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Kurzfassung

Das Standardmodell der Elementarteilchenphysik ist eine höchst erfolgreiche Theorie, welche
die elektromagnetische, starke sowie die schwache Wechselwirkung von Materieteilchen bis
zu Energieskalen von einigen hundert Giga Elektronvolt beschreibt. Trotz dieser großen Er-
folge besteht kaum Zweifel darüber, dass es sich bei diesem Modell um eine effektive Theorie
handelt, d.h. die Theorie verliert bei höheren Energien ihre Aussagekraft.

Daher muss das Standard Modell in geeigneter Art und Weise erweitert werden. Ein äußerst
viel versprechendes Konzept für eine solche Erweiterung ist jenes der Supersymmetrie, in
dem zu jedem bekannten Teilchen des Standardmodells ein oder mehrere supersymmetrische
Partnerteilchen vorausgesagt werden. Die einfachste und attraktivste supersymmetrische
Erweiterung des Standardmodells wird als minimal supersymmetrisches Standardmodell
(MSSM) bezeichnet. Minimal verweist darauf, dass die Anzahl neuer Wechselwirkungen
und Felder so gering wie möglich gehalten wird. Genau genommen besteht das MSSM
aus den Feldern des Standardmodells und deren supersymmetrischen Partnern sowie einem
zusätzlichen Higgsdublett. Die Anwesenheit dieses zusätzlichen Higgsdubletts führt zur
Existenz von fünf physikalischen Higgsteilchen.

Die Suche nach diesen supersymmetrischen Teilchen sowie Higgsbosonen ist deshalb eines
der wichtigsten Ziele des Large Hadron Collinders (LHC) am Teilchenforschungszentrum
CERN, bei dem hinreichend hohe Kollisionsenergien für die Erzeugung von diesen neuen
Teilchen zur Verfügung stehen, weshalb die Existenz von Supersymmetrie bestätigt werden
könnte. Für die Entdeckung dieser neuen Teilchen sind genaue Vorhersagen ihrer Zerfalls-
breiten sowie Verzweigungsverhältnisse unerlässlich. Um der Präzision am LHC und dem
zukünftigen ILC gerecht zu werden, müssen Feynman Amplituden zumindest bis auf Ein-
schleifenniveau berechnet werden. Da es bei diesen Rechnungen auf Einschleifenniveau zu so-
genannten UV– und IR– Divergenzen kommt, wird eine Renormierungsprozedur, in der diese
Divergenzen durch eine geeignete Wahl von Countertermen abgezogen werden, unerlässlich.

Ziel dieser Arbeit war die Entwicklung eines Computerprogramms HFOLD, das alle Zer-
fallsbreiten sowie Verzweigungsverhältnisse aller MSSM Higgsboson Zweikörperzerfälle auf
vollem Einschleifenniveau berechnet. Bisher verfügbare Programme approximieren diese Kor-
rekturen durch den Gebrauch von Renormierungsgruppen-Gleichungen. Aufgrund der Tat-
sache, dass bei der vollen Einschleifenrechnung dieser Prozesse fast alle Parameter des MSSM
renormiert werden müssen, und daher eine Berechnung von einer entsprechend großen Anzahl
von Feynmandiagrammen erforderlich ist, gestaltet sich diese Aufgabe als äußerst komplex.
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Die erforderliche Renormierungsprozedur wurde in Übereinstimmung mit der SPA Kon-
vention konsistent im DR Schema durchgeführt. Besondere Aufmerksamkeit wurde auf die
Unterscheidung zwischen den führenden SUSY-QCD und den elektroschwachen Korrekturen
gelegt. Diese wurden im Detail herausgearbeitet und können getrennt ausgegeben werden.

Im Rahmen dieser Arbeit wurden dann mittels des Programms HFOLD Higgszerfälle in
mehreren sogenannten high scale Szenarien untersucht, in denen die erforderlichen Mod-
ellparameter von einem Satz weniger Parameter auf der GUT Skala durch die Verwen-
dung von Renormierungsgruppen-Gleichungen abgeleitet werden (z.B. minimal Supergravity
(mSUGRA) oder Non Universal Higgs Mass (NUHM)). Für andere Szenarien dieser Art kann
das Programm leicht adaptiert werden.

Dabei stellte sich wie zu erwarten heraus, dass die SUSY-QCD sowie die elektroschwachen
Korrekturen für die Higgsbosonzerfälle in Quarks der dritten Generation unerlässlich sind.
Sollten die supersymmetrischen Teilchen im Vergleich zu den Higgsbosonen jedoch relativ
leicht sein, wie z.B. in NUHM Szenarien, aber auch in Teilen des mSUGRA Parameterraums,
können die Zerfallskanäle in Charginos und Neutralinos die größten Verzweigungsverhältnisse
aufweisen. Der Unterschied für diese führenden Zerfallsbreiten kann dann zwischen der
niedrigsten Ordnung und der entsprechend vollen Einschleifenrechnung mehr als 10 Prozent
betragen. Daher können diese Korrekturen für präzise Analysen nicht mehr vernachlässigt
werden.





Abstract

The Standard Model of elementary particle physics is a highly successful theory, describing
the electromagnetic, strong and weak interaction of matter particles up to energy scales to
a few hundred giga electronvolt. Despite its great success in explaining experimental results
correctly, there is hardly no doubt that the SM is an effective theory, which means that the
theory loses its predictability at higher energies.

Therefore, the Standard Model has to be extended in a proper way to describe physics at
higher energies. A most promising concept for the extension of the SM is those of Supersym-
metry, where for each particle of the SM one or more superpartner particles are introduced.
The simplest and most attractive extension of the SM is called Minimal Supersymmetric
Standard Model (MSSM). Minimal refers to the additional field content, which is kept as
low as possible. In fact the MSSM consists of the fields of the SM and their corresponding
supersymmetric partner fields, as well as one additional Higgs doublet. The presence of this
additional Higgs doublet leads to the existence of five physical Higgs bosons in the MSSM.

The search for supersymmetric particles and Higgs bosons is one of the primary goals of the
Large Hadron Collider (LHC) at the CERN laboratory, producing collisions at sufficiently
high energies to detect these particles. For the discovery of these new particles, precise pre-
dictions of the corresponding decay widths and branching rations are utmost mandatory. To
contribute with the precision of the LHC and the future ILC, Feynman amplitudes should be
calculated at least to one-loop order. Since these calculations lead to so called UV– and IR–
divergences, it is essential to perform a renormalization procedure, where the divergences
are subtracted by a proper definition of counterterms.

The goal of this work was to develop a program package, which calculates all MSSM two-
body Higgs decay widths and corresponding branching ratios at full one-loop level. Up to
now public available programs approximate these contributions using renormalization group
improved born level amplitudes. Due the fact that the full one-loop calculation requires the
renormalization of almost all parameters of the MSSM, a large number of Feynman diagrams
has to be computed, which makes this task very complex and challenging.

The necessary renormalization procedure was performed consistently in the DR scheme fol-
lowing the SPA convention. Special attention has been given to the distinction between the
leading SUSY-QCD and the full electroweak contributions, which have been worked out in
detail and can be output separately.
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In this work we then used the program HFOLD to study Higgs decays in some so called
high scale scenarios, where the necessary parameters are derived from a few parameters
specified at the GUT scale using renormalization group equations (e.g. scenarios like mini-
mal Supergravity (mSUGRA) or Non universal Higgs Mass (NUHM)). The program can be
most easily adopted to any other scenario of this kind.

It was found as expected that the SUSY-QCD as well as the electroweak corrections for
Higgs decays into third generation quarks are mandatory. If the Higgs bosons are relatively
heavy compared to the supersymmetric particles like in NUHM scenarios, but also in parts
of the mSUGRA parameter space, the decay channels into charginos and neutralinos can
exhibit the largest branching ratios. The difference for these leading decay widths between
the born level and the corresponding full one-loop calculation can be more than 10 percent.
Therefore these contributions can not be neglected for precise analysis.





Danksagung

Ich danke Herrn Dr. Helmut Eberl für die Unterstützung und das freundliche Arbeitsklima in
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Chapter 1

Supersymmetry

The Standard Model (SM) of elementary particle physics [1, 2] is an extremely successful
theory describing the electroweak and strong interactions of quarks and leptons. Quarks and
leptons occur in three generations:

• the leptons: the electron, the muon, the tau and their corresponding neutrions.
The left–handed doublets

(
e
νe

)

L

,

(
µ
νµ

)

L

,

(
τ
ντ

)

L

,

couple to U(1)Y and SU(2)L, in contrast to the right–handed singlets

eR, µR, τR ,

only couple to U(1)Y .

• the quarks: the up, down, charm, strange, top and bottom quark.
The left–handed doublets

(
u
d

)

L

,

(
c
s

)

L

,

(
t
b

)

L

,

couple to U(1)Y , SU(2)L and SU(3)C , the right–handed singlets

uR, dR, cR , sR , tR , bR ,

couple only to U(1)Y and SU(3)C .

The SM is based on local gauge invariance described by the gauge group SU(3)C⊗SU(2)L⊗
U(1)Y in which the electroweak SU(2)L⊗U(1)Y symmetry is spontaneously broken down to
the U(1)EM electromagnetic symmetry. In the SM the mechanism of spontaneous electroweak
symmetry breaking (EWSB) [3] is based on a non vanishing vacuum expectation value v of
a fundamental scalar field (Higgs field). This Higgs field gives masses to all particles which
couple at tree–level to the Higgs boson, in particular to the W± and Z0 vector bosons.
Although the SM describes almost all phenomena (except neutrino oscillations and neu-
trino masses) presently known at energies up to ≃ 100 GeV, there are several fundamental
questions that remain unanswered:
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2 CHAPTER 1. SUPERSYMMETRY

• The hierarchy problem
In the SM, radiative corrections to the squared Higgs massm2

H depend quadratically on
the ultraviolet cut-off scale Λ. If the scale Λ, where possibly new physics enters is high,
the theory produces an unnatural large Higgs mass. To show the problem, consider
the one–loop contributions to the Higgs mass, of a fermion f with a repetition number
Nf and a Yukawa coupling given by λf =

√
2mf/v. Assuming for simplicity that the

fermion is very heavy so that one can neglect the external Higgs momentum, one
obtains for the fermionic Higgs mass correction

f

H H

a) b) φi

H H H H

φi
c)

Figure 1.1: One-loop corrections to the Higgs mass m2
H , (a) fermionic, (b) and (c) scalar .

∆m2
H = Nf

λ2f
8π2

[
− Λ2 + 6m2

f log
Λ

mf

− 2m2
f

]
+O(1/Λ2) ,

which shows the quadratically divergent behavior ∆m2
H ∝ Λ2. If we chose the cut–off

scale Λ to be the GUT scale, mGUT ∼ 1016 GeV, or the Planck scale, MP ∼ 1018

GeV, the Higgs boson mass, which is supposed to lie in the range of the electroweak
symmetry breaking scale v ∼ 250 GeV, will become huge. For the SM Higgs boson to
stay relatively light, at least mH <∼ 1 TeV, we need to add a counterterm to the mass
squared and adjust it with a precision of O(10−30), which seems highly unnatural.

• Electroweak symmetry breaking
In the SM, the masses of fermions and gauge bosons are generated by the Higgs mech-
anism. A negative Higgs mass squared in the Higgs potential V (φ) leads to a non
vanishing vacuum expectation value v. However the negative squared mass parame-
ter µ2 is introduced by hand and without any deeper justification, which is from the
theoretical point of view unsatisfactory.

• Gauge coupling unification and GUTs
If the SM is part of a Grand Unified Theory (GUT) the fundamental forces should
unify at a high scale. However, recent measurements of energy behavior of the couplings
indicate that gauge unification is not possible with the particle content of the SM .

• Baryogenesis
One of the most fundamental open questions is the origin of the observed baryon asym-
metry of the universe. Although the SM fulfills all the requirements for baryogenesis [5],
the electroweak phase transition is too weak to preserve the generated baryon asymme-
try. Therefore, baryon asymmetry generated at the electroweak phase transition claims
for new physics at the electroweak scale.



3

• Dark matter
The cosmic microwave background data strongly indicate that only about 5% of the
total matter density of the universe consist of particles of the SM, while there is about
five to six times more mass in the form of invisible cold dark matter. The SM does not
provide a reliable candidate with the right properties to describe this kind of matter.

Therefore, the Standard Model has to be extended to describe physics also at higher ener-
gies. In the early 70’s, J. Wess and B. Zumino found an attractive symmetry relating the
two fundamental species of elementary particles, bosons and fermions, by a supersymmetry
transformation given by

Q|Fermion〉 = |Boson〉 Q|Boson〉 = |Fermion〉 . (1.1)

In such supersymmetric models for each particle a superpartner equal in mass and quantum
numbers, but differerent in spin by 1/2 is introduced. Due to this boson↔ fermion symmetry
the scalar masses are protected from quadratically divergent loop corrections, providing an
elegant solution to the hierarchy problem.
Since none of the predicted supersymmetric particles have been observed up to now, SUSY
must be a broken symmetry in nature. If this supersymmetry breaking is of a certain type
known as soft breaking [6], it doesn’t forfeit some of its advantages, e.g. it does not reintroduce
quadratic divergences of scalar particle masses.
Even though theories including SUSY have to explain why the masses of the predicted
superpartners are that high and up to now there is no direct evidence that the fundamental
structure of nature is supersymmetric, such theories provide many remarkable features:

• Hierarchy problem
One of the main reasons for introducing SUSY theories is their ability to solve the
hierarchy problem [7]. By grouping fermions and bosons together in supermultiplets,
the quadratically divergent radiative fermionic corrections to the Higgs boson mass are
canceled by the corresponding bosonic loop contributions of opposite sign. Therefore
SUSY stabilizes the hierarchy in the sense that the ‘natural’ mass of the Higgs boson
lies in the range of electroweak symmetry breaking scale.

To show the cancellation let us assume the existence of NS scalar particles with masses
mS and with trilinear and quartic couplings to the Higgs boson given by vλS and λS.
They contribute to the Higgs boson self–energy via the two diagrams of Fig. 1.1b,
which lead to a contribution to the Higgs boson mass squared

∆m2
H =

λSNS

16π2

[
− Λ2 + 2m2

Slog

(
Λ

mS

)]
− λ2SNS

16π2
v2
[
− 1 + 2log

(
Λ

mS

)]
+O

(
1

Λ2

)
.

Here again the quadratic divergences are present. However, if we make the assumption
that the Higgs couplings of the scalar particles are related to the Higgs–fermion cou-
plings in such a way that λ2f = 2m2

f/v
2 = −λS, and that the multiplicative factor for

scalars is twice the one for fermions, NS = 2Nf , we then obtain, once we add the two
scalar and the fermionic contributions to the Higgs boson mass squared

∆m2
H =

λ2fNf

4π2

[
(m2

f −m2
S)log

(
Λ

mS

)
+ 3m2

f log

(
mS

mf

)]
+O

(
1

Λ2

)
.
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As can be seen, the quadratic divergences have disappeared in the sum [7]. The log-
arithmic divergence is still present, but even for values Λ ∼ MP of the cut–off, the
contribution is rather small. This logarithmic divergence disappears also if, we assume
that the fermion and the two scalars have the same mass mS = mf . In fact, in this
case, the total correction to the Higgs boson mass squared vanishes altogether. How-
ever, if this symmetry is badly broken and the masses of the scalar particles are much
larger than their corresponding fermionic superpartners, the hierarchy problem would
be reintroduced again in the theory, since the radiative corrections to the Higgs mass
∝ (m2

f −m2
S)log(Λ/mS) become large again. To keep the Higgs mass in the range of

the electroweak symmetry breaking scale mH = O(100 GeV), we need the mass dif-
ference between the SM particles and their corresponding SUSY partners to be rather
small. Therefore, the new particles should not be much heavier than the TeV scale
mS,F = O(1 TeV).

• Electroweak symmetry breaking
As already indicated, in the SM an effective Higgs potential V (h) ∝ µ2h2 + λh4 with
µ2 < 0 is introduced ‘by hand’ to trigger EWSB. In renormalizable (supersymmetric)
theories, however, the mass parameters which enter in the Lagrangian are also scale–
dependent, and renormalization-group equations can be used to evolve the parameters
from the unification scale of the order of 1016 GeV down to the weak scale of order
102 GeV. Using the renormalization group equations the Higgs mass parameter µ is
driven to a negative value due the top–Yukawa coupling, thus providing a plausible
explanation of electroweak symmetry breaking (EWSB)[8, 9].

• Gauge coupling unification
It can further be shown that in the minimal supersymmetric extension of the SM,
the extrapolation of the low energy values of the gauge couplings unify at a scale
MGUT ≃ 3× 1016 GeV [10], well in agreement with the limits on the proton lifetime.

• Cold dark matter
As we have seen, supersymmetric models can solve many problems of the SM. However,
without any additional structure, they can give rise to baryon and lepton number viola-
tion at unacceptable levels, e.g. proton decay can be mediated by the superpartners of
quarks, i.e. p→ π0e+. The non-observation of such decays has lead to the introduction
of a discrete symmetry known as R–parity [11], to forbid such decays and to ensure
baryon and lepton number conservation in an elegant way. As a consequence, the light-
est supersymmetric particle (LSP) is absolutely stable, and, if electrically neutral it
provides a nice cold dark matter candidate.



Chapter 2

The Minimal Supersymmetric
Standard Model (MSSM)

2.0.1 The SUSY Algebra

The generators of SUSY must turn a bosonic state into a fermionic state, and vice versa.
This implies that the generators themselves carry half–integer spin, i.e. are fermionic. This is
in contrast with the generators of the Lorentz group, or with other gauge group generators,
which are all bosonic. The simplest choice of SUSY generators is a two-component Weyl-
spinor Q and its conjugate Q. Since these generators are fermionic, their algebra can be
mostly written in terms of anti-commutators

{Qα, Qβ} = 0 , (2.1){
Qα̇, Qβ̇

}
= 0 , (2.2)

{
Qα, Qβ̇

}
= 2σµ

αβ̇
Pµ , (2.3)

[Qα, Pµ] = 0 . (2.4)

2.1 Construction of the MSSM Lagrangian

2.1.1 Superfields

To construct the MSSM Lagrangian we will need two kinds of superfields: the chiral su-
perfields and the vector superfields. Each type of superfield is an irreducible representation
of the SUSY algebra. Superfields can be understood as functions of Grassmann valuable
’fermionic’ coordinates θ and θ̄ and the spacetime coordinates xµ. An infinitesimal SUSY
transformation can be written as

δS(α, ᾱ)Φ(x, θ, θ̄) =

[
α
∂

∂θ
+ ᾱ

∂

∂θ̄
− i
(
ασµθ̄ − θσµᾱ

) ∂

∂xµ

]
Φ(x, θ, θ̄) , (2.5)

where Φ is a superfield and α, ᾱ are again Grassmann variables. This corresponds to the
following explicit representation of the SUSY generators

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄
β̇
∂µ , Q̄α̇ = − ∂

∂θ̄
α̇
+ iθβσµβα̇∂µ . (2.6)

5
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One can introduce SUSY-covariant derivatives, which anti–commute with the SUSY gener-
ators Q and Q̄ by

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄
β̇
∂µ , D̄α̇ = − ∂

∂θ̄
α̇
− iθβσµβα̇∂µ . (2.7)

2.1.2 Chiral superfields

This name is derived from the fact that the SM fermions are chiral, because their left– and
right–handed components transform differently under SU(2)L × U(1)Y . Therefore, we need
to introduce superfields with only two physical fermionic degrees of freedom, which can then
describe the left– or right–handed component of a SM fermion. The same superfields will
also contain their bosonic superpartners, the sfermions. Chiral superfields are defined by the
following constraints

D̄ΦL = 0 (ΦL is left − chiral) , (2.8)

DΦR = 0 (ΦR is right− chiral) . (2.9)

ΦL can be expanded in complex space (yµ = xµ + iθσµθ̄) by

ΦL(y, θ) = φ(y) +
√
2θαψα(y) + (θθ)F (y) , (2.10)

where the fields φ and F are complex scalars fields and ψ is a Weyl spinor.

2.1.3 Vector superfields

Vector superfields describe the spin–1 gauge bosons and their fermionic superpartners the
gauginos. Vector superfields are constrained by

V (x, θ, θ̄) ≡ V †(x, θ, θ̄). (2.11)

The vector superfield can be expanded (after using the Wess–Zumino gauge) by

V (x, θ, θ̄) = (θσµθ̄)Aµ + i(θθ)(θ̄λ̄)− i(θ̄θ̄)(θλ) + (θθ)(θ̄θ̄)d , (2.12)

where Aµ is a real vector field, λ a compex Weyl spinor field and d denotes a real scalar field.

2.1.4 SUSY–invariant Lagrangian

By definition, the action is invariant under SUSY transformations

δS

∫
d4xL(x) = 0 . (2.13)

This is satisfied, if L itself transforms into a total derivative. The highest components of the
superfields (those with the largest number of θ and θ̄ factors) satisfy this requirement, so
they can therefore be used to construct a SUSY invariant Lagrangian. The action S can be
written in more detail by

S =

∫
d4x

(∫
d2θLF +

∫
d2θd2θ̄LD

)
. (2.14)



2.1 Construction of the MSSM Lagrangian 7

2.1.5 Yukawa interactions and mass terms

The product of two left–chiral superfields writes as

Φ1,LΦ2,L =
(
φ1 +

√
2θψ1 + θθF1

)(
φ2 +

√
2θψ2 + θθF2

)
,

= φ1φ2 +
√
2θ (ψ1φ2 + φ1ψ2) + θθ (φ1F2 + φ2F1 − ψ1ψ2) , (2.15)

performing the integration over the Grassmann variables the expression has the form (A
detailed description of the integration over Grassmann variables can be found in the appendix
B.)

∫
d2θ Φ1,LΦ2,L = (φ1F2 + φ2F1 − ψ1ψ2) . (2.16)

The product of two left–chiral superfields is again a left–chiral superfield, since it does not
depend on θ̄, it is a candidate for a contribution to the LF term in the action (2.14). The
last term in eq. (2.16) gives rise to a fermion mass term. The product of three left– chiral
superfields takes the following form after integration

∫
d2 θΦ1,LΦ2,LΦ3,L = φ1φ2F3 + φ1F2φ3 + φ1φ2F3 −ψ1φ2ψ3 − φ1ψ2ψ3 − ψ1ψ2φ3︸ ︷︷ ︸

Yukawa interactions

, (2.17)

and gives rise to Yukawa interactions. If φ1 is the Higgs field, and ψ2 and ψ3 the left–and
right-handed components of the top quark, eq. (2.17) will not only produce the desired Higgs–

top–top interaction, but also interactions between a scalar top t̃, the fermionic “higgsino” h̃,
and the top quark, with equal strength. This is a first example of relations between couplings
enforced by supersymmetry.

2.1.6 Kinematic terms

Let us now consider the product of a left-chiral superfield and its conjugate with

Φ†
L(x, θ) = φ∗ − 2iθσµθ̄∂

µφ∗ − 2
(
θσµθ̄

) (
θσν θ̄

)
∂µ∂νφ∗

+
√
2θ̄ψ̄ − 2

√
2i
(
θσµθ̄

)
∂µ
(
θ̄ψ̄
)
+ θ̄θ̄F ∗. (2.18)

Obviously the product ΦLΦ
†
L is self–conjugate and is therefore a vector superfield. It is a

candidate contribution to the “D–terms” in the action (2.14)

∫
d2θd2θ̄ΦLΦ

†
L = FF ∗ − φ∂µ∂

µφ∗ − iψ̄σµ∂
µψ. (2.19)

As can be easily seen eq. (2.19) does not contain a kinetic terms for the field F , therefore
this field does not propagate, it is an auxiliary field, which can be integrated out, using its
algebraic equation of motion.
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2.1.7 The superpotential

The interactions of a renormalizable supersymmetric theory can be generalized by the intro-
duction of the superpotentail W . The superpotential W is defined by

W (Φi) =
∑

i

kiΦi +
1

2

∑

i,j

mijΦiΦj +
1

3

∑

i,j,k

gijkΦiΦjΦk , (2.20)

where the Φi are all left–chiral superfields, and the ki, mij and gijk are constants with
mass dimension 2, 1 and 0, respectively. The contributions to the Lagrangian that we have
identified so far can be written compactly as

L =
∑

i

∫
d2θd2θ̄ΦiΦ

†
i +

[∫
d2θW (Φi) + h.c.

]

=
∑

i

(
FiF

∗
i + |∂µφ|2 − iψ̄iσµ∂

µψi
)

+

[
∑

j

∂W (φi)

∂φj
Fj −

1

2

∑

j,k

∂2W (φi)

∂φj∂φk
ψjψk + h.c.

]
. (2.21)

Note that in the last line of eq. (2.21),W is understood to be a function of the scalar fields φi,
rather than of the superfields Φi. Using eq.(2.20) it is easy to convince oneself that the last
line in eq.(2.21) indeed reproduces the previous results (2.16) and (2.17). Using the equation
of motion one can integrate out the auxiliary fields Fj. Their equation of motions are simply
given by

∂L
∂Fj

= 0 → Fj = −
[
∂W (φi)

∂φj

]∗
, (2.22)

reinserting this back into eq. (2.21) gives

Lint = −
[
∑

j,k

∂2W (φi)

∂φj∂φk
ψjψk + h.c.

]
−
∑

j

∣∣∣∣
∂W (φi)

∂φj

∣∣∣∣
2

. (2.23)

The Lagrangian (2.23) describes fermion masses and Yukawa interactions, while the last
term describes scalar mass terms and scalar interactions. Since both terms are determined
by the single function W , there are clearly many relations between coupling constants.

2.1.8 Gauge interactions

The coupling of the gauge (super)fields to the (chiral) matter (super)fields is accomplished
by a SUSY version of the familiar “minimal coupling” by

∫
d2θd2θ̄Φ†Φ −→

∫
d2θd2θ̄Φ†e2gVΦ (2.24)

= |Dµφ|2 − iψ̄σµD
µψ + gφ∗Dφ+ ig

√
2
(
φ∗λψ − λ̄ψ̄φ

)
+ |F |2 ,

in the second step the W–Z gauge has been used. We introduce the usual gauge–covariant
derivative Dµ = ∂µ+igA

a
µTa, where the Ta are group generators. This part of the Lagrangian
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does not only describes the interactions of the matter fields (both fermions and scalars) with
the gauge fields, but also contains gauge–strength Yukawa–interactions between fermions ψ,
sfermions φ, and gauginos λ. Finally, the kinetic energy terms of the gauge fields can be
described with the help of the superfield by

Wα =
(
D̄α̇D̄β̇ǫ

α̇β̇
)
e−gVDαe

gV , (2.25)

where D and D̄ denote the SUSY–covariant derivatives, which carry spinor subscripts. For

abelian symmetries, this reduces to Wα =
(
D̄α̇D̄β̇ǫ

α̇β̇
)
DαV . Since D̄α̇D̄α̇ = 0 and D̄α̇Wα =

0, Wα is a left–chiral superfield. One can show that the product WαW
α is gauge invariant,

it is also a left–chiral superfield, therefore its θθ component can be used the Lagrangian

1

32g2
WαW

α = −1

4
F a
µνF

µν
a +

1

2
DaD

a

+

(
− i

2
λaσµ∂

µλ̄a +
1

2
gfabcλaσµA

µ
b λ̄c + h.c.

)
. (2.26)

In addition to the familiar kinetic energy term for the gauge fields, this also contains a kinetic
energy terms for the gauginos λa, as well as the canonical coupling of the gauginos to the
gauge fields, which is determined by the group structure constants fabc. Equation (2.26) does
not contain a kinetic energy term for the Da fields. Therefore these fields have just auxiliary
nature, and can again easily be integrated out. Equations (2.24) and (2.26) show that their
equation of motion is given by

Da = −g
∑

i,j

φ∗
iT

ij
a φj, (2.27)

where the group indices have been written explicitly. The third term in the second line in
eq. (2.24) and the second term in eq. (2.26) then combine to give a contribution

− VD = −1

2

∑

a

∣∣∣∣∣
∑

i,j

gφ∗
iT

a
ijφj

∣∣∣∣∣

2

, (2.28)

to the scalar interactions in the Lagrangian. These interactions are completely fixed by the
gauge couplings. This completes the construction of the Lagrangian for a renormalizable
supersymmetric field theory.

2.2 Field content of the MSSM

The simplest and most attractive extension of the Standard Model is the Minimal Super-
symmetric Standard Model (MSSM).Minimal refers to the additional field content, which is
kept as low as possible. In particular, the field content of the MSSM consists only of the SM
fields and their supersymmetric partners, and one additional Higgs doublet.

• Gauge fields
In order to respect the SU(3)C⊗SU(2)L⊗U(1)Y gauge symmetry of the SM, the spin–1
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gauge bosons are described by the corresponding vector superfields. In particular, the
eight gluons of QCD, Ga

µ, get eight spin–
1
2
partners G̃a called gluinos, the SU(2) gauge

bosons W i
µ get three winos W̃ i as partners and the U(1) gauge boson Bµ gets a bino

B̃. Note that since SU(2)L × U(1)Y is broken in the SM, the winos and the bino
do not form mass eigenstates but mix with fields with the same charge but different
SU(2)L ⊗ U(1)Y quantum numbers.

Superfield spin–1 spin–1/2 SU(3)C ⊗ SU(2)L ⊗ U(1)Y Names

V̂ a
s Ga

µ G̃a (8, 1, 0) gluons, gluinos

V̂ i W i
µ W̃ i (1, 3, 0) W -bosons, winos

V̂ ′ Bµ B̃ (1, 1, 0) B-boson, bino

Table 2.1: Gauge supermultiplet fields in the MSSM.

• Matter fields
The matter content of the SM is described by three generations of leptons and quarks,
i. e. for each generation two SU(2)L fermion doublets and three singlets for the right-
handed fermions,

L =

(
νL
eL

)
, E = ecR , Q =

(
uL
dL

)
, D = dcR , U = ucR . (2.29)

Therefore, one generation of the SM is represented by five left-chiral superfields which
contain the leptons and quarks given above plus their supersymmetric partners, the
sleptons and squarks:

L̃ =

(
ν̃L
ẽL

)
, Ẽ = ẽ∗R , Q̃ =

(
ũL
d̃L

)
, D̃ = d̃∗R , Ũ = ũ∗R . (2.30)

• Higgs sector
Contrary to the SM, two chiral superfield doublets with hypercharges ±1 are required
to break SU(2)L × U(1)Y invariance and to give masses to both up– and down–type
fermions. One reason is that if there would be only one single chiral superfield doublet,
the gauge symmetry would suffer a fermion triangle gauge anomaly. This can easily be
seen from the conditions for anomaly cancellation, Tr[Y 3] = Tr[T 2

3 Y ] = 0, where T3 and
Y denote the third component of the isospin and the weak hypercharge, respectively,
and the electric charge given by Q = T3+Y/2. In the SM these conditions are satisfied
by a complete generation of SM fermions. To cancel the contribution from one superfield
doublet, one needs a second doublet to get a consistent quantum theory. The two Higgs
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Superfield spin–1/2 spin–0 SU(3)C ⊗ SU(2)L ⊗ U(1)Y Names

Q̂ (uL, dL) (ũL, d̃L) (3, 2, 1
3
)

quarks, squarks
Û c ūR ũ∗R (3̄, 1, −4

3
)

(× 3 families)

D̂c d̄R d̃∗R (3̄, 1, 2
3
)

L̂ (νL, eL) (ν̃L, ẽL) (1, 2, -1) leptons, sleptons

Êc ēR ẽ∗R (1, 1, 2) (× 3 families)

Ĥ1 (H̃1
1 , H̃

2
1 ) (H1

1 , H
2
1 ) (1, 2, -1)

higgsinos, Higgs
Ĥ2 H̃1

2 , H̃
2
2 H1

2 , H
2
2 (1, 2, 1)

Table 2.2: Chiral supermultiplet fields in the MSSM.

doublets and their superpartners, the higgsinos H̃j
i , are given as follows:

H1 =

(
H1

1

H2
1

)
, H2 =

(
H1

2

H2
2

)
,

H̃1 =

(
H̃1

1

H̃2
1

)
, H̃2 =

(
H̃1

2

H̃2
2

)
. (2.31)

In general, interactions in the MSSM have two different sources:

• Superpotential
The superpotential for the MSSM is given by

W = εij

[
heĤ

i
1L̂

jÊc + hdĤ
i
1Q̂

jD̂c + huĤ
j
2Q̂

iÛ c − µĤ i
1Ĥ

j
2

]
, (2.32)

where the hatted quantities Ĥ i
j, Q̂

i, L̂j , Û , D̂, Ê are the chiral superfields given in Ta-
ble 2.2. Due to better readability we have suppressed all colour, weak isospin and
generation indices.

The superpotential determines two kinds of interactions mentioned in eq. (2.40). Firstly,
the Yukawa potential VY can be obtained by replacing two superfields in the superpo-
tential by the corresponding fermionic fields and the remaining superfield by its scalar
representative,

VY = εij

[
heH

i
1L

jEc + hdH
i
1Q

jDc + huH
j
2Q

iU c − µH̃ i
1H̃

j
2

]

+ εij

[
heH̃

i
1L

jẼc + hdH̃
i
1Q

jD̃c + huH̃
j
2Q

iŨ c
]

+ εij

[
heH

i
1L̃

jEc + hdH
i
1Q̃

jDc + huH
j
2Q̃

iU c
]

+ h.c. (2.33)
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The F–term potential VF originates from using the equations of motion for the auxiliary
fields Fi,

VF =
∑

i

F ∗iFi =
∑

i

∣∣∣∣
δW (ϕ)

δϕi

∣∣∣∣
2

(2.34)

where the sum is taken over all scalar components ϕi of the superfields.

• Gauge Symmetry
The MSSM contains the usual gauge interactions, but there are also gauge–strength
interactions involving neither gauge bosons nor gauginos arising from the D-term po-
tential in eq.(2.28).

In fact, there exists one additional kind of interaction allowed by gauge invariance
involving the gaugino fields. The corresponding potential VG̃ψψ̃ is given by

VG̃ψψ̃ = i
√
2gaϕkλ̄

a(T a)klψ̄l + h.c. , (2.35)

where (ϕ, ψ) are the spin–0 and spin spin–1
2
components of the chiral superfield, re-

spectively, and λa denoting the gaugino field.

• SUSY breaking sector
Sine no SUSY particle has been observed up to now, SUSY must be broken to be
in agreement with experiment. Therefore it is necessary to introduce explicit SUSY
breaking terms in the Lagrangian. The last term in the full Lagrangian of the MSSM
Lsoft involves the soft SUSY–breaking terms and can be written as

• Mass terms for the gluinos, winos and binos:

− Lgaugino =
1

2

[
M1B̃B̃ +M2

3∑

a=1

W̃ aW̃a +M3

8∑

a=1

G̃aG̃a + h.c.

]
(2.36)

• Mass terms for the scalar fermions:

− Lsfermions =
∑

i=gen

m2
Q̃i
Q̃†
iQ̃i +m2

L̃i
L̃†
i L̃i +m2

ũi
|ũRi

|2 +m2
d̃i
|d̃Ri

|2 +m2
ℓ̃i
|ℓ̃Ri

|2

(2.37)

• Mass and bilinear terms for the Higgs bosons:

− LHiggs = m2
H2
H†

2H2 +m2
H1
H†

1H1 + Bµ(H2 ·H1 + h.c.) (2.38)

• Trilinear couplings between sfermions and Higgs bosons

− Ltril. =
∑

i,j=gen

[
AuijY

u
ij ũ

∗
Ri
H2 ·Q̃j + AdijY

d
ij d̃

∗
Ri
H1 ·Q̃j + AlijY

ℓ
ij ℓ̃

∗
Ri
H1 · L̃j + h.c.

]
.

(2.39)

The complete Lagrangian of the MSSM can be written as

LMSSM = Lkinetic − VY − VF − VD − VG̃ψψ̃ + Lsoft , (2.40)

where Lkinetic stands for both the standard kinetic terms for each particle and their inter-
actions with the gauge bosons. The interactions are described by the potentials VX and the
last term Lsoft includes the SUSY–breaking terms.
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2.3 MSSM spectrum

2.3.1 Higgs sector

As stated before, two complex Higgs doublets (eight degrees of freedom) are required to
keep the MSSM anomaly free. Three of the eight degrees of freedom become the longitudi-
nal modes of the vector bosons Z0 and W±, therefore these bosons become massive. The
remaining five degrees of freedom, correspond to three neutral Higgs bosons h0, H0, A0 and
the two charged ones H+ and H−. In the MSSM the scalar Higgs potential VH has three
different sources :
i) The D terms containing the quartic Higgs interactions, eq. (2.28). For the two Higgs fields
H1 and H2 with Y = −1 and +1, these terms are given by

U(1)Y : V 1
D =

1

2

[
g

′

2
(|H2|2 − |H1|2)

]2
, (2.41)

SU(2)L : V 2
D =

1

2

[
g

2
(H i∗

1 τ
a
ijH

j
1 +H i∗

2 τ
a
ijH

j
2)

]2
, (2.42)

with τa = 2T a. Using the SU(2) identity τaijτ
a
kl = 2δilδjk − δijδkl, one obtains the potential

VD =
g2

8

[
4|H†

1 ·H2|2 − 2|H1|2|H2|2 + (|H1|2)2 + (|H2|2)2
]
+
g

′2

8
(|H2|2 − |H1|2)2 . (2.43)

ii) The F term of the Superpotential eq. (2.32) can be written as VF =
∑

i |∂W (φj)/∂φi|2.
From the term W ∼ µĤ1 ·Ĥ2, one obtains the component

VF = µ2(|H1|2 + |H2|2) . (2.44)

iii) Finally, there is a part originating from the soft SUSY–breaking scalar Higgs mass terms
and the bilinear term

Vsoft = m2
H1
H†

1H1 +m2
H2
H†

2H2 + Bµ(H2 ·H1 + h.c.) . (2.45)

The full scalar potential involving the Higgs fields, is the sum of these three terms

VH = (|µ|2 +m2
H1
)|H1|2 + (|µ|2 +m2

H2
)|H2|2 − µBǫij(H

i
1H

j
2 + h.c.)

+
g2 + g

′2

8
(|H1|2 − |H2|2)2 +

1

2
g2|H†

1H2|2 ,

using the abbreviations m2
i = m2

Hi
+ |µ|2 and m2

12 = µB, the scalar Higgs potential can be
expressed in a more compact form by

VH = m2
1|H1|2 +m2

2|H2|2 −m2
12(H1H2 +H†

1H
†
2)

+
1

8
(g2 + g′2)(|H1|2 − |H2|2)2 +

g2

2
|H†

1H2|2 . (2.46)

In the MSSM Higgs sector we have three free parameters: m2
1, m

2
2 and m2

12. The two com-
binations m2

H1,H2
+ |µ|2 are real, only Bµ can be complex. However, any phase in Bµ can

be absorbed into the phases of the fields H1 and H2. Therefore the scalar potential of the
MSSM is CP conserving at tree–level. In contrast to the SM, where the strength of the
Higgs self–interaction is an unknown free parameter, the quartic interactions in the MSSM
are completely determined by the electroweak gauge couplings g

′

and g.
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Electroweak symmetry breaking (EWSB)

To break electroweak symmetry, we demand that the minimum of the potential VH breaks
the SU(2)L × U(1)Y group down to the electromagnetic symmetry U(1)Q. At the minimum
of the potential V min

H we can always choose the vacuum expectation value of the field H−
1 to

be zero 〈H−
1 〉 = 0, this can be done due to the SU(2) symmetry without loss of generality.

At ∂V/∂H−
1 =0, one then automatically obtains 〈H+

2 〉=0. Since both charged components of
the Higgs scalars remain unaffected, electromagnetism is not spontaneously broken, which
is in agreement with experiment. Therefore, only the neutral Higgs boson fields acquire a
non-vanishing VEV, i.e.

〈H1〉 =
(
v1
0

)
, 〈H2〉 =

(
0
v2

)
. (2.47)

To have electroweak symmetry breaking, one needs a combination of the H0
1 and H0

2 fields
to have a negative squared mass term. This occurs only if

m2
12 > m2

1m
2
2 , (2.48)

if not, VH will have a stable minimum and there is no EWSB.In the direction |H0
1 |=|H0

2 |,
there is no quartic term. VH is bounded from below for large values of the field Hi only if

m2
1 +m2

2 > 2|m2
12| (2.49)

is satisfied. To have explicit electroweak symmetry breaking and, thus, a negative squared
term in the Lagrangian, the potential at the minimum should have a saddle point and
therefore

Det

(
∂2VH

∂H0
i ∂H

0
j

)
< 0 ⇒ m2

1m
2
2 < m4

12 . (2.50)

The two conditions above on the masses mi are not satisfied if m2
1 = m2

2 and, thus, we must
have non–vanishing soft SUSY–breaking scalar masses mH1

and mH2

m2
1 6= m2

2 ⇒ m2
H1

6= m2
H2

(2.51)

Therefore, to break the electroweak symmetry, we need also to break SUSY. This provides
a close connection between gauge symmetry breaking and SUSY–breaking. In constrained
models such as mSUGRA, the soft SUSY–breaking scalar Higgs masses have equal values at
a high–energy scale (m2

H1
= m2

H1
> 0). However, in the running to lower energy scales via

RGEs, one obtains m2
H2
< 0 or m2

H2
≪ m2

H1
which thus triggers EWSB: this is the radiative

breaking of the symmetry [103]. Thus, electroweak symmetry breaking is more natural and
elegant in the MSSM than in the SM since, we do not need to make the ad hoc choice µ2 < 0,
in the MSSM this comes simply from radiative corrections.

2.3.2 MSSM Higgs mass matrices

For the two Higgs doublets we choose the following common parameterization:

H1 ≡
(
H0

1

H−
1

)
=

(
v1 + (φ0

1 + iχ0
1)/

√
2

φ−
1

)
, YH1

= −1 , (2.52)

H2 ≡
(
H+

2

H0
2

)
=

(
φ+
2

v2 + (φ0
2 + iχ0

2)/
√
2

)
, YH2

= +1 . (2.53)
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The minimum of the Higgs potential can now be obtained easily by solving the equations

∂V

∂H0
1

∣∣∣∣
〈H0

n〉=vn
=

∂V

∂H0
2

∣∣∣∣
〈H0

n〉=vn
= 0 , (2.54)

resulting in the two minimization conditions

m2
1v1 = −m2

12v2 −
1

4
(g2 + g′2)(v21 − v22) , (2.55)

m2
2v2 = −m2

12v1 +
1

4
(g2 + g′2)(v21 − v22) . (2.56)

The weak boson masses can be expressed with the VEVs v1 and v2 by

m2
Z =

g2 + g′2

2
(v21 + v22) , m2

W =
g2

2
(v21 + v22) , (2.57)

and hence

v2 ≡ (v21 + v22) =
2m2

Z

g2 + g′2
≈ (174 GeV)2 , (2.58)

is very well known from experiment, we can express both VEVs in terms of one single
parameter,

tan β ≡ v2
v1

≥ 0 , 0 ≤ β ≤ π

2
. (2.59)

Eqs. (2.55) and (2.56) may now be written as

m2
1 = −m2

12 tan β − 1

2
m2
Z cos 2β , (2.60)

m2
2 = −m2

12 cot β +
1

2
m2
Z cos 2β . (2.61)

Therefore, the Higgs sector at tree level only depends on two free parameters.
The Higgs mass spectrum is obtained by evaluating the second derivatives of the Higgs
potential, taken at its minimum,

M2,Higgs
ij =

1

2

∂2VH
∂Hi∂Hj

∣∣∣∣
〈H0

n〉=vn
. (2.62)

At tree level,M2,Higgs
ij splits into four independent 2×2 mass matrices which can be separately

diagonalized. In terms of the original gauge eigenstate fields, the mass eigenstates are given
by

(
H0

h0

)
=

(
cosα sinα

− sinα cosα

)(
φ0
1

φ0
2

)
, (2.63)

(
G0

A0

)
=

(
− cos β sin β

sin β cos β

)(
χ0
1

χ0
2

)
, (2.64)

(
G±

H±

)
=

(
− cos β sin β

sin β cos β

)(
φ±
1

φ±
2

)
. (2.65)
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The Goldstone bosons G0 and G± are ‘eaten’ by the longitudinal components of the massive
vector bosons Z0 and W±, respectively. The five remaining physical Higgs bosons form two
CP–even states (h0, H0), one CP–odd state A0 and the two charged Higgs bosons H±. As
already mentioned above, the two free parameters in the Higgs sector are conventionally
chosen to be the mass of the pseudo–scalar Higgs boson A0 and the ratio of the two VEVs,

mA0 and tan β . (2.66)

The remaining parameters such as the masses and the mixing angle α can be expressed using
these free parameters as

m2
h0,H0 =

1

2

[
m2
A0 +m2

Z ∓
√

(m2
A0 +m2

Z)
2 − 4m2

A0m2
Z cos

2 β

]
, (2.67)

m2
H± = m2

A0 +m2
W , (2.68)

tan 2α = tan 2β
m2
A0 +m2

Z

m2
A0 −m2

Z

, −π
2
≤ α ≤ 0 . (2.69)

2.3.3 Sfermion sector

The sfermion mixing is described by the sfermion mass matrix in the left–right basis (f̃L, f̃R),
and in the mass basis (f̃1, f̃2), f̃ = t̃, b̃ or τ̃ ,

M 2
f̃
=

(
m 2
f̃L

af mf

af mf m 2
f̃R

)
=
(
Rf̃
)†
(
m 2
f̃1

0

0 m 2
f̃2

)
Rf̃ , (2.70)

where Rf̃
iα is a 2 × 2 rotation matrix with rotation angle θf̃ ,

Rf̃
ij =

(
cos θf̃ sin θf̃

− sin θf̃ cos θf̃

)
, (2.71)

which relates the mass eigenstates f̃i, i = 1, 2, (mf̃1
< mf̃2

) to the gauge eigenstates f̃α,

α = L,R, by f̃i = Rf̃
iαf̃α and

m 2
f̃L

= M2
{Q̃, L̃} + (I3Lf −ef sin2θW ) cos 2β m 2

Z +m2
f , (2.72)

m 2
f̃R

= M2
{ũ, d̃, ẽ} + ef sin

2θW cos 2β m 2
Z +m2

f , (2.73)

af = Af − µ (tan β)−2I3Lf . (2.74)

MQ̃,ML̃,Mũ,Md̃ andMẽ are soft SUSY–breaking masses, Af is the trilinear scalar coupling

parameter, µ the higgsino mass parameter, I3Lf denotes the third component of the weak
isospin of the fermion f , ef the electric charge in terms of the elementary charge e0 and θW
denotes the Weinberg angle.
The mass eigenvalues and the mixing angle in terms of primary parameters are

m2
f̃1,2

=
1

2

(
m2
f̃L

+m2
f̃R

∓
√
(m2

f̃L
−m2

f̃R
)2 + 4a2fm

2
f

)
, (2.75)

cos θf̃ =
−af mf√

(m2
f̃L
−m2

f̃1
)2 + a2fm

2
f

(0 ≤ θf̃ < π) , (2.76)
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and the trilinear breaking parameter Af can be written as

mfAf =
1

2
(m2

f̃1
−m2

f̃2
) sin 2θf̃ +mf µ (tan β)

−2I3Lf . (2.77)

The mass of the sneutrino ν̃τ is given by

m2
ν̃τ =M2

L̃
+

1

2
m2
Z cos 2β . (2.78)

2.3.4 Chargino and Neutralino sector

The fermionic superpartners of the gauge bosons, the gauginos, and the superpartners of the
Higgs bosons, the higgsinos, mix to form mass eigenstates called charginos and neutralinos.
The charginos are therefore the superpartners of the gauge bosons W± and the charged
Higgs bosons H±. In the Weyl representation, the chargino fields [12]

ψ+ = (−iW̃+, H̃+
2 ) , (2.79)

ψ− = (−iW̃−, H̃−
1 ) , (2.80)

enter in the mass term of the Lagrangian in the following form:

L = −1

2

(
ψ+, ψ−) ·

(
0 XT

X 0

)
·
(
ψ+

ψ−

)
+ h.c. , (2.81)

with

X =

(
M2

√
2mW sin β√

2mW cos β µ

)
. (2.82)

Since we work in the CP–conserving MSSM, the mass matrix X can be diagonalized by two
real 2× 2 matrices U and V according to

UXV −1 =

(
mχ̃±

1
0

0 mχ̃±
1

)
, |mχ̃±

1
| ≤ |mχ̃±

2
| . (2.83)

In the Dirac representation, the mass eigenstates are related to the gauge eigenstates by

χ̃+
i ≡

(
Vij ψ

+
j

Uij ψ̄
−
j

)
. (2.84)

As these matrices are only of rank 2, the mass eigenvalues can be given analytically:

m2
χ̃±
1,2

=
1

2

[
M2

2 + µ2 + 2m2
W ∓

√
(M2

2 + µ2 + 2m2
W )2 − 4(m2

W sin 2β − µM2)2
]
(2.85)

The superpartners of the neutral gauge bosons, B̃µ and W̃
3
µ , and of the neutral Higgs bosons,
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H̃0
1 and H̃0

2 , mix to form four neutral mass eigenstates called neutralinos. In the interaction
base one can combine the four Weyl states as

ψ0
j = (−iB̃,−iW̃ 3, H̃0

1 , H̃
0
2 ) . (2.86)

In terms of the vector ψ0 the neutralino mass terms in the Lagrangian are

L = −1

2

(
ψ0
)T
Y ψ0 + h.c. , (2.87)

where we used the neutralino mass matrix defined as

Y =




M1 0 −mZsW cos β mZsW sin β
0 M2 mZcW cos β −mZcW sin β

−mZsW cos β mZcW cos β 0 −µ
mZsW sin β −mZcW sin β −µ 0


 . (2.88)

We use the short forms sW and cW for the sine and the cosine of the Weinberg angle.
Due to the Majorana nature of the neutralinos, the matrix can be diagonalized using only
one single rotation matrix,

ZY Z−1 = diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
), |mχ̃0

1
| ≤ |mχ̃0

2
| ≤ |mχ̃0

3
| ≤ |mχ̃0

4
| , (2.89)

where we again assume the mixing matrix to be real and allow the eigenvalues to be negative.
The 4–component Majorana spinors for the neutralino fields can be constructed as

χ̃0
i ≡ Zijψ̃

0
j , (2.90)

with the corresponding mass term Lagrangian

L = −1

2

4∑

i=1

mχ̃0
i

¯̃χ0
i χ̃

0
i . (2.91)

2.4 The unconstrained and constrained MSSMs

In the general unconstrained MSSM, where one allows intergenerational mixing and complex
phases, the soft SUSY–breaking terms introduce a huge number (105) of unknown parame-
ters, in addition to the 19 parameters of the SM [13]. This large number of parameters makes
any phenomenological analysis in the MSSM very complicated. Many sets of these param-
eters are excluded by various phenomenological constraints. A phenomenologically viable
MSSM can be defined by making the following assumptions:

• All the soft SUSY–breaking parameters are real and as a consequence there is no new
source of CP–violation, in addition to the one from the CKM matrix.

• The matrices for the sfermion masses and for the trilinear couplings are all diagonal,
implying the absence of FCNCs at tree–level.
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• The soft SUSY–breaking masses and trilinear couplings of the first and second sfermion
generations are the same at low energy to fulfill the severe constraints from K0–K̄0

mixing.

Using these three assumptions leads to only 22 input parameters:

• tan β: the ratio of the vevs of the two–Higgs doublet fields

• m2
H1
,m2

H2
: the Higgs mass parameters squared

• M1,M2,M3: the bino, wino and gluino mass parameters

• mq̃,mũR ,md̃R
,ml̃,mẽR : the first/second generation sfermion mass parameters

• Au, Ad, Ae: the first/second generation trilinear couplings

• mQ̃,mt̃R
,mb̃R

,mL̃,mτ̃R : the third generation sfermion mass parameters

• At, Ab, Aτ : the third generation trilinear couplings

The Higgs–higgsino mass parameter |µ| (up to a sign) and the soft SUSY–breaking bilinear
Higgs termB are determined, given the parameters above, through the electroweak symmetry
breaking conditions.
Alternatively, one can express the values of m2

H1
and m2

H2
with the “more physical” pseu-

doscalar Higgs boson mass mA0 and the parameter µ. Since the trilinear sfermion couplings
will be always multiplied by the fermion masses, they are in general important only in the
case of the third generation; there are, however, a few exceptions such as the electric and
magnetic dipole moments for instance.

Such a model, with this relatively moderate number of parameters has much more pre-
dictability and is much easier to investigate phenomenologically, compared to the uncon-
strained MSSM, given the fact that in general only a small subset appears when one looks
at a given sector of the model. One can refer to this 22 free input parameters model as the
“phenomenological” MSSM or pMSSM [14].

Almost all problems of the general or unconstrained MSSM are solved at once if the soft
SUSY–breaking parameters obey a set of universal boundary conditions at the GUT scale.
If one takes these parameters to be real, this solves all potential problems with CP violation
as well. The underlying assumption is that SUSY–breaking occurs in a hidden sector which
communicates with the visible sector only through gravitational–strength interactions, as
specified by Supergravity. Universal soft breaking terms then emerge, if these Supergravity
interactions are “flavor–blind”. This is assumed to be the case in the constrained MSSM or
minimal Supergravity (mSUGRA) model [15, 16].

Besides the unification of the gauge coupling constants g
′

, g, gs which is verified given the
experimental results from LEP1 [17] and which can be viewed as fixing the Grand Unification
scale, MU ∼ 2 · 1016 GeV, the unification conditions in mSUGRA, are as follows [15]:
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• Unification of the gaugino [bino, wino and gluino] masses

M1(MU) =M2(MU) =M3(MU) ≡ m1/2 . (2.92)

• Universal scalar [i.e. sfermion and Higgs boson] masses [i denotes the generation index]:

mQ̃i
(MU) = mũRi

(MU) = md̃Ri
(MU) = mL̃i

(MU) = mℓ̃Ri
(MU) ,

= mH1
(MU) = mH2

(MU) ≡ m0 . (2.93)

• Universal trilinear couplings:

Auij(MU) = Adij(MU) = Aℓij(MU) ≡ A0 δij . (2.94)

Besides the three parameters m1/2,m0 and A0, the supersymmetric sector is described at the
GUT scale by the bilinear coupling B and the supersymmetric Higgs(ino) mass parameter
µ. However, one has to require that EWSB takes place at some low energy scale. This results
in two necessary minimization conditions of the two–Higgs doublet scalar potential which
fix the values µ2 and Bµ with the sign of µ not determined. Therefore, in this model, one is
left with only four continuous free parameters, and an unknown sign

m0 , m1/2 , tan β , sign(µ) , A0 . (2.95)

All soft SUSY–breaking parameters at the weak scale are derived via RGEs [18, 19, 20].
There are also other constrained MSSM scenarios like anomaly mediated SUSY–breaking
(AMSB) models [21, 22] and gauge mediated SUSY–breaking [27, 28, 29] models.

2.4.1 Non Universal Higgs Mass (NUHM) scenario

In the more general MSSM with non–universal Higgs masses (NUHM), the soft SUSY–
breaking scalar masses for the Higgs multiplets m1 and m2 or alternatively the pairs µ and
mA0 become free again [23, 24, 25]. Thus one may use the parameters
(m0, m1/2, tan β, sign(µ), A0, m1, m2) to parametrize this more general NUHM. In the
NUHM1 scenario m1 and m2 have the same value, in NUHM2 they have different values at
the GUT scale.

2.5 The Higgs sector in the decoupling regime

The decoupling limit is reached for mA0 ≫ mZ . For the discussion of the other parameter
regimes in the MSSM Higgs sector we refer to [26]. When the pseudoscalar Higgs mass
becomes large compared to mZ , the lighter CP–even Higgs boson h0 approaches its maximal
mass value, when the dominant radiative corrections are taken into account. In this limit
the masses of the heavier CP–even Higg boson H0 and the charged Higgs bosons m2

H± =
m2
A0 + m2

W , become very close to mA0 . The existence of only one light Higgs boson is one
important aspect of the decoupling regime in the MSSM. The other Higgs particles are very
heavy and degenerate in mass mH0 ≃ mH± ≃ mA0 .
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2.5.1 Higgs couplings to fermions

Expressing the couplings of the CP–even Higgs bosons to isospin 1
2
and −1

2
fermions in

terms of cos(β − α) with the latter given by eq. (2.98) in the decoupling limit one obtains
the following results mA0 ≫ mZ0 [104]

gh0uu :
mA0≫mZ→ 1 +

m2
Z

2m2
A0

sin 4β

tan β

tanβ≫1→ 1− 2m2
Z

m2
A0 tan2 β

→ 1 , (2.96)

gh0dd :
mA0≫mZ→ 1− m2

Z

2m2
A0

sin 4β tan β
tanβ≫1→ 1 +

2m2
Z

m2
A0

→ 1 ,

gH0uu :
mA0≫mZ→ − cot β +

m2
Z

2m2
A0

sin 4β
tanβ≫1→ − cot β

(
1 +

2m2
Z

m2
A0

)
→ − cot β ,

gH0dd :
mA0≫mZ→ tan β +

m2
Z

2m2
A0

sin 4β
tanβ≫1→ tan β

(
1− 2m2

Z

m2
A0 tan2 β

)
→ tan β .

The couplings of the h0 boson become SM like, gh0uu = gh0dd = 1, while the couplings of the
H0 boson reduce, up to a sign, to those of the pseudoscalar Higgs boson, gH0uu ≃ gA0uu =
cot β and gH0dd ≃ gA0dd = tan β. The H0 boson coupling to down type fermions becomes
enhanced by tan β which is phenomenologically very important. Again, as a result of the
presence of the tan β factors in the denominators of the expansion terms in eq. (2.96), these
limits are reached more quickly for large values of tan β, except for gh0dd and gH0uu. These
results are not significantly altered by the inclusion of the radiative corrections in general.
For large values of tan β, the decoupling limit is already reached for mA0 >∼ mZ at tree–level,
but the inclusion of the radiative corrections shifts this value to mA0 >∼ mmax

h0 .

2.5.2 Higgs couplings to vector bosons

CP–invariance does not allow tree–level couplings of the pseudoscalar and charged Higgs
bosons to two gauge bosons. The couplings of the CP–even h0 and H0 bosons to WW and
ZZ states are suppressed by mixing angle factors but are complementary, the sum of their
squares being the square of the hSMV V coupling. For large values of mA0 , one can expand
these couplings in powers of mZ/mA0 to obtain at tree–level

gH0V V = cos(β − α)
mA0≫mZ→ m2

Z

2m2
A0

sin 4β
tanβ≫1→ − 2m2

Z

m2
A0 tan β

→ 0 , (2.97)

gh0V V = sin(β − α)
mA0≫mZ→ 1− m4

Z

8m4
A0

sin2 4β
tanβ≫1→ 1− 2m4

Z

m4
A0 tan2 β

→ 1 ,

where we have also displayed the limits for large values of tan β using the relation

sin 4β = 4 tan β(1− tan2 β)(1 + tan2 β)−2 tanβ≫1→ −4 cot β . (2.98)

For mA0 ≫ mZ , gH0V V vanishes while gh0V V reaches 1, the SM value. This occurs more
quickly if tan β is large, since the first term of the expansion involves this parameter in the
denominator.
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This statement can be generalized to the couplings of two Higgs bosons and one gauge boson
and to the quartic couplings between two Higgs and two gauge bosons, which are proportional
to either cos(β−α) or sin(β−α) [there are also several angle independent couplings, such as
the γH+H−, ZH+H− and W±H∓A couplings and those involving two identical gauge and
Higgs bosons as well as the H±A states]. In particular, all couplings involving at least one
gauge boson and exactly one non–minimal Higgs particle A0, H0, H± vanish for mA0 ≫ mZ ,
while all the couplings involving no other Higgs boson than the lighter h0 boson reduce to
their SM values.

2.5.3 Trilinear Higgs couplings

In the case of the trilinear Higgs couplings, one has to take the radiative corrections into
account, as without these contributions, many of the tree–level couplings would vanish. Using
the abbreviations

x0 = M2
h/m

2
Z , x1 =

√
(x0 − ǫZ sin

2 β)(1− x0 + ǫZ sin
2 β) (2.99)

ǫZ = ǫ/m2
Z , (2.100)

one obtains for the self–couplings among the neutral Higgs bosons in the ǫ approach [108]

λhhh
mA0≫mZ→ 3x0 , (2.101)

λhHH
mA0≫mZ→ 2− 3(x0 − ǫZ) , (2.102)

λhAA
mA0≫mZ→ −(x0 − ǫZ) , (2.103)

λHhh
mA0≫mZ→ −3x1 − 3ǫZ sin β cos β , (2.104)

λHHH ∼ 1

3
λHAA

mA0≫mZ→ 3x1 − 3ǫZ cot β cos
2 β .

At high tan β, the expressions simplify to

λhhh ≃ 3M2
h/m

2
Z , λhHH ≃ λhAA = −1 , λHhh ≃ λHHH ≃ λHAA ≃ 0 . (2.105)

To summarize:

• The lighter CP–even Higgs boson h0 approaches its maximal mass value
mh0

<∼ 140 GeV.

• The other Higgs bosons are very heavy and degenerate in mass, mH ≃ mH± ≃ mA0

• H0 coupling to WW and ZZ becomes supressed

• h0 coupling to WW and ZZ becomes SM like

• h0 couplings to up and down type fermions become SM like

• H0 and A0 couplings to down type fermions becomes tan β enhanced

• H0 and A0 couplings to down type fermions becomes tan β supressed



Chapter 3

Renormalization

Amplitudes beyond–tree level can suffer so called UV divergences originating from integrals
with infinite loop momenta. Therefore these integrals have to be treated in a proper way. In
order to give such expressions a physical meaning, the divergences have to be absorbed into
redefinitions of the fields and parameters of the Lagrangian. However, before we can start
with the renormalization procedure, we have to regularize the integrals. Therefore, we will
briefly discuss the technique of dimensional regularization and reduction.

3.1 Dimensional regularization (DREG)

In the dimensional regularization approach, the integration over the loop momentum q is
taken from 4 to D dimensions with D = 4− xε (with x = 1, 2 depending on the literature)

∫
dq4 → µ4−D

∫
dqD , (3.1)

where µ denotes an arbitrary reference mass. The introduction of the mass µ in D dimensions
is necessary in order to keep the dimensions of the integrals the same as in D = 4 dimensions.
The coupling constant g is replaced by

g2 → g2µ4−D , (3.2)

once again this is necessary to keep the dimensions of the Green’s function unchanged. The
Lorentz covariants gµν and γµ are simply extended to D dimensions by

gµνgµν = D , (3.3)

{γµ, γν} = 2gµν1 , (3.4)

Tr(1) = 4 (per definition), (3.5)

γµγµ = D1 . (3.6)

Problems arise with the definition of the γ5 matrix in D dimensions, because of the unre-
stricted number of dimensions, it is not possible to construct the equivalent 4-dimensional
object γ

(4)
5 as a product of all the γ–matrices. One can either take the product γ̄5 ∝ γ1γ2γ3γ4

23
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or construct a total anticommuting object γ5 [102]. The matrix γ̄5 will not be totally anti-
commuting, and γ5 is not the product of all γ–matrices. DREG violates SUSY, because
fermion and gauge fields have different degrees of freedom in D dimensions. For example a
massless gauge field has (D− 2) degrees of freedom in D dimensions, but a fermion field has
still 2 degrees of freedom in D dimensions. This violates SUSY, since the fermion and the
gauge field are located in the same supermultiplet. Therefore DREG is not applicable for
MSSM calculations.

3.1.1 Dimensional reduction (DRED)

In dimensional reduction, the loop integration is still performed in D dimensions, but all other
tensors connected to vector fields are kept 4–dimensional. In DRED it will be necessary to
introduce two different metric tensors gµν and ĝµν which fulfill the conditions

gµν ĝνρ = ĝµρ , ĝνρĝ
νρ < D. (3.7)

Since DRED keeps the degrees of freedom of the components of the super–multiplets equal
in D dimension, it is the appropriate regularization scheme for MSSM calculations at least at
one–loop level. Analogously to the MS scheme, one can define a minimal–subtraction scheme
in DRED which is then called DR .

3.1.2 Multiplicative Renormalization

We will make use of the so–called multiplicative renormalization. In this scheme all bare
parameters and fields entering in the original Lagrangian are replaced by their corresponding
renormalized ones, which are obtained by the multiplication with appropriate renormalization
constants:

g0 → Zg g =
(
1 +

δg

g

)
g , (3.8)

φ0 → Z
1/2
φ φ =

(
1 +

1

2
δZφ

)
φ . (3.9)

Expanding the renormalization constants Zg and Z
1/2
φ around the value 1, the original La-

grangian splits into a renormalized Lagrangian and a part containing the counter terms δg
and δZφ, i.e.

L
(
g0, φ0

)
= L

(
g, φ
)
+ δL

(
g, φ, δg, δZφ

)
. (3.10)

In order to absorb the divergences and to give the parameters a well–defined meaning, these
counter terms have to fulfill several requirements depending on the chosen renormalization
scheme.
In the program package HFOLD, we use the DR renormalization scheme. In the following
we will review some results from the renormalization of the Standard Model and discuss the
renormalization of two–point–functions. Furthermore, we give all renormalization conditions
of the parameters needed for the explicit calculation. In our approach the tree-level couplings
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are defined in the DR scheme at the scale Q. This implies that there are no coupling CTs at
all. The DR scheme is defined by setting the UV divergence parameter ∆ = 0. However, in
our calculations we work with ∆ 6= 0 and take for the coupling CTs only the divergent part
∝ ∆. This is very helpful because having a UV finite renormalized amplitude is equivalent
to the RG invariance proof of the ordinary DR scheme.

3.2 SM gauge sector

The gauge sector of the Standard Model is not affected by its minimal extension, the MSSM.
Thus, the treatment of the electroweak gauge sector is identical to the renormalization proce-
dure in the SM, which is discussed in detail in [31, 32]. For the gauge fields the renormalization
constants are given by

W±
µ →

(
1 + 1

2
δZW

)
W±
µ , (3.11)

(
Aµ
Zµ

)
→

(
1 + 1

2
δZAA

1
2
δZAZ

1
2
δZZA 1 + 1

2
δZZZ

)(
Aµ
Zµ

)
. (3.12)

Since the photon stays massless also after renormalization, only the weak gauge bosons Z0

and W± receive mass corrections, i.e.

m2
W → m2

W + δm2
W , m2

Z → m2
Z + δm2

Z . (3.13)

Decomposing the vector two–point–functions and the associated self–energies into their
transverse and longitudinal parts,

ΓWµν(k) = −igµν
(
k2 −m2

W

)
− i
(
gµν −

kµkν
k2

)
ΠW
T (k2)− i

kµkν
k2

ΠW
L (k2) , (3.14)

Γabµν(k) = −igµν
(
k2 −m2

a

)
δab − i

(
gµν −

kµkν
k2

)
Πab
T (k

2)− i
kµkν
k2

Πab
L (k

2) , (3.15)

with a, b = {A,Z}, the corresponding renormalized self–energies in

k

V a
µ

V b
ν M = i εµ(k) Γ̂abµν(k) ε

∗ν(k)

can be written as

Π̂W (k2) = ΠW (k2) +
(
k2 −m2

W

)
δZW − δm2

W , (3.16)

Π̂ab(k2) = Πab(k2) + 1
2

(
k2 −m2

a

)
δZab + 1

2

(
k2 −m2

b

)
δZba − δabδm

2
a , (3.17)

valid for both the transverse and longitudinal parts with m2
A = δm2

A = 0. Applying the
on–shell renormalization conditions to Γ̂abµν(k),

Re Γ̂abµν(k) ε
ν(k)

∣∣∣
k2=m2

a

= 0, lim
k2→m2

a

1

k2 −m2
a

Re Γ̂abµν(k) ε
ν(k) = − εµ(k) , (3.18)
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which means that the poles of the propagators are determined by the physical (pole) masses
and the residua are set to 1 on shell (k2 = m2

a), the counter terms are given by

δZaa = −Re Π̇aa
T (m2

a) , δZW = − Re Π̇W
T (m2

W ) , (3.19)

δZab =
2

m2
a −m2

b

ReΠab
T (m

2
b) , a 6= b , (3.20)

δm2
Z = ReΠZZ

T (m2
Z) , δm2

W = ReΠWW
T (m2

W ) , (3.21)

with Π̇(m2) = ∂
∂k2

Π(k2)
∣∣
k2=m2 .

Since the weak mixing angle is a derived quantity in the on–shell scheme, determined by the
condition mW = mZ cW (cW ≡ cos θW ) [30], its renormalization constant can be expressed
in terms of the mass counter terms of the weak gauge bosons

δc2W
c2W

=
δm2

W

m2
W

− δm2
Z

m2
Z

,
δs2W
s2W

= − c2W
s2W

δc2W
c2W

. (3.22)

3.3 Electric charge

For the renormalization of the electric charge one only has to renormalize one single vertex,
for which usually the electron–positron–photon vertex is taken. In requiring for the renor-
malized elementary charge to describe the electromagnetic coupling in the Thomson limit,
i.e. for on–shell external particles and vanishing photon momentum,

ū(p) Γ̂eeγµ (p, p) u(p)
∣∣∣
p2=m2

e

= ie ū(p)γµu(p), (3.23)

the counter term for the electric charge in e0 = e+ δe is given by

δe

e
= −1

2
δZAA +

sW
cW

1

2
δZZA =

1

2
Π̇AA
T (0) +

sW
cW

ΠAZ
T (0)

m2
Z

. (3.24)

However, the scale of high energy processes lies in the range of hundreds of GeV and thus
far away from the Thomson limit. In addition, contributions of light hadrons in Π̇AA

T (0) lead
to large theoretical uncertainties [33, 32]. To avoid this problem, we use as input an effective
MS running coupling at Q = mZ , where the contributions from light fermions are already
absorbed [34, 35],

αeff
MS

(m2
Z) =

α

1−∆αeff
MS

(m2
Z)

≃ 1

127.7
. (3.25)

Here, α is the fine structure constant given in the Thomson limit, α = 1/137.036, and

∆αeff
MS

(m2
Z) =

α

π

(
5

3
+

55

27

(
1 +

α

π

))
+∆αlep(m

2
Z) + ∆α

(5)
had(m

2
Z) , (3.26)
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where ∆αlep(m
2
Z) ≃ 0.031497687 are the leptonic and ∆α

(5)
had(m

2
Z) = 0.02769 ± 0.00035 are

the hadronic contributions [36]. The counter term for the electric charge δe is then given by

δe

e
=

1

(4π)2
e2

6

[
4
∑

f

N f
C e

2
f

(
∆+ log

Q2

x2f

)
+
∑

f̃

2∑

m=1

N f
C e

2
f

(
∆+ log

Q2

m2
f̃m

)

+4
2∑

k=1

(
∆+ log

Q2

m2
χ̃+

k

)
+

2∑

k=1

(
∆+ log

Q2

m2
H+

k

)
− 22

(
∆+ log

Q2

m2
W

)]
,

(3.27)

with xf = mZ ∀ mf < mZ and xt = mt. N
f
C is the colour factor, N f

C = 1, 3 for (s)leptons
and (s)quarks, respectively. ∆ denotes the UV divergence factor, ∆ = 2/ǫ− γ + log 4π, with
γ being the Euler–Mascheroni constant γ = lim

m→∞

(∑m
k=1

1
k
− logm

)
∼ 0.577216.

3.4 Renormalization of two–point functions

Before starting with the renormalization of the remaining parameters and fields of the MSSM,
which are necessary for our calculations, i.e. the ones of the Higgs and sfermion sector, we
will have a short look on the subject of renormalizing two–point functions, as they are the
basic building blocks for calculating higher order corrections.

3.4.1 Scalar particles with mixing

According to multiplicative renormalization, the unrenormalized fields φ0,i and mass param-
eters m0,i in the bare Lagrangian

L0 = −φ∗
0,i δij

(
∂µ∂

µ +m2
0,i

)
φ0,j (3.28)

are replaced by the corresponding renormalized ones, i.e.

L = −φ∗
i δij

(
∂µ∂

µ +m2
i

)
φj , (3.29)

φ0,j =
√
Zjk φk =

(
δjk +

1
2
δZjk

)
φk +O(δZ2) , (3.30)

(m0,i)
2 = m2

i + δm2
i . (3.31)

For the full renormalized two–point–function

k

φj φi M = i Γ̂ij(k
2) = iδij(k

2−m2
i ) + iΠ̂ij(k

2)

we demand the on–shell renormalization conditions

Re Γ̂ij(k
2)
∣∣∣
k2=m2

j

= 0 , lim
k2→m2

i

1

k2 −m2
i

ReΓ̂ii(k
2) = 1 . (3.32)
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Inserting the renormalized self–energy Π̂ij(k
2) = Πij(k

2) + Π
(c)
ij (k

2) with the self–energy
counter–term

Π
(c)
ij (k

2) = −δij δm2
i +

1
2

(
k2 −m2

i

)
δZij +

1
2

(
k2 −m2

j

)
δZ∗

ji (3.33)

into eq. (3.32) leads to

δm2
i = ReΠii(m

2
i ) , (3.34)

δZij =
2

m2
i −m2

j

ReΠij(m
2
j) i 6= j , (3.35)

δZii = δZ∗
ii = −Re Π̇ii(m

2
i ) . (3.36)

3.4.2 Fermionic particles with mixing

Like in the previous chapter we have the same structure for the physical as well as for the
bare Lagrangian:

L = ψ̄j δij (i 6∂ −mi)ψi , (3.37)

L0 = ψ̄0,j δij (i 6∂ −m0,i)ψ0,i . (3.38)

The relation between the unrenormalized and the renormalized quantities is given by attach-
ing multiplicative renormalization constants to the unrenormalized fermion fields ψ0,i and
the mass parameter m0,i, i.e.

ψ0,j =
(
δjk +

1
2
δZL

jkPL + 1
2
δZR

jkPR
)
ψk , (3.39)

ψ̄0,i = ψ̄l
(
δil +

1
2
δZR

il

†
PL + 1

2
δZL

il

†
PR
)
, (3.40)

m0,i = mi + δmi , (3.41)

where the ‘dagger’ † in δZL,R
il

†
indicates hermitian conjugation with regard to the spinor

indices. For the renormalized one particle irreducible (1PI) two–point–function

k

ψj ψi

M = i ūi(k)Γ̂ij(k)uj(k)

Γ̂ij(k) = δij( 6k −mi) + Π̂ij(k)

with the renormalized self–energy

Π̂ij(k) = 6k PL Π̂L
ij(k)+ 6k PR Π̂R

ij(k) + Π̂S,L
ij (k)PL + Π̂S,R

ij (k)PR (3.42)

we require the on–shell renormalization conditions

Re Γ̂ij(k) uj(k)
∣∣∣
k2=m2

j

= 0 , lim
k2→m2

i

1

6k −mi

Re Γ̂ii(k)ui(k) = ui(k) . (3.43)

Inserting the counter–term Lagrangian

δL = ψ̄i
(
6kPLCL

ij + 6kPRCR
ij − CS,L

ij PL − CS,R
ij PR

)
ψj , (3.44)
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into L0 = L+ δL,
k

ψj ψi

M = i
(
6kPLCL

ij + 6kPRCR
ij

− CS,L
ij PL − CS,R

ij PR
)
,

we get for the coefficients C ···
ij

CL
ij = 1

2

(
δZL

ij + δZL
ji

†)
, (3.45)

CR
ij = 1

2

(
δZR

ij + δZR
ji

†)
, (3.46)

CS,L
ij = 1

2

(
mi δZ

L
ij +mj δZ

R
ji

†)
+ δij δmi , (3.47)

CS,R
ij = 1

2

(
mi δZ

R
ij +mj δZ

L
ji

†)
+ δij δmi . (3.48)

Thus the renormalized self–energies can be written as

Π̂L
ij = ΠL

ij +
1
2

(
δZL

ij + δZL
ji

†)
, (3.49)

Π̂R
ij = ΠR

ij +
1
2

(
δZR

ij + δZR
ji

†)
, (3.50)

Π̂S,L
ij = ΠS,L

ij − 1
2

(
mi δZ

L
ij +mj δZ

R
ji

†)− δij δmi , (3.51)

Π̂S,R
ij = ΠS,R

ij − 1
2

(
mi δZ

R
ij +mj δZ

L
ji

†)− δij δmi . (3.52)

Taking the renormalization conditions in eq. (3.43) into account, we obtain the counter terms
for the mass parameter and the wave–function corrections

δmi =
1

2
Re
[
mi

(
ΠL
ii(mi) + ΠR

ii(mi)
)
+ΠS,L

ii (mi) + ΠS,R
ii (mi)

]
. (3.53)

δZL
ij =

2

m2
i −m2

j

Re
[
m2
j Π

L
ij(mj) +mimj Π

R
ij(mj) +miΠ

S,L
ij +mj Π

S,R
ij

]
, (3.54)

δZL
ii = −ΠL

ii(mi) +
1

2mi

[
ΠS,L
ii (mi)− ΠS,R

ii (mi)
]

−mi
∂

∂k2

[
mi

(
ΠL
ii(k) + ΠR

ii(k)
)
+ΠS,L

ii (k) + ΠS,R
ii (k)

]∣∣∣∣
k2=m2

i

, (3.55)

and the corresponding right–handed terms, δZ
(S),R
ij = δZ

(S),L
ij (L↔ R).

3.5 Sfermion sector

According to the results of section 3.4, where we have derived the mass corrections and the
wave–function renormalization constants in terms of self–energies, these counter terms are
given in the sfermion sector by

δm2
f̃i

= ReΠf̃
ii(m

2
f̃i
) (3.56)



30 CHAPTER 3. RENORMALIZATION

and

δZ f̃
ii = − Re Π̇f̃

ii(m
2
f̃i
) , i = (1, 2) , (3.57)

δZ f̃
ij =

2

m2
f̃i
−m2

f̃j

ReΠf̃
ij(m

2
f̃j
) , i 6= j . (3.58)

3.5.1 Renormalization of mixing angles

In order to renormalize the parameters entering in the sfermion mass matrix M 2
f̃

(see

eq. (2.70)), we have to look at its counter term δM 2
f̃
,

δM 2
f̃
=
(
δRf̃

)†
(
m 2
f̃1

0

0 m 2
f̃2

)
Rf̃ +

(
Rf̃
)†
(
δm 2

f̃1
0

0 δm 2
f̃2

)
Rf̃ +

(
Rf̃
)†
(
m 2
f̃1

0

0 m 2
f̃2

)
δRf̃ ,

(3.59)

with

δRf̃ = −
(

sin θf̃ − cos θf̃
cos θf̃ sin θf̃

)
δθf̃ . (3.60)

The renormalization constant of the rotation matrix Rf̃
ij is determined such as to cancel the

anti–hermitian part of the sfermion wave–function corrections,

δRf̃
ij =

2∑

k=1

1

4

(
δZ f̃

ik − δZ f̃
ki

)
Rf̃
kj . (3.61)

Therefore, the counter term for the sfermion mixing angle θf̃ is given by [38, 39]

δθf̃ =
1

4

(
δZ f̃

12 − δZ f̃
21

)
=

1

2
(
m2
f̃1
−m2

f̃2

) Re
(
Πf̃

12(m
2
f̃2
) + Πf̃

21(m
2
f̃1
)
)
, (3.62)

and thus

δ
(
M 2

f̃

)
ij

=
1

2

2∑

k,l=1

(
Rf̃
ik

)†
Re
[
Πf̃
kl(m

2
f̃l
) + Πf̃

lk(m
2
f̃k
)
]
Rf̃
lj . (3.63)

3.6 Higgs sector

The renormalization of the Higgs mixing angle α is treated in a similar way as the sfermion
mixing angle θf̃ . Consider the mass matrix of the CP even Higgs bosons h0 and H0 (cf.
section 2.3.1),

M2(H0, h0) =

(
sin2 β m2

A0 + cos2 β m2
Z − sin β cos β(m2

A0 +m2
Z)

− sin β cos β(m2
A0 +m2

Z) cos2 β m2
A0 + sin2 β m2

Z

)

=
(
RH0)T ·

(
m2
H0 0

0 m2
h0

)
·RH0

, mh0 < mH0 (3.64)
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with the rotation matrix

RH0

ij ≡ Rij(α) =

(
cosα sinα

− sinα cosα

)

ij

. (3.65)

Analogously to the case of the sfermion mixing angle, the renormalization constant of the
rotation matrix RH0

ij is determined such as to cancel the anti–hermitian part of the Higgs
wave–function corrections,

δRH0

ij =
2∑

k=1

1

4

(
δZH0

ki − δZH0

ik

)
RH0

kj , (3.66)

which leads to the counter term

δα =
1

4

(
δZH

21 − δZH
12

)
=

1

2
(
m2
H0−m2

h0

) Re
(
ΠH

12(m
2
H0) + ΠH

21(m
2
h0)
)
. (3.67)

Note that the indices the wave–function renormalization constants δZH0

ij are interchanged
due to the conventional nomenclature labelling the light Higgs boson by an index 1 and the
heavy one by an index 2.
For the correct definition of the wavefunction counterterms in the Higgs sector, we have to
be careful of the contribution originating from the tadpoles. We will discuss this issue in the
next section.

3.7 Renormalization of tanβ

Due its close connection to spontaneous symmetry breaking SSB, tan β enters almost all
sectors of the MSSM. As a consequence, it has a major effect on allmost all MSSM ob-
servables. The problem with the renormalization of tan β is, that it does not correspond to
direct measurable observable. Several renormalization schemes for tan β suffer from specific
disadvantages, leading either to gauge dependences or numerical instabilities [42].

Dabelstein-Chankowski-Pokorski-Rosiek Scheme (DCPR) [79, 37]

This scheme is based on an on-shell renormalisation scheme in the Higgs sector working in
the usual linear gauge. The definition of tan β however is difficult to connect with an on-shell
quantity that represents a direct interpretation in terms of a physical observable. One first
introduces a wavefunction renormalisation constant δZHi

, for each Higgs doublet Hi, i.e.
before rotation

Hi → (1 +
1

2
δZHi

)Hi , i = 1, 2 . (3.68)

The vacuum expectation values are also shifted such that the counter term for each vi writes
as

vi → vi(1−
δvi
vi

+
1

2
δZHi

)Hi , (3.69)

obtaining
δ tan β

tan β
=
δv1
v1

− δv2
v2

+
1

2
(δZH2

− δZH1
) . (3.70)
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In the DCPR scheme one takes δv1
v1

= δv2
v2

[99], leading to the expression

δ tan β

tan β
=

1

2
(δZH2

− δZH1
) . (3.71)

The counter term δ tan β can be now defined by requiring that the renormalized A0 − Z0

transition vanishes at p2 = m2
A0

Re Σ̂A0Z0(m2
A0) = 0 , (3.72)

with

Σ̂A0Z0(m2
A0) = ΣA0Z0(m2

A0) + i
mZ

4
s2β (δZH2

− δZH1
) = 0 , (3.73)

one then obtains
δ tan β

tan β
=

i

mZs2β
Re ΣA0Z0(m2

A0) . (3.74)

This definition is obviously not related to an observable. Moreover δ tan β is expressed in
terms of unphysical wavefunction renormalization constants.kA0 Z0� M = �i k��AZ(k2) ���(k)

Figure 3.1: A0Z0 mixing self–energy relevant for the renormalization of tan β.

3.7.1 DR scheme

In the DR scheme the counter term for tan β is simpliy defined by

δ tan β

tan β
ε
=

i

mZs2β
Re ΣA0Z0(m2

A0) , (3.75)

where
ε
= takes only terms proportional to 1

ε
into account.

3.8 Tadpole contributions

To treat correctly the tadpole contributions, we have to look at the mass matrices and the
minimization condition of the Higgs potential. We will use the scheme proposed by Pierce and
Papadopoulos [100], where the terms linear in h0 and H0 are to be thought as counterterms
for the tadpole contributions. To each order in the loop expansion, we require that the
tadpole contribution vanishes.
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3.8.1 The CP-even Higgs mass matrix

The mass matrix of the CP-even Higgs system has the following form

M2
H =

(
3g2v2

1

8
− g2v2

2

8
+

3g
′
2v2

1

8
− g

′
2v2

2

8
+m2

1 −1
4
g2v1v2 − 1

4
g

′2v1v2 −m2
12

−1
4
g2v1v2 − 1

4
g

′2v1v2 −m2
12 −g2v2

1

8
+

3g2v2
2

8
− g

′
2v2

1

8
+

3g
′
2v2

2

8
+m2

2

)
. (3.76)

We can reexpress g, g
′

, v1, v2 in terms of MZ , cβ and sβ as

M2
H =

(
3c2βm

2
Z

2
+m2

1 −
m2

Zs
2
β

2
−cβm2

Zsβ −m2
12

−cβm2
Zsβ −m2

12 − c2βm
2
Z

2
+m2

2 +
3m2

Zs
2
β

2

)
. (3.77)

The tadpoles Ti correspond to the terms linear in the fields φ0
1 and φ

0
2 in the Higgs potential

VH . Due the minimization condition of the Higgs potential T1 and T2 are zero, therefore they
relate m2

1,m
2
2 and m2

12 by

m2
1 = −

c2βm
2
Z

2
+
m2

12sβ
cβ

+
m2
Zs

2
β

2
+
T1
v1

, (3.78)

m2
2 =

c2βm
2
Z

2
+
cβm

2
12

sβ
−
m2
Zs

2
β

2
+
T2
v2

.

It is illuminating to express the mass matrix in terms of the tadpole parameters Ti

M2
H =

(
c2βm

2
Z +m2

A0s2β +
T1
v1

−cβm2
A0sβ − cβm

2
Zsβ

−cβm2
A0sβ − cβm

2
Zsβ c2βm

2
A0 +m2

Zs
2
β +

T2
v2

)
. (3.79)

In the next step we express the tadpoles T1 and T2 in terms of the tadpoles of the physical
fields Th0 and TH0 by

(
TH0

Th0

)
= O(α)

(
T1
T2

)
⇒
(
T1
T2

)
=

(
cosαTH0 − sinαTh0
sinαTH0 + cosαTh0

)
. (3.80)

We then introduce the tadpole matrices
(
tH0H0 tH0h0

th0H0 th0h0

)
= O(α)

( T1
v1

0

0 T2
v2

)
O(α)T ,

(
tG0G0 tG0A0

tA0G0 tA0A0

)
= O(β)

( T1
v1

0

0 T2
v2

)
O(β)T =

(
tG±G± tG±H±

tH±G± tH±H±

)
, (3.81)

with the help of relations v1 = v cos β, v2 = v sin β, gv = 2mW and e = gsw we find that
(
tH0H0 tH0h0

th0H0 th0h0

)
=

(
cα sα
−sα cα

)( T1
v1

0

0 T2
v2

)(
cα −sα
sα cα

)
⇒

tH0H0 =
e

2mW sw

[
Th0

(
s2αcα
sβ

− c2αsα
cβ

)
+ TH0

(
c3α
cβ

+
s3α
sβ

)]
,

tH0h0 =
e

2mW sw

[
Th0

(
s2αcα
cβ

+
c2αsα
sβ

)
+ TH0

(
−c

2
αsα
cβ

+
s2αcα
sβ

)]
,

th0h0 =
e

2mW sw

[
Th0

(
c3α
sβ

− s3α
cβ

)
+ TH0

(
s2αcα
cβ

+
c2αsα
sβ

)]
.

(3.82)
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Thus, we can express the Higgs potential up to terms linear and bilinear in the Higgs fields

VH = V0 +H0TH0 + h0Th0 +
1

2

(
H0 h0

)( m2
H0 + tH0H0 tH0h0

th0H0 m2
h0 + th0h0

)(
H0

h0

)

+
1

2

(
G0 A0

)( tG0G0 tG0A0

tA0G0 m2
A0 + tA0A0

)(
G0

A0

)

+
1

2

(
G− H− )†

(
tG−G− tG±H±

tH±G± m2
H± + tH±H±

)(
G−

H−

)
+ . . . . (3.83)

From the minimalization condition it follows that the terms linear in the fields h0 and H0

must vanish at tree–level. This condition can be satisfied by setting the tadpole parameters
zero (Th0 = 0, TH0 = 0), which leads to the tree–level mass matrices. However, beyond tree–
level the tadpole parameters Th0 and TH0 receive loop-corrections from tadpole diagrams τH0

and τh0 . Therefore we introduce the following renormalization condition

δTi + τi = 0 , (3.84)

where the tadpole contributions are exactly canceled by their corresponding counterterms.
Then the counterterm for the mass matrix M2

H reads as

δM2
H =

(
δc2βm

2
Z + c2βδm

2
Z + δm2

A0s2β +m2
A0δs2β +

δT1
v1

−δs2β(m2
A0 +m2

Z)− s2β(δm
2
A0 + δm2

Z)

−δs2β(m2
A0 +m2

Z)− s2β(δm
2
A0 + δm2

Z) δc2βm
2
A0 + c2βδm

2
A0 + δm2

Zs
2
β +m2

Zδs
2
β +

δT2
v2

)
.

After rotating to mass eigenstates the counterterm for the H0h0–system reads as

δM2
H0h0 =

(
δM2

H0 + δtH0H0 δtH0h0

δth0H0 δM2
h0 + δth0h0

)
, (3.85)

with

δtH0h0 = δth0H0 = −1

v

[
τh0

(
s2αcα
cβ

+
c2αsα
sβ

)
+ τH0

(
−c

2
αsα
cβ

+
s2αcα
sβ

)]
. (3.86)

Therfore we have to take the tadpole contributions in the wavefunction renormalization
constants into account by

δZh0h0 = −Re Π̇h0h0(m
2
h0) , (3.87)

δZH0H0 = −Re Π̇H0H0(m2
H0) , (3.88)

δZh0H0 =
2

m2
h0 −m2

H0

(
ReΠh0,H0(m2

h0)− δth0H0

)
, (3.89)

δZH0h0 =
2

m2
H0 −m2

h0

(
ReΠH0h0(m

2
H0)− δtH0h0

)
. (3.90)
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3.8.2 The CP-odd Higgs mass matrix

The mass matrix of the CP-odd Higgs system has the following form

M2
P =

(
g2v2

1

8
− g2v2

2

8
+

g
′
2v2

1

8
− g

′
2v2

2

8
+m2

1 m2
12

m2
12 −g2v2

1

8
+

g2v2
2

8
− g

′
2v2

1

8
+

g
′
2v2

2

8
+m2

2

)
. (3.91)

We can reexpress g, g
′

, v1, v2 in terms of MZ , cβ and sβ by

M2
P =

(
c2βm

2
Z

2
+m2

1 −
m2

Zs
2
β

2
m2

12

m2
12 − c2βm

2
Z

2
+m2

2 +
m2

Zs
2
β

2

)
. (3.92)

We can then express m2
1 and m

2
2 with the tadpole parameters T1 and T2 using eqs. (3.78) as

M2
P =

( T1
v1

+m2
A0s2β cβm

2
A0sβ

cβm
2
A0sβ c2βm

2
A0 +

T2
v2

)
, (3.93)

then the counterterm of the matrix M2
P reads

δM2
P =

(
δm2

A0s2β +m2
A0δs2β +

δT1
v1

1
2
δs2βm

2
A0 +

1
2
s2βδm

2
A0

1
2
δs2βm

2
A0 +

1
2
s2βδm

2
A0 δc2βm

2
A0 + c2βδm

2
A0 +

δT2
v2

)
. (3.94)

Again we introduce the tadpole matrices for the A0G0–system

(
tG0G0 tG0A0

tA0G0 tA0A0

)
=

(
−cβ sβ
sβ cβ

)( T1
v1

0

0 T2
v2

)(
−cβ sβ
sβ cβ

)
⇒

tG0G0 =
e

2mW sw
[Th0 (−sαcβ + sβcα) + TH0 (cβcα + sβsα)] ,

tG0A0 =
e

2mW sw
[Th0 (sαsβ + cβcα) + TH0 (−sβcα + cβsα)] ,

tA0A0 =
e

2mW sw

[
Th0

(−s2βsα
cβ

+
c2βcα

sβ

)
+ TH0

(
s2βsα

cβ
+
c2βsα

sβ

)]
.(3.95)

After rotation to mass eigenstates the counterterm for the G0A0–system reads as

δM2
G0A0 =

(
cβδT1
v

+
sβδT2
v

cβδT2
v

− sβδT1
v

cβδT2
v

− sβδT1
v

δm2
A0 +

δT2c2β
sβv

+
s2βδT1

vcβ

)
. (3.96)

Reexpressing the tadpoles T1 and T2 in terms of Th0 and TH0 leads to

δM2
G0A0 =

(
δtG0G0 δtA0G0

δtG0A0 δm2
A0 + δtA0A0

)
, (3.97)

with

δtA0G0 =
cβδT2
v

− sβδT1
v

(3.98)

= −1

2
[(cβsα − sβcα)TH0 + (cβcα + sβsα)Th0 ] . (3.99)
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with δTH0 = −τH0 and δTh0 = −τh0 .
The wavefunction renormalization constants for the G0A0–system are then given by

δZA0A0 = −Re Π̇A0A0(m2
A0) , (3.100)

δZG0G0 = −Re Π̇G0G0(m2
G0) , (3.101)

δZA0G0 =
2

m2
A0 −m2

G0

(
ReΠA0G0(m2

A0)− δtA0G0

)
, (3.102)

δZG0A0 =
2

m2
G0 −m2

A0

(
ReΠG0A0(m2

G0)− δtA0G0

)
. (3.103)

3.8.3 The charged Higgs mass matrix

The mass matrix of the charged Higgs system is given by

M2
C =

(
s2β(m

2
A0 +m2

W ) + T1
v1

s2β
2
(m2

A0 +m2
W )

s2β
2
(m2

A0 +m2
W ) c2β(m

2
A0 +m2

W ) + T2
v2

)
. (3.104)

The corresponding mass counterterm can be written as

δM2
C =

(
δs2β(m

2
A0 +m2

W ) + s2β(δm
2
A0 + δm2

W ) + δT1
v1

δs2β
2
(m2

A0 +m2
W ) + 2s2β(δm

2
A0 + δm2

W )
δs2β
2
(m2

A0 +m2
W ) + 2s2β(δm

2
A0 + δm2

W ) δc2β(m
2
A0 +m2

W ) + c2β(δm
2
A0 + δm2

W ) + δT2
v2

)
.

(3.105)
Performing the rotation to mass eigenstates the counterterm reads as

δM2
G± =

(
δtG0G0 δtG0A0

δtA0G0 δm2
H± + δtA0A0

)
, (3.106)

with δm2
H± = δm2

A0+δm2
W . The wavefunction renormalization constants for the charge Higgs

system G±H± can then be expressed as

δZH+H+ = −Re Π̇H+H+(m2
H+) , (3.107)

δZG+G+ = −Re Π̇G+G+(m2
G+) , (3.108)

δZH+G+ =
2

m2
H+ −m2

G+

(
ReΠH+G+(m2

H+)− δtH+G+

)
, (3.109)

δZG+H+ =
2

m2
G+ −m2

H+

(
ReΠG+H+(m2

G+)− δtH+G+

)
. (3.110)



Chapter 4

MSSM two–body Higgs decays at full
one-loop level

4.1 Introduction

The search for the Higgs boson(s) is one of the main goals of the LHC. The Standard
Model predicts one Higgs boson, with the present lower bound of its mass mH ≥ 114.4 GeV
(at 95% confidence level) [43]. Extensions of the SM allow the existence of more than one
Higgs bosons. As already mentioned, the Minimal Supersymmetric Standard Model (MSSM)
contains five physical Higgs bosons: two neutral CP–even (h0 and H0), one neutral CP–odd
(A0) and two charged ones (H±) [44, 45]. The existence of a charged Higgs boson or a CP–
odd neutral one would give clear evidence for physics beyond the SM. For a MSSM Higgs
discovery precise predictions for its decay modes and branching ratios are mandatory. The
goal of this thesis was to develop a program package, that calculates all two–body MSSM
Higgs boson decays at full one–loop level. Therefore the program code HFOLD (Higgs Full
One Loop Decays) was developed. In the following section we will discuss the MSSM Higgs
decay modes, the renormalization used in HFOLD and details of the program code. Since
there are many decay modes, we will keep the discussion on a quite general level.

4.1.1 Decay patterns

As fermion number is conserved we only have four possibilities of Feynman graphs (at any
loop level) for a two-body decay of a scalar: the decay into two scalars, into two fermions,
into a scalar and a vector boson, and into two vector bosons, see Fig. (4.1). The following

37
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Figure 4.1: Four possibilities of two-body decays of a scalar particle

MSSM Higgs boson decays have been calculated:

Fig. 4.1a : φ → f̃i f̃
∗
j (i, j = 1, 2),

H+ → f̃i f̃
′∗
j ,

H0 → h0 h0 , A0A0 , A0 Z0 ,

Fig. 4.1b : φ → f f̄ ,

φ → χ̃0
k χ̃

0
l (k, l = 1, . . . , 4) ,

φ → χ̃+
r χ̃

−
s (r, s = 1, 2) ,

H+ → f f̄ ′ ,

H+ → χ̃0
k χ̃

+
s ,

Fig. 4.1c : A0 → h0 Z0 , H0 Z0 ,

H+ → h0W+ , H0W+ ,

Fig. 4.1d : H0 → Z0 Z0, W+W− ,

φ → γγ, gg, γZ0 (loop induced) ,

φ = h0, H0, A0 and f = νl, e, µ, τ, u, d, c, s, t, b, f
′

denotes the isospin partner to
f, e.g. f = t, f

′

= b, f̃i and f̃
′

j denote the SUSY partners of f and f
′

, χ̃0
k and χ̃±

s are
the neutralinos and charginos, respectively. The Higgs bosons couple to fermions via their
Yukawa couplings. Therefore, the branching ratios (BRs) into top quark(s) are large, if they
are kinematically allowed. The BRs of h0 → b̄ b and to τ+τ− are dominant, especially for large
tan β. The decays into the third generation sfermions may become dominant when they are
kinematically possible. The decays into quarks and squarks can have large one-loop SUSY–
QCD corrections. The decays into charginos and/or neutralinos can have significant one-
loop contributions from the third generation (s)fermions depending on the gaugino/higgsino
mixing.
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4.2 Calculation at full one-loop level

Beyond tree level one has to deal with so called ultraviolet (UV) and infrared (IR) diver-
gences. The UV divergences originate from the infinite momentum in loops. These diver-
gences have to be subtracted in a consistent way to obtain finite amplitudes at one–loop
level. The IR divergencies arise form photons or gluons in loops. Since these particles are
massless, they cause divergences for zero momentum. These IR divergences can be cured by
adding the corresponding three-body process decay with one additional photon/gluon in the
final state.
At full one-loop level one has to deal with hundreds of Feynman diagrams in the MSSM, this
makes a correct calculation per hand almost impossible. Therefore tools for generating the
amplitudes and for their tensorial reduction are necessary. We have generated all amplitudes
with the tool FeynArts 3.3 (FA) and the corresponding Fortran code was produced with the
help of FormCalc 5.4 (FC)[91]. It was also necessary to work out all counterterms for the
whole MSSM. Since there are many decay channels it was worthwhile to develop tools at
Mathematica level, that perform the renormalization automatically.

4.2.1 Renormalization of two–body decays

The definition of the counterterms has been given in the previous section. Now we want to
discuss the renormalization of two–body decay processes. The renormalized finite one-loop
amplitude M1 is the sum of all vertex diagrams, the amplitudes arising from the coupling
counterterms MCT and the amplitudes arising from the wavefunction renormalization con-
stants MWFR,

M1 = Mvertex +MCT +MWFR . (4.1)

Since the renormalization in HFOLD is performed in the DR scheme, the counterterms
contain only UV divergent parts. We first calculated the counterterms in the on–shell scheme,
where we checked the UV and IR convergence of our amplitudes. This was a good check
for the correctness of the calculated amplitudes. Then we modified the counterterm file so
that the CTs contain only the UV divergent part. However, to maintain IR convergence of
our amplitudes we take into account the finite parts of the wavefunction renormalization
constants. The formulae for the wavefunction and mass counterterms (CTs) for sfermions,
fermions and vector bosons in the on-shell scheme and the corresponding renormalization
conditions can be found e.g. in [88, 89, 90]. The results for the DR scheme are then simply
the UV divergent parts of the on-shell CTs. The renormalized one-loop amplitude is the sum
of the tree-level amplitude and the one-loop contributions, see Fig E.4.
The vertex corrections and all selfenergy contributions can be directly calculated with
FA/FC.
The total two-body Higgs decay width can be written in one-loop approximation as

Γ = NC × kin×
(
|M0|2 + 2 Re(M†

0M1)
)
,

kin =
κ(m2

0,m
2
1,m

2
2)

16πm3
0

,
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MV MCT MWFRM1

= + +

Figure 4.2: One-loop renormalization procedure of a 1 to 2 process schematically

with the colour factor NC = 3 for decays into quarks and squarks and NC = 1 for decays
into other particles, respectively.

4.3 Setup for automatic renormalization

4.3.1 Coupling renormalization

For the coupling renormalization we shift every inpendent coupling by g0 → g + δg, where
g denotes the renormalized parameter and δg denotes the corresponding counterterm. Then
we only take into account terms in linear in δg. This procedure has been implemented at the
Mathematica level. For example: the charged Higgs decay H+ → tb̄ is described at tree–level
by the matrix element

MH+→tb̄ =
hbsβ
tβ

PL + htcβtβPR . (4.2)

Now we perform the shift in the parameters:

sβ → sβ + δsβ ,

cβ → cβ + δcβ ,

tβ → tβ + δtβ ,

hb → hb + δhb ,

ht → ht + δht .

Plugging this back into eq. (4.2) and taking only terms linear in δg, we obtain the coupling
counterterm matrix element

MCT
H+→tb̄ = − 1

tβtβ2

(
δcβPRhbt

2
β + δsβPLhtt

2
β + cβδtβPRtβhb tan β

2 − δtβPLsβtβht
)
. (4.3)

4.3.2 Wavefunction renormalization

We have also automatized the necessary procedure of wavefunction renormalization at the
Mathematica level with the use of generic formulae. In our renormalization approach the
one–loop induced particle mixing has been taken into account at the stage of wavefunction
renormalization for all the Higgs systems (H0h0, G0A0, G±H±), the chargino system χ̃±

i and
the neutralino system χ̃0

i . Therefore we need the Lagrangians, where one external particle of
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the original configuration is exchanged by its corresponding mixing partner due wavefunction
renormalization. The four generic Lagrangians for the decay modes are given by

LSFF = ψ̄1(gLPL + gRPR)ψ2φ0 , (4.4)

LSSS = gφ0φ1φ2 , (4.5)

LSV V = gφ0V1V2 , (4.6)

LSSV = gφ0φ1V2 . (4.7)

(We skipped Lorentz indices in this section, since they don’t provide further insight.) We will
perform the explicit calculation for a scalar decay into two fermions. Replacing successively
every external field in eq. (4.4) by its corresponding mixing partner leads to three Lagrangians
given by

LmISFF = ψ̄1(g
m0
L PL + gm0

R PR)ψ2φ
m
0 , (4.8)

LmIISFF = ψ̄m1(g
m1
L PL + gm1

R PR)ψ2φ0 , (4.9)

LmIIISFF = ψ̄1(g
m2
L PL + gm2

R PR)ψm2φ0 . (4.10)

Where the mixing partner fields will be denoted with an upper index m. Now we peform the
wavefunction renormalization of the field φm0 (The wavefunction renmormalization matrix
can of course be larger than 2× 2.)

(
φ0

φm0

)
=

(
1 + 1

2
δZ11

1
2
δZ12

1
2
δZ21 1 + 1

2
δZ22

)(
φ0

φm0

)
, (4.11)

we only need the term

φm0 =
1

2
δZ21φ0 + (1 +

1

2
δZ22)φ

m
0 , (4.12)

plugging this back into eq. (4.8), we obtain the following expression

LmISFF = ψ̄1(g
m0
L PL + gm0

R PR)ψ2(
1

2
δZ21φ0 + (1 +

1

2
δZ22)φ

m
0 ) . (4.13)

As can be seen the resulting term gives a contribution to the φ0 decay, neglecting the term
proportional to φm0 in eq. (4.13) leads to

LmISFF = ψ̄1(g
m0
L PL + gm0

R PR)ψ2
1

2
δZ21φ0 . (4.14)

The rest of the calculation with the two remaining external fermions is straightforward.
Therefore we will just give the results for all four generic structures

MWFR
SFF =

1

2
gLPLδZ

†
φ0

+
1

2
gRPRδZ

†
φ0

+
1

2
gm0
L PLδZ

†
φm
0
+

1

2
gm0
R PRδZ

†
φm
0

(4.15)

+
1

2
gRPR(δZ

L
ψ1
)† +

1

2
gLPL(δZ

R
ψ1
)† +

1

2
gm1
R PR(δZ

L
ψm
1
)† +

1

2
gm1
L PL(δZ

R
ψm
1
)†

+
1

2
gLPLδZ

L
ψ2

+
1

2
gRPRδZ

R
ψ2

+
1

2
gm2
L PLδZ

L
ψm
2
+

1

2
gm2
R PRδZ

R
ψm
2
,



42 CHAPTER 4. MSSM TWO–BODY HIGGS DECAYS AT FULL ONE-LOOP LEVEL

MWFR
SSS =

1

2
gδZ†

φ0
+

1

2
gm0 δZ

†
φm
0
+

1

2
gδZ†

φ1
+

1

2
gm1 δZ

†
φm
1
+

1

2
gδZφ2 +

1

2
gm2 δZφm2 , (4.16)

MWFR
SSV =

1

2
gδZV2 +

1

2
gm2 δZVm

2
+

1

2
gδZ†

φ0
+

1

2
gm0 δZ

†
φm
0
+

1

2
gδZ†

φ1
+

1

2
gm1 δZ

†
φm
1
, (4.17)

MWFR
SV V =

1

2
gδZV2 +

1

2
gm2 δZVm

2
+

1

2
gδZ†

φ0
+

1

2
gm0 δZ

†
φm
0
+

1

2
gδZ†

φ1
+

1

2
gm1 δZ

†
φm
1
. (4.18)

Example: H+ → tb̄, the top and bottom quark don’t mix at one–loop level with other
particles, therefore we have to choose:

δZL
ψm
1

= 0 , δZR
ψm
1
= 0 , (4.19)

δZL
ψm
2

= 0 , δZR
ψm
2
= 0 . (4.20)

The charged Higgs boson H+ mixes with the charged Goldstone boson G+ therefore we have
to choose

δZφm
0
= δZH+G+ . (4.21)

Choosing the other wavefunction renormalization constants by

δZL
ψ1

= δZL
t , δZR

ψ1
= δZR

t , (4.22)

δZL
ψ2

= δZL
b , δZR

ψ2
= δZR

b ,

δZφ0 = δZH+H+ ,

plugging eqs. (4.21–4.22) in the generic formlua in eq. (4.15), we finally obtain the matrix
element originating from the wavefunction renormalization by

MWFR
H+→tb̄ =

(
−sβhtδZ

R†
t

2tβ
− sβδZ

†
H+H+ht

2tβ
− 1

2
sβδZ

†
H+G+ht −

sβδZ
L
b ht

2tβ

)
PL (4.23)

+

(
−1

2
cβtβhbδZ

L†
t − 1

2
cβtβδZ

†
H+H+hb +

1

2
cβδZ

†
H+G+hb −

1

2
cβtβδZ

R
b hb

)
PR .

4.3.3 Types of vertex diagrams

There are four different topological types of vertex diagrams shown in fig. (4.3-4.4). For the
complete discussion of these diagrams with gerneric couplings and fields in terms of Passarino
Veltman integrals, we refer to e.g. [101].

Figure 4.3: different types of vertex topologies
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Figure 4.4: diagrams with a transition

4.3.4 SUSY Parameter Analysis (SPA) convention

The definition of the parameters is not unique beyond the leading order and depends on
the renormalization scheme. Therefore, a well-defined theoretical framework was proposed
within the so-called SPA (SUSY Parameter Analysis) project [87]. The ”SPA convention”
provides a clear base for calculating masses, mixing angles, decay widths and production
processes. It also provides a clear definition of the fundamental parameters using the DR
renormalization scheme which allows one to extract them from future data.

• Masses of SUSY particles and Higgs bosons are defined as pole masses.

• All SUSY Lagrangian parameters are defined in the DR scheme at the scale Q = 1
TeV.

• All elements in mass matrices, rotation matrices and corresponding mixing angles are
defined in the DR scheme at the scale Q = 1 TeV, except αH0h0 the (h0 −H0) mixing
angle, which is defined on-shell at p = mh0 .

• SM input parameters are: GFermi, α,mZ , αs(mZ) and the fermion masses.

4.4 Input parameters

HFOLD is designed to be applied to SUSY models like mSUGRA, NUHM, AMSB etc. where
the low energy model parameters are given at some scale Q. The low energy spectrum is
derived from a few parameters defined at a high scale using renormalization group equations.
At the program start, HFOLD reads the spectrum, where the Yukawa couplings, the gauge
couplings g′ , g, gs, the soft breaking terms, the VEVs, mA0 , tan β, µ and the on-shell Higgs
masses are taken as input parameters. The input parameters are understood as running
parameters in the DR scheme at the scale Q. In loops we are free to use DR masses because
the difference is of higher order in perturbation theory. Since our renormalization is done in
the DR scheme the coupling counterterms contain only UV-divergent parts. Therefore we
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do not fix δmW with GFermi as input parameter. In the Higgs sector we use mA0 and the
running tan β as inputs. We can then simply derive the DR running Higgs mixing angle α
at the scale Q. We do not take αeff as input parameter because we consider our calculation
a self consistent one–loop expansion.

Gauge sector : g
′

, g, gs

Higgs sector : tan β, v, µ, mA0

mpole
h0 , mpole

H0 ,mpole
A0 mpole

H±

Yukawa–couplings : yu, yd, yl

Sfermion–masses : ML̃, MẼ, MŨ , MD̃

Soft–SUSY-breaking–terms : Ae, Au, Ad

Gaugino masses : M1, M2 ,M3

Table 4.1: Input parameters for HFOLD (generation and sfermion indices are suppressed)

4.5 Resummation of tanβ

The down-type fermions couple to the up-type Higgs doublet with radiative corrections,

− ybH
0
d b̄b− yb∆b cot βH

0
u b̄b . (4.24)

The selfenergy ∆b is proportional to tan β and can be enhanced for large values of tan β.
This term can be resummed (in the effective potential approach) by replacing the bottom
Yukawa coupling [92]

yb →
yb

1 + ∆b

. (4.25)

bL bR

g̃

b̃1,2

bL bR

t̃1,2

χ̃−
1,2

bL bR

b̃1,2

χ̃0
1..4

Figure 4.5: tan β-enhanced selfenergy diagrams with gluinos, charginos and neutralinos.

The resummation can also be performed in the diagrammatic approach [93]. Different renor-
malization schemes correspond to different choices of counterterms. Therefore the analytic
form of the tan β enhanced corrections depend on the chosen renormalization scheme. In the
on-shell scheme one takes the measured bottom mass as input parameter. The choice of δmb

fixes δyb by

yb =
mb

vd
→ δyb =

δmb

vd
. (4.26)
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The quark mass counterterm δmb is a source of tan β-enhanced corrections. The selfenergy
ΣRL(mb) contains terms proportional to yb sin β and is therefore tan β enhanced,

ΣRL = mb∆b , (4.27)

∆b = ∆g̃
b +∆χ̃±

b +∆χ̃0

b . (4.28)

In leading order this means : δmb = −ΣRL
b = −mbǫb tan β. We write the bare Yukawa

couplings as y
(0)
b = yb+δyb, where yb is the renormalized coupling and δyb is the counterterm.

The choice of δmb fixes δyb through

δyb =
δmb

vd
= −ybǫb tan β. (4.29)

The supersymmetric loop effects encoded in ǫb enter physical observables only through δyb.
Choosing e.g. a minimal subtraction scheme like the DR scheme for δmb removes the tan β-
enhanced terms and there is nothing to resum anymore. Since we do not use the measured
bottom mass as input, the resummation of tan β is absent in our approach. However, the
resummation eq. (4.25) is implemented in the code and can be turned on.

4.5.1 Gauge used

The code of HFOLD is derived in the SPA convention in the general linear Rξ gauge for the
W± and Z0-boson. The gauge fixing Lagrangian in the general linear Rξ gauge is

LGF = − 1

ξW
F+F− 1

ξA
|FA|2 , A = Z, γ, g ,

with F+ = ∂µW
µ+ + iξWmWG

+, FZ = ∂µZ
µ + ξZmZG

0, F γ = γµA
µ, and F g = γµG

aµ.

The Higgs-ghost propagators are i/(q2 − ξVm
2
V ) and the vector-boson propagator in the Rξ

gauge reads

Dµν
V =

−i
(
gµν − (1− ξV )

qµqν

q2−ξm2
V

)

q2 −m2
V

.

The ξ-dependent part is a product of two propagators leading to a (n+1)-point loop inte-
gral. Performing an expansion into partial fractions, it can be split into a form with single
propagators only,

Dµν
V =

−i gµν
q2−m2

V

+
i

m2
V

(
qµqν

(q2−m2
V )

− qµqν

(q2−ξm2
V )

)

We have implemented this second form into FA in order to check gauge independence for W
and Z. For the massless particles γ and gluon we get derivatives of loop integrals. In these
cases it is possible to proof gauge invariance analytically.
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Numerical results

5.1 Comparison at mSUGRA–benchmark point SPS1a’

In the following section we will compare HFOLD with existing programs at the mSUGRA
point SPS1a’, which was proposed in the SPA project [87] (in the meantime already ex-
perimentally excluded). Our comparison with other programs is based on the same input
file with the MSSM spectrum given in the SUSY Les Houches accord form [86] created by
SPheno3.0beta50 [95].
A list of available decay programs is given at http://home.fnal.gov/ skands/slha/. In
the following tables the Higgs bosons partial and total decay widths are compared to
HDECAY 3.53[97] and FeynHiggs 2.7.4[96]. In FeynHiggs 2.7.4 the Higgs decays in fermions

m0 m1/2 tan β sign(µ) A0

SPS1a’ 250 [GeV] 70 [GeV] 10 + -300 [GeV]

are evaluated at full one-loop level. HDECAY 3.53 has implemented higher order QCD and
some EW corrections. Most of these corrections are incorporated into running masses.
In table (5.1) the SM input parameters for SPheno are shown, the tables (5.2,5.3) exhibit
the relevant DR parameters and the SUSY breaking parameters at the scale of 1 TeV.
Table (5.4) shows the numerical values of the SUSY particle masses calculated with HFOLD
and SPheno.
The total widths of the MSSM Higgs bosons calculated with various programs is shown in the
tables (5.5,5.6,5.7,5.8). The partial decay widths are given in the tables (5.9,5.10,5.11,5.12).
To avoid confusion the column SQCD (=SUSY–QCD) in the tables exhibiting the partial
decay widths, denote the corrections arising form the gluons and the gluino, these corrections
only exist at one–loop level, if the external particles have color charge. Therefore the SUSY–
QCD corrections to e.g. H0 → χ̃0

1χ̃
0
1 are zero, since the neutralinos have no color charge and

do not couple to SUSY–QCD at one–loop level. Thus the SUSY–QCD corrections have the
same numerical value as the tree–level calculation for Higgs decays into uncolored particles.

46
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At the SPS1a’ point, Higgs decays into bottom quarks have the largest BRs for all neutral
Higgs bosons. Decays into the lightest neutralinos, charginos and sleptons are also kinemat-
ically allowed. These decays can receive sizeable corrections up to 20 percent for the neutral
Higgs bosons. For H+ the difference between the tree–level and full one–loop calculation for
H+ → χ̃+

1 χ̃
0
1 is 12 percent. However, the corresponding branching rations are small. Since

the main focus of this work is on the evaluation of the decay widths and corresponding BRs
of the heavy Higgs bosons at full one-loop level, we have implemented only these corrections
for h0. For precise predictions of h0 decays it is necessary to consider also below treshold
decays as well as leading two–loop contributions. This explains the deviation for the total
widths of h0 compared to the other programs exhibited in table (5.5).

Details of the comparison

For our comparison with the other programs the bremsstrahlung in HFOLD is calculated
using the hard bremsstrahlung approach, the on–shell masses of the SUSY particles are
calculated with the corresponding one–loop selfenergy shifts from the DR masses
(mpole = mDR − Σself (mDR)). For sfermions we also take the off–diagonal elements in the
one–loop corrected mass matrix into account. The flags for the generation of the particle
spectrum using SPheno can be found in the appendix D.

SM input value

α−1MS
em (mZ) 127.932

Gµ 1.167 10−5 [GeV−2]

αMS
s (mZ) 0.118

m
pole

Z 91.188 [GeV]

mMS
b (mb) 4.2 [GeV]

m
pole
t 171.2 [GeV]

m
pole
tau 1.777 [GeV]

Table 5.1: SM input parameters for SPheno
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Parameter value Parameter value

g
′

0.364 yt 0.862

g 0.647 yb 0.137

g3 1.080 yτ 0.104

Table 5.2: DR parameters at the scale Q = 1 TeV

Parameter value Parameter value

M1 103.589 ML1 180.817

M2 193.499 ML2 180.811

M3 568.361 ML3 179.057

ME1 115.632 MQ1 522.271

ME2 115.612 MQ2 522.269

ME3 109.940 MQ3 468.245

MU1 503.598 MD1 501.395

MU2 503.596 MD2 501.393

MU3 384.882 MD3 497.174

At -565.868 m2
d 25352.31

Ab -937.403 m2
u -140313.122

Aτ -444.542

Table 5.3: SUSY breaking parameters in GeV at the scale Q = 1 TeV
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Particle SPheno mass HFOLD mass Particle SPheno mass HFOLD mass

h0 110.699 110.699 g̃ 611.445 608.299

H0 421.139 421.139 d̃2 566.228 562.645

A0 420.982 420.982 d̃1 542.859 539.647
H± 428.942 428.942 ũ2 560.749 557.135
χ0

1
97.973 96.235 ũ1 543.163 539.863

χ0
2

183.869 183.846 s̃2 566.228 562.645
χ0

3
396.727 396.742 s̃1 542.854 539.643

χ0
4

410.499 410.471 c̃2 560.761 557.148

χ
+
1 183.631 183.598 c̃1 543.146 539.847

χ
+
2 411.93 411.949 b̃1 502.661 499.933

ẽ1 125.253 125.212 b̃2 541.697 538.623
ẽ2 189.659 189.625 t̃1 361.071 360.615
ν̃eL 172.308 172.301 t̃2 583.088 579.591
µ̃2 189.681 189.647 τ̃1 108.001 107.96
µ̃1 125.19 125.15 τ̃2 194.65 194.65
ν̃µL 172.301 172.294 ν̃τL 170.253 170.26

Table 5.4: SPheno vs. HFOLD pole-masses in GeV at SPS1a’

h0 HF-tree HF-SQCD HF-full FH 2.7.4 HD 3.53

Γtotal 1.9 3.0 2.8 3.2 3.7

Table 5.5: Comparison of the total decay widths of the CP-even Higgs boson h0 (in MeV)

H0 HF-tree HF-SQCD HF-full FH 2.7.4 HD 3.53

Γtotal 0.8389 1.0171 1.0274 0.9890 1.0495

Table 5.6: Comparison of the total decay widths of the CP-even Higgs boson H0

A0 HF-tree HF-SQCD HF-full FH 2.7.4 HD 3.53

Γtotal 1.2471 1.4405 1.5256 1.4183 1.4139

Table 5.7: Comparison of the total decay widths of the CP-odd Higgs boson A0
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H+ HF-tree HF-SQCD HF-full FH 2.7.4 HDECAY

Γtotal 0.7534 0.9057 0.8948 0.7875 0.9671

Table 5.8: Comparison of the total decay widths of the charged Higgs boson H+

h0 BR-tree HF-tree HF-SQCD HF-full 1-SQCD/full FH 2.7.4 HD 3.53

bb̄ 0.8044 0.0015 0.0026 0.0024 -0.102 0.0025 0.0029

τ τ̄ 0.1544 0.0003 0.0003 0.0003 -0.076 0.0003 0.0003

cc̄ 0.0403 0.0001 0.0001 0.0001 -0.002 0.0001 0.0001

Table 5.9: Comparison of the partial decay widths of the CP-even Higgs boson h0

H0 BR-tree HF-tree HF-SQCD HF-full 1-SQCD/full FH 2.7.4 HD 3.53

bb̄ 0.5546 0.4652 0.6262 0.6216 -0.007 0.6283 0.6466

τ τ̄ 0.1058 0.0887 0.0887 0.0914 0.029 0.0983 0.0909

tt̄ 0.0549 0.0460 0.0631 0.0564 -0.119 0.0607 0.0937

χ̃0
1
χ̃0

2
0.0539 0.0452 0.0452 0.0465 0.047 0.0429 0.0442

χ̃+
1 χ̃

−

1 0.0515 0.0432 0.0432 0.0527 0.181 0.0528 0.0568

τ̃1τ̃1 0.0212 0.0177 0.0177 0.0184 0.037 0.0183 0.0095

τ̃1τ̃2 0.0206 0.0173 0.0173 0.0191 0.093 0.0183 0.0262

χ̃0
2
χ̃0

2
0.0205 0.0172 0.0172 0.0206 0.168 0.0210 0.0225

χ̃0
1
χ̃0

1
0.0172 0.0144 0.0144 0.0140 -0.03 0.0122 0.0127

Table 5.10: Comparison of the partial decay widths of the CP-even Higgs boson H0
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A0 BR-tree HF-tree HF-SQCD HF-full 1-SQCD/full FH 2.7.4 HD 3.53

bb̄ 0.3741 0.4665 0.6282 0.6250 -0.005 0.6269 0.6439

χ̃
+
1 χ̃

−

1 0.1800 0.2245 0.2245 0.2862 0.216 0.2395 0.2389

tt̄ 0.0862 0.1074 0.1389 0.1289 -0.078 0.1881 0.1815

χ̃0
1
χ̃0

2
0.0755 0.0942 0.0942 0.0972 0.097 0.0890 0.0871

χ̃0
2
χ̃0

2
0.0729 0.0909 0.0909 0.1166 0.22 0.0975 0.0955

τ τ̄ 0.0713 0.0889 0.0889 0.0919 0.032 0.0980 0.0911

τ̃1τ̃2 0.0225 0.0280 0.0280 0.0297 0.055 0.0292 0.0272

χ̃0
1
χ̃0

1
0.0170 0.0212 0.0212 0.0205 -0.03 0.0181 0.0183

Table 5.11: Comparison of the partial decay widths of the CP-odd Higgs boson A0

H+ BR-tree HF-tree HF-sqcd HF-full 1-SQCD/full FH 2.7.4 HD 3.53

tb̄ 0.6171 0.4649 0.6170 0.5989 -0.03 0.5060 0.6850

χ̃+
1 χ̃

0
1

0.1712 0.1290 0.1290 0.1306 0.012 0.1194 0.1228

τντ 0.1203 0.0906 0.0906 0.0944 0.04 0.0922 0.0927

ν̃τ τ̃1 0.0809 0.0610 0.0610 0.0643 0.052 0.0630 0.0581

Table 5.12: Comparison of the partial decay widths of the charged Higgs boson H+
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5.1.1 Checks of IR and UV correctness

Processes generated with FA/FC provide a good opportunity for checking their correctness.
The UV divergence parameter ∆ and the photon/gluon mass Λ are implemented in the
code. The one–loop corrected widths should be independent of the numerical value of these
parameters. To check the correctness of our calculated processes, we set ∆ = 109 and then
λ = 10160. To perform the checks of UV and IR convergence, it is necessary to set the HFOLD
flags osmasses and susymasses to zero.

Γtot (∆ = 0 ,Λ = 0) Γtot(∆ = 109 ,Λ = 0) Γtot(∆ = 0 ,Λ = 10160)

h0 0.00153052817 0.00153052817 0.00153052817

H0 0.665873399 0.665873399 0.665873399

A0 1.09668832 1.09668832 1.09668832

H+ 0.77892842 0.778929415 0.77892842

Table 5.13: Dependence of the total withs on the UV and IR parameters ∆ and Λ

As can be seen in table (5.13), the difference between the various total widths is tiny, which
indicates that our calculated amplitudes are IR and UV convergent.

5.2 High scale scenarios

Studying the radiative corrections for MSSM Higgs boson decays for the complete mSUGRA
parameter space would be beyond the scope of this work. However, we have created three
benchmark scenarios to show important trends of these corrections. Since the program is
public available it can be most easily adopted to any other high scale scenario.

• scenario mSUGRA1 :
(m0, m1/2, tanβ, sign(µ), A0) = (700 − 1300, 200, 3,+, 0)

• scenario mSUGRA2 :
(m0, m1/2, tanβ, sign(µ), A0) = (700 − 1300, 200, 10,+, 0)

• scenario NUHM :
(m0, m1/2, tanβ, sign(µ), A0, m1, m2) = (250, 250, 10,+, 0, 550−1650, 550)

The parameters m0, m1/2, m1, m2 and A0 are given in GeV.
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5.2.1 Scenario mSUGRA1

In scenario mSUGRA1 we will vary the universal scalar mass m0 from 700 to 1300 GeV,
keeping the other parameters fixed. This area in mSUGRA space is in agreement with recent
CMS and ATLAS measurements e.g. [106]. Figure (5.1) exhibits the m0 dependence of the
mass spectrum. As can be seen, the Higgs sector is in the decoupling regime. The heavy
Higgs boson masses are highly degenerate in mass around 900 GeV, the mass of light CP–
even Higgs boson h0 remains almost constant about 100 GeV. The neutralino masses mχ̃0

3
,

mχ̃0
4
and the chargino mass mχ̃+

2
show a strong strong increasing behavior with m0. This

can be explained by looking at the approximation formulae for the chargino and neutralino
masses. In the limit of large |µ| values, |µ| ≫M1,2 ≫MZ the neutralino masses simplify to
[104]

mχ̃0
1

≃ M1 −
M2

Z

µ2
(M1 + µs2β) s

2
W , (5.1)

mχ̃0
2

≃ M2 −
M2

Z

µ2
(M2 + µs2β) c

2
W ,

mχ̃0
3/4

≃ |µ|+ 1

2

M2
Z

µ2
ǫµ(1∓ s2β)

(
µ±M2s

2
W ∓M1c

2
W

)
,

(5.2)

where ǫµ = µ/|µ| is the sign of µ. The chargino masses reduce in the limit of |µ| ≫M2,MW

to

mχ̃±
1

≃ M2 −M2
Wµ

−2 (M2 + µs2β) , (5.3)

mχ̃±
2

≃ |µ|+M2
Wµ

−2ǫµ (M2s2β + µ) .

The heavier neutralinos and chargino masses show a linear dependence on µ without any
suppression factor, which explains their increasing behavior. Figure (5.2) shows the BRs in
the tree–level and full one–loop approximation for H0, A0 and H+. The dominant BRs are
in both cases H0/A0 → tt̄ (since the tan β – enhancement for Higgs decays into down type
fermions is not active for tan β = 3 ), which also receive sizeable full one–loop corrections.
Figure (5.3) and (5.4) exhibit the relevant partial decay widths for the Higgs bosons H0 and
A0. The stop loops entering the Higgs wavefunction corrections cause a pseudo–threshold
for H0 → tt̄ and H0 → χ̃+

1 χ̃
−
2 at m0 ∼ 1080 GeV.

In both cases, the difference between the leading SUSY–QCD and the full electroweak calcu-
lation for H0/A0 → tt̄ is about 10 percent. Therefore these contributions are mandatory for
precise predictions. The second largest BR in both cases is H0/A0 → χ̃+

1 χ̃
−
2 , where the dif-

ference between the tree–level and the full one–loop calculation for the partial decay widths
is rather small and shows a decreasing behavior for increasing values of m0 down to two
percent.
The charged Higgs boson H+ has the largest BR into H+ → tb̄ shown in fig. (5.2), followed
by the decays into a neutralino and chargino. The BR H+ → tb̄ receives sizeable corrections,
the BRs into neutralinos and charginos have corrections up to a few percent.
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The partial decay widths of the charged Higgs boson are exhibited in fig. (5.5). The dif-
ference between the leading SUSY–QCD calculation and the calculation including the full
electroweak contributions is about 10 percent. Again these contributions are necessary for
precise predictions. The partial decay widths into neutralinos and charginos have corrections
about three percent. Therefore the tree–level calculation for Higgs decays into neutralinos
and charginos is a sufficient approximation in this area of mSUGRA space.
Finally figure (5.6) shows the total decay widths for H0, A0 and H+ in the tree–level, SUSY–
QCD and full one–loop approximation. As can be seen, the difference between the tree–level,
SUSY–QCD and full one–loop calculation becomes larger with increasing values of m0. This
behavior can be explained, since with increasing values of m0, more decay channels into pairs
of neutralinos and charginos become kinematically available. These new decay channels re-
ceive only electroweak corrections at one–loop level, therefore they cause a larger deviation
from the SUSY–QCD and tree–level calculation.
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Figure 5.1: Mass spectrum in scenario mSUGRA1
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Figure 5.2: H0, A0 and H+ branching ratios (solid = full one–loop, dashed = tree-level)
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Figure 5.3: H0 decay widths in GeV (blue=tree, red=SUSY–QCD, solid = full one–loop)
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Figure 5.4: A0 decay widths in GeV (blue=tree, red=SUSY–QCD, solid = full one–loop)
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Figure 5.5: H+ decay widths in GeV (blue=tree, red=SUSY–QCD, solid = full one–loop)
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Figure 5.6: Total widths in GeV in scenario mSUGRA1
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5.2.2 Scenario mSUGRA2

Our next mSUGRA scenario is the same as mSGURA1, except for tan β. We now take
tan β = 10. This has important phenomenological consequences, the leading BRs of neu-
tral Higgs decays into pairs of top quarks are now suppressed from ∼ 30 percent (scenario
mSUGRA1) down to approximately two percent in scenario mSUGRA2. Therefore decays
into pairs of charginos and/or neutralinos have the largest BRs for the whole range of m0.
The BRs of H0, A0 and H± calculated in the tree–level and full one–loop approximation are
exhibited in fig. (5.8). One might suspect that the BR A0 → χ+

1 χ
−
1 is larger than A0 → χ+

1 χ
−
2 ,

since there is more phase space available. However, this behavior can be explained by the
tree–level coupling of A0 → χ+

1 χ
−
2 which is larger than A0 → χ+

1 χ
−
1 in this parameter set.

The radiative corrections for the leading chargino decay modes are rather small, only the
BRs of neutral Higgs decays into pairs of bottom quarks receive corrections of the magnitude
of a few percent.
The relevant partial decay widths of H0, A0 and H± are shown in fig. (5.9, 5.10) and (5.11).
As can be seen the leading decay widths into pairs of charginios and/or neutralinos receive
corrections up to four percent. The difference between the leading SUSY–QCD and full one–
loop widths for neutral Higgs decays into pairs of bottom quarks are increasing with m0

up to three percent, for the charged Higgs the difference between both calculations is five
percent at m0 = 1300 GeV .
Finally figure (5.12) shows the total decay widths for H0, A0 and H+ in the tree–level,
SUSY–QCD and full one–loop approach. Since the corrections for the relevant partial decay
widths are of the magnitude of a few percent, the difference for the corresponding total
decay widths between the three approximations is small, e.g. the difference for Γtot(H0) at
tree–level and at full one–loop level is two percent.
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Figure 5.7: Mass spectrum in scenario mSUGRA2
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Figure 5.8: H0, A0 and H+ branching ratios (solid = full one–loop, dashed = tree-level)
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Figure 5.9: H0 decay widths in GeV (blue=tree, red=SUSY–QCD, solid = full one–loop)
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Figure 5.10: A0 decay widths in GeV (blue=tree, red=SUSY–QCD, solid = full one–loop)
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Figure 5.11: H+ decays widths in GeV (blue=tree, red=SUSY–QCD, solid = full one–loop)
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Figure 5.12: Total widths in GeV in scenario mSUGRA2
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5.2.3 Scenario NUHM

In this Non Universal Higgs Mass (NUHM) scenario, we will vary the Higgs mass param-
eter m1 given at the GUT scale, keeping the other parameters fixed. As a consequence we
will obtain heavy Higgs bosons, while the SUSY particles will remain relatively light. The
corresponding mass spectrum is shown in fig. (5.18).Thus, there will be more kinematically
allowed Higgs decays into SUSY particles compared to usual mSUGRA scenarios.
Figure (5.14) shows the most important BRs for H0, A0 and H+. The BRs are calculated
in the tree–level and the full one–loop approximation. This scenario is almost dominated
by decays into charginos and neutralinos. This behavior can be explained since the Higgs
couplings to top quarks are suppressed while the enhancement of the coupling to bottom
quarks is not strong yet. The domination of the chargino and neutralino decay modes become
even more pronounced with increasing values of m1. The following table exhibits the partial
widths of neutralino/chargino decays of the heavier Higgs bosons H0, A0 and H+ in units of
GµM

2
WMHk

/(4
√
2π) in the limit of MA ≫ |µ| ≫ M2. Thus in this limit the neutral Higgs

decay into charginos are equal to 1, while the neutral Higgs decays into pairs of neutralinos
are suppressed by a factor 1/2.

Γ(H → χχ) Γ(A→ χχ) Γ(H± → χχ)

χ0
1χ

0
3

1
2
tan2θW (1 + sin 2β) 1

2
tan2θW (1− sin 2β) χ±

1 χ
0
3 1

χ0
1χ

0
4

1
2
tan2θW (1− sin 2β) 1

2
tan2θW (1 + sin 2β) χ±

1 χ
0
4 1

χ0
2χ

0
3

1
2
(1 + sin 2β) 1

2
(1− sin 2β) χ±

2 χ
0
1 tan2 θW

χ0
2χ

0
4

1
2
(1− sin 2β) 1

2
(1 + sin 2β) χ±

2 χ
0
2 1

χ±
1 χ

∓
2 1 1 – –

The difference for the BRs between the two calculations is about a few percent and becomes
even smaller with increasing values of m1. However, the partial decay widths exhibited in
fig. (5.15) show a different behavior: For the partial decay width H0 → bb̄ the difference
between the leading SUSY–QCD and the full one–loop calculation does not become larger
than five percent. The leading partial decay widths into pairs of charginos receive corrections
up to 10 percent between the tree–level and the full one–loop calculation. Therefore these
contributions are mandatory for precise predictions.
The situation for the pseudoscalar Higgs A0 boson is similar to CP–even Higgs boson H0.
Only the BR A0 → χ̃+

1 χ̃
−
1 shown in fig. (5.14) remains longer dominant for a wider range of

m1. Again the partial decay width into pairs of charginos show a difference up to 10 percent
between the tree–level and the corresponding full–loop calculation.
The largest BR for the charged Higgs boson is H+ → χ̃+

2 χ̃
0
2. Here the BRs receive corrections

up to a few percent. The difference between the tree–level and full one–loop approximation
for the BR becomes smaller with increasing values of m1. However, the leading partial decay
widths into pairs of charginos and neutralinos, show a different behavior. These decay widths
receive corrections more than 10 percent.
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One might suspect that the Higgs decays into squarks e.g. H0 → t̃1t̃1 have the largest BR,
since there would be enough phase space available. (In detail the BR H0 → t̃1t̃1 at m1 =
1650 GeV is only one percent in the full one–loop approximation.) However, these decays are
inversely proportional to the Higgs masses, therefore the sfermion decays are suppressed for
large Higgs masses compared to the decays into fermions and chargions/neutralinos which
increase with the Higgs mass. In the asymptotic regime, mH0,A0,H+ ≫ mf̃ , the decay widths

of the H0, A0 and H+ bosons into sfermions are proportional to sin2 2βm2
Z/mH0,A0,H+ and

can be significant only for low values of tan β where sin2 2β ∼ 1.
The total decay widths of H0, A0 and H+ are exhibited in fig. (5.18). For values of m1

between 550 and 800 GeV the SUSY–QCD or even the tree–level calculation is a sufficient
approximation for the total decay widths. Then the deviation between the SUSY–QCD and
the full electroweak calculation becomes larger. This behavior can be explained similarly as
in scenario mSUGRA1. New decay channels into pairs of neutralinos and charginos become
kinematically possible and with increasing Higgs masses more phase space becomes available
for these decays. At m1 ∼ 1650 GeV, the difference for the total width of H0 between the
SUSY–QCD and full one–loop approximation is about 10 percent.
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Figure 5.13: Mass spectrum in scenario NUHM
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Figure 5.14: H0, A0 and H+ branching ratios (solid = full one–loop, dashed = tree-level)
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Figure 5.15: H0 partial decay widths in GeV (blue=tree, solid = full one–loop)



5.2 High scale scenarios 73

600 800 1000 1200 1400 1600
m1 @GeVD

0.5

1.0

1.5

2.0

2.5

GHA0®b bL @GeVD

m0=250 @GeVD, m1�2=250 @GeVD, m2=550 @GeVD,
TanΒ=10, A0=0 @GeVD, signHΜL=+1

600 800 1000 1200 1400 1600
m1 @GeVD

-0.10

-0.08

-0.06

-0.04

-0.02

0.02

0.04

1 -
GSQCD

GFULL
IA0 ® b bM

m0=250 @GeVD, m1�2=250 @GeVD, m2=550 @GeVD,
TanΒ=10, A0=0 @GeVD, signHΜL=+1

600 800 1000 1200 1400 1600
m1 @GeVD

1

2

3

4

5

GHA0®Χ1
+ Χ1

-L @GeVD

600 800 1000 1200 1400 1600
m1 @GeVD

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

1 -
GTREE

GFULL
IA0 ® Χ1

+ Χ1
-M

600 800 1000 1200 1400 1600
m1 @GeVD

1

2

3

4

5

GHA0®Χ1
+ Χ2

-L @GeVD

600 800 1000 1200 1400 1600
m1 @GeVD

-0.15

-0.10

-0.05

0.05

1 -
GTREE

GFULL
IA0 ® Χ1

+ Χ2
-M

Figure 5.16: A0 partial decay widths in GeV (blue=tree, red=susy–qcd, solid = full one–loop)



74 CHAPTER 5. NUMERICAL RESULTS

600 800 1000 1200 1400 1600
m1 @GeVD

0.5

1.0

1.5

2.0

2.5

3.0

GHH+®t bL @GeVD

m0=250 @GeVD, m1�2=250 @GeVD, m2=550 @GeVD,
TanΒ=10, A0=0 @GeVD, signHΜL=+1

600 800 1000 1200 1400 1600
m1 @GeVD

-0.10

-0.08

-0.06

-0.04

-0.02

1 -
GSQCD

GFULL
IH+ ® t bM

m0=250 @GeVD, m1�2=250 @GeVD, m2=550 @GeVD,
TanΒ=10, A0=0 @GeVD, signHΜL=+1

600 800 1000 1200 1400 1600
m1 @GeVD

1

2

3

4

5

6

GHH+®Χ1
+ Χ3

0L @GeVD

600 800 1000 1200 1400 1600
m1 @GeVD

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

1 -
GTREE

GFULL
IH+ ® Χ1

+ Χ3
0M

600 800 1000 1200 1400 1600
m1 @GeVD

1

2

3

4

5

6

GHH+®Χ1
+ Χ4

0L @GeVD

600 800 1000 1200 1400 1600
m1 @GeVD

-0.15

-0.10

-0.05

0.05

1 -
GTREE

GFULL
IH+ ® Χ1

+ Χ4
0M

600 800 1000 1200 1400 1600
m1 @GeVD

1

2

3

4

5

6

7

GHH+®Χ2
+ Χ2

0L @GeVD

600 800 1000 1200 1400 1600
m1 @GeVD

-0.15

-0.10

-0.05

0.05

1 -
GTREE

GFULL
IH+ ® Χ2

+ Χ2
0M

Figure 5.17: H+ partial decay widths in GeV (blue=tree, solid = full one–loop)
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Figure 5.18: Total widths in GeV in scenario NUHM



Chapter 6

Program description

6.0.4 Requirements

• Fortran 77 (g77, ifort77)

• C compiler (e.g. gcc)

• LoopTools [94]

6.0.5 About version 1.0

• The CKM matrix is set diagonal

• Real SUSY input parameters

6.0.6 Installation

1. Download the file hfold.tar at

http://www.hephy.at/tools

2. expand the file, go to the folder hfold/SLHALib-2.2 and type

./configure

make

3. to create the Fortran code for hfold, go back to the folder hfold and type

./configure

make

4. To run HFOLD type

hfold
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6.0.7 The input file hfold.in

1. name of the spectrum (SLHA format)

2. Higgs boson = 1,2,3,4,5
1 = h0, 2 = H0, 3 = A0, 4 = H+, 5 = All

3. contribution = 0,1,2
0 = tree–level calculation
1 = full one–loop calculation
2 = SUSY–QCD (only diagrams with a gluon/gluino are taken into account)

4. bremsstrahlung = 0,1,2
0 = off, 1 = hard bremsstrahlung, 2 = soft bremsstrahlung

5. resummation of bottom yukawa coupling = 0,1
0 = off, 1 = on

6. esoftmax
cut on the soft photon(gluon) energy, if soft strahlung is used

7. name of output-file
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6.0.8 Description of all subroutines

subroutine description

hfold/1to2.F calculates the soft bremsstrahlung for a 1 → 2 process

hfold/bremsstrahlung.F contains all generic formulae for the hard Bremsstrahlung processes

hfold/CalcContributions.F calculates the SUSY–QCD contributions

hfold/Contributions.F sets right flags for different contributions

hfold/definitions.F some initial definitions, necessary for the renormalization constants

hfold/getslhapara.F loads the input spectrum (SLHA)

hfold/LHoutput.F writes the total decay decay widths and the corresponding BRs to
a file in the SLHA format

hfold/model mssm.F all parameters for the MSSM are initialized

hfold/mssmhdecay.F calls all subroutines to calculate the partial decay widths and the
corresponding branching ratios for the selected MSSM Higgs parti-
cle

hfold/resumbottomyuk.F contains the formula for the resummation of the bottom Yukawa
coupling

hfold/SetKinematics.F sets up the kinematics

hfold/softstrahlung.F adds up the contributions from soft-photon/gluon emission

print routines

hfold/PrintBR.F prints all relevant branching ratios and partial decay widths

hfold/PrintDrbarPara.F prints Yukawa couplings, soft SUSY–breaking parameters

hfold/PrintMSSMPara.F prints the MSSM mass spectrum

external programs

hfold/util utilities for e.g. kinematics (part of FormCalc)

hfold/SLHALib-2.2 Supersymmetry Les Houches Accord program library
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automaticaly generated code description

hfold/mssmhiggs/sqmes/sqmesh0

hfold/mssmhiggs/sqmes/sqmesHH

hfold/mssmhiggs/sqmes/sqmesA0

hfold/mssmhiggs/sqmes/sqmesHp

all necessary squared amplitudes generated
with FeynArts/FormCalc

hfold/renconst all renormalization constants

hfold/mssmhiggs/processes/h0

hfold/mssmhiggs/processes/HH

hfold/mssmhiggs/processes/A0

hfold/mssmhiggs/processes/Hp

Sets the right flags (masses, helicities, kine-
matics, bremsstrahlung) for each decay chan-
nel (for each decay channel there is a separate
subroutine).
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subroutine(s) description

hfold/mssmhiggs/calcwidth0.F

hfold/mssmhiggs/calcwidthHH.F

hfold/mssmhiggs/calcwidthA0.F

hfold/mssmhiggs/calcwidthHp.F

Calculates all partial decay widths

hfold/mssmhiggs/sumwidthh0.F

hfold/mssmhiggs/sumwidthHH.F

hfold/mssmhiggs/sumwidthA0.F

hfold/mssmhiggs/sumwidthHp.F

Calculates branching ratios, sums up the total decay widths
and sets the right SLHA code for each decay channel

hfold/osmasses/OSmasses.F

hfold/osmasses/CalcOSMasses1.F

hfold/osmasses/CalcOSMasses2.F

hfold/osmasses/CalcOSMasses3.F

hfold/osmasses/CalcOSMasses4.F

hfold/osmasses/CalcOSMasses5.F

hfold/osmasses/CalcOSMasses6.F

hfold/osmasses/CalcOSMasses7.F

hfold/osmasses/CalcOSMasses8.F

hfold/osmasses/CalcOSMasses9.F

hfold/osmasses/CalcOSMasses10.F

Calculates the on-shell masses of the SUSY particles;
subroutine CalcOSMasses1.F - CalcOSMasses10.F contain
all the necessary selfenergies
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The screen output when running HFOLD is as following:

_ _ ______ ____ _ _____

| | | | ____/ __ \| | | __ \

| |__| | |__ | | | | | | | | |

| __ | __|| | | | | | | | |

| | | | | | |__| | |____| |__| |

|_| |_|_| \____/|______|_____/ 1.0

Higgs Full One Loop Decays by W. Frisch,

H. Eberl, H. Hlucha

error 0

abort 173248520

nslhadata 5504

====================================================

FF 2.0, a package to evaluate one-loop integrals

written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam

====================================================

for the algorithms used see preprint NIKHEF-H 89/17,

’New Algorithms for One-loop Integrals’, by G.J. van

Oldenborgh and J.A.M. Vermaseren, published in

Zeitschrift fuer Physik C46(1990)425.

====================================================

ffxdb0: IR divergent B0’, using cutoff 1.

ffxc0i: infra-red divergent threepoint function,

working with a cutoff 1.

Flags:

----------------------------

Susyqcd calculation

----------------------------

resummation of bottom yukawa coupling off

----------------------------

Using onshell Higgs masses from : SPS1aprime.spc

----------------------------

hard bremsstrahlung on

----------------------------

the output SLHA will be written to : output.slha

----------------------------

============================

Decay Table :

Total width : 0.905677243

H+ -> mu+ nu_mu : 0.320441E-003 / BR : 0.00

H+ -> tau+ nu_tau : 0.906196E-001 / BR : 0.10
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H+ -> c sb : 0.349004E-003 / BR : 0.00

H+ -> t bb : 0.617035E+000 / BR : 0.68

H+ -> ~chi_10 ~chi_1+ : 0.128997E+000 / BR : 0.14

H+ -> ~chi_30 ~chi_1+ : 0.699102E-003 / BR : 0.00

H+ -> h W+ : 0.277014E-002 / BR : 0.00

H+ -> ~nu_eL ~el_2+ : 0.126903E-002 / BR : 0.00

H+ -> ~nu_muL ~mu_1+ : 0.237453E-003 / BR : 0.00

H+ -> ~nu_muL ~mu_2+ : 0.124702E-002 / BR : 0.00

H+ -> ~nu_tauL ~tau_1+ : 0.609862E-001 / BR : 0.07

H+ -> ~nu_tauL ~tau_2+ : 0.114467E-002 / BR : 0.00



Appendix A

Loop–integrals

The integrals at one–loop level can be simply generalized by

TNµ1...µP (k1, ..., kN−1,m
2
0, ...,m

2
N−1) =

(2πµ)4−D

iπ2

∫
dqD

qµ1 ....qµP
D0...DN−1

, (A.1)

where TNµ1...µP is a tensor of rank P . We use the following abbreviations in the denominators
Di = (q + ki)

2 −m2
i . The inner loop–momenta ki are defined using the following relations

pi+1 = ki+1 − ki with j, j ∈ {0, ..., N − 1} , (A.2)

kj =

j∑

i=1

pi with k0 = 0 , (A.3)

(A.4)

µ is an arbitrary mass (renormalization scale). The momenta in the nominator originate
from inner fermion propagators or from momentum dependent couplings. A basis of scalar

Figure A.1: Kinematics of the external momenta in the loops. The arrows denote the direction
of the corresponding 4-momenta.
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integrals can be defined by:

A0(m
2
0) = T 1

0 (m
2
0) , (A.5)

B0(k
2
10,m

2
0,m

2
1) = T 2

0 (k1,m
2
0,m

2
1) ,

C0(k
2
10, k

2
12, k

2
20,m

2
0,m

2
1,m

2
2) = T 3

0 (k1, k2, k3,m
2
0,m

2
1,m

2
2) ,

...

Due dimensional regularization maintains Lorentz covariance it is possible to construct ten-
sorial expressions with the use of the scalar basis

Bµ = k1µB1 , (A.6)

Bµν = gµν ,

Cµ =
2∑

i=1

kiµCi ,

Cµν = C00 +
2∑

i,j=1

kiµkjνCij ,

...

The coefficients B1, Ci, Ci,j, . . . can be determined by multiplying the expressions in A.6
with their corresponding external momenta. This leads to a system of equation, which can
then be solved.

A.0.9 Analytic expressions for scalar Passarino–Veltman integrals

Analytic epression for A0(m
2)

The scalar integral A0(m
2
0) is defined as

A0(m
2
0) =

µ4−D

iπ2

∫
dqD

(2π)D−4

1

q2 −m2
= α

∫
dqD

1

q20 − ~q2 −m2
. (A.7)

To process further we perform a Wick rotation from MD to ED by substituting q0 = i q0,E

A0(m
2
0) = −iα

∫
1

q20,E + ~q2 +m2
. (A.8)

Using the Γ–function we can perform the spherical integration as follows

A0(m
2
0) = −iα

∫
dΩ

∫
dr

rD−1

r2 +m2
= −αm−2ΩD

∫
dr

rD−1

r2

m2 + 1
, (A.9)

substituting r = r
′

m (r
′ → r) leads to

A0(m
2
0) = −iαm−2ΩD

∫
drm

(rm)D−1

r2 + 1
= −iαm−1ΩD

∫
dr

(rm)D−1

r2 + 1
(A.10)

= −iαmD−2ΩD

∫
dr

rD−1

r2 + 1
, (A.11)
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substituting again r2 = t, we obtain the expression

A0(m
2
0) = −iαmD−2ΩD

1

2

∫
dt
tD/2−1

t+ 1
, (A.12)

= −iαmD−2ΩD
1

2

Γ(D/2)Γ(1−D/2)

Γ(1)
, (A.13)

= −µ
4−D

π2

1

(2π)D−4
mD−2π

D
2 Γ(1− D

2
) . (A.14)

(A.15)

Setting D = 4− xε leads to

A0(m
2
0) = −m2

(
mx

2xπ
x
2µx

)−ε
Γ(
xε

2
− 1) , (A.16)

using y−x = 1− (log y)x and Γ(ǫ− 1) = −1
ǫ
− 1 + γe +O(ε), leads to

A0(m
2
0) = −m2

(
1− log

(
mx

2xπ
x
2µx

)
ε

)(
− 2

xε
− 1 + γe +O(ε)

)
, (A.17)

= −m2

(
− 2

xε
− 1 + γe +

2

x
log

(
mx

2xπ
x
2µx

)
+O(ε)

)
.

Setting x = 2 we obtain the following result

A0(m
2
0) = m2

(
1

ε
+ 1 + log(4π)− γe − log(

m2

µ2
) +O(ε)

)
, (A.18)

the result can be expressed more compactly by introducing the UV–parameter ∆ = 1
ε
+

log(4π)− γe

A0(m
2
0) = m2

(
∆− log(

m2

µ2
) + 1 +O(ε)

)
. (A.19)

In the Minimal Subtraction scheme MS, the counterterms contain only the UV-divergent
parts proportional to 1

ε
. However the terms + log(4π)− γe lead to large finite shifts. To get

rid of these large finite terms it is convenient to introduce the Modified Minimal Subtraction
MS , where the scale µ is transformed by

µ2
MS → µ2

MS
e− ln 4π+γe . (A.20)

Analytic epression for B0

Using the technique of the Feynman–parameters the integral B0 can be expressed by

B0(k
2,m2

0,m
2
1) = ∆−

∫ 1

0

dx log
xm2

0 + (1− x)m2
1 − x(1− x)k2

µ2
+O(ǫ) . (A.21)
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To evaluate the integral further, it is necessary to reexpress the argument of the log–function
of eq. (A.21) in terms of the corresponding roots x1 and x2 with

x1/2 =
k2 +m2

1 −m2
0 ±

√
(k2 +m2

1 −m2
0)

2 − 4m2
1k

2

2k2
. (A.22)

Now the integral can be written as

B0(k
2,m2

0,m
2
1) = − log

k2

µ2
−
∫ 1

0

dx log(x− x1)−
∫ 1

0

dx log(x− x2) . (A.23)

Using
∫
dx log x = x log x−x, we obtain the analytic solution for the scalar integral B0 with

general arguments

B0(k
2,m2

0,m
2
1) = ∆ + 2− log

k2

µ2
−

2∑

i=1

[(1− xi) log(1− xi) + xi log(−xi)]

= ∆ + 2 + log
µ2

m2
0

+ x1 log

(
1− 1

x1

)
+ x2 log

(
1− 1

x2

)
. (A.24)

Now we want to investigate in some special cases of the integrals B0. We will start with
B0(k

2, 0,m2
1), which can be expressed by

B0(k
2, 0,m2

1) = ∆− log
k2

µ2
−
∫ 1

0

dx log(x− 1)−
∫ 1

0

dx log

(
m2

1

k2
− 1

)
. (A.25)

Using
∫ 1

0
dx log(x− 1) = −1 and

∫ 1

0

dx log(
m2

1

k2
− 1) = −1 +

(
m2

1

k2
− 1

)
log

(
m2

1

k2
− 1

)
− m2

1

k2
log

m2
1

k2

= −1− m2
1 − k2

k2
log

m2
1 − k2

m2
1

+ log
m2

1

k2
, (A.26)

the result can be written as

B0(k
2, 0,m2

1) = ∆ + 2 + log
µ2

m2
1

+
m2

1 − k2

k2
log

m2
1 − k2

m2
1

. (A.27)

We can take the limit m2
1 → k2, which leads to

B0(m
2, 0,m2) = ∆ + 2 + log

µ2

m2
. (A.28)
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Some important relations for the scalar integral B0 with special arguments

B0(p
2,m2

0,m
2
1) = B0(p

2,m2
1,m

2
0) , (A.29)

B0(m
2, 0,m2) =

A0(m
2)

m2
+ 1 , (A.30)

B0(0, 0, 0) = ∆ , (A.31)

B0(m
2, 0, 0) = B0(m

2, 0,m2) + iπ , (A.32)

B0(0, 0,m
2) = B0(m

2, 0,m2)− 1 , (A.33)

B0(0,m
2,m2) = B0(m

2, 0,m2)− 2 , (A.34)

m2B0(0,m
2,m2) = A0(m

2)−m2 , (A.35)

(m2
0 −m2

1)B0(0,m
2
0,m

2
1) = A0(m

2
0)− A0(m

2
1) , (A.36)

B0(0,m
2
0,m

2
1) = B0(k

2,m2
0,m

2
1) +

k2

m2
0−m2

1

(2B1+B0)(k
2,m2

0,m
2
1) . (A.37)

Some expressions for the derivative of B0 with respect to the infrared mass λ,

Ḃ0(m
2, λ2,m2) = − 1

2m2

(
2− log

m2

λ2

)
, (A.38)

Ḃ0(m
2,m2, λ2) = Ḃ0(m

2, λ2,m2) , (A.39)

Ḃ0(0,m
2,m2) =

1

6m2
, (A.40)

lim
λ2→0

(
λ2Ḃ0(λ

2, 0, 0)
)

= −1 . (A.41)

Some important relations between B1, B0 and A0

B1(k
2,m2

1,m
2
0) = −B0(k

2,m2
0,m

2
1)−B1(k

2,m2
0,m

2
1) , (A.42)

2k2B1(k
2,m2

0,m
2
1) = A0(m

2
0)− A0(m

2
1) + (m2

1 −m2
0 − k2)B0(k

2,m2
0,m

2
1) , (A.43)

B1(m
2, 0,m2) = −1

2

(
∆+ 1 + log

µ2

m2

)
= −1

2

(
B0(m

2, 0,m2)− 1
)
, (A.44)

B1(m
2,m2, 0) = B1(m

2, 0,m2)− 1 . (A.45)

Expressions for the derivative of the B1

Ḃ1(m
2,m2, λ2) =

1

2m2

(
3− log

m2

λ2

)
= −Ḃ0(m

2, λ2,m2) +
1

2m2
, (A.46)

Ḃ1(m
2, λ2,m2) = − 1

2m2
, (A.47)

lim
λ2→0

(
λ2Ḃ1(λ

2, 0, 0)
)

=
1

2
. (A.48)

The scalar integral C0(m
2
1,m

2
0,m

2
2, λ

2,m2
1,m

2
2) can be expressed in a simple analytic form

given by

Re

{
C0(m

2
1,m

2
0,m

2
2, λ

2,m2
1,m

2
2)

}
=

1

κ

[
log β0 log

κ

λ2
− 2π2

3
− Li2(β

2
1)− Li2(β

2
2)

− log2 β1 − log2 β2 + log
κ

m2
0

log β0

]
, (A.49)
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with the factors β0, β1 and β2 given by

β0 =
m2

0 −m2
1 −m2

2 + κ

2m1m2

, β1 =
m2

0 −m2
1 +m2

2 − κ

2m0m2

, β2 =
m2

0 +m2
1 −m2

2 − κ

2m0m1

. (A.50)

integral UV–divergent part

A0(m
2) m2 ∆

A1(m
2) −m2 ∆

A00(m
2) m4

4
∆

B0 ∆

B1 −1
2
∆

B00(k
2,m2

0,m
2
1) −1

4
(k

2

3
−m2

0 −m2
1)∆

B11
1
3
∆

C00
1
4
∆

C00i − 1
12
∆

Table A.1: UV–divergent parts of Passarino–Veltman integrals (∆ = 1
ε
+ log(4π)− γe)

integral IR–divergent part

Ḃ0(m
2, λ2,m2) = Ḃ0(m

2,m2, λ2) − lnλ2

2m2

Ḃ1(m
2,m2, λ2) lnλ2

2m2

Ḃ1(m
2, λ2,m2) 0

Re [C0(m
2
1,m

2
0,m

2
2, λ

2,m2
1,m

2
2)] − lnβ0

κ
lnλ2

Table A.2: IR–divergent parts of Passarino–Veltman integrals
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Weyl spinors

Left handed spinors ΨL =

(
ψ1

ψ2

)
transform under the (1

2
, 0)–representation of the Lorentz

group. In contrast to the right handed spinors ΨR =

(
ψ̄1̇

ψ̄2̇

)
, which transform under the (0, 1

2
)–

representation. Every dottet index belongs to the (1
2
, 0)–representation and every undottet

index belongs to the (0, 1
2
)–representation. Lorentz invariant combinations can be written as

Ψ†
RΨL = ψaψa , (B.1)

Ψ†
LΨR = ψȧψ

ȧ , (B.2)

complex conjugation transforms an undottet into a dotted index and vice versa

(ψa)
∗ = ψ̄ȧ (ψa)∗ = ψ̄ȧ . (B.3)

Raising and lowering of spinor indices can be performed using spinor metrics ε and ε̃

ψa = ε̃abψb , ψa = ε̃abψ
b , (B.4)

ψ̄ȧ = εȧḃψḃ , ψ̄ȧ = εȧḃψ
ḃ , (B.5)

with

ε̃ab = ε̃ab =

(
0 −1
1 0

)
, (B.6)

εȧḃ = εȧḃ =

(
0 1
−1 0

)
. (B.7)

B.0.10 Dirac & Majorana spinors

Dirac and Majorana spinors are the composition of a pointed and an unpointed Weyl spinor,
therefore they have four indices. The Dirac spinors Ψ and Φ can be expressed by

Ψa =

(
ψa
χ̄ȧ

)
, Φa =

(
ψa
λ̄ȧ

)
, (B.8)

(B.9)
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with

Ψ̄A = Ψ†
Aγ0 = (ψ̄ȧ, χ

a)

(
0 1
1 0

)
= (χa, ψ̄ȧ) , (B.10)

Φ̄A = Ψ†
Aγ0 = (φ̄ȧ, λ

a)

(
0 1
1 0

)
= (λa, ψ̄ȧ) . (B.11)

The Lorentz scalar Ψ̄Φ = Ψ̄AΦA takes the form

Ψ̄Φ = χφ+ ψ̄λ̄ . (B.12)

In the chiral representation the γ-matrices have the following index structure

γµAB =

(
0 σµ

aḃ

−σ̃µȧb 0

)
, (B.13)

γ5AB =

(
−δba 0
0 δȧ

ḃ

)
. (B.14)

The charge conjugation operator C can be expressed in the chiral representation by

CAB =

(−ε̃ab 0

0 −ε̃ȧḃ
)
, (B.15)

(B.16)

fulfilling the condition for Majorana spinors ΨM = CΨ̄T .

B.0.11 Calculations with Weyl spinors

(θθ) = 2θ1θ2 (B.17)

(θ̄θ̄) = 2θ̄2̇θ̄1̇ (B.18)

the most important billinear forms

iΦT
Lσ

2ΨL = φaψ̄a = (φψ) (B.19)

−iΦT
Rσ

2ΨR = φ̄ȧψ̄
ȧ = (φψ) (B.20)

Φ†
Rσ

µΨR = φaσµ
aḃ
ψ̄ḃ = (φσµφ̄) (B.21)

Φ†
Lσ̃

µΨR = φaσ̃µ
aḃ
ψ̄ḃ = (φσ̃µφ̄) (B.22)

B.0.12 Differentation with Weyl spinors

∂a =
∂

∂θa
∂a =

∂

∂θa
(B.23)

∂ȧ =
∂

∂θȧ
∂ȧ =

∂

∂θȧ
(B.24)
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Following the differentation rule for Grassmann numbers leads to the relations

∂aθ
b = δba , ∂aθb = δab , (B.25)

∂̄ȧθ̄
ḃ = δḃȧ , ∂̄ȧθ̄ḃ = δȧ

ḃ
. (B.26)

(B.27)

This rules can also be expressed using anti–commutators

{∂a, θb} = {∂b, θa} = δba , (B.28)

{∂a, θb} = ε̃ab , (B.29)

{∂a, θb} = −ε̃ab , (B.30)

(B.31)

this relations are similar for dotted indices. Since θ and θ̄ belong to different representations
we have

{∂̄ȧ, θb} = {∂a, θ̄ḃ} = 0 . (B.32)

B.0.13 Integration over Grassmann numbers

The Lorentz invariant volumes can be expressed by

d2θ =
1

4
dθadθa , (B.33)

d2θ̄ =
1

4
dθ̄ȧdθ

ȧ , (B.34)

d4θ = d2θd2θ̄ , (B.35)

d2θ =
1

2
dθ1dθ2 , (B.36)

d2θ̄ =
1

2
θ̄2̇θ̄1̇ , (B.37)

(d2θ)† = d2θ̄ . (B.38)

Equivalence between integration and differentation leads to
∫
dθa =

∂

∂θa
= ∂a , (B.39)

∫
dθa =

∂

∂θa
= ∂a . (B.40)

Integrals can therefore be expressed by differentation operators
∫
d2θ = −1

4

∫
dθa
∫
dθa = −1

4
∂a∂

a =
1

4
∂a∂a =

1

4
∂2 , (B.41)

∫
d2θ̄ = −1

4

∫
dθ̄ȧ

∫
dθ̄ȧ = −1

4
∂̄ȧ∂̄ȧ =

1

4
∂̄ȧ∂̄

ȧ =
1

4
∂̄2 , (B.42)

∫
d4θ =

1

16
∂2∂̄2 =

1

16
∂̄2∂2 , (B.43)
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this leads to the following relations

∫
d2θ(θθ) =

1

4
∂a∂a(θθ) = 1 , (B.44)

∫
d2θ̄(θ̄θ̄) =

1

4
∂̄a∂̄a(θ̄θ̄) = 1 , (B.45)

∫
d4θ(θθ)(θ̄θ̄) = 1 . (B.46)

Let now assume a superfunction f given by

f(θ) = f(0) + faθa + f (2)(θθ) , (B.47)∫
dθ2f(θ) = f (2) . (B.48)

As can be seen, the integration works as a projector, because

∫
dθ21 =

∫
dθ̄21 = 0 , (B.49)

∫
dθ2θ =

∫
dθ̄2θ̄ = 0 . (B.50)



Appendix C

Special functions

C.1 The Γ–function

The Γ–function is defined by

Γ(z) =

∫ ∞

0

dt tz−1e−t . (C.1)

C.1.1 Properties

Γ(1) = 1 , (C.2)

Γ(n) = (n− 1)! , (C.3)

Γ(ǫ− 1) = −1

ǫ
− 1 + γe +O(ε) , (C.4)

γe = lim
m→∞

(
m∑

k=1

1

k
− logm) ∼ 0.577216 , (C.5)

∫ ∞

0

dt
tα−1

(t+ 1)β
=

Γ(α)Γ(β − α)

Γ(β)
. (C.6)

(C.7)

D-dimensional spherical integration
∫
dΩD=ΩD can be expressed with the following relations

and the Γ–function

∫ ∞

−∞
...

∫ ∞

−∞
dx1...dxn =

∫
dΩ

∫
dr rn−1 , (C.8)

∫ ∞

−∞
e−

2

dx =

√
1

π
, (C.9)

∫
dΩD =

2πD/2

Γ(D/2)
. (C.10)

(C.11)
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C.1.2 The Spence–function Li2

The Spence–function Li2(x) is defined by

Li2(x) = −
∫ x

0

dt

t
log(1− t) . (C.12)

C.1.3 The Källen function κ

the totally symmetric Källen function κ is defined by

κ(x, y, z) =
√
(x− y − z)2 − 4yz . (C.13)



Appendix D

SPheno flags

We used the following flags in SPheno for the generation of all spectra.

# SM values are taken from: C. Amsler et al. (Particle Data Group)

# Physics Letters B667, 1 (2008) (URL: http://pdg.lbl.gov)

# where MW = 80.398+/-0.025 GeV

#

Block MODSEL # Select model

1 1 # mSugra

Block SMINPUTS # Standard Model inputs

2 1.16637000E-05 # G_F, Fermi constant

3 1.17600000E-01 # alpha_s(MZ) SM MSbar

4 9.11876000E+01 # Z-boson pole mass

5 4.20000000E+00 # m_b(mb) SM MSbar

6 1.71200000E+02 # m_top(pole)

7 1.77684000E+00 # m_tau(pole)

Block MINPAR # Input parameters

1 2.50000000E+02 # m0

2 7.00000000E+01 # m12

3 1.00000000E+01 # tanb

4 1.00000000E+00 # sign(mu)

5 0.00000000E+00 # A0

Block SPhenoInput # SPheno specific input

1 -1.00000000E+00 # error level

2 1.00000000E+00 # if =1, then SPA conventions are used ~ scale = 1000 GeV

11 0.00000000E+00 # calculate branching ratios

21 0.00000000E+00 # calculate cross section

25 0.00000000E+00 # if 0 no ISR is calculated, if 1 ISR is caculated

31 -1.00000000E+00 # m_GUT, if < 0 than it determined via g_1=g_2

32 0.00000000E+00 # require strict unification g_1=g_2=g_3 if ’1’ is set

33 -1.00000000E+00 # Q_EWSB, if < 0 than Q_EWSB=sqrt(m_~t1 m_~t2)

51 5.10998910E-04 # electron mass

52 1.05658367E-01 # muon mass

61 2.00000000E+00 # scale where quark masses of first 2 gen. are defined
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62 3.00000000E-03 # m_u(Q) 1.5-3.3 MeV

63 1.20000000E+00 # m_c(Q) 1.27 +0.07 -0.11 MeV

64 6.00000000E-03 # m_d(Q) 3.5-6.0 MeV

65 1.20000000E-01 # m_s(Q) 104 +26 -34 MeV



Appendix E

Bremsstrahlung

E.1 Infrared divergences

Infrared (IR) divergences originate from the fact that photons and gluons are massless parti-
cles, this causes a divergent behavior in loop integrals for vanishing photon/gluon momenta.
To regulate the divergent expressions, one introduces a small photon/gluon mass λ e.g.

∂

∂p2
1

iπ2

∫
ddq

1

(q2 − λ2)[(q + p)2 −m2]

∣∣∣∣
p2=m2

= − 1

2m2

(
2− log

m2

λ2

)
, (E.1)

as can be seen easily this integral diverges for λ→ 0.
Following a theorem by Bloch and Nordsieck [53], the IR–divergences can be canceled by
the inclusion of hard Bremsstrahlung processes which contain one additional emission of a
single photon/gluon in the final state.

E.2 Hard Bremsstrahlung

For an 1 to 3 process with a massless particle the three-body phase space can still be
integrated out analytically. We have implemented this radiation by using self-derived generic
formulae for all four generic decay structures fig. 4.1 where every charged line can radiate off
a photon (or a gluon for colored particles). The width containing the real Bremsstrahlung
processes can be written as

Γhard =
NC

2m0

∫
d3k1

(2π)32E1

∫
d3k2

(2π)32E2

∫
d3k3

(2π)32E3

(2π)4δ4(p−k1+k2−k3)|Mhard|2 ,

where NC denotes the color factor. The phase–space integrals In and Imn in the convention
of [32] are given by

Ii1...in =
1

π2

∫
d3k1
2E1

d3k2
2E2

d3k3
2E3

δ4(p− k1 + k2 − k3)
1

(±2ki1 · k3) . . . (±2kin · k3)
, (E.2)

where the plus signs belong to the momenta of the outgoing particles k1 and k3 and the
minus signs to the momenta p and k2. The IR–convergent decay width Γcorr for the physical
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value λ = 0 is then given by

Γcorr(Φ → fAfB) = Γ(Φ0
k → fAfB) + Γhard(Φ → fAfBγ/g) (E.3)

Γhard(Φ → fAfBγ/g) =
1

26mΦπ3

(
|MSFF |2, |MSSS|2, |MSSV |2, |MSV V |2

)
(E.4)

Φ = h0, H0, A0, H± . (E.5)

The generic couplings g0, g1 and g2 for the hard photon radiation are setup by

g0 = −e charge(0) , (E.6)

g1 = −e charge(1) ,
g2 = −e charge(2) ,

where e.g. charge(0) = −1 for a H+ decay. For the hard gluon radiation g0, g1 and g2 are
defined by

g0 = −gS strongC(0) , (E.7)

g1 = −gS strongC(1) ,
g2 = −gS strongC(2) ,

where gS denotes the strong coupling constant, strongC(i) is equal to one for colored particles
and zero for non–colored particles.

E.2.1 Analytic expressions of the relevant phase–space integrals

In this section we will give the Analytic expressions for all phase–space integrals, necessary
for all the two–body decays in the program package HFOLD.
For the discussion of the phase–space integrals it is necessary to introduce the functions

β0(m
2
0,m

2
1,m

2
2) =

(m2
0 −m2

1 −m2
2 + κ(m2

0,m
2
1,m

2
2))

(2m1m2)
,

β1(m
2
0,m

2
1,m

2
2) =

(m2
0 −m2

1 +m2
2 − κ(m2

0,m
2
1,m

2
2))

(2m0m2)
,

β2(m
2
0,m

2
1,m

2
2) =

(m2
0 +m2

1 −m2
2 − κ(m2

0,m
2
1,m

2
2))

(2m0m1)
,

where κ denotes the Källen function. In the further discussion we will skip the arguments of
the Källen function κ(m2

0,m
2
1,m

2
2) and just write κ.
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Type Ii

I0 =
1

4m2
0

(
− 2m2

1 log(β2)− 2m2
2 log(β1)− κ

)

I1 =
1

4m2
0

(
− 2m2

0 log(β2)− 2m2
2 log(β0)− κ

)

I2 =
1

4m2
0

(
− 2m2

0 log(β1)− 2m2
1 log(β0)− κ

)

Type Iji

Ii =
1

4m2
0

(κ
2
(m2

0 +m2
1 +m2

2) + 2m2
0m

2
1 log(β2) + 2m2

0m
2
2 log(β1) + 2m2

1m
2
2 log(β0)

)

I10 =
1

4m2
0

(
m4

1 log(β2)−m2
2(2m

2
0 − 2m2

1 +m2
2) log(β1)−

κ

4
(m2

0 − 3m2
1 + 5m2

2)
)

I20 =
1

4m2
0

(
m4

2 log(β1)−m2
1(2m

2
0 − 2m2

2 +m2
1) log(β2)−

κ

4
(m2

0 − 3m2
2 + 5m2

1)
)

I01 =
1

4m2
0

(
m4

0 log(β2)−m2
2(2m

2
1 − 2m2

0 +m2
2) log(β0)−

κ

4
(m2

1 − 3m2
0 + 5m2

2)
)

I21 =
1

4m2
0

(
m4

2 log(β0)−m2
0(2m

2
1 − 2m2

2 +m2
0) log(β2)−

κ

4
(m2

1 − 3m2
2 + 5m2

0)
)

I02 =
1

4m2
0

(
m4

0 log(β1)−m2
1(2m

2
2 − 2m2

0 +m2
1) log(β0)−

κ

4
(m2

2 − 3m2
0 + 5m2

1)
)

I12 =
1

4m2
0

(
m4

1 log(β0)−m2
0(2m

2
2 − 2m2

1 +m2
0) log(β1)−

κ

4
(m2

2 − 3m2
1 + 5m2

0)
)
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Type Ii1i2

I00 =
1

4m4
0

(
κ log(

κ2

λm0m1m2

)− κ− (m2
1 −m2

2) log(
β1
β2

)−m2
0 log(β0)

)

I11 =
1

4m2
1m

2
0

(
κ log(

κ2

λm0m1m2

)− κ− (m2
0 −m2

2) log(
β0
β2

)−m2
1 log(β1)

)

I22 =
1

4m2
2m

2
0

(
κ log(

κ2

λm0m1m2

)− κ− (m2
0 −m2

1) log(
β0
β1

)−m2
2 log(β2)

)

I21 =
1

4m2
0

(
− 2 log(

λm0m1m2

κ2
) log(β0) + 2 log(β0)

2 − log(β1)
2 − log(β2)

2

+ 2Li2(1− β2
0)− Li2(1− β2

1)− Li2(1− β2
2)
)

I10 =
1

4m2
0

(
− 2 log(

λm0m1m2

κ2
) log(β2) + 2 log(β2)

2 − log(β0)
2 − log(β1)

2

+ 2Li2(1− β2
2)− Li2(1− β2

0)− Li2(1− β2
1)
)

I20 =
1

4m2
0

(
− 2 log(

λm0m1m2

κ2
) log(β1) + 2 log(β1)

2 − log(β0)
2 − log(β2)

2

+ 2Li2(1− β2
1)− Li2(1− β2

0)− Li2(1− β2
2)
)

Type Ij1j2i1i2

I1100 =
1

4m2
0

(
(2m2

2(m
2
0 +m2

2 −m2
1) log(β1) +

κ3

6m2
0

+ 2κm2
2

)

I2100 = − 1

4m2
0

(
(m4

1 log(β2) +m4
2 log(β1) +

κ3

6m2
0

+
κ

4
(3m2

1 + 3m2
2 −m2

0)
)

I2200 =
1

4m2
0

(
(2m2

1(m
2
0 +m2

1 −m2
2) log(β2) +

κ3

6m2
0

+ 2κm2
1

)

I0011 =
1

4m2
0

(
(2m2

2(m
2
1 +m2

2 −m2
0) log(β0) +

κ3

6m2
1

+ 2κm2
2

)

I2011 = − 1

4m2
0

(
(m4

0 log(β2) +m4
2 log(β0) +

κ3

6m2
1

+
κ

4
(3m2

0 + 3m2
2 −m2

1)
)

I2211 =
1

4m2
0

(
(2m2

0(m
2
0 +m2

1 −m2
2) log(β2) +

κ3

6m2
1

+ 2κm2
0

)

I0022 =
1

4m2
0

(
(2m2

1(m
2
2 +m2

1 −m2
0) log(β0) +

κ3

6m2
2

+ 2κm2
1

)

I1022 = − 1

4m2
0

(
(m4

0 log(β1) +m4
1 log(β0) +

κ3

6m2
2

+
κ

4
(3m2

0 + 3m2
1 −m2

2)
)

I1122 =
1

4m2
0

(
(2m2

0(m
2
0 +m2

2 −m2
1) log(β1) +

κ3

6m2
2

+ 2κm2
0

)
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E.3 Scalar→ Fermion1 + Fermion2 (SFF)

M0 M1 M2MSFF

= + +

k0 k3

k2

k1

gt gtgt
g0

g1

g2

Figure E.1: Hard Bremsstrahlung process with one scalar and two fermions

The generic matrix elements are given by

M0 = ū(k1) i(g
L
t PL + gRt PR)

i

(k0 − k3)2 −m2
0

ig0 (2k0 − k3)µ ε
∗µ(k3, λ)v(k2) , (E.8)

M1 = ū(k1) ig1γµ
i( 6k3 + 6k1 +m1)

(k1 + k3)2 −m2
1

i(gLt PL + gRt PR)ε
∗µ(k3, λ)v(k2) , (E.9)

M2 = ū(k1) i(g
L
t PL + gRt PR)

i(−6k2 − 6k3 +m2)

(k2 + k3)2 −m2
2

ig2γµ ε
∗µ(k3, λ)v(k2) . (E.10)
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The squared matrix element |MSFF |2 = |M0 +M1 +M2|2 reads as

|MSFF |2 = 2g21g
L
t g

L∗
t I21 + 2g21g

R
t g

R∗
t I21 + 2g22g

L
t g

L∗
t I12 + 2g22g

R
t g

R∗
t I12 − 2g20g

L
t g

L∗
t Ii (E.11)

+ 2g0g1g
L
t g

L∗
t Ii+ 2g0g2g

L
t g

L∗
t Ii− 4g1g2g

L
t g

L∗
t Ii− 2g20g

R
t g

R∗
t Ii+ 2g0g1g

R
t g

R∗
t Ii

− 4g1g2g
R
t g

R∗
t Ii− 6g20g

L
t g

L∗
t I0m

2
0 + 2g0g1g

L
t g

L∗
t I0m

2
0 + 2g0g2g

L
t g

L∗
t I0m

2
0 − 6g20g

R
t g

R∗
t I0m

2
0

+ 2g0g1g
R
t g

R∗
t I0m

2
0 + 2g0g2g

R
t g

R∗
t I0m

2
0 − 4g0g1g

L
t g

L∗
t I1m

2
0 + 4g1g2g

L
t g

L∗
t I1m

2
0

+ 4g1g2g
R
t g

R∗
t I1m

2
0 − 4g0g2g

L
t g

L∗
t I2m

2
0 + 4g1g2g

L
t g

L∗
t I2m

2
0 − 4g0g2g

R
t g

R∗
t I2m

2
0

− 4g20g
L
t g

L∗
t I00m

4
0 − 4g20g

R
t g

R∗
t I00m

4
0 − 4g0g1g

L
t g

L∗
t I10m

4
0 − 4g0g1g

R
t g

R∗
t I10m

4
0

− 4g0g2g
L
t g

L∗
t I20m

4
0 − 4g0g2g

R
t g

R∗
t I20m

4
0 − 4g1g2g

L
t g

L∗
t I21m

4
0 − 4g1g2g

R
t g

R∗
t I21m

4
0

+ 2g20g
L
t g

L∗
t I0m

2
1 + 2g0g1g

L
t g

L∗
t I0m

2
1 + 2g0g2g

L
t g

L∗
t I0m

2
1 + 2g20g

R
t g

R∗
t I0m

2
1

+ 2g0g2g
R
t g

R∗
t I0m

2
1 + 4g21g

L
t g

L∗
t I1m

2
1 + 4g21g

R
t g

R∗
t I1m

2
1 + 4g0g2g

L
t g

L∗
t I2m

2
1

+ 4g0g2g
R
t g

R∗
t I2m

2
1 − 4g1g2g

R
t g

R∗
t I2m

2
1 + 4g20g

L
t g

L∗
t I00m

2
0m

2
1 + 4g20g

R
t g

R∗
t I00m

2
0m

2
1

− 4g21g
L
t g

L∗
t I11m

2
0m

2
1 − 4g21g

R
t g

R∗
t I11m

2
0m

2
1 + 8g0g2g

L
t g

L∗
t I20m

2
0m

2
1 + 8g0g2g

R
t g

R∗
t I20m

2
0m

2
1

+ 8g1g2g
L
t g

L∗
t I21m

2
0m

2
1 + 8g1g2g

R
t g

R∗
t I21m

2
0m

2
1 + 4g0g1g

L
t g

L∗
t I10m

4
1 + 4g0g1g

R
t g

R∗
t I10m

4
1

+ 4g21g
L
t g

L∗
t I11m

4
1 + 4g21g

R
t g

R∗
t I11m

4
1 − 4g0g2g

L
t g

L∗
t I20m

4
1 − 4g0g2g

R
t g

R∗
t I20m

4
1

− 4g1g2g
L
t g

L∗
t I21m

4
1 − 4g1g2g

R
t g

R∗
t I21m

4
1 + 4g20g

L∗
t gRt I0m1m2 + 4g0g1g

L∗
t gRt I0m1m2

+ 4g0g2g
L∗
t gRt I0m1m2 + 4g20g

L
t g

R∗
t I0m1m2 + 4g0g1g

L
t g

R∗
t I0m1m2 + 4g0g2g

L
t g

R∗
t I0m1m2

+ 4g0g1g
L∗
t gRt I1m1m2 + 4g21g

L∗
t gRt I1m1m2 − 4g1g2g

L∗
t gRt I1m1m2 + 4g0g1g

L
t g

R∗
t I1m1m2

+ 4g21g
L
t g

R∗
t I1m1m2 − 4g1g2g

L
t g

R∗
t I1m1m2 + 4g0g2g

L∗
t gRt I2m1m2 − 4g1g2g

L∗
t gRt I2m1m2

+ 4g22g
L∗
t gRt I2m1m2 + 4g0g2g

L
t g

R∗
t I2m1m2 − 4g1g2g

L
t g

R∗
t I2m1m2 + 4g22g

L
t g

R∗
t I2m1m2

+ 8g20g
L∗
t gRt I00m

2
0m1m2 + 8g20g

L
t g

R∗
t I00m

2
0m1m2 + 8g0g1g

L∗
t gRt I10m

2
0m1m2

+ 8g0g2g
L∗
t gRt I20m

2
0m1m2 + 8g0g2g

L
t g

R∗
t I20m

2
0m1m2 + 8g1g2g

L∗
t gRt I21m

2
0m1m2

+ 8g0g1g
L∗
t gRt I10m

3
1m2 + 8g0g1g

L
t g

R∗
t I10m

3
1m2 + 8g21g

L∗
t gRt I11m

3
1m2

− 8g0g2g
L∗
t gRt I20m

3
1m2 − 8g0g2g

L
t g

R∗
t I20m

3
1m2 − 8g1g2g

L∗
t gRt I21m

3
1m2

+ 8g0g1g
L∗
t gRt I10m1m

3
2 − 8g0g1g

L
t g

R∗
t I10m1m

3
2 + 8g0g2g

L∗
t gRt I20m1m

3
2

− 8g1g2g
L∗
t gRt I21m1m

3
2 − 8g1g2g

L
t g

R∗
t I21m1m

3
2 + 8g22g

L∗
t gRt I22m1m

3
2 + 8g22g

L
t g

R∗
t I22m1m

3
2

+ 2g20g
L
t g

L∗
t I0m

2
2 + 2g0g1g

L
t g

L∗
t I0m

2
2 + 2g0g2g

L
t g

L∗
t I0m

2
2 + 2g20g

R
t g

R∗
t I0m

2
2

+ 2g0g2g
R
t g

R∗
t I0m

2
2 + 4g0g1g

L
t g

L∗
t I1m

2
2 − 4g1g2g

L
t g

L∗
t I1m

2
2 + 4g0g1g

R
t g

R∗
t I1m

2
2

+ 4g22g
L
t g

L∗
t I2m

2
2 + 4g22g

R
t g

R∗
t I2m

2
2 + 4g20g

L
t g

L∗
t I00m

2
0m

2
2 + 4g20g

R
t g

R∗
t I00m

2
0m

2
2

+ 8g0g1g
L
t g

L∗
t I10m

2
0m

2
2 + 8g0g1g

R
t g

R∗
t I10m

2
0m

2
2 + 8g1g2g

L
t g

L∗
t I21m

2
0m

2
2

− 4g22g
L
t g

L∗
t I22m

2
0m

2
2 − 4g22g

R
t g

R∗
t I22m

2
0m

2
2 + 4g21g

L
t g

L∗
t I11m

2
1m

2
2 + 4g21g

R
t g

R∗
t I11m

2
1m

2
2

− 8g1g2g
L
t g

L∗
t I21m

2
1m

2
2 − 8g1g2g

R
t g

R∗
t I21m

2
1m

2
2 + 4g22g

L
t g

L∗
t I22m

2
1m

2
2 + 4g22g

R
t g

R∗
t I22m

2
1m

2
2

− 4g0g1g
L
t g

L∗
t I10m

4
2 − 4g0g1g

R
t g

R∗
t I10m

4
2 + 4g0g2g

L
t g

L∗
t I20m

4
2 + 4g0g2g

R
t g

R∗
t I20m

4
2

− 4g1g2g
L
t g

L∗
t I21m

4
2 − 4g1g2g

R
t g

R∗
t I21m

4
2 + 4g22g

L
t g

L∗
t I22m

4
2 + 4g22g

R
t g

R∗
t I22m

4
2

+ 8g0g1g
L
t g

R∗
t I10m

2
0m1m2 + 8g1g2g

L
t g

R∗
t I21m

2
0m1m2 + 2g0g2g

R
t g

R∗
t Ii− 4g0g1g

R
t g

R∗
t I1m

2
0

+ 4g1g2g
R
t g

R∗
t I2m

2
0 + 8g21g

L
t g

R∗
t I11m

3
1m2 − 8g1g2g

L
t g

R∗
t I21m

3
1m2 + 8g0g2g

L
t g

R∗
t I20m1m

3
2

+ 2g0g1g
R
t g

R∗
t I0m

2
2 − 4g1g2g

R
t g

R∗
t I1m

2
2 + 8g1g2g

R
t g

R∗
t I21m

2
0m

2
2 + 2g0g1g

R
t g

R∗
t I0m

2
1

− 4g1g2g
L
t g

L∗
t I2m

2
1 .
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E.3.1 One massless external fermion

If one external fermion has zero mass, one has to take the limit m2 → 0 and reexpress the
phase–space integrals.

β2 =
m2

0 +m2
1 −m2

2 − κ

2m0m1

I0 =
1

4m2
0

(
− 2m2

1 log(β2)− κ
)

I1 =
1

4m2
0

(
− 2m2

0 log(β2)− κ
)

I00 = − 1

4m4
0

(
m2

0 log(
m0

m1

− m1

m0

)− (m0 −m1)(m0 +m1)(−1 + log(
(m2

0 −m2
1)

2

λm2
0m1

)
)

+ m2
1 log(

m3
0

m2
0m1 −m3

1

)
)

I11 = − 1

4m2
0m

2
1

(
m2

0 log(−1 +
m2

0

m2
1

) +m2
1 log(

m2
0

m2
0 −m2

1

)

− (m0 −m1)(m0 +m1)(−1 + log(
(m2

0 −m2
1)

2

λm2
0m1

))
)

I10 =
1

4m2
0

(
6 log(

m1

m0

)2 + log(
m0

m1

− m1

m0

)2 − 2 log(
m1

m0

) log(
λm2

0m1

(m2
0 −m2

1)
2

)

− log(
m2

0

m2
0 −m2

1

)2 + 2Li2(1−
m2

0

m2
1

)
)

I20 =
1

4m2
0

(
−m2

1(2m
2
0 − 2m2

2 +m2
1) log(β2) +

κ

4
(m2

0 − 3m2
2 + 5m2

1)
)

Ii =
1

4m2
0

(κ
2
(m2

0 +m2
1 +m2

2) + 2m2
0m

2
1 log(β2)

)

I21 =
1

4m2
0

(
−m2

0(2m
2
1 − 2m2

2 +m2
0) log(β2)−

κ

4
(m2

1 + 5m2
0)
)

The squared matrix element |MSFF |2 then takes a much simpler form compared to m2 6= 0,
given by

|MSFF |2 = 2g21g
R
t g

R∗
t I21 − 2g20g

R
t g

R∗
t Ii+ 2g0g1g

R
t g

R∗
t Ii− 6g20g

R
t g

R∗
t I0m

2
0 (E.12)

− 2g0g1g
R
t g

R∗
t I0m

2
0 − 4g0g1g

R
t g

R∗
t I1m

2
0 − 4g20g

R
t g

R∗
t I00m

4
0

− 4g0g1g
R
t g

R∗
t I10m

4
0 + 2g20g

R
t g

R∗
t I0m

2
1 + 2g0g1g

R
t g

R∗
t I0m

2
1

+ 4g21g
R
t g

R∗
t I1m

2
1 + 4g20g

R
t g

R∗
t I00m

2
0m

2
1 − 4g21g

R
t g

R∗
t I11m

2
0m

2
1

+ 4g0g1g
R
t g

R∗
t I10m

4
1 + 4g21g

R
t g

R∗
t I11m

4
1 .
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E.4 Scalar → Scalar1 + Scalar2 (SSS)

M0 M1 M2MSSS

= + +

k0 k3

k2

k1

gt gt gt

g1

g0
g2

Figure E.2: Hard Bremsstrahlung process with 3 scalars

The generic matrix elements are given by

M0 =
igtg0(2k0 − k3)µǫ

µ(k3, λ)

(k0 − k3)2 −m2
0

, (E.13)

M1 =
igtg1(2k1 + k3)µǫ

µ(k3, λ)

(k1 + k3)2 −m2
1

, (E.14)

M2 =
igtg2(2k2 + k3)µǫ

µ(k3, λ)

(k2 + k3)2 −m2
2

. (E.15)

(E.16)

The squared matrix element |MSSS|2 = |M0 +M1 +M2|2 then reads as

|MSSS|2 = −4g0g1gtg
∗
t I0 − 4g0g2gtg

∗
t I0 − 4g0g1gtg

∗
t I1 + 4g1g2gtg

∗
t I1 (E.17)

+ 4g1g2gtg
∗
t I2 − 4g20gtg

∗
t I00m

2
0 − 4g0g1gtg

∗
t I10m

2
0 − 4g0g2gtg

∗
t I20m

2
0

− 4g1g2gtg
∗
t I21m

2
0 − 4g0g1gtg

∗
t I10m

2
1 − 4g21gtg

∗
t I11m

2
1 + 4g0g2gtg

∗
t I20m

2
1

+ 4g1g2gtg
∗
t I21m

2
1 + 4g0g1gtg

∗
t I10m

2
2 − 4g0g2gtg

∗
t I20m

2
2 + 4g1g2gtg

∗
t I21m

2
2

− 4g22gtg
∗
t I22m

2
2 − 4g0g2gtg

∗
t I2 .
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E.5 Scalar → Vector1 + Vector2 (SVV)

Since there is only one Higgs decay into two charged on–shell vector bosons allowed in the
MSSM, there is no necessity to calculate the full generic formula. Therefore we just give the
result for H+ → W+W−.

M1MSV V

= +

k0 k3

k2

k1

M0

gt gt

g0

g1

Figure E.3: Hard Bremsstrahlung process with 2 vector bosons in the final state

The squared matrix element |MSV V |2 = |M0 +M1|2 then reads as

|MSV V |2 =
α2c2βαπ

2

s2w

(
− I0011 − 46I2011 − 13I2211 − 100I01 − 80I21 − I0022 − 46I1022 (E.18)

− 100I02 − 80I12 − 134Ii+ 64I1m
2
0 + 64I2m

2
0 − 16I11m

4
0 − 96I21m

4
0

− 16
I2m

4
0

m2
1

+ 16
I21m

6
0

m2
1

− 192I1m
2
1 − 192I2m

2
1 − 13I1122 − 16I22m

4
0

+ 64I11m
2
0m

2
1 + 320I21m

2
0m

2
1 + 64I22m

2
0m

2
1 − 192I11m

4
1 − 384I21m

4
1

− 192I22m
4
1 + 42

I01m
2
0

m2
1

+ 42
I21m

2
0

m2
1

+ 42
I02m

2
0

m2
1

+ 42
I12m

2
0

m2
1

+ 84
Iim2

0

m2
1

− 16
I1m

4
0

m2
1

)



106 APPENDIX E. BREMSSTRAHLUNG

E.6 Scalar → Scalar1 + Vector2 (SSV)

M1 M2

M3

MSSV

= +

+

k0 k3

k2

k1

M3

g0

g1

g3

gt

g4
gt

gt

+

Figure E.4: Hard Bremsstrahlung process with one scalar and a vector boson in the final
state

The generic matrix elements are given by

M0 =
i

(k0 − k3)2 −m2
0

gtg0(k0 + k1 − k3)ν(2k0 − k3)µǫ
W∗
ν (k2, λ2)ǫ

∗
µ(k3, λ) , (E.19)

M1 =
i

(k1 + k3)2 −m2
1

gtg1(k0 + k1 + k3)ν(2k1 + k3)µǫ
W∗
ν (k2, λ2)ǫ

∗
µ(k3, λ) , (E.20)

M2 =
i
(
gρσ − (k2+k3)ρ(k2+k3)σ

m2
2

)

(k2 + k3)2 −m2
2

(k0 + k1)σgtg2 , (E.21)

(
(−2k2 − k3)µg

ρν + (k2 − k3)ρg
µν + (k2 + 2k3)νg

µρ
)
ǫW∗
ν (k2, λ2)ǫ

∗
µ(k3, λ)

M3 = igt(g0 + g1)g
µνǫW∗

ν (k2, λ2)ǫµ(k3, λ) . (E.22)
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The squared matrix element |MSV V |2 = |M0 +M1 +M2 +M3|2 then reads as

|MSSV |2 = g20gtg
∗
t I

2
0 − g0g1gtg

∗
t I

2
0 − g0g2gtg

∗
t I

2
0 − g0g1gtg

∗
t I

2
1 + g21gtg

∗
t I

2
1 + g1g2gtg

∗
t I

2
1 (E.23)

+ 2g22gtg
∗
t I

00
22 − 4g22gtg

∗
t I

10
22 + 2g22gtg

∗
t I

11
22 − 8g0g2gtg

∗
t I

1
2 − 8g1g2gtg

∗
t I

1
2

+ 5g20gtg
∗
t Ii− 2g0g1gtg

∗
t Ii+ 5g21gtg

∗
t Ii− 6g0g2gtg

∗
t Ii− 2g1g2gtg

∗
t Ii− g22gtg

∗
t Ii

+ 8g20gtg
∗
t I0m

2
0 + 8g0g1gtg

∗
t I1m

2
0 − 8g1g2gtg

∗
t I1m

2
0 + 4g0g2gtg

∗
t I2m

2
0 − 4g1g2gtg

∗
t I2m

2
0

+ 4g22gtg
∗
t I2m

2
0 + 8g20gtg

∗
t I00m

4
0 + 12g0g1gtg

∗
t I10m

4
0 + 4g0g2gtg

∗
t I20m

4
0

+ 12g1g2gtg
∗
t I21m

4
0 − 4g22gtg

∗
t I22m

4
0 + 8g0g1gtg

∗
t I0m

2
1 + 8g0g2gtg

∗
t I0m

2
1 + 8g21gtg

∗
t I1m

2
1

+ 4g0g2gtg
∗
t I2m

2
1 − 4g1g2gtg

∗
t I2m

2
1 + 4g22gtg

∗
t I2m

2
1 + 8g20gtg

∗
t I00m

2
0m

2
1 + 8g0g1gtg

∗
t I10m

2
0m

2
1

+ 8g21gtg
∗
t I11m

2
0m

2
1 + 8g0g2gtg

∗
t I20m

2
0m

2
1 − 8g1g2gtg

∗
t I21m

2
0m

2
1 + 8g22gtg

∗
t I22m

2
0m

2
1

+ 12g0g1gtg
∗
t I10m

4
1 + 8g21gtg

∗
t I11m

4
1 − 12g0g2gtg

∗
t I20m

4
1 − 4g1g2gtg

∗
t I21m

4
1

− 4g22gtg
∗
t I22m

4
1 − (g0g2gtg

∗
t I

1m2
0)/m

4
2 + (g1g2gtg

∗
t I

1m2
0)/m

4
2 + (g22gtg

∗
t I

1m2
0)/m

4
2

− (g0g2gtg
∗
t I

2m2
0)/(2m

4
2) + (g1g2gtg

∗
t I

2m2
0)/(2m

4
2) + (g22gtg

∗
t I

2m2
0)/(2m

4
2)

+ (g0g2gtg
∗
t Iim

4
0)/m

4
2 − (g1g2gtg

∗
t Iim

4
0)/m

4
2 − (g22gtg

∗
t Iim

4
0)/m

4
2 + (g0g2gtg

∗
t I

1m2
1)/m

4
2

− (g1g2gtg
∗
t I

1m2
1)/m

4
2 − (g22gtg

∗
t I

1m2
1)/m

4
2 + (g0g2gtg

∗
t I

2m2
1)/(2m

4
2)

− (g1g2gtg
∗
t I

2m2
1)/(2m

4
2)− (g22gtg

∗
t I

2m2
1)/(2m

4
2)− (2g0g2gtg

∗
t Iim

2
0m

2
1)/m

4
2

+ (2g1g2gtg
∗
t Iim

2
0m

2
1)/m

4
2 + (2g22gtg

∗
t Iim

2
0m

2
1)/m

4
2 + (g0g2gtg

∗
t Iim

4
1)/m

4
2

− (g1g2gtg
∗
t Iim

4
1)/m

4
2 − (g22gtg

∗
t Iim

4
1)/m

4
2 + (2g0g2gtg

∗
t I

1
21)/m

2
2 − (2g1g2gtg

∗
t I

1
21)/m

2
2

− (2g22gtg
∗
t I

1
21)/m

2
2 + (2g0g2gtg

∗
t I

1)/m2
2 − (2g1g2gtg

∗
t I

1)/m2
2 − (2g22gtg

∗
t I

1)/m2
2

+ (g20gtg
∗
t I

2)/m2
2 − (2g0g1gtg

∗
t I

2)/m2
2 + (g21gtg

∗
t I

2)/m2
2 − (3g0g2gtg

∗
t I

2)/(2m2
2)

+ (3g1g2gtg
∗
t I

2)/(2m2
2) + (g22gtg

∗
t I

2)/(2m2
2)− (4g20gtg

∗
t I00m

6
0)/m

2
2

− (4g0g1gtg
∗
t I10m

6
0)/m

2
2 − (4g0g2gtg

∗
t I20m

6
0)/m

2
2 − (4g1g2gtg

∗
t I21m

6
0)/m

2
2

− (g20gtg
∗
t I

11
00m

2
0)/m

2
2 − (2g20gtg

∗
t I

21
00m

2
0)/m

2
2 − (g20gtg

∗
t I

22
00m

2
0)/m

2
2

+ (g20gtg
∗
t I

2
0m

2
0)/m

2
2 − (g0g1gtg

∗
t I

2
0m

2
0)/m

2
2 − (g0g2gtg

∗
t I

2
0m

2
0)/m

2
2 + (g0g1gtg

∗
t I

2
1m

2
0)/m

2
2

− (g21gtg
∗
t I

2
1m

2
0)/m

2
2 − (g1g2gtg

∗
t I

2
1m

2
0)/m

2
2 − (2g0g2gtg

∗
t I

1
2m

2
0)/m

2
2

+ (2g1g2gtg
∗
t I

1
2m

2
0)/m

2
2 + (2g22gtg

∗
t I

1
2m

2
0)/m

2
2 − (3g20gtg

∗
t Iim

2
0)/m

2
2 + (4g0g1gtg

∗
t Iim

2
0)/m

2
2

+ (5g0g2gtg
∗
t Iim

2
0)/m

2
2 − (g1g2gtg

∗
t Iim

2
0)/m

2
2 − (g22gtg

∗
t Iim

2
0)/m

2
2 − (8g20gtg

∗
t I0m

4
0)/m

2
2

+ (4g0g1gtg
∗
t I0m

4
0)/m

2
2 + (4g0g2gtg

∗
t I0m

4
0)/m

2
2 − (4g0g1gtg

∗
t I1m

4
0)/m

2
2

+ (4g1g2gtg
∗
t I1m

4
0)/m

2
2 − (6g0g2gtg

∗
t I2m

4
0)/m

2
2 + (6g1g2gtg

∗
t I2m

4
0)/m

2
2

+ (2g22gtg
∗
t I2m

4
0)/m

2
2 − (4g0g1gtg

∗
t I10m

6
1)/m

2
2 − (4g21gtg

∗
t I11m

6
1)/m

2
2

+ (4g0g2gtg
∗
t I20m

6
1)/m

2
2 + (4g1g2gtg

∗
t I21m

6
1)/m

2
2 − (g20gtg

∗
t I

2
0m

2
1)/m

2
2

+ (g0g1gtg
∗
t I

2
0m

2
1)/m

2
2 + (g0g2gtg

∗
t I

2
0m

2
1)/m

2
2 − (g21gtg

∗
t I

00
11m

2
1)/m

2
2

− (2g21gtg
∗
t I

20
11m

2
1)/m

2
2 − (g21gtg

∗
t I

22
11m

2
1)/m

2
2 − (g0g1gtg

∗
t I

2
1m

2
1)/m

2
2
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+ (g21gtg
∗
t I

2
1m

2
1)/m

2
2 + (g1g2gtg

∗
t I

2
1m

2
1)/m

2
2 + (2g0g2gtg

∗
t I

1
2m

2
1)/m

2
2

− (2g1g2gtg
∗
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Appendix F

Electroweak Interactions in the
MSSM

This chapter has been obtained from [107]. In the following we give all couplings which are
necessary for the calculation of electroweak corrections to Higgs decay processes. For the
whole set of Feynman rules and a complete list of all terms of the MSSM Lagrangian we
refer to [60].

F.1 Higgs–Sfermion–Sfermion couplings

For the neutral and charged Higgs fields we use the notation H0
k = {h0, H0, A0, G0}, H+

k =
{H+, G+, H−, G−} and H−

k ≡ (H+
k )

∗ = {H−, G−, H+, G+}. t/t̃ stands for an up–type
(s)fermion and b/b̃ for a down–type one. Following [44, 45] the Higgs–Sfermion–Sfermion

couplings for neutral Higgs bosons, Gf̃
ijk, can be written as

Gf̃
ijk ≡ G

(
H0
k f̃

∗
i f̃j
)
=
[
Rf̃Gf̃

LR,k(R
f̃ )T
]
ij
. (F.1)

109



110 APPENDIX F. ELECTROWEAK INTERACTIONS IN THE MSSM

The 3rd generation left–right couplings Gf̃
LR,k for up– and down–type sfermions are given by

Gt̃
LR,1 =

(
−
√
2htmtcα + gZmZ(I

3L
t −ets2W )sα+β − ht√

2
(At cα + µsα)

− ht√
2
(At cα + µsα) −

√
2htmtcα + gZmZets

2
W sα+β

)
,(F.2)

(F.3)

Gb̃
LR,1 =

( √
2hbmbsα + gZmZ(I

3L
b −ebs2W )sα+β

hb√
2
(Ab sα + µcα)

hb√
2
(Ab sα + µcα)

√
2hbmbsα + gZmZebs

2
W sα+β

)
, (F.4)

Gf̃
LR,2 = Gf̃

LR,1 with α → α− π/2 , (F.5)

Gt̃
LR,3 = −

√
2ht


 0 − i

2

(
At cβ + µ sβ

)

i
2

(
At cβ + µ sβ

)
0


 , (F.6)

Gb̃
LR,3 = −

√
2hb


 0 − i

2

(
Ab sβ + µ cβ

)

i
2

(
Ab sβ + µ cβ

)
0


 , (F.7)

Gf̃
LR,4 = Gf̃

LR,3 with β → β − π/2 , (F.8)

where we have used the abbreviations sx ≡ sin x, cx ≡ cos x and sW ≡ sin θW . α denotes the
mixing angle of the {h0, H0}–system, and ht and hb are the Yukawa couplings

ht =
g mt√

2mW sin β
, hb =

g mb√
2mW cos β

. (F.9)

The couplings of charged Higgs bosons to two sfermions are given by (l = 1, 2)

Gf̃ f̃ ′

ijl ≡ G
(
H±
l f̃

∗
i f̃

′
j

)
= Gf̃ ′f̃

jil =

(
Rf̃ Gf̃ f̃ ′

LR,l

(
Rf̃ ′
)T)

ij

, (F.10)

Gt̃b̃
LR,1 =

(
hbmb sin β + htmt cos β − gmW√

2
sin 2β hb(Ab sin β + µ cos β)

ht(At cos β + µ sin β) htmb cos β + hbmt sin β

)
, (F.11)

Gb̃t̃
LR,1 =

(
hbmb sin β + htmt cos β − gmW√

2
sin 2β ht(At cos β + µ sin β)

hb(Ab sin β + µ cos β) htmb cos β + hbmt sin β

)
, (F.12)

Gf̃ f̃ ′

LR,2 = Gf̃ f̃ ′

LR,1 with β → β − π

2
. (F.13)

f ′ denotes the isospin partner of the fermion f , i. e. t′ = b, b̃′i = t̃i etc. Note that only the
angle β explicitly given in the matrices above has to be substituted; the dependence of β in
the Yukawa couplings has to remain the same.
The Feynman rules for the Higgs–sfermion–sfermion couplings are (for k = 1, . . . , 4; l = 1, 2)
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~fj
~fiH0k i G ~fijk ~bj

~tiH+l i G~t~bijl
F.2 Higgs–Fermion–Fermion couplings

For the Higgs–fermion–fermion couplings the interaction Lagrangian reads

L =
2∑

k=1

sfk H
0
k f̄f +

4∑

k=3

sfk H
0
k f̄γ

5f +
2∑

l=1

[
H+
l t̄
(
yblPR+y

t
lPL
)
b+ h.c.

]
(F.14)

with the couplings

st1 = − g mt cosα
2mW sinβ

= − ht√
2
cosα, sb1 = g mb sinα

2mW cosβ
= hb√

2
sinα ,

st2 = − g mt sinα
2mW sinβ

= − ht√
2
sinα, sb2 = − g mb cosα

2mW cosβ
= − hb√

2
cosα ,

st3 = igmt cotβ
2mW

= i ht√
2
cos β, sb3 = igmb tanβ

2mW
= i hb√

2
sin β ,

st4 = ig mt

2mW
= i ht√

2
sin β, sb4 = − ig mb

2mW
= − i hb√

2
cos β ,

yt1 = gmt cotβ√
2mW

= ht cos β, yb1 = gmb tanβ√
2mW

= hb sin β ,

yt2 = g mt√
2mW

= ht sin β, yb2 = − g mb√
2mW

= − hb cos β .

(F.15)

The Feynman rules for the couplings to the Higgs bosons are

f

f

H0
k

isfk . . .h0, H0

iaf1γ
5 . . .A0, G0

b

t

H+
l i

(
yblPR + ytlPL

)
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F.3 Higgs–Gaugino–Gaugino couplings

The interaction Lagrangian for Higgs bosons and gauginos is given by

L = −g
2

2∑

k=1

H0
k
¯̃χ
0
lF

0
lmk χ̃

0
m − i

g

2

4∑

k=3

H0
k
¯̃χ
0
l F

0
lmkγ5 χ̃

0
m

−g
2∑

k=1

H0
k
¯̃χ
+
i

(
F+
ijkPR + F+

jikPL
)
χ̃+
j + ig

4∑

k=3

H0
k
¯̃χ
+
i

(
F+
ijkPR + F+

jikPL
)
χ̃+
j

−g
2∑

k=1

[
H+
k
¯̃χ
+
i

(
FR
ilkPR + FL

ilkPL
)
χ̃0
l + h.c.

]
. (F.16)

with

F 0
lmk =

ek
2

[
Zl3Zm2 + Zm3Zl2 − tan θW (Zl3Zm1 + Zm3Zl1)

]

+
dk
2

[
Zl4Zm2 + Zm4Zl2 − tan θW (Zl4Zm1 + Zm4Zl1)

]
= F 0

mlk , (F.17)

F+
ijk =

1√
2
(ekVi1Uj2 − dkVi2Uj1) , (F.18)

and

FR
ilk = dk+2

[
Vi1Zl4 +

1√
2
(Zl2 + Zl1 tan θW )Vi2

]
,

FL
ilk = −ek+2

[
Ui1Zl3 −

1√
2
(Zl2 + Zl1 tan θW )Ui2

]
. (F.19)

U, V and Z are rotation matrices which diagonalize the chargino and neutralino mass ma-
trices (see chapter 2.3.4), and dk and ek take the values

dk = {− cosα,− sinα, cos β, sin β} , ek = {− sinα, cosα,− sin β, cos β} .

~�+j
~�+iH0k �ig �F+ijkPR + F+jikPL� . . .h0; H0�g �F+ijkPR + F+jikPL� . . .A0; G0
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~�0m
~�0lH0k �igF 0lmk . . .h0; H0�gF 0lmk(PR � PL) . . .A0; G0

~�0l
~�+iH+k �ig �FRilkPR + FLilkPL�

F.4 Vector boson–Fermion–Fermion couplings

The Lagrangian describing interactions of vector bosons to fermions in the MSSM is given
by

L = −e ef Aµf̄γµf − gZZ
0
µ f̄γ

µ(Cf
LPL + Cf

RPR)f

− g√
2

(
W+
µ f̄↑γ

µPLf↓ +W−
µ f̄↓γ

µPLf↑

)
, (F.20)

where Cf
L and Cf

R are defined as Cf
L = I3Lf − efs

2
W and Cf

R = −efs2W . Here and in the
following the arrows ↑ and ↓ attached at (s)fermions denote up– and down–type (s)fermions,
respectively.

f ; fl
f ; flA�; Z0�;W�� �ie ef
� . . .A��igZ
�(CfLPL + CfRPR) . . .Z0��i gp2
�PL . . .W��
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F.5 Vector boson–Gaugino–Gaugino couplings

The interaction of a vector boson with two gauginos is described by the Lagrangian

L = g ¯̃χ+
j γ

µ
(
OL
ijPL +OR

ijPR

)
χ̃0
i W

+
µ + g ¯̃χ0

i

(
OL
ijPL +OR

ijPR

)
χ̃+
j W

−
µ

−eAµ ¯̃χ+
i γ

µχ̃+
i + gZZ

0
µ
¯̃χ+
i γ

µ
(
O

′L
ij PL +O

′R
ij PR

)
χ̃+
j

+
gZ
2
Z0
µ
¯̃χ0
i γ

µ
(
O

′′L
ij PL +O

′′R
ij PR

)
χ̃0
j , (F.21)

with the 4 × 2 coupling matrices for the W±–chargino–neutralino vertex

OL
ij = Zi2Vj1 − 1√

2
Zi4Vj2 , OR

ij = Zi2Uj1 +
1√
2
Zi3Uj2 , (F.22)

and the symmetric 2 × 2 and 4 × 4 coupling matrices

O
′L
ij = −Vi1Vj1 − 1

2
Vi2Vj2 + δijs

2
W , (F.23)

O
′R
ij = −Ui1Uj1 − 1

2
Ui2Uj2 + δijs

2
W , (F.24)

O
′′L
ij = −1

2
Zi3Zj3 +

1
2
Zi4Zj4 = −O

′′R
ij . (F.25)

Zij , Uij, Vij are the neutralino and chargino mixing matrices, respectively.

~�0i (~�+j )
~�+j (~�0i )W�� ig 
��OLijPL +ORijPR�

~�+j
~�+iA�; Z0� �ie �ij
� . . .A�igZ
��O0Lij PL +O0Rij PR� . . .Z0�

~�0j
~�0iZ0� �igZ 
�O00Lij (PR � PL)
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F.6 Four–Scalar couplings (F– and D–terms)

In this section we will derive all couplings involving four scalar particles in the MSSM. These
interactions have two different sources originating from ‘F–term’ and ‘D–term’ contributions,
which build up the complete scalar potential V = VF + VD discussed in the following.

F.6.1 F–term potential

We start with the superpotential

W = ht t̃
∗
Rt̃LH

0
2 + hb b̃

∗
Rb̃LH

0
1 + hτ τ̃

∗
Rτ̃LH

0
1 − ht t̃

∗
Rb̃LH

1
2 − hb b̃

∗
Rt̃LH

2
1 − hτ τ̃

∗
Rν̃τH

2
1(F.26)

from which we can derive the F–term interaction potential VF = −Lint = F †
i Fi with Fi =

∂W
∂Ai

,

where Ai denotes all scalar (super)fields numbered by the index i, Ai = {t̃L, b̃L, ν̃τ , τ̃L, t̃∗R, b̃∗R,
τ̃ ∗R, H

0
1 , H

0
2 , H

2
1 , H

1
2}.

The potential VF then reads

VF =
(
ht t̃RH

0
2
∗−hb b̃RH2

1
∗)(

ht t̃
∗
RH

0
2−hb b̃∗RH2

1

)
+
(
hb b̃RH

0
1
∗−ht t̃RH1

2
∗)(

hb b̃
∗
RH

0
1−ht t̃∗RH1

2

)

+ h2t
(
t̃∗LH

0
2
∗ − b̃∗LH

1
2
∗)(

t̃LH
0
2 − b̃LH

1
2

)
+ h2b

(
b̃∗LH

0
1
∗ − t̃∗LH

2
1
∗)(

b̃LH
0
1 − t̃LH

2
1

)

+ h2τ τ̃RH
2
1
∗
τ̃ ∗RH

2
1 + h2τ τ̃RH

0
1
∗
τ̃ ∗RH

0
1 + h2τ

(
τ̃ ∗LH

0
1
∗ − ν̃∗τH

2
1
∗)(

τ̃LH
0
1 − ν̃τH

2
1

)

+
(
hbb̃Rb̃

∗
L + hτ τ̃Rτ̃

∗
L

)(
hbb̃

∗
Rb̃L + hτ τ̃

∗
Rτ̃L
)
+ h2t

(
t̃Rt̃

∗
L

)(
t̃∗Rt̃L

)

+
(
hbb̃Rt̃

∗
L + hτ τ̃Rν̃

∗
τ

)(
hbb̃

∗
Rt̃L + hτ τ̃

∗
Rν̃τ
)
+ h2t

(
t̃Rb̃

∗
L

)(
t̃∗Rb̃L

)

= h2t
∣∣H0

2

∣∣2 (t̃∗Rt̃R + t̃∗Lt̃L
)
+ h2b

∣∣H0
1

∣∣2 (b̃∗Rb̃R + b̃∗Lb̃L
)
+ h2τ

∣∣H0
1

∣∣2 (τ̃ ∗Rτ̃R + τ̃ ∗Lτ̃L
)

+ h2t
∣∣H1

2

∣∣2 (t̃∗Rt̃R + b̃∗Lb̃L
)
+ h2b

∣∣H2
1

∣∣2 (b̃∗Rb̃R + t̃∗Lt̃L
)
+ h2τ

∣∣H2
1

∣∣2 (τ̃ ∗Rτ̃R + ν̃∗τ ν̃τ
)

− h2t
(
t̃∗Lb̃LH

0
2
∗
H1

2 + b̃∗Lt̃LH
1
2
∗
H0

2

)
− h2b

(
b̃∗Lt̃LH

0
1
∗
H2

1 + t̃∗Lb̃LH
2
1
∗
H0

1

)

− h2τ
(
τ̃ ∗Lν̃τH

0
1
∗
H2

1 + ν̃∗τ τ̃LH
2
1
∗
H0

1

)

− hthb

(
t̃∗Rb̃RH

2
1
∗
H0

2 + b̃∗Rt̃RH
0
2
∗
H2

1 + b̃∗Rt̃RH
1
2
∗
H0

1 + t̃∗Rb̃RH
0
1
∗
H1

2

)

+ h2t

((
t̃∗Rt̃L

)(
t̃∗Lt̃R

)
+
(
t̃∗Rb̃L

)(
b̃∗Lt̃R

))
+ h2b

((
b̃∗Rb̃L

)(
b̃∗Lb̃R

)
+
(
b̃∗Rt̃L

)(
t̃∗Lb̃R

))

+ h2τ

(
τ̃ ∗Rτ̃Lτ̃

∗
Lτ̃R + τ̃ ∗Rν̃τ ν̃

∗
τ τ̃R

)

+ hbhτ

(
b̃∗Rb̃Lτ̃

∗
Lτ̃R + b̃∗Lb̃Rτ̃

∗
Rτ̃L + t̃∗Lb̃Rτ̃

∗
Rν̃τ + b̃∗Rt̃Lν̃

∗
τ τ̃R

)
(F.27)

with the couplings of the neutral Higgs bosons and sfermions in the first line, those of the
charged Higgs bosons in the second, the couplings of a neutral Higgs boson with a charged
one and two sfermions and the four–sfermion couplings. Note that in the detailed calculation
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of the Feynman rules for the four–sfermion couplings we have to take care about the colour
flow, see section F.6.5.

Transforming the interaction fields into the mass eigenstate fields,

H0
1 = v1 +

1√
2
[cosαH0 − sinαh0 + i (− cos β G0 + sin β A0)] ,

H2
1 = − cos β G− + sin β H− ,

H1
2 = sin β G+ + cos β H+ ,

H0
2 = v2 +

1√
2
[sinαH0 + cosαh0 + i (sin β G0 + cos β A0)] ,

(F.28)

f̃L = Rf̃
i1f̃i = cos θf̃ f̃1 − sin θf̃ f̃2 ,

f̃R = Rf̃
i2f̃i = sin θf̃ f̃1 + cos θf̃ f̃2 ,

(F.29)

we simplify our notations as follows:

∣∣H0
1

∣∣2 =
1

2

[
sin2α (h0)2 − sin 2αh0H0 + cos2α (H0)2 + sin2β (A0)2 − sin 2β A0G0

+ cos2β (G0)2
]
=

1

2
H0
k c

b̃
klH

0
l , (F.30)

∣∣H0
2

∣∣2 =
1

2

[
cos2α (h0)2 + sin 2αh0H0 + sin2α (H0)2 + cos2β (A0)2 + sin 2β A0G0

+ sin2β (G0)2
]
=

1

2
H0
k c

t̃
klH

0
l , (F.31)

∣∣H2
1

∣∣2 = sin2β H+H− − 1

2
sin 2β H+G− − 1

2
sin 2β H−G+ + cos2βG+G− =

1

2
H+
k d

b̃
klH

−
l ,

(F.32)

∣∣H1
2

∣∣2 = cos2β H+H− +
1

2
sin 2β H+G− +

1

2
sin 2β H−G+ + sin2βG+G− =

1

2
H+
k d

t̃
klH

−
l ,

(F.33)

with H0
k = {h0, H0, A0, G0}, H+

k = {H+, G+, H−, G−}, H−
k ≡ (H+

k )
† = {H−, G−, H+, G+}

and

cb̃kl =




sin2α −1
2
sin 2α 0 0

−1
2
sin 2α cos2α 0 0
0 0 sin2β −1

2
sin 2β

0 0 −1
2
sin 2β cos2β


 , (F.34)
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ct̃kl =




cos2α 1
2
sin 2α 0 0

1
2
sin 2α sin2α 0 0
0 0 cos2β 1

2
sin 2β

0 0 1
2
sin 2β sin2β


 , (F.35)

db̃kl =




sin2β −1
2
sin 2β 0 0

−1
2
sin 2β cos2β 0 0
0 0 sin2β −1

2
sin 2β

0 0 −1
2
sin 2β cos2β


 , (F.36)

dt̃kl =




cos2β 1
2
sin 2β 0 0

1
2
sin 2β sin2β 0 0
0 0 cos2β 1

2
sin 2β

0 0 1
2
sin 2β sin2β


 . (F.37)

F.6.2 D–term potential

The D–term potential reads

VD =
1

2

(
D′D′ +

3∑

i=1

DiDi +
8∑

a=1

DaDa

)
(F.38)

with D′ = g′A∗
i
Yi
2
δijAj, D

i = gA∗
k
σi
kl

2
Al and D

a = gsA
∗
i

λaij
2
Aj being the terms according to

U(1)–hypercharge, SU(2)–weak isospin and SU(3)–strong interaction. The matrices σikl and
λaij are the well known Pauli and Gell–Mann matrices. Ai stands for the scalar (super)fields,

Ai = {Q̃, L̃, Ũ , D̃, Ẽ, H1, H2},

Q̃ =

(
t̃L
b̃L

)
, L̃ =

(
ν̃τ
τ̃L

)
, Ũ = t̃∗R , D̃ = b̃∗R , Ẽ = τ̃ ∗R ,

H1 =

(
H1

1

H2
1

)
=

(
H0

1

H2
1

)
, H2 =

(
H1

2

H2
2

)
=

(
H1

2

H0
2

)
.

The U(1)–hypercharge term reads with

Y

2
= Q− I3 → YH1

= −1, YH2
= 1 (F.39)

D′ =
g′

2

[∑

f

(
Yf̃L f̃

∗
Lf̃L − Yf̃R f̃

∗
Rf̃R

)
−
∣∣H0

1

∣∣2 +
∣∣H0

2

∣∣2 −
∣∣H2

1

∣∣2 +
∣∣H1

2

∣∣2
]
. (F.40)

Inserting the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (F.41)
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we get for the electroweak parts

D1 =
g

2

(
t̃∗Lb̃L + b̃∗Lt̃L + ν̃∗τ τ̃L + τ̃ ∗Lν̃τ +H0∗

1 H
2
1 +H2∗

1 H
0
1 +H1∗

2 H
0
2 +H0∗

2 H
1
2

)
,

D2 = −ig
2

(
t̃∗Lb̃L − b̃∗Lt̃L + ν̃∗τ τ̃L − τ̃ ∗Lν̃τ +H0∗

1 H
2
1 −H2∗

1 H
0
1 +H1∗

2 H
0
2 −H0∗

2 H
1
2

)
,

D3 =
g

2

(
t̃∗Lt̃L − b̃∗Lb̃L + ν̃∗τ ν̃τ − τ̃ ∗Lτ̃L +

∣∣H0
1

∣∣2 −
∣∣H2

1

∣∣2 +
∣∣H1

2

∣∣2 −
∣∣H0

2

∣∣2
)

= g
∑

f

I3Lf f̃ ∗
Lf̃L +

∑

i=1,2

(
I3Hi

1

∣∣H i
1

∣∣2 + I3Hi
2

∣∣H i
2

∣∣2
)
.

(The meaning of I3
Hi

j
should be clear.)

When we take the square of the single terms we have to take care about the colours of the
sfermion fields. The result is

D′D′ =
g′2

4

{[∑

f

(
Yf̃L
(
f̃ ∗
Lf̃L
)
− Yf̃R

(
f̃ ∗
Rf̃R

))]2
+

[
−
∣∣H0

1

∣∣2 +
∣∣H0

2

∣∣2 −
∣∣H2

1

∣∣2 +
∣∣H1

2

∣∣2
]2

+ 2
∑

f

(
Yf̃L
(
f̃ ∗
Lf̃L
)
− Yf̃R

(
f̃ ∗
Rf̃R

))(
−
∣∣H0

1

∣∣2 +
∣∣H0

2

∣∣2 −
∣∣H2

1

∣∣2 +
∣∣H1

2

∣∣2
)}

,

(F.42)

D1D1 +D2D2 = g2
[((

t̃∗Lb̃L
)
+ ν̃∗τ τ̃L

)((
b̃∗Lt̃L

)
+ τ̃ ∗Lν̃τ

)
+
∣∣H0

1

∣∣2 ∣∣H2
1

∣∣2 +
∣∣H0

2

∣∣2 ∣∣H1
2

∣∣2

+ H0∗
1 H

2
1H

0∗
2 H

1
2 +H1∗

2 H
0
2H

2∗
1 H

0
1 +

((
t̃∗Lb̃L

)
+ ν̃∗τ τ̃L

) (
H2∗

1 H
0
1 +H0∗

2 H
1
2

)

+
((
b̃∗Lt̃L

)
+ τ̃ ∗Lν̃τ

) (
H0∗

1 H
2
1 +H1∗

2 H
0
2

) ]
, (F.43)

D3D3 =
g2

4

{∑

f

(
f̃ ∗
Lf̃L
) [(

f̃ ∗
Lf̃L
)
−
(
f̃ ′∗
L f̃

′
L

)
+
( ˆ̃f ∗

L
ˆ̃fL
)
−
( ˆ̃f ′∗

L
ˆ̃f ′
L

)]

+

[∣∣H0
1

∣∣2 −
∣∣H2

1

∣∣2 +
∣∣H1

2

∣∣2 −
∣∣H0

2

∣∣2
]2

+ 4
∑

f

I3Lf
(
f̃ ∗
Lf̃L
) (∣∣H0

1

∣∣2 −
∣∣H2

1

∣∣2 +
∣∣H1

2

∣∣2 −
∣∣H0

2

∣∣2
)}

, (F.44)

where we have used
(
I3Lf
)2

= 1
4
and I3Lf I3Lf ′ = −1

4
. Now we are able to calculate the Feynman

rules, beginning with the easiest ones, those of two sfermions and two neutral Higgs bosons.
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F.6.3 Higgs–Higgs–Sfermion–Sfermion

H0
kH

0
l f̃if̃j couplings

The interesting part in the F–term potential for this coupling is (see eq. (F.27))

VF ⊃ h2t
∣∣H0

2

∣∣2 (t̃∗Rt̃R + t̃∗Lt̃L
)
+ h2b

∣∣H0
1

∣∣2 (b̃∗Rb̃R + b̃∗Lb̃L
)
+ h2τ

∣∣H0
1

∣∣2 (τ̃ ∗Rτ̃R + τ̃ ∗Lτ̃L
)

=
h2t
2
H0
k c

t̃
klH

0
l

(
t̃∗Rt̃R + t̃∗Lt̃L

)
+
h2b
2
H0
k c

b̃
klH

0
l

(
b̃∗Rb̃R + b̃∗Lb̃L

)

+
h2τ
2
H0
k c

b̃
klH

0
l

(
τ̃ ∗Rτ̃R + τ̃ ∗Lτ̃L

)

=
∑

f

h2f
2
H0
k c

f̃
klH

0
l

(
f̃ ∗
Rf̃R + f̃ ∗

Lf̃L

)
=
∑

f

h2f
2
H0
k c

f̃
klH

0
l δij f̃

∗
i f̃j , (F.45)

where in the last step we have transformed the sfermion interaction fields to the mass eigen-

state fields (see eq. (F.29)) and made use of the relation Rf̃
i1R

f̃
j1 +Rf̃

i2R
f̃
j2 = δij .

From the D–term potential we need the terms ∝ H0
kH

0
l f̃if̃j of

VD ⊃ 1

2

(
D′D′ +D3D3

)
∼ −g

′2

4

∑

f

(
Yf̃L f̃

∗
Lf̃L − Yf̃R f̃

∗
Rf̃R

)(∣∣H0
1

∣∣2 −
∣∣H0

2

∣∣2
)

+
g2

2

∑

f

I3Lf
(
f̃ ∗
Lf̃L
) (∣∣H0

1

∣∣2 −
∣∣H0

2

∣∣2
)
.

Using the abbreviations defined in eqs. (F.30) – (F.37), we get

VD ⊃ g2

4

∑

f

[(
I3Lf + (I3Lf − ef ) t

2
W

)
f̃ ∗
Lf̃L + ef t

2
W f̃

∗
Rf̃R

]
H0
k

(
cb̃kl − ct̃kl

)
H0
l

=
g2

4c2W

∑

f

[
(I3Lf − efs

2
W )Rf̃

i1R
f̃
j1 + efs

2
WR

f̃
i2R

f̃
j2

]
H0
k

(
cb̃kl − ct̃kl

)
H0
l f̃

∗
i f̃j

=
∑

f

g2

2
H0
k

(
cb̃kl − ct̃kl

)
H0
l e

f̃
ij f̃

∗
i f̃j . (F.46)

with

ef̃ij =
1

2c2W

[
(I3Lf − efs

2
W )Rf̃

i1R
f̃
j1 + efs

2
WR

f̃
i2R

f̃
j2

]
. (F.47)

Therefore the Feynman rule for this coupling becomes
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H0
l

H0
k

f̃j

f̃i

− i
[
h2f c

f̃
kl δij + g2

(
cb̃kl − ct̃kl

)
ef̃ij

]
.

H
+
k H

+
l f̃if̃j couplings

For the couplings of the charged Higgs bosons and two sfermions we start with the interaction
potential

VF ⊃ h2t
∣∣H1

2

∣∣2 (t̃∗Rt̃R + b̃∗Lb̃L
)
+ h2b

∣∣H2
1

∣∣2 (b̃∗Rb̃R + t̃∗Lt̃L
)
+ h2τ

∣∣H2
1

∣∣2 (τ̃ ∗Rτ̃R + ν̃∗τ ν̃τ
)

=
h2t
2
H+
k d

t̃
klH

−
l

(
t̃∗Rt̃R + b̃∗Lb̃L

)
+
h2b
2
H+
k d

b̃
klH

−
l

(
b̃∗Rb̃R + t̃∗Lt̃L

)

+
h2τ
2
H+
k d

b̃
klH

−
l

(
τ̃ ∗Rτ̃R + ν̃∗τ ν̃τ

)
=
∑

f

h2f
2
H+
k d

f̃
klH

−
l

(
f̃ ∗
Rf̃R + f̃

′∗
L f̃

′

L

)
.

To get the Feynman rule for this coupling we have to calculate the first (nontrivial) term of
the S–matrix;

S
(1)
fi = −i

∑

f

h2f
2

∫
d4x 〈f | df̃mn :H+

mH
−
n

(
f̃ ∗
Rf̃R + f̃

′∗
L f̃

′

L

)
: |i〉 (F.48)

with
| i 〉 = a†

H+

k

a†
H−

l

| 0 〉 and 〈 f | = 〈 0 | ai bj

for two incoming Higgs bosons (H+
k and H−

l ) and two outgoing sfermions (sfermion f̃i and
anti–sfermion f̃j).
Contracting the sfermions gives (here we use a short notation neglecting all space coordinates
and momenta, pi belongs to the particle with index i)

S
(1)
fi = −i

∑

f

h2f
2
df̃mn

∫
d4x 〈 0| ai bj :H+

mH
−
n

(
Rf̃
i′2R

f̃
j′2 f̃

∗
i′ f̃j′ +Rf̃ ′

i′1R
f̃ ′

j′1 f̃
′∗
i′ f̃

′

j′

)
: a†

H+

k

a†
H−

l

| 0 〉

= −i
∑

f

h2f
2
df̃mn

(
Rf̃
i2R

f̃
j2 +Rf̃ ′

i1R
f̃ ′

j1

)∫
d4x ei(pi−pj) 〈 0| :H+

mH
−
n : a†

H+

k

a†
H−

l

| 0 〉

where we have used

〈 0 |ai(pi)f̃ ∗
i′(x)| 0〉 = ai(pi) f̃

∗
i′(x) = δii′ e

ipix (F.49)
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〈 0 |bj(pj)f̃j′(x)| 0〉 = bj(pj) f̃j′(x) = δjj′ e
−ipjx (F.50)

In the contractions of the Higgs fields we have to take care of the Higgs creation and an-
nihilation operators e.g. a†H+ which can create a Higgs boson H+ and therefore gives two
contributions from H+

1 and H−
3 :

H+
k (x) aH+

k′
(pk′) = δkk′ e

ipkx (F.51)

H−
k (x) aH+

k′
(pk′) =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




kk′

eipkx (F.52)

〈 0| :H+
mH

−
n : a†

H+

k

a†
H−

l

| 0 〉 = H+
mH

−
n a

†
H+

k

a†
H−

l

+H+
mH

−
n a

†
H+

k

a†
H−

l

∝ δmk δnl + (δn1 δk3 + δn2 δk4 + δn3 δk1 + δn4 δk2)

× (δm1 δl3 + δm2 δl4 + δm3 δl1 + δm4 δl2)

= δmk δnl +




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




nk




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




ml

(F.53)

For the Feynman amplitude M we finally get

M = −i
∑

f

h2f
2

(
Rf̃
i2R

f̃
j2+R

f̃ ′

i1R
f̃ ′

j1

)

d

f̃
kl +




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




nk

df̃mn




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




ml




= −i
∑

f

h2f

(
Rf̃
i2R

f̃
j2 +Rf̃ ′

i1R
f̃ ′

j1

)
df̃kl .

The D–terms read with eqs. (F.42), (F.44) and (F.30)–(F.37)

VD ⊃ −g
′2

4

∑

f

(
Yf̃L f̃

∗
Lαf̃Lα − Yf̃R f̃

∗
Rαf̃Rα

)(∣∣H2
1

∣∣2 −
∣∣H1

2

∣∣2
)

− g2

2

∑

f

I3Lf
(
f̃ ∗
Lf̃L
) (∣∣H2

1

∣∣2 −
∣∣H1

2

∣∣2
)

=
g2

4c2W

∑

f

[(
− I3Lf cos 2θW − efs

2
W

)
Rf̃
i1R

f̃
j1 + efs

2
WR

f̃
i2R

f̃
j2

]
H+
k

(
db̃kl − dt̃kl

)
H−
l f̃

∗
i f̃j
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≡ g2

2

∑

f

H+
k

(
db̃kl − dt̃kl

)
H−
l f

f̃
ij f̃

∗
i f̃j . (F.54)

with

f f̃ij =
1

2c2W

[(
− I3Lf cos 2θW − efs

2
W

)
Rf̃
i1R

f̃
j1 + efs

2
WR

f̃
i2R

f̃
j2

]
(F.55)

Analogously to the previous calculation we get for the Feynman amplitude

M = −i
∑

f

g2f f̃ij
(
db̃kl − dt̃kl

)
. (F.56)

In the Feynman rule we have to take into consideration that only the terms ∝ Rf̃
ij are valid

for a coupling with sfermions and not the terms ∝ Rf̃ ′

ij !

H+
k

H−
l

f̃j

f̃i

−i
[
h2f ′ d

f̃ ′

kl R
f̃
i1R

f̃
j1 + h2f d

f̃
klR

f̃
i2R

f̃
j2 + g2f f̃ij

(
db̃kl − dt̃kl

)]

H0
kH

+
l f̃if̃

′
j couplings

The terms of the superpotential VF which are necessary for calculating these couplings can
be picked out of eq. (F.27):

VF ⊃ − h2t
(
t̃∗Lb̃LH

0
2
∗
H1

2 + b̃∗Lt̃LH
1
2
∗
H0

2

)
− h2b

(
b̃∗Lt̃LH

0
1
∗
H2

1 + t̃∗Lb̃LH
2
1
∗
H0

1

)

− h2τ
(
τ̃ ∗Lν̃τH

0
1
∗
H2

1 + ν̃∗τ τ̃LH
2
1
∗
H0

1

)

− hthb

(
t̃∗Rb̃RH

2
1
∗
H0

2 + b̃∗Rt̃RH
0
2
∗
H2

1 + b̃∗Rt̃RH
1
2
∗
H0

1 + t̃∗Rb̃RH
0
1
∗
H1

2

)
(F.57)

Accordingly to the abbreviations before we introduce a few more coupling matrices for better
reading:

H0
2
∗
H1

2 =
1√
2

[
cosαh0 + sinαH0 − i

(
cos β A0 + sin β G0

)] [
cos β H+ + sin β G+

]

=
1√
2

(
h0, H0, A0, G0

)



cosα cos β cosα sin β 0 0
sinα cos β sinα sin β 0 0
−i cos2 β − i

2
sin 2β 0 0

− i
2
sin 2β −i sin2 β 0 0







H+

G+

H−

G−



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=
1√
2
H0
k c

t̃,0+
kl H+

l (F.58)

H1
2
∗
H0

2 =
(
H0

2
∗
H1

2

)∗
=

1√
2

(
H0
k c

t̃,0+
kl H+

l

)∗
(F.59)

H0
1
∗
H2

1 =
1√
2

[
− sinαh0 + cosαH0 − i

(
sin β A0 − cos β G0

)] [
sin β H− − cos β G−]

=
1√
2

(
h0, H0, A0, G0

)



0 0 − sinα sin β sinα cos β
0 0 cosα sin β − cosα cos β
0 0 −i sin2 β i

2
sin 2β

0 0 i
2
sin 2β −i cos2 β







H+

G+

H−

G−




=
1√
2
H0
k c

b̃,0+
kl H+

l (F.60)

H2
1
∗
H0

1 =
(
H0

1
∗
H2

1

)∗
=

1√
2

(
H0
k c

b̃,0+
kl H+

l

)∗
(F.61)

H0
1
∗
H1

2 =
1√
2

[
− sinαh0 + cosαH0 − i

(
sin β A0 − cos β G0

)] [
cos β H+ + sin β G+

]

=
1√
2

(
h0, H0, A0, G0

)



− sinα cos β − sinα sin β 0 0
cosα cos β cosα sin β 0 0
− i

2
sin 2β −i sin2 β 0 0

i cos2 β i
2
sin 2β 0 0







H+

G+

H−

G−




=
1√
2
H0
k c

t̃b̃,0+
kl H+

l (F.62)

H1
2
∗
H0

1 =
(
H0

1
∗
H1

2

)∗
=

1√
2

(
H0
k c

t̃b̃,0+
kl H+

l

)∗
(F.63)

H0
2
∗
H2

1 =
1√
2

[
cosαh0 + sinαH0 − i

(
cos β A0 + sin β G0

)] [
sin β H− − cos β G−]

=
1√
2

(
h0, H0, A0, G0

)



0 0 cosα sin β − cosα cos β
0 0 sinα sin β − sinα cos β
0 0 − i

2
sin 2β i cos2 β

0 0 −i sin2 β i
2
sin 2β







H+

G+

H−

G−




=
1√
2
H0
k c

b̃t̃,0+
kl H+

l (F.64)

H2
1
∗
H0

2 =
(
H0

2
∗
H2

1

)∗
=

1√
2

(
H0
k c

b̃t̃,0+
kl H+

l

)∗
(F.65)

After inserting this into eq. (F.57) we get

VF ⊃ − 1√
2

∑

f

(
h2f f̃

∗
Lf̃

′
LH

0
k c

f̃ ,0+
kl H+

l + hthb f̃
∗
Rf̃

′
RH

0
k c

f̃ f̃ ′,0+
kl H+

l

)
+ c.c. (F.66)
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Rotating the sfermion fields into the mass eigenstate fields (see eq. (F.29)) gives

VF ⊃ − 1√
2

∑

f

(
h2f R

f̃
i1R

f̃ ′

j1 c
f̃ ,0+
kl + hfhf ′ R

f̃
i2R

f̃ ′

j2 c
f̃ f̃ ′,0+
kl

)
H0
kH

+
l f̃

∗
i f̃

′
j

− 1√
2

∑

f

(
h2f R

f̃
i1R

f̃ ′

j1 (H
0
kc
f̃ ′,0+
kl H+

l )
∗ + hfhf ′ R

f̃
i2R

f̃ ′

j2 (H
0
kc
f̃ ′f̃ ,0+
kl H+

l )
∗
)
f̃if̃

′∗
j

and with

(
cf̃

′,0+
kl H+

l

)∗
=
(
cf̃

′,0+
kl

)∗
H−
l =

(
cf̃

′,0+
kl

)∗( 0 1
1 0

)

4x4

(
0 1
1 0

)

4x4︸ ︷︷ ︸
14x4

H−
l =

(
cf̃

′,0+
kl′

)∗
H+
l

(look at the index l′ which is l′ = 3, 4 for l = 1, 2 and vice versa !) we arrive at

VF ⊃ − 1√
2

∑

f

[
Rf̃
i1R

f̃ ′

j1

(
h2fc

f̃ ,0+
kl +h2f ′

(
cf̃

′,0+
kl′

)∗)
+Rf̃

i2R
f̃ ′

j2 hfhf ′
(
cf̃ f̃

′,0+
kl +

(
cf̃

′f̃ ,0+
kl′

)∗)]

×H0
k H

+
l f̃

∗
i f̃

′
j (F.67)

Now the Feynman rules take the form

H0
k

H+
l

f̃ ′
j

f̃i

i√
2

[
Rf̃
i1R

f̃ ′

j1

(
h2f c

f̃ ,0+
kl +h2f ′

(
cf̃

′,0+
kl′

)∗)

+ Rf̃
i2 R

f̃ ′

j2 hfhf ′
(
cf̃ f̃

′,0+
kl +

(
cf̃

′f̃ ,0+
kl′

)∗)]

Be careful which Higgs boson you should take in a particular graph! As an illustrative
example we give the result for a coupling which we will need in the main part of this work:

H0

H−

t̃j

b̃i

i√
2

[
Rb̃
i1R

t̃
j1 (h

2
b cosα sin β + h2t sinα cos β)

+ Rb̃
i2R

t̃
j2 hthb (sinα sin β + cosα cos β)

]
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Here we have to take the negative charged Higgs boson H− (the H+ would not be allowed
due to charge conservation).

Setting k = 2 and l = 3 leaves

i√
2

[
Rb̃
i1R

t̃
j1

(
h2bc

b̃,0+
23 +h2t c

t̃,0+
23′

)
+Rb̃

i2R
t̃
j2 hthb

(
cb̃t̃,0+23 +ct̃b̃,0+23′

)]

=
i√
2

[
Rb̃
i1R

t̃
j1

(
h2b cosα sin β+h2t sinα cos β

)
+Rb̃

i2R
t̃
j2 hthb(sinα sin β+cosα cos β)

]
.

The D–term potential terms coming from the off–diagonal Pauli matrices σ1
kl and σ2

kl are
given by

VD ⊃ 1

2

(
D1D1 +D2D2

)

⊃
((
t̃∗Lb̃L

)
+ ν̃∗τ τ̃L

) (
H2∗

1 H
0
1 +H0∗

2 H
1
2

)
+
((
b̃∗Lt̃L

)
+ τ̃ ∗Lν̃τ

) (
H0∗

1 H
2
1 +H1∗

2 H
0
2

)

=
((
t̃∗Lb̃L

)
+ ν̃∗τ τ̃L

) g2

2
√
2

[(
H0
k c

b̃,0+
kl H+

l

)∗
+H0

k c
t̃,0+
kl H+

l

]

+
((
b̃∗Lt̃L

)
+ τ̃ ∗Lν̃τ

) g2

2
√
2

[
H0
k c

b̃,0+
kl H+

l +
(
H0
k c

t̃,0+
kl H+

l

)∗]

=
g2

2
√
2

[((
t̃∗Lb̃L

)
+ ν̃∗τ τ̃L

)(
H0
k

(
cb̃,0+kl′

)∗
H+
l +H0

k c
t̃,0+
kl H+

l

)

+
((
b̃∗Lt̃L

)
+ τ̃ ∗Lν̃τ

)(
H0
k c

b̃,0+
kl H+

l +H0
k

(
ct̃,0+kl′

)∗
H+
l

)]

=
g2

2
√
2

∑

f

Rf̃
i1R

f̃ ′

j1

(
cf̃ ,0+kl +

(
cf̃

′,0+
kl′

)∗)
H0
kH

+
l f̃

∗
i f̃

′
j , (F.68)

which results in the Feynman rules

H0
k

H+
l

f̃ ′
j

f̃i

− i√
2

g2

2
Rf̃
i1R

f̃ ′

j1

(
cf̃ ,0+kl +

(
cf̃

′,0+
kl′

)∗)
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F.6.4 Higgs–Higgs–Higgs–Higgs

The 4–Higgs couplings are only coming from the D–terms, and therefore we have (see
eqs. (F.42)–(F.44))

VD ⊃ g′2

8

[∣∣H0
1

∣∣2 −
∣∣H0

2

∣∣2 +
∣∣H2

1

∣∣2 −
∣∣H1

2

∣∣2
]2

+
g2

8

[∣∣H0
1

∣∣2 −
∣∣H0

2

∣∣2 −
∣∣H2

1

∣∣2 +
∣∣H1

2

∣∣2
]2

+
g2

2

[∣∣H0
1

∣∣2 ∣∣H2
1

∣∣2 +
∣∣H0

2

∣∣2 ∣∣H1
2

∣∣2 +H0∗
1 H

2
1H

0∗
2 H

1
2 +H1∗

2 H
0
2H

2∗
1 H

0
1

]
, (F.69)

or in a more compact way

VD ⊃ 1

8
(g2 + g′

2
)
(
H i∗

1 H
i
1 −H i∗

2 H
i
2

)2
+
g2

2

∣∣H i∗
1 H

i
2

∣∣2 . (F.70)

H0
kH

0
l H

0
mH0

n couplings

The 4–neutral Higgs couplings are obtained from the following term of the D–term potential,

VD ⊃ 1

8
(g2 + g′

2
)
(∣∣H0

1

∣∣2 −
∣∣H0

2

∣∣2
)2

, (F.71)

which can be expressed in components,

VD ⊃ g2

32c2W

[(
(h0)2 − (H0)2

)
cos 2α +

(
(A0)2 − (G0)2

)
cos 2β + 2

(
h0H0 sin 2α

+ A0G0 sin 2β
)]2

, (F.72)

as well as in index notation (see eqs.(F.30), (F.31), (F.34) and (F.35)),

VD ⊃ g2

32c2W

∑

k,l,m,n

H0
kH

0
l H

0
mH

0
n

(
cb̃klc

b̃
mn + ct̃klc

t̃
mn − cb̃klc

t̃
mn − ct̃klc

b̃
mn

)
. (F.73)

To get a special coupling out of the potential we either can sum over all indices an then pick
out the single terms which belong to the required coupling or we symmetrize the coupling
matrices cb̃ and ct̃ in eq. (F.73), fix the indices belonging to the Higgs fields H0

k and take
a combinatorial factor for multiple counting into consideration. Here we choose the second
possibility:

VD ⊃ g2

32c2W
H0
kH

0
l H

0
mH

0
n

(
cb̃(klc

b̃
mn) + ct̃(klc

t̃
mn) − cb̃(klc

t̃
mn) − ct̃(klc

b̃
mn)

)
× CF (F.74)

(no sum over indices, this is respected in the combinatorial factor!) Here the brackets around
the indices denote symmetrization and CF stands for a combinatorial factor, which is given
for a general coupling (h0)a(H0)b(A0)c(G0)d with a+ b+ c+ d = 4 by

CF =

(
4
a

)
·
(

4−a
b

)
·
(

4−a−b
c

)
·
(

4−a−b−c
d

)
=

4!

a! b! c! d!
(F.75)
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In the Feynman rule we have to take the symmetry factor (SF) of the diagram into account
(n! for n equal neutral particles):

H0
l

H0
k

H0
n

H0
m

− i
g2

32c2W

(
cb̃(klc

b̃
mn) + ct̃(klc

t̃
mn) − cb̃(klc

t̃
mn) − ct̃(klc

b̃
mn)

)

× CF× SF

As an example we take the coupling h0H0(A0)2. For the indices we choose k = 1, l = 2 and
m = n = 3. The combinatorial factor then is given by

CF =

(
4
1

)
·
(

3
1

)
·
(

2
2

)
·
(

0
0

)
= 4 · 3 · 1 · 1 = 12 ,

so the interaction Lagrangian reads with (note that the matrices cb̃ and ct̃ are symmetric)

(
cb̃(12c

b̃
33) + ct̃(12c

t̃
33) − cb̃(12c

t̃
33) − ct̃(12c

b̃
33)

)
=

1

3

[(
cb̃12c

b̃
33 + cb̃13c

b̃
23 + cb̃13c

b̃
23

)

−
(
cb̃12c

t̃
33 + cb̃13c

t̃
23 + cb̃13c

t̃
23

)
+ b̃↔ t̃

]
=

1

3
sin 2α cos 2β ,

and therefore

L = − g2

8c2W
sin 2α cos 2β h0H0(A0)2 . (F.76)

H0

h0

A0

A0

− i
g2

4c2W
sin 2α cos 2β

H
+
k H

−

l H+
mH−

n couplings

Like in the case of 4–neutral Higgs boson couplings we get the 4–charged Higgs couplings
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from the D–term potential

VD ⊃ 1

8
(g2 + g′

2
)
(∣∣H2

1

∣∣2 −
∣∣H1

2

∣∣2
)2

=
g2

8c2W

[
H−
(
sin 2βG+ + cos 2βH+

)
+G−

(
− cos 2βG+ + sin 2βH+

)]2
. (F.77)

In index notation this reads with the abbreviations defined in eqs. (F.30) –(F.37)

VD ⊃ g2

32c2W

∑

k,l,m,n

H+
k H

−
l H

+
mH

−
n

(
db̃kld

b̃
mn + dt̃kld

t̃
mn − db̃kld

t̃
mn − dt̃kld

b̃
mn

)
. (F.78)

To be able to pick out the various couplings out of eq. (F.78) in the same way as we did in
the case of the neutral Higgs bosons we first must express all fields in one single base, H+

k

or H−
k :

VD ⊃ g2

32c2W

∑

k,l,m,n

H+
k H

+
l H

+
mH

+
n

(
db̃kld

b̃
mn + dt̃kld

t̃
mn − db̃kld

t̃
mn − dt̃kld

b̃
mn

)
rot

, (F.79)

with

(
df̃kl d

f̃
mn

)
rot

=
(
df̃kl
)
rot

(
df̃mn

)
rot

=
4∑

l′,n′=1

df̃kl′

(
0 12x2

12x2 0

)

l′l

df̃mn′

(
0 12x2

12x2 0

)

n′n

.

Now we can symmetrize the rotated coupling matrices as before if we want to fix the indices
in the Higgs fields. The combinatorial factor CF stays the same but we don’t have to take a
symmetry factor in the Feynman rule because of charged particles:

H+
l

H+
k

H+
n

H+
m

− i
g2

32c2W

(
db̃kld

b̃
mn + dt̃kld

t̃
mn − db̃kld

t̃
mn − dt̃kld

b̃
mn

)
rot, symm

× CF

F.6.5 Sfermion–Sfermion–Sfermion–Sfermion

As we already mentioned before, we have to take care about the colour indices in this term
of the superpotential,

W ⊃ ht t̃
∗
Rt̃LH

0
2 + hb b̃

∗
Rb̃LH

0
1 + hτ τ̃

∗
Rτ̃LH

0
1 − ht t̃

∗
Rb̃LH

1
2 − hb b̃

∗
Rt̃LH

2
1 − hτ τ̃

∗
Rν̃τH

2
1 ,

(F.80)
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which leads to the F–term potential

VF ⊃ h2t
(
t̃∗Rt̃L

)(
t̃∗Lt̃R

)
+ h2b

(
b̃∗Rb̃L

)(
b̃∗Lb̃R

)
+ h2τ

(
τ̃ ∗Rτ̃L

)(
τ̃ ∗Lτ̃R

)

+ h2t
(
t̃∗Rb̃L

)(
b̃∗Lt̃R

)
+ h2b

(
b̃∗Rt̃L

)(
t̃∗Lb̃R

)
+ h2τ

(
τ̃ ∗Rν̃τ

)(
ν̃∗τ τ̃R

)

+ hbhτ

(
b̃∗Rb̃Lτ̃

∗
Lτ̃R + b̃∗Lb̃Rτ̃

∗
Rτ̃L + t̃∗Lb̃Rτ̃

∗
Rν̃τ + b̃∗Rt̃Lν̃

∗
τ τ̃R

)

=
∑

f

[
h2f

((
f̃ ∗
Rf̃L

)(
f̃ ∗
Lf̃R

)
+
(
f̃ ∗
Rf̃

′
L

)(
f̃ ′∗
L f̃R

))
+ hfhf̂

(
f̃ ∗
Rf̃L

ˆ̃f ∗
L
ˆ̃fR + f̃ ∗

Rf̃
′
L
ˆ̃f ′∗
L
ˆ̃fR

)]
.

(F.81)

f̃if̃jf̃kf̃l couplings

With the initial and final states for the first term,

|i〉 = a†lδ(p1)b
†
kγ(p2)|0〉 ,

〈f | = 〈0|aiα(k1)bjβ(k2) ,

we get for the S–matrix element

S
(1)
fi = i

∫
d4x 〈f | :Lint(x) : |i〉 = −ih2f Rf̃

m1R
f̃
n1R

f̃
p2R

f̃
q2

×
∫
d4x 〈0|aiα(k1)bjβ(k2) :

(
f̃ ∗
mγ′ f̃nβ′ f̃ ∗

pα′ f̃qδ′
)
(x) : a†lδ(p1)b

†
kγ(p2)|0〉 δα′β′δγ′δ′

(F.82)

In order to evaluate the vacuum expectation value we make use of Wick’s theorem in taking
all possible contractions:

S
(1)
fi = −ih2f Rf̃

m1R
f̃
n1R

f̃
p2R

f̃
q2 (2π)

4δ4(p1+p2−k1−k2) δα′β′δγ′δ′

×
(
δimδαγ′ δjnδββ′ δqlδδ′δ δpkδα′γ + δimδαγ′ δjqδβδ′ δnlδβ′δ δpkδα′γ

+ δipδαα′ δjnδββ′ δqlδδ′δ δmkδγ′γ + δipδαα′ δjqδβδ′ δmkδγ′γ δnlδβ′δ

)
(F.83)

In the last equation we have used the notation

δαβγδ,α′β′γ′δ′ ≡ δαα′ δββ′ δγγ′ δδδ′ , → δαβγδ,α′β′α′β′ = δαγ δβδ (F.84)

and

Rf̃
ijkl ≡ Rf̃

i1R
f̃
j1R

f̃
k2R

f̃
l2 . (F.85)

The corresponding D–term potential is given by (see eqs. (F.42) and (F.44))

VD ⊃ g′2

8

∑

f

(
Yf̃L
(
f̃ ∗
Lf̃L
)
− Yf̃R

(
f̃ ∗
Rf̃R

))(
Yf̃L
(
f̃ ∗
Lf̃L
)
− Yf̃R

(
f̃ ∗
Rf̃R

))
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+
g2

8

∑

f

(
f̃ ∗
Lf̃L
)(
f̃ ∗
Lf̃L
)
. (F.86)

Rotating the sfermion fields into their mass eigenstates, f̃L = Rf̃
i1f̃i, f̃R = Rf̃

i2f̃i, the D–term
potential for 4–sfermions reads

VD ⊃ g2

8

∑

f̃

[
Rf̃L
ijkl + t2WY

2
f̃L
Rf̃L
ijkl + t2WY

2
f̃R
Rf̃R
ijkl − t2WYf̃LYf̃R

(
Rf̃
ijkl +Rf̃

klij

)] (
f̃ ∗
i f̃j
)(
f̃ ∗
k f̃l
)

≡
∑

f̃

C f̃ f̃
ijkl

(
f̃ ∗
i f̃j
)(
f̃ ∗
k f̃l
)
, (F.87)

where we have used the relation g′ = g tan θW as well as the abbreviations

Rf̃L
ijkl = Rf̃

i1R
f̃
j1R

f̃
k1R

f̃
l1 , Rf̃R

ijkl = Rf̃
i2R

f̃
j2R

f̃
k2R

f̃
l2 . (F.88)

Like in the calculation of the Yukawa coupling terms in the previous section we get for the
Feynman amplitude

M = −i
[(
C f̃ f̃
ijkl + C f̃ f̃

klij

)
δαβδγδ +

(
C f̃ f̃
ilkj + C f̃ f̃

kjil

)
δαδδβγ

]
. (F.89)

Both, F– and D–terms, result in the Feynman rule

f̃lδ

f̃kγ

f̃jβ

f̃iα

− i h2f

[(
Rf̃
ijkl +Rf̃

klij

)
δαδδβγ +

(
Rf̃
ilkj +Rf̃

kjil

)
δαβδγδ

]

−i
[(
C f̃ f̃
ijkl + C f̃ f̃

klij

)
δαβδγδ +

(
C f̃ f̃
ilkj + C f̃ f̃

kjil

)
δαδδβγ

]

f̃if̃jf̃
′
kf̃

′
l couplings

For the second term of eq. (F.81) we take the initial and final states

|i〉 = a
′†
lδ(p1)b

′†
kγ(p2)|0〉 ,

〈f | = 〈0|aiα(k1)bjβ(k2) ,

which leads with

Rf̃ ′f̃D
ijkl ≡ Rf̃ ′

i1R
f̃ ′

j1R
f̃
k2R

f̃
l2 , R

f̃ f̃ ′D
ijkl ≡ Rf̃

i1R
f̃
j1R

f̃ ′

k2R
f̃ ′

l2 (F.90)

to the Feynman amplitude

M = − i
(
h2f R

f̃ ′f̃D
klij + h2f ′R

f̃ f̃ ′D
ijkl

)
δαδδβγ . (F.91)
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For the D–term potential we get with the eqs. (F.42) – (F.44)

VD ⊃ g2

4

∑

f

((
f̃ ∗
Lf̃

′
L

)(
f̃ ′∗
L f̃L

)
− 1

2

(
f̃ ∗
Lf̃L
)(
f̃ ′∗
L f̃

′
L

))

+
g′2

8

∑

f

(
Yf̃L
(
f̃ ∗
Lf̃L
)
− Yf̃R

(
f̃ ∗
Rf̃R

))(
Yf̃ ′L

(
f̃ ′∗
L f̃

′
L

)
− Yf̃ ′R

(
f̃ ′∗
R f̃

′
R

))
(F.92)

and with a little bit of cosmetics we have

VD ⊃ g2

8

∑

f

{[(
t2W
(
Yf̃LYf̃ ′L

)
− 1
)
R
f̃ f̃ ′L
ijkl + t2W

(
Yf̃RYf̃ ′R

)
R
f̃ f̃ ′R
ijkl − t2W

(
Yf̃LYf̃ ′R

)
R
f̃ f̃ ′D
ijkl

− t2W
(
Yf̃RYf̃ ′L

)
Rf̃ ′f̃D
klij

]
δαβδγδ + 2R

f̃ f̃ ′L
ijkl δαδδβγ

}
f̃ ∗
iαf̃jβ f̃

′∗
kγ f̃

′
lδ

≡
∑

f

C f̃ f̃ ′

ijkl,αβγδ f̃
∗
iαf̃jβ f̃

′∗
kγ f̃

′
lδ . (F.93)

The Yukawa and electroweak contributions to the Feynman rule are then given by

f̃ ′
lδ

f̃ ′
kγ

f̃jβ

f̃iα

− i
(
h2f R

f̃ ′f̃D
klij + h2f ′R

f̃ f̃ ′D
ijkl

)
δαδδβγ − i

(
C f̃ f̃ ′

ijkl,αβγδ + C f̃ ′f̃
klij,γδαβ

)

f̃if̃j
ˆ̃
fk

ˆ̃
fl couplings

The Feynman rule for couplings with two sfermions and two ’family partner’ sfermions can
be obtained from eqs. (F.42), (F.44) and (F.81):

VF+D ⊃
∑

f

[
hfhf̂

(
f̃ ∗
Rf̃L

)( ˆ̃f ∗
L
ˆ̃fR
)
+
g2

8

(
f̃ ∗
Lf̃L
)( ˆ̃f ∗

L
ˆ̃fL
)

+
g′2

8

(
Yf̃L
(
f̃ ∗
Lf̃L
)
− Yf̃R

(
f̃ ∗
Rf̃R

))(
Y ˆ̃
fL

( ˆ̃f ∗
L
ˆ̃fL
)
− Y ˆ̃

fR

( ˆ̃f ∗
R
ˆ̃fR
))]

=
∑

f

{
hfhf̂ R

f̃
ˆ̃
fF
jikl +

g2

8
Rf̃

ˆ̃
fL
ijkl +

g′2

8

[
Yf̃LY ˆ̃

fL
Rf̃

ˆ̃
fL
ijkl + Yf̃RY ˆ̃

fR
Rf̃

ˆ̃
fR
ijkl − Yf̃LY ˆ̃

fR
Rf̃

ˆ̃
fD
ijkl

− Yf̃RY ˆ̃
fL
R

ˆ̃
ff̃D
klij

]}(
f̃ ∗
i f̃j
)( ˆ̃f ∗

k
ˆ̃fl
)
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≡
∑

f

[
hfhf̂ R

f̃
ˆ̃
fF
jikl + C f̃

ˆ̃
f

ijkl

](
f̃ ∗
i f̃j
)( ˆ̃f ∗

k
ˆ̃fl
)

(F.94)

ˆ̃fl

ˆ̃fk

f̃j

f̃i

−ihfhf̂
(
Rf̃

ˆ̃
fF
jikl +R

ˆ̃
ff̃F
lkij

)
− i
(
C f̃

ˆ̃
f

ijkl + C
ˆ̃
ff̃
klij

)

f̃if̃j
ˆ̃
f ′
k
ˆ̃
f ′
l couplings

For the coupling with two sfermions f̃i and two family partner sfermions with different

isospin, ˆ̃f ′
i , we get with eqs. (F.42) and (F.44)

VD ⊃
∑

f

[
− g2

8

(
f̃ ∗
Lf̃L
)( ˆ̃f ∗

L
ˆ̃fL
)
+
g′2

8

(
Yf̃L
(
f̃ ∗
Lf̃L
)
− Yf̃R

(
f̃ ∗
Rf̃R

))

(
Y ˆ̃
f ′L

( ˆ̃f ′∗
L
ˆ̃f ′
L

)
− Y ˆ̃

f ′R

( ˆ̃f ′∗
R
ˆ̃f ′
R

))]

=
∑

f

{
− g2

8
R
f̃
ˆ̃
f ′L
ijkl +

g′2

8

[
Yf̃LY ˆ̃

f ′L
R
f̃
ˆ̃
f ′L
ijkl + Yf̃RY ˆ̃

f ′R
R
f̃
ˆ̃
f ′R
ijkl − Yf̃LY ˆ̃

f ′R
R
f̃
ˆ̃
f ′D
ijkl − Yf̃RY ˆ̃

f ′L
R

ˆ̃
f ′f̃D
klij

]}

×
(
f̃ ∗
i f̃j
)( ˆ̃f ′∗

k
ˆ̃f ′
l

)
≡
∑

f

C f̃
ˆ̃
f ′

ijkl

(
f̃ ∗
i f̃j
)( ˆ̃f ′∗

k
ˆ̃f ′
l

)
. (F.95)

ˆ̃f ′
l

ˆ̃f ′
k

f̃j

f̃i

−i
(
C f̃

ˆ̃
f ′

ijkl + C
ˆ̃
f ′f̃
klij

)
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f̃if̃
′
j
ˆ̃
f ′
k
ˆ̃
fl couplings

Finally, eqs. (F.43) and (F.81) give the Feynman rule for the mixed four–sfermion coupling,

VF+D ⊃
∑

f

(
− hfhf̂ f̃

∗
Rf̃

′
L
ˆ̃f ′∗
L
ˆ̃fR +

g2

4
f̃ ∗
Lf̃

′
L
ˆ̃f ′∗
L
ˆ̃fL

)

=
∑

f

(
− hfhf̂R

f̃ ′f̃
ˆ̃
f ′

ˆ̃
fF

jikl +
g2

4
Rf̃ f̃ ′

ˆ̃
f ′

ˆ̃
fL

ijkl

)
f̃ ∗
i f̃

′
j
ˆ̃f ′∗
k
ˆ̃fl (F.96)

with

Rf̃ ′f̃
ˆ̃
f ′

ˆ̃
fF

ijkl ≡ Rf̃ ′

i1R
f̃
j2R

ˆ̃
f ′

k1R
ˆ̃
f
l2 , Rf̃ f̃ ′

ˆ̃
f ′

ˆ̃
fL

ijkl ≡ Rf̃
i1R

f̃ ′

j1R
ˆ̃
f ′

k1R
ˆ̃
f
l1 .

ˆ̃fl

ˆ̃f ′
k

f̃ ′
j

f̃i

−ihfhf̂R
f̃ ′f̃

ˆ̃
f ′

ˆ̃
fF

jikl − ihf̂ ′hf ′R
ˆ̃
f
ˆ̃
f ′f̃ f̃ ′F
lkij − i

g2

2
Rf̃ f̃ ′

ˆ̃
f ′

ˆ̃
fL

ijkl

F.7 Vector boson–Sfermion–Sfermion couplings

The interaction Lagrangian of a vector boson and two sfermions is given by

L = −i e ef Aµ f̃ ∗
i

↔
∂µ f̃j − i gZ z

f̃
ij Z

0
µ f̃

∗
i

↔
∂µ f̃j +

(
−i g√

2
W+
µ R

f̃↑
i1R

f̃↓
j1f̃

∗
↑i

↔
∂µ f̃↓j + h.c.

)
,

(F.97)

with the abbreviations

zf̃ij = Cf
LR

f̃
i1R

f̃
j1 + Cf

RR
f̃
i2R

f̃
j2 (F.98)

and gZ = g/ cos θW , Cf
L = I3Lf − efs

2
W and Cf

R = −efs2W .

~fjk2
~fik1A�; Z0� �ie ef�ij(k1 + k2)� . . .A�igZz ~fij(k1 + k2)� . . .Z0�
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~f#jk2
k1 ~f"iW+� �i gp2 R ~f"i1R ~f#j1(k1 + k2)�

F.8 Gaugino–Fermion–Sfermion couplings

The interaction Lagrangian of the chargino–sfermion–fermion couplings is given by

L = f̄↑

(
l
f̃↓
ij PR + k

f̃↓
ij PL

)
χ̃+
j f̃↓i + f̄↓

(
l
f̃↑
ij PR + k

f̃↑
ij PL

)
χ̃+c
j f̃↑i

+ ¯̃χ+
j

(
l
f̃↓
ij PL + k

f̃↓
ij PR

)
f↑ f̃

∗
↓i + ¯̃χ+c

j

(
l
f̃↑
ij PL + k

f̃↑
ij PR

)
f↓ f̃

∗
↑i (F.99)

with the coupling matrices

l
f̃↑
ij = −gVj1Rf̃↑

i1 + hf↑Vj2R
f̃↑
i2 , l

f̃↓
ij = −gUj1Rf̃↓

i1 + hf↓Uj2R
f̃↓
i2 ,

k
f̃↑
ij = hf↓Uj2R

f̃↑
i1 , k

f̃↓
ij = hf↑Vj2R

f̃↓
i1 .

(F.100)

~�+j
f"~f#i i�l ~f#ij PR + k ~f#ij PL� ~�+cj

f#~f"i i�l ~f"ij PR + k ~f"ij PL�

~�+j
~f#if" i�l ~f#ij PL + k ~f#ij PR� ~�+cj

~f"if# i�l ~f"ij PL + k ~f"ij PR�
For the neutralino–sfermion–fermion couplings the Lagrangian reads

L = f̄
(
af̃ikPR + bf̃ikPL

)
χ̃0
k f̃i + ¯̃χ0

k

(
af̃ikPL + bf̃ikPR

)
ff̃ ∗

i (F.101)
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with the coupling matrices

af̃ik = hfZkxR
f̃
i2 + gf fLkR

f̃
i1 , bf̃ik = hfZkxR

f̃
i1 + gf fRkR

f̃
i2 (F.102)

and

f fLk =
√
2
(
(ef − I3Lf ) tan θWZk1 + I3Lf Zk2

)
, f fRk = −

√
2ef tan θWZk1 . (F.103)

x takes the values {3, 4} for {down, up}–type case, respectively.

~�0k
~fif i�a ~fikPL + b ~fikPR� ~�0k

f~fi i�a ~fikPR + b ~fikPL�
F.9 Higgs–Vector boson–Vector boson couplings

The interaction Lagrangian describing the couplings of one Higgs boson to two gauge bosons
in the MSSM is given by

L =
gZmZ

2

[
cos(α− β)H0Z0

µ Z
0µ − sin(α− β)h0Z0

µ Z
0µ
]

+g mW

[
cos(α− β)H0W+

µ W
−µ − sin(α− β)h0W+

µ W
−µ]

−gZmW s
2
W G−W+

µ Z
0µ + gsWmW G−W+

µ A
µ + h.c. (F.104)

With the usual form of rotation matrices, used throughout this paper,

Rkl(φ) ≡
(

cosφ sinφ
− sinφ cosφ

)

kl

, (F.105)

the Feynman rules can then be written as

Z0� ;W��
Z0�;W+�h0k igZmZR2k(���)g�� . . .Z0�ig mWR2k(���)g�� . . .W��
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A�; Z0�
W+�G� igsWmWg�� . . .A��igZmW s2Wg�� . . .Z0�
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[103] L. Ibañez and G.G. Ross, Phys. Lett. B110 (1982) 227; L. Alvarez–Gaumé, J. Polchinski
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