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ABSTRACT This research presents an ensemble Reinforcement Learning (RL) approach that combines
Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) algorithms to tackle quantum control
problems. This research aims to use the complementary strengths of DQN and PPO algorithms to develop
robust and adaptive control policies for noisy and uncertain quantum systems. We comprehensively analyse
the proposed ensemble learning, including algorithmic details, implementation specifics, and experimental
results. Through extensive experimentation and evaluation, we demonstrate the effectiveness of the ensemble
approach in learning control strategies for manipulating quantum systems towards a random target state. The
results highlight the potential of ensemble RL techniques in addressing the challenges of quantum control
tasks, such as system noise and dynamics. By integrating multiple RL agents within an ensemble framework,
We aim to advance current developments in quantum control and create a new path for the development of
adaptive control systems for quantum systems. The performance of the ensemble model is assessed against
Gradient Ascent Pulse Engineering (GRAPE) and robust Model Predictive Control (MPC) to demonstrate
its efficiency in highly challenging and noisy environments.

INDEX TERMS Adaptive control, deep Q-network (DQN), ensemble learning, proximal policy optimization
(PPO), quantum control, reinforcement learning (RL).

I. INTRODUCTION

Quantum systems have the potential to change fields such as
materials science, drug discovery, and cryptography [1], [2]
[3], [4]. Quantum systems demonstrate complex behaviours
according to quantum mechanics laws that open up many
opportunities for applications such as quantum computing,
quantum communication, and quantum sensing. However,
Harnessing the power of quantum systems requires careful
control, which can be difficult due to noise, uncertainty,
and insufficient understanding of complicated quantum
dynamics [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Bin Xu.

In recent years, machine learning techniques, particularly
Reinforcement Learning (RL), have appeared promising
approaches for tackling quantum control problems [6], [7]
[8]. RL provides a framework for learning control policies
through interaction with the quantum system environment,
making it suitable for dynamic and uncertain quantum
systems [9]. Using RL algorithms, researchers aim to
develop adaptive control strategies capable of navigating the
complex landscape of quantum dynamics. These strategies
can potentially improve quantum technology by providing
efficient and robust manipulation of quantum systems for
various applications.

This paper evaluates the synergy between ensemble
RL and quantum control, aiming to develop robust and
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adaptive control strategies for quantum systems. Ensemble
learning, which combines multiple learning algorithms to
improve performance and robustness, provides a compelling
framework for addressing the challenges of quantum control.
By integrating Deep Q-Network (DQN) and Proximal Policy
Optimization (PPO) into an ensemble framework, we use
their complementary strengths to enhance the adaptability
of control policies. DQN is a value-based algorithm that
effectively estimates action values in discrete action spaces,
while PPO is a policy-based approach that optimises policies
directly, making it suitable for both discrete and continuous
actions. DQN can struggle with instability and exploration
efficiency, whereas PPO uses a clipped objective for stable
updates and better exploration strategies. By integrating
DQN’s value estimation with PPO’s policy optimisation,
this hybrid approach can enhance learning efficiency and
performance, allowing for more robust solutions in complex
reinforcement learning environments.

The effectiveness of the DQN in discrete action spaces
and the strength of the PPO in continuous action spaces
combine to create a more resilient and flexible control
strategy. This approach mitigates individual algorithms’
weaknesses, enhancing the control system’s overall robust-
ness. Furthermore, the ensemble method addresses crit-
ical challenges in quantum control, such as handling
high-dimensional state spaces and dealing with uncertainties
and noise. Our research demonstrates the practical benefits
of ensemble RL through case studies and experimental
results, showcasing its potential to achieve high-fidelity
control and reduce error rates. This work aims to advance
quantum technologies by providing a more reliable control
methodology.

This study’s primary aim is to investigate the feasibility
and effectiveness of ensemble RL agents in quantum control
tasks. The first contribution of this research involves the
development of an ensemble RL approach that combines
DQN and PPO agents to tackle quantum control problems.
Secondly, it comprehensively analyses the proposed ensem-
ble learning, including algorithmic details, implementation
specifics, and experimental results. Thirdly, through exten-
sive experimentation and evaluation, the study demonstrates
the effectiveness of the ensemble approach as a learning
control for the XY spin chain quantum system to maximize
the fidelity between a random evolved quantum state and a
random target state. Additionally, the research assesses the
performance of the ensemble model against GRAPE and
robust MPC to show its efficiency in highly challenging
environments. Lastly, the study offers new paths for using
several potential techniques to improve quantum control
strategies.

The main contributions of this paper are outlined as
follows:

« Introducing an innovative control method that integrates
DQN and PPO agents to address the complexities
of quantum control and enhance the precision and
robustness of control strategy.
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o Providing a thorough examination of the ensemble
learning method, including detailed algorithmic expla-
nations, implementation specifics, and a broad set of
experimental results among the ensemble agent and
isolated agents.

« Demonstrating the ability of ensemble learning method
to maximize fidelity between evolved and target quan-
tum states and outperform other methods such as
GRAPE and robust MPC in challenging environments.

The rest of this paper is structured as follows. Section II

will provide a comprehensive literature review. Section III
will detail the methodology employed in this paper.
Section IV will present and analyse the results obtained from
the experiments with a discussion about the findings and the
limitations of this research. Finally, Section V will conclude
the paper, summarising key insights and outlining new paths
for future research.

Il. BACKGROUND AND RELATED WORK

This section comprehensively overviews foundational con-
cepts and related works on quantum control and RL.
It covers the main strategies of quantum control, including
a description and limitations of each technique used to
manage quantum systems. Additionally, the section explores
RL and its applications in control, presents the theoretical
justification for the ensemble learning method, and details the
specific RL algorithms employed in this research.

A. QUANTUM CONTROL AND CORE STRATEGIES

Quantum control refers to the manipulation of quantum
systems to achieve specific objectives, such as preparing
quantum states or executing quantum operations. In a
quantum computer, a quantum bit (qubit) can exist in a
superposition of states, representing both 0 and 1 simulta-
neously. To direct a qubit to a specific state, such as 1, one
can apply precise adjustments to its environment, including
variations in magnetic fields or other interactions. This
controlled manipulation is essential for ensuring that the
qubit accurately reflects the desired state, facilitating reliable
quantum computations.

As illustrated in Figure 1, three main strategies exist for
quantum control: optimal control, robust control, and learning
control. Optimal Control, such as the GRAPE, designs
control pulses based on a perfect system model, aiming for
the best possible performance under ideal conditions [10].
This approach is based on optimal control theory principles
and uses mathematical optimisation techniques to identify the
control pulses that minimise a particular cost function [11].
In the context of quantum control, the cost function often
represents the infidelity of the desired state transfer or gate
operation. The goal is to adjust control parameters in such a
way that this infidelity is minimized. While optimal control
methods may achieve outstanding results in principle, their
efficacy depends on an ideal quantum system model.

Real-world quantum computers are typically noisy and
complex due to model errors, Hamiltonian uncertainty, and
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environmental impacts [12]. These issues can potentially
cause poor performance by introducing inconsistencies
between the ideal model used for control design and the actual
behaviour of the quantum system. Moreover, these systems
often drift over time, challenging control methods. This refers
to the fact that the properties of quantum systems can change
over time due to various factors, such as environmental
influences or hardware degradation. This drift can further
complicate the task of quantum control, as it means that the
optimal control pulses may need to be continuously updated
to account for these changes.

On the other hand, robust control, such as robust MPC,
focuses on stability and good performance under uncertainty,
reducing the optimality for reliability. This strategy is
well-suited for environments where the system’s behaviour is
uncertain or accurate models are unavailable [13]. However,
robust control systems have their own challenges from the
drift that happens in quantum devices over time. To avoid
this drift, controls must be updated, and new effective
controls have to be identified. The updates require significant
computational resources and may introduce complexity into
the control system [14]. Moreover, the effectiveness of
these updates may diminish over time as quantum devices
evolve and drift occurs. Exploring new techniques and
methodologies requires more experimentation and validation,
which can consume much time and resources.

Another approach is Learning Control, which optimises
control even with incomplete system models [15]. This
approach uses machine learning techniques to continuously
improve the control strategy based on feedback from the
system. There are two main approaches within learning con-
trol: stochastic optimization and RL. Stochastic optimization
finds robust control pulses amidst noise but may have limited
exploration capabilities [16]. This approach uses random
search methods to explore the control space and find control
pulses that are robust to noise. RL, on the other hand, employs
an agent to explore control options and learn through trial
and error [S5]. The agent interacts with the quantum system
and receives rewards based on the system’s response, which
allows it to learn an optimal control strategy over time.

B. REINFORCEMENT LEARNING

As mentioned earlier, reinforcement learning is a type of
machine learning in which an agent learns through trial and
error in a given environment in order maximize rewards. For
example, training a robot (RL agent) to navigate a maze
(environment). Each time the robot makes a move (action),
it receives feedback which would be a reward for correct
moves. Over time, it learns the best actions to reach the
end of the maze with the highest reward possible. Instead of
depending on a pre-existing dataset, reinforcement learning
creates data through agent-environment interactions. The
effectiveness is demonstrated by the evaluation, which is
based on training performance, rewards trends, and policy
updates. The agent’s goal is to improve its decisions based
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on past experiences to perform better. RL has shown promise
in tackling complex challenges, particularly in quantum
control. However, it does come with its own set of practical
limitations. RL often requires substantial data collected
through repeated interactions with the environment [17]. This
data-intensive nature of RL can pose challenges in scenarios
where data is rare or expensive to generate. Moreover, the
performance of RL in achieving desired outcomes may
not always be optimal. Traditional RL algorithms often
require vast data and computational power to achieve optimal
performance. This can make RL computationally expensive
and time-consuming, particularly for complex tasks with
high-dimensional state and action spaces [18].

To address these challenges, researchers have explored the
use of ensemble methods in RL. Ensemble methods combine
multiple RL agents with diverse exploration-exploitation
strategies [19], [20]. This approach offers improved gener-
alization and stability in learning control policies. Recent
studies have showcased the effectiveness of ensemble RL
approaches in quantum control scenarios, demonstrating their
ability to learn adaptive and robust control strategies for
complex quantum systems.

C. MARKOV DECISION PROCESS

A Markov Decision Process (MDP) is a mathematical
foundation to determine the optimal policy in the framework
of uncertainty through probabilistic state transitions [21],
[22]. This provides a theoretical framework for using RL
agents to interact with quantum systems and learn from
them. Formally defined MDPs include a set of states S,
a set of available actions A, a model describing transition
probabilities P, and rewards R. Each state represents a
possible configuration of the quantum system; each action
represents a decision or control input that can change the
state.

Transition probabilities describe the stochastic behaviour
of a system in that they define the probability of going from
one state to another after applying a certain action [23].
The reward is numerical notations given at every transition,
representing the immediate benefit or cost associated with
those transitions. The goal of an MDP is to find a policy that is
a strategy to choose current actions based on the state in order
to maximize an expected sum of rewards over time [24].

Therefore, MDPs offer a way of modelling through the
learning of the agent’s interaction with the environment
how to decide, the observation of the consequences of such
interaction, and improvement of the policy guided by the
rewards achieved. Figure 2 illustrates how an RL algorithm
can learn by interacting with the environment through the
MDP framework.

D. THEORETICAL JUSTIFICATION FOR USING ENSEMBLE
RL

The studies by Khalid et al. [6] and Giannelli et al. [25]
provide valuable insights into applying RL techniques in
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FIGURE 2. Reinforcement learning process cycle.

solving complex quantum control problems. The first study
compares RL methods with gradient-based optimisation
methods for robust energy landscape control of spin-1/2
quantum networks. It demonstrates that RL controllers,
particularly those found under low Hamiltonian perturbation
noise levels, tend to be more robust than L-BFGS con-
trollers. This robustness is crucial, especially in quantum
systems susceptible to noise, and RL methods like PPO
show resilience in finding optimal controllers even in the
presence of noise. Similarly, the second study applies RL to
achieve efficient population transfer in a three-level quantum
system, emphasising achieving results similar to the STIRAP
process. The RL approach results in developing a model
that efficiently achieves the desired population transfer, even
in the presence of noise. However, both studies identify
some limitations and areas for optimisation within the RL
approach, including computational time, the high number of
free parameters, and the lack of hyperparameter optimisation.

Our ensemble learning approach combines the strengths
of DQN and PPO to produce a more adaptable and
adjustable control framework. This method improves the
control system’s ability to manage high-dimensional state
spaces and various noise levels, resulting in greater depend-
ability and effective quantum control. Furthermore, shifting
computational load across multiple algorithms may con-
siderably decrease computational effort and improve the
efficiency of learning optimal solutions. This integrated
strategy overcomes the highlighted limitations and provides
a more robust and scalable solution.

E. REINFORCEMENT LEARNING ALGORITHMS: DQN AND
PPO

DQN is an advancement of Q-Learning, a RL algorithm
that doesn’t rely on a model. The term “Q” in Q-Learning
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signifies ‘“‘quality”’, which is a metric of an action’s
effectiveness in maximizing future rewards. Traditional
Q-Learning employs a table to store and update these
Q-values. However, this approach becomes unfeasible when
dealing with a large number of states and actions [26]. This
is where DQN comes into play. DQN employs a deep neural
network to approximate the Q-function. It also enables the
algorithm to learn from high-dimensional inputs such as
images or sensor data [27]. The process commences with
the initialization of the Q-network. This network takes the
state of the environment as input and outputs the Q-value
for each possible action. The agent then interacts with the
environment. It selects an action based on the current policy,
which is usually epsilon-greedy. After performing the action,
the agent observes the next state and the reward from the
environment.

The Q-network is then updated based on the observed
reward and the maximum predicted Q-value for the next
state [28]. This update is done using a loss function, typically
the mean squared error between the predicted Q-value and
the observed reward plus the discounted maximum predicted
Q-value for the next state [29].

A key innovation in DQN is the use of a technique
called Experience Replay. This involves storing the agent
experiences and then randomly sampling from this memory
to update the network. This helps to break the correlation
between consecutive experiences and stabilize the learning
process. Deep reinforcement learning (DRL) has proven to
be a powerful tool for crafting optimal strategies across
diverse complex systems, particularly when there is no
prior insight into the control landscape. In [30], the authors
presented a DRL-based technique that allows for immediate
and precise control of quantum systems, leading to significant
improvements in control accuracy and high fidelity. This
suggests that DQN, as a DRL algorithm, could be a
powerful tool for quantum control tasks, capable of handling
high-dimensional state and action spaces.

Unlike DQN, which focuses on value estimation, Proximal
Policy Optimisation (PPO) emphasizes policy optimisation.
This method has gained popularity due to its stability and
efficiency in training RL agents, especially in continuous
action spaces [31]. PPO is a type of policy optimisation
method that seeks to find the best policy by minimizing the
difference between the new and old policy through a novel
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objective function. The main idea of PPO is to avoid having
too large a policy update [32].

To do that, PPO uses a ratio that tells us the difference
between the new and old policy and clips this ratio from a
specific range [l — €, 1 + €] where € is a small positive
number that controls the balance between exploration and
exploitation during training [33]. Doing that will ensure that
the policy update will not be too large. The PPO algorithm
starts with the initialization of the policy network. This
network takes the state of the environment as input and
outputs the policy for each possible action [34]. The agent
then interacts with the environment. It selects an action based
on the current policy, which is usually epsilon-greed. After
performing the action, the agent observes the next state and
the reward from the environment. The policy network is then
updated based on the observed reward and the maximum
predicted Q-value for the next state.

Unlike DQN where a Q-value function is learned, PPO
typically uses a function approximator (like a neural network)
to directly learn the policy [34]. This function takes the state
as input and outputs the probabilities of each action according
to the policy. The Q-values are then implicitly defined by this
policy. This update is done using a loss function, typically
the mean squared error between the predicted Q-value and
the observed reward plus the discounted maximum predicted
Q-value for the next state.

In the context of quantum control, PPO has been investi-
gated for fine-tuning control parameters for quantum gates
with high precision. This suggests that PPO could be a
valuable tool for quantum control tasks, striking a balance
between exploration and exploitation and facilitating efficient
learning in continuous action spaces.

ill. METHODOLOGY

This section explains the methodology used to achieve
effective quantum control of a spin chain system using
our ensemble learning approach. We integrate the quantum
system’s mathematical framework and the DQN and PPO
algorithms to maximize the fidelity between the evolved
quantum state and the random target state.

A. QUANTUM SYSTEM

Our chosen spin chain system consists of a chain of N
identical spins. The Hamiltonian (H%™) of the system
captures its total energy and dictates how the state evolves
over time. As described by Zhang et al. [35], it is formulated
considering two key interactions: the coupling strength (J)
between neighbouring spins and the influence of external
magnetic fields (B,) at each spin site. The mathematical form
of the Hamiltonian is presented as follows:

N—-1 N
J , Z
n=1 n=1

where J is the coupling strength, B,(t) represents the
time-dependent control acting as an external magnetic field
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for the nt spin, which takes binary values (0,B), and o;), o,

and o are the Pauli matrices for the n'™ spin.

In order to simulate real-world conditions, a Gaussian
noise model is used on the external magnetic fields. The noise
model is defined as follows:

B (1) = Bu(t) + onoisy 2)

where oyoisy represents the noise drawn from a normal
distribution with a mean of 0 and a standard deviation
specified by the noise level.

For the time evolution of the quantum state (y), we use the
time-dependent Schrodinger equation:

o d dyn
lﬁEI/f(t) =H ()Y (@) (3)

where 7 is the reduced Planck’s constant, set to 1 for
simplicity. The solution to this equation for a small time step
(At) is given by the unitary time evolution operator (U):

U= e*inynAl‘/h (4)

We compute U using the matrix exponential function and
update the state (1) as follows:

Yt + A =Uy() &)

A crucial aspect of our approach is measuring the closeness
between the evolved quantum state () and the desired target
state (Vrarger)- Fidelity is a metric used for this purpose. It is
defined as:

F(Y, Yrarge) = |(Viarger W) 1> (©6)

Maximizing fidelity ensures that the evolved state closely
approximates the desired target state, which is essential for
various quantum control applications.

B. REINFORCEMENT LEARNING ALGORITHMS

To achieve effective control over this spin chain system, DQN
and PPO were implemented as two separate agents. These
algorithms are selected for their strengths in handling discrete
and continuous action spaces.

1) DEEP Q-NETWORK (DQN)

The DQN algorithm represents a confluence of Q-Learning
and deep neural networks to address the challenges of RL
in high-dimensional spaces. At its core, DQN modifies
the traditional Q-Learning update rule to integrate the
representational power of deep learning. The updated rule is
given by:

Q™" (st, ar) < QCsy, ar)
o[y max Qs @ = Qi ad| (D)

In this equation, s; denotes the present state, a; the action
undertaken, ;1 the consequent reward, « the learning rate,
y the discount factor, and max, Q(s;+1, a) the maximal future
reward estimated across all possible actions.
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One of the features of DQN is the employment of
experience replay, which mitigates the issue of correlated
training samples by randomly sampling from a pool of stored
experiences (s;, a;, I'1+1, Sr+1)- This approach diversifies the
training data and allows for more efficient use of previous
experiences. Another significant feature of DQN is the
utilization of a separate target network to stabilize the training
process. This network provides a stationary target for the
max, Q(s¢+1, a) term during the update of Q values, and its
parameters 6~ are updated less frequently than those of the
primary network 6.

The neural network, parameterized by 6, serves as a
function approximator for the Q-function. It accepts the state
as input and outputs the predicted Q-values for all actions.
The network is trained to minimize the discrepancy between
the predicted Q-values and the target Q-values, which is
captured by the loss function:

2
LO)=E |:(r + y max oG’ a';07) — 0, a; 9)) :| (8)

Here, s’ and d’ represent the subsequent state and action.
The optimisation of the network parameters 6 is achieved
through gradient descent on this loss function. DQN uses
several tactics to improve learning stability and efficiency:

« State representation: The quantum state  is repre-
sented by its real and imaginary components, forming
the input to the neural network.

o Action selection: An epsilon-greedy strategy is used,
where the agent selects actions based on Q-values with
a probability of 1 — € and explores random actions with
a probability of €.

« Experience replay: Transitions are stored in a replay
buffer, and mini-batches are sampled for training. This
stabilizes learning by breaking the correlation between
consecutive experiences.

o Target network: A separate target network provides
stable target OQ-values, updated periodically to match the
main network.

2) PROXIMAL POLICY OPTIMISATION (PPO)

The PPO algorithm is designed to optimise policies while
ensuring stable and efficient learning. The main components
of PPO in our implementation are as follows.

The PPO agent employs a neural network to approximate
both the policy (action probabilities) and the value function
(state values). The network takes the state as input and
outputs the action probabilities and the state value. The agent
selects actions based on the probabilities output by the policy
network. The action a; at state s, is sampled from the
policy my(als). Advantages are computed using Generalized
Advantage Estimation (GAE). The advantage A; is calculated
as:

Ar =8 + (YN8t + (YA 840 + - - ©
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where
O =1 +yVi(si41) — V(sy) (10)

V (s;) is the value function estimate at time #, y is the discount
factor, and A is a parameter controlling the bias-variance
tradeoff.

The PPO algorithm optimises a clipped surrogate objective
function to ensure the new policy does not deviate signifi-
cantly from the old one. The objective function is:

LR () = &, [min (M;\

t
n@,,m(atlst) '

clip (—”9(“’|S’) d—e1 +e) A,)] (11)
TCOp1a (at |S1)

Here, mg(a;ls;) is the new policy probability, g, ,, (a;|s;) is the
old policy probability, A, is the advantage estimate, and € is
the clipping parameter.

The value function loss is computed as the mean squared
error between the estimated value and the target value:

LY@ =& [+ V) = V)] (2)

An entropy term is added to the loss to encourage
exploration by ensuring the policy does not become too
deterministic:

L5(0) = —E; [mo(aslsi) log mo(ass)] 13)

The total loss function combines the clipped surrogate
objective, value function loss, and entropy bonus:

L©) = LYP©0) + | LVF (0) — c2L5(9) (14)

where c¢; and ¢ are coefficients that balance the contributions
of the value loss and the entropy bonus.

The parameters 6 are updated using gradient descent on the
total loss:

0 <6 —aVyL(9) (15)

where « is the learning rate.

This comprehensive approach ensures that the policy
updates are both efficient and stable, leading to improved
performance in complex environments.

PPO incorporates several key techniques:

« State representation: The state is represented by the

real and imaginary components of ¥, similar to DQN.

« Policy and value networks: PPO employs separate
neural networks to approximate the policy (action
probabilities) and the value function.

« Advantage estimation: Advantages are computed using
GAE, reducing variance and improving learning stabil-
1ty.

o Clipped objective: PPO uses a clipped surrogate
objective to prevent large updates, ensuring stable and
efficient learning.

Both DQN and PPO employ Temporal Difference (TD)

learning as a foundation for value updates. In DQN, the
TD error drives the Q-value updates through bootstrapping,
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allowing the algorithm to learn from experience efficiently.
PPO uses TD learning for estimating the value function,
contributing to the computation of advantages through GAE,
which smooths out learning by TD steps.

C. ENSEMBLE LEARNING

To enhance the robustness and performance of our quantum
control system, an ensemble agent is employed. This agent
combines predictions from both agents trained with different
algorithms and parameters. The ensemble agent merges the
suggestions made by isolated DQN and PPO agents and
uses their strategies to make more mindful decisions. The
proposed algorithm incorporates elements of both on-policy
and off-policy methods. DQN operates off-policy, utilizing
a replay buffer to learn from past experiences, independent
of the current policy. In contrast, PPO operates on-policy,
as it updates its policy based on actions taken from the
most recent states encountered. This hybrid approach that
combines DQN and PPO, serves as a robust learning method
for complex environments. By leveraging both on-policy and
off-policy strategies, this ensemble method adapts to a wide
range of scenarios, potentially enhancing stability, flexibility,
and overall performance.

1) ACTION SELECTION MECHANISM

The ensemble agent selects actions by combining the
decisions of the DQN and PPO agents based on a weighted
average strategy. When the ensemble agent needs to choose
an action in a given state, it first requests actions from both the
DQN and PPO agents. The ensemble agent calculates weights
for each agent based on their past performance. Figure 3
shows the process of how the ensemble framework performs
and chooses one of the algorithms for action.

These weights are determined using a formula that takes
into account the total rewards and total episodes experienced
by each agent. The addition of 1 in the formulas serves to
prevent division by zero and smooth the weights, enhancing
the stability of the learning process. Since the total episode
count begins at zero during the first episode, adding 1 to the
denominator ensures valid calculations and avoids undefined
behavior. Similarly, incorporating 1 into the numerator acts as
a small regularization term, providing stability, particularly in
the early episodes.

The specific formulas used for weight calculation are:

. 1 + total_rewardsgqn
weightyq, =

16
1 4 total_episodes,gy, (16)

1 + total_rewardspo

weight (17)

ppo o 4 total_episodes,y,,,
After calculating the weights, the ensemble agent normalizes
them. This normalization step ensures that the weights
represent probabilities and can be used to select actions. The
normalized weights are computed as follows:

) weight,
norm_welghtdqn = an

. - (18)
weighty,, + weight,,,
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weight

norm_weight_ = = Ppo 19
—We1EWppo weightyg, + weight,,, (19)

Finally, the ensemble agent selects an action by sampling
from a categorical distribution defined by the normalized
weights. The probability of selecting the action suggested
by the DQN agent is given by norm_weighty,,, and the
probability of selecting the action suggested by the PPO agent
is given by norm_weight, .. If the norm_weight,, is less
than norm_weightdqn, the ensemble agent selects the action
suggested by the DQN agent. Otherwise, it selects the action
suggested by the PPO agent.

Updates and reward calculations are carried out at the
end of each step, rather than at the end of the episode.
The variables total_episodes, and total_episodes,,, are for
managing the weighting strategy in the ensemble framework,
ensuring consistent decision-making across the full episode
count for both DQN and PPO agents.

By combining the decisions of both agents based on
their respective weights, the ensemble agent uses each
agent’s strengths and adapts its behaviour dynamically based
on their performance. This allows the ensemble agent to
achieve better performance and robustness than a single agent
alone.

D. TRAINING PROCEDURE

The training procedure involves simulating the spin chain
dynamics and training the RL agents over multiple episodes
to achieve high fidelity between the evolved and target states.

« Initialization: Each episode begins with a randomly
initialized quantum state v and a target state Yiarget.

« Agent actions: At each time step, both DQN and
PPO agents select actions to adjust the magnetic field
strengths B;,.

« State evolution: The Hamiltonian is updated based on
the chosen actions, and the quantum state i evolves
according to the Schrodinger equation.

o Reward calculation: Fidelity between the evolved
and target states is computed, serving as the reward
signal.

« Experience storage and replay: The agent’s store
experiences, and the ensemble agent aggregates their
actions. The ensemble agent’s action is executed, and the
experiences are used for updating the individual agents’
networks.

« Episode termination: An episode concludes after a set
number of time steps, with the total reward recorded for
performance evaluation.

It is important to mention that in this ensemble and
agent selection technique, exploration occurs only within the
selected agent, rather than across the ensemble during the
agent selection phase. This approach emphasizes targeted
exploration within each agent, allowing the ensemble to
leverage the unique exploration capabilities of individual
agents. Once an agent is chosen, it performs exploration
according to its own parameters and mechanisms.
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Ensemble Agent \
(DQN + PPQ) ‘
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FIGURE 3. Ensemble training process.

TABLE 1. Parameters used in the project.

Action Selection Memory Update

Action from DQN Agent

Store memories in both agents |

Action from PPO Agent

Experience Replay

‘ Replay experiences in both agents

Category Parameter Description Value
N Number of spins in the chain 3-7
J Coupling strength 1
Quantum Control B Magnetic field strength 100
dt Time step 0.15
h Reduced Planck’s constant 1
state size The number of complex amplitudes representing the 2 x 2N
quantum state (doubled for real and imaginary parts)
action size Two actions representing whether to apply a 2
magnetic field or not (control on/off)
memory Replay memory size 40000
¥ Discount factor for future rewards 0.9
DQN Agent € Initial exploration rate 0.3
€min Minimum exploration rate 0.01
€decay Decay rate for exploration 0.2
«@ Learning rate for the optimiser 0.01
batch size Size of the minibatch 50
train start Minimum size of memory before training starts 900
state size The number of complex amplitudes representing the 2 x 2N
quantum state (doubled for real and imaginary parts)
action size Two actions representing whether to apply a 2
magnetic field or not (control on/off)
PPO Agent o7 Discount factor for future rewards 0.9
« Learning rate for the optimiser 0.01
€ Clipping parameter 0.2
value coefficient Coefficient for value loss 0.5
entropy coefficient Coefficient for entropy loss 0.01
Training C Update period for thej target r}etwork 200
M Total number of training episodes 1000
Target State Ytarget Randomly generated target state -

E. PSEUDOCODE FOR ENSEMBLE-BASED QUANTUM
CONTROL

The given pseudocode in the algorithm 1 describes the
ensemble agent approach to quantum control that combines
DQN and PPO algorithms. This approach initializes the
ensemble agent and specifies important functions for calcu-
lating the Hamiltonian, transforming complex states to real,
and evaluating fidelity.

F. IMPLEMENTATION DETAILS
The implementation is carried out in Python [36] using
TensorFlow [37] for constructing and training the neural
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networks, SciPy [38] for numerical computations, and
Matplotlib [39] for visualizations. We used Windows 10
64-bit Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz,
12 GB RAM to test the implementation. Table 1 provides
the specific parameters, such as learning rates, discount
factors, and network architectures that are chosen to optimise
performance for this setup.

IV. RESULTS AND DISCUSSION

This section provides and evaluates the results of agent
training on the spin chain quantum control problem. We aim
to provide a thorough analysis of the performance of RL
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Algorithm 1 Ensemble Agent for Quantum Control
Require: N, J, B, At, i, Yrrarget
Initialize ensemble agent (DQN and PPO)
Function hamiltonian(J, Bfields, Onoisy):
Initialize H
Initialize Pauli matrices ¥, o7, and o*
Update H for XY terms using o* and o
Update H for magnetic field terms using o¢
Add Gaussian noise to H with standard deviation oyoisy

return H
Function complex_to_real(y): return combination of real
and imaginary parts
Function fidelity(Yrarget ¥): return | (Yargee|)|?
Initialize training episodes M
for episode = 1 to M do
Initialize v, Brields, total_reward
fort =0to 1/At do
state < complex_to_real() // One of all possible
states (2 x 2V)
action <— ensemble agent action // Action selected
using DQN/PPO; exploration occurs within the
selected agent.
Update Brielgs based on action // Binary On/Off
control
H < hamiltonian(J, Bfields, Onoisy)
Ynext <— evolve ¥ with H and At
Normalize Ypext
reward < fidelity(Yrext, Ytarger) + distance reward (¢)

total_reward < total_reward + reward
next_state <— complex_to_real(Ynext)
Store experience and train ensemble agent
if [ Ynext — ¥l < 107 then
break

end if
Y < Ynext

end for

Record total_reward

end for

algorithms separately and when combined into an ensemble
framework.

Following this, the efficacy of GRAPE, MPC, and the
ensemble agent will be examined in both noise-free and noisy
settings. This comparison aims to provide comprehensive
insights into their specific advantages and limits. By examin-
ing their performance under both ideal and difficult settings,
the goal is to determine the best option for real-world
applications. The total reward values may be negative in
early steps due to the randomness. To improve accuracy and
account for these negative values during early training, the
reported results are averaged over five runs.
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TABLE 2. Total rewards during training episodes.

Category Episode Range = Total Reward
Average Reward for DQN 1-1000 0.6424
Average Reward for PPO 1-1000 0.6191
Average Reward for Ensemble 1-1000 0.7313

Total Reward

1-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000
Episode Range

DQON = PPO e Ensemble

FIGURE 4. Total rewards for six spin.

A. TRAINING PERFORMANCE

The training process was conducted over 1000 episodes, with
the total reward (fidelity + distance reward) accumulated
by the agents recorded at intervals of 100 episodes. The
rewards represent the fidelity between the evolved quantum
state and the target state, with higher rewards indicating better
performance in approximating the desired state. To further
enhance this, we calculated a distance reward, which
increases as the quantum state approaches the target. This
additional reward encourages the agents to experiment with
different actions, making the learning process more effective.
Table 2 summarizes the total rewards achieved during the
different intervals of the training process. The results in
Figure 4 indicate that the Ensemble agent outperformed both
the DQN and PPO agents. The performance of the Ensemble
agent improved consistently over the training episodes and
achieved the highest total rewards in most periods. The
average reward for the Ensemble agent was 0.7313, which
is higher than the average reward for both DQN (0.6424) and
PPO (0.6191).

In analyzing the DQN results, it is observed that the
algorithm begins with a total reward of approximately
63.47 in the first episode range (1-100), followed by
fluctuations in subsequent ranges, with values dropping
to around 60.87 in the 101-200 range and 61.69 in the
301-400 range. However, it is important to note that such
fluctuations are not uncommon in reinforcement learning
algorithms, especially during the exploration phase. Despite
these fluctuations, a significant improvement in performance
is seen towards the final episodes, where the total reward
reaches approximately 74.99 in the 901-1000 range. This
consistent increase towards the end suggests that the DQN
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algorithm is making meaningful progress and indicates a
trend towards convergence. While the variations in the
earlier episode ranges introduce some uncertainty regarding
immediate convergence, they do not preclude the possibility
that the DQN algorithm is converging overall. The final
episode results indicate that the algorithm started an effective
path to learn, reflecting the nature of reinforcement learning
where convergence can occur gradually over time.

The PPO agent, starting with a significantly lower total
reward of 33.9114 in the initial episodes (1-100), showed
a steady and gradual improvement over the training period.
By the end of the training episodes (901-1000), the PPO agent
achieved a total reward of 64.8358. This steady improvement
highlights the PPO algorithm’s ability to learn and adapt
over time, although it did not reach the peak performance
of the Ensemble agent. The Ensemble agent, combining
the strengths of both DQN and PPO, showed a superior
learning pattern. Starting with a total reward of 36.7073 in
the initial episodes (1-100), the Ensemble agent showed a
sharp increase in performance, achieving a total reward of
72.7812 in the next set of episodes (101-200).

This rapid improvement continued, with the Ensemble
agent consistently achieving higher rewards in subsequent
episodes, peaking at 78.7188 in episodes (701-800). The
consistently high performance of the Ensemble agent sug-
gests that the combination of DQN and PPO allows it to use
the strengths of both algorithms, resulting in a more robust
learning process.

Figure 5 and Table 3 show the comparison of control
methods, including GRAPE, robust MPC, and the ensemble
agent, and present information about how they perform in
quantum systems with different spin configurations. The
number of iterations has been set to 1000. Initially, GRAPE
demonstrated superior fidelity in noise-free conditions but
faced scalability issues as the number of spins increased,
revealing limitations in handling larger quantum systems.
Similarly, robust MPC maintained stable fidelity levels across
various spin configurations, but its performance declined,
indicating potential challenges in achieving high fidelity in
more complex quantum environments.

The fidelity achieved by the ensemble agent also decreased
as the number of spins increased, but it showed slightly better
resilience to larger quantum systems compared to GRAPE
and MPC. This suggests that the ensemble agent might offer
improved scalability for controlling quantum systems with a
higher number of spins.

In Figure 6 and Table 4, when all three methods were
subjected to noise and uncertainty, the fidelity of the GRAPE
significantly decreased across all spin configurations, which
shows its sensitivity to environmental perturbations. In con-
trast, MPC showed resilience to noise and uncertainty,
maintaining relatively stable fidelity levels, though poten-
tially insufficient for demanding real-world applications.

On the other hand, the ensemble agent distinguished itself
by sustaining superior fidelity levels even in challenging con-
ditions, which shows its ability to adapt and remain reliable in
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FIGURE 5. Performance comparison of different control methods without
noise.
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FIGURE 6. Performance comparison of different control methods with
noise.

noisy and uncertain quantum systems. This resilience shows
that the ensemble method can be the best control method for
practical quantum applications, where consistent and robust
performance is crucial for success. Overall, the comparison
underscores the capability of the ensemble agent to surpass
GRAPE and MPC in handling noise and uncertainty and
highlights its potential for addressing challenges in real-world
quantum environments.

B. DISCUSSION AND LIMITATIONS

The results obtained from the training phase offer significant
insights into the efficacy of the RL algorithms and the
ensemble method. The initial improvement in rewards
underscores the capability of the RL agents to manage
and control the quantum system effectively. However, the
fluctuations in performance reveal the complex interaction
between the agents’ learning processes and the challenges
presented by the quantum states. These variations throughout
the training phase highlight the agents’ difficulties in
adapting to the diverse quantum state configurations. The
ensemble learning approach demonstrates a positive impact
on overall performance. By utilizing both DQN and PPO, the
ensemble agent showed superior performance in our scenario.
This adaptability and reliability are valuable in practical
applications involving uncertainties and fluctuations. The
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TABLE 3. Values of different control methods without noise.

Spins 3 4 5 6 7
GRAPE 0.8944 0.7989 0.7649 0.6394 0.675

MPC 0.9662 0.846 0.8157 0.7054 0.6227
Ensemble 0.9126 0.8507 0.6962 0.7116 0.661

TABLE 4. Values of different control methods with noise.

Spins 3 4 5 6 7
GRAPE 0.7878 0.6984 0.5289 0.3352 0.1482

MPC 0.8218 0.749 0.542 0.5098 0.4187
Ensemble 0.9169 0.836 0.7291 0.7143 0.6604

ensemble agent performs better overall due to its ability to
balance exploration and exploitation compared to the isolated
DQN and PPO agents. This results in a more robust learning
process that can adapt to the varying difficulties of the
quantum control task. The results also suggest that while
solo agents like DQN and PPO can achieve high rewards,
instability and fluctuations often mark their performance.
In contrast, the ensemble agent’s performance is more
consistent, indicating higher reliability in controlling the
quantum system. This consistency is particularly valuable
in practical quantum control applications. This approach
showcases superior performance compared to DQN and
PPO and offers distinct advantages that make it more
suitable for real-world scenarios. Unlike GRAPE and robust
MPC, which are specialized control methods designed for
specific tasks, the ensemble method’s adaptability allows it
to tackle a broader range of quantum control challenges.
Additionally, ensemble agents’ ability to balance exploration
and exploitation improves the robustness of the learning
process, making it well-suited for dynamic and evolving
environments encountered in real-world applications. This
adaptability and reliability are invaluable in domains where
precision, stability, and scalability are essential, positioning
the ensemble method as a promising solution for addressing
the complexities of quantum control tasks in practical
settings.

Our findings provide valuable insights into the effec-
tiveness of RL algorithms and ensemble techniques in
addressing the complexity of quantum control tasks. Despite
the observed fluctuations, the ensemble method emerges as a
promising approach, offering both stability and adaptability.
It is important to note that the low fidelity in the outcomes
that have been reported is driven by the structural complexity
of choosing random states for every iteration, which makes
the control problem more challenging for all approaches. The
reason behind this choice of scenario was to represent a more
tricky environment and highlight the superior performance of
the ensemble method over other methods.

Our study also acknowledges its limitations. Fidelity is
used as an optimization factor because it directly measures
the similarity between quantum states, which is essential
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for accurate state preparation. While generalization plays a
crucial role in many learning tasks, we focus on state-specific
optimization, as the primary objective is to maximize the
fidelity of the prepared state. The present study primarily
focuses on the evaluation of agent performance based on
reward metrics, leaving room for further exploration in the
time domain response analysis. Specifically, understanding
how the quantum state evolves and compares to the target
quantum state under the influence of the trained agent would
provide deeper insights into the behavior of the quantum sys-
tem during training. This would add a valuable dimension to
comprehending the agent’s effectiveness beyond mere reward
outcomes. Additionally, the Eligibility Traces technique,
a method known to enhance the learning process by bridging
the gap between Monte Carlo and TD learning, has not been
employed in this research. The inclusion of such a technique
could potentially refine the training process and improve the
convergence rate. However, to maintain a clear focus and
avoid additional complexity in the scope, these aspects were
not incorporated in this study. The limited number of training
episodes, the reward structure, and the inherent randomness
of the quantum system can induce fluctuations in the training
outcomes. These factors contribute to variations in evaluation
outcomes with and without noise, as well as making the
convergence of the DQN algorithm less apparent.

V. CONCLUSION AND FURTHER WORK
This study explored the application of RL algorithms to the
quantum control of a spin chain system. We implemented and
trained two RL algorithms, including DQN and PPO, as well
as an ensemble approach that combined these algorithms.
The results indicate that ensemble learning can improve
performance by using multiple agents, giving us more
adaptive and effective control strategies. Furthermore, the
performance of the ensemble agent was compared to GRAPE
and robust MPC to validate this approach’s efficiency in both
noise-free and noisy environments.

The study findings showed that the ensemble agent was
able to learn, improve its performance, increase the fidelity
and maintain stable performance under noisy conditions. This
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suggests that combining multiple agents can enhance the
overall effectiveness and robustness of the control strategies.

Despite these positive results, further improvement should
still be considered. One useful direction is the integration
of Hierarchical Reinforcement Learning (HRL). HRL allows
for decomposing complex control tasks into simpler, more
manageable subtasks. By structuring the control problem
hierarchically, agents can focus on solving specific com-
ponents of the task, which can lead to more efficient
learning and better performance. Additionally, establishing
a framework for lifelong learning can further enhance the
robustness and adaptability of the agents, enabling them to
improve and adapt to new challenges continuously.

APPENDIX

DATA AVAILABILITY STATEMENT

The code repository for this project can be accessed
by clicking https://github.com/FarshadRahimiGhashghaei/
AdvancedQuantumControl (accessed on 7 August 2024).
Within the Ensemble Learning.py file, the ensemble agent
tries to optimise magnetic fields in the XY spin chain using
Hamiltonian construction, time evolution simulation, and
neural networks for policy and value updates. The GRAPE.py
and MPC.py files apply GRAPE and robust MPC algorithms
to optimise magnetic fields while accounting for noise.
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