Proceedings of EPAC 2006, Edinburgh, Scotland

FERMILAB-CONF-21-692-AD
THPCH128

PORTABLE SDA (SEQUENCED DATA ACQUISITION) WITH A NATIVE
XML DATABASE*

T. B. Bolshakov, E. McCrory, Fermilab, Batavia, IL 60510, U.S.A.

Abstract

SDA is a general logging system for a complex process
that evolved in a regular way in time. It has been used as
one of the main logging facility for the Tevatron Collider
during Run II. It creates a time abstraction in terms
understood by everyone and allows for common time
ticks across different subsystems. In this article we
discuss a plan to re-implement this highly successful
Fermilab system in a more general way so it can be used
elsewhere. Latest technologies, namely a native XML
database and AJAX, are used in the project and discussed
in this article.

SDA IN FERMILAB

SDA is an acronym with dual meaning. Originally it
was introduced by the Controls department as “Sequenced
Data Acquisition” [1], although some think of SDA as
meaning “Shot Data Analysis.” The word “Sequenced” in
SDA signifies that historically most of the events come
from Sequencer [5]. SDA has proven to be extremely
useful during the tuning of the Fermilab accelerators
chain in Collider Run II [2], [4], [5]. It allows for
coordinating of effort of different groups across the
Laboratory. The main disadvantage of Fermilab SDA is
its deep integration into the Fermilab Control System
(ACNET). Now we are trying to implement a portable
SDA system, based on our experience with it at Fermilab.

GENERAL VIEW

Sequenced Data Acquisition is a logging system for the
definition and description of the starting, developing, and
finishing of a complex multistage process. Each stage of
the process defines a different set of properties and
conditions that are collected. The start and stop times of
every stage define a common time tick across the system.
The difference between SDA and “usual” logging is like
difference between CSV (Comma Separated Values) and
XML text files.

Shot Data Analysis is a set of libraries, routines and
reports that use data from Sequenced Data Acquisition.
Shot Data Analysis studies the behavior of some
particular subsystem across several stages or the
cooperation of different subsystems during some
particular stage. As an example we can refer to article [2].

SDA has become an important tool for studying
repeatable multistage processes in complex systems. We
use it for studying accelerators, but any complex,
multistage process can be analyzed with this system, for
example, thermonuclear facilities, space rockets,
hurricane research, etc.

07 Accelerator Technology
T04 Accelerator/Storage Ring Control Systems

Terminology

SDA is based on rules. The most important terms of
those rules are atom, event, collection, shot, case, and set.

Atoms have a name, a data type, and a request which
defines how to collect data. Atoms can be different in
different SDA systems. A specific atom can be present in
a collection only once.

Events define the time or the condition for data
collection. Different control systems may have different
events. Events are described in the configuration.

A Collection is a set of atomic values collected on
specified events. It delineates the stage of a multistage
process. It also has a type and a name. For example
collection type 4 for the Tevatron has the name “Inject
Protons” in the shot named “Collider Shot”.

A Shot contains certain types of collections and the
rules to start and stop data acquisition for those
collections. It also has a name and a type — shot type 1 in
Fermilab has the name “Collider Shot”. Shot describe a
whole process. An instance of shot (data for particular
processes) has a “shot alias” and a “shot index”. The shot
index is unique across the whole SDA system and is
acquired automatically.

Collections in a shot with the same type are called a
Case. If a collection is repeated several times the Case
may have Sets — several instances of the same collection.

Shots, Cases and Sets define time ticks for the whole
process.

IMPLEMENTATION

To implement the system we must define how the
structure and data are stored, describe the data acquisition
process, create the basic tools for editing the structure,
and for viewing and accessing the data. Java was selected
as an implementation language for its portability, Object
Oriented Design, and rich APIs.

Data Storage

The structure of SDA is hierarchical: a Shot contain
Cases, a Case contains Sets (Collections), and a Set
contains Atoms. This structure and the data storage lend
itself well to XML. An XML Schema has been created to
describe the XML for configuration (structure) and for
data. In both Schema, details of atoms and events were
not specified because they may change from system to
system. In the configuration Schema “atom data request”,
“atom type” and “event” are specified as a string. In data
Schema the atom content is left unspecified.

The shot structure (configuration) is an XML
document, as is the shot instance (data collected for shot).

XML documents may be stored differently — as a plain
file, mapped into Relational database, or in an XML

3101

THPCH128

database. We decided to utilize a native XML database for
storing the structure and the data. Berkley XML DB was
selected as the database.

Berkeley DB XML is an embedded XML database with
XQuery-based access to documents stored in containers
and indexed based on their content [3]. Berkeley DB
XML is built on top of Berkeley DB and inherits its rich
features and attributes. Like Berkeley DB, Berkeley DB
XML is a library, not a server; it exposes a programmatic
APl for developers, and runs in process with the
application. Berkeley DB XML supports flexible indexing
of XML nodes, elements, attributes and meta-data to
enable the fastest, most efficient retrieval of data.

T

I
3 Acquisition 5 |
E-"' System)
3 (ACNET, LHC,
~,_ EPICS) /ﬁ'

\---..-".1_ — e

y
|
|
|

P —— —

P -,
AlAX-based | /o container: |

I Jetty, Tomcat, etc.
iIspA Editor|]| .- e
L %da Ca

4 nfig Uration '

ISDA Viewer|| e || @
Beanshell || .-api& Beanshan . i Native XML DB

SDA Framework
‘\

(Berkley)

program - sandbox J
—)|

S A .

— —

Figure 1: Portable SDA Block Diagram.

Because the actual storage mechanism in the code is
defined by a Java interface, the native XML database can
be replaced by a relational database. Nevertheless we
consider the native XML database as a success — it greatly
simplifies the development and has proven to be fast and
reliable.

Basic Tools

Basic SDA tools include the SDA Editor and the SDA
Viewer. The SDA Editor allows for creating and editing
the configuration and the SDA Viewer is used to browse
the collected data. Both of these tools allow for plugins in
order to allow for Atom data requests and Events to be
different for different control systems. The Portable SDA
Editor and SDA Viewer are implemented as web
applications, based on AJAX (Asynchronous Javascript
and XML) - a Web development technique for creating
interactive web applications.

Plugins for creating and editing Atom Data Requests
and Events are implemented as JSP (Java Server Pages).
The basic SDA Editor represents them as strings and
cannot verify their validity. Atom data renderer for SDA
Viewer is implemented as a Java Interface and can be
additionally tuned by providing JavaScript editor on the
client side. Web application and AJAX have been selected
over Java Web-Startable program because it imposes less
limitation on the client computer and, simultaneously,
provides more flexibility on the server side. A complete,
working SDA Viewer and SDA Editor for Fermilab has
been created.

3102

Proceedings of EPAC 2006, Edinburgh, Scotland

A e RIS, Fimime b - Bt - Wil T =
[[e e pmvimain Tosh e
3 B e I s YT P T = O[3

B b | bt e | S | P -—

2] ma el

| s s
sy
bl e

ey s g by A

Figure 2: SDA Configuration Editor.

Recently AJAX has become even more attractive
because SVG (Scalable Vector Graphics) is natively
implemented in Firefox 1.5. Using SVG makes it possible
to represent on the Web page any rich graphical
information.

Despite the decision to use AJAX, there is still room for
web-startable Java programs because data comes as XML
over HTTP.

Accessing Data

OSDA (Open SDA) API is used for Shot Data Analysis
in Fermilab. This API is simple and easy to learn, but
powerful enough to write analysis programs. It was
originally based on XML over HTTP and because of that
has been easy to integrate into new system. Using OSDA
it is possible to write Java programs that access SDA data
over HTTP.
T T

[[e e ek [weh pee

L 11 | e v e Pl g R o b BT

Ard s L - = T] e e 0 s |l i ke

Dot g DAL D VIEF o a0l
M B 1 0 e
Eeews LEE AN IS TEF LOT AN

Figure 3: Beanshell sandbox.

In addition an OSDA-like API has been developed that
accesses data on the server. Because Berkley XML DB is
a library rather then server, this API utilizes direct calls to
Berkley DB and is significantly faster then OSDA. To run
user programs on the server, a Beanshell [6] sandbox has
been implemented. Using Beanshell different types of
reports can be generated without compromising security.

07 Accelerator Technology
T04 Accelerator/Storage Ring Control Systems

Proceedings of EPAC 2006, Edinburgh, Scotland

Data Acquisition

The Data Acquisition part of portable SDA depends on
the control system. Interfaces for Data Acquisition have
been designed for portable SDA. The intent is to make it
lightweight, flexible, extensible and scriptable (using
Beanshell). Usage of SCF (Secure Controls Framework)
for the Fermilab implementation will provide support for
both ACNET and EPICS.

Testing the System

In order to test SDA applications, the performance of
native XML database, the convenience of AJAX and the
Beanshell sandbox, all Fermilab SDA configuration data
and all SDA data collected in Fermilab Collider Run II for
shots with type “Collider Shot” has been imported into
new system. You can see the results at http://www-
bd.fnal.gov/SDAII .

Fermilab implementation of Data Acquisition is to be
tested this summer.

CONCLUSIONS

Portable SDA implements a general and powerful
paradigm for describing a multistage processes in a
complex, time dependent systems. This new approach is
based on our experience during the Fermilab Collider Run
II.

A Native XML database significantly simplifies SDA
development, because XML is natural representation of
configuration and data for such a system.

THPCH128

AJAX implementation provides and
flexibility for the User Interface.

Critical implementation decisions (usage of native
XML DB and AJAX) can be reversed to more standard
solutions (relational DB and Java Web Startable
applications).

XML DB provides sufficient performance for such an
application.

portability

REFERENCES

[1] T.B. Bolshakov, P. Lebrun, S.Panacek, V.
Papadimitriou, J. Slaugher, A. Xiao (Fermilab),
“SDA-based diagnostic and analysis tools for
Collider Run II,” PAC’05, Knoxville, USA, May
2005.

[2] A. Xiao, T. Bolshakov, P. Lebrun, E. McCrory, V.
Papadimitriou, A.J. Slaughter, “Tevatron beam
lifetimes at injection using the Shot Data Analysis
system,” PAC’05, Knoxville, USA, May 2005.

[3] http://www.sleepycat.com/products/bdbxml.html
Berkley XML DB Documentation.

[4] T.Bolshakov, K. Genser, K. Gounder, E. S. McCrory,
P. L. G. Lebrun, S. Panacek, V. Papadimitriou and
J. Slaughter, “Data acquisition and analysis for the
Fermilab Collider RunII”, ICAP'04, St Petersburg
Russia, July 2004.

[5] The Fermilab Runll Handbook, at
http://www-ad.fhal.gov/runll/index.html

[6] Beanshell reference, at http://www.beanshell.org

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy,

Office of Science, Office of High Energy Physics.

07 Accelerator Technology
T04 Accelerator/Storage Ring Control Systems

3103

