed calculation
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of the Feynman rules for the four—sfermion couplings we have to take care about the colour
flow, see section [E.6.5]

Transforming the interaction fields into the mass eigenstate fields,
H) = vl—i—\/Lﬁ[cosaHO—sinozho—l—'i(—cosBGO—i—sinBAO)],
H?} = —cosfG +sinfH ™,
(F.28)
H} = sinBG"+cosfHT,
Hy = v+ o5 [sinaH + cosah® +i(sin f G” + cos S A%)]
fo = R{lz = coseffl—sineffg,

- . . F.29
fr = RLfi = sinfz f1 + cosby fa, ( )

we simplify our notations as follows:

012 __
| 17|

[sin2oz (%) — sin2a h° H® + cos®a (H®)? + sin?3 (A°)? — sin 28 A°G”

N | —

1 ~
+ cos®B (GO)Q} =35 HY b, HY (F.30)

012
| 1|

[cos2a (h®)? + sin2a h" HY + sina (H°)? + cos?3 (A")? + sin 23 A°G?

N | —

1 )
+ sin?f (GO)Q] = 5 HJ d, HY. (F.31)

’HQ|2 = sin’fHTH™ — lsiHQBHJFG’ — 1s.in2ﬁH’G+ + cos’BGTGT = lHJr db, H-
1 - 2 2 - 2 k "kl [
(F.32)

1 1 1 ;
\H21|2 = cos’SHTH + 3 sin26 HTG™ + 3 sin26 H- G + sin?GTG™ = 3 HP di, H
(F.33)

with H,S = {h° H° A° G°}, H,j ={H",Gt,H ,G"}, H, = (H,j)T ={H ,G ,H",G"}
and

sina —% sin 2« 0 0
N 1 2
b —5sin2a  costw 0 0
ki 0 0 sin? —% sin28 |’ (F.34)

0 0 —1sin28  cos?f
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cos?ar % sin 2« 0 0
1 .2
P 38in2a  sin“o 0 0
= 0 0 cos?’f  isin23 |’ (F.35)
0 0 % sin2f  sin?p
sin?3 —% sin 23 0 0
_ 1 2
P —5sin2f8  cos*f 0 0
i 0 0 sin?f3 —% sin28 |’ (F.36)
0 0 —3sin28  cos?f
1cos2 g 3 sin2 2/ 0 0
P 5sin2f  sin“g 0 0
da = 0 0 cos?’f  isin23 |- (F.37)
0 0 % sin2f  sin?p
F.6.2 D-term potential
The D-term potential reads
1 3 8
Vp = =(D'D D'D’ D*D*® F.38
o = s(ore s L) 3

with D' = g’A;‘% 0ijA;, D' = gAZ%;“l A; and D* = g, A! /\2% A; being the terms according to
U(1)-hypercharge, SU(2)-weak isospin and SU(3)-strong interaction. The matrices o}, and
Af; are the well known Pauli and Gell-Mann matrices. A4; stands for the scalar (super)fields,
Ai = {Qaia 07D7E7 H17H2}7
- { - - _ . .
Q:<BL)7 L:<€T)7 U:*Ra DZbE? E = ]*%7

L

(MY H _(H N\ _( H
me ()= Car)om= ()= (i)

The U(1)-hypercharge term reads with

2

L= QoL o Vi =l Y=l (F.39)
/ ~ ~ ~ ~
D =[5 (vadifo ~ Vi dada) ~ 1B ¢ (B3P~ i+ ] o

Inserting the Pauli matrices

L (01 s (0 —i s (1 0
U—(lo , =, , =4 1) (F.41)
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we get for the electroweak parts

Dl — g (f*LzEL + byt + 5T + 70 + HYHY + HYHY + Hy HY + HS*H%) :

D* = —ig (E;BL B 4+ 0y — Fip, + HYH? — H*HY + HYHY — HS*H21> ,
D = T (T = bybe + 530 — 7+ | — [HE| + (3" — |37
_ gZIj:LfoH N CGALHES AR

1=1,2

(The meaning of I3, should be clear.)

When we take the square of the single terms we have to take care about the colours of the
sfermion fields. The result is

2
o= SIS (v, Ged) Vi) [ o g = ]
f

2

+25 (V3 (Fide) = Vi Faf) (~108F + 5P = 1220 + |1 }.
(F.42)
D'D'+D’D* = ¢ {(@aL) + 737 ) ((0ide) + 7o ) + [HO (1) + (S 3
+ HYHPHSHS + Hy HSHEHY + ((00,) + 937, ) (HE HY + HS*H3)

+ ((b*t )+ %;z;T> (H™ H? + H%*HS)} , (F.43)

2
|7 = Ve ] - |
) (18 = a2+ 3] — () } (F.44)

where we have used (I} 3L) T and IF° I3 = —4. Now we are able to calculate the Feynman
rules, beginning with the ea51est ones those of two sfermions and two neutral Higgs bosons.
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F.6.3 Higgs—Higgs—Sfermion—Sfermion
H°H?f; f; couplings
The interesting part in the F—term potential for this coupling is (see eq. (E.27))
Ve D W2\ HS| (Fxtr + £ 1) + hi |HY| (bpbr + bybr) + h2 |HY|* (Fh7r + 7571)

h2 h

2

hT b ~k ~ok

h2 h2
= Z?f kaz (fRfR+foL> = Z;f kckl Hl %f fg, (F.45)
! 7

where in the last step we have transformed the sfermion interaction fields to the mass eigen-
state fields (see eq. (E£29)) and made use of the relation Rf Rl it R{QRJQ = 0jj -

From the D-term potential we need the terms oc HY H f; f]- of

12

. o -
Vp O 5 (D'D'+ D°D?) ~ —%Z(Yfosz—YfRfEfR> (|Hf\2—\H3|2>
f

9 2 2
+ S G (a0 - )
f
Using the abbreviations defined in eqs. (F230) — (E£37), we get
g rx ey b t
Vo o 0S| (15 (03 - e ) Fifu+ o th il 19 (ch - ) 9
f

- Ac2, Z { I - efSW>R Rf1 + efSWszQR;;] Hy, (Ckl Ckl) Hlofi*fj
!

9
= Z EHIS (CZZ - Ck:l) Hy ezj fif (F.46)
f
with
F 1
ey = 202, {([?L - SW)Rf Rf1 + efSWRi;R;? ' (F.47)
W

Therefore the Feynman rule for this coupling becomes
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N\ 7/ ~

A i|\h} Ckl 0ij + g (Ckz - Ckl) ef} -

H ,j' H l+ fif; couplings
For the couplings of the charged Higgs bosons and two sfermions we start with the interaction
potential

Ve D B2\ HI (Bpdn +byb) + 02 |HE[* (bpbr + T580) + h2 |H2|® (7i7w + 20,

h? fe e h? ; s -
— 2t Hyf dly Hy (Fig + 05br) + EbH,j dy, Hy (bibr + 65t1)

h2 b ~k ~ ~ s ~
5 by Hy (i + 70) Z " bt df H (Fafn+ F0TL) -

To get the Feynman rule for this coupling we have to calculate the first (nontrivial) term of
the S—matrix;

1 h3 7 e Py
sp = i [atendl, iy (Fada s PR 0 (F.48)
f

with
SN | i —
i) =a aHf|0> and (fl=1(0]a;b;

+
Hk

for two incoming Higgs bosons (H; and H; ) and two outgoing sfermions (sfermion ﬁ and
anti-sfermion f;).

Contracting the sfermions gives (here we use a short notation neglecting all space coordinates
and momenta, p; belongs to the particle with index 1)

St = —ZZ fdf /d4x<0|aibj;H;H; <Rf,2Rf,2f fy + BRI R fo f) H+a -10)

I Y _
= —i Z?fdf (Rf2R2+Rf Rf>/d4a:ez(pl P (0] :HFH7 : al aLl,|0)

+
Hk
f

where we have used

(0]as(p) fo(2)|0) = i) fi(x) = Gue®® (F.49)
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(010;(p)) fir (2)10) = bj(p;) fir(x) = G0 e™™* (F.50)

L 1

In the contractions of the Higgs fields we have to take care of the Higgs creation and an-

nihilation operators e.g. CLTH+ which can create a Higgs boson Ht and therefore gives two

contributions from H;" and Hj :

Hyf (x) ay(pr) = O ™" (F.51)
L4k
0010
- ~looo1 ipas
Hy(@)ags(ow) = | | 600l ¢ (F.52)
0100/,
(O :HLH s ayap, |0) = HiHya oy + HiH a). ),

ﬂ
X Ok O+ (601 Ok3 + On2 Oka + 6n3 Okt + Ona Ok2)

X (61 013 + Om2 O1a + O3 11 + Oma O12)

0010 0010
0001 0001
OmiOn | g g g 1000 | F5
0100/ \o1o00)
For the Feynman amplitude M we finally get
0010 0010
A AN 000 1 -l oo0o01
_ - I nf /' nf f f
M = =i} 5 (RﬂRﬁﬁRﬂRﬂ) datl 1000 Tm|1000
! 0100/ 0100/

= —i Y03 (RLRL+ RIRL) df,.
f

The D-terms read with eqs. (E.42), (E£44)) and (E.30)-(E.37)

12 . PO
Vb D —gI (YfozafLOé - YfRfEafRO‘> <‘H12|2 - |H21‘2>
f

Z (Fif) (1B3) = [H3[)

2 = ~ .
o {( — I}" cos 20 — essiy) Rf Rfl + efSWRf Rj;] Hyf (dy — dy) Hy £} 1

42
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2 - .
= Y Hi(dy - d)H LT (F.54)
f

with
1
20124/

f,f; = {( — I?L cos 20y — efs%y) R{;Rfl + efS%VR{;RfQ (F.55)

Analogously to the previous calculation we get for the Feynman amplitude

M = — fof; (dp, — dy,) - (F.56)
/

In the Feynman rule we have to take into consideration that only the terms o R{j are valid

for a coupling with sfermions and not the terms o lejl !

A — h?, djkcl szlRfl + h?f d/{l RZJ';R;; + ngi];‘ (le - dil)}

H,SH[FfifJ’. couplings

The terms of the superpotential V which are necessary for calculating these couplings can
be picked out of eq. (F27):

Ve O — Wb HY Hy + byt Hy HY) — b3 (bt HY Hy + €30 HY HY)
— K2(F1 0, HY HY + 07 HY HY)
T T 2% 170 Ix 7 0* r72 Ix 7 1* 770 7 T 0* rrl
~ hehy (tRbRﬂl HO + BsipHY H? + Ui HY HO + #5bp H H2> (F.57)

Accordingly to the abbreviations before we introduce a few more coupling matrices for better
reading:

* 1 . .
HYH! = —[cosah’+sinaH"—i(cosBA° +sin BG°)] [cos f HT +sin fGT
2 2 \/5
cosacosf cosasinf 0 0 HT
1 0 0 0 ~on| sinacosB sinasing 0 0 G*
- ﬂ(h’H’A’G) —icos?3  —%isin28 0 0 H~
—£sin2f8  —isin®’f 0 0 G~
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1 ~
= EH,ScZ’f+Hl+ (F.58)
* * * 1 7 *
HYHY = (HY'HD) = G (H,g cgl‘”Hﬁ) (F.50)

« 1 . . _ _
HYH? = E [—sinah0+cosaH0—z(smﬁAO—COSBGO)} [SlnﬁH —cos G }
0 0 —sinasinf sinacosf HT
L 6 0 4000 O O cosasinfS —cosacosf Gt
N ﬁ(h’H’A’G) 0 0 —isin? 1sin28 H-
0 0 1sin2f —icos? 3 G~
1 ~
v HY O HF (F.60)
* * * 1 } *
HYHY = (H"H?)' = E(H,SCZ?*Hﬁ) (F.61)
% 1
HYH) = E [— sinah® + cosa H® — i (sinﬁAO — COSBGO)] [COSﬁHJr —i—sinﬁG*]
—sinacos S —sinasing 0 0 HT
L 0 0 40 0 cosacos3  cosasinfS 0 0 G
- E(h’H’A’G) —1sin2p —isin? 3 0 0 H-
icos? 3 fsin23 0 0 G~
1 £b,0
= Eﬁgcgl A (F.62)
* * * 1 i *
HYHY = (H"HD) = G (H,g cfjg’O*H;) (F.63)
* 1
HY'H? = E [cosah0+sinaH0—i(COSBAO+sinBGO)] [SinﬁH_ —cosﬁG_}
0 0 cosasinf —cosacospf Ht
1l 020 0] O 0 sinasinff —sinacosf G+
- E(h’H’A’G) 0 0 —%sin2p icos? 3 H-
0 0 —isin? 3 %sin26 G~
1 i
= EH,S Ot HF (F.64)
* * * 1 b *
HYHY = (HYH?)® = E(H’SC%MW) (F.65)

After inserting this into eq. (F257) we get

1 ~. £ ~ ]
Vi > = S0 (W TLFL Yl HE b Frfp HY A TH) 4 e (F66)
f
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Rotating the sfermion fields into the mass eigenstate fields (see eq. (F£29)) gives
1 ; ; o
Ve o —E > (2 RERJ L™ + hyhy RERL o) HYH T .
-7 Z <h2 R RL (HYC[, " H ) + hyhp R RL (HYC[T ™ HY)* ) Ly
and with
<Ckl 0+H+) _ (Cig 0+> H = (Cil/ 0+> 0 1 01 H = (C£;/0+) oy
10 4x4 10 4x4
]4x4

(look at the index I which is I’ = 3,4 for [ = 1,2 and vice versa !) we arrive at

Z RERS (W 03 (™)) + BLRL hohg(eff 5+ (i) )]

x Hy H' fi ] (F.67)

Now the Feynman rules take the form

X A 7
N (// \/_

[ pf 0+ f'f.0+*
d h + szz R;'cz hfhf’ (Cizf + (Cil’f ) )]

[RARS (12 e 02 (™))

Be careful which Higgs boson you should take in a particular graph! As an illustrative
example we give the result for a coupling which we will need in the main part of this work:

[Rfl R’E1 (h? cos asin 8 + h? sin acos 3)

N
Pan
7
Sl
[\

L AN + RE?QREQ hihy, (sin acsin 8 4 cos o cos ()
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Here we have to take the negative charged Higgs boson H~ (the H' would not be allowed
due to charge conservation).

Setting k = 2 and [ = 3 leaves

1

\/— [Ri)l (hlgcg??+ h2cg§,+> + szRgz hihy (ngo++ ébs'%)}

i - o
= 7 [R§1R;1 (i cos asin B+h; sina cos 8) + Rf2R§2 hihy(sin acsin 54-cos ac cos ﬂ)] :
The D-term potential terms coming from the off-diagonal Pauli matrices o}; and o3, are
given by

Vb D

+ (@) + 710 ) L= [ 0+ (B ck,+H+) ]

2

_ 2% [((5

n ((th}) n %;ﬂT) (H,S SO HF 4 HY (0T Hﬁ)]

9_\/_
7i%)

( CZIQJF H++Hockl()+H+)

- MZRJ‘ BRI (el + (chP)) H2HL 725, (F.68)

which results in the Feynman rules

d f nf ( Fo+ f,0+
e Rlejl <Ckl +(Ckl’ ))

// \\ \/_ 2
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F.6.4 Higgs—Higgs—Higgs—Higgs

The 4-Higgs couplings are only coming from the D-terms, and therefore we have (see

qs. (E42)-(E44))

9’2 012 012 212 122 92 0[2 0|2 212 122

Vb D 3 \HY|™ = |H3|” + |HY|” — |H,) Tg |HY|™ = |H3|” = |HY | + | Hy
2

+ % []Hﬂ? \B2|° + |HY” |HY| + H H2HY HY + H%*HSH%*H?} , (F.69)

or in a more compact way
1 o o 2 o
Vo O g+ g (H*Hi — B HY)® + % |Hi HE|” (F.70)

H)HPH? H? couplings

The 4-—neutral Higgs couplings are obtained from the following term of the D—term potential,

1 2
Vo o 5*+¢®) (|HI - |H3") . (F71)

which can be expressed in components,

Vo O 4 5’; [((h°)2 - (HO)Q)COS 2 + ((A0)2 - (GO)Q)COS 28 + 2(h0H° sin 2a
w

2
+ A°GP sin 25)} , (F.72)
as well as in index notation (see egs.(E.30), (E231), (E34) and (F.35)),

Vp D

Z HYH}H,),H, (Cklcmn + gl — Cichnn - Cilcérm) : (F.73)

I,mmn

326W N

To get a special coupling out of the potential we either can sum over all indices an then pick
out the smgle terms which belong to the required coupling or we symmetrize the coupling
matrices ¢® and ¢’ in eq. (E73), fix the indices belonging to the Higgs fields HY and take
a combinatorial factor for multiple counting into consideration. Here we choose the second
possibility:

VD D) 32 2 HkHl HO HO <C(klcmn) + C(klcmn) — Cz(;lefnn) — Clgklcl;)nn)> x CF (F74)

(no sum over indices, this is respected in the combinatorial factor!) Here the brackets around
the indices denote symmetrization and CF stands for a combinatorial factor, which is given
for a general coupling (h°)*(H?)?(A%)¢(G°)? with a +b+c+d = 4 by

o (D)) g o
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In the Feynman rule we have to take the symmetry factor (SF) of the diagram into account
(n! for n equal neutral particles):

0 0
H, - ;o Hy),
AN 7/
AN /7
AN Ve
AN /7
N\ Ve 2
AN /7 ~ ~ ~ ~ ~ ~ ~ ~
N . g b b R b7 i b
mn mn mn mn
N ) Ci1.,C + c/p.,C Ci1.,C Ci1.4C
s 32cqy,
7/ AN
// \\
W N XCFXSF
Ve N\
/7 AN
// AN
Hlof v HO

As an example we take the coupling h® H°(A%)%. For the indices we choose k = 1,1 = 2 and
m = n = 3. The combinatorial factor then is given by

o= ()2 () - eera -

so the interaction Lagrangian reads with (note that the matrices b and f are symmetric)

~ ~ . - ~ - ~ ~ 1 ~ - ~ - ~ ~
b b P b i i b _ b b b b b b
<C(12033)  C12C33) — C(12C33) ~ C(12C3 )) -3 < 12C33 T C13C23 + C13¢23>

S S - -~ 1
- (022033 + cf5ch; + Cl{?ﬁég) + bt } =3 sin 2av cos 23 ;

and therefore

2

L = —8’% sin 2a.cos 28 h* H(A°)?. (F.76)
w
hO N - AO
\\\ /// 92
p A — i ———sin 2« cos 23
TN e
//// \\\\
HO s AN AO

H, H; H}H_ couplings
Like in the case of 4-neutral Higgs boson couplings we get the 4-charged Higgs couplings
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from the D—term potential

1 2
Vb D g(g2+g'2)<‘Hl2|2—|H21‘2>
2 2
= g_2 [H(sin 2B8G™ + cos 25H+> + G’( — cos2B8GT + sin QBHJF)} A(F.77)
8¢y

In index notation this reads with the abbreviations defined in eqs. (E.30) —(E.37)

2 - . I - . S

Wklmn

Vb D

To be able to pick out the various couplings out of eq. (E.78)) in the same way as we did in
the case of the neutral Higgs bosons we first must express all fields in one single base, H,"
or H, :

rot

2 - - .
Vo o i S HEHHHS (ddh, + did, — did, — did,) L (R79)
w

k,lmm

. 1oy F 0 1o
(dﬁl d’fnn) rot = (dil)rot rot Z dkl/ ( 2 2) dfnnl (1 % 2) '
Ve Il 2x2 n'n

Now we can symmetrize the rotated coupling matrices as before if we want to fix the indices
in the Higgs fields. The combinatorial factor CF stays the same but we don’t have to take a
symmetry factor in the Feynman rule because of charged particles:

+ +
Hi .
N s
\ ’
X ¥
N 7
N g L - I
N/ . b t gt b gt t b
N 32 <d d mn + dkldmn - dkldmn - dkldmn> x CF
// \\ rot, symm
’ \
J A S
7 X
/ N
’ N
+ 7 +
H - \ H

F.6.5 Sfermion—Sfermion—Sfermion—Sfermion

As we already mentioned before, we have to take care about the colour indices in this term
of the superpotential,

W D hyCpt HY + hy Ub HY 4 he 757 HY — hy tpbp Hy — hy Uit HE — hy T H?
(F.80)
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which leads to the F'—term potential
Vi D hi (Frfr) (Fifr) + i (bRbe) (Bpbr) + 12 (737) (71 7r)
+ B2 (Ebr) (Brtr) + hi (brtr) (Epbr) + W2 (Fhin) (7:7R)
+ hyh, (BEBL%;%R Vi bphFL 4 bR + B;Eﬂ:@)
- > [hi ((Frfe) (Fifw) + (Fafi) (FE Fr)) + sy (Fafofifu+ f;fszfR)} .

f
(F.81)

fzfj fkfl couplings

With the initial and final states for the first term,
i) = ajs(p1)b}, (p2)]0),
(fI = (0laj(k1)bjs(k2),

we get for the S—matrix element

fi m

S0 — /d4x<f|:cmt@):|¢>=—zh§Rf1R£1R£2RZ2

X /d4$ (Olaia(k1)bjs(k2) 1<f§wffn6’f;affq6'>($)5 als(p1)bL, (p2)]0) Oar Oy
(F.82)

In order to evaluate the vacuum expectation value we make use of Wick’s theorem in taking
all possible contractions:

SW = —ih2 R Rl RLRY, (2m) 6" (p1+pa—ki —ka) 6w b
X (5im5a'y/ 5jn(55,8’ 5ql55/6 5pk’5a’7 + (5im(so¢’y/ 5jq556’ 5nl5ﬁ’5 5pk6a"y
+ 5ip6ao/ 5jn56/3” 5ql66/6 5mk67/,7 -+ 5ip6aa’ (qu§55/ 5mk5'y/'y 5n155/5) (F83)
In the last equation we have used the notation
Oopysarfin's’ = Oaa’ 0pp Oyy Oss' s = Oapysarprars’ = Oary Ops (F.84)
and
szjkl = szlR;lRészz : (F.85)

The corresponding D—term potential is given by (see eqs. (F42) and (F244))

12

Vp D ‘% ; (Yf; (fifr) = Y3, (fEfz-z)) (YfL (fifr) = Y3, (ﬁ%fR))
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+% ; (Fifo) (Fife). (F.86)

Rotating the sfermion fields into their mass eigenstates, f; = szl fi fr= RZJ-; f;, the D—term
potential for 4—sfermions reads

2 . . . . ~
g s
Vo 3 B Z [R’];Lkl + t%VYJ?LR{jL“ T tIQ/VYJ?RR{ﬁl - t%/VYfLYfR (szjkl + lecclij)i| (fz f]) (fk fl)
!
= > LB (R (F.87)
f
where we have used the relation ¢’ = gtan 6y, as well as the abbreviations

R{]'Lkl = R{1R§1R£1le1 ) szﬁcl = Rngsziszj; : (F-88)

Like in the calculation of the Yukawa coupling terms in the previous section we get for the
Feynman amplitude

M = =i [(CH+ Cff) 0ustos + (O, + CLE) 0usdn] (F.89)
Both, F— and D—terms, result in the Feynman rule

fk"/ "\\ //' fioz
= " . : : ; ;
\\ // —1 h?” [(szjkl + R£1ij> 0as0py + (szlkj + Rlﬁjil) 5&/3575]
v
{/ \» —1 |:<C£]]ccl + Oilij) Oapdys + (Cz'J;lJ:j + CIQZ’I) 5a5567]
/// \\\
fis” N fis

fi fg f,g fl’ couplings
For the second term of eq. (E.8I]) we take the initial and final states

i) = aip0by (p2)]0),

(fl = (Olaia(k1)bjs(ka)
which leads with

frio o FF 7 ff'/ . FoF g
RIGY = R BRI R Rl Riit = RhR] RLR, (F.90)

to the Feynman amplitude

M = —i (BRI + BRI asis (F.91)
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For the D-term potential we get with the egs. (F.42) — (F.44)

Vo > G (UL 1) -5 Ui 1)

and with a little bit of cosmetics we have

g2

2 T 2 ITi 2 ITi
Vb O ) Z { {(tw (YfLYf’L) - 1) RijkLl + ity (YfRYfga) Rz‘jﬁ —ty (YfLYf;Q) Rz‘jkll)
f
f'f 1 Fx 7Y F
- tIQ/V (YfRYf’L) Rilz‘];p} 5aﬁ5'75 + 2Rz‘jkLl (5065557}fiafjﬁflé-yfl/§
= SOl Bl (F.93)
- ijkl,aByé Jiad IBIEkyIIS - :
f
The Yukawa and electroweak contributions to the Feynman rule are then given by

fllvy '\\ 2 fz’a

Ny (12 pf'f 2 i A AT ff
~ —1 <h $ Ryl +h ’Rijk?) 0as0py — 1 (Cz'jkl,a,@w + Cklij,’y&oc,@)

f,fg fi.fi couplings
The Feynman rule for couplings with two sfermions and two ’family partner’ sfermions can

be obtained from eqs. (E.42)), (E.44) and (E.81):
~ o~ L 2 2 ~ o~ L 2
Vien 3 3 |hyFide) i) + 5 (G2 (i)
!
12 -~ o 22 2oz
+ 2 (V3 o) = Vi i) (v, Fide) = Y3, ()|
8 8

~2 2 ~ 2 /2 -2 -2 2
_ Z ffe . 9 pff 9 ff ff ff
= {hfhf Rjz‘kFl + _Rz’jkLl + [YfLYfLRz‘jkLl + YfRYfRRijkIZz - YfLYfRRijkz?
f

AN
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= {hfhf BRIl + I (F 7 (Fi o) (F.94)
f
ka "\\ e fz
\\ //
\\ // -~ 2 2. ~ 2 2~
~ %
// \\
fi’ S i

fif; f.f] couplings
For the coupling with two sfermions f; and two family partner sfermions with different
isospin, f/, we get with egs. (F.42) and (F.44)

2 A A 12

Vb D zf: [— %(fsz) (fifu) + %(Yﬁ (Fifr) = YfR(fEfR))

12 ~

2 57 2 FEr I ¥
= j{ — LR+ S|V v R YR RO =YY ROE - Y5Y; R{lg}’]}
R
f

] ~ ikl 8 L fr7 g ikl frR™ 7 gkl L= g frR7 11
S 2*: . ff’ e :*:
< (FH)(Fefl) = D () (e f) . (F.95)
f
f~llc '\\ e fz
AN /7
AN 7/
AN N
AN Ve
N (oFF o ofT
. —1 <Cijkl + Cklij)
/7 AN
Ve AN
N A
/7 AN
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f,f]’f,’cfl couplings
Finally, eqs. (F.43]) and (E.81]) give the Feynman rule for the mixed four—sfermion coupling,

~ ~ < 2 2 ~ ~ 2 2
Vien o Y (= hehpdafififa+ T fififi o)
f

_ P FFFFL = 71 o §
= Z — hgh; R Py L ngkl fifife fi (F.96)
4
f
with
Fify 7' of pf pf Fiff, — pf pi' pf pf
Rk "= RyRpRy Ry, Ry b= Ry Ry Ry Ry
f’/f ~\\ yd fl
AN /7
AN Ve
A N
\\ //
v f ff f ff Fii fr f f
,/V\\ —ihsh R]zkl f = hf/hfllel] f— Rz]kl -
// \\
N AN
/7 AN
2 // \\ "‘/
£’ N

F.7 Vector boson—Sfermion—Sfermion couplings

The interaction Lagrangian of a vector boson and two sfermions is given by

L = —ieesA, f 3“f] —zgzzf Zof*g;“fj + ( \/_WJFRfTRfifTI a“ fw +hc) ,
(F.97)
with the abbreviations
& = of RIR! + ¢} RLR), (F.08)

and gz = g/ cos b, C£ = [J‘Z’L — eysiy and = —ershy.

y i
ky//
//1 —1e 6f(5ij<l€1 —+ kg)ﬂ ce AM
Ay Zy NNNNS ) )
\ igz2l; (k1 + k2), 2
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s
1 7
4
.9 it pf
UARVAVAV IV —i 7 Ril Byi (k- ko)
AN
\
A 3
kl\\ N
NSy

F.8 Gaugino—Fermion—Sfermion couplings

The interaction Lagrangian of the chargino—sfermion—fermion couplings is given by
L = f (z;} P+ K PL) i+ f (z{; Pp+ k! PL) K f
X (U P+ KPR ) 1y T X (W P+ R PR ) 1 (F.99)

with the coupling matrices

F : ; i 7 7
lzf; = —gV}lR{f + thijRg, liij = —gUnRi +hpUpRi,
i ) ) ) (F.100)
K = hpUpRY, kK = hp VR
fr fi
fum==rmm= il Pt P fu == il Ptk )
Xj el
o i s i
// //
4 4
S ” T .
fr i(ty P+ kyPR) N i(1 Py + k] Py)
el el

For the neutralino—sfermion—fermion couplings the Lagrangian reads

L =17 (akaR + bkaL)X‘;i i+ X2 (a{kPL + b{kPR) £ (F.101)
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with the coupling matrices

asz = hka’szfQ + gfgkszl ) bsz = hkaﬂﬁszl + gfzékaz (F.102)
and

f=v2((ef - I39) tan Ow Zin + 13" Zys) fhe = —V2es tan by Zy, . (F.103)

x takes the values {3,4} for {down, up}-type case, respectively.

/s’ fz f
/7
/
LA
// n 7 ~ 7 3
X Xk

F.9 Higgs—Vector boson—Vector boson couplings

The interaction Lagrangian describing the couplings of one Higgs boson to two gauge bosons
in the MSSM is given by

L = QZ;”Z [cos(a — BYH"Z0 Z% — sin(a — B)R°Z° 7]
+gmw [ cos(a — B)H W W™ —sin(a — B)R°W i W]

— gz M Sy G~ W, 7% 1 gswmy G~W;A* 4+ h.c. (F.104)

With the usual form of rotation matrices, used throughout this paper,

. cos¢ sin ¢
Rkl(¢) - ( —Sin¢ COS¢ >kl ) (F105)
the Feynman rules can then be written as
Z Wi
19z myRog(a—B) g .7
hY ——————— ' )
g mWRQk(a_ﬂ)glw s WH

Z% W
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