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In this report some solutions to the equations of motion of classi-
cal relativistic strings are presented. Rotating solutions of open and
closed strings are found, including intermediate forms between open
strings that are folded £ and 3k times.

1 Introduction

In classical relativistic string theory the Howe and Tucker form of the action can

be reduced to T
S = 3 /dQUnaﬁaax“ﬁgxu,

where T is the string tension, in combination with constraints
1
ga,@ — 5(]1 . g)hag = 0
This action leads to separate solutions for open and closed strings.

1.1 Open strings

For open strings we have the Neumann boundary conditions:
Oy ax?(7,0) = Opat (7, m) = 0.

The equations of motion for open strings is given by

1 1 A
a'(1,0) = ¢" + —P'T +il > —ale " cosno
7T wzo "



such that o = (a”,,)*, where * denotes the complex conjugate.
The constraints can be written as

%:IEQ %(1,/)2 — 07

or equivalently, as shown in [1],
1

L, =
2

Z ab oy, = 0, for all n,
m

where

1.2 Closed Strings

For closed strings we have the boundary conditions
o (r,0) = 2"(1,0 + 7).

The equations of motion are

1 1
M (r,o0) = ¢ + —P'1 + -
T 2 o 1

The constraints are equivalent to
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Ly,
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3 >om Oy = 0, oy = Q.

2 The constraints

A simple solution of the equations of motion is given by

20 = (U7

L=y
2t = lcosocosT
2?2 = {lcososinT

/¢ Z lefQinT(Oégeﬂna 4 &ZefQina)'

(6)

This solution corresponds to a rotating open string of wich the endpoints move
with the speed of light. To verify that this solution indeed obeys the constraints
we can use the equations (2) or we can calculate the coefficients o”. The only

nonzero coefficients at, for this case are:

0_
oy =1




2.1 General properties of the constraints

Before calculating the L, it is convenient to make some general statements to see
which of them actually have to be calculated. The first one indicates that it is
only necessary to consider the L, with positive n.

Theorem 2.1 L, =0 if and only of L_, = 0.

Proof We use the fact that in the equations of motion (1) a# = (a',,)* where

the * denotes the complex conjugate.
L, = Zo%an_mju
m

— o M 14
- Z OémOén—m,u =+ Z &man—m,u + aoan,u

= > (@) (0 ym,)" + Zo(a’im)*(a_wm,u)* +(ag)"(a_, )’
= Zo(afm)*(afnfm,#)* + Zo(a‘im)*(afnfm,u)* + (o) (@)
= Z(aﬁn)*<afn7m,u)* = (Z afngnm,u> = (L*n)*

If the complex conjugate of L_,, equals zero, then L_,, is zero as well, and also
the converse is true. |

Another useful theorem is the next one. It states that we do not have to
evaluate the conditions L,, for any n > 2n,,.x, where n., is the highest n of all
non-zero o, since they all vanish.

Theorem 2.2 For any set of non-zero coefficients af; let ol be the coefficient
with highest n. Then L =0 if k > 2npay.

Proof It is convenient to split the sum in a part with m < 0 and a part with
m > 0, so

Lk = Zalrflakfm,u = Z afnakfm,,u + Z ag@akfm,,u'
m

m>0 m<0

First consider the part where m runs negative:

1Y — LM w .
Z amak—m,u - Oé—lak—&-l,/»t + a—Qak+2,u +
m<0

Since k > npy. all factors are zero and so this part does not contribute to the
sum.



Next m > 0.

H — ot H A ... H ...
Z amakfm,u =y ak,u + aq Oékfl,,u + + anmaxakfnmax,,u +
m>0

The contravariant components, starting from m = 0, can be nonzero up to m =
Nmax- In that region the index of the covariant components runs from £ down to
k—nNmax. If & > 2np. it follows that & —n.x > Nmax, S0 all covariant components
that are multiplied by possible nonzero contravariant components indeed vanish.

Furthermore there is a condition for the coeflicients a# with highest n.

Theorem 2.3 Let nyax be the index of the non-zero coefficient ot with the high-

est value of n. Then
al o = 0.

Mmax  Mmax MU -

Proof Consider Lo, . and again split it in two parts.

_ B _ Iz ©
Lonax = Zam@%max—m,# - Z QX2 o —m,p + Z O Qoo —m
m m>0 m<0

In the sum where m > 0 we have

" B B ot "
Z ama2nmax_m7# - O{O a2nmax,ﬂ+a1 a2nn1ax_1,ﬂ+ _’_anmax*lanmax‘i‘laﬂ—f_anmaxO[nmaxyu_’_
m>0

where the only nonzero term is given by of «, . In the part where m runs
max max ;M
negative we have

H = ot K R
Z ama2nmax_m7H - ailaQnmax"FlvM + a72a2nmax+2,u + 0
m<0

So the condition Lo, . = 0 is equivalent to

ab o = 0. (7)
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Finally the number of L, that have to be calculated can be decreased by the
following theorem:

Theorem 2.4 In the constraints L, the term agal’# s contained only in L, y.
Proof The sum can be written as

= a* . s ce H . H
Ln - Oé—man—&—m,u + + Oénfkak:,u + + akan—k’,u + + @man—m,u

so in the whole sum o} appears twice (If n > 2k the two terms in the middle

should be interchanged). In both cases it is multiplied by o _,. We have o} =

al only whenn=10+k |}



From this theorem it is possible to consider only the terms that can contribute
to the L,,. For example, if the coefficients a# exist for only the spatial coordinates
of n = £1, the only way they can contribute to the L,, is when aﬁ‘aw or oz‘ilozw
appear in the sum. This happens only in Ly and Ls.

The condition Ly can be seen as a normalization of the components. If af = 1
it can be shown that

u2_1
Z‘an’ _5 (8>

n#0

2.2 Calculating the constraints

For calculating the constraints on the coefficients of the equations (6) we only
need to calculate Ly and Ly as can be seen from the above theorems.

Ly = Y aha ,,  =agag,+ofay,+aoa,
v 11 24 11
S R Iy
22 22 22+22
v 1

Ly = afar, = (5 +(5)* =0

So by the constraints it can be seen that solution (6) is indeed valid. The same
result is obtained when using the constraints given by (2).

3 More general rotating solutions

The solutions to the equations of motions (6) can be made more general. If we
consider a system with 2 spatial dimensions and 1 time dimension such that there
are only five non-zero complex coefficients the system is almost the same as the
above example. The time is given by z° = (7 so a = 1. It is convenient to use
the polar form for the complex coefficients. The non-zero coefficients are given
below.

a) = ae ai = e’
ad=1
Iy i 2Vk i
()" = ae™* (af)" = age™™®

Since the only non-zero values of «,, are for n = £k, by theorem (2.4) we can see
that o,y , only appears in Lig, and aja_y , only in Ly. By theorem (2.1)
we only have to make sure that Lo and Ly vanish.

From theorem (2.3) it follows that o/ ay , = 0, so i = +icy, and this satisfies
the constraint Lo,. If we take aj = ae’® we have, using that i = e™™/?, the
following set of o



, o
a,lg = ae'® oz% = qel+3)

, i
al, =ae a?, = ae9%3)

where a is a positive real number.
For Ly to vanish we need

_ "
Ly = Z e T
m

I " "
gy, topay oy,
= —1+4a*>=0

With a = % this leads to the following solution:

20 = (7
L %(sin kT cos ¢ — cos kT sin ¢) cos ko ()
2? = :l:%(— sin k7 sin ¢ — cos kT cos ¢) cos ko

This solution corresponds to a rotating string. It is an open string for k£ =
1,3,5... For k > 1 the string is folded k£ times on itself. At 7 = 0, the angle the
string makes with the x%-axis is given by ¢. If the sign of the z?-part of solution
(9) is positive the string rotates counter-clockwise.

When ¢ = 0 the equations of motion are given by

20 = (7
g' = fsinkrcosko : (10)
x? = IFﬁ cos kT cos ko

4 More complicated solutions of open strings

A more complicated solution of an open string can be obtained when we have a
solution like (9) with an additional function of order [ > k. First we consider the
case in which [ and k£ are chosen arbitrarily.

4.1 Arbitrary higher order terms

For arbitrary [ the nonzero coefficients a# are as follows:



all = ae* ozl2 = ae'?

a} = be® a2 = bhye't a; = bze'ts
ad =1
1 _ —1i0 2 —162 3 i03
a”, = be aZy = bee o) = bse
al_l = qe 042_1 = qoe 92

The solution is completely general if the a3, is chosen to be zero. Such a term
inevitably leads to a rotating solution, since it is build up of sine and cosine
functions and we can alway choose a coordinate system such that this motion
is restricted to the i, xo-plane. The coefficients of highest order are easiest
fixed by theorem (2.3) if they are restricted to two spatial dimensions. We use
theorem (2.4) to see which of the constraints L, have to be calculated. The
only way that non-zero multiplications of the coefficients o/ occur is in aj'q, ,,
oy, afa s ooy, agoy ,, aga_y . and they emerge in the constraints
Loy, Livg, Ly—k, Lo, Loy, Lo, respectively.
First we calculate Ly It follows from theorem (2.3) that

ige +i0l
ase i
_ gei(#n/2) (11)
S0 ag = a and ¢y = ¢ = 7/2.
Next we consider L, :
Ly = ajag,

abet? 4 abye! @0 ET/2) —

It follows that by = b and 0, = 0 & 7, where the sign is the same as in equa-
tions (11). So we have

ar = be” and o2 = be!E/) (12)

This means that if condition Lo is to be satisfied, a% must vanish. Further-
more, if we consider condition L;_; we see that

Lix = ooy, +aa,
2(051104_1@1 + a?a_m)
= 2(abe'®e” + abe!(PET/2) e mi0E/2))
= 4abe'9



wich can be zero only if
a=0orb=0.

This implies that either the coefficients o) vanish, or the coefficients a/. This
shows that an arbitrary combination of [ and k is not possible.

4.2 Reducing the number of constraints

Above we saw that the constraints for a system with coefficients of order [ and
k are Loj, Lok, Livk, Ly and Lg. If we choose [ such that two of the constraints
become the same, we can effectively remove one of them. By choosing | = 3k, the
constraint L;_, becomes identical to Lg,. There is no other way in which two of
the constraints can be combined. The constraint Lgy still leads to equation (11),
and Ly, leads to (12), where 3k must be substituted for .

Now we have the following set of coefficients:

1 i
g, = ae

a? 4, = Fiae

1 i 2 _ 4o
ad, = ae a3, = Fiae'
a} = be® a? = +ibe® ap = bse'?s
ad=1
1 _ p—if 2 ipo—if 3 p.o—if
., =be™" o, = Fibe™ ) = bse™

The value of a3, can be found using Loy.

— I
Loy = Z XXk —m,p
m

= apay, +aga +alag
= (a2)? + 2(abe e 4 abe'PE2) e m0E3))
= () + dabe’@?

It follows that
oy = 125 abe!@=0/2 — 9\/qbei(¢—0%m)/2,

Finally, using Ly , we can calculate that
Lo = —1+2(20* + 4ab + 2a*) = —1 + 4(a + b)?,

so (b4 a)? = %, where both a and b are positive real numbers. We have b = % —a

o
where 0 < a, b

N[ =



4.3 The equations of motion

Now we can write down the equations of motion. Putting together all values of
the o, remembering that the sign in front of a3, should be the same as the one
in front of a2, we get the following sytem of coefficients.

ok, = ae ai, = tiae'
al = be' a2 = Fibe® a3 = +2iv/abe' =)/
0
al, =be ¥ a?, = Fibe o3, = F2ivabe (9=0)/2
aly, =ae™ a? 5, = Fae

and putting the coefficients in equation (1) we obtain:

2 = (7

o= 4 <2b(cos f'sin kT — sin § cos k7) cos ko + 2a(cos ¢ sin 3kT — sin ¢ cos 3kT) cos BkU)

? = Fi <Qb(cos 0 cos kT + sin 0 sin k7) cos ko + Za(cos ¢ cos 3kT — sin ¢ sin 3kT) cos 31{:0)

= 42£4\/%( Ccos ¢T_6 cos kT + sin % sin k7) cos ko
(13)
The values of ¢ and 6 determine the phase of the different parts of the motion.
The motion itself corresponds to a rotating string with a twist, wich is rotating

as well. The motion when k& = 1 shown in figure (1) below.




Figure 1:

The string as given in equations (13) is drawn here for different values
of a and b, but all with the same value of 7. In (A) the motion is that
of a rotating open string folded three times on itself. In this case a = %,
and b = 0. In (B) we have a = 0.499 and b = 0.001. In the following
pictures a is made smaller and smaller, and the string is stretching until

is becomes a rotating open string in (H).
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5 Closed Strings

For closed strings there are two sets of coefficients, a” and a* (see equation [4]).

They are independent, but o = &). Since af = 5—7P*, we have 2° = (7 if

al =ay = % First the case with the following coefficients is considered:

1_ 1,0 2 _ 416
X ap = g€ ap = tige
0_1
A 1,—i 1,—i
Oél L = 6710 a/2—k — :Fzzefw
and for a#:
1 _ 1.0 2 _ 410
X a,, = 7€ ay, = Fize
0_1
1 1 _—i0 2 _ 1 _—i6
al,, = ;e oz, = Fize

The factor i in front of the coefficients comes from condition Ly with ol = 1.

2
This results in the following equations of motion:

2 = (7

= ﬁ(% sin (2k7 — 0 — 2ko) + L sin (2m7 — 0 + QmJ))

(14)

? = Ft (% cos (2kT — 0 — 2ko) £ L cos (2mT — 0 + 2mcr)>

When k£ = m and when we have a (+) in the middle of 22 the motion corresponds
to a closed string collapsed to a line that is rotating. If the middle sign is a (—)
the motion corresponds to a circle of which the radius is periodically changing
between 0 and g. The sign in front of 22 determines the direction of the rotation.
The angles 6 and # determine the phase of the motion. A few examples of the
motion when k # m are shown in figure (2).

11
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Figure 2: Some examples for different values of m, k and the £-sign between the
two terms of 22. In A and B we have m = 1, k = 2 with a plus and a
minus sign respectively. The same applies for C and D where m = 10,
k = 3. The strings are all rotating with time.

More general are the equations of motion following from the following system
of coefficients, obtained in the same way as in the open string case:

1 _ B
oy, = be
a} = ae™
0__ 1
g =5 4
al, =ae™™

1 _p.—iB
g = be

2 _ 1B
o, = Tibe
ai = +iae™

2

aZ, = Fiae "

052_3k = q:be_w

o} = £2iv/abe'P=)/2

a?, = F2ivabe (B=)/2

The same applies to the coefficients a:

12




al = ge'd a2 = +ige'® ad = +2i\/abel(P-9/2
~0 1
al, = aeid a%, = Tiae @ &b, = T2\ abe 1A~/

By condition Ly we must have a + b = a + b = i. This leads to the following
solutions for the equations of motion:

2 = U7
= é(%{g sin (6kT —  — 6ko) + asin (2k7 — a — 2ko) }

—1—%% sin (6mr — 3 + 6mo) + asin (2mr — & + 2m0)}>

2 = q:ﬁ(%{gcos(@’m'—ﬂ—6k0)+CLCOS(2k7_O‘_2kU)} . (15)

¢#{g cos (6mr — G+ 6mo) + acos (2mT — & + 2m0)}>

3 = IF€< b cos (2kT — 252 — 2ko)

2\/_ cos (2mt — ;5‘ + 2m0))

An example of these solutions is given below.

6 Summary

Solutions to the equations of classical relativistic strings can be expressed in term
of the coefficients o, and they are subject to the constraints L,. It is shown
that some of the constraints can be combined, and more terms can be added to
the equations of motion.
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Figure 3: The movement of the string according to equations (15) with k =m =
1,oz:6zzﬁ:B:Oanda:b:d:l~):é. The sign in the middle
of 22 is (=), all other (+). The pictures have different values of T such
that 1 period of its motion is covered.
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Figure 4: The same as in figure (3), but this time the box in which the string is
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drawn is viewed from above.
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