
Overview of EVE - the Event Visualization

Environment of ROOT

Matevž Tadel
CERN, CH-1211 Genève 23, Switzerland

E-mail: matevz.tadel@cern.ch

Abstract. EVE is a high-level visualization library using ROOT’s data-processing, GUI and
OpenGL interfaces. It is designed as a framework for object management offering hierarchical
data organization, object interaction and visualization via GUI and OpenGL representations.
Automatic creation of 2D projected views is also supported. On the other hand, it can serve
as an event visualization toolkit satisfying most HEP requirements: visualization of geometry,
simulated and reconstructed data such as hits, clusters, tracks and calorimeter information.
Special classes are available for visualization of raw-data. Object-interaction layer allows for
easy selection and highlighting of objects and their derived representations (projections) across
several views (3D, Rho-Z, R-Phi). Object-specific tooltips are provided in both GUI and GL
views. The visual-configuration layer of EVE is built around a data-base of template objects
that can be applied to specific instances of visualization objects to ensure consistent object
presentation. The data-base can be retrieved from a file, edited during the framework operation
and stored to file. EVE prototype was developed within the ALICE collaboration and has been
included into ROOT in December 2007. Since then all EVE components have reached maturity.
EVE is used as the base of AliEve visualization framework in ALICE, Firework physics-oriented
event-display in CMS, and as the visualization engine of FairRoot in FAIR.

1. Introduction
Visualization of detector geometry and event data plays an important role over a large spectrum
of activities of a HEP collaboration, including early planning of experiments, debugging of
simulation and reconstruction code, detector calibration, physics analysis and online monitoring.
The extent of visualization use-cases implies that the visualization framework of an experiment
must be able to handle all kinds of experiment data and present them together in a
unified environment. Nevertheless, there is a significant overlap of visualization elements and
functionality that is common to all visualization tools, not only within one collaboration, but
also within the HEP community as a whole. These common elements are exactly the targeted
scope of EVE – the event visualization environment of the ROOT framework[1].

EVE uses ROOT GUI and OpenGL modules for its data presentation and interaction
layer. On top of those it provides a visualization object-management system that integrates
deep into the OpenGL infrastructure to provide for fast updates of graphical windows with
minimal overhead as well as to allow fine-grained access to displayed objects and even to object-
components.

Much of the EVE higher-level functionality, like selection-management and 3D-scenes/viewer
management, is implemented as EVE classes. This facilitates the interaction with these objects

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

c© 2010 IOP Publishing Ltd 1



(they are visible within the same GUI as the visualization elements) and allows the described
element aggregation mechanism to be used on the framework level. For example, to add an
element into a 3D scene, it is enough to drag’n’drop it into the element representing the scene.

All EVE visualization classes allow backward references to the experiment data they are
representing by providing a TRef per visualized entity. This can correspond to an EVE element
(e.g. TEveTrack) or to an entry in an element if its class is actually a container (e.g. TEvePointSet,
used to represent hits, clusters and other point-like data). In this way the visualization classes
can be completely separated from the experiment framework and still provide full backward-
navigation.

In December 2007, EVE was introduced into ROOT as a standard module. Since then,
several experiments besides ALICE have already started using it, including CMS, FAIR, NA-62
and T2K. EVE reached maturity towards the end of 2008 and no major changes in the interfaces
are foreseen. Several extensions and optimizations of the current functionality are planned for
2009 and 2010.

2. EVE architecture
The components of EVE can be put into three main categories, based on the role they play
within the framework.

Application core consists of general services exposed to users via an instance of the TEve-

Manager class and static functions of the TEveUtil class. Together, they provide the following
main functionalities:

- management of object-browsers, 3D scenes and 3D viewers;
- management of ROOT GUI windows in arbitrary configurations of tabs, stacks and main-

frames;
- registration of visualization objects;
- selection management;
- data-base of visualization parameters that can be assigned to elements based on their type

(a string tag);
- event management & navigation;1

- execution environment for CINT scripts.

Framework base-classes implement the low-level functionality of visualization and GUI objects
that are used by the application core to perform object and state management as well as to
provide a reasonable level of feedback to the user (e.g. object name, title and color, object
highlighting and selection, object inspection via GUI and command-line interfaces).

Visualization classes serve as initial building blocks for simple visualization tasks, as base-
classes for more advanced visualization classes, or simply as examples of framework usage. The
standard HEP visualization classes (geometry, points, tracks and calorimetry) are discussed in
Sec.3. Most of these classes can be automatically projected into 2D views (r−ϕ and %− z), see
Sec.4. Classes for raw-data visualization are described in Sec.3.6.

All classes in this category have accompanying GUI editors and OpenGL rendering classes.
Following ROOT’s naming convention, the TEveTrack class has its GUI implemented in class
TEveTrackEditor and the GL drawing functions in class TEveTrackGL. For details of this
mechanisms see [3] and [4].

1 Due to the variability of input-data, only a very basic infrastructure can be provided for this task.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

2



3. Visualization classes of EVE
In this category we describe the traditional event-visualization classes of EVE.

3.1. TEveElement – the visualization base-class
TEveElement is the base-class of all visualization classes in EVE. It provides the interfaces between
the objects and the application core, the 3D rendering system and the GUI. Each element can
have an arbitrary number of children and also holds lists of its parents and GUI representations,
so that the update requests can be propagated properly. All elements are reference counted and
by default auto-destructible.

3.2. Geometry
ROOT includes a native geometrical modeler, TGeo, that provides methods for construction
of detector geometries, particle tracking and volume visualization via the class TGeoPainter [5].
In EVE, display of full TGeo geometries is provided via a wrapper-class TEveGeoTopNode. It
encapsulates a reference to a geometry-manager and to the top-node to be displayed, as well as
to the visualization parameters supported by TGeoPainter, including the depth of geometry-tree
traversal. During the actual painting, the necessary global variables are set-up and the control
is passed to the TGeoPainter.

The class TEveGeoNode allows further link between TGeo and EVE by providing representation
of children nodes in the EVE object browser. Users can select individually which nodes to draw,
block the descent of the painting algorithms from a given node, and change node and volume
colors. Example of such geometry is shown in Fig.1.

Figure 1. Geometry of the ATLAS detector in EVE. The object browser shows the node
hierarchy. Clipping box is used to provide view into the central region of the detector.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

3



3.3. Hits & clusters
Hits and clusters can be visualized by using the TEvePointSet class, holding an array of 3D points
that can be rendered with various marker styles and colors. To allow for backward-navigation, a
reference to an external object (via ROOT’s TRef class) can be specified for each point (optionally
a TEvePointSet can own the reference objects and delete them upon its destruction). Several
examples can be seen in Fig.2.

3.4. Trajectories, particles & tracks
The TEveTrack class can be used to represent particle trajectories. An arbitrary number of
control-points can be specified along the track, to mark one of: a) position/momentum reference,
b) daughter creation point, c) decay point, and d) reconstructed cluster. Extrapolation and
interpolation in an arbitrary, user-provided, magnetic field is supported by the service class
TEveTrackPropagator, which also contains general track visualization parameters (e.g. maximum
radius and z-coordinate of extrapolation, required precision, etc). Usually, all tracks from a given
data-source reference the same track-propagator object, thus allowing the general parameters
to be edited for all of them simultaneously.

Tracks can be put into a hierarchical structure (as required for display of kinematics) or
combined to represent composite reconstructed physics objects like V0’s (neutral particles
decaying into two charged particles), kinks and resonances. A collection of tracks can be put
into a TEveTrackList object that provides control over common track rendering parameters and
interactive selection of displayed momentum ranges.

Several examples are shown in Fig.2. Note also the object browsers on the left side of the
shown windows and track highlighting that can be used to display track-parameters and other
relevant information in a tool-tip.

3.5. Calorimeter data
Calorimeter classes in EVE can be divided into two categories: the data holding classes and the
visualization classes.

3.5.1. Data holding classes The calorimeter visualization must support advanced operations
on the calorimeter data, like automatic rebinning and summing of calorimeter cells, in η and
ϕ, as well as along the longitudinal segmentation. Further, it must be possible to set separate
thresholds on each longitudinal segment of the calorimeter. All these operations are available
via the abstract interface TEveCaloData. Two concrete implementations are provided in EVE.

TEveCaloDataHist represents the data in a stack of energy versus η-ϕ histograms, internally
using the ROOT’s THStack class. Each histogram in the stack represents one longitudinal
segment. This is convenient for global views of the calorimeter response as well as for physics
analysis applications.

TEveCaloDataVec allows the user to specify individual calorimeter cells by their η and ϕ range
and longitudinal segment identification. This class can be used for detailed views as there is no
assumption on the η-ϕ segmentation of the individual cells.

3.5.2. Visualization classes The visualization classes reference the data-holding object and
present a specific representation of this data. Several visualization objects can point to the same
data-object and thus provide a coherent view, based on the thresholds and other visualization
parameters specified by the user.

The abstract base-class TEveCaloViz provides the data-members and methods that are
common to all visualization classes: η and ϕ ranges, scales (absolute or relative), a flag whether
full energy or transverse energy should be displayed, and optionally a palette for mapping of
signal value to color.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

4



Figure 2. An ALICE p–p@14 TeV event showing simulated data.

TEveCalo3D displays the calorimeter in 3D space, as a set of towers. An example is shown on
the left side of Fig.3.

TEveCaloLego displays the η-ϕ lego-plot, which is the preferred way to view calorimeter data
for physics analysis. The class supports two rendering modes: as a 3D histogram (right side
of Fig.3) and as a 2D plot, where sizes or colors of the cells represent the deposited energy
(bottom-left window on Fig.7).

TEveCalo2D is used to present the cells summed up in η or ϕ, and is used in projected views.

3.6. Raw-data visualization classes
Visualization of raw-data is, in comparison to hits or clusters, complicated by the implicit digit
positioning based on the module and channel number. Further, a signal value must always be
shown in some fashion, usually by color or size of the digit’s visual representation.

To account for that, EVE provides a couple of support classes that encapsulate functionality
that is shared among several visualization classes and further, by several instances of a given
visualization class, implying that they must be referenced via pointers from the visualization
objects. These objects are reference-counted with automatic destruction.

The TEveRGBAPalette class provides mapping of signal values to colors from a given palette.
GUI is available to manipulate minimum / maximum values to be displayed and different display
options are available for display of under- and over-flow bins.

The TEveFrameBox class can be used to render frames of specified dimensions and color around
a set of modules of the same type. 2D and 3D frames with wire-frame or solid rendering are

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

5



Figure 3. Calorimeter classes of EVE: TEveCalo3D (left) and TEveCaloLego (right).

supported.
All raw-data presentation classes are in fact containers for individual electronic-channel

representations and usually one object is used to represent one detector module. A
transformation matrix (class TEveTrans) can be assigned to each object allowing the position
of the digit to be given in the local coordinate system. Further, by changing the position
of a set of modules, they can be arranged in arbitrary layouts, not necessarily following their
realistic placement in the detector. This functionality is provided in the base-class TEveDigitSet,
including the pointers to TEveRGBAPalette and TEveFrameBox objects. For each digit, a signal
value and an external object reference (a TRef) can be specified by the user.

TEveQuadSet is the most widely used class for raw-data visualization. It contains a set
of rectangles, lines or hexagons (see left side of Fig.4). For memory and rendering-speed
optimization reasons, a user can specify the type of elements in a very precise way that allows
almost any parameter to be held constant for the whole collection (e.g. z-coordinate, rectangle
width and height, etc). TEveBoxSet provides a similar service for 3-dimensional box-like objects
or cones.

For more complex examples custom classes need to be designed. For example, ALICE TPC is
expected to produce 80 MBytes of raw-data per central Pb-Pb collision and optimised algorithms
are required to control visualization parameters. Screen-shot of TPC visualization is shown on
the right side of Fig.4.

4. 2D projections
2D projections and fish-eye transformations are indispensable for a detailed inspection of the
vertex region as well as for good utilization of the screen-estate as, without some artificial scaling,
outer detectors typically use up too much space. In EVE, the projections can be performed
automatically on extracted geometry, points, tracks and on calorimeter data. Currently EVE
provides r-ϕ (front-view) and %-z (side-view) projections, but new projection-types could easily
be added.

The central management of a given projection is done by the TEveProjectionManager class.
It connects together the actual geometric projection (abstract base-class TEveProjection) and a
list of EVE-elements that need to be projected.

EVE elements that support the projection operation must derive from the abstract interface
TEveProjectable. One of the main roles of this class is to specify the class of the projected
object (abstract method TClass* ProjectedClass()). This is used by the manager to instantiate

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

6



Figure 4. Examples of raw-data visualization classes. Left: TEveQuadSet as used for ALICE
PMD detector. Right: 3D view of ALICE TPC data for a simulated Pb–Pb event.

a replica of proper type. Further, the projectable also holds the list of projected replicas to allow
for propagation of changes in visualization parameters.

Another abstract interface is required for the projected classes – TEveProjected. This allows
the manager to, first, inform the projected object about its original (projectable) object and,
second, to update it when the projection parameters change.

Examples of projected views are shown in figure 5.

Figure 5. r-ϕ (left) and %-z (right) projections of a ALICE pp event. Fish-eye distortion is
enabled in both views.

5. Usage of EVE
5.1. AliEVE – ALICE Event Visualization Environment
AliEVE is the standard visualization tool of the ALICE experiment. It is used not only for
standard offline visualization tasks, but also for physics analysis, high-level trigger visualization
and for online monitoring. Its functionality can be split into three main elements.

(i) Access to ALICE data and core classes. Visualization code accesses data in a
random fashion, based on user input and not on any predetermined pattern as is the

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

7



case during simulation or reconstruction. Thus we need to shield the AliROOT event-
loading functionality from the visualization data-consumers to prevent multiple loading
of the same data and to simplify the user interface by covering the most frequent usage
patterns. Additionally, it must support loading of detector geometry, magnetic field maps,
alignment data and detector-conditions database.
This functionality is aggregated into the EveBase module. It depends on a minimal set of
AliRoot’s components and is required for visualization of ESD and AOD data.

(ii) Raw-data and detector-module visualization needs to be treated with special care as it
requires direct access to raw-data reading functionality, as well as to the specifics of detector
structure and read-out electronics, such as module positioning, segmentation and channel
numbering conventions. The most advanced solution is required for the TPC, in part also
due to its large data-volume. Other complex detectors (e.g. ITS, TRD, TOF) extend EVE
base-classes for raw-data representation, mostly to provide tools for user-interaction. For
simple detectors with small data-volume and little segmentation (e.g. VZERO, T0), the
visualization is provided by scripts that use EVE classes directly.

(iii) Visualization scripts are CINT macros that perform the actual extraction of the data,
create and fill the visual representation objects, and register them into the application. In a
sense, they provide a bridge between the ALICE data and the visualization structures
and relieve the core application of any knowledge about AliROOT internals (other
than event-data interface). The default demonstration scripts are provided with the
AliEVE distribution and are named by sub-detector and data-type, e.g. tpc digits.C,
trd clusters.C, etc.

A screen-shot of AliEVE in action is presented in Fig.6. More details about AliEVE are
available in [2].

Figure 6. A composite screenshot of AliEVE showing a cosmic shower observed during the
cosmic-ray runs in summer 2008.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

8



5.2. cmsShow – Physics Analysis Oriented Event Display of CMS
cmsShow is based on the light version of the CMS software framework and uses EVE as a toolkit
to present and manage its visualization data. Most of the EVE GUI functionality is hidden from
the user to prevent users from wandering too deep into the structure of EVE. All supported
operations are provided via a concise and consistent user interface that makes it easier to use
for novice and non-expert users. However, EVE components are used extensively and several
high-level features of EVE were designed in collaboration with cmsShow developers. The most
prominent examples are the calorimetry visualization classes and the selection-feedback system.
An example of cmsShow is shown in Fig.7.

Figure 7. A screenshot of cmsShow displaying a simulated tt̄ event.

6. Conclusion
EVE is a complete visualization framework, satisfying a full range of requirements of a HEP
collaboration. It is distributed within ROOT, which is already used by most HEP collaborations,
at least for data-processing and data-analysis. Thus the usage of EVE becomes even more
convenient as it does not encumber the visualization environment with additional software
requirements that might hinder deployment and portability.

Wide and fast adoption of EVE in the HEP community shows that it has indeed provided a
missing piece in the landscape of HEP visualization software. Future work on EVE will mostly
focus on implementation of features and extensions required by the user community.

References
[1] R. Brun and F. Rademakers, Nucl. Inst. & Meth. in Phys. Res., A 389 pp 81-86.

See also http://root.cern.ch/.
[2] M. Tadel, Raw-data display and visual reconstruction validation in ALICE, J.Phys.Conf.Ser.119:032036,2008.

http://dx.doi.org/10.1088/1742-6596/119/3/032036

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

9



[3] M. Tadel, 2007 The New Generation of OpenGL Support in ROOT, J.Phys.Conf.Ser.119:042028,2008.
http://dx.doi.org/10.1088/1742-6596/119/4/042028

[4] I. Antcheva, R. Brun, C. Hof and F. Rademakers, The Graphics Editor in ROOT, Nucl.Inst.&Meth.Phys.Res.
1 559 pp 17–21.

[5] R. Brun, A. Gheata and M. Gheata, A geometrical modeller for HEP, XIII Int. Conf. on Comp. in High
Energy and Nucl. Phys. 2003 THMT001 [physics/0306151]. See also Root Users Guide pp 299–350.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042055 doi:10.1088/1742-6596/219/4/042055

10




