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Introduction

The theoretical study of neutral pion production
in proton-proton collisions has excited considerable
attention since the experimental measurements for the
total cross-section were found to be more than five
times larger than the then existing theoretical
predictions. Advances in technologies not only led to
the complete identification of the three-body final state
kinematically, but also to measurements employing
polarized beam on a polarized target [1]. Hanhart
et.al., [2] observed: “ As far as microscopic model
calculations of the reaction NN — NNm are
concerned, one has to concede that the theory is
definitely lagging behind the development of
experimental sector”. The Julich meson exchange
model [2] which was comparatively more successful
with the less complete dataonpp — dntand pp -
nprt, failed to provide an overall satisfactory
reproduction of the complete set of polarization
observables in the case of pp - npm®. A model
independent approach [3] using the irreducible tensor
techniques [4] was developed to analyse the data. A
comparison [5] was made to incisively analyse the
findings of the Julich model which not only identified
some of the deficiencies in the model but also revealed
the importance of A contributions. A phase ambiguity
inherent in [5] was pointed out in [6].

The purpose of this contribution is to present a
model independent theoretical study of the analyzing
powers in pp — pA*. We supplement the analysing
powers to the unpolarized differential cross-section in
A production amplitudes.

Theoretical formalism

In an experiment like [1], where both the beam
and target are polarized, the initial polarization state is
described by the spin density matrix

pl=10+0-P)(1+0-Q) )

We express p' as
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The differential cross-section for pp — pA™ is
then given by

7 = trMp'M* 4)
a0,

where dQ, refers to the solid angle associated
with the outgoing proton with cm energy

E, = (Eczm - MK + Mg)/ZEcm (5)

where M, and M, denote the masses of the
proton and delta respectively. The reaction matrix M
for pp —» pA* may be written in the form

(S (s,5).-M"(s,s1))  (6)

where the irreducible spin tensor operators are
defined following [4] and the corresponding
irreducible tensor amplitudes M/\(s, s;) are expressible

in terms of the partial wave amplitudes Ml sit;s; Which
include also all factors dependent on cm energy E_,,.
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Using the eq.(2) and eq.(6) in eq.(4), we have
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where, the unpolarized differential cross-section is
of the form
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The analyzing powers A’;(kl,kz) are obtained
through
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The Bé‘ (k4,k,) canbe expressed in the form
B(l;(kl, kz) = ag(k]_, kz) + b‘};(k]_, kz) sin 92

+ cg (ky, ky) cos 6,

+ d¥(ky, ky) sin 6, cos 6,

+ g4 (ky, ky)cos?0, (11)

where the coefficients are functions of partial
wave amplitudes Ml spilgs; - 1T we consider only the
first three amplitudes

F; = M§.20;
F,= Mf1;11;
F; = M111;11 (12)

close to threshold, we can determine their modulus
values and the relative phase between F, and F; using
the following equations

|F,]? = 642(a$(0,0) — 295(0,0) — a3(1,1) +

a?,(1,1) (13)

|F,|2 = 19212(g3(0,0) + a3(1,1) — a?,(1,1))
(14)
1517 = 22 g8(0,0) (15)

ReF,F; = 321%(6g99(0,0) — 8a3(1,1) — 2a?,(1,1))
(16)

%{(m —2V3 —V15)a3(1,1) +
(91 — 13v3 +V15)a?,(1,1) —
(99 — 18v3)g3(0,0) — 36¢1(1,0)}
17)
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