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Abstract

New Probes of Axions and Ultra-Heavy Dark Matter
by
Paul Riggins
Doctor of Philosophy in Physics
University of California, Berkeley

Assistant Professor Surjeet Rajendran, Chair

The Standard Model of particle physics is known to be incomplete, and many extensions
and modifications have been proposed to resolve outstanding issues. In order to discriminate
which of these many ideas may be correct, we seek novel approaches to acquire new data
and apply old data. The research in this dissertation advances these efforts, probing physics
beyond the Standard Model in three distinct ways. First, we propose a novel design of a
laboratory search for axions based on photon regeneration with superconducting radiofre-
quency resonant cavities. We use a confined static magnetic field to avoid degrading the large
resonant quality factors. After analysis of fundamental issues and limitations, we conclude
this design can potentially probe axion-photon couplings beyond astrophysical limits, com-
parable and complementary to next generation optical experiments. Second, we demonstrate
that rotational superradiance can be efficient in millisecond pulsars. We use measurements
from the two fastest known pulsars to place bounds on bosons with masses below 107! eV
and Yukawa couplings to neutrons, exceeding fifth force constraints by 3 orders of magnitude
for masses near the pulsar rotation rates. For certain neutron star equations of state, these
measurements also constrain the QCD axion. Third, we consider dark matter (DM) candi-
dates that heat white dwarfs through the production of high-energy Standard Model (SM)
particles, and show that such particles will efficiently thermalize the stellar medium and ig-
nite type la supernovae. Based on the existence of long-lived white dwarfs and the observed
supernovae rate, we derive new constraints on DM with masses greater than 10'® GeV which
produce SM particles through DM-DM annihilations, DM decays, and DM-SM scattering
interactions in the stellar medium.
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Chapter 1

Motivation and Overview

The Standard Model of particle physics is perhaps the most successful scientific theory of all
time, in its predictive power. However, we know it to be an incomplete description of the
particle content and physical laws of nature. It seems unable to account for dark matter, for
instance, and it does not describe quantum gravity, just to name two of the missing pieces.
New particles are expected to appear at energies higher than we have probed, and quantum
field theory itself may need to give way to a more complete description.

To address these failings, theoretical researchers have invented and investigated a dizzying
variety of effective field theories and conceptions of quantum gravity, most of which purport
to fill one or another of the gaps in the Standard Model and which claim to be consistent
with current experimental data. Some of these models are considered “well-motivated” and
receive disproportionate community attention, since they may be able to economically solve
a number of problems at once, and/or they have well-developed origin stories in cosmological
history. Other models are more generic, parameterizing certain properties and interactions
(like a mass and cross-section for dark matter) without concern for the specific microphysics
or origins that would give rise to them. Most of these proposed ideas, well-motivated or not,
will turn out to be wrong—the challenge for physics, as an experimental science, is to sort
out which ones.

The research presented in this dissertation has been developed in response to this chal-
lenge, seeking to probe and constrain the existence of new physics beyond the Standard
Model. The three projects contained in the subsequent chapters illustrate a spectrum of
approaches including both detection and exclusion efforts, terrestrial and astrophysical data
sources, well-motivated and “exotic” models. There is no guarantee that our theoretical
biases, which have led us to favor some ideas over others, will continue to be faithful guides.
This work broadly takes the view that we have little idea where new physics will be discov-
ered next, or what it will be, so it is prudent to look for and apply new data and phenomena
wherever we can find them.

Here is an overview of the projects presented:

Chapter 2 is a detection effort, proposing a new terrestrial experiment to look for axions
with electromagnetic couplings. We describe a novel light-shining-through-walls set up and



consider key fundamental issues necessary for the experiment to be successful and on par
with other next-generation proposals. This work was done in collaboration with Ryan Janish,
Vijay Narayan, and Surjeet Rajendran; the chapter is adapted from our paper [1].

Chapter 3 also constrains axions and axion-like particles, but by supposing couplings to
neutrons and using existing astrophysical data from millisecond pulsars. We demonstrate
how ultralight particles could drive rapid superradiant growth, causing a star to spin down
below observed rotation rates. This is primarily an exclusion effort, but also hints at new
particles and astrophysical signatures to look for. This work was done in collaboration
with David E. Kaplan and Surjeet Rajendran; the chapter is adapted from our paper, in
preparation [2].

Chapter 4 is another exclusion effort using existing astrophysical data, using white dwarfs
and type la supernovae to constrain ultra-heavy dark matter with a wide variety of Standard
Model couplings. We investigate how such particles would cause white dwarfs to explode,
ruling out dark matter candidates because we see the stars still intact. Our results also
suggest distinct characteristics of dark matter-induced supernovae, which could be investi-
gated in future searches. This work was done in collaboration with Peter W. Graham, Ryan
Janish, Vijay Narayan, and Surjeet Rajendran; the chapter is adapted from our paper [3].



Chapter 2

Axion production and detection with
superconducting RF cavities

We propose a novel design of a laboratory search for axions based on photon regeneration
with superconducting RF cavities. Our particular setup uses a toroid as a region of confined
static magnetic field, while production and detection cavities are positioned in regions of
vanishing external field. This permits cavity operation at quality factors of Q@ ~ 10° —10'2.
The limitations due to fundamental issues such as signal screening and back-reaction are
discussed, and the optimal sensitivity is calculated. This experimental design can potentially
probe axion-photon couplings beyond astrophysical limits, comparable and complementary
to next generation optical experiments.

2.1 Introduction

Axions are well-motivated additions to the standard model (SM). They provide an elegant
solution to the strong CP problem [4, 5, 6, 7], are a natural dark matter candidate [8, 9,
10], can relax naturalness problems [11, 12], and appear generically in theories of quantum
gravity [13, 14]. Purely laboratory searches for axions are thus an important experimental
front. Given that axions can naturally be very light and have suppressed interactions with
the SM, a promising approach is to search for the coherent interaction of a classical axion
field with electromagnetic (EM) fields [15].

Photon regeneration, or “Light Shining Through Walls” (LSW), experiments make use
of axion-photon oscillations in a transverse magnetic field to convert photons into axions
that can traverse an optical barrier and then convert back into detectable photons [16].
Small axion-photon conversion probabilities are overcome by the use of resonators to sustain
large EM fields [17]. This is the basis of experiments such as the Any Light Particle Search
(ALPS) [18, 19, 20], which employ optical cavities aligned with dipole magnets over a long
baseline. LSW can also be done at radio frequencies (RF) [21, 22, 23], as in the CERN Reso-
nant Weakly Interacting sub-eV Particle Search (CROWS) [24], by producing and detecting



the axion through excited modes in matched RF cavities subject to an external magnetic
field. While interesting, current constraints from LSW experiments are less stringent than
those due to stellar cooling or searches for solar axions (see [25] for a review).

We propose a novel design for an axion LSW experiment using high-@Q) superconducting
RF (SRF) cavities, which can in principle reach beyond these astrophysical bounds. SRF
cavities provide an opportunity for a significantly enhanced axion search due to their ex-
tremely large quality factors; however, they must be isolated from large magnetic fields in
order to avoid catastrophic SRF degradation. This requires several qualitative modifica-
tions from previous setups, most notably the use of a sequestered axion-photon conversion
region containing a confined static magnetic field while production and detection cavities
are positioned in regions of vanishing static field. The focus of this paper is to determine
the fundamental factors that affect the sensitivity of such an experimental design—a more
detailed consideration of experimental strategies is left to future work. We calculate the
optimal signal strength and irreducible noise sources, and find the proposed setup capable
of probing axion-photon couplings beyond astrophysical limits and with a reach comparable
and complementary to next generation optical experiments.

2.2 Conceptual Overview

LSW searches rely on the axion EM interaction, given by the effective Lagrangian

—%lFWF“” + %(8,&)2 - %m,ﬁa2 - igaFuVﬁ‘“’, (2.1)
where a is the axion field of mass m,, P = P’ F,», and g is the axion-photon coupling.
In the limit of classical fields, an axion obeys the equation of motion

(O+ml)a= —gE - B, (2.2)

and modifies Maxwell’s equations:
V-E=—gB-Va, (2.3)
wg:%_f_g(ﬁwa_é%). (2.4)

We will generally consider any light, neutral pseudoscalar a and treat {m,, g} as independent
parameters.

In an RF LSW experiment such as CROWS [24], a production cavity sources axions
through a non-vanishing E - B, where E is the electric field of an excited cavity mode and B
is an external, static magnetic field. These axions propagate into a detection cavity where,
again in the presence of a static magnetic field, they excite an identical frequency mode in
the detection cavity. The signal power that can be extracted is [21]:

9B

4
Psignal = Pinpthchdc (T) ‘G|2 (25)



Here (). and Qqc are the loaded quality factors of production and detection cavities, f ~
GHz is the frequency of the excited modes, Py is the driving RF power delivered to the
production cavity, and By is the static field penetrating both cavities. |G| is a form factor
which depends on the arrangement of the cavities, choice of modes, etc. This is roughly
constant for m, < 27 f, and is exponentially suppressed for larger masses.

The quality factors @) of both cavities are key factors in determining the sensitivity of such
an experiment. For normal conducting cavities, QQ ~ 10°> — 10°, however advances in SRF
technology have led to the development of superconducting cavities with Q ~ 10 — 10!?
which have application in particle accelerators [26]. It is worthwhile to consider whether
these can be leveraged in an axion LSW search [27, 28].1 A simple replacement of the RF
cavities? in the above arrangement with SRF cavities does not work—an external B, greater
than the critical field ~ 0.2 T, at which flux penetrates the cavity, would result in excessive
dissipation and degrade Q).

This problem is avoided by placing production and detection SRF cavities in regions of
vanishing static field while confining a large, static magnetic field in a distinct conversion
region, depicted schematically in Fig. 2.1. The basic elements of an SRF LSW experiment
as follows:

1. Axions are sourced in a production cavity free of any external field.
2. The axions then convert into photons in an isolated region of static magnetic field.

3. The resulting photons propagate out of the conversion region—that is, the axion-
induced fields must not also be screened by the conductors which confine the large
static field.

4. Any resulting RF signal is coupled to and amplified by an SRF detection cavity.

We discuss a possible design that is able to realize all these conditions, and in what
follows we will use it to determine the optimal sensitivity of an axion SRF search.

(1) A specific mode or set of modes in the production cavity is driven such that E-B
does not identically vanish.

(2) A static By is generated and confined by DC current-carrying superconducting wires
wrapped to form a toroidal enclosure.

(3) There is a gap in this enclosure, preventing the toroid from acting as a shielding
cavity for the axion-induced fields. Our use of a gapped toroid is inspired by its related use
in experiments (ABRACADABRA and DM Radio) searching for dark matter axions [30,
31].

(4) The axion-induced fields are coupled to the detection cavity inductively via an outside
pickup loop. Here, we must properly account for the back-reaction of the amplified signal

1See [29] for a proposal to detect axions with SRF cavities that is quite distinct from ours.

2Tt is actually not obvious whether a larger signal is obtained by replacing both cavities or only the
detection cavity, see Sec. 2.3.1—we choose here to study an SRF production cavity as it involves some novel
considerations.
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Figure 2.1: Basic elements of an axion LSW experiment using SRF cavities and a conversion

region of confined static magnetic field, to be contrasted with an RF cavity experiment such
as CROWS [24].

onto the toroid. We emphasize that a realistic implementation would require a more detailed
signal field read-out mechanism in order to maintain a large effective () on the detection side.

2.3 Determining the Axion Signal

2.3.1 SRF axion source

The axion field produced by an SRF cavity is given by (2.2), with the EM fields on the right-
hand-side being those of the driven cavity modes. We focus on one frequency component w
of this E - B , which may arise from a single cavity mode with frequency w/2 or from two
distinct modes driven together whose frequency sum or difference is w:

) ika|Z—7) o
a f,t = —g GZUJt / d3y_)T (E . B) s 2.6
(&1) K= ) (2.6

where k, = y/w? —m?2 is the axion momentum and the subscript w on E - B indicates
restriction to a single frequency component. The integration ¢ is taken over the volume of
the production cavity and # indicates any point in space, e.g., within the conversion region.
The driven modes must be chosen such that (E B)w is not vanishing. This is not an issue
in principle, though care must be taken in order to ensure the largest possible magnitude of
the axion source (see Appendix A.1).

An SRF production cavity is unable to support EM fields greater than the critical field
at which @) severely degrades due to flux penetration. This sets a fundamental limit on the
strength of an SRF axion source which is independent of the cavity @), the input power, or
choice of modes. The limit depends only on the material properties of the chosen supercon-
ductor. For a standard niobium SRF cavity [32], the field limit is

(E - B < (0.2 T)2 (2.7)
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By comparison, the axion source produced by an RF cavity in a large static field (as in

CROWS) is
L P 2 (0. \? (B
. ~ 2 input pc 0
(E-B)s~(01T) (100 ) (105) (5 T) ) (2.8)

Interestingly an SRF axion source may be similar in magnitude to that of a conventional
LSW setup. The improved reach of our set-up is primarily due to the increase in () on the
detection side, and the decision to employ an SRF or RF cavity for production would depend
on more detailed engineering considerations.

2.3.2 Gapped toroid conversion region

An axion interacts with the EO within our conversion region and induces EM fields, described
to leading order by effective sources

Peff = —géo . ﬁa, Jg= ggo(?ta (2.9)

For a toroidal magnet, the static field is of the form By ~ By (r)¢ within the volume
of the toroid, and ideally vanishes everywhere outside. This is the principle advantage of
using a toroid, as the SRF cavities can be located in regions of nearly vanishing static field.
However it is essential that the toroid be gapped, for instance due to spaces between wire
turns. A gapped toroid of this sort acts as a polarizer, confining the toroidal static field while
permitting the poloidal axion-induced field to propagate outside and be detected, as shown
in Fig. 2.2. Indeed, this behavior is same reason that a gapped toroid is being employed
in [31, 30].

We can understand this as follows: the axion effective current feff follows the direction
of the static toroidal field éo and sources a poloidal field éa. Both fields vanish in the
toroid thickness as Meissner screening currents are set up on the internal surface. The static
field requires poloidal surface currents which are unaware of gaps in the toroid—they do not
encounter the gaps as they circulate. For this reason, the static B-field is effectively contained
within the toroid. Any leakage is due to fringe effects, which are suppressed by the small
size of the gap and can be made smaller than the critical SRF threshold. On the other hand,
the axion-induced field will drive toroidal currents which are aware of the gaps. An internal
toroidal current must either collect charge on the edges of the gap or propagate onto the
external surface of the toroid, where it sources detectable field. This field is unsuppressed by
the gap size, as long as the gap has a sufficiently small parasitic capacitance (see Sec. 2.3.4).

We now make the approximation that all length scales in the setup (cavity sizes, sepa-
rations, dimensions of the toroid, etc.) are comparable and of order w™!. We additionally
assume that the axion-induced poloidal field B, is able to escape the toroid without sup-
pression, as though the conducting toroid were not present. This is valid in the quasistatic
limit, as we motivate in Sec. 2.3.3. Combining (2.6) and (2.9), we find the axion-induced
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Figure 2.2: Schematic of the gapped toroid as a polarizer, zoomed on to the cross-section of
a gap. The static EO due to applied DC current (blue) remains internal, while the axion-
induced B, (red) causes Meissner screening currents (also red) to flow on internal and external
surfaces due to the gap. The external currents give rise to detectable fields outside the toroid.

field in the center of the torus has a magnitude
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where B, is the field amplitude in the production cavity (note, we have simply taken E,. ~
B, in the above estimate) and w ~ 27 GHz. f is a dimensionless form factor which is a

function of the cavity modes, cavity and toroid geometries, spatial variation in 507 etc. The
size of [ is estimated in Appendix A.1, and we find in principle that it can be made O(0.1)
in the limit m, < w.

2.3.3 Screening beyond the quasistatic limit

The reasoning presented above for the propagation of axion-induced fields outside the gapped
toroid is essentially valid for quasistatic frequencies, R < w™!, where R is the characteristic
dimension of the toroid. In the low-frequency limit, the axion-induced magnetic field scales
as B, « (Rw) and so we would try make our toroid as large as possible. However once
R becomes larger than w™! the axion-induced fields outside the toroid are suppressed (or
screened), and thus an optimal design would saturate the quasistatic limit R ~ w=!. We
discuss this in detail in Appendix A.2; here we will briefly describe the physical reasons for

this result.



Beyond the quasistatic limit, the cross-capacitance of the toroid becomes important:
radiation across the center will cause currents and charges on one side of the toroid to affect
those on the other side. Meissner currents flowing along the surface of the toroid are no longer
approximately uniform; instead, there will be multiple sections of current flowing in opposite
directions, with alternating charge buildups in between. The resulting Meissner currents
and charge distribution is spatially modulated and behaves as a multipolar source. We thus
expect the axion-induced fields outside the toroid to drop-off parametrically as a power-law
B, « (Rw)™™, due to destructive interference of out-of-phase source contributions. We show
this behavior and calculate n > 0 explicitly for a toy model of a thin cylindrical conductor
in the high-frequency limit in Appendix A.2. Thus, we expect it is safe to saturate R ~ w1
without concern that there will be a precipitous (e.g., exponential) drop in the external fields
for slightly larger sizes or frequencies. Likewise, we may treat the approximation of O(1)
field propagation as accurate even at the boundary of the quasistatic limit.

Note that in our setup the internal toroid signal currents will also have significant spatial
modulation beyond the quasistatic limit, but for a very different reason: the source axion
field (2.6) itself varies on length scales of order w™! due to the propagator factor, independent
of the choice of modes. In any case, the multipolar screening described in this section is more
general and results from satisfying boundary conditions on the superconducting toroid—this
would be present even if the axion field were spatially uniform.

2.3.4 Pickup and equivalent transducer circuit

To compute the signal strength, it is useful to describe this system with a model circuit, as
in the left side of Fig. 2.3. For concreteness we assume the axion-induced EM field is coupled
to the detection cavity via a pickup loop located in the central hole of the toroid. An actual
design would likely require a more sophisticated read-out mechanism in order to maintain a
large effective @), however this does not alter the optimal signal power.

The model circuit is a straightforward rendering of the signal current flowing on the
toroid. This current flows toroidally, distributed over the inner and outer surfaces of the
toroid, as discussed in Sec. 2.3.2. We focus on the loop of signal current nearest to the pick-
up loop, which flows around the central hole, concentric to the pick-up. This current path
is represented in the model circuit by the red arrows in Fig. 2.3, and it includes segments on
both the inner and outer toroid surface. The magnitude of toroid current is determined by
the Meissner boundary conditions. It thus receives contributions from the magnetic fields
produced by both the axion effect current and any current in the pick-up loop, the latter
being a back-reaction which sets the maximal power that may be drawn from the pick-up
loop.

The axion effective current in the volume of the toroid is represented by [,, and its
coupling to the inner toroid surface current by an effective mutual inductance M,. The
self inductance of the toroid current path is L; ~ R, with R the toroid radius. We choose
M, ~ R, which ensures that the current driven in the model circuit due to I, agrees with
that required by the Meissner effect. The current induced on the inner surface of the toroid
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Figure 2.3: (Left) Mapping of our experimental setup onto an effective circuit model. This
is parameterized by an axion effective current (/,) running through the toroid volume, ef-
fective mutual inductance capturing the Meissner effect (M), toroid inductance (L;), toroid
resistance (R;), shunting capacitance (Cy), inductive coupling to an outside pickup loop (L)
through a mutual coupling (M), and a detection cavity (Z.). (Right) Approximate equiv-
alent circuit, for the purposes of computing the maximum signal power. R o () is the
detection cavity shunt resistance and Z;,, contains all imaginary impedances.

can pass to the outer surface, where it couples to a pickup loop of inductance L, through
a mutual inductance M and then feeds into a cavity of impedance Z.. Alternatively, the
current may jump across the gaps between wires and remain on the inner surface: this is
captured by the shunting capacitance Cy. As we will show, wl; < (wC;)™!, and so current
always prefers to circulate between the inner and outer surfaces.

The resistances R; account for the tiny but non-zero surface losses on the toroid. It is
valid to ignore R; when determining the magnitude of axion-induced fields through (2.10).
However, it is important not to ignore it entirely when considering the amplification of signal
fields by the SRF cavity. The detection cavity will be rung up to contain a large current,
for which the pickup loop L, will act as an antenna and excite additional currents on the
external surface of the toroid, resulting in additional dissipation via R;. This back-reaction
current is again set by the Meissner boundary conditions, which are reproduced by M and
L; ~ R in the circuit model of Fig. 2.3. Taking the pick-up loop to have radius r and contain
a current I,,, it will source a field at the toroid surface B ~ I,r*/R? which requires a Meissner
current I ~ BR ~ I,r*/R%. Since the mutual inductance is of order M ~ r2?/R, the required
current is indeed I ~ I,M /L, that derived from considering our circuit.

We now estimate the relevant model circuit parameters. The current source I, represents
the total axion effective current threading the toroid and is of order J.zR?. More precisely,
it is the current that gives rise to the outside field B, (2.10):

2p2 g
I, ~ BoR ~ %5 (2.11)
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again with w = 27 GHz and m, < w.

Strictly speaking, the two toroid inductances labeled L; may be different as they in-
ductively couple to different objects. They are both set by the toroid size, however, so for
simplicity we take them both to be

R
L; ~ R~ 125 nH . 2.12
e~ R oo (10 cm) (2.12)
If the toroid is composed of N turns of wire, then C; is given by
127R-d
Cy~— 2.13
o~ (213)

where d is the wire diameter and g = 2rR/N — d is the spacing between wires. For fixed
wire diameter, C; and the fringe fields can be made small by taking a large N and g =~ d,
which yields:

mim

Cy ~ 1072 pF (i) . (2.14)

The use of superconducting wires allows R; to be as small as few n{2 (the minimum RF
surface resistance of type II superconductors [33]), or at worst as large as m€2 (the nominal
low-temperature resistance of quenched NbTi wires [34]). We expect the resistance will
be somewhat larger than nf), as the wires operate in the vortex state and harbor toroidal
magnetic flux tubes. These tubes interact with RF currents in the wires via the so-called
Magnus force [35], and their resulting motion is a significant source of dissipation [36]. The
precise value of R; will depend on the detailed geometry of the flux tubes and the surface
current. We provide a rough estimate of this resistance, but stress that in what follows we
consider the consequences of any R; within the above bounds. Since the interaction of RF
currents and flux tubes is of the “Lorentz” form J x B , the resistance should scale as sin @,
the angle between the direction of flux tubes and that of the RF current. In this system, the
magnetic field inducing the flux tubes is toroidal but the axion-induced current is poloidal,
and so ideally # = 0. However, the flux tubes will not be perfectly toroidal: static fringe
fields provide a deflection of order § ~ By/B,. ABRACADABRA has measured the fringe
fields outside of their toroidal magnet to be 107° of the primary field [37], which we adopt
here. We assume that the deflected component of flux tubes contribute an RF resistance
similar to that of trapped flux in SRF cavities, which is on the order nQ2/mG [33]. Thus we

Finally, we choose to model the cavity as a parallel RLC circuit for concreteness, with
capacitance C', inductance L, resistance R, and thus an impedance:

z— (L4 1 e - (2.16)
N ' ‘
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This cavity has natural resonance frequency wi = (LC)~! and quality factor Q = R/woL >
1. We take wyg ~ L™t ~ C~! ~ 27 GHz, as set by the physical cavity size. Note that the
effective shunt resistance R of this cavity model is very large, proportional to the inverse of
the small resistivity of the cavity walls.

All the circuit parameters have so far been estimated by physical considerations, except
the pickup loop inductance L,,. This is a free parameter which we tune to optimize the signal,
within reasonable limitations as discussed in Sec. 2.3.5. We assume the mutual inductance
M can be made close to optimal, M ~ \/L,L;. There is also some freedom in choosing
the frequency w sourced by the production cavity. Indeed, w need not be exactly equal the
detection cavity’s natural frequency wy, although we require that both lie in the GHz range.

2.3.5 Optimal signal strength

The signal we are able to extract is given by the power dissipated in the detection cavity.
Here we compute the maximum of this power, varying the pickup inductance and driving
frequency. We use our model circuit for this, and employ the equivalent circuit shown on
the right side of Fig. 2.3. This circuit is constructed such that, to lowest order in the small
quantities R, and C}, the power dissipated in the resistor (L;/L,)9R is the same as the
power dissipated in the cavity impedance Z.. Similarly, the power dissipated in the resistor
(Lw)?/ Ry is the same as the total power dissipated in the toroid resistors.

This can be demonstrated by making a series of transformations to sub-circuits of the
circuit on the left side of Fig. 2.3, each of which preserves the input, output, and dissipated
power of the transformed sub-circuit and results in a purely parallel topology. First, the
leftmost transformer can be replaced by a rescaled current source I,M,/L; and inductor
L;. Recall that M, ~ L;, so the rescaled current is O ([,). Next the elements between
the transformers can be rewritten to lowest order in R; and Cy as a resistor (L;w)?/R; and
capacitor (. Finally, the rightmost transformer and cavity impedance can be replaced by
an inductor L, and a rescaled cavity (L;/L,)Z.. The imaginary impedances are gathered
into Z;,,, which to lowest order in R; and C; is:

-1
+ iwﬁ0> . (2.17)

iwEt L Ly
P

2
Zim ~ < ; + iwC’t +
wly

The system is on resonance when Z ! = 0. To lowest order in Cy, this occurs at the

frequency
/ L
Wres ~ Woy |1+ 2—, (2.18)
Ly

which we will choose to be our driving frequency w. On resonance, all current in the equiv-
alent circuit passes through the two resistors. The power dissipated in the cavity resistor is

12



maximized when these two resistors are equal, which occurs at a pickup loop inductance of

QR
L, ~L*" 2.19
Toon (2.19)

An inductance L, that is significantly less than L results in a resonance frequency that is
far perturbed from the natural one. In a realistic experimental implementation, care would
need to be taken to ensure that the loaded resonance frequency was not too far perturbed
from the detection cavity’s natural frequency, lest the quality factor degrade. As a heuristic
implementation of this, we will demand that w ~ wy and thus L, 2 L.

We will consider the optimal signal power in two parameter regimes. First, suppose the
cavity is of higher quality than the toroid, R = QwgL > 1/R,. Impedance matching requires
L, = L, > L, happily yielding a resonance frequency very close to wy. We then draw the
toroid-limited power

(Ltw)Q‘

D (2.20)

Pmax ~ l‘Ia|2
8
This is the maximal power that can be extracted from the toroid as long as the driving
frequency remains near wg. It thus depends only on the toroid properties and frequency, and
notably does not scale with Q).

In the second case, suppose that the toroid is of higher quality than the cavity, R =
QuwoLl < 1/R;. We would hope to again match L, to L,, however that would require
L, < L and we are thus prevented from impedance matching. Insisting on L, 2 L, the
optimal choice is L, ~ L for which we draw the cavity-limited power

1
Pmax ~ §|]a|2QLtWO' (221)

In general, the maximum signal power is the lesser of (2.20) and (2.21), being limited by
resistive losses in the toroid or cavity, respectively:

L
Pagnal ~ | T2 (W) Min {% Q] (2.22)
t
The relevant toroid parameter to be compared with @ is

wlLy 10 {100 nf2
wEE 10 . 2.23
o~ 10 (2 (2.23)

Thus for Q 2 10 the toroid impedance may indeed be non-negligible. The numerical
similarity between @) and wL;/R; reflects the fact that both arise from the small resistivity
of superconductors to RF currents. This also suggests that the experimental details which
affect the losses in these systems will be important in determining which of the above regimes
is realized.
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2.4 Sensitivity to Axion-Photon Coupling

2.4.1 Noise

The fundamental sources of noise in this system are thermal and quantum fluctuations of
current in the toroid and detection cavity, as well as the intrinsic noise of the device which
reads the amplified signal from the cavity. The thermal and quantum noise can be estimated
from the circuit on the right side of Fig. 2.3. The equivalent resistances of both the cavity
and toroid will source Johnson currents, behaving as additional parallel current sources.
With L, tuned as outlined in Sec. 2.3.5, the noise sourced by the effective cavity resistance
is always greater than or equal to that sourced by the toroid resistance, so we take a noise
source Ir:

1L

=2 dv. (2.24)

2
<|IT| > ~ 4jjsysg_% Lt

The system temperature Tg,s is the sum of the thermal temperature 7" and the quantum
noise temperature Ton ~ w ~ 50 mK. I drives fluctuations of the physical magnetic flux
®r inside the detection cavity,

R L
Op| = — | —|I 2.25
2| = o [ (225)
resulting in a noise spectrum of cavity flux,
I\ 2
CHERN (4TSySQ—) (2.26)
wo

[N

~ ‘I)o Tsys % Q
~ VHz \0.1K 1010
where @ is the fundamental magnetic flux quantum.
Consider coupling the small signal flux in the cavity to a low-noise read-out device, such as
a SQUID magnetometer. The intrinsic flux noise in such devices is of order 107¢ ®,/+/Hz [38],

much smaller than the cavity fluctuations (2.26). We thus take (2.26) as the dominant source
of noise.

2.4.2 Projected sensitivity

The noise power extracted from the cavity due to the fluctuations (2.24) is

L
Pnoise = %L_t <’IT’2> ~ 4,—rsys dv (227)
p
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and the signal-to-noise ratio (SNR) thus

1 . |wiy Lint

SNR ~ —|I,|* (wL;) Min | —=, 2.28

SILP (L) M |5, 2 229)

where the relevant bandwidth dv is given by the inverse of the total integration time ;.
One may be concerned that tuning L, to as outlined in Sec. 2.3.5 to maximize the power

draw is not truly optimal, as the best measurement will result from maximizing the SNR.

The signal and noise powers extracted from the detection cavity for a general L,, derived

from the circuit on the right side of Fig. 2.3, are

Lw)® (L, L\’
Psignal ~ |Ia|2 ( tW) (_> <]- + _> ’ (229)

R, \L, L,
L —1
Pnoise ~ Tsys dv (1 + _*> . (230)
Lp

The SNR thus nominally increases with decreasing L,, although it saturates to the intrinsic
SNR of the toroid at the impedance matched L, = L,. The optimal choice of L, is thus
either L, or L, the same as that which draws the maximal power (2.22).

Demanding SNR > 5, the estimated reach at low axion masses m, < w is given by:

27 B 3
9.10~1t —1 . w/ Do
g > 07 GeV <GHZ =T

ch - 5 7% Lt 7%
02T 0.05 125 nH
1 1
Rt 1 tint N Tsys 1
. 2.31
(100 nQ) <year> (0.1 K> (2:31)

This is independent of the detection cavity quality factor if it is sufficiently large (Q > 10'°
for these parameters). The full sensitivity is show in Fig. 2.4 using:

NI

= —GHz, Bye=02T, By=5T
27

L; =125 nH, ti =1 year, Ty =0.1K,
and considering two cases of cavity and toroid losses:

(1) Ry =100 nQ2 and Q > 10"

(2) Ry =nQ and @ > 10"
We have used a form factor of 5 = 0.05, assuming m, < w (see Appendix A.1). The
estimated sensitivity of our SRF axion design is capable of surpassing current astrophysical

limits, and is comparable to the expected reach of the next generation optical experiment,
ALPS 1T [20].
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Figure 2.4: Projected sensitivity of proposed SRF LSW setup to axion-photon couplings—
see text for the choices of experimental parameters. Also shown are existing solar axion
(CAST) [39] and stellar cooling bounds and, for comparison, the future projected reach of
the next generation optical experiment ALPS IT [20].

2.5 Discussion

We have proposed a novel design for an LSW axion search leveraging SRF cavity technol-
ogy and employing a region of isolated, static magnetic field. Our particular realization
uses a gapped toroid, similar to that of [31, 30], to contain a static field while allowing the
propagation of axion-induced signal fields. It would be interesting to consider other possi-
ble geometries for the conversion region, though the gapped toroid illustrates the necessary
features. Our focus in this work is understanding the fundamental factors which set the
sensitivity of such an experiment, namely the possible screening of the signal fields beyond
the quasistatic limit and back-reaction from the non-negligible toroid impedance. We cal-
culate the optimal signal strength, and for reasonable toroid parameters and SRF quality
factors we find a sensitivity to axion-photon couplings in excess of astrophysical limits and
comparable to complementary optical experiments. Notably, the optimal sensitivity is in
fact independent of both production and detection cavity @ factors in the limit of large @),
and is instead determined by the properties of the conversion region.

We conclude with a few comments on experimental feasibility that have not yet been
addressed. We have modeled the coupling of the detection cavity and axion-induced signal
fields with an inductive pickup, yet a naive implementation of such a coupling would likely
compromise the detection () due to losses in the pickup wire. It is critical to explore coupling
mechanisms that will not degrade (), which is complicated by the fact that the toroid operates
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on the extreme of the quasistatic regime and thus requires microwave engineering. There
are other sources of noise not considered here which must be understood and managed in a
practical implementation, such as stray external fields which require shielding and additional
losses due to non-superconducting support materials used in the system. Finally, perhaps
the biggest engineering challenge here is the necessity of frequency-matching the two SRF
cavities to within 1/Q < 107! This demands a precise resonance monitoring and feedback
mechanism to counter frequency drifts, and is a major hurdle for any photon regeneration
experiment utilizing high-@Q cavities, such as [40].
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Chapter 3

Particle Probes with Superradiant
Pulsars

We demonstrate that rotational superradiance can be efficient in millisecond pulsars. Mea-
surements from the two fastest known pulsars PSR J1748-2446ad and PSR B1937+21 can
place bounds on bosons with masses below 107! eV. The bounds are maximally good at
masses corresponding to the rotation rate of the star, where scalar interactions that mediate
forces ~ 10° times weaker than gravity are ruled out, exceeding existing fifth force constraints
by 3 orders of magnitude. For certain neutron star equations of state, these measurements
would also constrain the QCD axion with masses between 5x 10713 and 3 x 107'2 eV. The ob-
served absence of pulsars above ~ 700 Hz, despite the ability of many neutron star equations
of state to support frequencies well above 1 kHz, could be due to the superradiant damping
of the stellar rotation as a result of its coupling to a new particle of mass ~ 27 - 1500 Hz
with Yukawa couplings to nucleons.

3.1 Introduction

Ultra-light bosonic particles that interact with ultra-low couplings to the standard model are
an interesting target to search for new physics. Such particles emerge in a variety of contexts.
They are prime dark matter candidates [41] or can act as mediators between the standard
model and the dark sector. They may also emerge naturally in the context of ultra-weakly
coupled gauge theories or in cosmological relaxation scenarios where the evolution of the
universe can lead to ultra-light particles in a sufficiently old universe [11, 12]. Currently, the
strongest reliable constraints on the existence of such particles with mass below ~ eV are
placed by direct laboratory searches in Cavendish experiments [42]. A more sensitive way to
search for such particles was suggested in [14, 43], using the superradiance instability of black
holes. It is well known that rotating black holes can lose their angular momentum through
excitation of particles whose masses are close to the rotational frequency of the black hole.
The authors of [14, 43] point out that the rotational frequency of extremal astrophysical
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black holes can be close to the masses of interesting light particles, such as the QCD axion.
Constraints on these particles can be placed through observations of rotating black holes.
Alternately, gaps in the spectrum of rotating black holes can be used to discover particles
whose masses correspond to that rotational frequency. Extremal, stellar mass black holes
most effectively probe mass scales ~ 1072 eV (corresponding to rotation rates ~ 100 kHz).
More recently, extremal black holes of masses ~ 10 M, have been used to place superradiant
constraints on lighter particles [44, 45], including masses comparable to what we will study
here.

The applicability of this interesting idea is limited by difficulties in directly measuring
the angular momentum of black holes [46]. The rotation rate is not directly measured - it is
instead inferred either by models of the jets emerging from the black hole or through fits of
the spectrum of accretion disk emissions. The superradiant instability is a strong function
of the rotation rate of the black hole: while a nearly extremal black hole would have a rapid
superradiant instability, a black hole that spins only ~ 20 - 30 percent slower would not
be significantly affected by the superradiant instability. In addition to these observational
difficulties, there are also theoretical uncertainties. The calculations of [14, 43, 44, 45] assume
that the geometry of the black hole is described by the Kerr solution without any matter
sources just outside the event horizon. While this is a conventional assumption, it is well
known that if all of the conventional assumptions about black hole physics are correct, there
cannot be a solution to the black hole information problem [47]. The existence of a singular
firewall just outside the horizon of the black hole is a plausible resolution to this problem
[48]. Recently, it has been shown that such firewall solutions are in fact compatible with
General Relativity [49]. If these firewalls exist, they can support higher order multipoles
outside the black hole. In addition, they also change the boundary condition just outside
the horizon. These deviations can source departures from the axisymmetric assumptions
made in the calculations of [14, 43] - specifically, these departures can cause mixing between
superradiant and absorptive modes, potentially dampening the growth of such modes.

It is thus interesting to ask if the superradiance instability can be effective in other
astrophysical objects whose properties are better understood observationally. Superradiance
as a general instability of rotating systems was discovered well before its application to
the rotation of black holes [50]. The only aspect of black hole physics necessary for the
existence of this instability is the absorption provided by the black hole horizon for the
particle [50, 51, 52]. In this paper, we argue that these conditions can also be satisfied
for another class of extremal, rotating objects, namely, millisecond pulsars. Unlike a black
hole, the gravitational forces exerted by such a pulsar are not strong enough to create an
absorptive region for the particle. However, such an absorptive region can be provided by
non-gravitational interactions of the particle with the stellar medium.

We show that an absorptive coupling to light particles can be sufficient to slow down the
rotation rates of millisecond pulsars provided the particles have masses ~ 107 eV (~ kHz).
Unlike black holes, millisecond pulsars are easily discovered through electromagnetic signals.
Further, in contrast to measurements of black hole rotation, the frequencies of millisecond
pulsars are the most precisely known numbers in astrophysics. Since the composition of the
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pulsar is known, it is also possible to reliably estimate deviations from axisymmetry and
show that the growth of the superradiant mode is not damped by mixing with absorptive
modes. Consequently, the existence of these objects can be used to place a robust bound
on particles of mass ~ 107'* eV that couple sufficiently strongly with the stellar medium.
While the possibility of using superradiant pulsars to constrain such particles has been
discussed before [53, 54, 55|, only the stellar conductivity has been concretely considered as
a dissipation mechanism. Perhaps more significantly, the effects of mixing with absorptive
modes have not yet been carefully considered, though they are necessary to place realistic
constraints.

The rest of the paper is organized as follows. In section 3.2, we review the phenomenon
of superradiance and show that it is applicable to a wide variety of rotating systems. The
formalism necessary to estimate the superradiance rates of particles coupled to the stellar
medium is developed in section 3.3. After examining the feasibility of superradiance in real
astrophysical environments, bounds on particle models are placed in section 3.4.

3.2 Superradiance

A rotating body can spin down by emitting light degrees of freedom. This radiative emission
requires two conditions. First, the degrees of freedom must be light enough so that there
is phase space available for the process. Second, there must be a non-zero matrix element
between the rotating medium and the light degree of freedom. Consider an isolated, axi-
symmetric rotating object. There is phase space available for this object to spin down, for
example, through the emission of a photon or other suitably light degree of freedom. The
emitted particle needs to carry angular momentum away from the rotating object - in an
inertial reference frame centered on the rotating body, the emitted particle will have a non-
zero azimuthal angular quantum number. But, when the rotating body is axisymmetric, this
particle cannot be emitted since the coupling between the rotating body and the kinemati-
cally accessible, angular momentum carrying mode vanishes due to the axisymmetry. While
the leading order process is forbidden, there can be higher order processes. For example,
if the rotating object has soft deformations (e.g. phonons), these deformations break the
axisymmetry and can couple to the kinematically allowed emissive mode. Thus, the body
can spin down by simultaneously producing the light degree of freedom while sourcing soft
deformations on itself (which are eventually damped away through other dissipative effects).
Clearly, when this process can occur in a rotating body, it will also be possible for the body
to absorb the light particle when it is non-rotating: in this case, the absorption leads to
deformations of the body and an increase in its angular momentum. Hence, the existence of
absorption signals the possibility of superradiant emission when the emission is kinematically
allowed.

This description of superradiance and its subsequent effects can be captured by the
following set of equations. Consider an object that is coupled to a light degree of freedom
U with mass p. The interactions of ¥ with the object will induce an absorptive term in its
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equation of motion:

OV + 12V + Cv*V ¥ + Vogp () =0 (3.1)

where C'is the absorption coefficient, v® the four velocity of the system and V¢ (V) is any
other potential that dictates the motion of W. This expression is the covariant generalization
of the familiar equation for absorption in the rest frame of the system

00 + 0 + OO0 + Vyp (U) =0 (3.2)

since in the rest frame v* = (1,0,0,0), were we assume C' has at most a weak dependence
on v*. Owing to absorption, an initial amplitude of ¥ exposed to this system will decay
exponentially as e 2°.

Let the system rotate with frequency €. Choose spherical coordinates (¢, r, 6, ¢) centered
around the axis of rotation. In these coordinates, v* = (1,0,0,Qrsinf) + O ((Qr)z) Now,
consider the equation of motion for a specific angular momentum mode of W. These are
of the form W (r,0) e~Eteim® where E is the energy and m the azimuthal angular quantum
number of the mode. For a non-relativistic mode, the energy E is dominated by the rest

mass pu of the particle. The equation of motion of this mode takes the form
(O+ p?) P (r,0) —iC (1 —mQ) U (1,0) + Vigs (V) ee™™? =0 (3.3)

In this equation, for sufficiently large mQ, p — mQ < 0 and the term C (u —m Q) flips
Sign.c This converts the absorptive term into an emissive term leading to exponential growth
o e2! of W. This exponential growth is indicative of emission of ¥ by the system, leading
to energy loss from the system through decay of its rotational energy.

Superradiance is thus a general instability of rotating systems that leads to the decay of
the rotational energy in the system. In the next section, we will show that this instability
can be very efficient in compact, rapidly rotating systems such as neutron stars if the stellar
medium couples to light particles whose masses are order the rotation rate €2 of the star.

3.3 Superradiance in Neutron Stars

Superradiance results in the conversion of rotational kinetic energy into excitations of certain
angular momentum modes of particles coupled to the rotating medium. The rate of super-
radiance is governed by equation (3.3), where the superradiant term appears in the same
form as an absorptive term, but has the opposite sign. Consequently, much like absorption,
the rate of superradiance is proportional to the occupation number of the concerned mode.
In this way, superradiance can be thought of as a form of stimulated emission. The am-
plitude of a bosonic superradiant mode will grow at a rate proportional to its occupation
number, resulting in exponential amplification of the mode. This exponential increase in the
amplitude will lead to exponential energy loss from the rotating system. On the other hand,
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a superradiant fermionic mode will not lead to such an exponential energy loss since Pauli
exclusion leads to the saturation of the mode’s amplitude once it acquires one particle, there-
after shutting off the superradiant channel. This exponential growth occurs in the region
where the mode overlaps with the rotating medium. It is only in this region that equation
(3.3) describes the equation of motion of the mode. The efficiency of superradiant energy
loss thus depends strongly on the overlap between the rotating medium and the superradiant
mode.

The rotational angular momentum modes of a light bosonic particle bound gravitationally
to a spinning neutron star satisfy the characteristics discussed in the above paragraphs to act
as an efficient superradiant conduit (see Figure 3.1). These modes are solutions to equation
(3.3) where the potential V, s is given by the gravitational interaction energy between the star
and the bound particle. The non-relativistic limit of this equation is obtained by decomposing
the field ¥ in the form e, (t,7,0,¢) and dropping time derivates of order w”% and
higher, yielding

GM Clu—mSQ
RICA el A}
r 2u

Without the absorptive term oc C' on the right-hand side, equation (3.4) is the Schrodinger
equation describing a mode 1),,;,, with radial quantum number n, total angular momentum
[ and azimuthal angular momentum m, moving in the gravitational potential of a star of
mass M. Assuming the star to be spherically symmetric (we will discuss the effects of
deviations away from spherical and axisymmetry in section 3.4.1), the modes v are the
usual Hydrogenic wavefunctions with real eigenenergies that correspond to the bound state
energy. These modes are localized around the “Bohr” radius ~ C:;—QM where the gravitational

iqjjnlm = _i (V2wnlm) - wnlm (34)

“fine structure” constant o, = GMpu (see Figure 3.1).

The absorptive term in (3.4) is of course non-Hermitian and leads to these modes de-
veloping imaginary eigenenergies, indicating growth or decay of the mode. To estimate this
imaginary part, note that the absorptive term is non-zero only in the interior of the star.
For physically relevant neutron stars, it will turn out that the mass of the particles that can
undergo superradiance are such that the Bohr radius of the mode is much bigger than the
radius R of the star. The absorptive term only affects a small part of the wavefunction and
its effects can be estimated using perturbation theory. The imaginary part of the energy
shift caused by this perturbation is

(1 —mQ)

L il ) = S (=100

i
Physically, this corresponds to the expectation that the mode can only grow/decay inside
the star and hence the growth rate is proportional to the probability of finding the particle
in that region (see Figure 3.1). For p > m), the imaginary part is positive, leading to
absorption and exponential damping of the mode. When p < m ), the imaginary part is
negative, leading to emission and exponential amplification of the mode. In both cases, the
rate of absorption/emission is given by (3.5).

(3.5)
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Figure 3.1: A state with non-zero azimuthal angular momentum bound gravitationally to a
neutron star. The star spins with frequency ). Superradiant growth occurs in the region
where the mode overlaps with the star.

Using the rate (3.5), it is easy to see that efficient superradiance requires two conditions.
First, equation (3.5) is a strong function of the size R of the star since the probability of
finding the particle within the star depends upon its size. This size is however limited by
the rotational frequency €2 of the star, since relativistic considerations require that QR < 1.
Consequently, superradiance is most efficient in objects that are close to satisfying this
bound. Second, equation (3.5) is also a strong function of the angular momentum m required
to achieve the superradiance condition. This is because modes with high angular momentum
are localized away from the star, leading to a suppressed probability of finding the particle
inside the star. Consequently, superradiance is most effective when the mass of the particle
1 is close to €2. In this case, the superradiance condition p—m Q < 0 will be satisfied by low
angular momentum modes m = 1. When p > (), the superradiance condition will only be
satisfied by modes with very high angular momentum. But, these modes are at Bohr radii
(x n? = m?) far from the star leading to a highly suppressed overlap with the star and hence
a suppressed superradiance rate. Similarly, when p < €2, even though the superradiance
condition is satisfied by many low lying modes, the Bohr radius of the mode (o p~2) is also
far from the star leading to suppressed overlap.

These considerations suggest that superradiance could be efficient in millisecond pulsars,
due to the large angular momentum. A typical millisecond pulsar has a radius R ~ 10 — 15
km, with rotational frequency Q2 ~ 27 (1kHz), close to saturating the extremality bound
QR < 1. The very existence of such pulsars should constrain the existence of particles with
masses i ~ ) ~ 107 eV that couple sufficiently strongly to the stellar medium. We pursue
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this question in the rest of the paper, starting with section 3.3.1 where we estimate the
superradiance rate for particles that are coupled to the stellar medium.

3.3.1 Rate

In this section, we estimate the superradiance rate (3.5) for the states |¢,) of a scalar field
U that are bound gravitationally to a neutron star. This rate, up to the kinematic ratios in
(3.5), is the absorption rate Cl,,,, of the mode |t,;,,,) in the stellar medium when the medium
is at rest. Energy and angular momentum have to be conserved in this absorption process.
This requires the excitation of inelastic degrees of freedom in the stellar medium, in addition
to energy and angular momentum being transferred to the bulk stellar rotation. The energies
of these inelastic degrees of freedom have to be comparable to the energy of |¢,;,,) and are
therefore ~ 2. In the stellar medium, these light degrees of freedom can be phonon modes of
the neutrons or other low frequency oscillations, for instance. For simplicity, we will compute
the superradiant emission of ¥ when it has scalar interactions with the stellar medium.

3.3.1.1 Scalar Absorption Rate

We now turn to the main operator of interest for this paper, the neutron Yukawa interaction
eUnn. (3.6)

We may use this to probe any new ultralight scalar or CP-violating pseudoscalar. Depending
on the neutron star equation of state, this may even include the QCD axion: many neutron
star equation of states predict a pseudoscalar condensate in the star, throughout O(1) of
the star’s mass [56]. In this phase we expect g ~ 1, in which case the QCD axion obtains
a neutron coupling € ~ Oegmy,/f, ~ my,/ f., which is large enough to probe new regions of
parameter space.

In order to estimate the scalar-phonon conversion rate, we begin with 1D toy model
which we believe captures the essence of the process, and extrapolate to 3D at the end.
Take a string of N neutrons spread over a length R. The absorption of ¥ results in phonon
excitations of the string. Let us enumerate these phonon excitations |k). The string consists
of N neutrons and we assume that these neutrons have nearest neighbor interactions. Since
we ultimately want to model a neutron star, we will take the string to contain a nuclear
density of neutrons with the strength of nearest neighbor couplings set by the QCD scale.
For small displacements, these nearest neighbor interactions will be harmonic and the states
|k) correspond to phonon excitations of the string. The neutrons and the W particles are
non-relativistic throughout this process and are modelled with the non-relativistic “free”
hamiltonian (i.e. neglecting (3.6)):

2 N 2
Py D; 1 2 2
Hp = —= E —myw” (0x; — 0x;_ 3.7
F 2’u+j12mn+2mw(x] Tji-1) (3.7)
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where dz; is the displacement from the equillibrium position a:(;» of the j neutron, p; the
corresponding conjugate momemtum, m, the mass of the neutron, w ~ Agcp the strength
of the nearest neighbor interaction and pg the conjugate momentum of W.

The Hamiltonian (3.7) can be diagonalized through a coordinate transformation given
by

N
by =Y yisYs (3.8)
s=1

where y;5 are the normalized wavefunctions, after which the Hamiltonian becomes

Py - g* 1 21y 12
H === 4 _|__mw.Y, 3.9
where ¢; are the conjugate momenta of the coordinates Y; and the frequencies w; ~ %w.
(This becomes w; ~ iz w for a 3D system, though in practice we use measured values of
the phonon frequencies rather than this estimate.) The normalized wavefunctions are given
approximately by y;s ~ N™'/2exp(i2mjs/N). Notice the normalization suppression by v'N
due to the participation by all N neutrons in the oscillation. In terms of the new phonon

coordinates Y; and these wave functions y;s, the position x; of the 5 neutron is given by

N
xj = x? +dz; = :13? + Z YjsYs (3.10)
s=1

The Hamiltonian (3.9) describes N free harmonic oscillators with frequencies between
% and w. These correspond to sound waves (phonons) in the one dimensional string of
neutrons, with quantized frequencies. (Note we will be neglecting the w = 0 translational
mode, since dissipation via that mode is insignificant and it does not otherwise affect our
calculation.) The quantization unit for the frequencies is set by the number of neutrons
in the string. In the one dimensional example, this number is directly proportional to the
length R of the string, resulting in quantization set by the physical size of the system as one
might expect for a sound wave. The eigenstates |k) of this system are given by T[>, k)
where |kg) is an eigenstate of the free harmonic oscillator with frequency ws and occupation
number k;.

We now have a description of the string. Before proceeding with the computation of
the absorption coefficient, we must also model the interaction of the scalar field ¥ with the
neutrons. The perturbation (3.6) caused by V¥ is a shift to the mass of the neutron. The
resulting total hamiltonian that also includes these interactions is

H:Hp+ei\lf(xj) (3.11)

j=1
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We will represent W in terms of its creation and annihilation operators (ay and a&, re-
spectively). This is necessary since absorption requires operators that can destroy particle
number. In this representation, W is given by

dp 1 . ,
U(r)= | — —— (aT e+ a 6Wj> 3.12
)= [ oy 7z (s (3.12)
where E, is the energy of the state of momentum p. The ¥ particles absorbed by the string
of neutrons are also non-relativistic and hence E, ~ p.

The above states are the eigenstates in the free theory. Of course, we need these states in
the full interacting theory. These can be calculated using the Lippmann-Schwinger equation,

e, Yt Y imt, = (1 +G+€Z‘If(xj) +Gy <€pr(a;j)) G, <62\p(xl)> +. ) |, Yt
" " B (3.13)

where G is the retarded Green’s function of the free phonon Hamiltonian Hr with energy
E equal to the total initial energy of the system. Formally, G, is obtained by inverting
E — Hp. Using these states and a form of the optical theorem, the absorption rate is

Chim = ( s Unim| (( Z\I/ (x; ) + (62\11(x])> Gy (eZW(mﬂ) +) |k,wnlm>>

(3.14)

The second term in (3.14) is the lowest order (in €) term that can give rise to imaginary
coefficients. This term allows for absorption of ¥ and excitation of phonons, followed by
propagation of the excited phonon states and then subsequent re-emission of ¥ and de-
excitation of phonons. The Green’s function (G, develops poles from the propagation of the
on-shell, excited phonon states. These poles are of course regulated by the width I' of the
intermediate states, yielding imaginary coefficients.

More concretely, the imaginary part is

Coim = ( Ut ( Z\p ;) ) G, <er1:(xl)> |k,¢n,m>) +0 () (3.15)

Inserting a complete set of intermediate phonon states ) ,, |k’) (k| into (3.15), we get

k, Ui ( qu x; >Z|k (KGR (K] (Qjm(@) |k, nim) (3.16)

k.//

The propagator (k’'|G . |k”) of the intermediate phonon states in (3.16) is obtained by invert-
ing the free phonon hamiltonian ¥ — Hp and is

5k’k”
E—Ey+ily

(KG|K") = (3.17)
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The parameters Fy and ['ys in this expression are of course the energy and decay rate of the
state |k'). Using (3.17), (3.16) is equal to

> (ki ( Z\If x]) = E;HM (K| <EZ\P($Z)) by Yim)  (3.18)

k/

The next task is to compute the transition elements in (3.18) that lead to the excitation
of phonon modes. In the problem of interest, ¥ is a light field, with p < w;. We expect the
dominant contribution to the transition element is the excitation of the lowest phonon states
while leaving the other states unperturbed. |&') is therefore of the form |k; + 1) @ [T, |ks),
and so we only need the one-phonon contribution from the interaction potential. Taylor
expanding the scalar operator to first order about the neutron equilibrium positions, we find

N N
EZ‘IJ x] %62( O 5'\1/
7j=1

J=1

5xj> (3.19)

0
l"j

The first term cannot excite phonons, and does not contribute to the absorption rate. The
second term is the desired one-phonon contribution. The action of the scalar operator on
the bound states [t,,,) yields

ov 1 0Ymim
0 =—|Vnim) = —= 3.20
where |0) is the vacuum state and ¢, () is the spatial wavefunction of [i,,) at .
Using (3.19) and (3.20) in (3.18), we have
1 0 nlm
K0 (22) [F, o)~ (K] e 2270 5 1 (3.21)

|\/2[1, (93: x?

To evaluate (3.21), we express dz; in terms of the phonon creation and annihilation operators.
Recalling (3.10), this is

Yis
Sx; = ZW f+a,) (3.22)

Inserting this and recalling that &) = |k; + 1) ® [T, |ks), the matrix element evaluates to

K| EXN:\IJ(:C,) \k,wmm)@i L Oim
= = V2 Ox

where ky is the occupation number of the lowest phonon mode with frequency w;. Suppose
the string of neutrons is in equillibrium with a system that has temperature 7' (in a neutron

Un

x? my,Wi

ky + 1 (3.23)
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star, the neutrons are in equllibrium with a gas of electrons in the star, whose temperature
ranges between 10° K - 10 K). The occupation number k, of a mode with frequency w; is

T
ks =—>1 (3.24)
Ws
For simplicity, let us also convert the sum over the neutron positions in (3.23) with an integral
over a neutron number density n(x) ~ N/R performed over the stellar medium. With these
substitutions and a little rearranging, (3.23) becomes

( Z\I/ (x ) &y nim) & F\/:lm/dxn 8@/17;lm y1(x) (3.25)

where y; () is the s = 1 wavefunction y; written as a function of neutron position x instead
of neutron index [. With (3.25), we have evaluated the inner products in (3.18). Substituting
these results into (3.15), we get the absorption rate
2
ry )
— 3.26
(o (320
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The integral in the above expression is of course performed only inside the star (of size R).

We now generalize the above computation to three dimensions. In three dimensions, the

interaction e U nn can excite phonons in all three directions. The small oscillations of the

neutrons about their equillibrium positions can still be diagonalized through transformations

similar to (3.10), where N is now the total number of neutrons in the object. The rest of
the calculation goes forward as described in the above paragraphs, with the result

Clun ~ 2u (;{i) /S d3rn(r)v¢n,m-y1(r)2(mf—lm)2) (3.27)

~ o (;ﬁjl) / e 2y, o 2 (ﬁ) (3.28)

where the integration is performed inside the star, and in the second step we have estimated
the factors in the integral (defining ¥, (1) = Ynim/Yim) for calculational simplicity. This
assumes that the phonon wavefunction has the same angular structure as the scalar field,
e.g., an [ = m = 2 scalar excites an [ = m = 2 phonon. Otherwise, the integral in (3.27)
vanishes for a spherical star. (We discuss the impact of deviations from spherical symmetry
in Section 3.4.1.)

The integral in (3.27) also vanishes if the scalar force V), is constant. In order to
excite a phonon mode in the star, the gradient of the scalar field must change over the
extent of the star—a constant force only shifts the center of mass of the star. This condition
is satisfied even at lowest order for scalars with [ # 1, and so (3.28) is a good approximation.
But we must be more careful with the case [ = 1. In this case Vi, = constant at
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lowest order in r/ag, where ag > R is the Bohr radius. We must therefore turn to the
second-order term for the leading contribution to C;,,. This is equivalent to making the
substitution 0, /0r — (r/ap)(1n/0r) in equation (3.28) when | = 1, and leads to an
additional ~ (R/ag)? suppression in C,,. As a result, constraints due to superradiance
of the 1917 mode will not be stronger than the constraints due to 1395, despite the larger
overlap with the star.

For the normalized phonon wavefunctions we approximate y, (r) = /4mre™/ %/ VN forl =
1, since the lowest frequency dipole phonon mode has a single node in the star and non-zero
displacement at the center. For [ = 2 phonons (and also [ = 0, which will become relevant
for mixing in Section 3.4.1), we use y;(r) = 1/207/3(r/R)e™™/“%) /\/N | since these lowest-
frequency modes have vanishing displacement at the center and no nodes. These approximate
forms do not substantially impact the results, but we introduce them nevertheless to describe
the phonon modes we are coupling to. Also, for simplicity, we treat the star as a sphere of
uniform density.

For the hydrogenic wavefunctions )y, (with [ > 1, for instance), the integral in (3.28)

scales as
R 2+3
~NR (= (3.29)
Qo

N Rl—l ei27r7"/R 2

R3 aé+3/2 VN
For masses p much bigger than the rotation rate ) of the star, the superradiant modes
require large [. In this case, the high power of [ in the overlap with the star suppresses
the superradiance rate. For p much smaller than R™!, even though the lowest modes are
superradiant, the Bohr radius of the orbit ag = (GM ,uz)_l is big, leading to a suppression of
the rate. Consequently, as anticipiated in section 3.3, superradiance is maximally effective
when g~ Q ~ R7L

The above estimate captures the parameter behavior of the absorption rate. There are
three sources of possible O (1) deviations between this estimate and the true answer. First, we
have not attempted to specify the neutron star equation of state, or to construct the detailed
phonon wavefunctions that describe the three dimensional oscillations. This will not affect
the parametric dependence (such as the functional dependence on the fourier momentum)
of the transition elements, but could give rise to different O (1) coefficients for the transition
elements. Second, the inner product (3.25) involves integration over angular coordinates
in the stellar medium. These integrals enforce conservation of angular momentum. They
evaluate to zero for forbidden transitions and give rise to order one coefficients for the allowed
transitions. We will not explicitly evaluate these integrals, but instead set them equal to 1
for the allowed transitions by approximating (3.27) as (3.28). And third, the true absorption
rate may have mild dependence on the rotation rate €2 that we have neglected in this non-
rotating calculation, as the stellar medium, oscillation modes, and damping rates are affected
by the rotation. Because of these approximations, there may be O (1) uncertainties in our
absorption rate calculation. However, these O (1) differences do not significantly change
our constraints on the coupling €, since the bound on e depends on the square root of the
absorption rate (see Section 3.4).

Cnlm X R3 :
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Before continuing, let us consider the decay width I'y of the phonon mode that allows for
absorption of the scalar. The low-frequency phonon modes decay primarily by gravitational
radiation, the effects of viscosity being very small by comparison [57]. We discuss these
damping rates further for the phonon modes of interest in Section 3.4.2. We can crudely
estimate the decay rates as a ratio of the radiated power to the phonon kinetic energy, for
instance as

%G(MR(SRph)zwﬁ3 N 5 4

I %M((sth NE GM R w; (3.30)
for the quadrupolar phonons, where dR,, is the typical displacement of neutrons in the
phonon oscillation. Notice that I'y contains an additional factor of M o« N, so that we may
rewrite C,p,, o N? and interpret it as a coherent scattering of scalars into gravitons. For
large values of the coupling ¢, scalar radiation may overtake gravitational radiation as the
dominant damping mechanism. We have little interest in couplings this large, however, and
so we neglect this effect.

3.4 Constraints

The absorption coefficients computed in section 3.3.1 can be used to predict the spin down
rate of neutron stars. The existence of rapidly rotating pulsars such as PSR J1748-2446ad [58]
and PSR B1937+21 [59] can be used to place limits on particles whose existence would have
prevented these pulsars from spinning at the observed rates. However, before placing bounds
on such particles we first investigate the stability of the superradiant mode. Superradiance
can be effective only if there is continuous accumulation of particles into the mode leading
to exponential amplification of the mode. If the mode is depleted through some other
absorptive process, it will no longer undergo exponential amplification and will not efficiently
remove angular momentum from the rotating system. These aspects are discussed in section
3.4.1, where we examine the superradiant instability in realistic astrophysical environments.
Following this discussion, we place bounds on possible scalar couplings to neutrons in section
3.4.2.

3.4.1 Mode Stability

The modes described by equation (3.4) describe an ideal neutron star with a spherically
symmetric mass distribution and an absorption coefficient C' that is time independent and
constant inside the star. In this ideal world, these modes are eigenfunctions of the Hamil-
tonian and their growth rate is completely governed by (3.5). However, real neutron stars
do not satisfy these conditions. Departures from these symmetries leads to mixing between
various modes. In particular, there will be mixing between superradiant and absorptive
modes, leading to damping of the superradiant growth. If these mixing terms are apprecia-
ble, superradiance will not have a significant impact on the rotational angular momentum
of the system.
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In the section, we will first describe and develop a formalism to estimate mixing. We will
then consider the mixing effects from the free precession of the star, the equatorial bulge
in the star caused by rapid rotation, stellar quakes, and tidal disruptions of the system due
to companion objects around the pulsar. We estimate the maximum possible mixing that
can be produced in realistic astrophysical situations. This is then incorporated into the
parameter space of particle physics models probed by superradiance in Section 3.4.2.

3.4.1.1 Overview and Formalism

The superradiant modes have different azimuthal angular momentum than the absorptive
modes. They are therefore mixed together by non-axisymmetric perturbations of the star.
Scalars couple to the neutron density and are perturbed by the asymmetries in the mass
distribution of the star. Gravitational asymmetries can also cause mixing between modes.
These can arise either as a result of asymmetries in the mass distribution of the star or from
the presence of companions to the pulsar.

How large a mixing ¢ can we tolerate between a superradiant mode (say ;11 ;) and an
absorptive mode (say ¥pym)? In the presence of this mixing, the physical mode around
the star is the linear combination |¢;41) + d|tn/rm). The occupation number of this mode
changes at a rate ~ ;11 + 6°Tp. The mode will grow if this rate is positive, requiring

Divin Cian
52 < — =~ ’ 3.31
~ Fn/l/m/ Cn/l/m/ ( )

where in the last equality we dropped the kinematic factors that relate the absorption/
superradiance rate I' to the non-rotating absorption rate C', except for the critical difference
in sign.

The most stringent demands on these mixing terms are between that of the superradiant
mode ;41 and the absorptive modes 1,09, when non-axisymmetries are present to mix
those modes. This is due to the fact that the absorption rates ', are strong functions of
the overlap of the mode with the star (see equation (3.28)). The modes ;41 carry angular
momentum and are localized away from the origin leading to a suppressed overlap with the
star. On the other hand, the modes 1,09 do not carry angular momentum and have support
at the origin leading to an enhanced absorption rate I',,o9. Consequently, the superradiance
growth condition (3.31) is the hardest to satisfy for these mixings.

For this paper we restrict our interest to the largest superradiant modes 1911 and 1322, SO
in this section we will only care to calculate effects that might cause a superradiant mode to
mix with absorptive modes that have [ < 2. Any modes with higher angular momentum will
have a suppressed overlap with the star that would cause them to be absorbed slower than
1911 OT 1399 would be superradiantly emitted, even with O(1) mixing. We will see below
that the allowed mixings are determined by the multipoles of the asymmetries in the system
and the usual selection rules. For instance, in order mix [¢;11 ) into |1,00), the system must
have a Y; _; asymmetry. As a result, we may neglect any effects that cannot produce a dipole
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or quadrupole perturbation to the system, since any higher order perturbations cannot cause
mixing of ¥y11 or 1399 with a low angular momentum [ < 2 absorptive mode.

In addition to the damping mechanisms introduced by the astrophysical environment,
it is theoretically possible that once the particle mode grows, the number density in the
mode may become significant enough to cause self interactions that may damp the growth
of the mode. Instabilities of this kind were considered in [14, 43] and were not found to be
a problem for similar superradiant growth around rotating black hole systems. This is not a
surprise since the particles of interest have extremely weak self interaction couplings (such
as the QCD axion). This then clears the way to placing limits on various particle physics
models in Section 3.4.2.

Before we proceed on to specific sources of mixing, let us briefly develop the general
formalism that will provide us with the mixing magnitudes 6. Any non-axisymmetries in
the neutron density or gravitational fields will appear as perturbations H' o e ™'t to the
scalar Hamiltonian, and their effect on the Schrodinger equation (3.4) can be estimated using
time-dependent perturbation theory. The mixing between initial state |i) and final state | f)
with energy difference Aw is then

(] H [

2 —
0 (W — Aw)?

(3.32)

Any gravitational 2'-pole perturbation can be captured by the appropriate multipole of
the gravitational field:
) —Gunpi _ @W‘j@i;’ _

grav TS 2 75

(3.33)

where p; and );; are the dipole and quadrupole moments of the system, respectively. The
pulsar will not have a gravitational dipole of its own, since that would simply correspond to
a center of mass displacement, but a dipole gravitational potential can arise from the effects
of a binary companion.

To account for mixing due to scalars scattering off neutrons in a non-axisymmetric pulsar,
we may perform a calculation very similar to the absorption calculation earlier, this time
investigating the real part of the second-order term. In this case, however, we are interested
in the elastic scattering process where a scalar 1 is absorbed into a phonon mode, and then
re-emitted into a different scalar mode ’. In a spherically symmetric star, a phonon with
wavefunction y o Y}, only couples to scalars with ¢ o< Y},,. In the presence of a density
asymmetry on Yz, however, that same phonon can also couple to ¢ o« Yiip min. Let
us parameterize the density asymmetry by the amplitude d R of the perturbation, such that
on ~ (0R/R) n, where n is the average neutron density in the star. Then we can approximate
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the mixing between scalar modes 1 and 1)’ due to some appropriate asymmetry by inserting

(i)~ - () (8 ([ a2
« < /0 Rﬁdrn(r)g—fyl(r)) ! (3.34)

B W

as the matrix element in (3.32). Note this rate is not suppressed by the decay width Ty,
because the scatter is elastic and concerns the real part of the matrix element.

In the sections that follow, we will be considering mixing rates for the two fastest known
pulsars PSR J1748-2446ad (716 Hz) and PSR B1937+21 (642 Hz). We will use the nominal
value R ~ 12 km for both, the measured mass M = 1.96M, for PSR J1748-2446ad, and the
nominal mass M ~ 1.4M, for PSR B1937+21 (see Section 3.4.2 for details).

3.4.1.2 Equatorial Bulge and Free Precession

Superradiance is effective only in a rapidly rotating neutron star. A rapidly rotating neutron
star will not remain spherically symmetric owing to centrifugal pressures that will cause
the star to develop an equatorial bulge, giving rise to a quadrupole moment for the star
[60]. But, this rotation by itself does not break the axisymmetry around the rotational axis
and hence this quadrupole moment breaks spherical symmetry but preserves axisymmetry.
Consequently, this effect leads to mixing between the hydrogenic modes of (3.4) that carry
different radial (n) and total orbital angular momenta (I) while preserving the azimuthal
quantum number m, i.e. it mixes states of the form ¢, and ,/,,. Since the azimuthal
quantum numbers m are unaffected, this mixing does not couple the superradiant modes
with absorptive modes.

However, the rotation axis of a real neutron star will undergo free precession. The
rotation axis of the star is tilted from the precession axis by a “wobble angle” 6, about
which it precesses with a frequency €2,. These effects break the axisymmetry of the system,
leading to coupling between the rotational quadrupole deformation and modes of different
azimuthal angular quantum momenta. Let us first estimate the sizes of these asymmetries
before computing their effects on the modes. The free precession frequency €2, of the star
is given by €1, = %Q where [ is the moment of inertia of the star and AI is its non-
axisymmetric piece [61]. We estimate Al to be of order the quadrupole moment @ induced
by the rotation of the star. This has been estimated for a variety of equations of state to

be Q = qG*M?3, with ¢ ~ 1 for the most rapidly rotating neutron stars [60]. Using Q, the

ratio &L ~ q (%

7 )2, giving rise to a precession frequency (2, ~ ¢ (%)2 Q). Similarly, the
maximum “wobble angle” 6, about which the star can precess without breaking apart has
been estimated to be ~ 107? (%I‘HZV [61].

We now estimate the mixing that is caused by the wobble 6, rotating with a frequency
2,. There are two sources that can cause this mixing. First, the gravitational perturbations

from the wobble can cause mixing. And secondly, the interaction (3.6) can cause the modes
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to mix via their interaction with the wobbling stellar medium. To calculate the gravitational
effects of the wobble, we must first know the mass moments of the tilted star. We estimate
the wobble-induced quadrupole moments by treating the star as a uniform density ellipsoid
tilted by a small angle. The resulting moments are given by

Qam ~ Q (0 Yor e ™ + 020 ™ 4 hoc.) (3.35)

For a rotating pulsar we have Q = ¢G?M? as discussed above. Because this wobble in-
duces quadrupole perturbations in the system, it is able to effectively mix the 1350 mode
with the strongly absorptive scalar states, such as 0. It could also mix 1917 with 12;
or Y19, but these three modes have the same overlap with the star and thus comparable
superradiance/absorption rates, and we will therefore simply require 6% < 1.

To understand condition (3.31), we now need to calculate the absorption rate Cgy of the
190 mode. This mode couples primarily to the lowest [ = 0 breathing mode of the star, but
this has a frequency similar to the [ = 1 phonon and [ = 2 phonon that the 19, and 399
scalars couple to, respectively [57]. And, because of the star’s rotation (see Section 3.4.2),
the [ = 0 and [ = 1 phonon modes also have similar damping rates, roughly 10~* suppressed
relative to the [ = 2 phonon. Inserting the hydrogenic wavefunction g into equation (3.28),

we find the ratios
r r M\ 2 4
a1 Lsm -6 R < K ) (3.36)
FlOO FlOO 14M® 12 km 10-11 eV

With these ratios in hand and an estimate of the mixing from gravitational effects using
equations (3.32) and (3.33), we find that the condition (3.31) is easily satisfied in our region
of interest. The wobble-induced gravitational perturbations do not damp the superradiant
growth of the scalar modes.

Scattering off neutrons, on the other hand, can provide efficient mixing. The mixing
fractions to absorptive modes from scalar-neutron scattering are given by equations (3.32)
and (3.34). We can estimate the wobble-induced density perturbations by

) AT : ;
" (7) (0,20 ™" 4 07 Yoo 4 hic.) (3:37)
Po

Mixing between modes with Am = |m—m/| = (1 or 2) therefore proceeds with a perturbation
of amplitude §R/R ~ (AI/I)§5™ ~ 1077 — 10~*. Considering the same mixing channels,
we find that the 191, superradiance is not affected, but the 1395 — 1199 mixing can spoil
superradiance of the 1355 mode for large values of the Yukawa coupling. This is folded into
our constraint plots.

3.4.1.3 Equatorial Ellipticity

The mass distribution in the star will break axisymmetry at some level. The multipole
moments of this anisotropy will mix modes with different azimuthal angular momenta thereby
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mixing modes with different azimuthal angular momenta. Distortions from axisymmetry are
captured by the dimensionless equatorial ellipticity of the star ¢, = I”]J [62] where the s
are the moments of inertia of the system about the respective axes. The maximum values of
€s that can be supported by the star have been estimated to be ~ 1077 [62]. This asymmetry
creates a time dependent perturbation of the star that rotates with the frequency 2 of the
star. Following section 3.4.1.2, we estimate that the effects of equatorial ellipiticity are much
smaller than those of the free precession of the star. This is because the asymmetry size
dR/R ~ ¢ of the equatorial ellipiticity is no bigger than the wobble-induced asymmetry, and
this perturbation varies at a frequency €2 larger than the precession frequency €2, responsible
for the wobble-induced mixing.

It is also possible that the star may occasionally undergo some internal violent process
that causes it to release a sudden burst of radiation. These processes are also not efficient in
mixing multiple levels. The change to the total mass of the star caused by such an event is
irrelevant since such a change is axisymmetric and cannot mix modes of different azimuthal
angular quantum numbers. After the explosion, the equatorial ellipticity of the star will be
different than the value it started out with and this change in the ellipticity can mix all the
modes. But, the new value of the ellipticity cannot be larger than the maximum allowed by
the equation of state of the star. Furthermore, the change to the equatorial ellipticity will
also be suppressed by the actual mass lost in the process and since this change must be much
less than the actual mass of the star (else the star could not have survived the explosion),
the effect of such explosions are insignificant. We treat the effects of “stellar quakes” on
mixing the modes in the next section.

3.4.1.4 Mixing via Phonons

Stars can support phonon modes in any multipole, including dipole phonon modes so long
as there are one or more radial nodes. As discussed previously, we must consider the mixing
effects of dipole and quadrupole perturbations, which may affect our superradiant modes of
interest. These phonons can be populated thermally, by stellar quakes, or by other driving
mechanisms in the star. For thermally populated phonons, 6R/R o 1/ VN, and these
perturbations are too small to provide any efficient mixing.

Stellar quakes, on the other hand, may efficiently mix when they occur. Recall from
3.4.1.2 that the maximal dimensionless ellipticity €5 that can be supported by the star is
roughly ~ 10~7. Strictly speaking, this is only a bound on quadrupolar deformations of the
star, but we will use it as a proxy to estimate the maximal displacement of any multiple
deformation. The pulsar may have undergone violent “stellar quakes” in its history, but
the displacements caused by such quakes must be smaller than the maximum equatorial
ellipticity €, that can be supported by the star. We will therefore take dR/R ~ 1077 to
be a conservative upper bound on the quake-produced phonon amplitudes that might cause
mixing. This effect isn’t stronger than the wobble-induced mixing for 1395 superradiance,
for the same reasons that we can ignore the equatorial ellipticity effect, but for sufficiently
large values of the coupling it could serve to spoil 1911 superradiance through mixing with
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Y100. At worst, this might limit our ability to place constraints above € ~ 107!, which is
already stronger than gravity and so not of great interest to us. Furthermore, period glitches
are rare in old pulsars, and so we may suppose that stellar quakes are also [63]. The effect
of stellar quake mixing, therefore, is simply to reduce the effective lifetime of our star that
is useful for superradiance. So long as the millisecond pulsar has not experienced a quake
within the past O(1) of its lifetime, we may ignore this effect.

3.4.1.5 Disruptive Companions

Accretion from the companions is often believed to be the mechanism responsible for power-
ing the initial spin up of the neutron star to the millisecond regime [59], and most millisecond
pulsars still have small companions < Mg [59]. A companion object of mass M, at a dis-
tance r. will cause tidal disruptions of the bound particle state. The tidal disruption provides
dipole and quadrupole gravitational perturbations which can cause the 1911 and 1399 states
to get absorbed through mixing with [ = m = 0 states. Typically we would be most con-
cerned with the 1,99 state, since it has the largest absorption rate, but in this case the more
dangerous mixing channels are 9y and 1309 because the smaller energy difference between
the initial and final scalars leads to a smaller denominator in the mixing (3.32). Expanding
the gravitational potential due to the companion at the pulsar, we find the non-zero matrix
elements for the desired mixing processes are

2
52 Wzoa] G M. p = Wzll)‘
211—abs ™ (e = (Es00 — Fa11))?
r? 2,—2
52 ‘<¢3oo| G M, p i—‘“’ [s22)
322—abs (QC — (Egoo - E322))2

2

(3.38)

Unlike the previous mixing processes, where the denominator was always dominated by the
oscillation frequency of the perturbation, the denominator in (3.38) can be dominated by
the energy difference between the states. This is because we wish to describe companions
that are relatively far from the star—the time variation €2, from these objects may therefore
typically be slower than the energy differences between the states. It will turn out that the
orbital rate dominates the denominator for PSR J1748-2446ad, whereas the energy splitting
dominates the denominator for the nearly isolated pulsar PSR B1937+21.

The most dangerous mixings are between that of the superradiant mode ;41 and the
absorptive mode ;11 oo, instead of ¥y as in the other mixing processes, because these two
states are nearly degenerate in energy. In Newtonian gravity, these levels are exactly de-
generate, up to corrections from deviations from spherical symmetry. This exact degeneracy
in Newtonian gravity is a feature of the pure r~! nature of the potential. But, General
Relativity induces corrections to this law. For example, the gravitational effects of angular
momentum leads to corrections to the r~! potential, giving rise to familiar effects such as
the GR corrections to the precession of the perihelion of Mercury. Similarly, since the states
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Y1, and Yy oo have different total angular momenta, their energies will also be different.
We can estimate this splitting to be roughly Gi‘f“vf ~ (G]\ff)4“, where r, ~ 1?/(GMp?) and
vy ~ GMp/l are the radius and typical tangential velocity of the particle’s orbit in a Bohr
model of this gravitational atom.

The fastest known pulsar PSR J1748-2446ad with a rotation frequency of 716 Hz [58]
has a companion of mass 0.1M, at an orbital period ~ 26 hours. The second fastest pulsar
PSR B1937+21 (with a rotation frequency 642 Hz) is known to be an isolated pulsar, with
an upper bound of < 107°M; on any companion for a distance as large as ~ 3 x 108
km [59]. Since these are the fastest known pulsars, we will use their existence to impose
various bounds on particle physics models in section 3.4.2. Inserting these values, we find
the condition (3.31) prevents superradiant growth for low values of p around PSR J1748-
2446ad due to its companion, but scalars around the isolated PSR B1937+21 are unaffected
by tidal mixing.

Finally, we can also estimate the maximum possible effect of accreting gas on the particle
modes. The maximum rate of accretion is limited by the Eddington limit, where the radiation
pressure on free electrons balances gravity. This rate is ~ 4 x 1078 Myyr~! [59]. This estimate
is almost certainly an overestimate as the accretion rate should fall as we move away from
the star. Using this limit, the maximum amount of mass that could be accreting even out
to a distance r, ~ 107 km is ~ 107* M, too small to provide any problematic mixing.

In addition to mixing with ;1 09, We may also worry about mixing with absorptive
modes ¥;4+1,,—;. These have overlap with the star similar to the superradiant meds, leading
to absorptive rates I';1;; _; ~ I'i11 . Hence, as long as the mixing between these modes is
less than 1, the superradiant mode will easily grow. The mixing between them is given by
an equation analogous to (3.38). But, we need to estimate the energy difference between
these two states. The GR correction identified in the above paragraph gives an identical con-
tribution to the energies of both states since they have the same total angular momentum.
But, since we are dealing with a spinning neutron star, there is an additional contribution
to the energies of these states from gravitomagnetism. A spinning object generates gravit-
omagnetism which leads to the analogue of the “spin-orbit” coupling between the rotating

neutron star and the azimuthal quantum number of the state. This gravitomagnetic field
GM

Ty

By ~ G MEQ and it couples to the tangential velocity v, ~ of the mode. In a mode

T
b
with non-zero azimuthal angular momentum, () is non-zero and hence this gives rise to an

energy splitting ~ GMTI;LLQQU;,. Numerically, we find that this splitting is a tenth or less of
b

the GR correction computed in the above paragraph for the states of interest to us in section
3.4. These mixings will be larger by a factor of 100 or more for the isolated PSR B1937+21,
for which the mixing is dominated by the energy splitting. However, since both these states
have nearly identifical absorption rates the stability condition (3.31) is still easily satisfied
for mixing between these modes.
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3.4.2 Results

The estimates in section (3.4.1) suggest that the superradiant mode can grow in real as-
trophysical environments. The existence of long lived, rapidly rotating pulsars constrains
particles that can undergo efficient superradiant growth since superradiant growth occurs at
the expense of the rotational energy of the star. We will use the pulsars PSR J1748-2446ad
(716 Hz) [58] and PSR B1937+21 (642 Hz) [59] to constrain particles that couple to the
stellar medium. These pulsars are particularly interesting because not only are they the
fastest known pulsars, but their astrophysical environment is also devoid of close, massive
companions whose presence may disrupt the growth of the superradiant mode (see section
3.4.1.5).

The existence of these pulsars implies that the rate (3.28) is small enough so that the
pulsars would not have significantly slowed down due to superradiant emission during their
lifetime 7. The angular momentum of the star is L, ~ 10'"°h and the emission of each
particle of mass p with azimuthal angular momentum m ~ 1 costs angular momentum ~ h.
The superradiant mode grows as el +147 and we require that this exponential term be smaller
than ~ %, implying I'i 114 S lTﬁ. Bounds can be placed on particles that fail this test. But,
in order to do so, we need to know the age 7 of the pulsar in question.

Reliable upper bounds on the age of the pulsar can be placed from measurements of the
spin down rates of the star. The spin down rate gives an estimate of the time required for the
frequency of the pulsar to change by an order one amount. This time, called the characteristic
age of the pulsar, is ~ 2 x 10® years for PSR B1937+21 [64]. Reliable observational lower
bounds on the pulsar lifetime are obviously harder to establish. Millisecond pulsars are old
objects and are not the result of recent stellar activity [59]. In some cases, such as PSR
J0034-0534, a lower bound on the age of the pulsar can be determined by observations of the
temperature of its companion star [64], which is correlated with its age. These observations
suggest that millisecond pulsars are old objects with ages ~ 10® — 10? years. There are also
theoretical arguments that suggest this lifetime. The formation of these rapid pulsars are
believed to have been the result of accretion from a nearby companion star. The progenitor
neutron star needs to accrete mass ~ 0.1M in order to achieve the rotation rates observed
in milli-second pulsars [59]. Accretion at the maximum possible Eddington rate of ~ 4 x
1078 Myyr~! [59] suggests that the lifetime of the star 7 must be at least = 107 years.
Consequently, if the accretion proceeds slightly more slowly than the maximum possible
Eddington rate, the time neccessary to form the source must be 2 10® years. It is thus
reasonable to take the age of the pulsar to be equal to the pulsar’s measured characteristic
age ~ 108 — 10? years. Furthermore, we will suppose that the pulsar has been spinning at
its current rate for O(1) of this lifetime.

While the characteristic age of PSR B1937+21 has been measured, this determination
has not yet been made for PSR J1748-2446ad. Current measurements of the spin down rate
of PSR J1748-2446ad suggest a lower bound on its characteristic lifetime 2 2.5 x 107 years
[58]. This lower bound is too conservative since formation from accretion would take longer.
Instead, we use the following method to estimate the characteristic age of this object. The
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pulsar’s characteristic age is determined from its measured rotation rate and the magnitude
of its dipole magnetic field. Millisecond pulsars typically have surface dipole magnetic fields
clustered around ~ 3 x 10 T [64]. Taking this to be the surface magnetic field of PSR
J1748-2446ad, we estimate its characteristic age ~ 10° years. With all this in consideration,
we conservatively take the stellar lifetime to be 7 = 3 x 108 years for each pulsar in setting
our constraints.

We are nearly ready to place bounds on scalars of mass p that couple to neutrons through
a Yukawa interaction of strength e. Stellar parameters such as the temperature 7', mass (in
order to obtain the number of neutrons N), radius R, the frequency w; of the lowest phonon
mode and its damping rate I'; enter into the estimate of the superradiance rate (3.28). For
old neutron stars, whose ages are much longer than 10° years, the temperature T of the star is
< 5% 10° K [65]. However, millisecond pulsars tend to be somewhat warmer, 7' ~ 107 —10% K
[66]. We will take the pulsar temperatures to be at the lower end of this range, T' ~ 107 K.
The mass of the star is directly obtained from observations of these objects [58, 59] where
they exist. The mass of PSR J1748-2446ad has been determined to be 1.96 + 0.04 M, [58].
The mass of PSR B1937+21 has not been measured and we take it to be equal to the nominal
neutron star mass ~ 1.4Mg [59]. Similarly, the stellar radius for both pulsars is taken to be
the nominal size of a neutron star ~ 12 km [59].

The frequencies and damping rates of phonon modes were estimated in [57]. In placing
bounds we will mostly concentrate on excitations of the lowest-frequency [ = 1 and [ = 2
modes by the absorption of a scalar. We are also interested in the [ = 0 oscillations for
the purposes of mixing estimates (see Section 3.4.1). In particular, we focus on absorption
into the lowest-frequency stellar oscillations, which have 0 radial nodes (or 1, in the case of
the dipole oscillation). Of course, one could also include absorption into higher-frequency
oscillations with the same angular structure but more radial nodes—but these are at progres-
sively higher frequenices w,, and the absorption rate is o< w;?, so summing over them does
not notably enhance the absorption rate. The lowest-frequency [ = 0 and [ = 2 phonons are
typically at frequencies w; ~ 2w (2 kHz), and the [ = 1 mode is typically at w; ~ 27 (4 kHz),
somewhat higher because the lowest-frequency dipole phonon has a node in the star. Of
these, the [ = 2 mode undergoes damping through gravitational radiation with a damping
rate I' ~ 10 Hz. The [ = 0 and [ = 1 modes do not damp through gravitational radiation
in a non-rotating pulsar. But, in a rapidly rotating pulsar, whose rotational frequency is ~
kHz, these modes will also radiate efficiently through gravitational wave emission, both at a
rate suppressed roughly by ~ 107! compared to the quadrupole phonon.

We have estimated the [ = 0,1 damping rates by noting that the rotating star has
equilibrium density pg o< (Yoo + ¢Y20), where ¢ ~ 0.2 corresponds to the quadrupole moment
Q ~ G2M?3 of a rapidly rotating star [60]. The continuity equation dp = —V - (pydr)
relates the or ~ Y}, displacements to the resulting density perturbations. Taking simple
approximate wave functions for the breathing and dipole phonon modes dr ~ Yy, Y71, and
a stellar density profile py < (1 — (r/R)?), we find that the [ = 0 phonon mode decays
via quadrupole radiation at a rate I')—_g ~ 0.11—3. The [ = 1 mode decays via octupole
radiation, yet because it oscillates at a higher frequency the decay rate is similar. This is
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admittedly a rough estimate, but sufficient for us for two reasons: first, both the mixing
cutoffs and the 517 superradiance bounds are only mild functions of I', and second, our
strongest bounds in any case come from 1300 superradiance, which is unaffected by these
estimates except through the (very mild) effects on mixing.

As we go to higher masses, the superradiant modes will have higher angular momentum.
The absorption of these modes will then lead to excitation of phonon modes with [ > 2.
The superradiance rate of these high angular momentum modes is suppressed due to two
reasons. First, the overlap of the mode with the star is suppressed, as the modes have high
angular momentum. Second, the absorption of these modes results in excitation of modes
of high angular momentum in the star. These high angular momentum modes are not as
highly damped by gravitational wave emission since they correspond to higher multipole
excitations of the star. The damping rates of modes with [ > 2 are given by I' ~ 10°~% Hz
[57]. Both these effects suppress the superradiance rate, limiting the ability of this method
to probe scalars of mass > (). For this reason, we will only place bounds on scalar masses
superradiant in the [ = 1 and [ = 2 modes.

With these parameters, in figures 3.2 and 3.3, we place bounds in the ¢ — u plane for
scalar interactions with the neutron, using the existence of the pulsars PSR J1748-2446ad
(716 Hz) and PSR B1937+21 (642 Hz) respectively. Figure 3.4 represents bounds that could
be placed with the discovery of an isolated pulsar rotating at 1200 Hz, and relates them to
the other constraints. These bounds consider the superradiant modes 1911 and 1399, coupling
respectively to dipolar and quadrupolar oscillations in the star. The bounds exhibit wiggles
at masses pu of the scalar that are integral multiples of the stellar rotational frequency 2.
This is because the superradiance condition p — m{2 < 0 is satisfied by modes of increasing
angular momentum as we go up in p. We note that existing bounds are ¢ < 5 x 1072
for most of this parameter space [42], set by weak equivalence principle tests with torsion
balances. We are able to improve on these by up to 3 orders of magnitude. The bounds
are maximally good in the region right near u ~ 2. This is slightly different from our
original expectation of y ~ €2, and a result of the more efficient coupling and dissipation of
the quadrupolar modes (see Section 3.3.1.1).

The bounds in Figures 3.2, 3.3, and 3.4 are cut off above and on the left when the
superradiant mode is damped by astrophysical anisotropies, primarily the free procession
wobble and tidal forces from the companion star (as discussed in section 3.4.1). At large
couplings, the free procession wobble causes the 1305 superradiant mode to be sufficiently
strongly mixed with absorptive modes, providing the upper limit to the constraints. This
occurs when the Yukawa coupling mediates a force comparable to gravity (e ~ Gm?2 ~
10719), and so wobble-induced scattering to certain absorptive scalar states becomes nearly
as efficient as scattering into gravitons (i.e., the superradiant process). The constraints due
to PSR J1748-2446ad are additionally limited at low masses p due to disruption of the
superradiant growth by its companion star. This typically occurs because in this region, the
superradiant modes have large Bohr radii with a suppressed overlap with the star. But, the
damped absorptive modes 1,00 always have support at the origin making their damping rates
significantly bigger than the superradiant growth rates. Consequently, the condition (3.31)
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Figure 3.2: Constraints imposed by the existence of PSR J1748-2446ad (716 Hz) on scalars
of mass p with Yukawa coupling € to neutrons. Shaded regions are excluded due to super-
radiance into 917 (blue) and 1399 (orange) scalar modes. The right most boundaries are
fixed by the superradiance condition mf2 — 1 > 0, and on the left constraints are limited by
mixing from companion star tidal forces. The 1355 constraints are limited at large coupling
due to mixing through the free precession wobble. The red line shows existing constraints
from torsion balance experiments. The black line represents the mass-coupling relation for
the QCD axion, assuming 6.7 ~ 1 in the star.

becomes increasingly harder to satisfy as tidal forces cause mixing between the superradiant
and absorptive modes. PSR B19374-21 (Figure 3.3) avoids mixing from a stellar companion
because is a nearly isolated pulsar with its closest companion at least ~ 3 x 108 km away
with mass S 1079M,. We take the hypothetical 1200 Hz pulsar (Figure 3.4) to be similarly
isolated. PSR J1748-2446ad (Figure 3.2) on the other hand has a companion of mass ~
0.1M,, at a distance 3.9 x 10% km away from it.

Our results take on an additional meaning if indeed f.4 ~ 1 in a neutron star, as predicted
by various neutron star equations of state [56]. In this case, the QCD axion acquires a CP-
violating Yukawa coupling to neutrons € ~ Oegm,/f, ~ m,/ f,, and the vertical axis on our
plots can be read off as (f,/GeV)~!. We are thus able to exclude QCD axions with Planck
scale decay constants. We stress that this claim depends on the equation of state of the
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Figure 3.3: Constraints imposed by the existence of PSR B1937-21 (642 Hz) on scalars of
mass u with Yukawa coupling € to neutrons. Shaded regions are excluded due to superradi-
ance into ¥91; (blue) and 1399 (orange) scalar modes. The right most boundaries are fixed by
the superradiance condition m{2 — p > 0. The 1399 constraints are limited at large coupling
due to mixing through the free precession wobble. The red line shows existing constraints
from torsion balance experiments. The black line represents the mass-coupling relation for
the QCD axion, assuming 0.¢¢ ~ 1 in the star.

neutron star.

We have thus constrained any scalars (or pseudoscalars) with a Yukawa coupling (3.6)
to neutrons. We improve on the existing torsion balance constraints for scalar masses 2 x
10712 eV < <6 x 10712 eV (430 Hz < pu/27 < 1420 Hz), and (pending the pulsar
equation of state) constrain QCD axions with Planck-scale decay constants and masses
5x 10718 eV < <3 x 10712 eV (120 Hz < pu/27 < 800 Hz).

3.5 Conclusions

The superradiant instabilty of the gravitationally bound states of millisecond pulsars allows
their use as an interesting laboratory to search for light, weakly coupled particles. Mea-
surements from the two fastest known pulsars PSR J1748-2446ad and PSR B1937+21 place

42



102 103
/2t (Hz)

Figure 3.4: Constraints on scalars of mass p with Yukawa coupling e to neutrons. Shaded
regions are excluded due to superradiance into 300 by PSR B1937-21 (642 Hz, blue), PSR
J1748-2446ad (716 Hz, orange), and a hypothetical isolated pulsar rotating with a speed of
1200 Hz (green). The PSR J1748-2446ad constraints jut below the others primarily due to
the star’s larger mass (1.96 My vs 1.4 M) The red line shows existing constraints from
torsion balance experiments. The black line represents the mass-coupling relation for the
QCD axion, assuming 0.5 ~ 1 in the star.

bounds on scalars with wavelengths between 100 km - 10* km, improving current bounds by
two to four orders of magnitude over this range. Also, if f.4 ~ 1 in a neutron star as predicted
by some equations of state, the QCD axion with a mass in the range u ~ 800 Hz - 9000 Hz
would be ruled out. The discussions in this paper were restricted to scalars with Yukawa
interactions to neutrons. It may be interesting to study a larger class of interacting systems.
Using the methods of this paper, it can be readily checked that pseudo-scalar interactions
of ¥ with nuclei/electrons cannot be constrained by superradiance using known parameters
of milli-second pulsars. A careful consideration of mixing with absorptive modes in context
of the electromagnetic mechanisms of [54, 55] may allow the results of those papers to be
reinterpreted as realistic constraints. Other potentially dissipative mechanisms would also
be interesting to investigate, such as an oscillating neutron electric dipole moment induced
by an axion-like coupling.

Intriguingly, there appears to be an absence of pulsars with frequencies above ~ 700 Hz.
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This is a puzzling phenomenon since many equations of state of the neutron star can support
frequencies well above 1 kHz before break up [67]. It is unclear if this phenomenon can be
explained through standard model processes such as gravitational wave emission, though a
variety of astrophysical mechanisms have been proposed [68, 69, 70, 71, 72, 73]. (Some of
these, such as the r-mode instability, are superradiance phenomena in their own right.) A
particle that is sufficiently strongly coupled to the neutron star medium, with a mass around
the breakup frequency, can furnish such a rapid cut off. This explanation could be tested
with the discovery of more rapidly rotating pulsars. A pulsar braking mechanism caused by
superradiance would lead to the clustering of pulsars at roughly half the mass of the putative
particle. A conventional source for damping the stellar rotation such as gravitational wave
emission would predict a gentler demise of pulsars on the curve up to rapid rotation. This
anomaly may provide an impetus to search for new light particles that couple to neutrons
with mass around p ~ 27 - 1500 Hz in laboratory searches.
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Chapter 4

White Dwarfs as Dark Matter
Detectors

Dark matter that is capable of sufficiently heating a local region in a white dwarf will trigger
runaway fusion and ignite a type la supernova. This was originally proposed by Graham
et al. and used to constrain primordial black holes which transit and heat a white dwarf
via dynamical friction. In this paper, we consider dark matter (DM) candidates that heat
through the production of high-energy standard model (SM) particles, and show that such
particles will efficiently thermalize the white dwarf medium and ignite supernovae. Based
on the existence of long-lived white dwarfs and the observed supernovae rate, we derive
new constraints on ultra-heavy DM with masses greater than 10'® GeV which produce SM
particles through DM-DM annihilations, DM decays, and DM-SM scattering interactions
in the stellar medium. As a concrete example, we place bounds on supersymmetric Q-ball
DM in parameter space complementary to terrestrial bounds. We put further constraints
on DM that is captured by white dwarfs, considering the formation and self-gravitational
collapse of a DM core which heats the star via decays and annihilations within the core. It
is also intriguing that the DM-induced ignition discussed in this work provide an alternative
mechanism of triggering supernovae from sub-Chandrasekhar, non-binary progenitors.

4.1 Introduction

Identifying the nature of dark matter (DM) remains one of the clearest paths beyond the
Standard Model (SM) and it is thus fruitful to study the observable signatures of any yet-
allowed DM candidate. Many direct detection experiments are designed to search for DM,
e.g. [74, 75], yet these lose sensitivity to heavier DM due to its diminished number density.
Even for a strongly-interacting candidate, if the DM mass is above ~ 10*? GeV a terrestrial
detector of size ~ (100 m)? will register fewer than one event per year. While these masses
are large compared to those of fundamental particles, it is reasonable to suppose that DM
may exist as composite states just as the SM produces complex structures with mass much

45



larger than fundamental scales (e.g., you, dear reader). Currently there is a wide range
of unexplored parameter space for DM candidates less than ~ 10* GeV, above which the
DM will have observable gravitational microlensing effects [76]. For such ultra-heavy DM,
indirect signatures in astrophysical systems are a natural way forward. One such signal first
proposed in [77] is that DM can trigger runaway fusion and ignite type Ia supernovae (SN)
in sub-Chandrasekhar white dwarf (WD) stars.

In addition to constraining the properties of DM, this raises the intriguing possibil-
ity that DM-induced runaway fusion is responsible for a fraction of observed astrophysical
transients. The progenitors of type Ia SN are not fully understood [78], and recent observa-
tions of sub-Chandrasekhar [79, 80], hostless [81], and unusual type Ia SN [82] suggest that
multiple progenitor systems and ignition mechanisms are operative. Other suspected WD
thermonuclear events, such as the Ca-rich transients [83], are also poorly understood. While
mechanisms for these events have been proposed [84, 85, 86, 87], the situation is yet unclear
and it is worthwhile to consider new sources of thermonuclear ignition.

Runaway thermonuclear fusion requires both a heating event and the lack of significant
cooling which might quench the process. The WD medium is particularly suited to this as it
is dominated by degeneracy pressure and undergoes minimal thermal expansion, which is the
mechanism that regulates fusion in main sequence stars. Thermal diffusion is the primary
cooling process in a WD, and it can be thwarted by heating a large enough region. The
properties of a localized heating necessary to trigger runaway fusion were computed in [88].
Consequently, it was realized [77] that if DM is capable of sufficiently heating a WD in this
manner, it will result in a SN with sub-Chandrasekhar mass progenitor. This was used to
place limits on primordial black holes which transit a WD and cause heating by dynamical
friction, although the authors of [77] identify several other heating mechanisms which may
be similarly constrained. Note that the idea of using observations of WDs to constrain DM
properties has been pursued before, e.g. through an anomalous heating of cold WDs [89,
90] or a change in the equilibrium structure of WDs with DM cores [91]. These are quite
distinct from the observational signature considered in this work, which is the DM trigger
of a type Ia SN (although see [92] for a related analysis).

In this paper, we examine DM candidates which have additional non-gravitational inter-
actions and are thus capable of heating a WD and igniting a SN through the production of
SM particles. An essential ingredient in this analysis is understanding the length scales over
which SM particles deposit energy in a WD medium. We find that most high energy particles
thermalize rapidly, over distances shorter than or of order the critical size for fusion. Particle
production is thus an effective means of igniting WDs. Constraints on these DM candidates
come from either observing specific, long-lived WDs or by comparing the measured rate of
type Ia SN with that expected due to DM. It is important to note that these constraints
are complementary to direct searches—it is more massive DM that is likely to trigger SN,
but also more massive DM that has low terrestrial flux. The WD detector excels in this
regime due to its large surface area ~ (10 km)?, long lifetime ~ Gyr, and high density. We
demonstrate these constraints for generic classes of DM models that produce SM particles
via DM-SM scattering, DM-DM collisions, or DM decays, and consider the significantly en-
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hanced constraints for DM that is captured in the star. For these cases, we are able to place
new bounds on DM interactions for masses greater than m, > 10'® GeV. As a concrete
example we consider ultra-heavy Q ball DM as found in supersymmetric extensions of the
SM.

The rest of the paper is organized as follows. We begin in Section 4.2 by reviewing
the mechanism of runaway fusion in a WD. In Section 4.3 we study the heating of a WD
due to the production of high-energy SM particles. Detailed calculations of the stopping of
such particles are provided in Appendix B.1. In Section 4.4 we parameterize the explosive-
ness and event rate for generic classes of DM-WD encounters, and in Section 4.5 we derive
schematic constraints on such models. The details of DM capture in a WD are reserved for
Appendix B.2. Finally we specialize to the case of Q-balls in Section 4.6, and conclude in
Section 4.7.

4.2 White Dwarf Runaway Fusion

We first review the conditions for which a local energy deposition in a WD results in run-
away fusion. Any energy deposit will eventually heat ions within some localized region—
parameterize this region by its linear size Lg, total kinetic energy & and typical temperature
Ty. These scales evolve in time, but it will be useful to describe a given heating event by
their initial values.

The fate of a heated region is either a nonviolent diffusion of the excess energy across the
star, or a runaway fusion chain-reaction that destroys the star. The precise outcome depends
on Ly, & and Ty. There is a critical temperature 7%, set by the energy required for ions
to overcome their mutual Coulomb barrier, above which fusion occurs. For carbon burning,
Ty ~ MeV [93]. Any heated region Ty > Ty will initially support fusion, although this is
not sufficient for runaway as cooling processes may rapidly lower the temperature below 1.
This cooling will not occur if the corresponding timescale is larger than the timescale at
which fusion releases energy. Cooling in a WD is dominated by thermal diffusion, and the
diffusion time increases as the size of the heated region. However, the timescale for heating
due to fusion is independent of region size. Thus, for a region at temperature 2 7', there
is a critical size above which the heated region does not cool but instead initiates runaway.
For a region at the critical fusion temperature T, we call this critical size the trigger size
Ar. The value of Ay is highly dependent on density, and in a WD is set by the thermal
diffusivity of either photons or degenerate electrons. This critical length scale has been
computed numerically in [88] for a narrow range of WD densities and analytically scaled for
other WD masses in [77]. As in [77], we will restrict our attention to carbon-oxygen WDs
in the upper mass range ~ 0.85 — 1.4 M, (these will yield the most stringent constraints on
DM). This corresponds to a central number density of ions ni,, ~ 103 — 1032 cm™ and a
trigger size of Ay ~ 1073 — 1075 cm.

If a heated region is smaller than the trigger size, its thermal evolution is initially domi-
nated by diffusion. However, this will still result in runaway fusion if the temperature is of
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order T by the time the region diffuses out to the trigger size. For our purposes it is more
natural to phrase this in terms of the total energy &, deposited during a heating event. Of
course, the relation between energy &, and temperature T, depends on the rate at which
WD constituents—ions, electrons, and photons—thermalize with each other within the re-
gion size Ly. Given that the different species thermalize rapidly, the excess energy required
to raise the temperature to 7 in a volume V' is given by a sum of their heat capacities

Ty

&
D> | AT (nion + 02T +T7), (4.1)

V=~J
where n, is the number density of electrons. Note that we use the heat capacity of a

degenerate gas of electrons, since the Fermi energy Fr = MeV for the densities we consider.
The minimum energy deposit necessary to trigger runaway fusion is simply

gboom ~ )\g“(nioan + ng/ng + T}l) (42)
~ 1016 — 10% GeV.

Evoom 18 shown over the range of WD masses in Figure 4.1, where we have employed a
numerical formulation of the WD mass-density relation as given by [94]. Once again, for a
given WD density the critical energy threshold is primarily set by Ap—this length scale has
been carefully computed and tabulated in [88], along with the attendant assumptions. In any
case, we expect the simplified expression (4.2) to be accurate at the order of magnitude level,
and we refrain from a more detailed analysis here. Thus for a heating event characterized
by its Lo, &, and Ty 2 T}, there is an ignition condition:

I

&0 2 Eboom - maxq 1, — » . (4.3)
A1

Any &, satisfying this condition is minimized for Ly less than the trigger size, where it is

also independent of the precise value of Lj. For broader deposits, the necessary energy is

parametrically larger than &,pom by a volume ratio (Lg/ )\T)?’. As a result, understanding the

Lg for different kinds of heating events in a WD is critical to determining whether or not

they are capable of destroying the star.

4.3 Particle Heating of White Dwarfs

Production of high-energy SM particles in a WD will result in heating of the stellar medium.
The critical quantity to understand is the length scale over which such heating occurs—this
scale determines the efficiency of the heating event in triggering runaway fusion, as described
by condition (4.3). Note that this is a question of purely SM physics. The unknown physics
of DM will serve only to set the initial properties of the SM particles.

We find that SM particles efficiently heat the WD regardless of species or energy (neutri-
nos are a slight exception)—the heating length is typically less than or of order the trigger
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Figure 4.1: The minimum energy deposit (4.2) necessary to trigger runaway fusion, based
on numerical results for Ay [88] and the WD mass-density relation [94].

size Ap. This is accomplished primarily through hadronic showers initiated by collisions with
carbon ions. In some cases electromagnetic showers are important, however at high energies
these are suppressed by density effects and even photons and electrons are dominated by
hadronic interactions. These showers rapidly stop high-energy particles due to their loga-
rithmic nature, transferring the energy into a cloud of low-energy particles which heat the
medium through elastic scatters. A schematic for the flow of energy during deposition is
given in Figure 4.2. In this light, the WD operates analogously to a particle detector, in-
cluding hadronic and electromagnetic “calorimeter” components. Runaway fusion provides
the necessary amplification to convert a detected event into an observable signal.

The remainder of this section will discuss the above heating process in more detail. We
summarize the dominant source of energy loss and the resulting stopping lengths A for SM
particles of incident kinetic energy e. The total path length traveled by a particle before
depositing O(1) of its energy is approximately

€

Rsp ~ ————
PR Jdy

(4.4)

where dF /dx is the stopping power in the WD medium. If the mean free path to hard scatter
Ahard 18 smaller than this path length Rgp, then the particle undergoes a random walk with
Nhpara scatters, and the net displacement is reduced by v/ Npa.q. We therefore approximate
the stopping length as

A ~ min {RSP’ AV RSP)\hard} (45)

This random walk behavior is relevant for low-energy elastic scatters.
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Figure 4.2: Dominant energy loss and thermalization processes in the WD as a function
of energy, with energy decreasing towards the right. Hadronic processes are shown in the
upper panel and EM processes in the lower panel. High energy particles will induce showers
that terminate into elastic thermalization of the WD ions, moving from left to right in the
diagram. The quoted energies are for a ~ 1.37 M, WD, although the cartoon is qualitatively
the same for all densities.

Stopping lengths are plotted in Figures 4.3 and 4.4, and a detailed treatment of the
stopping powers is given in Appendix B.1. We will consider incident light hadrons, photons,
electrons, and neutrinos—as we are concerned with triggering runaway fusion, we restrict
our attention to energies € > Ty ~ MeV.

4.3.1 High-Energy Showers

Hadronic Showers. Incident hadrons with kinetic energy larger than the nuclear binding
scale ~ 10 MeV will undergo violent inelastic collisions with carbon ions resulting in an O(1)
number of secondary hadrons. This results in a roughly collinear shower of hadrons of size

Xhad ~ (4.6)

s ()
0
ionOmer 2 \10 MeV
1032 -3
~ 107% cm (ﬁ)

Njon

where the inelastic nuclear cross section is oy, =~ 100 mb and we have taken the logarithm to
be ~ 10. The shower terminates into pions and nucleons of energy ~ 10 MeV, whose cooling
is discussed below. Note that neutral pions of energy 10 — 100 MeV have a decay length
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Figure 4.3: Stopping lengths for incident hadrons as a function of kinetic energy in a WD
of density njo, ~ 103! em™ (= 1.25 M), including the hadronic shower length (magenta).
Any discontinuities in the stopping lengths are due to approximate analytic results in the
different energy regimes. See Appendix B.1 for calculation details.

to photons of d,0 ~ 107% cm. Hadronic showers will therefore generate an electromagnetic
component carrying an O(1) fraction of the energy.

Photonuclear and Electronuclear Showers. A photon or electron can directly induce
hadronic showers via production of a quark-antiquark pair, depicted in Figure 4.5. The
LPM effect, discussed below, ensures that these process dominate the stopping of photons
and electrons at high energies, ¢ > 10* — 10° GeV.

The only substantial difference between photonuclear showers and purely hadronic ones
is that they require a longer distance to initiate. Roughly, the photonuclear cross section is
suppressed relative to the hadronic inelastic cross section oy, by a factor of «, and so the
photon range is

(4.7)

1032 -3
Aya R 10~ cm (ﬁ) .

Nion
Here A, 4 is the distance to initiate a hadronic shower, whereas the shower itself extends a
distance Xp.q. Note that A\, 4 is of order the trigger size.

The electronuclear showers are qualitatively different, as the electron survives the inter-
action. This process is best described as a continuous energy loss of the electron, due to
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Figure 4.4: Stopping lengths of incident photons (orange) and electrons (purple) as a function
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length (dashed). Any discontinuities in the stopping lengths are due to approximate analytic
results in the different energy regimes. See Appendix B.1 for calculation details.

hadrons hadrons

Figure 4.5: Photonuclear (left) and Electronuclear (right) interactions. The shaded region

contains, at high energies, the familiar point-like processes of deep inelastic scattering and
for energies below Aqcp is best described by exchange of virtual mesons.
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radiation of virtual photons into hadronic showers. The stopping power is again radiative,
which gives the constant stopping length

(4.8)

32 -3
Aea ~ 1074 cm (ﬁ) .

Nion

This is suppressed by an additional factor of a relative to the photonuclear interaction,
although a full calculation also yields an O(10) logarithmic enhancement. We see that
the electronuclear length scale A.4 is at most larger than the trigger size by an order of
magnitude.

Electromagnetic Showers. Of course, electrons and photons can also shower through
successive bremsstrahlung and pair-production. An electromagnetic shower proceeds until a
critical energy ~ 100 MeV, at which point these radiative processes become subdominant to
elastic Coulomb and Compton scattering. Below this scale radiation can still be important,
though electromagnetic showers do not occur. Note that bremsstrahlung and pair-production
are strictly forbidden for incident energies below the Fermi energy Frp.

At sufficiently high electron/photon energies and nuclear target densities, electromagnetic
showers are elongated due to the Landau-Pomeranchuk-Migdal (LPM) effect. High-energy
radiative processes necessarily involve small momentum transfers to nuclei. These soft virtual
photons cannot be exchanged with only a single ion, but rather interact simultaneously with
multiple ions. This generates a decoherence, suppressing bremsstrahlung/pair-production
above an energy FEppy which scales inversely with density:

1032 -3
Eipy ~ 1 MeV (n—cm) (4.9)
The corresponding shower lengths are
L \12
Xen ~ Xo - (Ew) ¢> Erpu (4.10)
1 € < Erpm
where
1032 -3
Xo~ 107 cm ( . ) (4.11)
Njon

is the unsuppressed EM shower length. See Appendix B.1.3 for details. At the highest WD
densities radiative processes are always LPM-suppressed, while at lower densities we observe
both regimes. We emphasize that for all densities, throughout the energy range where it
is relevant, the length of electromagnetic showers is never parametrically larger than the
trigger size.
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Neutrinos. Neutrinos scatter off nuclei with a cross section that increases with energy. In
these interactions, an O(1) fraction of the neutrino energy is transferred to the nucleus with
the rest going to produced leptons—this is sufficient to start a hadronic shower [95, 96]. At
an energy of ~ 10 GeV, [95] calculates the neutrino-nuclear cross section to be ~ 10732 cm?.
Conservatively assuming this value for even higher energies, we find a neutrino mean free
path in a WD of order ~ 10 cm. Therefore, any high-energy neutrino released in the WD
will (on average) only interact after traveling a distance > Ap. As per the discussion above,
this makes the heating of a WD via the release of multiple neutrinos highly inefficient due to
the (enormous) volume dilution factor in (4.3). Interestingly, a single high-energy neutrino
with energy greater than &0 Will still be able to efficiently heat the star and trigger a
runaway. This is because the neutrino mean free path is simply a displacement after which
a compact shower of size X),q occurs. If the energy contained in a single shower is large
enough, then the heating caused by this single neutrino can effectively be considered as a
separate and efficient heating event.

4.3.2 Low-Energy Elastic Heating

The showers of high-energy particles described above terminate in a cloud of low-energy
€ ~ 10 MeV neutrons, protons, and charged pions, and € ~ 10 — 100 MeV electrons and
photons. Of course, particles at these energies may also be directly produced by the DM.
At these energies, elastic nuclear, Coulomb, and Compton scatters dominate and eventually
lead to the thermalization of ions. Once again, the physical expressions for all computed
stopping powers and stopping lengths are given in Appendix B.1 whereas we simply quote
the relevant numerical values here.

Hadrons. Neutral hadrons are the simplest species we consider, interacting at low-energies
only through elastic nuclear scatters with cross section o, ~ 1 b, where 1 b = 10724 cm?.
Note that the large ion mass requires ~ 10 — 100 hard scatters to transfer the hadron’s

energy in the form of a random-walk. This elastic heating range is

1032 Cm3>

Nion

At = 107" cm ( (4.12)

and is always less than the trigger size.

Charged hadrons are also subject to Coulomb interactions, which would provide the
dominant stopping in terrestrial detectors. In this case, however, Coulomb scatters off de-
generate WD electrons are strongly suppressed and charged hadrons predominantly undergo
elastic nuclear scatters like their neutral brethren. This suppression is due to (1) motion
of the electrons, which fixes the relative velocity to be O(1) and removes the enhancement
of Coulomb stopping usually seen at low velocity, and (2) Pauli blocking, which forces the
incident particle to scatter only electrons near the top of the Fermi sea. For an incident
particle with velocity v, < 1, the first effect suppresses the stopping power by a factor of
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vZ relative to that off stationary, non-degenerate electrons and the second by an additional
factor of vy,. Note that there is a small range of energies in which Coulomb scatters off ions
dominate the stopping of charged hadrons—either way, both length scales are well below the
trigger size.

Electrons and Photons. For electrons and photons below ~ 100 MeV the dominant
interactions are Coulomb scatters off WD electrons and Compton scatters, respectively.
The length scale of these processes is smaller than any interaction with ions, and so these
electrons and photons will thermalize into a compact electromagnetic “gas” with a size set
by the radiative length scale Xgy. The EM gas will cool and diffuse to larger length scales,
eventually allowing thermalization with nuclei via the subdominant Coulomb scatters of
electrons off ions. The photons of the EM gas will not undergo photonuclear showers here,
as the gas will cool below ~ 10 MeV by the time it diffuses out to a size A\,4. This gas
temperature is initially at most ~ 100 MeV. At these temperatures the heat capacity is
dominated by photons, so as the gas diffuses to a size A, 4 it cools by a factor (Xum/Aya)%/* ~
1072—10"!. Note that for temperatures T less than Er, the electrons are partially degenerate
and heating proceeds via the thermal tail with kinetic energies € ~ Er + T. Therefore, the
relevant thermalization process is Coulomb scattering of electrons off ions.

Like the hadronic elastic scatters, an electron Coulomb scattering off ions will occasionally
hard scatter, and thus deposit its energy along a random walk. This reduces the stopping
length at low energies, yielding

3/2 /1032 ¢m—3
Aoyt & 107 ( € ) 413
: o 10 MeV Nion ( )

which is below the trigger size.

4.4 Dark Matter-Induced Ignition

Any DM interaction that produces SM particles in a WD has the potential to ignite the
star, provided that sufficient SM energy is produced. The distribution in space, momentum,
and species of these SM products is dependent on unknown DM physics and is needed to
determine the rate of DM-induced ignition. This can be done precisely for a specific DM
model, as we do for Q-balls in Section 4.6. In this Section, however, we study some general
features of DM-WD encounters involving DM that possesses interactions with itself and the
SM. We collect below the basic formulas relating DM model parameters to ignition criteria,
SN rate, etc.

DM can generically heat a WD through three basic processes: DM-SM scattering, DM-
DM collisions, and DM decays. For ultra-heavy DM, these processes can be complicated
events involving many (possibly dark) final states, analogous to the interactions of heavy
nuclei. In the case of DM-SM scattering, we consider both elastic and inelastic DM scatters
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off WD constituents, e.g. carbon ions. We classify DM candidates into three types accord-
ing to the interaction that provides the dominant source of heating, and refer to these as
scattering, collision, and decay candidates. We also make the simplifying assumption that
the above events are “point-like”, producing SM products in a localized region (smaller than
the heating length) near the interaction vertex. Where this is not the case (as in our elas-
tic scattering and Q-ball constraints, see Sections 4.5.2 and 4.6), then the same formalism
applies but with the event size added to the stopping length.

The SN rate may be greatly enhanced if DM is captured in the star, so we also consider
separately “transiting DM” and “captured DM”. In general, there is some loss of DM kinetic
energy in the WD. In the transit scenario, this energy loss is negligible and the DM simply
passes through the star. In the capture scenario, the energy loss is not directly capable of
ignition but is sufficient to stop the DM and cause it to accumulate in the star. Energy loss
may be due to a variety of processes, but for simplicity we will focus on an DM-nuclei elastic
scattering. Of course, due to the velocity spread of DM in the rest frame of a WD, there
will necessarily be both transiting and captured DM populations in the star.

4.4.1 DM Transit

DM-SM Scattering. Runaway fusion only occurs in the degenerate WD interior where
thermal expansion is suppressed as a cooling mechanism. The outer layers of the WD,
however, are composed of a non-degenerate gas and it is therefore essential that a DM
candidate penetrate this layer in order to ignite a SN. We parameterize this by a DM stopping
power (dE/dx)sp, the kinetic energy lost by the DM per distance traveled in the non-
degenerate layer, and demand that

dE My V2,

() emit "
where R, is the nominal size of the non-degenerate WD envelope and vee ~ 1072 is the
escape velocity of the WD, at which the DM typically transits the star.

DM-SM scattering will result in a continuous energy deposit along the DM trajectory
(if the interaction is rare enough for this not to be true, then the encounter is analogous to
the case of DM decay). This is best described by a linear energy transfer (dF/dx)ygr, the
kinetic energy of SM particles produced per distance traveled by the DM. If these products
have a heating length Ly then the energy deposit must at minimum be taken as the energy
transferred along a distance Ly of the DM trajectory. Importantly, as per the ignition
condition (4.3), such a deposition is less explosive unless Ly is smaller than the trigger
size Ap. We thus consider the energy deposited over the larger of these two length scales.
Assuming the energy of the DM is roughly constant during this heating event, the ignition

condition is:
2
(d—E) > Eboom -max{ﬂ, 1} . (4.15)
dz LET )\T >\T
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Note that the DM stopping power (dE/dx)sp and the linear energy transfer (dE/dx) gt are
related in the case of elastic scatters, but in general the two quantities may be controlled by
different physics. In addition, a transit event satisfying condition (4.14) will have negligible
energy loss over the parametrically smaller distances Ar or Ly, validating (4.15).

The above condition sums the individual energy deposits along the DM trajectory as
though they are all deposited simultaneously. This is valid if the DM moves sufficiently
quickly so that this energy does not diffuse out of the region of interest before the DM has
traversed the region. We therefore require that the diffusion time 74;¢ across a heated region
of size L at temperature Ty be larger than the DM crossing-time:

L? L

o~ S 4.16
Taiff (T} > o ( )

where «(T) is the temperature-dependent diffusivity. This condition is more stringent for
smaller regions, so we focus on the smallest region of interest, L = Ap. Then (4.16) is
equivalent to demanding that the escape speed is greater than the conductive speed of the
fusion wave front, veona ~ a(Ty)/Ar. Numerical calculations of veonq are tabulated in [88],
and indeed condition (4.16) is satisfied for all WD densities.

The rate of transit events is directly given by the flux of DM through a WD

2
Vesc
I-‘trans ~ ’fl_XR%VD ( ) Uhalo) (417)

X Vhalo

where p,, is the DM density in the region of the WD, and Rywp is the WD radius. Here vy, ~
1073 is the virial velocity of our galactic halo. Note the (vese/Vnalo)? ~ 100 enhancement due
to gravitational focusing.

We will not consider here captured DM that heats the star via scattering events, as such
heating will typically cause ignition before capture occurs. However, it is possible to cause
ignition after capture if the collection of DM leads to an enhanced scattering process.

DM-DM Collisions and DM Decays. For a point-like DM-DM collision or DM decay
event releasing particles of heating length Lg, ignition will occur if the total energy in SM
products satisfies condition (4.3). Such an event will likely result in both SM and dark sector
products, so we parameterize the resulting energy in SM particles as a fraction fgy of the
DM mass. For non-relativistic DM, the DM mass is the dominant source of energy and
therefore fq < 1 regardless of the interaction details. A single DM-DM collision or DM

~Y

decay has an ignition condition:

L 3
meSM Z gboom - max {)\_0’ 1} . (418)

T

Thus the WD is sensitive to annihilations/decays of DM masses m,, 2> 10 GeV.
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DM that is not captured traverses the WD in a free-fall time tg ~ Rwp/vVesc, and the
rate of DM-DM collisions within the WD parameterized by cross section o, is:

2 3
UeSC
$?~(£&)ax( ) . (4.19)
my

Uhalo
Similarly the net DM decay rate inside the WD parameterized by a lifetime 7, is:

1p v,
raeeay X (e ) Rpe 4.20
e () (120

4.4.2 DM Capture

Review of DM Capture. We first summarize the capture and subsequent evolution of
DM in the WD, ignoring annihilations or decays—see Appendix B.2 for details. Consider a
spin-independent, elastic scattering off carbon ions with cross section o, 4. The rate of DM
capture in gravitating bodies is of course very well-studied [97, 98]. However, this rate must
be modified when the DM requires multiple scatters to lose the necessary energy for capture.
Ultimately, for ultra-heavy DM the capture rate is of the form

2

Ceap ~ Dirans - Min {1, Nm—;“} , (4.21)
x Vhalo

where Nyt ~ NionOyARwp is the average number of DM-carbon scatters during one DM

transit. For the remainder of this Section, all results are given numerically assuming a WD

central density nj,, ~ 103' ecm™3. The relevant parametric expressions are presented in

further detail in Appendix B.2.

Once DM is captured, it eventually thermalizes with the stellar medium at velocity
ven ~ (Twp /mx)l/ > where Typ is the WD temperature. The dynamics of this process
depend on the strength of the DM-carbon interaction, namely on whether energy loss to
carbon ions provides a small perturbation to the DM’s gravitational orbit within the star
or whether DM primarily undergoes Brownian motion in the star due to collisions with
carbon. For simplicity, we will focus here only on the former case, corresponding roughly to
interactions
my

oA S

26 2 my
~ 107 cm (1016 Ge\/> (4.22)
where the DM is able to make more than a single transit through the star before thermalizing.
Note that the opposite regime indeed also provides constraints on captured DM and is
unconstrained by other observations, see Figure 4.11, however the resulting limits are similar
to those presented here.

In the limit (4.22), captured DM will thermalize by settling to a radius Ry, given by the
balance of gravity and the thermal energy Twp,

pwp Rwp

m —-1/2
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This settling proceeds in two stages. Captured DM will initially be found on a large, bound
orbit that exceeds the size of the WD, decaying after many transits of the star until the
orbital size is fully contained within the WD. This occurs after a time

B 6 my 3/2 Oy —3/2
nRT s () (eas) (4.24)

The DM then completes many orbits within the star until its orbital size decays to the
thermal radius, occurring after a further time

-1
ty ~ 10" s ( A ) . (4.25)

X
1016 GeV) <10—35 cm?
Note that the difference in scalings between ¢; and ¢, is due to the fact that, while the two
times are ultimately determined by scattering in the star, the dynamics of the settling DM
are quite distinct in each case. t; is dominated by the time spent on the largest orbit outside
the WD (which additionally depends on o,4) while ¢, is dominated by the time spent near
the thermal radius. Subsequently the DM will begin steadily accumulating at Ry, with the
possibility of self-gravitational collapse if the collected mass of DM exceeds the WD mass
within this volume. This occurs after a time

N 9 mX 71/2 O-XA -1
bog 2 107 s (1016 GeV) (10*35 cm2> ‘ (4.26)

Of course, not all of these stages may be reached within the age of the WD 7wp. The full
time to collect and begin self-gravitating is ¢; + o + tg,.

At any point during the above evolution, captured DM has the potential to trigger a SN.
We will consider ignition via either the decay or annihilation of captured DM. Of particular
interest are events occurring within a collapsing DM core, as such cores have the additional
ability to ignite a WD for DM masses less than &,qom, either via multiple DM annihilations
or by the formation of a black hole. This is the focus of forthcoming work [99]. In the
following, we restrict attention to the limit (4.22) and require DM masses sufficiently large
so that a single collision or decay will ignite the star, and give only a quick assessment of
DM core collapse.

Captured DM-DM Collisions. We now turn to the rate of DM-DM collisions for cap-
tured DM. Of course, the thermalizing DM constitutes a number density of DM throughout
the WD volume. Assuming that ¢; 4+ ¢ < 7wp, the total rate of annihilations for this
“in-falling” DM is peaked near the thermal radius and is of order:

Leapta)?
Dinfan ~ (Fi+2)o-xxvth- (427>
th

If Tiurante > 1, then a SN will be triggered by the in-falling DM population. Otherwise if
[intant2 < 1, the DM will start accumulating at the thermal radius. If ¢5, < 5 (as expected
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for such heavy DM masses) there will be no collisions during this time and thus a collapse will
proceed. For a DM sphere consisting of N particles at a radius r, the rate of annihilations is

2

Fcollapse ~ FUXXU)O (428)
GN
v~ T (4.29)

Of course, there may be some stabilizing physics which prevents the DM from collapsing
and annihilating below a certain radius, such as formation of a black hole or bound states.
To illustrate the stringent nature of the collapse constraint we will simply assume some
benchmark stable radius, as in Figure 4.9. We assume that the timescale for collapse at this
radius is set by DM cooling t...1, which is related to t5. Note that if a single collision has
not occurred during collapse, one may additionally examine annihilations of the subsequent
in-falling DM down to the stable radius—for simplicity, we do not consider this scenario.

Captured DM Decays. Lastly, we compute the rate of decays for captured DM, which
is simply proportional to the number of DM particles in the WD available for decay at any
given instance. In the transit scenario (4.20), this rate is I' ~ Ty T ansts. In the capture
scenario, this number is instead determined by the thermalization time within the WD
I~ Teapta, conservatively assuming that after a thermalization time, the DM quickly
collapses and stabilizes to an “inert” core incapable of further decay. If this is not the case,
then the captured DM decay rate is given by I' ~ 7 T capTwWD-

4.5 Dark Matter Constraints

We now constrain some generic DM candidates which will ignite a WD via one of the
processes parameterized in Section 4.4. These release SM particles that deposit their energy
and thermalize ions within a distance described in Section 4.3. First, however, we review
how WD observables constrain DM candidates capable of triggering SN.

4.5.1 Review of WD Observables

Following the discussion of [77], our constraints come from (1) the existence of heavy, long-
lived white dwarfs, or (2) the measured type Ia SN rate. The ages of WD can be estimated by
measuring their temperature and modeling their cooling over time. This has been extensively
studied, see for example [100], and it is found that typical age of an old WD is of order
~ 1 Gyr. RX J0648.04418 is one such nearby star and one of the heavier known WDs, with a
mass ~ 1.25 M, [101] and local dark matter density which we take to be p, ~ 0.4 GeV/cm?.
Of course, this is not the only known heavy WD—the Sloan Digital Sky Survey [102] has
found 204 others. The NuStar collaboration has also recently uncovered evidence for the
likely existence of heavy WDs near the galactic center [103], where the DM density is assumed
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to be much greater p, 2 10° GeV/cm?® [104]. Such heavy candidates are particularly suited
for our constraints as the energy deposit necessary to trigger SN (4.3) is a decreasing function
of WD mass. However, less dense white dwarfs are significantly more abundant in the galaxy.
Thus, even if a sufficiently massive DM is unable to trigger a violent heating event within
the lifetime of a WD, it could still ignite enough lighter WDs to affect the measured SN rate
of ~ 0.3 per century. The DM-induced SN rate is estimated using the expected number of
white dwarfs per galaxy ~ 10'° and their mass distribution [102]. Simulations indicate that
only WD masses heavier than ~ 0.85 M, will result in optically visible SN [77]. Therefore,
most of the stars exploded in this manner will be in the mass range ~ 0.85 —1 M, resulting
in weaker SN than expected of typical Chandrasekhar mass WDs.

To summarize, a bound on DM parameters can be placed if either a single explosive event
occurs during the lifetime of an observed star such as RX J0648.04418, or the SN rate due to
such DM events throughout the galaxy exceeds the measured value. Note that for low-mass
WDs dominated by photon diffusion, &pom is a strong function of WD density. The average
density for WDs is typically a factor ~ 1072 — 10! less than the central density, although
it is found that the WD density only changes by an O(1) fraction from the central value up
to a distance ~ Rwp/2 [105]. Therefore the central density is a valid approximation as long
as we consider heating events within this “modified” WD volume. For simplicity, we employ
this approach.

4.5.2 Scattering Constraints

In order to constrain a DM model with a scattering interaction, we require that it satisfy the
ignition condition (4.15). This is given in terms of an LET, which parameterizes the ability
for DM to release sufficient energy to the star in the form of SM particles. Here we consider
a DM elastic scattering off carbon ions with cross section o, 4, which has an LET:

dE )
N ~ Tion ionUege 4.30
( dx ) LET Heneaton® e

This can be expressed in terms of the cross section per nucleon o,,—see Appendix B.2 Each
elastic scatter transfers an energy of order mj,,v2,. ~ 1 — 10 MeV to the target nuclei, thus
enabling fusion reactions. Note that the stopping power of the DM in the non-degenerate
envelope is of the same form, but with the density replaced by its diminished value in this
region. It is interesting that combining the ignition condition (4.15) with the requirement

that the DM adequately penetrates the non-degenerate layer (4.14) yields a lower bound on

DM mass.
Renv penv ) 1
my > Evoom | —— —_, 4.31
X b ( >\T ) (pWD vgsc ( )

where pwp is the central density of the WD. Here R, ~ 50 km is the width of a non-
degenerate WD envelope—the density in this region pe,, is typically a small fraction ~ 1073
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of the central density [106]. We conservatively take the envelope to be composed of carbon
ions; if it were primarily hydrogen or helium, then the condition for penetration is weakened
by 4 orders of magnitude due to the reduced energy transfer and cross section for scattering.
We find that the DM must be heavier than ~ 10%® GeV to ensure an explosive transit of a
1.25 M, WD and minimal loss of kinetic energy in the non-degenerate layer. For the sake
of comparison this corresponds to a macroscopic DM mass of order ~ 20 kg.

Of course, this bound is only applicable if the energy input to the WD is solely coming
from DM kinetic energy. We may also consider DM inelastic scattering off carbon ions which
transfer more than ~ MeV per collision. Examples of such a process include baryon-number
violating interactions which can release the nucleon mass energy ~ GeV per collision. This
is similar to Q-balls, which absorb the baryon number of nuclear targets and liberate binding
energy rather than transferring kinetic energy—this interaction is examined in Section 4.6.
Note that the assumption of a “point-like” interaction requires that the physical size of the
DM is much smaller than Ay—this is sensible up to masses of order ~ 10*" GeV, at which
point the gravitational radius of the DM exceeds Ar.

In Figure 4.6 we constrain the DM elastic scattering cross section per nucleon oy, as a
function of DM mass m,, using the different classes of observables described above. Note that
the scattering cross sections constrained here are incredibly large > 1071 cm?—however, the
constraints from WDs reach to very large masses for which no other constraints exist. At
these masses, the most stringent limits on DM elastic scattering are from CMB and Lyman-
« spectrum analysis [107], which constrain %’Z < lg;f/b. These cross sections also require
that the DM involved be macroscopically large, of order or larger than the trigger size, and
so the interaction is decidedly not “point-like.” This fact does not weaken our constraints,
however, since the energy transferred to each ion in the DM’s path is greater than ~ MeV.

4.5.3 Collision and Decay Constraints

In order to constrain a DM model through its annihilations or decays within a WD, we
require that it satisfy the ignition condition (4.18). Consider a single annihilation or decay
with foy = 1 that releases a spectrum of SM particles. As shown in Section 4.3, the constraint
has minimal dependence on the released species if the typical energy € of secondary products
is greater than an MeV. In the case of neutrinos, we may simply demand that € is sufficiently
large that a single neutrino can ignite the star. With this schematic for the DM interaction,
we can constrain the cross section for collision oy, and lifetime 7,,. This is done in Figures 4.7
and 4.8 in the case of transiting DM using the different classes of observables for DM-DM
collisions and DM decays, respectively.

Of course there are existing limits on DM annihilations and decays, complementary to
the ones placed from WDs. DM annihilations/decays inject energy and affect the ionization
history of our universe, which can be probed by measurements of the CMB temperature
and polarization angular spectrum [110, 108, 109]. These constraints are of order o,,v <

10727 C‘:3 (15°esy) for annihilations, and 7, > 107 Gyr for decay. There are also constraints
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on DM annihilation/decays in our halo from the cosmic ray (CR) flux seen in large terrestrial
detectors. Here we provide a crude estimate of the expected constraints from CRs in the
case of DM annihilation (decays are qualitatively similar). A more detailed analysis is
beyond the scope of this work. The Pierre Auger Observatory [111] has detected the flux
of By, ~ 101 GeV cosmic rays with an exposure of order Apy ~ 40000 km? sr yr. Ultra-
heavy DM annihilations m, > 10'® GeV will generally produce secondary particles of energy
€ 2 Ey, via final-state radiation. For a simple 2-2 process (e.g. xx — qq), the expected
number of final-state particles radiated at E;, due to QCD showers is approximated by the
Sudakov double logarithm

4o
Nyad ~ — log< X )log (ﬂ) ~ 100, (4.32)
s E

Aqep th

where ay is the QCD coupling constant. Similarly, the estimated number of final-state
particles at Ey, due to EW showers is ~ 50. We expect that CRs at this energy originating
in our galaxy will be able to strike the earth unattenuated. Thus, such events would affect
the measured CR flux of Pierre Auger unless

2
R alo
<P_X) O-XXU%Nrad X APA S 1. (433)

My

Here we assume an average value for DM density p, =~ 0.4 GeV/cm?® as a reasonable approx-
imation to the integral over our galactic halo volume. Surprisingly, the above CR constraints
are (within a few orders of magnitude) comparable to the constraints due to the observation
of long-lived WDs. This is actually due to a coincidence in the effective “space-time vol-
umes” of the two systems. A terrestrial CR detector such as Pierre Auger sees events within
a space-time volume (R% , Rpalo X taet), Where Rgeq ~ 50 km, Rpa10 ~ 10 kpe, and t4e ~ 10 yr.
This is similar in magnitude to the WD space-time volume (R X Twp)-

In the case of captured DM, we show the constraints on o, and 7, assuming a benchmark
value of the elastic scattering cross section o,, = 1073 cm?. With regards to DM-DM
collisions, we also assume a stabilizing radius for the collapsing DM sphere. This is done in
Figures 4.9 and 4.10—for simplicity, here we only show the constraints from the existence of
nearby, heavy WDs.

It is important to note that there is a large parameter space in o, which will lead to DM
capture, thermalization, and core collapse in a WD. This is depicted in Figure 4.11, along
with the existing constraints on DM elastic scattering. As detailed in [112], direct detection
experiments such as Xenon 1T [113] are only sensitive to DM masses m,, < 10'7 GeV. For
even larger masses m, < 10?® GeV there are constraints from the MACRO experiment [114]
and from ancient excavated mica. The latter has been studied in [115]. We have similarly
estimated the bounds from MACRO assuming a detectable threshold of ~ 5 MeV /cm [114].
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4.6 Q-balls

Having derived constraints on generic models of ultra-heavy DM, we turn towards a concrete
example. In various supersymmetric extensions of the SM, non-topological solitons called
Q-balls can be produced in the early universe [116, 117]. If these Q-balls were stable, they
would comprise a component of the DM today. For gauge-mediated models with flat scalar
potentials, the Q-ball mass and radius are given by

Mg ~msQ*", Rg~mg'Q"", (4.34)

where mg is related to the scale of supersymmetry breaking, and @) is the global charge of the
Q-ball—in our case, baryon number. The condition Mq/Q) < m, ensures that the Q-ball is
stable against decay to nucleons. The interaction of relic Q-balls with matter depends on its
ability to retain electric charge [118]. We restrict our attention to electrically neutral Q-balls,
which induce the dissociation of incoming nucleons and in the process absorb their baryonic
charge. During this proton decay-like process, excess energy of order Agcp is released via
the emission of 2-3 pions. We assume that for each Q-ball inelastic collision, there is equal
probability to produce 7% and 7% under the constraint of charge conservation. The cross
section for this interaction is approximately geometric

o ~ TRy, (4.35)

and thus grows with increasing (). Note that a sufficiently massive Q-ball will become a
black hole if Ry < GMg. In the model described above, this translates into a condition
(My1/ms)* S Q.

We now determine the explosiveness of a Q-ball transit. This process is described by a
linear energy transfer

dE
(—) ~ Nion0QNrE, (4.36)
dzr ) gy

where the nuclear interaction results in N, ~ 30 pions released, each with kinetic energy
€ ~ 500 MeV. These pions induce hadronic showers which terminate in low-energy hadrons
that rapidly transfer their energy to ions via elastic scatters, as discussed in Section 4.3.
The pions have a heating length Xy.q < Ar; however, we will see the Q-ball has a finite size
Rg 2 Xhaa in the region we are able to constrain. So, as mentioned in Section 4.4, we take
the heating length to be Ly ~ Rg + Xnaqa ~ Rg. The ignition condition is then given by
equations (4.15) and (4.36):

1 Evoom Ro \° 1
R% > =1 . 4.37
™ Nion Ar maX{ Ar’ } (10 GeV) (4.37)

2

This implies og = 107! ¢m? is sufficient to ignite a 1.25 M, WD, which corresponds to a
charge @ 2 10*? (mg/TeV)*. Note that for sufficiently large @, the radius will grow larger
than Ap. This situation still results in ignition, however, as the energy ~ 10 GeV released
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per ion is much larger than the ~ MeV needed per ion for fusion. Note finally that the Q-ball
interaction described above results in minimal slowing for Q-balls this massive, so transits
will easily penetrate the non-degenerate WD envelope (4.14).

The existing limits on Q-balls primarily come from Super-Kamiokande and air fluores-
cence detectors of cosmic rays (OA, TA) [119]. However, the constraints that come from
considering the ignition of WDs are in a fundamentally new and complementary region of
parameter space. These are plotted in Figure 4.13. We have also included the constraints
that result from gravitational heating of a WD during a Q-ball transit, as in [77].

4.7 Discussion

The detection of ultra-heavy DM is an open problem which will likely require a confluence of
astrophysical probes. Here we present a guide to constraining these candidates through DM-
SM scatters, DM-DM annihilations, and DM decays inside a WD that release sufficient SM
energy to trigger runaway fusion. In particular, we calculate the energy loss of high-energy
particles due to SM interactions within the WD medium and determine the conditions for
which a general energy deposition will heat a WD and ignite SN. Ultra-heavy DM that
produces greater than 10'® GeV of SM particles in a WD is highly constrained by the
existence of heavy WDs and the measured SN rate. The formalism provided will enable
WDs to be applied as detectors for any DM model capable of heating the star through such
interactions. We have done so for baryonic Q-balls, significantly constraining the allowed
parameter space in a complementary way to terrestrial searches.

We have explored briefly the application of this WD instability to self-gravitational col-
lapse of DM cores, which has very interesting possibilities. The decay or annihilation of DM
which is captured by a WD and forms a self-gravitating core is highly constrained for DM
with mass greater than 10'® GeV. In addition, such collapsing cores can provide enough
heating via multiple annihilations to ignite the star for much smaller DM masses than those
considered here, e.g. 107 GeV, and can induce SN through other means such as the formation
and evaporation of mini black holes. These will be addressed in future work [99].

Finally, in addition to the constraints mentioned above, the general phenomenology of
these DM-induced runaways will be the ignition of sub-Chandrasekhar mass WDs, possibly
with no companion star present. Some of the mechanisms considered above are also likely
to initiate fusion far from the center of the star. This is in contrast with conventional single-
degenerate and double-degenerate mechanisms, which require a companion star and ignite
fusion near the center of a super-Chandrasekhar mass WD [78]. This raises the tantalizing
possibility that DM encounters with WDs provide an alternative explosion mechanism for
type Ia SN or similar transient events, and that these events may be distinguishable from
conventional explosions. Understanding and searching for possible distinguishing features of
DM-induced events is an important follow-up work.
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Figure 4.6: Constraints on DM-carbon elastic scattering cross section. Bounds come from
demanding that the DM transit triggers runaway fusion (4.15) and occurs at a rate (4.17)
large enough to either ignite a 1.25 My WD in its lifetime or exceed the measured SN rate
in our galaxy (blue shaded). We also demand that the DM penetrates the non-degenerate
stellar envelope, taken at the highest densities, without losing appreciable kinetic energy.
Constraints from the CMB /large-scale structure [107] are depicted as well.
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Figure 4.7: Constraints on DM-DM collision cross section to SM products of energy ¢ >
MeV. Bounds come from demanding that the DM transit interaction triggers runaway
fusion (4.18) and occurs at a rate (4.19) large enough to either ignite an observed 1.25 M
WD in its lifetime or exceed the measured SN rate in our galaxy (blue shaded). Also shown
are the CMB [108] (red) and CR flux (black) constraints on DM annihilations.
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Figure 4.8: Constraints on DM decay to SM products of energy € > MeV. Bounds come
from demanding that the DM transit interaction triggers runaway fusion (4.18) and occurs
at a rate (4.20) large enough to either ignite an observed 1.25 My WD in its lifetime or
exceed the measured SN rate in our galaxy (blue shaded). Also shown are the CMB [109]
(red) and CR flux (black) constraints on DM lifetime.
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MeV, assuming DM is captured with an elastic scattering cross section o,, = 107% cm?.
Bounds come from the observation of 1.25 M, WDs in local DM density. We consider the
annihilation rate during the in-falling thermalization stage (4.27) (blue shaded) and during
self-gravitational collapse (4.28) to a stable radius 7 = 107° cm (green shaded). See text

for details.
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Figure 4.10: Constraints on DM decay to SM products of energy € > MeV, assuming DM
is captured with an elastic scattering cross section o, = 10732 ¢cm?. Bounds come from the
observation of 1.25 M, WDs in local DM density. We consider the rate of decays during the
in-falling thermalization stage (blue shaded) and for a decaying DM core (green shaded).
See text for details.
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Figure 4.11: Viable parameter space (above the black line) in which DM-nucleon elastic
scattering leads to DM capture in a 1.25 M, WD. All of this space is subject to constraints
on DM decay and DM-DM annihilation analogous to those given in Figures 4.10 and 4.9.
Note the blue region, reproducing Figure 4.6, indicates DM which causes SN via elastic
heating. We also indicate here estimates of the scattering constraints from cosmology, direct
detection, MACRO, and ancient mica [115].
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Figure 4.12: Interaction of a baryonic Q-ball with a nucleus A. The Q-ball destroys the
nucleus and absorbs its baryonic charge, while the excess energy is radiated into roughly A
outgoing pions of energy Aqcp.
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Figure 4.13: Constraints on Q-ball DM. Bounds come from demanding that the Q-ball
interaction during a DM transit is capable of igniting WDs, occurring at a rate large enough
to either ignite a single observed 1.25 M, WD in its lifetime (WD in local DM density is
blue shaded) or exceed the measured SN rate in our galaxy. Also shown is the corresponding
constraint from gravitational heating of WDs (orange shaded), and existing limits from
terrestrial detectors (red) [119].
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Appendix A

Appendices relating to Chapter 2

A.1 Estimate of the axion-induced fields

In this appendix we estimate the magnitude of the axion-induced fields, assuming a simple
geometry for the production cavity and toroidal conversion region. From the expressions for
the axion source field (2.6) and effective current (2.9), the axion-induced magnetic field at a
detection point 7 is generally of the form:

. 2
Bo(i) = 129 gien / iy / i (A1)
(4m) pe r

. L 1 iw efiw)\ 6ika\ff§’\ L

Here the integration ¢ is taken over the volume of the production cavity, Z is over the volume
of the conversion region, and X = (7"— &) is the separation vector between points in the toroid
and a detection point 7. The time-dependent .J.g has been evaluated at the retarded time
t. =t — A (A.1) also uses the approximation that the axion-induced fields fully propagate
outside of the toroid, as expected for quasistatic frequencies. B, lies in the poloidal direction
and has an amplitude:

zZ- Ba - w2 5(7#)7 (A2>

where the dimensionless form factor § contains information about the choice of cavity modes,
etc.

First we specify the dimensions involved. Consider a circular cylindrical cavity (“pill-
box”) of radius a and height h. The resonant frequencies are

-Gy () o
() (5
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for TM,,,, and TE,,, modes respectively, where z,,, and x’np are the pth roots of the nth
order Bessel function J,(z) and its derivative J/ (z) [120]. Setting a = h/2 = 10 cm ensures
resonant, frequencies of order ~ GHz for low-lying modes, typical of SRF cavities.

Next consider a toroid of inner radius R and rectangular cross section of height and width
R. We take the cylindrical cavity to be aligned axially with the toroid, with a minimal
separation distance of (h+ R)/2. Though this should be gapped toroid, we can approximate
the static field contained inside the toroidal volume as

By(r) = By <§> 9, (A.4)

for r € [R,2R] where r is the cylindrical radial distance from the center. If we require the
toroid size saturates the quasistatic limit Rw ~ 1, an economical choice for the dimension is
simply R = a.

We now consider the axion source in this setup. The source axion field is greatest when
E - B is maximal and coherent throughout the production cavity volume. Since we have
assumed a cylindrical cavity with no external field, it is necessary to drive multiple modes
to ensure a non-vanishing (E . E)w The choice of these modes is not obvious and requires
care even in this simple setup.

To demonstrate an ill-advised choice consider the TMg19 and TM;;; modes which results
in (E-B),, o sin (7z/h) sin(¢). Note that the integral of (E-B),, vanishes over z € [—h/2, h/2]
of the production cavity. This z-dependence is in fact a general feature of any cylindrical
cavity modes chosen, but it is not detrimental as we are operating in the near-field regime.
Rather, TMg;o and TM;i; represents a poor choice of modes because of the ¢ dependence—
the sourced axion field will be purely harmonic in the azimuthal angle, and thus would
integrate over the toroid to give a highly suppressed signal field near the center. This
cancellation is essentially a consequence of the symmetry and alignment of the cylindrical
setup and is easily avoidable. One potential solution is to place the production cavity in a
position off the axial axis. Another is to modify the toroid wiring so ]§0 also varies with the
azimuthal angle while still being effectively confined. One can also select cavity modes such
that (E - B),, is not purely harmonic in ¢: the lowest-lying combination of cylindrical modes
which yields this angular behavior is the TM;;; and TE;;; modes.

In any case, we can estimate a reasonable upper limit to § in (A.2) by postulating a
perfectly uniform E-B throughout the production cavity volume. Taking this optimal
axion source, we numerically find that g is roughly constant for points in the center of the
toroid:

Boptimal & 7 - 1072, z=0andr <R. (A.5)

Here we have also taken the limit in which the mass is negligible, m, < w. At masses
me 2 w, there is the usual exponential drop-off from producing off-shell axions. If we instead
use a perhaps more realistic axion source by driving the TM;;; and TE;;; combination, we
numerically find that Breanstic =~ 41074, again roughly constant near the center of the toroid.

In summary, we expect the form factor § can in principle be made O(0.1) in any suitably
engineered designs. As discussed, it is important to determine a suitable geometry and
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choice of modes to be driven in the SRF production cavity, as a poor choice could lead to a
significant suppression of the signal fields.

A.2 A toy model for screening

We ultimately rely on the quasistatic approximation in assuming the axion-induced fields
propagate O(1) out of the gapped toroid, similar to [30]. This limits the size of the toroid
to be less than or of order the inverse frequency of the axion. However it is important
to understand the degree to which the fields outside the toroid are suppressed at larger
frequencies or larger toroid size. This is a complicated boundary-value problem and a full
study would require a detailed numerical computation which is outside the scope of this
work. We will demonstrate here the power-law nature of this suppression.

To gain some intuition, consider an electromagnetic field of frequency w impinging on
a perfect conducting sheet. If the conductor is infinitely large, then the incoming field is
reflected and vanishes on the far side of the conductor (i.e., metals are shiny). An anal-
ogous behavior holds for fields sourced inside of a region bounded by a closed conducting
surface—the field is exactly screened outside (i.e., phones do not work in elevators). The
common feature is that the conductors lack a boundary. We thus expect incident fields to be
suppressed, but not exactly screened, outside of a large yet finite conductor with a definite
boundary. This will occur when the conductor size H is much larger than the wavelength
w L.

Now suppose the conductor is small relative to w=!. This is just the quasistatic limit, so
we may asses the conductor’s response by considering its response to a static field. In this
familiar situation, the field will induce charges and currents on the surface of the conductor
in order to screen the bulk. It is clear that the boundaries play an important role in this
limit. For example, a conducting block in a static electric field will develop a screening
charge density on the boundary, which modifies the net external field but does not result in
a parametrically small external field. For wH < 1 we therefore expect the field on the far
side of the conductor to only differ from the incident field by O(1) factors.

We study here a toy model of electromagnetic fields incident on a finite cylindrical con-
ductor. The parametric effects of screening can be sensibly extracted in the high-frequency
limit, and we find the magnitude of external, detected fields are only power-law suppressed
compared to the internal fields. The physical mechanism underlying this suppression, as
summarized in Sec. 2.3.3, is expected to hold generically in varied geometries.

Consider a perfectly conducting cylinder of height H and radius R. More precisely,
take this to be a tube of negligible thickness separating an inner and outer cylindrical wall.
Suppose there is an EM field (Ea, Ea) = (E.2, Bagzg), sourced by an infinite line of current
I,e™“'2 “in the throat” of the cylinder. This is labelled suggestively in analogy to fields
sourced by the axion interaction with a static magnetic field, although for simplicity we
assume a spatially uniform I,. We specifically examine the limit of a thin cylinder and take
R ~ w™' <« H, which is of course well beyond the quasistatic approximation. Here the fields
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Figure A.1: Screening of EM fields (Ea, éa) sourced inside a finite cylindrical wall. In the
high-frequency limit, the conductor response results in charge buildup ¢ on the edges and
a configuration of screening currents I, I, on the inner and outer surfaces. These in turn
determine the fields (Edet, gdet) detected outside the cylinder.

radiated by [, are cylindrical plane waves, with approximate magnitudes:

1/2

E,(r) ~ By(r) ~ wl,e™" (i) , R<r<H. (A.6)
These source fields will be compared to the detected fields (Edet, gdet) at a point r ~ H
outside the cylinder. This is depicted in Fig. A.1. From here on, we restrict our attention to
the behavior of fields in the region R < r < H, extending from the cylindrical surface to the
detection point. We will also ignore any contributions to the fields due to the source wire
1, “sticking out” the ends, since this finite cylinder is intended to resemble an “unwrapped”
version of our gapped toroid.

To determine the detected fields, the conductor response is paramount. Boundary con-
ditions dictate that the electric and magnetic fields vanish in the thickness of the cylinder,
and the z-component of the electric field vanishes on the surface. Importantly, for a finite
cylinder the inner and outer surfaces are connected, so that the current established on the
inner wall is communicated in some form to the outer wall. This communication, and the de-
tected fields that result, can be estimated by approximately satisfying boundary conditions
as follows:

Firstly, I, drives a screening current I, on the inner walls in order to cancel the source
fields. By continuity, there is then necessarily a charge buildup +Qe™! at the top and
bottom edges of the cylinder, respectively. We will not attempt to explicitly satisfy boundary
conditions near these edges (which involves complicated fringe effects). Instead, we will
consider the effects of this charge on the rest of the cylinder at locations far from the edges—
that is, H/2 — |z| > R, where z = 0 corresponds to the vertical center of the cylinder. Here
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the oscillating rings of charge at z = +H/2 appear as points and produce an electric field
on the cylinder surface:

2. Eg(R, 2) ~ Qe

e~ (1 + iwz e~ Wi (1 + jwz_
(i) ) o
25 2z
where 2. = H/2 + z. Up to a phase, this is approximately
iwt
5 Eo(R, 2) ~ % cos(wz). (A.8)

To continue satisfying boundary conditions, this field must now be canceled. Therefore,
a “back-reaction” current I, must be set up on the cylinder walls, chosen to cancel EQ.
Numerically, we find that a current of the form Iy, (z) ~ I, cos(wz) sources electric fields
with the necessary sinusoidal behavior:

[breiwt
H/2 — |7
We can ensure that this back-reaction does not also violate the previously satisfied boundary
conditions by taking I, to flow in the same same direction on both inner and outer walls.
It is notable that near the center of the cylinder, (A.9) vanishes as the height increases
H — oco. Such a scaling can be understood by considering a cos(wz) current on the surface
of an infinitely tall cylinder. In that case, the z-component of the electric field exactly
vanishes as there is a cancellation between the field sourced by the current and the field
sourced by stripes of charge which are present due to charge continuity. This cancellation is
weaker near the edges of a finite cylinder, leading to larger 2 - E}, there.

The above charges/currents must be self-consistent. The initial screening current I, on
the inner wall, charge buildup @ on the edges, and back-reaction currents [, on both walls
here are related by charge continuity:

dQ

—r = iwQ ~ L — 2, (A.10)

where the factor of 2 accounts for the fact that I, flows in the same direction on both
walls. Since the cylinder is tall and thin, we can invoke the infinite-cylinder solution to
approximately cancel the source fields, and thus we take I, ~ I, on the inner surface.
Comparing (A.8) and (A.9), to cancel the fields produced by the charge buildup requires
back-reaction currents of order I, ~ w(@. These currents, taken together, then approxi-
mately satisfy boundary conditions everywhere away from the edges. Now further demand-
ing the constraint of continuity (A.10), we find the charge buildup should be @ ~ I, /w, and
therefore the back-reaction currents are of order I, ~ I, cos(wz). The z-component of the
back-reaction field is parametrically smaller than the source field (A.6) on the surface:

2 En(R, 2)
E.(R,2)

2 En(R,2) ~ cos(wz). (A.9)

~(WwH) <1, (A.11)
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This is consistent with our use of the infinite-cylinder solution for the inner screening current
I ~ 1.

To summarize, we have found there are additional currents Iy, ~ I, cos(wz) on the inner
and outer cylinder surfaces, arising from the need to satisfy boundary conditions in the
presence of charge build-up. These are inevitably of the same order as the source current,
but with a crucial spatial modulation. Based on these currents, we estimate the detected
fields at a point » < H (and near z ~ 0) outside the cylinder:

- , 1 1
Eqet(r, 2) ~ I, cos(wz)e™" (—f + 73) ,
r

H+r
— '[CL . A~
Bt (1, 2) ~ = cos(wz)e™" . (A.12)
r

The fields radiated by the oscillating charges on the cylinder edges are of this same magni-
tude.

The charge buildup and back-reaction currents thus propagate fields outside the cylinder.
Importantly, the magnitudes of these fields (A.12) fall off as r—!, faster than the r~/2 behav-
ior of the source fields (A.6) that would be seen if the conductor were not present. Comparing
these, we see the magnitude of the external, detected field is power-law suppressed:

Buet/Ba ~ (wH)? < 1. (A.13)

This is fundamentally because the fields radiated by a modulated, multipolar current decay
more rapidly than the fields from a spatially uniform current.

Lastly, we briefly comment on the low-frequency behavior of our toy model. The spatially
modulated current distribution we had found on the surface is a consequence of modulated
fields from non-negligible charge buildup—this feature, however, is only present at sufficiently
high frequencies. In the opposite limit R, H < w™!, the analogous secondary fields from
charge buildup are uniform across the cylinder surface and drive an unmodulated current
that results in equal and opposite currents flowing on the inner and outer surfaces. This is
the familiar quasistatic result in which no screening occurs and a uniform current loop is
established, as in the operation of a cryogenic current comparator [121].
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Appendix B

Appendices relating to Chapter 4

B.1 Particle Stopping in a White Dwarf

Here we provide a more detailed analysis of the stopping power (energy loss per distance
traveled) of high-energy SM particles in a carbon-oxygen WD due to strong and electromag-
netic interactions. We consider incident electrons, photons, pions, and nucleons with kinetic
energy greater than an MeV.

B.1.1 WD Medium

For the WD masses that we consider, the stellar medium consists of electrons and fully-
ionized carbon nuclei with central number densities in the range n, = Znjon ~ 103" —
1033 cm™ where Z = 6. The internal temperature is 7' ~ keV [106]. The electrons are a
degenerate and predominantly relativistic free gas, with Fermi energy

Ep = (37%*n,)"/® ~ 1 — 10 MeV. (B.1)

The carbon ions, however, are non-degenerate and do not form a free gas. The plasma
frequency due to ion-ion Coulomb interactions is given by

p =
Mion

4 ionZ2 12
Q, = (M) ~1—10 keV, (B.2)

where mj,, is the ion mass. Finally, the medium also contains thermal photons, though these
are never significant for stopping particles as the photon number density n., ~ T° is much
smaller than that of electrons or ions.

B.1.2 Nuclear Interactions

Elastic Scattering of Hadrons. Hadrons with energy less than the nuclear binding en-
ergy Fpu. ~ 10 MeV will predominantly stop due to elastic nuclear scatters with ions. These
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are hard scatters, resulting in a stopping power

dE
22 fionGal ( m ) E (B.3)

dl‘ ion

for a hadron of mass m < mj,, and kinetic energy E. o, is the elastic nuclear scattering
cross section, which is of order oo ~ b at these energies and drops to g, ~ 0.1 b above

10 MeV [122], ignoring the nontrivial effect of nuclear resonances in the intermediate regime
1 —10 MeV.

Inelastic Scattering of Hadrons. For energies above E,,., the stopping of hadrons is
dominated by inelastic nuclear scatters. In such a collision, an incoming hadron interacts with
one or more nucleons to produce a O(1) number of additional hadrons which approximately
split the initial energy. At incident energy greater than ~ GeV, the majority of secondary
hadrons are pions with transverse momenta ~ 100 MeV [122]. Below ~ GeV, it is found that
roughly equal fractions of protons, neutrons, and pions are produced in each collision [123].
We will thus have a roughly collinear shower terminating at an energy ~ 10 MeV which
consists of pions for most of the shower’s development and converts to an mix of pions and
nucleons in the final decade of energy. This cascade is described by a radiative stopping
power

dFE
% ~ nionainelEa (B4)

where the inelastic nuclear cross section is given by o, &~ 100 mb and roughly constant in
energy [122]. The total length of the shower is only logarithmically dependent on the initial

hadron energy FE,
1 FE
Xpag ~ ——1 ) B.5
had NionOinel °8 (Enuc) ( )

Photonuclear Interactions. Photons of energy greater than 10 MeV can also strongly
interact with nuclei through the production of virtual quark-antiquark pairs. This is the
dominant mode of photon energy loss at high energy. The photonuclear scatter destroys the
photon and fragments the nucleus, producing secondary hadrons in a shower analogous to
that described above. The photonuclear cross section o, 4 is roughly given by 0,4 & aoinl,
again ignoring the nuclear resonances that occur for E < GeV [122]. For E 2 GeV, 0.4 is
likely a slowly increasing function of energy due to the coherent interaction of the photon over
multiple nucleons [124], however, instead of extrapolating this behavior we conservatively
take a constant photonuclear cross section 0,4 ~ 1 mb.

Electronuclear Interactions. Electrons can similarly lose energy to nuclei by radiating
a virtual photon that undergoes a photonuclear scatter, which indeed provides the dominant
energy loss for high energy electrons. The cross section for this process is roughly given by
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the photonuclear cross section, scaled by a factor representing the probability to radiate such
a photon. This can be estimated with the Weizsacker-Williams approximation, which gives
a stopping power that is suppressed from the photonuclear result by a but enhanced by an
O(10) logarithmic phase space factor [124]:

dE

E
% ~ niono-’YAE IOg (m_) : (BG)

e

Unlike the photonuclear interaction, the electronuclear event is a radiative process that
preserves the original electron while leaving hadronic showers in its wake.

B.1.3 Radiative Processes

Electromagnetic showers due to successive bremsstrahlung and pair production events off
carbon ions are the dominant stopping mechanisms for intermediate-energy electrons and
photons. Both of these processes result in radiative stopping powers, derived semi-classically
as [125]

dE F

dr X0’
X is the well-known radiation length, and log A is a Coulomb form factor given by the range
of effective impact parameters b:

3
-1 _ 2 &
X, =4nin”Z ﬁlog/\. (B.7)

e

bmax
A = Jmax (B.8)

bmin

The maximal impact parameter is set by the plasma screening length (see B.1.4) and the
minimum by the electron mass, below which the semi-classical description breaks down.
Note that for the highest WD densities A < 1, in which case (B.7) ought be replaced by a
fully quantum mechanical result as in [126]. This still results in a radiative stopping power,
and so for simplicity we employ (B.7) with log A ~ O(1) for all WD densities.

LPM Suppression A radiative event involving momentum transfer ¢ to an ion must,
quantum mechanically, occur over a length ~ ¢~!. All ions within this region contribute
to the scattering of the incident particle, and for sufficiently small ¢ this results in a de-
coherence that suppresses the formation of photons or electron-positron pairs. This is the
“Landau-Pomeranchuk-Midgal” (LPM) effect. The momentum transfer ¢ in a given event
decreases with increasing incident particle energy, and so the LPM effect will suppress ra-
diative processes for energies greater than some scale Eyppy. This can be calculated semi-
classically [125],

2
m:Xoo

ELPM = (Bg)

1 32 -3
~ 1 MeV (O_m) .

Nion
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which is quite small due to the high ion density in the WD. The stopping power for
bremsstrahlung and pair production in the regime of LPM suppression £ > FEypy is

df FE (ELPM

1/2
= E > Eipu. B.10
dr X, \ FE ) LPM (B.10)

In addition to the LPM effect, soft bremsstrahlung may be suppressed in a medium as the
emitted photon acquires an effective mass of order the plasma frequency €2,. However, for
high-energy electrons this dielectric suppression only introduces a minor correction to (B.10),
in which soft radiation is already suppressed [125].

B.1.4 Elastic EM Scattering

Electron Coulomb Scattering off Ions. Coulomb collisions with ions are the mechanism
by which electrons of energy 1 — 10 MeV ultimately thermalize ions. In this scenario we may
treat the ions as stationary and ignore their recoil during collisions. The nuclear charge
will be screened by the mobile electrons of the medium, so incident particles scatter via a
potential

Z
Vi(r) = 286/, (B.11)
r
The screening length Arp is given in the Thomas-Fermi approximation by [127]:

Er 1

6ran. ok

(B.12)

This plasma screening suppresses scatters with momentum transfers below ~ )\E}, corre-
sponding to a minimal energy transfer of Wy, = Ape/2mion. lons may in principle also cause
screening through lattice distortion, however this may be ignored as the sound speed of the
lattice ¢, ~ 1072 is much smaller than the speed of an incident relativistic electron. From
the Born approximation, the cross section for energy transfer w is

do B o2r 7202 1

B ; B.13
dw  Mionv?, (W + Wiin)? ( )
where vy, is the incident velocity. Thus the stopping power is
dE / e do
—-— = dw njon—w
dz 0 dw
2 ionZ2 2 max
o S0 ? B g (“ ) (B.14)
MionVj, Wmin

where the second line is valid if Wyax > Wiin. Wmax 1S the maximum possible energy transfer.
This may be due to 4-momentum conservation, or in the case of incident electrons, the
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impossibility of scattering to a final energy less than Er. 4-momentum conservation sets an
upper bound wy;,, which for a stationary target is

2Tnionp2
+m2 4+ 2Emio,

Wkin = B.15

", 1)
with p, F the incoming momentum and energy. The Fermi upper bound is wp = E' — Ef so
for incident electrons we take wpax = min {wyin, wWe -

For scatters that transfer energy less than the plasma frequency €,,, one may be concerned
about phonon excitations. This occurs for incident electrons with energy below ~ 10 MeV.
We estimate this stopping power treating each ion as an independent oscillator with frequency
(2, (an Einstein solid approximation) and compute the stopping power due to scatters which
excite a single oscillator quanta. There are two key differences between this and the free
ion case: incident particles must transfer an energy €2,, and the cross section to transfer
momentum ¢ is suppressed by a factor ¢*/ 2Mion Yy = Whee/Sdp. Whee 18 the energy transfer
that would accompany a free ion scatter with momentum transfer q. The resulting stopping
power is unchanged from the free case (B.14), as the increased energy transfer compensates
for the suppressed cross section.

As electrons transfer their energy at the rate (B.14), they occasionally experience a hard
scatter with mean free path

2,2
p Uin
TNion 2 2002

)‘hard =~ (B16)

For sufficiently small incident energies, the electron experiences several hard scatters before
it has deposited its energy by elastic scatters, and the stopping length is reduced by the
resulting random walk. This effect is not significant for incident pions due to their larger
mass.

Finally, we note that for highly energetic incident particles the cross section (B.13) should
be modified to account for the recoil of the ion. However, at such energies the dominant
stopping power will be from hadronic or electromagnetic showers anyway, so we do not
include these recoil effects.

Relativistic Coulomb Scattering off Electrons. The scattering of incident electrons
off degenerate electrons determines the termination energy of electromagnetic showers. This
calculation demands two considerations not present when scattering off ions: the targets are
not stationary and they require a threshold energy transfer in order to be scattered out of the
Fermi sea. However for relativistic incident particle, with momentum p > pp, the stopping
power off electrons is ultimately of the same form as the stopping power off ions (B.14). In
this limit, all particle velocities and the relative velocity is O(1), and the deflection of the
incident particle will generally be small. It is reasonable then that scattering proceeds, up to
O(1) factors, as though a heavy incident particle is striking a light, stationary target. The
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cross section is given by the usual result,

do N 2ra? 1
do =~ Ep w?

(B.17)

where we have accounted for the target’s motion by replacing its mass with its relativistic
inertia &~ FEp. This is equivalent to a boost of the cross section from the rest frame of
the target into the WD frame. Note that plasma screening can be ignored in this case, as
Pauli-blocking will provide a more stringent cutoff on soft scatters. Scatters which transfer
an energy w < Fp will have a suppressed contribution to the stopping power as they can
only access a fraction of the Fermi sea. In this limit it is sufficient to ignore these suppressed

scatters:
dFE / Wmax do
= dw ne—w

% - Ep dCL)
2 near® w
~ | max B.18
= og( - ) (5.15)

where, as described above, wyax = min{wyin, wr}. This derivation is admittedly quite heuris-
tic, and so it has been checked with a detailed numerical calculation accounting fully for the
target’s motion and degeneracy. Equation (B.18) is indeed a good approximation to the
stopping power for incident energies larger than the Fermi energy.

Non-Relativistic Coulomb Scattering off Electrons For non-relativistic incident par-
ticles, the Coulomb stopping off electrons becomes strongly suppressed due to degeneracy.
Stopping in this limit appears qualitatively different than in the typical case—the slow inci-
dent particle is now bombarded by relativistic electrons from all directions. Note that only
those scatters which slow the incident particle are allowed by Pauli-blocking.

As the electron speeds are much faster than the incident, a WD electron with momentum
pr will scatter to leading order with only a change in direction, so the momentum transfer
is |q] ~ pr. We again take the incident momentum p 2 pg, which is valid for all incident
particles we consider. This results in an energy transfer
» -9’

-~ |~ v, Ep. B.19
2m 2m ViR ( )

For v, < 1 the energy transfer is less than Fermi energy, so Pauli-blocking will be important.
The incident particle is only be able to scatter from an effective electron number density

Ep w

Neff = / g(E) dE ~ 3n.—, (B.20)
Er—w Ef

where g(F) is the Fermi density of states. At leading order the electron is not aware of the

small incident velocity, so the cross section is given by relativistic Coulomb scattering off
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a stationary target o ~ a?/q* [128]. The incident particle thus loses energy to degenerate
electrons at a rate:

dE a?

— ~ Neff O W~ N5, B.21

at ~ e Er (B:21)
Note that this includes a factor of the relative velocity which is O(1). As a result, the
stopping power is parametrically

dE 1 dE o?
dx Vip dit Er
As above, this heuristic result has been verified with a full integration of the relativistic cross
section.
We can compare (B.22) to the stopping power of non-relativistic, heavy particles off

roughly stationary, non-degenerate electrons £ ~ neﬁ, which is the familiar setting

dx
of stopping charged particles in a solid due to ionization [129]. Evidently, the analogous

stopping in a WD is parametrically suppressed by v3 m./Er. One factor of vy, is due to
Pauli blocking, while the other factors are kinematic, due to the relativistic motion of the
targets.

Compton Scattering Compton scattering off degenerate electrons is the dominant in-
teraction for photons of incident energy £ < Er. As we will show, this stopping power is
parametrically different from that of high-energy photons due to Pauli-blocking and the mo-
tion of the electron. For k > Ep, the effect of Pauli-blocking is negligible and the stopping

power is simply:
dk n, k
AR LTS P (—) , (B.23)
m

where again we have (partially) applied the heuristic m, — Ef replacement to boost the
usual result for stationary electrons while avoiding divergence at the Fermi energy. This,
along with the low-energy estimate below, matches a full integration of the relativistic cross
section well.

We now turn to the regime of interest, k < Er. Only those electrons near the top of the
Fermi sea are available to scatter, so the photon interacts with only the effective electron
density (B.20). In addition, Compton scatters will only occur off electrons moving roughly
collinear with the photon momentum - a head-on collision would result in an energy loss for
the electron, which is forbidden by Pauli exclusion. In the electron rest frame these collinear
scatters are Thompson-like, and the photon energy loss is dominated by backward scatters.
For relativistic electrons near the Fermi surface, these scatters transfer an energy

m2
~kl1l-— ¢ ~ k. B.24
v ( 4E%) (B.24)
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The cross section can be taken in the electron rest frame o ~ o?/m?, along with an ‘aiming’
factor 1/4m to account for the restriction to initially parallel trajectories. This gives a
stopping power

dk_ o’n.k?

— . B.25
de  Amm?Ep ( )

B.2 Dark Matter Capture

Here we give a more detailed discussion of DM capture in a WD and its subsequent evolution.
For the remainder of this appendix all numerical quantities are evaluated at a central WD
density pwp ~ 3 x 10°E5 (njen ~ 10*' ecm™), for which the relevant WD parameters
are [94]: Mwp ~ 1.25 My, Rwp =~ 4000 km, and ve. &~ 2 x 1072, Depending on the context,
the relevant density may be the average value which we take to be ~ 103 cm™3. We also

assume an average value of the WD temperature Twp ~ keV.

B.2.1 Capture Rate

Consider spin-independent DM elastic scattering off ions with cross section o, 4. This is
related to the per-nucleon cross section

2

rea= 4 (124) P g0 = Ao, (5.26)
Hixn

where F?(q) is the Helm form factor [130]. If the DM is at the WD escape velocity, the

typical momentum transfer to ions is ¢ ~ i, avVesc ~ 200 MeV. As this ¢ is less than or of

order the inverse nuclear size, DM scattering off nuclei will be coherently enhanced. We find

F?(q) =~ 0.1 for ¢ ~ 200 MeV.

For the DM to ultimately be captured, it must lose energy ~ m,v?, where v is the DM
velocity (in the rest frame of the WD) asymptotically far away. Since typically v < Vese,
the DM has velocity ves. while in the star and must lose a fraction (v/ves)? of its kinetic
energy to become captured. Properly, the DM velocity is described by a boosted Maxwell
distribution peaked at the galactic virial velocity vpa, ~ 1073, However, this differs from
the ordinary Maxwell distribution by only O(1) factors [98], and we can approximate it by
(ignoring the exponential Boltzmann tail):

px (2 <
% ~ My (Uﬁab) v - /Uhalo . (B27)
dv 0 U > Vhalo

The DM capture rate is given by an integral of the DM transit rate weighted by a probability
for capture P,

drtrans
Pony ~ / WP (0), (B.28)
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where the (differential) transit rate is

dFtrans dnx 2 Vesc 2
Tome At r (1) 29
dv dv WP\ oy ! ( )
P..p depends on both the average number of scatters in a WD
Nscat ~ nionaxARWDa (BBO)
and the number of scatters needed for capture
Nowy o mae 1, 720 (B.31)
cap ™ X 3 ) .
’ mionvgsc
and is most generally expressed as a Poisson sum
Neap—1 —
N7 (Nscat)n
Pap=1-— ) exp(—Noeat) 1= (B.32)
n=0
For our purposes we will approximate the sum as follows:
1 Nscat > Ncap
Pcap ~ Nscat Nscat < Ncap and Ncap = 1 . <B33>
0 else

Here we ignore the possibly of capture if Nyt < Neap except in the special case that only
one scatter is needed for capture. If Ny > Neap, we assume all DM is captured. Most
accurately, this capture rate should be computed numerically, e.g. see [131]. However with
the above simplifications we find that the capture rate is of order

Leap ~ Dirans - min {1, Nyeumin{B, 1} } , (B.34)
B E miOnsgsc .
mxvhalo

B here encodes the necessity of multiple scattering for capture. For ultra-heavy DM m, >
10* GeV, B < 1 and essentially multiple scatters are always needed.

B.2.2 Thermalization and Collapse

Once DM is captured, it thermalizes to an average velocity

TWD 11 mx _1/2
~ ~ 10 (—> , B.35
Uth My 1016 GeV ( )
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and settles to the thermal radius

Twp 12 m —-1/2
R~ (222 ) <ot e (e )
th (GmXpWD> o 1016 GeV

where its kinetic energy balances against the gravitational potential energy of the (enclosed)
WD mass. This thermalization time can be explicitly calculated for elastic nuclear scat-
ters [132]. The stopping power due to such scatters is

dFE
% ~ PWDOxA U max{v, Uion}a (B'36)

where vion ~ \/Twp/Mion is the thermal ion velocity. The max function indicates the
transition between “inertial” and “viscous” drag, as the DM velocity v slows to below ;.
DM first passes through the WD many times on a wide orbit until the size of its orbit decays
to become contained in the star. The timescale for this process is

32 R 1 1
t ~ ( M ) WD _ _ (B.37)
Mion Vese Ngear Mmax{ Ngcat, 1}1/2

3/2 oA ~3/2
~ T x 10 (L> (;) .
"\1016 GeV 10-% cm?

Subsequently, the DM completes many orbits within the star until dissipation further reduces
the orbital size to the thermal radius. The timescale for this process is

by~ ( My ) Ll (B.38)

Mion / MNionOx A Vion

—1
2104 s (i) ()
"\1016 Gev/ \10-% cm?

There is an additional O(10) logarithmic enhancement of the timescale once the DM velocity
has slowed below v;,,. Note that time to complete a single orbit is set by the gravitational

free-fall timescale:
/1
tg ~ ~ 0.5 s. B.39
! Gpwp ( )

In the above description, we have assumed that the DM loses a negligible amount of
energy during a single transit:

o 1
x4 « .
My pwp wp

(B.40)

This also ensures that the dynamics of DM within the star is that of Newtonian gravity along
with a small drag force. In the opposite regime, the qualitative evolution of captured DM
differs from the picture presented in detail below. In this case there is no stage of external
orbital motion corresponding to t;—DM will instead rapidly thermalize to a speed vy, after
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entering the star. The internal motion now proceeds as a gravitationally-biased random
walk, with a net drift of DM towards the center of the star. For sufficiently large 0,4, DM
will collect at a radius r. which is larger than ry, given above, due to a balance of gravity
with outward Brownian diffusion. This may delay the onset of self-gravitation, possibly
beyond Twp, as we now require the collection of a larger mass pwpr>. It is important to note
that the differences between the Brownian and orbital regimes are immaterial for constraints
on the decay of captured DM (e.g., Figure 4.10), which cares only about the quantity of
DM present in the star. For annihilation constraints, however, the internal evolution of
DM is quite important. For the largest unconstrained cross sections 0,4 (see Figure 4.11),
one can check that captured DM is distributed across a large fraction of the star due to
Brownian motion and does not collapse. This DM population still yields a strong constraint
on o,,, similar to but somewhat weaker than the constraints which can be placed on DM
that undergoes self-gravitational collapse after capture (e.g., Figure 4.9).

When Brownian motion is insignificant, the DM will begin steadily accumulating at Ry,
after a time t; + t2. Once the collected mass of DM at the thermal radius exceeds the WD
mass within this volume, there is the possibility of self-gravitational collapse. The time to
collect a critical number Ny, of DM particles is

tg ~ ng N PWDth
Peap My Lcap
~ 10 g < my )1/2 ( TxA )1
1016 GeV 10-% cm2/
Typically, the timescale for collapse is then set by the DM sphere’s ability to cool and shed

gravitational potential energy. This is initially just £5, while the time to collapse at any given
radius r decreases once the DM velocity rises again above vjgy:

(B.41)

teool ~ tomin{wion /vy, 1} (B.42)
GNm
Uy ~ . X

where N is the number of collapsing DM particles. Note that when m, > 10*' GeV, the
number of particles necessary for self-gravitation Ny, as defined in (B.41) is less than 2. In
this case we should formally take Ny = 2.

Finally, there is a further subtlety that arises in the growing of DM cores for the large
DM masses m,, of interest to us. The time ¢4, to collect a self-gravitating number of particles
decreases for larger DM masses. However, the dynamics of the collapse are set by the cooling
time, which is initially t¢eo1 o< m,. For m, > 10" GeV, the collection time may be shorter
than the cooling time ¢y, < o0 (depending on the cross section). In fact, the collection
time may even be shorter than the dynamical time tg. If tg < tss < teoo1, the DM core will
be driven to shrink because of the gravitational potential of the over-collecting DM. The
timescale for the shrinking is set by the capture rate of DM. Ultimately, the collapsing DM
core will consist of Ny enveloped in a “halo” of I'capteool > Ny particles, which will also
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proceed to collapse. If instead ts; < tg < teool, the DM core will rapidly accumulate to
this large number before dynamically adjusting. For the purpose of the collapse constraints
on DM annihilation, if ts; < tc0o We will simply assume a number of collapsing particles
N = Tcapteoor. This is the case for the constraints plotted in Figure 4.9.

101





