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Strong correlations in matter promote a landscape of quantum phases and
associated quantum critical points. For metallic systems, there is increasing
recognition that the quantum criticality goes beyond the Landau framework
and, thus, further means are needed to characterize the quantum critical fluid.
Here we do so by studying an entanglement quantity, the quantum Fisher
information, in a strange metal system, focusing on the exemplary case of an
Anderson/Kondo lattice model near its Kondo destruction quantum critical
point. The spin quantum Fisher information peaks at the quantum critical
point and indicates a strongly entangled ground state. Our results are sup-
ported by the quantum Fisher information extracted from inelastic neutron
scattering measurements in heavy fermion metals. Our work elucidates the
loss of quasiparticles in strange metals, opens a quantum information avenue
to advance the understanding of metallic quantum criticality in a broad range
of strongly correlated systems, and points to a regime of quantum matter to

realize amplified entanglement.

Quantum entanglement refers to the entwining of particles such that
the quantum state of one cannot be completely described without
considering those of the others. This interconnection, lacking a
classical counterpart, exhibits unusual properties that defy intuitive
understanding’. In condensed matter settings, entanglement can play an
important role’. For example, collective quantum phases of matter in
strongly correlated systems, such as the quantum spin liquids and
fractional quantum Hall state, are theoretically expected to have
strongly entangled ground states”. Another class of strongly correlated
systems are strange metals, which develop near a quantum critical point
(QCP). The theory for quantum criticality in such strongly correlated
metals goes beyond the Landau framework of order-parameter fluc-
tuations. In the case of heavy fermion metals, a critical destruction of
Kondo effect®® has been advanced and extensively evinced””. As such,
their understanding remains a central question’ ™. Because strange
metals are also highly collective, it is natural to ask whether a quantum
information perspective will allow for progress in understanding.

Here we utilize two quantum information quantities, the
mutual information (Fig. 1a) and quantum Fisher information
(QFI) (Fig. 1b), to analyze the entanglement behavior near a
Kondo destruction QCP (Fig. 1c). While the entanglement entropy
(including the mutual information) is an effective measure of
entanglement, a protocol of how to experimentally probe it in
many-body settings has yet to be established, progress in meso-
scopic systems notwithstanding'*">. By comparison, the QFI is an
entanglement witness. Like the Bell’s inequality that determines
the bipartite entanglement of qubits from correlation functions’,
the QFI probes the multipartite entanglement in quantum many-
body systems'® . We consider the pertinent theoretical model,
the Anderson lattice model (see below), and find the QFI of the
spin operator to peak at the QCP, with behavior that indicates a
strongly entangled ground state. Our results elucidate the
anomalous quantum dynamics that are often observed in strange
metals.
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Fig. 1| Illustration of mutual information, quantum Fisher information and
Kondo destruction quantum critical point. a Mutual information that detects the
entanglement between two subsystems A and B. Here the black arrows indicate
spins, the gray wavy lines represent entanglement between two spins, the solid red
box means the subsystem of interest and the dashed red line is the separation.

b Quantum Fisher information defined for local operators (51, (52, (53 witnesses the
multipartite entanglement in the entire system. Here the blue circles represent the
correlation of the local operators for the circled two spins. ¢ Kondo destruction
quantum criticality of a Kondo lattice”. Here the control parameter is the ratio of
the RKKY coupling to the bare Kondo temperature, §=1/T2. The Kondo destruc-
tion energy scale E} vanishes at the quantum critical point (QCP). The three scales,
Tar, TrL and Ty correspond to the temperatures of the AF ordering transition, the
crossover into the Fermi liquid and the initial onset of Kondo correlations,
respectively. Cartoons on the two sides of the QCP (the boxes) are adapted from
ref. 42 where the red arrows are fmoments and the solid/blank circles represent the
particle/hole of f electron.

Results
Kondo destruction quantum critical point
The Kondo lattice model—and its strongly-coupled Anderson lattice
counterpart—contain two types of degrees of freedom: a lattice of local
moments and a band of conduction electrons (see Methods). The spins
of the local moments and conduction electrons are coupled by the
Kondo interaction, whereas the local moments are coupled by the
Rudermana-Kittel-Kasuya-Yosida (RKKY) interaction®®. Typically,
both types of interactions are antiferromagnetic (AF). The competition
between them has been shown®*" to yield quantum phase transitions
that involve a heavy Fermi liquid phase and a Kondo destruction phase
(Fig. 1c). In the heavy Fermi liquid phase, where the Kondo coupling
wins over the RKKY interaction, the formation of Kondo singlets
between the local spins and conduction electrons gives rise to a large
Fermi surface. On the other hand, when the RKKY interaction dom-
inates, the correlations among the local spins are detrimental to the
formation of any Kondo singlet. As such, at the Kondo destruction QCP
where the RKKY and Kondo interactions have the strongest competi-
tion, the degree of entanglement among the local spins and conduc-
tion electrons represents an intriguing question. The entanglement
entropy has been studied in the past for Kondo systems, for models
that involve the local moments at the level of either impurity?>* or
lattice’. However, the QCP of the Kondo lattice systems has rarely
been characterized by any entanglement means?.

To set the stage for studying the entanglement properties near
the QCP, we start from the mutual information (see Methods) between
the local (f) and conduction (c) electrons:

MIf,C: _S(ﬁf,c)+s(ﬁf)+s(ﬁc)- (1)

Here, py . denotes the density matrix of the f and c electrons after
tracing out the environment (see the schematic in Fig. 2), and
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Fig. 2 | Mutual information between the local fand c electrons. Evolution of the
mutual information of local f and ¢ electrons with the tuning parameter §=1//Ty.
The vertical dashed line indicates the QCP. The schematic diagram of this mutual
information is depicted on the right bottom corner, where “Env" stands for the rest
of the system (the environment). Here, the dashed grids represent the lattice, the
red box depicts the impurity subsystem and the red dashed line represents the
separation of the f and c electron spins.

Pr=trepr . (p.=trepy ) is the reduced density matrix of the f (c)
electrons. For definiteness, we consider a square lattice by keeping the
nearest neighbor RKKY interaction. Accordingly, the wavevector
dependence of the RKKY interaction has the following form:
1q=1(cos q, + cos q,), where [ is the strength of the RKKY interaction
and (. qy) is the wavevector at the ordering wavevector
q=Q=(m, m),lq=-2I

In Fig. 2, we show the evolution of the mutual information (Ml,)
with respect to the non-thermal parameter () that tunes the phase
diagram of the Kondo lattice, namely the ratio of the RKKY inter-
actionfto the bare Kondo temperature scale, T9. As this tuning
parameter increases, the system undergoes a Kondo destruction
quantum phase transition, with the vertical dashed line marking the
QCP (cf. Fig. 1c). In the Kondo-screened phase, the mutual informa-
tion is large, essentially saturating the maximal value 2In 2 of a spin
singlet, which is consistent with the local f moment being strongly
bounded to the conduction electrons. The mutual information is
monotonically decreased as the RKKY interaction is increased. Sur-
prisingly, in the Kondo-destroyed side at 6 > 6. (cf. Fig. 1c), even
though the Kondo singlet is destroyed in the ground state, the
mutual information Ml remains nonzero. This result indicates that
the Kondo-singlet correlations persist and demonstrates a dynamical
Kondo effect”. Our result sets the stage to probe quantum entan-
glement when the QCP is approached from both the Kondo-screened
and Kondo-destroyed sides. To do so, we turn to entanglement
witness.

Quantum Fisher information—general

The essence of the mutual information is the entanglement
between subsystems A and B. A different way to detect such entan-
glement is by measuring the covariance tr((Dz — P4 ® Pp)040p)
where the Hermitian operator @A/B acts on the A/B subsystem.
This correlation witnesses the entanglement between the two
subsystems with a proper choice of operators, a notion that has
only rarely been considered for condensed matter systems. The
QFI corresponds to the summation over all the covariance of
site pairs.

Leaving to the Methods and the supplementary information
(see Supplementary Note 1) with further details, we note that, on
general grounds, the variance is expected to be connected to
the correlation functions of the witness operator. Indeed, the QFI of
mixed states at temperature T can be determined by the dynamical
susceptibility of the operator O (ref. 19). Importantly, through the
normalized QFI, the bounds of the QFI provide the entanglement
content, which is in the same spirit as Bell’s inequality.
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Fig. 3 | Spin-spin correlation functions at the QCP. a The AF dynamical spin
susceptibility in real frequency, at the QCP (6 = &,), is obtained by an analytical
continuation from x(Q, iw,), which is simulated by the Monte Carlo method. The
blue line denotes the Imy(Q, w) at T/T%=2.5x10"> obtained from the Padé
decomposition, which peaks in the vicinity of w ~ T. The lower frequency part of the
curve follows a power law scaling with critical exponent a = 0.82. The fitting in the
log-log plot is presented in the inset. For the fitting, we take the lower limit to be
=5 x107 (given that the temperature is nonzero) and, for the representative cases
of the upper limit 3 x 1072 and 0.1, we find the r* value to be 0.99989671 and
0.99975529, respectively. b The equal-time correlation function (So - Sg) at the QCP
(6 = 6,). Since [(So - Sr)| < 0.25 for all R # 0, the two-tangle is zero: there is no
pairwise entanglement. The inset displays the lattice sites R we select for the
calculation.

Quantum Fisher information near the Kondo destruction
quantum critical point

We are now in position to present the results of our calculation on the
QFI in the Kondo lattice system. We focus on the spin operator of the f
moments at the AF wavevector Q, 5% = E,.SAZ ,€/2Ri_ The normalized QFI
density (nQFI) is"”

2 o0
fo= ﬁ/_ tanh%x”(Q, w)dw,

oo

2

where we set /i = kg = 1 (throughout this work) and x”(Q, w) is the
imaginary part of the dynamical spin susceptibility at wave vector Q.
[Note that x"(Q, w)=x% (w)/N, with N the total number of sites.] In
practice, the Monte Carlo simulation of the equations in the extended
dynamical mean field theory (EDMFT) (see the Methods) is performed
on the imaginary frequency axis. We carry out an analytical continua-
tion to obtain the imaginary part of the dynamical spin susceptibility in
real frequency, x"(Q,w) (for details, see Supplementary Note 3).
Figure 3a shows x”(Q, w) at the QCP, which is obtained by a Padé
decomposition. The lower-frequency part of the curve follows a power
law scaling behavior with an anomalous critical exponent a = 0.82; its
fractional nature is a salient feature of the Kondo destruction QCP°.

We show the normalized QFI density, at a very low temperature
(T=25x1073T2), versus the tuning parameter 6=//T¢ in Fig. 4a,
where the vertical dashed line marks the QCP. The left and right hand
sides of the QCP correspond to the Kondo screened phase and Kondo
destroyed phase (Fig. 1c), respectively. We find f;, to display a sharp
peak at the QCP, reaching the value around 2.2. This peak exceeds the
bound of 2, implying that the ground state contains at least three-
partite entanglement according to Eq.(12).

We next fix the system to be at § = 6. and change the temperature
(with the QCP located at T = 0). As shown in Fig. 4b, the nQFI mono-
tonically increases with decreasing temperature and reaches the same
low-temperature regime of at least three-partite entanglement.

To probe further the entanglement, we compute the two-tangle of
spin pairs, which is a measure of the entanglement between two spins®
(see Supplementary Note 2). At the QCP where the spin parity and
translation symmetry are preserved and the magnetic order vanishes, the
two-tangle is expressed as 7o = | max{0, — 1 +2(S - Sg)} % (refs. 29,30),
in which the correlation function (S - Sg) = ﬁzqeﬂ"““ [ dwx(q, ®).

Here N is the number of momentum points in the Brillouin zone and
X(q, w) is the dynamical susceptibility of the spin operator.

We present this correlation function in Fig. 3b. It is evident that
Tor = O for every pair of spins. Since our QFI reveals multipartite
entanglement in the system, the vanishing two-tangles mean that the
entanglement is distributed among multiple spins rather than being
confined to pairwise spins. It manifests the quantum monogamy and
the Coffman-Kundu-Wootters inequality®*% For example, a maximally
entangled state of spins with entanglement distributed among all spins
have no entanglement inside any subspace (see Supplementary Note 2;
in particular, Supplementary Fig. 1). The combination of a multipartite
QFI and vanishing two-tangle provide evidence for strong entangle-
ment in the system.

Finally, to facilitate comparison with inelastic neutron scattering
experiments, we show in Fig. 4c, d the (un-normalized) QFI density
appropriate for this spectroscopy, viz. for the AF magnetization
operator, gug>",;5%,6/2R:. Here, for an order-of-magnitude estimate of
the QFI, we have taken the g-factor to be 2, which is generally con-
sidered to be suitable for the 4f crystal field ground state in heavy
fermion systems.

Discussion and comparison with experiment

Several points are in order. First of all, our theoretical results at the
critical coupling can be tested by experiments. Both the temperature
dependence and magnitude of the QFI are supported by the spin QFI
we have extracted (see Supplementary Note 4; cf. Supplementary
Fig. 2a, compared with Fig. 4d) from the inelastic neutron scattering
data® of CeCusoAug ; this is a canonical heavy fermion metal in which
the Kondo effect is associated with localized spins, as in our model,
and it hosts a QCP that has been recognized to be of the Kondo
destruction type. Another compound to consider is CezPd,Si¢: Even
though the local degrees of freedom here are more complex com-
pared to our model, involving entwined spin and orbital, the QFI result
recently determined by inelastic neutron scattering spectroscopy at a
field-induced QCP also compares well with our theory (cf. Fig. 3 of
ref. 34, compared with Fig. 4d). A further support is that the measured
spin dynamics in both materials are singular and have a fractional
critical dynamical exponent, as in our theoretical result; the measured
exponents are comparable to the theoretical value of a = 0.82. In other
condensed matter contexts, the QFI has only been measured in several
insulating quantum magnets. The low-temperature value for the nor-
malized QFI density we have calculated for the Kondo destruction QCP
rises to the values determined in candidate materials for such highly
entangled ground states as two-dimensional spin liquids**¢ (3.4 for
KYbSe,, a layered system that realizes a spin-1/2 Heisenberg model
on triangle lattice, ref. 30) and one-dimensional spin liquid with
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Fig. 4 | The quantum Fisher information density. a The low-temperature nor-
malized QFI density (nQFI) of the AF spin operator, fq, as a function of the tuning
parameter 6 =//T2. The vertical dashed line and the red arrow indicate the location
of the quantum critical point (QCP). The nQFl is peaked at the QCP, where it
exceeds 2, indicating that the ground state contains at least three-partite entan-
glement. The dark (light) red shading, here and in b, marks the regime where the
system is at least 3- (2-) partite entangled. b The nQFI vs. temperature T (normalized
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by the bare Kondo temperature, T2) at the quantum critical coupling, §.=1./T.
The results are obtained in the quantum critical regime with 6. = 0.47, except for
the lowest temperature T = 1.25 x 107, which requires a finer tuning to reach
quantum criticality and is calculated at §. = 0.465. ¢, d The un-normalized QFI
density of the AF magnetization operator, f, Q(ng)Z, suitable for comparison with
its inelastic neutron scattering determination. Here, g is taken to be 2.

fractionalized spin excitations (3.8 for KCuFs, a quasi-one-dimensional
system that realizes a spin-1/2 Heisenberg chain, ref. 37), respectively.
We note that, in our EDMFT calculation, the momentum dependence
of the QFI is captured through Eq. (6).

Secondly, we find the QFI to be peaked at the QCP. This result,
testable by future experiments on quantum critical heavy fermion
systems, establishes the strange metal regime as amplifying quantum
entanglement. It is to be contrasted with the observation in certain
insulating quantum magnet®®. Equally important, we find that the
multipartite entanglement is witnessed only in the immediate vicinity
of the QCP: it no longer is the case when the tuning parameter 6 moves
outside of the quantum critical regime (Fig. 4a) and the system goes
back to the Fermi liquid regime described in terms of quasiparticles
(cf. Fig. 1c). Multipartite entanglement is associated with unusual
quantum many-body dynamics®“°. As such, our work suggests that, in
strange metals, multipartite entanglement provides a general char-
acterization of their anomalous dynamics.

More specifically, our work elucidates the key characteristic of
strange metallicity, viz. the loss of Landau quasiparticles™*. Our
mutual information calculation demonstrates a nearly saturated
Kondo entanglement in the paramagnetic (heavy fermion) phase,
which describes the formation of Kondo singlets in the ground state
(cf. the Supplementary Note 5 and Supplementary Fig. 4a). This
implicates a 1-to-1 correspondence: each local moment is converted
into a heavy quasiparticle in the excitation spectrum (cf. the Supple-
mentary Fig. 4c, the right part), through the process of breaking up the
Kondo singlet (cf. the Supplementary Fig. 4c, the left part). That the
calculated mutual information for the Fermi liquid phases leads to
pictures consistent with previous intuitive understandings sets the

stage for new understandings from the QFI calculation, especially for
the strange metal in the quantum critical regime.

The result from our QFI calculation is the development of multi-
partite entanglement among the f~moments in the quantum critical
regime. It describes a strong entanglement among the local spins of
the resonant-valence-bond (RVB) type (cf. Supplementary Fig. 4d, e),
which, through the entanglement monogamy, characterizes the sup-
pression of the f-c (Kondo) entanglement and, by extension, the
strange metal’s loss of quasiparticles. This represents a central insight
into the inner workings of strange metallicity that is enabled by our
study of the quantum Fisher information. Further discussion of this
point can be found in Supplementary Note 5.

Our elucidation of the strange metallicity from the entanglement
perspective connects well with the existing phenomenology. For
example, the QCP of the canonical heavy fermion strange metal
YbRh,Si, is magnetic (AF, to be precise) in nature, involving a zero-
temperature transition between AF and paramagnetic metallic phases.
Yet, its charge response is found to be critical*?, a property that also
arises in model calculations”. The present study implicates an
enhanced quantum entanglement as underlying the phenomenon. In
turn, our work suggests future studies to probe the QFI of other
degrees of freedom that are enabled by the strange metallicity. For
example, it is opportune to study the charge QFI from the singular
charge fluctuations observed in a cuprate strange metal near optimal
superconductivity*. Recent proposals for further QFI spectroscopies
concern the resonant inelastic X-ray scattering (RIXS)***¢ and angle-
resolved photoemission spectroscopy (ARPES)*. Thus, there is con-
siderable prospect for further studies of multipartite entanglement in
strange metals.

Nature Communications | (2025)16:2498


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57778-7

Summary

We have theoretically studied an entanglement witness in a model for
strange metallicity. Our results provide much-needed characterization
of beyond-Landau quantum critical metals. The quantum Fisher infor-
mation reveals amplified entanglement at the quantum critical point.
The witnessed multipartite entanglement brings out insights into
strange metals’ anomalous dynamics and loss of quasiparticles. Our
work showcases a window into the quantum correlations that underlie
a wide range of strongly interacting metallic systems, and points to
broad classes of correlated gapless quantum matter with strange
metallicity as a promising setting to witness enhanced entanglement.

Methods

Quantum criticality in the Anderson lattice model

We consider the SU(2) periodic Anderson lattice model, which takes
the form:

H__Z|:Zf'0f"7_1:| +lejs S
+V Z(Ci,afi,a *floCio ) Z €Cp,0Cp.o

Here, fja (c,Tg) creates a local (conduction) electron with spin o at site i.
The hybridization V couples the local f~electron with the conduction c-
electron, which has a dispersion ¢,. Moreover, the on-site Coulomb
repulsion is represented by U. When U is sufficiently large, the model is
equivalent to the Kondo lattice Hamiltonian, with a Kondo coupling
Jx ~ %. Finally, S; :f}' 9f; represents the spin operator of the local
moment at site i, and /; describes the AF RKKY interaction between the
local moments. We consider an RKKY interaction /;. Its Fourier
transformation, /g, reaches the most negative value at the AF wave
vector Q, with Iq = - 21.

We treat the Hamiltonian described in Eq. (3) by the extended
dynamical mean-field (EDMFT) method, within which the dynamical
competition between the Kondo hybridization and RKKY interaction is
taken into account appropriately*®™'. Through EDMFT, the correlation
functions of the lattice model are calculated in terms of those of a self-
consistent Bose-Fermi Anderson (BFA) model, in which the local f elec-
tron couples with a fermionic bath and a bosonic bath. The fermioninic
bath comes from the hybridization with the conduction electrons and
the bosonic bath describes the spin fluctuations from the RKKY inter-
action. The action after integrating out both baths takes the form:

3

SBFA = / dr |:ng01:[0+’710£51 v <nf - 1) :|
- /0 drdr’ [Zf;(T) V26T —T)f, )
+%ZS“[xal<r - r/)]?’(r’)] :

where =1/T and n, = Zoflfg. Note, here 7 stands for the imaginary
time. (Again, we set f1 = kg = 1 throughout this work). The static Weiss
field noc is introduced to capture the AF order, while G, and o denote
the Green’s function of the fermionic and bosonic bath, respectively.
Note that a € {x, y, z}. The self-consistent conditions are:

a (i pi(€)
)(lgc(twn)—/dem

M (i00,) = 1/X3(i0,) + 1/X e i00,)

P Po(€)
Guion = [ de—p s

Moc = — (21 _Xg(iwn =0)]my .

(©)

Here, . is the conduction-electron self-energy and M* is the spin
cumulant; pfe) represents the RKKY density of states, which is
obtained from pfe) = Yq6(e — Ig); the subscript “loc" means that
quantity is local at the site of an f-moment, and m is the AF magnetic
moment. We consider a generic density of the conduction electrons
(po) with a nonzero value at the Fermi energy. Finally, the lattice spin
susceptibility at momentum q is calculated by

X4(q,iw,)= m . (6)

Mutual information

Mutual information measures the information between two sub-
systems. Consider a subspace A x B < Mwhere M is the entire manifold
of the parameter space of the system, the mutual information of a
mixed state p,5 on this space is defined by

MI(A; B) : =S(p4) +S(Pp) — S(Pas) @)

= tr(Pap(IN(P45) — IN(P,4 ® Pp))) )

where p, =trgp.p, Pp=truPap and S(P)= — tr(pInp) is the von Neu-
mann entropy. In practice, we use the natural logarithm with base e.
Note that Eq. (8) is generally applicable for nonzero temperatures as
well. The trace is carried out in terms of the local Hilbert space, with
each local state contributing a thermally averaged factor. In Fig. 2, we
present data for the three lowest temperatures. The data overlap
among these temperatures indicates that the temperatures are suffi-
ciently low to capture the behavior of the ground state at zero
temperature.

Quantum Fisher information
To pave the way for the calculations presented in this work, we moti-
vate how summing over all the covariance of site pairs leads to the QFI,
and elaborate on how the QFI can witness the multipartite entangle-
ment and be measured in experiments. Specifically, we consider the z-
component of the f-spin operators of the Kondo lattice.

The clearest case arises in a pure state, for which the QFl is defined

A ~2 ~ 2
as the variance function Fy=4Var(5?) = 4((($%) ) — (§?) ) (see Sup-
plementary Note 1). Consider a lattice comprising N sites, and the

operator 57 =" | §%, where the operator 7, acts only on site i. We find
(as derived in Supplementary Note 1) that the QFI is written as follows:

N
TQ ZVar(SZ,-)+ Ztr(([)ij b ®ﬁ,)52,~®52j) 9)
i,j#i
where p; =tr;;p and p; =try,; ;p. The second term in Eq. (9) measures
the difference between p; and p; ® p; which is non-vanishing if the
states on site i and j are entangled. We recognize that the mutual
information captures the difference between In(p;) and In(p; ® p;) (See
Eq. (8)). Thus, the QFI measures the sum of pairwise entanglement
between all pairs of sites, which contains the information of multi-
partite entanglement.
For calculations at nonzero temperatures, we consider the case of
a mixed state p. The QFl is defined for the Hermitian operator §% with
the spectral decomposition p=3; A,I4,)(A,|, it is expressed as'®*

Fo= 22(/1 M’") SemSoun- (10)

where S7,, = (An|§z |A,,)- Further details about the QFI are introduced in
Supplementary Note 1. The QFI of mixed states at temperature T is
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determined by the susceptibility of operator §% (ref. 19) via

2 o0 w 1
Fo== /7 ) tanh -y (@)dw, an

where x”(w) is the imaginary part of the

suscept-
ibility y(w) =i [° dtei@*tr (p[s?(t), §Z(0)]) )
QFI bounds from the normalized QFI
Assume O= Y | 0, and a mixed state of dimension N where O; acts
on the i-th particle (basis vector). If the ground state can be written as
the product of some k-partite entangled states with k < m, the QFI
density fo = Fo/N is bounded above by: f,<m(hg,, — hmin)zA, where
Rmax /min IS the maximal/minimal eigenvalue of the operator O; (for a
version of the proof, see Supplementary Note 1. Consequently, if
fQ > m(hmax - hmin)zl (12)
it witnesses the existence of at least m + 1-partite entangled states in
the system™. In the remainder of this work, we focus on spin-1/2 sys-
tems. Here, we consider the f-spin operator of a Kondo lattice (an
Anderson lattice at sufficiently large U), and the maximal and minimal
eigenvalues are A, =1/2 and h,;, = — 1/2. Then the normalized QFI
density, nQFL, is f o /(Amax — Riin)” =fo

Data availability

The data that support the findings of this study are either presented in
the manuscript or available at https://doi.org/10.5281/zenodo.
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