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Introduction 
 

The theoretical study of neutral pion production 

in proton-proton collisions has excited considerable 

attention since the experimental measurements for the 

total cross-section were found to be more than five 

times larger than the then existing theoretical 

predictions. Advances in technologies not only led to 

the complete identification of the three-body final state 

kinematically, but also to measurements employing 

polarized beam on a polarized target [1]. Hanhart 

et.al., [2] observed: “ As far as microscopic model 

calculations of the reaction 𝑁𝑁 → 𝑁𝑁𝜋 are 

concerned, one has to concede that the theory is 

definitely lagging behind the development of 

experimental sector”. The Julich meson exchange 

model [2] which was comparatively more successful 

with the less complete data on 𝑝𝑝 → 𝑑𝜋+ and       𝑝𝑝 →
𝑛𝑝𝜋+, failed to provide an overall satisfactory 

reproduction of the complete set of polarization 

observables in the case of 𝑝𝑝 → 𝑛𝑝𝜋0. A model 

independent approach [3] using the irreducible tensor 

techniques [4] was developed to analyse the data.  A 

comparison [5] was made to incisively analyse the 

findings of the Julich model which not only identified 

some of the deficiencies in the model but also revealed 

the importance of ∆ contributions. A phase ambiguity 

inherent in [5] was pointed out in [6].  

 

The purpose of this contribution is to present a 

model independent theoretical study of the analyzing 

powers in   𝑝𝑝 → 𝑝∆+. We supplement the analysing 

powers to the unpolarized differential cross-section in  

∆ production amplitudes. 

 

Theoretical formalism 
 

In an experiment like [1], where both the beam 

and target are polarized, the initial polarization state is 

described by the spin density matrix 

 

𝜌𝑖 =
1

4
(1 + 𝝈 ∙ 𝑷) ∙ (1 + 𝝈 ∙ 𝑸)                    (1)  

         

We express 𝜌𝑖 as 

𝜌𝑖 =
1

4
∙ ∑ (𝜎𝑘1(1) ∙ 𝑃𝑘1) ∙ (𝜎𝑘2(2) ∙ 𝑄𝑘2)

1

𝑘1,𝑘2=0

 

 

=
1

4
∑ ∑ (−1)𝑘1+𝑘2−𝑘(𝜎𝑘1⨂𝜎𝑘2)

𝑘1+𝑘2

𝑘=|𝑘1−𝑘2|

1

𝑘1,𝑘2=0

(𝑃𝑘1⨂𝑄𝑘2) 

(2) 

introducing the notations 

𝑃0
0 = 1; 𝑃0

1 = 𝑃𝑧;  𝑃±1
1 = ∓

𝑃𝑥 ± 𝑖𝑃𝑦

√2
 

𝑄0
0 = 1; 𝑄0

1 = 𝑄𝑧;  𝑄±1
1 = ∓

𝑄𝑥 ± 𝑖𝑄𝑦

√2
 

𝜎0
0(𝑗) = 1; 𝜎0

1(𝑗) = 𝜎𝑧(𝑗); 𝜎±1
1 (𝑗) = ∓

𝜎𝑥(𝑗) ± 𝑖𝜎𝑦

√2
 

𝑗 = 1,2                                       (3) 

          

          

           The differential cross-section for 𝑝𝑝 → 𝑝∆+ is 

then given by 

 
𝑑𝜎

𝑑Ω2

= 𝑡𝑟M𝜌𝑖𝑀†                                (4) 

                              

          where dΩ2 refers to the solid angle associated 

with the outgoing proton with cm energy 

 

𝐸2 = (𝐸𝑐𝑚
2 − 𝑀∆

2 + 𝑀𝑝
2) 2𝐸𝑐𝑚⁄                (5) 

   

          where 𝑀𝑝 and 𝑀∆ denote the masses of the 

proton and delta respectively. The reaction matrix M 

for 𝑝𝑝 → 𝑝∆+ may be written in the form 

 

𝑀 = ∑ ∑ ∑ (𝑆𝛬

(𝑠+𝑠𝑖)

𝛬=|𝑠−𝑠𝑖|

2

𝑠=1

1

𝑠𝑖=0

(𝑠, 𝑠𝑖). 𝑀𝛬(𝑠, 𝑠𝑖))       (6) 

 

           where the irreducible spin tensor operators are 

defined following [4] and the corresponding 

irreducible tensor amplitudes 𝑀µ
𝛬(𝑠, 𝑠𝑖) are expressible 

in terms of the partial wave amplitudes 𝑀𝑙2𝑠;𝑙𝑖𝑠𝑖

𝑗
 which 

include also all factors dependent on cm energy 𝐸𝑐𝑚.  
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𝑀𝜇
𝛬(𝑠, 𝑠𝑖) = ∑ (−1)𝑠𝑖−𝑗

[𝑗]2

[𝑠]
𝑙𝑖,𝑙2,𝑗

∙ 𝑊(𝑠𝑖𝑙𝑖𝑠𝑙2; 𝑗𝛬)

× 𝑀𝑙2𝑠;𝑙𝑖𝑠𝑖

𝑗
(𝑌𝑙2

(𝑝̂2)⨂𝑌𝑙𝑖
(𝑝̂𝑖))

𝜇

𝛬

  (7) 

 

 

      Using the eq.(2) and  eq.(6) in eq.(4), we have 

 

𝑑𝜎

𝑑Ω2

=
𝑑𝜎0

𝑑Ω2

∑ ∑ (𝑃𝑘1⨂𝑄𝑘2) ∙ 𝐴𝑘(𝑘1, 𝑘2)

(𝑘1+𝑘2)

𝑘=|𝑘1−,𝑘2|

1

𝑘1,𝑘2=0

 

   (8) 

      where, the unpolarized differential cross-section is 

of the form 

 
𝑑𝜎0

𝑑Ω2

=
1

4
∑ |𝑀𝜇

𝛬(𝑠, 𝑠𝑖)|2

𝑠,𝑠𝑖,𝛬,𝜇

 

 

= 𝑎 + 𝑏𝑐𝑜𝑠2𝜃2                            (9) 

     

     The analyzing powers 𝐴𝑞
𝑘(𝑘1, 𝑘2) are obtained 

through 

 
𝑑𝜎0

𝑑Ω2

∙ 𝐴𝑞
𝑘(𝑘1, 𝑘2) = 𝐵𝑞

𝑘(𝑘1, 𝑘2) = 

 
1

2
∑ (−1)𝛬

𝑠𝑖,𝑠𝑖
,
,𝑠,𝛬,𝛬, (−1)𝑘1+𝑘2−𝑘[𝑘1][𝑘2][𝑠𝑖][𝑠𝑖

, ][𝛬][𝛬,] ×

{

1

2
1
2 𝑠𝑖

1
2

1
2 𝑠𝑖

,

𝑘1 𝑘2 𝑘

} ∙ (𝑀𝛬(𝑠, 𝑠𝑖)⨂(𝑀†𝛬,
(𝑠, 𝑠𝑖))𝑞 

𝑘          (10) 

 

𝑇ℎ𝑒 𝐵𝑞
𝑘(𝑘1, 𝑘2)  can be expressed in the form 

 

𝐵𝑞
𝑘(𝑘1, 𝑘2) = 𝑎𝑞

𝑘(𝑘1, 𝑘2) + 𝑏𝑞
𝑘(𝑘1, 𝑘2) sin 𝜃2

+ 𝑐𝑞
𝑘(𝑘1, 𝑘2) cos 𝜃2

+ 𝑑𝑞
𝑘(𝑘1, 𝑘2) sin 𝜃2 cos 𝜃2

+ 𝑔𝑞
𝑘(𝑘1, 𝑘2)𝑐𝑜𝑠2𝜃2                   (11) 

 

        where the coefficients are functions of partial 

wave amplitudes 𝑀𝑙2𝑠2;𝑙𝑖𝑠𝑖

𝑗
 .  If we consider only the 

first three amplitudes 

 

𝐹1 = 𝑀02;20
2 ; 

 

𝐹2 = 𝑀11;11
0 ; 

 

𝐹3 = 𝑀11;11
1                            (12) 

 

 

close to threshold, we can determine their modulus 

values and the relative phase between 𝐹2 and 𝐹3 using 

the following equations 

 

|𝐹1|2 = 64𝜋2(𝑎0
0(0,0) − 2𝑔0

0(0,0) − 𝑎2
2(1,1) +

𝑎−2
2 (1,1))                              (13)                   

 

|𝐹2|2 = 192𝜋2(𝑔0
0(0,0) + 𝑎2

2(1,1) − 𝑎−2
2 (1,1))  

(14) 

 

|𝐹3|2 =
256𝜋2

3
𝑔0

0(0,0)                     (15) 

 

𝑅𝑒𝐹2𝐹3
∗ = 32𝜋2(6𝑔0

0(0,0) − 8𝛼2
2(1,1) − 2𝑎−2

2 (1,1)) 

(16) 

 

𝐼𝑚𝐹2𝐹3
∗ =

64𝜋2𝑖

9+3√3−√15
{(14 − 2√3 − √15)𝑎2

2(1,1) +

                                     (91 − 13√3 + √15)𝑎−2
2 (1,1)  −

                                (99 − 18√3)𝑔0
0(0,0) − 36𝑐1

1(1,0)}  

(17) 
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