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In this report some solutions to the equations of motion of classi-
cal relativistic strings are presented. Rotating solutions of open and
closed strings are found, including intermediate forms between open
strings that are folded k and 3k times.

1 Introduction

In classical relativistic string theory the Howe and Tucker form of the action can
be reduced to

S = −T
2

∫
d2σηαβ∂αx

µ∂βxµ,

where T is the string tension, in combination with constraints

gαβ −
1

2
(h · g)hαβ = 0.

This action leads to separate solutions for open and closed strings.

1.1 Open strings

For open strings we have the Neumann boundary conditions:

∂σx
µ(τ, 0) = ∂σx

µ(τ, π) = 0.

The equations of motion for open strings is given by

xµ(τ, σ) = qµ +
1

πT
P µτ + i`

∑

n6=0

1

n
αµne

−inτ cosnσ (1)

1



such that αµn = (αµ−n)∗, where ∗ denotes the complex conjugate.
The constraints can be written as

1
2
ẋ2 + 1

2
(x′)2 = 0,

ẋ · x′ = 0,
(2)

or equivalently, as shown in [1],

Ln ≡
1

2

∑

m

αµmαn−m,µ = 0, for all n, (3)

where

αµ0 =
1

πT`
P µ.

1.2 Closed Strings

For closed strings we have the boundary conditions

xµ(τ, σ) = xµ(τ, σ + π).

The equations of motion are

xµ(τ, σ) = qµ +
1

πT
P µτ +

i

2
`
∑

n6=0

1

n
e−2inτ (αµne

2inσ + α̃µne
−2inσ). (4)

The constraints are equivalent to

Ln ≡ 1
2

∑
m α

µ
mαn−m,µ = 0, αµ0 = 1

2π`T
P µ,

L̃n ≡ 1
2

∑
m α̃

µ
mα̃n−m,µ = 0, α̃µ0 = αµ0 .

(5)

2 The constraints

A simple solution of the equations of motion is given by

x0 = `τ
x1 = ` cos σ cos τ
x2 = ` cos σ sin τ




. (6)

This solution corresponds to a rotating open string of wich the endpoints move
with the speed of light. To verify that this solution indeed obeys the constraints
we can use the equations (2) or we can calculate the coefficients αµn. The only
nonzero coefficients αµm for this case are:

α1
1 = − i

2
α2

1 = 1
2

α0
0 = 1

α1
−1 = i

2
α2
−1 = 1

2

2



2.1 General properties of the constraints

Before calculating the Ln it is convenient to make some general statements to see
which of them actually have to be calculated. The first one indicates that it is
only necessary to consider the Ln with positive n.

Theorem 2.1 Ln = 0 if and only if L−n = 0.

Proof We use the fact that in the equations of motion (1) αµn = (αµ−n)∗ where
the ∗ denotes the complex conjugate.

Ln =
∑

m

αµmαn−m,µ

=
∑

m>0

αµmαn−m,µ +
∑

m<0

αµmαn−m,µ + αµ0αn,µ

=
∑

m>0

(αµ−m)∗(α−n+m,µ)∗ +
∑

m<0

(αµ−m)∗(α−n+m,µ)∗ + (αµ0 )∗(α−n,µ)∗

=
∑

m<0

(αµ−m)∗(α−n−m,µ)∗ +
∑

m>0

(αµ−m)∗(α−n−m,µ)∗ + (αµ0 )∗(α−n,µ)∗

=
∑

m

(αµm)∗(α−n−m,µ)∗ =

(∑

m

αµmα−n−m,µ

)∗
= (L−n)∗

If the complex conjugate of L−n equals zero, then L−n is zero as well, and also
the converse is true.

Another useful theorem is the next one. It states that we do not have to
evaluate the conditions Ln for any n > 2nmax, where nmax is the highest n of all
non-zero αµn, since they all vanish.

Theorem 2.2 For any set of non-zero coefficients αµn let αµnmax
be the coefficient

with highest n. Then Lk = 0 if k > 2nmax.

Proof It is convenient to split the sum in a part with m < 0 and a part with
m ≥ 0, so

Lk =
∑

m

αµmαk−m,µ =
∑

m≥0

αµmαk−m,µ +
∑

m<0

αµmαk−m,µ.

First consider the part where m runs negative:

∑

m<0

αµmαk−m,µ = αµ−1αk+1,µ + αµ−2αk+2,µ + · · ·

Since k > nmax all factors are zero and so this part does not contribute to the
sum.
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Next m ≥ 0.
∑

m≥0

αµmαk−m,µ = αµ0αk,µ + αµ1α
µ
k−1,µ + · · ·+ αµnmax

αk−nmax,µ + · · ·

The contravariant components, starting from m = 0, can be nonzero up to m =
nmax. In that region the index of the covariant components runs from k down to
k−nmax. If k > 2nmax it follows that k−nmax > nmax, so all covariant components
that are multiplied by possible nonzero contravariant components indeed vanish.

Furthermore there is a condition for the coefficients αµn with highest n.

Theorem 2.3 Let nmax be the index of the non-zero coefficient αµn with the high-
est value of n. Then

αµnmax
αnmax,µ = 0.

Proof Consider L2nmax and again split it in two parts.

L2nmax =
∑

m

αµmα2nmax−m,µ =
∑

m≥0

αµmα2nmax−m,µ +
∑

m<0

αµmα2nmax−m,µ.

In the sum where m ≥ 0 we have
∑

m≥0

αµmα2nmax−m,µ = αµ0α2nmax,µ+αµ1α2nmax−1,µ+· · ·+αµnmax−1αnmax+1,µ+αµnmax
αnmax,µ+· · ·

where the only nonzero term is given by αµnmax
αnmax,µ. In the part where m runs

negative we have
∑

m<0

αµmα2nmax−m,µ = αµ−1α2nmax+1,µ + αµ−2α2nmax+2,µ + · · · = 0

So the condition L2nmax = 0 is equivalent to

αµnmax
αnmax,µ = 0. (7)

Finally the number of Ln that have to be calculated can be decreased by the
following theorem:

Theorem 2.4 In the constraints Ln the term αµkαl,µ is contained only in Ll+k.

Proof The sum can be written as

Ln = αµ−mαn+m,µ + · · ·+ αµn−kαk,µ + · · ·+ αµkαn−k,µ + · · ·+ αµmαn−m,µ

so in the whole sum αµk appears twice (If n > 2k the two terms in the middle
should be interchanged). In both cases it is multiplied by αµn−k. We have αµl =
αµn−k only when n = l + k
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From this theorem it is possible to consider only the terms that can contribute
to the Ln. For example, if the coefficients αµn exist for only the spatial coordinates
of n = ±1, the only way they can contribute to the Ln is when αµ1α1,µ or αµ−1α1,µ

appear in the sum. This happens only in L0 and L2.
The condition L0 can be seen as a normalization of the components. If α0

0 = 1
it can be shown that ∑

n6=0

|αµn|2 =
1

2
(8)

2.2 Calculating the constraints

For calculating the constraints on the coefficients of the equations (6) we only
need to calculate L0 and L2 as can be seen from the above theorems.

L0 =
∑

m

αµmα−m,µ = αµ0α0,µ + αµ1α−1,µ + αµ−1α1,µ

= −1− i

2

i

2
+

1

2

1

2
− i

2

i

2
+

1

2

1

2
= 0

L2 = αµ1α1,µ = (− i
2

)2 + (
1

2
)2 = 0

So by the constraints it can be seen that solution (6) is indeed valid. The same
result is obtained when using the constraints given by (2).

3 More general rotating solutions

The solutions to the equations of motions (6) can be made more general. If we
consider a system with 2 spatial dimensions and 1 time dimension such that there
are only five non-zero complex coefficients the system is almost the same as the
above example. The time is given by x0 = `τ so α0

0 = 1. It is convenient to use
the polar form for the complex coefficients. The non-zero coefficients are given
below.

α1
k = aeiφ α2

k = a2e
iφ2

α0
0 = 1

(α1
k)
∗ = ae−iφ (α2

k)
∗ = a2e

−iφ2

Since the only non-zero values of αn are for n = ±k, by theorem (2.4) we can see
that αµ±kα±k,µ only appears in L±2k and αµkα−k,µ only in L0. By theorem (2.1)
we only have to make sure that L2k and L0 vanish.

From theorem (2.3) it follows that αµkαk,µ = 0, so α2
k = ±iα1

k, and this satisfies
the constraint L2k. If we take α1

k = aeiφ we have, using that i = eiπ/2, the
following set of αµk :
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α1
k = aeiφ α2

k = aei(φ±
π
2

)

α0
0 = 1

α1
−k = ae−iφ α2

−k = ae−i(φ±
π
2

)

where a is a positive real number.
For L0 to vanish we need

L0 =
∑

m

αµmα−m,µ

= αµ0α0,µ + αµkα−k,µ + αµ−kαk,µ

= −1 + 4a2 = 0

With a = 1
2

this leads to the following solution:

x0 = `τ

x1 = `
k
(sin kτ cosφ− cos kτ sinφ) cos kσ

x2 = ± `
k
(− sin kτ sinφ− cos kτ cosφ) cos kσ





. (9)

This solution corresponds to a rotating string. It is an open string for k =
1, 3, 5 . . . For k > 1 the string is folded k times on itself. At τ = 0, the angle the
string makes with the x2-axis is given by φ. If the sign of the x2-part of solution
(9) is positive the string rotates counter-clockwise.

When φ = 0 the equations of motion are given by

x0 = `τ
x1 = `

k
sin kτ cos kσ

x2 = ∓ `
k

cos kτ cos kσ




. (10)

4 More complicated solutions of open strings

A more complicated solution of an open string can be obtained when we have a
solution like (9) with an additional function of order l > k. First we consider the
case in which l and k are chosen arbitrarily.

4.1 Arbitrary higher order terms

For arbitrary l the nonzero coefficients αµn are as follows:
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α1
l = aeiφ α2

l = a2e
iφ2

α1
k = beiθ α2

k = b2e
iθ2 α3

k = b3e
iθ3

α0
0 = 1

α1
−k = be−iθ α2

−k = b2e
−iθ2 α3

−k = b3e
iθ3

α1
−l = ae−iφ α2

−l = a2e
−iφ2

The solution is completely general if the α3
±l is chosen to be zero. Such a term

inevitably leads to a rotating solution, since it is build up of sine and cosine
functions and we can alway choose a coordinate system such that this motion
is restricted to the x1, x2-plane. The coefficients of highest order are easiest
fixed by theorem (2.3) if they are restricted to two spatial dimensions. We use
theorem (2.4) to see which of the constraints Ln have to be calculated. The
only way that non-zero multiplications of the coefficients αµn occur is in αµl αl,µ,
αµl αk,µ, αµl α−k,µ, αµl α−l,µ, αµkαk,µ, αµkα−k,µ, and they emerge in the constraints
L2l, Ll+k, Ll−k, L0, L2k, L0, respectively.

First we calculate L2l. It follows from theorem (2.3) that

a2e
iφ2 = ±iα1

l

= aei(φ±π/2) (11)

so a2 = a and φ2 = φ± π/2.
Next we consider Ll+k:

Ll+k = αµl αk,µ

= abeiφ+θ + ab2e
i(φ+θ2±π/2) = 0

It follows that b2 = b and θ2 = θ ± π
2
, where the sign is the same as in equa-

tions (11). So we have

α1
k = beiθ and α2

k = bei(θ±π/2), (12)

This means that if condition L2k is to be satisfied, α3
k must vanish. Further-

more, if we consider condition Lk−l we see that

Ll−k = αµl α−k,µ + αµ−kαl,µ

= 2(α1
l α−k,1 + α2

l α−k,2)

= 2(abeiφeiθ + abei(φ±π/2)e−i(θ±π/2))

= 4abei(φ−θ)
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wich can be zero only if
a = 0 or b = 0.

This implies that either the coefficients αµk vanish, or the coefficients αµl . This
shows that an arbitrary combination of l and k is not possible.

4.2 Reducing the number of constraints

Above we saw that the constraints for a system with coefficients of order l and
k are L2l, L2k, Ll+k, Ll−k and L0. If we choose l such that two of the constraints
become the same, we can effectively remove one of them. By choosing l = 3k, the
constraint Ll−k becomes identical to L2k. There is no other way in which two of
the constraints can be combined. The constraint L6k still leads to equation (11),
and L4k leads to (12), where 3k must be substituted for l.

Now we have the following set of coefficients:

α1
3k = aeiφ α2

3k = ±iaeiφ

α1
k = beiθ α2

k = ±ibeiθ α3
k = b3e

iθ3

α0
0 = 1

α1
−k = be−iθ α2

−k = ∓ibe−iθ α3
−k = b3e

−iθ

α1
−3k = ae−iφ α2

−3k = ∓iae−iφ

The value of α3k can be found using L2k.

L2k =
∑

m

αµmα2k−m,µ

= αµkαk,µ + αµ3kα−k,µ + αµ−kα3k,µ

= (α3
k)

2 + 2(abe−iθeiφ + abei(φ±
π
2

)e−i(θ±
π
2

))

= (α3
k)

2 + 4abei(φ−θ)

It follows that
α3
k = ±2i

√
abei(φ−θ)/2 = 2

√
abei(φ−θ±π)/2.

Finally, using L0 , we can calculate that

L0 = −1 + 2(2b2 + 4ab+ 2a2) = −1 + 4(a+ b)2,

so (b+a)2 = 1
4
, where both a and b are positive real numbers. We have b = 1

2
−a

where 0 ≤ a, b ≤ 1
2
.
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4.3 The equations of motion

Now we can write down the equations of motion. Putting together all values of
the αµn, remembering that the sign in front of α2

3k should be the same as the one
in front of α2

k, we get the following sytem of coefficients.

α1
3k = aeiφ α2

3k = ±iaeiφ

α1
k = beiθ α2

k = ±ibeiθ α3
k = ±2i

√
abei(φ−θ)/2

α0
0 = 1

α1
−k = be−iθ α2

−k = ∓ibe−iθ α3
−k = ∓2i

√
abe−i(φ−θ)/2

α1
−3k = ae−iφ α2

−3k = ∓ae−iφ

and putting the coefficients in equation (1) we obtain:

x0 = `τ

x1 = `
k

(
2b(cos θ sin kτ − sin θ cos kτ) cos kσ + 2

3
a(cosφ sin 3kτ − sinφ cos 3kτ) cos 3kσ

)

x2 = ∓ `
k

(
2b(cos θ cos kτ + sin θ sin kτ) cos kσ + 2

3
a(cosφ cos 3kτ − sinφ sin 3kτ) cos 3kσ

)

x3 = ∓ `
k
4
√
ab( cos φ−θ

2
cos kτ + sin φ−θ

2
sin kτ) cos kσ





.

(13)
The values of φ and θ determine the phase of the different parts of the motion.

The motion itself corresponds to a rotating string with a twist, wich is rotating
as well. The motion when k = 1 shown in figure (1) below.
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Figure 1: The string as given in equations (13) is drawn here for different values
of a and b, but all with the same value of τ . In (A) the motion is that
of a rotating open string folded three times on itself. In this case a = 1

2
,

and b = 0. In (B) we have a = 0.499 and b = 0.001. In the following
pictures a is made smaller and smaller, and the string is stretching until
is becomes a rotating open string in (H).
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5 Closed Strings

For closed strings there are two sets of coefficients, aµn and ãµn (see equation [4]).
They are independent, but α0

0 = α̃0
0. Since αµ0 = 1

2π`T
P µ, we have x0 = `τ if

α0
0 = α̃0

0 = 1
2
. First the case with the following coefficients is considered:

α1
k = 1

4
eiθ α2

k = ±i1
4
eiθ

α0
0 = 1

2

α1
−k = 1

4
e−iθ α2

−k = ∓i1
4
e−iθ

and for ãµn:

α1
m = 1

4
eiθ̃ α2

m = ±i1
4
eiθ̃

α0
0 = 1

2

α1
−m = 1

4
e−iθ̃ α2

−m = ∓i1
4
e−iθ̃

The factor 1
4

in front of the coefficients comes from condition L0 with α0
0 = 1

2
.

This results in the following equations of motion:

x0 = `τ

x1 = `
4

(
1
k

sin (2kτ − θ − 2kσ) + 1
m

sin (2mτ − θ̃ + 2mσ)
)

x2 = ∓ `
4

(
1
k

cos (2kτ − θ − 2kσ)± 1
m

cos (2mτ − θ̃ + 2mσ)
)





. (14)

When k = m and when we have a (+) in the middle of x2 the motion corresponds
to a closed string collapsed to a line that is rotating. If the middle sign is a (−)
the motion corresponds to a circle of which the radius is periodically changing
between 0 and `

2
. The sign in front of x2 determines the direction of the rotation.

The angles θ and θ̃ determine the phase of the motion. A few examples of the
motion when k 6= m are shown in figure (2).
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Figure 2: Some examples for different values of m, k and the ±-sign between the
two terms of x2. In A and B we have m = 1, k = 2 with a plus and a
minus sign respectively. The same applies for C and D where m = 10,
k = 3. The strings are all rotating with time.

More general are the equations of motion following from the following system
of coefficients, obtained in the same way as in the open string case:

α1
3k = beiβ α2

3k = ±ibeiβ

α1
k = aeiα α2

k = ±iaeiα α3
k = ±2i

√
abei(β−α)/2

α0
0 = 1

2

α1
−k = ae−iα α2

−k = ∓iae−iα α3
−k = ∓2i

√
abe−i(β−α)/2

α1
−3k = be−iβ α2

−3k = ∓be−iβ

The same applies to the coefficients α̃µn:
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α̃1
3k = b̃eiβ̃ α̃2

3k = ±ib̃eiβ̃

α̃1
k = ãeiα̃ α̃2

k = ±iãeiα̃ α̃3
k = ±2i

√
ãb̃ei(β̃−α̃)/2

α̃0
0 = 1

2

α̃1
−k = ãe−iα̃ α̃2

−k = ∓iãe−iα̃ α̃3
−k = ∓2i

√
ãb̃e−i(β̃−α̃)/2

α̃1
−3k = b̃e−iβ̃ α̃2

−3k = ∓b̃e−iβ̃

By condition L0 we must have a + b = ã + b̃ = 1
4
. This leads to the following

solutions for the equations of motion:

x0 = `τ

x1 = `
(

1
k
{ b

3
sin (6kτ − β − 6kσ) + a sin (2kτ − α− 2kσ)}

+ 1
m
{ b̃

3
sin (6mτ − β̃ + 6mσ) + α̃ sin (2mτ − α̃ + 2mσ)}

)

x2 = ∓`
(

1
k
{ b

3
cos (6kτ − β − 6kσ) + a cos (2kτ − α− 2kσ)}

∓ 1
m
{ b̃

3
cos (6mτ − β̃ + 6mσ) + α̃ cos (2mτ − α̃ + 2mσ)}

)

x3 = ∓`
(

2
√
ab
k

cos (2kτ − β−α
2
− 2kσ)

±2
√
ãb̃

m
cos (2mτ − β̃−α̃

2
+ 2mσ)

)





. (15)

An example of these solutions is given below.

6 Summary

Solutions to the equations of classical relativistic strings can be expressed in term
of the coefficients αµn, and they are subject to the constraints Ln. It is shown
that some of the constraints can be combined, and more terms can be added to
the equations of motion.
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Figure 3: The movement of the string according to equations (15) with k = m =
1, α = α̃ = β = β̃ = 0 and a = b = ã = b̃ = 1

8
. The sign in the middle

of x2 is (−), all other (+). The pictures have different values of τ such
that 1 period of its motion is covered.
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Figure 4: The same as in figure (3), but this time the box in which the string is
drawn is viewed from above.
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