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STUDY OF NUCLEAR STRUCTURE OF SOME NUCLEI IN MEDIUM MASS 

REGION 

 

REETU KAUSHIK 

 

ABSTRACT  

 

 

This research work is limited to the medium mass region (A=150-200). In this work, the 

collective nuclear structures of some medium mass nuclei have been analyzed, using 

empirical studies, phenomenological, geometrical, group theoretical models.   The 

research work is divided into five Chapters. The Introduction is given in the Chapter I 

and Nuclear Models are discussed in Chapter II. In Chapter III, the values of asymmetry 

parameter (γ0) of Davydov and Filippov model are calculated using the experimental 

energies of  E22
+
 and E21

+
 states for 50≤Z≤82 and 82≤N≤126 region. The whole 

calculated data is divided into four quadrants. The Quadrant I (Q-I) is for 50≤Z≤66 and 

82≤N≤104 shell space with particle like proton-bosons and neutron-bosons and it is 

forming the p-p space. The Quadrant II (Q-II) is for 66≤Z≤82 and 82≤N≤104 shell 

space, with hole like proton-bosons space and particle like neutron-bosons space and it 

is forming the h-p space. The Quadrant III (Q-III) is for 66≤Z≤82 and 104≤N≤126 

region shell space, with hole like proton-bosons and neutron-bosons and it is forming h-

h space. The quadrant IV (Q-IV) is for 50≤Z≤66 and 104≤N≤126 shell space with 

particle like proton-bosons and hole like neutron-bosons and it is forming the p-h space. 

The study of systematic dependence of γ0 on N, NB and NpNn has been carried out on 

quadrant wise basis to find out the role of valence nucleons and holes on the nuclear 

structure. The role of Z=64 subshell effect for N≤90 region is also discussed.  The 

NpNn product is a good measure of its effect in producing the deformation in atomic 

nuclei. This product is also an indicator of the n-p interaction among the valance proton 

and/or neutron nucleons causing the deformation of nuclear core. In quadrant-I and 

quadrant-II, the asymmetry parameter decreases; from 30
0
 in Q-I and from 22

0
 in Q-II 

to 9
0
- 10

0
;  with increasing N from 82 to 104 (i.e. the mid of N=82 to 126 neutron shell), 

signifying that the nuclear deformation (β) is increasing, while the energy ratio R4 

increases from 2 (for harmonic vibrators or SU(5) type nuclei) to 10/3 (for good rotors 

or SU(3) type nuclei). This indicates that in this region the nuclear structure depends 



xi 

 

much more on Z. In quadrant-I, the asymmetry parameter is having more correlated 

dependence on N, rather than on NpNn. Also in quadrant- I, the Z=64 sub-shell effect 

for N≤90 nuclei affect the variation of asymmetry parameter with N and NpNn product. 

The existence of X(5) symmetry in N=90 isotones established in recent works supports 

the formation of isotonic multiplets in this work. The systematic dependence of 

asymmetric parameter on NpNn has strong dependence in quadrant-II. In Q-II, the line 

of β- stability runs nearly diagonally, i.e. parallel to NB and leading to the formation of 

F-spin multiplets. The same feature had been observed earlier for the energy of first 

excited state i.e. E2g. In quadrant-III, the variation of asymmetry parameter is different 

from quadrant I and II because the asymmetry parameter increases sharply from 9
0
 - 10

0
 

to 30
0
 with increasing N from 104 to 126. This is signifying that the nuclear 

deformation (β) is decreasing and the nuclear structure changes from pure rotor SU(3) 

type  to vibrational SU(5) or γ-unstable O(6) type. Further, the asymmetry parameter for 

different elements has smooth curve with NpNn with almost same slopes except for Hg 

isotopes. In Chapter IV, the predictions of asymmetric rotor model of Davydov and 

Filippov for B(E2;4g→2g)/B(E2;2g→0g) branching ratio are compared with the 

experimental data in medium mass region.  It is found that the observed data point of 

this ratio for N=88 isotones (Nd, Sm, Gd, Er) are indicating the shape phase transition 

from an ideal spherical harmonic vibrator or SU(5) to an axially symmetric deformed 

rotor or SU(3).  It is also noted that this B(E2) ratio is anomalously small in case of  two 

non- magic nuclei  i.e., 
198

80Hg118 [=0.375(18)]  and 
144

60Nd84 [=0.73(9)] with only two 

vacancy of protons for Z =82 and two valence neutrons outside N=82, respectively. The 

data points for other nuclei are lying between SU(5) and SU(3) limits. The calculated 

B(E2) ratios of  ARM are very close to the SU(3) limit of IBM indicating that it can 

explain the structure of only well deformed nuclei. Therefore the ARM is partially 

successful in explaining this branching ratio. The variation of experimental B(E2; 

4g→2g)/ B(E2;2g→0g) branching ratio with N and Z is carried out for  Nd–Hg nuclei.  

It is found that the there is shape phase transition for N=88 and 90 isotones (Nd, Sm, 

Gd, Er) from an ideal spherical harmonic vibrator or SU(5) to an axially symmetric 

deformed rotor or SU(3).  The present study supports the sub shell closer effect around 

Z=64, for N≤ 90 and the constant nuclear structure of N=90 isotones. Finally, in 
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Chapter V, the interacting Boson Model-1is used to study the nuclear structure of 

152,154
Sm nuclei. The 

152
Sm is chosen for study, because it is a best example of recently 

discovered X(5) symmetry of IBM and 
154

Sm  is a rotor type i.e. SU(3) symmetry. The 

bunching of various levels in 
152,154

Sm is reproduced well in present calculation and is 

in agreement with the observed energy level diagram of experimental data. In 
152,154

Sm, 

the B(E2) branching values and B(E2) branching ratios are calculated for inter-band and 

intra-band transitions for g-, β-, γ- and β2- bands and the calculated results are in good 

agreement with experimental data. In 
152,154

Sm nuclei, the IBM-1 Hamiltonian 

reproduce the energy spectrum, B(E2) values and B(E2) ratios for g-, β- and γ– bands. 

Present calculation supports that 
152

Sm is as a best example of X(5) symmetry and 

154
Sm  is a SU(3) type in nature. 
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CHAPTER-I 

 

1.1 PREHISTORY OF NUCLEAR PHYSICS 

Nuclear physics is a stimulating subject, in an attempt to explain the structure of 

atom, J. J. Thomson suggested that the atom consisted of an equal number of positive 

and negative charges (proton and electron) distributed uniformly within its spherical 

volume. The radius of the atom was estimated to be the order of 10
-10

 meters. Since 

the famous α- ray scattering developed by Rutherford (1911), established that the 

mass of an atom is concentrated within a small, positive charge region at the centre 

of the atom. This central core is surrounded by electron cloud, is called nucleus. 

Since Rutherford’s times many scattering experiments, using highly energetic 

electron and neutrons as the scattering particles, have been performed to determine 

the size of nucleus. Later, Chadwick (1932) discovered the neutron as the constituent 

of nucleus. Heisenberg (1932) introduced the concept of isospin, viz. that proton and 

neutron merely two different states of the same elementary particle known as 

nucleon. From the phenomena of nuclear fission of heavy nuclei, Neils Bohr 

developed the liquid drop model based on strong interaction of the nucleons. 

However, Mayer (1949, 1950) proposed the nuclear shell model based on the average 

field produced by all the nucleons moving independently in the potential well. The 

regular rotation like spectra in medium mass nuclei led Bohr and Mottelson (1953) to 

develop the collective model, a combination of the liquid drop model and shell 

model. 

It is well known that the nuclear model is applicable in explaining the different 

nuclear properties such as prediction of energies of g-band, β-band, γ-band and other 

higher multi phonon bands or B(E2) values and B(E2) ratios for inter and intra band 

transitions of nuclei for light and medium mass region with varying degrees of 

success. In this chapter we give the basic definition, useful concept and facts relating 

to the consequent chapters. This chapter also sketches the brief summary of 

theoretical models which have been used in the present thesis work for understanding 

of experimental data and the collective nuclear structure.      

In this chapter we give the brief summary of the different types of models.  
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1.1.1 Angular Momentum of Nuclei 

The angular momentum L of a particle about a given origin is defined as: 

                                                    (1.1) 

where, r is the position vector of the particle relative to the origin, p is the linear 

momentum of the particle and × denotes the cross product.  The derived SI units of 

angular momentum is Newton meter second (N·m·s or kg·m
2
/s) or Joule- second 

(J·s). Because of the cross product, L is a pseudo vector perpendicular to both the 

radial vector r and the momentum vector p. For an object with a fixed mass that is 

rotating about a fixed symmetry axis, the angular momentum is expressed as the 

product of the moment of inertia (I) of the object and its angular velocity (ω) vector: 

                                                      .                                                        (1.2) 

The angular momentum of a particle or rigid body in rectilinear motion (pure 

translation) is a vector with constant magnitude and direction. If the path of the 

particle or centre of mass of the rigid body passes through the given origin, its 

angular momentum is zero. Angular momentum is also known as moment of 

momentum. 

1.1.2 Electric Quadrupole Moment of Nuclei 

     The nuclear electric quadrupole moment is a parameter which describes the 

effective shape of the ellipsoid of nuclear charge distribution. A non-zero quadrupole 

moment Q indicates that the charge distribution is not spherically symmetric. By 

convention, the value of Q is taken to be positive if the ellipsoid is prolate and 

negative if it is oblate.  

1.1.3 Nuclear Forces 

 

     Every nucleus consists of protons and neutrons (known as nucleons).  The nuclear 

forces acting between these nucleons, called nuclear force. These forces have been 

discovered by James Chadwick studied in terms of models, and since models do not 

involve the detailed behavior of these forces, we have learned only about certain of 

their general features. To a large extent, this force can be understood in terms of 

https://en.wikipedia.org/wiki/Position_vector
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Derived_SI_unit
https://en.wikipedia.org/wiki/Newton_(unit)
https://en.wikipedia.org/wiki/Meter
https://en.wikipedia.org/wiki/Joule
https://en.wikipedia.org/wiki/Pseudovector
https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Rectilinear_motion
https://en.wikipedia.org/wiki/Translation_(geometry)
https://en.wikipedia.org/wiki/Moment_(physics)
https://en.wikipedia.org/wiki/Momentum
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elequad.html#c1
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exchange of virtual light meson, such as the pions. Sometimes the nuclear force is 

called the residual strong force. Further, characteristics of the nuclear force are the 

following. 

(i) The nuclear force is short range and central, with small non-central part. 

(ii) The nuclear force is repulsive at very short range to prevent the collapse of 

the nucleus. 

(iii) The constants density and binding energy per nucleon (B/A) indicates the 

saturation property of the nuclear force. 

(iv) As nucleons are Fermi-Dirac particles (spin) the nuclear force exhibits the 

saturation property of the nuclear force. 

(v) The nuclear force is charge independent i.e. neutron-neutron (n-n), proton-

proton (p-p), neutron-proton (n-p) interactions are equal. 

(vi) The main knowledge about the nucleon interaction came from the p-p, n-p 

scattering experiments and study of deuteron. 

 

1.1.4 Magic Number and Stability of Nucleus 

It has been observed that nuclei have protons and neutrons. If numbers of any of 

these nucleons Z or N is equal to 2, 8, 20, 28, 50, 82 and 126 then the nucleus 

becomes more stable. These numbers are called magic numbers. If both N and Z are 

magic numbers, then nucleus becomes very stable. The existence of magic number is 

explained using shell model and it also describes spin and parities of low lying state 

of closed major shell nuclei. At this number of nucleon a shell becomes complete. 

1.2 LIQUID DROP MODEL 

The liquid drop model in nuclear physics treats the nucleus as a drop of 

incompressible nuclear fluid. It was first proposed by George Gamow and then 

developed by Niels Bohr and John Archibald Wheeler. The fluid is made of nucleons 

(protons and neutrons), which are held together by the strong nuclear force. This is a 

basic model that does not explain all the properties of the nucleus, but does explain 

the spherical shape of most nuclei. It also helps to predict the binding energy of the 

nucleus. 

http://en.wikipedia.org/wiki/Nuclear_physics
http://en.wikipedia.org/wiki/Atomic_nucleus
http://en.wikipedia.org/wiki/George_Gamow
http://en.wikipedia.org/wiki/Niels_Bohr
http://en.wikipedia.org/wiki/John_Archibald_Wheeler
http://en.wikipedia.org/wiki/Nucleon
http://en.wikipedia.org/wiki/Proton
http://en.wikipedia.org/wiki/Neutron
http://en.wikipedia.org/wiki/Strong_nuclear_force
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Mathematical analysis of the theory delivers an equation which attempts to predict 

the binding energy of a nucleus in terms of the numbers of protons and neutrons it 

contains. This equation has five terms on its right hand side. These correspond to the 

cohesive binding of all the nucleons by the strong nuclear force, the electrostatic 

mutual repulsion of the protons, a surface energy term, an asymmetry term (derivable 

from the protons and neutrons occupying independent quantum momentum states) 

and a pairing term (partly derivable from the protons and neutrons occupying 

independent quantum spin states). 

If we consider the sum of the following five types of energies, then the picture of a 

nucleus as a drop of incompressible liquid roughly accounts for the observed 

variation of binding energy of the nucleus. 

1.3 NUCLEAR SHELL MODEL 

In nuclear physics, the nuclear shell model is a model of the atomic nucleus which 

uses the Pauli exclusion principle to describe the structure of the nucleus in terms of 

energy levels. The shell model is partly analogous to the atomic shell model which 

describes the arrangement of electrons in an atom, in that a filled shell results in 

greater stability. When adding nucleons (protons or neutrons) to a nucleus, there are 

certain points where the binding energy of the next nucleon is significantly less than 

the last one. This observation, that there are certain magic numbers of nucleons: 2, 8, 

20, 28, 50, 82, 126 which are more tightly bound than the next higher number, is the 

origin of the shell model.  

1.3.1 Successes and the Limitations of the Shell model 

Shell model explains correct magic number, spin, parity, binding energy of nuclei, 

cross section of neutron captured by nuclei, magnetic dipole moment with some 

deviation from experimental observation and transition probabilities of emission of 

gamma rays from the nuclei. 

Whereas, it gives zero quadrupole moment of the nuclei and does not give 

information about nuclei having more valence nucleons. This model is best for 

lighter nuclei.     

http://en.wikipedia.org/wiki/Proton
http://en.wikipedia.org/wiki/Neutron
http://en.wikipedia.org/wiki/Nucleon
http://en.wikipedia.org/wiki/Strong_nuclear_force
http://en.wikipedia.org/wiki/Electrostatic
http://en.wikipedia.org/wiki/Surface_tension
http://en.wikipedia.org/wiki/Quantum
http://en.wikipedia.org/wiki/Momentum
http://en.wikipedia.org/wiki/Quantum
http://en.wikipedia.org/wiki/Spin_(physics)
http://en.wikipedia.org/wiki/Nuclear_physics
http://en.wikipedia.org/wiki/Nuclear_model
http://en.wikipedia.org/wiki/Atomic_nucleus
http://en.wikipedia.org/wiki/Pauli_exclusion_principle
http://en.wikipedia.org/wiki/Electron_configuration
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Nucleon
http://en.wikipedia.org/wiki/Proton
http://en.wikipedia.org/wiki/Neutron
http://en.wikipedia.org/wiki/Magic_number_(physics)
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1.4 BOHR-MOTTELSON COLLECTIVE MODEL 

Unified collective model of nucleus was proposed by Bohr and Mottelson (1953). 

Collective model is the combination of liquid drop model. It views the nucleus as 

vibrating –rotating core capable of being deformed to various shapes i.e. prolate, 

oblate or tri-axial. This is called the geometric view of the collective motion of the 

nucleus. The law energy levels of the nucleus are grouped in three collective bands, 

called K
π
=01

+  
g- band; K

π
=02

+  
β- band;  K

π
=21

+
  γ- band and higher energy levels are 

called multi-phonon bands.   

The Bohr-Mottelson (1975) series expression for level energies in a band is given as:  

EI=AI(I+1)+B{I(I+1)}
2
+C{I(I+1)}

3
 +.....                             (1.3) 

In the shell model, core is made of paired nucleons and the core may be spherically 

symmetric or may be axially deformed. The non spherical potential arises due the 

valence nucleons which polarise the nuclear core. Thus the single particle energies 

are calculated in a non spherical potential. In this model the nucleus consists of an 

even-even core plus one or more nucleons moving in the shell model orbits. The 

coupling of core and nucleons may be weak (or strong) which corresponds to the 

vibrational, rotational model.       

1.4.1 Successes and the Limitations of the Collective model 

In the Bohr-Mottelson model the even Z and even N nucleus has vibration and 

rotational motion. The vibrational model predicts the following properties: 

(i) The vibrational nuclei have low lying collective excited states. 

(ii) The E2 transition from two phonon triplets to one phonon 21
+
 level is strong. 

(iii) The cross over E2 transition from second 21
+
 state to the ground state should 

vanish. 

(iv) The Quadrupole moment of the first 21
+
 excited states is zero. 

The rotational model (RM) can explain the following properties: 

(i) The energy spectrum of rotational nuclei has the ground state rotational band, β 

band and γ-vibration band. 
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(ii) The transition for (0
+
→2+) has the large absolute B(E2) value and Quadrupole 

moment. 

(iii) The deformed nuclei have the magnetic moment with sign and finite magnitude. 

(iv) The nuclear deformation is given by the expression: 

 

                                                                         (1.4) 

 

(v) The K selection rule for electromagnetic transition is ΔK = |Kf  -Ki | ≤ λ, where Ki 

and Kf  are the  values of K for initial and final bands for a particular transition, and λ 

is mode of transition. 

 

The limiting collective model approach could not explain the observed properties of 

those nuclei which posses both the rotational and vibrational model feature. In the 

limiting model the rotational-vibration interaction was not taken into account.     

1.5 ROTATIONAL-VIBRATIONAL MODEL 

The complete rotational –vibrational interaction model (RVM) was developed by 

Fasessler et al. (1965), which allow the diagonalization of the Bohr-Mottelson 

collective Hamiltonian. In this model the nucleus is assumed to be axially symmetric 

deformed i.e. β0>0 and γ0=0. The RVM succeeds in the reproduction of the low lying 

energy spectra of the g-, β- and γ-bands and the B(E2) ratios for transition from γ- 

and β-bands.  

1.6 ASYMMETRICAL ROTOR MODEL
 

Davydov and Filippov (1958) proposed asymmetric rotor model (ARM) to 

investigate the energy levels corresponding to rotation of nucleus which does not 

change its internal state. According to which nucleus is triaxially deformed with 

≠0 and the ground band, β-band and γ-bands are due to rotation of triaxial ellipsoid 

nucleus about different axis. One can derive the value of angle of triaxiality or 

asymmetry parameter   from ratio Rγ as given below: 
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22

E
E .      (1.5)

  

 

1.7 DYNAMIC PAIRING PLUS QUADRUPOLE MODEL 

  

The dynamic pairing-plus-quadrupole (DPPQ) model was proposed by Kumar and 

Baranger (1967, 1968). They predicted successfully the prolate to oblate shape 

transition in Os - Pt region. The DPPQ model can treat spherical, deformed and 

transition nuclei within a single frame work. Kumar and Baranger also developed the 

dynamic deformation model (DDM), in which there was no inert core assumed. In   

DPPQ model and DDM, instead of assuming a fixed shape (axially symmetric 

deformed or axially deformed) the nucleus is allowed to take its own shape in the (β, 

γ) plane. The Bohr collective Hamiltonian is given by 

 

HC= V (β, γ) +Trot+ Tvib             with                       (1.6)

  

Trot =  k(β,γ)           and 

 

 

 

where θk (k=1, 2, 3) are the nuclear moment of inertia, ωk is the angular velocities, 

Bββ, Bβγ, Bγγ are the three mass parameters for β-vibrations, β-γ coupled motions, γ-

vibrations.  All the coefficients of Hc are determined from the solution of HPPQ.  

 

1.8 INTERACTING BOSON MODEL  

 

The interacting boson model (IBM) is a model in nuclear physics in which nucleons 

pair up, basically acting as a single particle with boson properties, with 

integral spin of 0, 2 or 4. 

The IBM-I treats both types of nucleons the same and considers only pairs of 

nucleons together to total angular momentum 0 and 2, called respectively, s- and d-

bosons. The IBM-II treats protons and neutrons separately. The IBM is suitable for 

http://en.wikipedia.org/wiki/Nuclear_model
http://en.wikipedia.org/wiki/Nuclear_physics
http://en.wikipedia.org/wiki/Subatomic_particle
http://en.wikipedia.org/wiki/Boson
http://en.wikipedia.org/wiki/Spin_(physics)
http://en.wikipedia.org/wiki/Nucleon
http://en.wikipedia.org/wiki/Boson
http://en.wikipedia.org/wiki/Proton
http://en.wikipedia.org/wiki/Neutron
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describing intermediate and heavy atomic nuclei. Adjusting a small number of 

parameters, it reproduces the majority of the low-lying states of such nuclei. This 

model of the atomic nucleus has to be able to describe nuclear properties such as 

spins and energies of the lowest levels, decay probabilities for the emission of 

gamma quantas, probabilities (spectroscopic factors) of transfer reactions, multiple 

moments and so into the world. Outlined from which the IBM comes. This 

theoretical result is not far from the real situation of even-even nuclei, from which it 

is known that their total spin mainly is even. These and other arguments lead to the 

basic statement of the IBM which Postulates that the nucleon pairs are represented by 

bosons with angular momentum L = 0 or 2. The multitude of shells which appears in 

the shell model is reduced to the simple s-shell (L= 0) and the d-shell (L = 2) which 

is composed vectorially by d-bosons analogously to the shell model technique. The 

IBM builds on a closed shell i.e. the number of bosons depends on the number of 

active nucleon (or hole) pairs outside a closed shell. Each type of bosons, the s- and 

the d-boson, has its own binding energy with regard to the closed shell. Analogously 

to the standard shell model, the interacting potential of the bosons acts only in pairs. 

 Moreover, the number of bosons is unlimited and is not a good quantum number in 

compare to the situation in the IBM. The simplest versions of the IBM describe the 

even-even nucleus as an inert core combined with bosons which represent pairs of 

identical nucleons.  The analogy between nucleon pairs and bosons does not go so far 

that in the IBM the wave functions of the corresponding nucleons would appear. 

However, in the interacting boson-fermions model which deals with odd numbers of 

identical nucleons, bosons are coupled to nucleons.  

The models IBM1 and IBM2 are restricted to nuclei with even numbers of protons 

and neutrons. In order to fix the number of bosons one takes into account that both 

types of nucleons constitute closed shells with particle numbers: 2, 8, 50, 82 and 126 

(magic numbers). Three-boson interactions are excluded in analogy with the 

assumptions of the standard shell model. In contrast to the collective model, in the 

IBM one does not obtain a semi classical, vivid picture of the nucleus but one 

describes the algebraic structure of the Hamiltonian operator and of the states, for 

which reason it is named an algebraic model. 
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1.9 SUBJECT OF STUDY IN THIS THESIS 

1.9.1 Chapter 1  

 

The current work is based on the study of nuclear structure for A=150-200 for 

medium mass region. The study is carried out by in-between this A=150-200 region 

in four quadrants. We studied all the models, viz, the geometrical, empirical and 

group theoretical models. The predictions of these models have been compared with 

available experimental data. 

1.9.2 Chapter 2  

In Chapter II, the theory of nuclear models such as liquid drop model, nuclear shell 

model, collective model, dynamic- pairing –plus quadrupole model, interacting 

boson model etc. are discussed.  

1.9.3 Chapter 3  

In Chapter III, the values of asymmetry parameter (γ0) of Davydov and Filippov 

model (1958) are calculated using the experimental energies of  E22
+
 and E21

+
 states. 

Its variation with N, Z, NpNn, NB is studied qudrant wise. 

 

1.9.4 Chapter 4  

In Chapter IV, the predictions of asymmetric rotor model of Davydov and Filippov 

(1958) for B(E2;4g→2g)/B(E2;2g→0g) branching ratio are compared with the recent 

experimental data in medium mass region.   

 

1.9.5 Chapter 5  

In Chapter V, the interacting boson model-1 of Arima and Iachello (1976) is applied 

to study the nuclear structure of 
152, 154

Sm isotopes. The predictions of IBM are 

compared with the experimental data and the data of other nuclear models.   
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CHAPTER- II 

NUCLEAR MODELS 

 

2.1 INTRODUCTION  

 

Different models for nucleus have been proposed each of which explains the 

behavior of nucleus in some specific situation. But at the same time each of these 

models is in noticeable contradiction with other models or with known facts about 

nuclear forces. We will limit ourselves only to some basic models for the nucleus 

that can be explaining the general characteristics.   

2.2 BOHR-MOTTELSON UNIFIED COLLECTIVE MODEL 

It is also called unified model, description of atomic nuclei that incorporates aspects 

of both the shell nuclear model and the liquid-drop model to explain certain magnetic 

and electric properties that neither of the two separately can explain. It views the 

nucleus as vibrating –rotating core capable of being deformed to various shapes i.e. 

prolate, oblate or tri-axial.    

In the shell model, nuclear energy levels are calculated on the basis of a single 

nucleon (proton or neutron) moving in a potential field produced by all the other 

nucleons. Nuclear structure and behaviour are then explained by considering single 

nucleons beyond a passive nuclear core composed of paired protons and paired 

neutrons that fill groups of energy levels, or shells. In the liquid-drop model, nuclear 

structure and behaviour are explained on the basis of statistical contributions of all 

the nucleons (much as the molecules of a spherical drop of water contribute to the 

overall energy and surface tension). In the collective model, high-energy states of the 

nucleus and certain magnetic and electric properties are explained by the motion of 

the nucleons outside the closed shells (full energy levels) combined with the motion 

of the paired nucleons in the core. Roughly speaking, the nuclear core may be 

thought of as a liquid drop on whose surface circulates a stable tidal bulge directed 

toward the rotating unpaired nucleons outside the bulge. The tide of positively 

charged protons constitutes a current that in turn contributes to the magnetic 

http://www.britannica.com/EBchecked/topic/539715/shell-nuclear-model
http://www.britannica.com/EBchecked/topic/343104/liquid-drop-model
http://www.britannica.com/EBchecked/topic/480330/proton
http://www.britannica.com/EBchecked/topic/410919/neutron
http://www.britannica.com/EBchecked/topic/343104/liquid-drop-model
http://www.britannica.com/EBchecked/topic/575080/surface-tension
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properties of the nucleus. The increase in nuclear deformation; that occurs with the 

increase in the number of unpaired nucleons accounts for the measured electric 

quadrupole moment; which may be considered a measure of how much the 

distribution of electric charge in the nucleus departs from spherical symmetry. 

2.2.1   The Vibrational Model 

A spherical nucleus can be considered as compressible liquid drop. Its excitation 

mode arises from small oscillations about the equilibrium spherical shape. The 

surface of the spherical drop can be written as (see Alder et al. (1956)):  

 

               (2.1)                                                                  

where, R0 is the average nuclear radius, are the deformation variables, verify in 

mode of the nuclear motion,  is the projection of λ on the Z-axis and are 

the spherical harmonics where  are the polar angles with respect to the 

arbitrary space-fixed axes. The mode corresponds to the change in the nuclear 

radius without any change in the shape, λ = 1 mode corresponds to the translation of 

the center of mass, λ = 2 is the quadrupole mode of the lowest order of mode and λ = 

3 corresponds to the octupole mode related to the higher lying excitation. In the λ = 2 

mode the ground state has no phonon while the first excited state has one phonon 

excitation and is five-fold degenerate, since the azimuthal quantum number µ can 

take of the integral value -2, -1, 0, 1, 2. 

 

 In vibrational model it was assumed that the nucleus performs vibrations around the 

spherical shape and the Hamiltonian in quadrupole mode can be written as (see Alder 

et al.  and Bohr and Mottelson  

 

                                 

 (2.2) 

 

Where, B and C are the mass parameter and the stiffness parameter respectively. A 

typical spectrum of the 
118

Cd isotope, which has the vibrational characteristics, is 

given by Aprahamian et al. (1987) is shown in Figure 2.1.  

http://www.britannica.com/EBchecked/topic/182746/electric-quadrupole-moment
http://www.britannica.com/EBchecked/topic/182746/electric-quadrupole-moment
http://www.britannica.com/EBchecked/topic/182746/electric-quadrupole-moment
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2.2.2 Rotational Model 

 

In the rotational model the shape of the nucleus is assumed to be fixed and the 

nuclear system rotates like a rigid structure. The energy associated with rotation 

would be purely kinetic and equal to . According to the collective model, the 

 of nuclei can be determined from the energies of the rotational states. Rotational 

energy level of an axially symmetric nucleus can be described by three constants of 

motion: J, the total angular momentum; K, the projection of J on the nuclear 

symmetric axis (Z-axis); M, the projection of J on the space fixed axis (Z’ –axis). 

The collective rotational angular momentum R is perpendicular to the symmetric 

axis. 

 If 𝕵    and 𝕵 are the moments of inertia for rotations about symmetric axis 3 

(i.e. Z-axis) and about an axis perpendicular to Z-axis, J1, J2 and J3 are the 

components of the total angular momentum operator along the body fixed axis. The 

Hamiltonian given by Bohr and Mottelson (1953) can be written as if J1 = J2 = J:  

                                (2.3)                    
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For Hrot the eigenfunctions are the D functions, which are the transformation 

functions for spherical harmonics under finite rotations,  

 

                                                       

                                                                                                       (2.4) 

         

and 

      .   

The energy Eigen values are:  

                                                                  (2.5) 

For  the energy expression becomes 

                                                       (2.6)                                                    

The energy levels of the ground state rotational band have the relation, 

E(2
+

1) : E(4
+

1) : E(6
+

1) : E(8
+

1): … = 1 :10/3 : 7 : 12 : ………                               (2.7) 

 

Gupta et al. (1990) study the few good examples of rigid rotors such as 
156

Gd, 
170

Er, 

170
Yb and 

176
W isotopes. The rotational spectrum of the 

156
Gd isotope is given in the 

Figure 2.2 and the values of experimental energies are taken from Sakai (1984).  

 

In the presence of the centrifugal stretching, most of the nuclei deviate from the 

expression (2.8) and this effect can be taken into account by modifying to, 

                                                                  (2.8)                                                                                 

where B is constant parameter for all  and ℑ. 

 



14 

 

 
 

2.2.3 Rotation Vibration Interaction Model  

 

Fasessler et al. (1965) formulated the rotation vibration interaction model that was a 

complete form the collective model of Bohr (1952). It assumes the nucleus to be an 

axially symmetric  rotating  body  undergoing  very  small amplitude shape 

vibrations ( equilibrium deformation parameter  ;  asymmetry parameter 

 This extended model allows the diagonalization of the collective Hamiltonian, 

and the interaction of vibrational, rotational motion, as well as of  

vibrational interaction Hamiltonian that can be written as: 

                                                                                   (2.9) 

The value of g-, and   band, the absolute B(E2) values and B(E2) ratios of a 

given nucleus can be obtained with the help of four model parameters i.e. the 

moment of inertia which takes into account the energy of  state: the equilibrium 

deformation 0 of the nucleus which can be obtained from the absolute B(E2) value 

for the first excited   states; the vibrational energy which is fitted to the 



15 

 

energy of the   state, the vibrational energy  which is taken from the energy 

of first excited 0
+ 

state. 

 

2.3   ASYMMETRIC ROTOR MODEL 

  

Davydov and Filippov (1958) investigated the energy levels corresponding to 

rotation of nucleus which does not change its internal state. They established that the 

violation of axial symmetry of even nuclei affect the rotation spectrum of axial 

nucleus  with appearance of some new rotational states having total angular moments 

of 2,3,4,….  If the deviation from axial symmetry is small than these levels lie very 

high and are not excited. The energy rotation of a non-spherical even-even nucleus is 

given, in the adiabatic approximation, by the Schrodinger equation: 

                                                                                              (2.10)                                                                            

 

where, E is measured in units of , and the operator H is given by the 

formula: 

                                                                  (2.11)                                                       

Here,  is a quantity having dimension of energy,  varies between 0 

and  and determines the deviation of the nucleus from axial symmetry. The  are 

the operators of the angular momenta on the axis of a coordinate system connected 

with the nucleus. In eq. (2.29), for  or  the nucleus should be regarded as an 

asymmetric top. The wave function corresponding to the state with total moment   

can be represented as: 

                                               (2.12)                                                                           

where,  

                      }........)1({
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(2.13)   

                                                                 

The function  in eq. (2.13) are the functions of the Euler angles that determine 

the orientation of the principal axis of the nucleus with respect to the laboratory 

space. It can be shown that the wave functions (2.12) from the basis of totally 
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symmetric representation of the group  the element of which are the rotation 

through around each of three principal axes of the nucleus (see Davydov and 

Filippov (1958); Davydov and Rostovsky (1959)). The wave function of the 

rotational  states of the non-axial nucleus can be rewritten as (see Davydov and 

Filippov (1958)): 

 

                                              (2.14)                      

 

                                              (2.15)   

                      

where, the value of coefficients in the wave function of eq.(2.14, 2.15) can be 

obtained using the value of γ0: 

  

 

 

 

                            (2.16)           

 

 

 

Similarly for state the wave function can be written as 

  

And spin  wave function is 

 

 

 etc. 

Putting the eq.(2.30)in eq.(2.28) and making use the value of matrix element of the 

operator of the rotational energy eq. (2.29) acting on the wave function eq.(2.31) 

|H|J𝝀  
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|H|J𝝀 1/2
 

……(2.17) 

 

 
 

                                      

                                                                                                                           (2.18) 

 

One obtains for each value of  a system of algebraic equations for the coefficients 

 in the wave function (2.11). For  the Schrodinger eq. (2.10) is reduced to a 

system of equation as (see Davydov and Rostovsky (1959)) 

 

             

                                                                                                                              (2.19)             

The energy of the corresponding rotational states can be determined from the 

condition that the system (2.19) has a solution. The three values of E can be obtained 

the cubic equation, 

 
Where  

. 

For a rough estimate of t, the value of  and  

gives the value of   Similarly, the energy of  states can be determined 

from the, 

                             

                                                                                                                              (2.20)           

where 

 , 

                                          ,                           (2.21)                            
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                                            .                                      (2.22)                                   

 

 

Substituting the values of a, b, c and expending the determinant (2.20) we obtained 

the second degree equation, 

  

                      (2.23) 

 

The roots of eq. (2.23) can be written as: 

 
                                                                      (2.24)                                

 
                                                                  (2.25)          

The energy levels of  state is given by Davydov and Filippov (1958): 

                     

           (2.26)                              

       

And energies of  states are given 

                                     

             (2.27)                                                    

In eq. (2.26), 𝝉=1 for the minus sign on the square root and 𝝉=2 for the plus sign. The 

value of asymmetry parameter (γ0) can be obtained using the eq. (2.24) and (2.25):  

    ;               .                   (2.28) 

 

In stationary states of the asymmetric top not one of the projections of the total 

momentum on axes 1, 2, 3 of the body-fixed coordinate system has a definite value 

and hence the energy levels cannot be specified the values of K = J3. Each value of 

the total angular momentum in the asymmetric top corresponds to 2J+1 different 

energy levels.  
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These levels can be classified with respect to the irreducible representations of group 

D2. In virtue of the symmetry conditions on the wave function in even nuclei of the 

2J + 1 different levels only those energy levels with a given J can exist which 

correspond symmetric representation of group D2. Rotation states of the required 

symmetry will not exist if J = 1. Two such states will exist for J = 2, one for J = 3, 

three for J = 4, two for J = 6 etc. The energy of two levels of required symmetry for J 

= 2 are defined by the expressions 

                                   

       (2.29) 

                             (2.30)                            

 

Energy of a level for J = 3 is given by 

                                                   (2.31)                                        

   

The three spin 4 energy levels are the roots of the third degree equation: 

                                                                                                          (2.3.2) 

 The two spin 5 energy levels are given by the formula  

                            where 𝝉  = 1,2                  (2.33) 

where 𝝉 = 1 with negative sign and 𝝉 = 2 with positive sign. For 0 = 0 the energy 

spectrum is identical to that of an axially-symmetric nucleus. For a fixed value of  

violation of axial symmetry of the nucleus leads to an increase energy levels 

belonging to the axial nucleus. This increase in the energy levels corresponds to a 

decrease of the effective moment of inertia of the nucleus or the effective 

deformation parameter eff. For the first excited state of spin 2 the effective 

deformation parameter can be determined as  

                (2.34) 
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The small change of the level energies of an axially symmetric nucleus, violation of 

axial symmetry of the nucleus leads to the appearance of some new energy levels 

2(2), 2(3), 2(4) etc. By using the dependence of  2(2), 1(2) on 0 one can 

determine the corresponding value of 0 from the experimental value of the ratio.   

 

2.4 INTERACTING BOSON MODEL  

 

 As we move away from closed nuclei, proton and neutron number increases the shell 

model basis states increases and calculations and explanation becomes complicated. 

Using quadrupole interactions, basis states reduce and calculations become simple. 

 

Feshbach & Iachello (1973, 1974) described some properties of light mass nuclei in 

terms of interacting boson. Whereas, Janseen et al. (1974) described the collective 

quadrupole in terms of SU(6). Arima and Iachello (1975) added s-boson to the d-

boson collectively to explain the structure of nuclei as a boson treated as nucleon pair 

& gives microscopic explanation of collective quadrupole states with large 

theoretical information Iachello & Arima (1987) and Bonatsos (1989). 

Collective excitation of nuclei is explained by boson on the basis of boson creation 

and annihilation operator of multi-polarity l and z component of m,   and bj,m. On 

the basis of boson operator, boson model is explained. The low lying collective states 

of nuclei described in the form of monopole boson having angular momentum an 

parity J
π
=0

+ 
as s-boson and quadrupole boson with J

π
=2

+ 
called as d-boson.           

s†dµ (µ= 0, ±1, ±2)                                                       (2.35)                                                                                                               

s dµ (µ= 0, ±1, ±2)                                             (2.36)                                                                   

Above relation is following Bose communication relation as: 

    [s s
†
]=1                                                              (2.37)                                                                     

and                               [dµ ]=δµµ'                                                                       (2.38)                                                  

Spherical tensor is created with Boson operator, that transformed basis vectors of 

(2k+1) dimensions, give Clebsch Gorden Coefficients with product of two operators. 

Total boson number N is the sum of number of s and d-bosons. i. e., N= ns+nd, which 

is conserved. 

The Hamiltonian is used to obtain the information about spectrum, which is a 

combination of energy term (E0), one and two body interactions term, here creation 
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operator is equal to the annihilation operator. The Hamiltonian is hermition operator 

H
†
=H. 

            

 

       (2.39) 

The H can also expressed as 

                                                        (2.40) 

It consist of two one body terms and seven two body terms cL(L= 0, 2, 4), vL(L= 0, 2) 

and uL(L= 0, 2). 

           Electromagnetic transition of multi-polarity in the forms of s and d boson one 

body interaction is written as. 

 = γ0 + α0
 
  + β0

 
                                                          (2.41) 

 

 
= β1                    (2.42)                                                                                                                                                                                                                                                                                                                                            

              

 =                                              (2.43)                                                                                                                                                                                     

             

= β3                                                                                                   (2.44)                                                                                                                                                                                                                                   

 

 = β4                                                                                             (2.45)                                                                                                                                                                                                                    

The s and d boson have positive polarity. Operator with multi-polarity one has 

positive parity as a M1 operator and for negative parity E1 operator. One can 

construct transition operator with multi polarity four. The constant γ0, αL(L=0,2) and 

βL(L=0,1,2,3,4) are parameters magnitude and scale of corresponding operator. The 

cubic term in Hamiltonian consist of three creations and three annihilation operator. 

        The Hamiltonian is also written as: 

       H= ɛ’’nd + a0P
†
P + a1L

2
 + a2Q

2
 + a3T3

2
 + a4T4

2
                                              (2.46)                                                                                                                                                                                                                                   
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Here P, L, Q, T3 and T4 are as pairing, angular momentum, quadrupole, octupole and 

hexadecapole operator. For microscopic calculation same Q is used in transition 

operator and in Hamiltonian and is known as Q- formalism. 

    The energy of nuclear states and reduced transition probability in the interacting 

boson model is calculated by PHINT program which is written by Scholten (1976) 

where coefficients of Hamiltonian correspond to input parameter as 

                                     ɛ’’=EPS                                                                         (2.47)                                                                                                                                                                                                                                            

                                     a0= 2 PAIR                                                                     (2.48)                                                                                                                                                                                                                                                                                              

                                     a1=ELL/2                                                                        (2.49)                                                                                                                                                                                                                                                                                            

                                     a2=QQ/2                                                                          (2.50)                                                                                                                                                                                                                                        

                                     a3=5 OCT                                                                        (2.51)                                                                                                                                                                                                                                        

                                     a4=5 HEX                                                                        (2.52)                                                                                                                                                                                                                                         

      The boson creation (s
† 

or d
†
) and annihilation (s or d) operator gives a set two 

linear operator. As Gαβ= bβ for (α, β=1, 2,….6)  gives 36 operator which satisfies 

communication unitary algebra in six dimension U(6). The group of transformations 

is related with each relation. During communication constant is equal to one or zero, 

called as lie structure constant. Using Racah approach, G operator is as                              

  =   for =0, 2. In terms of s and d boson operator G expanded as 

  (d,d),  (d,d),  (d,d),  (d,d),  (d,d),  (d,s) and  (s,s) gives 1, 

1, 3, 5, 7, 9, 5 and 5 components respectively. The U(6) algebra is classified into 

three sub group U(5), SU(3) and O(6). 

 

2.4.1 Sub-group U(5) 

            The operators d,d),  (d,d),  (d,d),  (d,d) and  (d,d) gives 25 

component as a O(5) group. The operator  (d,d) gives 3 component s a O(3). The 

operator  (d,d) gives one component as a O(2) rotation group. The chain of Boson 

subalgebra is U(6)  U(5)  O(5)  O(3)  O(2). The quantum number for the chain 

is  and ML. 

 

2.4.2 Sub-group SU(3) 

              Boson sub algebra II consist 9 components having a linear combination of 

,  ,  
 
 for s and d pair with 1,3 and 5 component. The 

 
term is proportional 

to the electrical quadrupole operator gives information about deformations of the 
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nucleus with positive (negative) quadrupole moments. The operator and  give 

sub group SU(3) of U(6) having 3 and 5 components. The  give sub-group O(3) of 

SU(3) with 3 components and gives 1 component as a O(2) rotation group. The 

chin of boson sub-algebra II is is U(6)  U(5)  O(3)  O(2). The quantum number 

for the chain is  , L and .  

 

2.4.3 Sub-group O(6) 

               Boson sub-algebra III consist , 
 
 and 

 
 having 3,7 and 5 terms as a 

sub group O(6) of U(6) with 15 terms. The operators and gives 10 terms as a 

sub-group O(5). The operator gives 3 terms as a sub-group O(3) and gives one 

term as a sub-group O(2). The chain of boson sub-algebra is U(6)  O(6)  O(5)  

O(3)  O(2). The quantum number for the chain is . 

 

 The Hamiltonian in the form of Casimier operators gives energy spectrum, electric 

quadrupole operator for each symmetry with individual properties. Most of the nuclei 

do not show properties as like symmetry exactly. Then Hamiltonian H can be written 

by the operator of two chains. The classification of nuclei as (shown in Fig. 2.3): 

1. Class A, nuclei with properties intermediate between I and II. 

2. Class B, nuclei with properties intermediate between II and III. 

3. Class C, nuclei with properties intermediate between III and I. 

4. Class D, nuclei with properties intermediate between all three limits. 

O(6)

SU(3)U(5)

A

D

B
C

I II

III

 

Fig. 2.3 Casten’s symmetry triangle. 

  



24 

 

2.5 VARIOUS INDEPENDENT PARAMETERS 

2.5.1 NpNn Product 

It is the product of number of valence protons Np and the number of valence 

neutrons Nn. On taking it as independent parameter; we studied the variation of other 

dependent quantities on NpNn product. 

2.5.2 P-factor    

P-factor defined as it is the ratio of product of Np and Nn to the sum of number of 

valence proton (Np) and the number of valence neutrons (Nn). It is the normalised 

value of NpNn. It is represented by: 

     P=  

2.5.3Energy Ratio (R4) 

It is the ratio of energy of (4
+

1) and (2
+

1) levels of ground state bands. For vibration 

nuclei, it lies from 2≤R4≤2.4, for transitional nuclei it lies as 2.4≤R4≤3 and rotational 

nuclei it lies as 3≤R4≤3.33.This ratio is also observed with other calculated 

quantities.  
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CHAPTER -III 

SYSTEMATIC DEPENDENCE OF ASYMMETRIC 

PARAMETER FOR EVEN Z EVEN N NUCLEI IN 

LIGHT AND MEDIUM MASS REGION 

 

3.1 INTRODUCTION 

 

The study of collective nuclear structure with N, Z, NB (=Np+Nn) and NpNn 

provide detailed information of nuclear interactions involved. Several studies have 

been carried out to study the collectivity, deformation and systematic dependence of 

other nuclear properties on NpNn. de-Shalit & Goldhaber (1953) pointed out the 

important role of valence nucleons. Talmi (1953) noted the constancy of nuclear 

level structure in semi-magic isotones/isotopes. Hamamoto (1965) observed that the 

protons (p
+
) and neutrons (n

0
) both are required for producing the nuclear 

deformation. In interacting boson model-I (IBM-1) Casten (1990), the structure of 

nuclei depends on the total boson numbers NB. The concept of F-spin multiplets was 

based on this and was well explained by von Brentano et al. (1985). Casten (1985) 

noted that the E2g+ have smooth dependence on NpNn. Other studies have been 

carried out by Casten and Zamfir (1996) to study the collectivity, deformation and 

systematic dependence of various nuclear observables on the product NpNn. 

 

Gupta (1986) observed that 1/α was linearly dependent on NpNn, where the 

coefficient  contributes for rotational part of energy in the SU(3) symmetry limit of 

IBM Casten (1990)  as, 

 

 E([N](λ, μ) KLM) =α L(L+1) + β C(λ, μ).              (3.1) 

 

The B(E2; 21
+
→01

+
) values were also related with NpNn. Gupta et al.(1990a) noted a 

systematic dependence of γ–g B(E2) ratios on the NpNn in different parts of the major 

shell space Z=50–82, N<82 and N=82–126. Casten (1985) presented a review on the 
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evolution of nuclear structure based on NpNn product. The NpNn scheme was further 

modified to use P- factor Gupta et al. (1990a).  

 

 In this chapter, we study the role of valence nucleons and holes on the nuclear 

structure, through N, NB and NpNn. Casten (1985) and Casten and Zamfir (1996) 

covered the various regions, viz., A=100, 130, 150 (Z<64, Z>64) and A=190. We 

present our results for 50≤Z≤82 and 82≤N≤126 region on quadrant wise basis. The 

systematic dependence of asymmetry parameter on N, NB and  NpNn has been 

studied. The role of Z=64 subshell effect for N≤90 region Casten (1985) is also taken 

care in this work. 

 

 

3.2 LITERATURE REVIEW 

The values of asymmetry parameter (γ0) are calculated for 50≤Z≤82 and 

82≤N≤126 region and the whole data is divided into four quadrants as suggested by 

Gupta et al. (1990b).  

 

3.2 .1 Calculation of Asymmetric Parameter  

 

The values of asymmetry parameter (γ0) of asymmetric rotor model (ARM) 

Davydov and Filippov (1958) are evaluated using the experimental energies E22
+
 and 

E21
+
 states. The experimental data is  taken from the website of Brookhaven National 

Laboratory http://www.nndc.bnl.gov  (2015). The energy ratio Rγ =E22 / E21 and γ0 is: 

2/1

2

1
0 }

1

1
1[

8
9{sin

3
1












 


 

R

R
.       (3.2) 

 

It can be evaluated using:   

(a) The energy ratio R4=(E4g/E2g) but only the nuclei with 2.8≤R4≤3.33 will be 

allowed as noted by Sharma (1989) and Gupta and Sharma (1989).  

(b) The B(E2) values which are very small and available with uncertainties. 

Therefore the values from energy ratio Rγ are more reliable. The calculated values of 

asymmetry parameter (γ0) are listed in Table 3.1 and Table 3.2 for light and medium 

mass region, respectively. 

http://www.nndc.bnl.gov/
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3.3 RESULT AND DISCUSSIONS 

 

The whole observed data of asymmetry parameter is divided into four 

quadrants. The Quadrant I (Q-I) is for 50≤Z≤66 and 82≤N≤104 shell space with 

particle like proton-bosons and neutron-bosons and it is forming the p-p space. The 

Quadrant II (Q-II) is for 66≤Z≤82 and 82≤N≤104 shell space, with hole like proton-

bosons space and particle like neutron-bosons space and it is forming the h-p space. 

The Quadrant III (Q-III) is for 66≤Z≤82 and 104≤N≤126 region shell space, with 

hole like proton-bosons and neutron-bosons and it is forming h-h space. The 

quadrant IV (Q-IV) is for 50≤Z≤66 and 104≤N≤126 shell space with particle like 

proton-bosons and hole like neutron-bosons and it is forming the p-h space. 

Therefore, the quadrant I and III have p-p and h-h bosons space, respectively and 

quadrant II and IV for h-p and p-h bosons space respectively. It has been observed 

that there are no nuclei in quadrant IV. The division of the 50≤Z≤82 and 82≤N≤126 

shell space had been suggested by Gupta et al. (1990b) to study the concept of F-spin 

multiplets. Further this concept of four quadrant used by Kumar (2013), Kumar et al. 

(2012) and Sharma and Kumar (2010) to study the systematic dependence of various 

nuclear observables and it was found that this concept gives deep information of 

nuclear structure.  

 

3.3.1The variation of asymmetry parameter (γ0) in quadrant- I for 

50≤Z≤66 and 82≤N≤104 region: 

 

 The systematic variation of asymmetry parameter γ0 versus N, NB  and NpNn 

for quadrant-I are shown in Fig. 3.1, Fig. 3.2 and Fig. 3.3, respectively. It is evident 

from Fig. 3.1 that the γ0 decreases sharply from 30
0
 to 9

0
 as N increases from 82 to 

90 indicating the shape phase transition from Vibrational (VM) to rotational (RM) 

limit of collective model of Bohr and Mottelson (1975) and also SU(5) or O(6)  limit 

to SU(3) limit of IBM Casten (1990). If N is increased beyond 92 the γ0 does not 

change and becomes almost saturated indicating that the full nuclear core 

deformation is achieved even at about 9
0
 - 12

0
 for each isotopes example for Sm, Gd 

and Dy. It is clear from the Fig. 3.1 that there is little scattering of data for fixed 

values of N i.e. the asymmetry parameter is having smooth dependence on N.  
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Fig.3.1 The variation of asymmetry parameter (γ0) vs. Neutron 

number (N) for Quadrant I for 50≤Z≤66 and 82≤N≤104 region. 

 

However, the data points of asymmetry parameter have much scattering for a 

fixed values of NB, for example for a fixed value of NB = 6 there is variation in the 

values of γ0 from 15
0
 to 26

0
 (see Fig.3.2) and indicating very week dependence of 

asymmetry parameter on NB. The asymmetry parameter rises for N=84, 86 and 88 

with little increasing slop for N=84 and fast increasing slop for N=86 and 88 with 

increasing NB and for N=90 there is a small fall instead, and which finally saturates 

for N≥92, that is for NB≥12 (see Fig. 3.2). It is also evident that the asymmetry 

parameter decreases sharply on increasing the value of NB from 2 to 12 for each 

value of Z with almost same slope for Xe, Ba, Ce, Nd, Sm, Gd and Dy elements for 

82≤N≤90 region. But the individual curve of each element has been shifted towards 

right while Z is increased. 
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Fig.3.2 The variation of asymmetry parameter (γ0) vs. Boson number (NB) 

for Quadrant I for 50≤Z≤66 and 82≤N≤104 region. 

 

The variation of asymmetry parameter γ0 versus Np.Nn has been shown in 

Fig. 3.3. The γ0 decreases from a maximum value of 30° for NpNn = 0 (i.e. SU(5) 

limit of IBM Casten (1990) to a minimum values of about 9° (i.e. SU(3) limit of 

IBM). The γ0 saturates for NpNn ≥ 30. It is evident that the asymmetry parameter also 

rises for N=84, 86 and 88 isotones with little increasing slop for N=84 and fast 

increasing slop for N=86 and 88 with increasing NpNn and for N=90 there is a small 

fall instead, and finally γ0 saturates for N≥92, that is for NpNn ≥30. The same feature 

was observed for the E2g in quadrant I by Kumar (2013) and Kumar et al. (2012). But 

this effect was in reverse order for the ground state moment of Inertia (θg= 1/ E2g) 

and energy ratio R4 (= E4g/ E2g) by Kumar (2013) and Kumar et al. (2012).  

These variations in rising slopes of N=84, 86 and 88 versus the product NpNn 

in Fig. 3.3 arise on account of the Z=64 proton subshell gap. Ogawa et al.(1978) 

noted the Z=64 sub-shell effect in 
146

Gd. The role played by the Z=64 subshell effect 

in Nd-Sm-Gd-Dy nuclei had been stressed earlier by Casten (1985), Casten et al. 

(1996) and Gupta (1993). It is evident here that the smooth dependence of 

asymmetry parameter γ0 on NpNn is confined to N>90 region (see Fig. 3.3), where 
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the Z=64 subshell effect disappears, unless one uses the effective proton bosons Np 

number for N<90. 
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Fig.3.3 The variation of asymmetry parameter (γ0) vs. NpNn  for Quadrant I 

for 50≤Z≤66 and 82≤N≤104 region. 

 

This shows non-dependence of γ0 with NpNn because for a fixed value of 

NpNn the γ0 is having varying values. It is clear from the Figs. 3.1-3.3 that the 

asymmetry parameter γ0 vividly display the formation of isotonic multiplets in 

quadrant-I which supports the observation of Gupta et al. (1990b) who had illustrated 

it in a different way and Kumar (2013), Kumar et al. (2012). 

 

3.3.2 The variation of asymmetry parameter γ0 for quadrant-II for 

66≤Z≤82 and 82≤N≤104: 

The systematic variation of asymmetry parameter γ0 versus N, NB  and NpNn 

for quadrant –II are shown in Fig. 3.4, Fig. 3.5 and Fig. 3.7, respectively. It is evident 

from Fig. 3.4 that the γ0 decreases sharply from 30
0
 to 12

0
 as N increases from 82 to 

94 for Dy, Er and Yb isotopes indicating that the shape phase transition takes place 

from Vibrational (VM) to rotational (RM) limit of collective model of Bohr and 
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Mottelson (1975) and also SU(5) or O(6)  limit to SU(3) limit of IBM Casten (1990) 

as observed in quadrant-I. If N is increased from 94 to 98, γ0 does not change and 

remains saturated indicating that the full deformation is achieved even at about ≈12
0 

and ≈13
0 

for each isotopes example for Dy and Er isotopes, respectively. However, 

for Yb and Hf isotopes the nature of the asymmetry parameter γ0 is different because 

it goes on decreasing 21
0
 to 8

0 
for Yb

 
and from 18

0
 to 10

0 
for Hf while N increases 

from 90 to 104 for Yb and from 94 to 104 for Hf isotopes. It indicates that for Yb and 

Hf isotopes the asymmetry parameter γ0 goes on decreasing i.e. nuclear core 

deformation increases when the neutrons number (N) is increased from 82 to 104, i.e. 

till the shell is half filled. The point of Os and Pt are away from the line of general 

trend.
 
It is clear from the Fig. 3.4, that there is much scattering of data points for 

fixed values of N i.e. the asymmetry parameter is not having smooth dependence on 

N. 
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Fig. 3.4 The variation of asymmetry parameter (γ0) vs. Neutron number (N) 

for Quadrant II for 66≤Z≤82 and 82≤N≤104 region. 

 

The data points of asymmetry parameter are overlapping on each other for Dy 

- W isotopes (see Fig. 3.5) for NB = 12 and 13. For NB= 11 to16 the data points of Yb 

and Hf isotopes are overlapping on each other and the value of asymmetry parameter 

for these nuclei goes on decreasing till NB approaches 16. The data points of Dy and 
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Er are also overlapping for NB=13-17 and the value of asymmetry parameter are 

independent of NB. It indicates that the Dy and Er nuclei have different nature of 

nuclear deformation than Yb and Hf isotopes for this region. The Os and Pt data 

points are above the uniform pattern curve indication different nature of these nuclei. 

For this region (quadrant-II), the data points of asymmetry parameter have less 

scattering for a fixed value of NB in comparison to quadrant-I (see Fig. 3.2). The Fig. 

3.5 is indicating a week dependence of asymmetry parameter on NB. 

The variation of asymmetry parameter γ0 vs. Np.Nn has been shown in Fig. 

3.6. The γ0 decreases fast at first and gradually later while NpNn is increasing; and 

remains unchanged for NpNn≥45 for Dy and Er isotopes for which the proton boson 

pair Np decreases from 8 to 7; and decreases for Yb and Hf on increasing NpNn 

beyond 45 for which the proton boson pair Np decreases from 6 to 5. The two data 

points of Os and one of W are lying on the smooth curve while for Pt the data point 

are slightly below the uniform curve.  
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Fig. 3.5 The variation of asymmetry parameter (γ0) vs. Boson number (NB) 

for Quadrant II for 66≤Z≤82 and 82≤N≤104 region. 
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One important point is to be noted here that the asymmetry parameter γ0 is 

calculated from the values of E2g and E2γ and the nature of variation of E2γ verses N is 

different for Dy and Er isotopes than Yb and Hf as shown in Fig. 3.6. The E2γ 

remains almost constant for Dy and Er isotopes for N=88-102 but for Yb and Hf it 

increases sharply as N increases from N=94-104 and becomes maximum for N=104. 

This effect is reflected here and the value of asymmetry parameter remains constant 

and (i.e. above the usual trend) for Dy and Er isotopes for NpNn≥45 as stated above. 

The same feature of E2γ state had been observed with NpNn by Kumar (2013). There 

is a smooth dependence of asymmetry parameter γ0 with NpNn in quadrant –II.  
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Fig. 3.6 The variation of the energy of E2γ state vs. N for Quadrant II for 

66≤Z≤82 and 82≤N≤104 region. 
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Fig. 3.7 The variation of asymmetry parameter (γ0) vs. NpNn for Quadrant 

II for 66≤Z≤82 and 82≤N≤104 region. 

 

3.3.3 The variation of asymmetry parameter γ0 for quadrant-III for 

66≤Z≤82 and 104≤N≤126: 

 The variation of asymmetry parameter γ0 versus N, NB  and NpNn for 

quadrant –III are shown in Fig. 3.8, Fig. 3.9 and Fig. 3.10, respectively. In Fig. 3.8, 

the asymmetry parameter increases/decreases with increasing N in different style for 

different value of proton number Z. For Yb and Hf the curves are almost horizontal 

with little curvature. In W (Z=74, Np=4) and Os (Z=76, Np=3) the curve fall very 

slowly for N=104 to 108 (attains minimum value of γ0 at N=108) and rises 

significantly when N increases beyond 108. In case of Os the asymmetry parameter 

decreases while N increases from 116 to 118. The nature of curve is different for Pt 

(Z=78, Np=2) it initially increases sharply while N increases from 104 to 112 and 

becomes horizontal for N=110-122. For Hg (Z=80, Np=1) the curve is almost 

horizontal with little curvature for N=108-116 beyond that it significantly decreases 

while N increasing from 116 to 120 and again increases while N increases from 120 

to 122. The feature of E2g vs. N had been reported for W isotopes for quadrant –III 

by Kumar (2013). 
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Fig. 3.8 The variation of asymmetry parameter (γ0) vs. Neutron number (N) 

for Quadrant III for 66≤Z≤82 and 104≤N≤126 region. 

 

The variation of asymmetry parameter γ0 versus NB  is shown in Fig. 3.9. The 

γ0 decreases with increasing N in different style for different value of proton number 

Z. For Pt, the γ0 is independent of NB for 4≤ NB≤ 10 the curve is horizontal (with γ0 = 

30
0
) and γ0 decreases sharply on increasing NB beyond 10. The curve for Pt is lying 

above the observed curve for other isotopes except Hg for which the curve is almost 

horizontal with little curvature except for NB =4. For Yb – Os isotopes the 

asymmetry parameter has NB dependence with little scattering for Os and W isotopes 

as discussed above. 

The variation of asymmetry parameter γ0 versus NpNn is shown in Fig. 3.10. 

The value of γ0 decreases with increasing NpNn (going towards the mid shell) and 

provide a single broken curve (except for Hg isotopes with Z=80, Np=1) indication 

that the values of γ0 are slightly different for different Z. For quadrant –III, the Nn 

and Np both are the hole boson pairs and the value of both decreases as we go 

towards closed shell i.e., right to left in Fig. 3.9. The strong dependence of 

asymmetry parameter with NpNn is evident in the quadrant-III. 
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Fig. 3.9 The variation of asymmetry parameter (γ0) vs. Boson number (NB) 

for Quadrant III for 66≤Z≤82 and 104≤N≤126 region. 
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 Fig. 3.10 The variation of asymmetry parameter (γ0) vs. NpNn for Quadrant 

III for 66≤Z≤82 and 104≤N≤126 region. 
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3.4 CONCLUSION 

The NpNn scheme is very useful in considering the systematic behavior of 

asymmetry parameter (γ0) which gives the information of nuclear structure of atomic 

nuclei in a medium and light mass region, i.e. change in product NpNn are correlated 

with the change in nuclear structure. The NpNn product is a good measure of its 

effect in producing the deformation in atomic nuclei. This product is also an indicator 

of the n-p interaction among the valance proton and/or neutron nucleons causing the 

deformation of nuclear core.  

 

In quadrant-I for 50≤Z≤66 and 82≤N≤104 and quadrant-II for 66≤Z≤82 and 

82≤N≤104 region, the asymmetry parameter γ0 decreases from 30
0
 in Q-I and from 

22
0
 in Q-II to 9

0
- 10

0
  with increasing N from 82 to 104 (i.e. the mid of N=82 to 126 

neutron shell), signifying that the nuclear deformation (β) is increasing, while the 

energy ratio R4 increase from 2.0 (for harmonic vibrators or SU(5) type nuclei) to 

3.33 (for good rotors or SU(3) type nuclei). This indicates that in this region the 

nuclear structure depends much more on Z. The values of asymmetry parameter in 

Q-I, shows shape phase transition at N=88-90 and regions (QII-III) have a systematic 

dependence with N, but having different patterns. Partial results of this study have 

been presented in the DAE Symposium on Nuclear Physics Kaushik and Sharma 

(2014). 

 

In quadrant-I, the asymmetry parameter is having more correlated 

dependence on the neutron number N, rather than on the product NpNn. In this 

quadrant- I, the Z=64 sub-shell effect for N≤90 nuclei affect the variation of 

asymmetry parameter with N and NpNn product.  Casten (1985) and Casten et al. 

(1996) obtained a smooth dependence of various observables with NpNn by adopting 

effective numbers proton bosons Np for N≤90 nuclei. This was a very useful 

procedure for obtaining the universal smooth curves for various regions with NpNn. 

The present studies also confirm the observations of Gupta et al. (1990b), Kumar 

(2013), Kumar et al. (2012) and Sharma and Kumar (2010) i.e. the existence of 

isotonic multiplets in quadrant-I.  
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The existence of X(5) symmetry in N=90 isotones established in recent works 

supports the formation of isotonic multiplets in this work. The calculated values of 

asymmetry parameter are almost constant for N=90 isotones e.g. 13.8
0
 for Nd, 13.24

0
 

for Sm and  13.86
0
 for Gd;  which support the findings of Gupta (2012a); who gave 

the microscopic explanation for the constant structure  of N=90 isotones. This is 

certainly different from the universal NpNn scheme Casten (1985) and Casten and 

Zamfir (1996) and found to be very useful for most of the atomic nuclei throughout 

the periodic table as noticed by Casten and Zamfir (1996). This special condition for 

N=90 isotones is made more explicit in the present work for Q-I and supports the 

findings of Casten and Zamfir (1996). 

The systematic dependence of asymmetric parameter on NpNn has strong 

dependence in quadrant-II. In Q-II, the line of β- stability runs nearly diagonally, i.e. 

parallel to NB (where, NB is the sum of proton hole bosons and neutron particle 

bosons) and leading to the formation of F-spin multiplets. The same feature had been 

observed earlier for E2g  by Kumar et al. (2012) and Sharma and Kumar (2010). 

 In quadrant-III, for 66≤Z≤82 and 104≤N≤126 region, the variation of 

asymmetry parameter is different from quadrant I and II because the asymmetry 

parameter γ0 increases sharply from 9
0
 - 10

0
 to 30

0
 with increasing N from 104 to 

126. This is signifying that the nuclear deformation (β) is decreasing and the nuclear 

structure changes from pure rotor SU(3) type  to vibrational SU(5) or γ-unstable O(6) 

type. Further, the asymmetry parameter for different elements has smooth curve with 

NpNn with almost same slopes except for Hg isotopes. 

The graphs of asymmetry parameter against NpNn vividly display the formation 

of isotonic multiplets in quadrant-I, strong dependence on NpNn in quadrant-II and 

weak constancy with Z in quadrant-III is illustrated and support the findings of Gupta 

(2012b). Also in every case the role of N, Z is well evident. This also agrees with 

known variation of nuclear deformation in the light and medium mass region. The 

quadrant wise presentation of asymmetry parameter is very useful as in case of other 

observables of collectivity and deformation i.e. the energy of first excited state E2g, 

the energy ratio R4,  the B(E2; 01
+
 →21

+
) value  and ground state band moment of 

inertia (θg =3/E2g
+
)  as noted by Kumar (2013), Kumar et al. (2012) and Sharma and 

Kumar (2010).  
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Table 3.1: The calculated values of asymmetric parameter (γ0) 

for Te to Ce nuclei using equation 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N Te Xe Ba Ce 

82 30 30 30 30 

84   24.52 24.42 25.07 

86     19.43 19.95 

88     15.26 16.86 

90     15.78 15.66 
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Table 3.2: The calculated values of asymmetric parameter (γ0) for 

Nd to Pt nuclei using equation 3.2. 

N Nd Sm Gd Dy Er Yb Hf W Os Pt Hg 

82 30.0                     

84 26.14 26.44 25.2                 

86 21.41 23.74 26.14 22               

88 19.05 20.42 21.46 21.98 23.45             

90 13.8 13.24 13.86 15.42 18.76 21           

92   9.54 11.05 12.79 15.07 17.77           

94   9.19 10.32 11.97 13.29 14.88 17.24         

96     10.98 11.96 12.87 13.08 14.79         

98     11.39 12.31 12.71 11.87 12.81         

100       11.86 12.36 10.78 11.8         

102         11.53 9.29 10.85   16.19 18.39   

104           8.64 10.22 12.21 15.3 18.69   

106           10.18 11.19 12.1 14.83 19.39   

108           10.33 10.66 11.37 14.04 21.67 25.74 

110             13.63 13.83 16.5 25.87 23.74 

112               15.91 19.16 28.89 23.78 

114                 22.3 30 24.42 

116                 25.21 30 24.85 

118                 22.24 30 23.74 

120                   30 20.89 

122                   30 26.65 
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CHAPTER-IV 

 

SYSTEMATIC STUDY OF B(E2; 4g→2g)/ 

B(E2;2g→0g) BRANCHING RATIO USING 

ASYMMETRY ROTOR MODEL AND ITS 

VARIATION WITH N AND Z 

 

4.1 INTRODUCTION 

     The concept of collectivity in atomic nuclei is one of the most fundamental 

findings in history of nuclear structure physics. The macroscopic, microscopic and 

geometrical nuclear models have been applied to describe this collective behavior of 

nuclei. The geometrical models depicting the atomic nucleus as a liquid drop with a 

given nuclear shape and algebraic models, take into account the pairs of proton 

and/or neutron only. Despite the often very dissimilar theoretical approaches, most of 

the collective models have some common basic features, such as predictions of 

energies of  g- band, β- band, γ- band and other higher multi-phonon bands or B(E2) 

values and B(E2) ratios for inter and intra band transitions, which have been 

observed in a wealth of nuclei away from closed shells.  

 

The energy ratio R4 (=E4g/ E2g) is a key observables which can be used to assess the 

collectivity of nuclei and it is equal to 2.0 for an ideal spherical harmonic vibrator 

i.e., SU(5) limit and 3.33 in an axially symmetric deformed rotor, i.e. SU(3) limit of 

interacting boson model (IBM) of Iachello and Arima (1987) and Casten (1990). 

Bohr and Mottelson (1975) pointed out that the inter/ intra band transition rates 

provide another good measure of nuclear collectivity, which is less sensitive to 

anharmonicities than energies of various bands. The B(E2;4g→2g)/B(E2;2g→0g) 

branching ratio is a particularly good example, as it is 2.0 in the spherical limit or 

SU(5) and 1.42 in the deformed limit or SU(3) of IBM Iachello and Arima (1987).  

Significant deviations from these two limiting values can be found; if one considers 

very small numbers of valence neutrons (Nn) and/or protons (Np), which are used in 
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the IBM; also in asymmetric rotor model (ARM) of Davydov and Filippov (1958) 

where asymmetric parameter (γ0) changes from 0
0
 to 30

0
 which corresponds to above 

mentioned two limits of IBM i.e. SU(3) and SU(5) respectively. 

 

In the present chapter, we have compiled the experimental data of 

B(E2;4g→2g)/B(E2;2g→0g) branching ratio from the website of Brookhaven National 

Laboratory( http://www.nndc.bnl.gov) for medium mass region (Nd - Hg) and listed 

in Table 4.1. The observed data is compared with the ARM predictions for 

asymmetric parameter (γ0) equals to 0
0
 to 30

0
. The SU(3) and SU(5) limits are also 

included to get new information about the structure.  The systematic dependence of 

B(E2;4g→2g)/B(E2;2g→0g) with N and Z are also carried out to find out a definite 

conclusion regarding nuclear structure.  

 

4.2 ASYMMETRIC ROTOR MODEL  

Davydov and Filippov (1958) investigated the energy levels corresponding to 

rotation of nucleus which does not change its internal state. They established that the 

violation of axial symmetry of even –even nuclei affect the rotation spectrum of axial 

nucleus with appearance of some new rotational states having total angular 

momentum of 2, 3, 4,···. If the deviation from axial symmetry is small, then these 

levels lie very high and are not excited. The energy of rotation of a non-spherical 

even-even nucleus is given, in the adiabatic approach, by Schrödinger eq.: 

(H - E)Ψ = 0           (4.1) 

where E is measured in units of  , and the operator H is given by the formula: 

                        (4.2) 

where Jλ are the projection of the total angular momentum along the axes of a 

coordinate system fixed in the nucleus. The wave function corresponding to the state 

with total moment J, can be represented as: 

                                                                                   (4.3)

 where             (4.4)

               

http://www.nndc.bnl.gov/
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The function in eq. (4.4) is the function of the Euler angles that 

determine the orientation of the principal axis of the nucleus with respect to the 

laboratory space. It can be shown that the wave functions (4.3) from the basis of 

totally symmetric representation of the group D2, the elements of which are the 

rotation through 180
o
 around each of three principal axes of the nucleus Davydov 

and Filippov(1958)   and Davydov and Rostovsky (1959). 

The values of first excited state E21 and second 2+ state i.e. E22 can be written as (in 

unit of  ): 

              (4.5)                 

                                                                      

                                                                      (4.6) 

 

The value of asymmetry parameter can be obtained using the Eqs. (4.5) and (4.6) and 

the asymmetric parameter (γ0) become: 

2/1
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21

22

E
E

                         (4.7) 

4.2.1 Reduced Transition Probabilities 

 

     The reduced transition probability B(E2; Ii→ If
′
) between two numbers of the 

same rotational band with quantum number K is expressed as: 

               (4.8) 

where we have used  

 .             (4.9) 

For Coulomb excitation, the B(E2), reduced transition probability in the case of 

symmetric rotor (even-even nuclei) is expressed; 

  

             (4.10) 

     The non-spherical nuclei have rotational levels which are due to very fast electric 

quadrupole transition probability B(E2; I→I
′
). According to equation (4.10), B(E2; 
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Ii→If
′
) increases as the value of intrinsic quadrupole moment Q0 increases. If the 

transition takes place between the ground state (I=0) and the first excited state (I=2) 

of nuclei, then 

               (4.11) 

For transition between rotational level of spin I=2 and I=0, the BE(2) value can be 

expressed (in unit of e
2
Q0

2
/16π ): 

B(E2;21→01)= B(E2; 21→01)/ e
2
Q0

2
/16π = (1/2){1+ [(3-2sin

2
(3 )/ (9-8sin

2
(3 )

1/2
]}                      

                                                                                                                               (4.12) 

Where the intrinsic quadrupole moment of an axial nucleus with nuclear core 

deformation β is: 

Q0= 3ZR
2
β/ (5π)

1/2
.              (4.13) 

Also the B(E2) value for other transitions can be written as: 

B(E2;4i→2f) = 5/126 [cos  (6A0i Af + √35A2i Bf) + sin(√15A2iAf + A0iBf 

+√35A4iBf)]
2
                                                                                                          

where, Af and Bf are the coefficients that determine the wave functions of spin 21
+
 

and Aλ coefficients determine the wavefunction of spin 41+. Using the values of 

coefficients determined the wavefunctions, one can calculate the probabilities of 

electric quadrupole transitions between various rotational states of the nucleus. The 

ARM  B(E2;4g→2g)/B(E2;2g→0g) branching ratio is deduced from eqs. (4.12, 4.14) 

using asymmetric parameter (γ0) from equation (4.7).  

 

4.2.2.Calculation of Asymmetric Parameter (γ0) 

 

     The values of asymmetry parameter (γ0) are evaluated using eq. (4.7) by puting 

the the experimental energies of  E22
+
 (=E22) and E21

+
 (=E21) states which are taken 

from the website http://www.nndc.bnl.gov .   It can also be evaluated using:   

(a) The energy ratio R4=(E4g/E2g) but only the nuclei with 2.8≤R4≤3.33 will be 

allowed Sharma (1989) and Gupta and Sharma (1989).  

(b) The B(E2) values which are very small and available with uncertainties.  

Therefore the values from energy ratio Rγ are more reliable. The calculated values of 

asymmetry parameter (γ0) for all nuclei of medium mass region are used to calculate 

the B(E2;4g→2g)/B(E2;2g→0g) branching ratio.  

 

http://www.nndc.bnl.gov/
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4.3 RESULT AND DISCUSSIONS 

 

4.3.1 Variation of ARM B(E2;4g→2g)/B(E2;2g→0g) ratio versus asymmetry 

parameter (γ0) 

 

     The variation of B(E2;4g→2g)/ B(E2; 2g→0g) ratio from ARM vs. γ0 is shown in 

Fig. 4.1. The ARM data points are shown by hollow circles and the vibrational or 

SU(5)  limit at 2.0 and rotational or SU(3)  limit at 1.4 are shown by dotted lines for 

useful comparison. It is clear from the figure that the ARM predictions are very close 

to the SU(3) limiting value and also it is increases very slowly on increasing γ0  from 

0
0
 to 20

0
 forming a peak at 20

0
 and  decreases slowly beyond 20

0
 approaches 1.4 

which is SU(3) limiting value at γ0 ≈ 27
0
. The ARM ratio is away from vibration 

model limit of 2.0 this shows that it cannot explain the vibrational nature of the 

nuclei. 
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Fig.4.1 The Variation of B(E2;4g→2g)/ B(E2; 2g→0g) ratio from ARM 

(shown by hollow circles) vs. asymmetry parameter (γ0) in degree. The 

vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown 

by dotted lines for comparison. 
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4.3.1.1 Variation of Experimental and ARM B(E2;4g→2g)/B(E2;2g→0g) ratio 

versus  Asymmetry Parameter (γ0) 

 

The variation of B(E2) ratio from experiment and ARM with γ0 is shown in 

Fig.4.2. The ARM data points are shown by solid triangles and SU(5)  limit at 2.0 

and SU(3)  limit at 1.4 are shown by dotted lines. Two nuclei are having B(E2) ratio 

anomalously more than 2.0 and not shown in the Fig.4.2, e.g. 
182

Hg and 
184

Hg for 

them the B(E2;4g→2g)/B(E2;2g→0g)  ratios are 4.6(3) and 2.8(8) respectively. There 

are some other nuclei in medium mass region those are having this ratio anomalously 

lesser than 1.4 i.e. SU(3) limiting value e.g., 
150

Nd, 
164

Dy, 
164

Er, 168W,   
182

W, 
184

W, 

192
Os, 

180
Pt and 

198
Hg having values 1.31(10), 1.30(7), 1.18(13), 1.1(3), 1.386(20), 

1.30(9), 1.22(4), 0.92(22) and 0.375(18) respectively. It is noted that in medium mass 

region (Nd-Hg), this B(E2) ratio is smallest in case of 
198

Hg [=0.375(18)] which is 

non magic nucleus with only two vacancy of protons for Z=82. This ratio is also very 

small in case of 
144

Nd84 [=0.73(9)]; which is also a non- magic nucleus; which has 

only two valence neutrons outside N=82.  It supports the findings of Cakirli et al   

(2004) that the value of this B(E2) ratio
 
is anomalously small in non  magic nuclei, as 

it cannot be explained with collective approaches. The values of 

B(E2;4g→2g)/B(E2;2g→0g)  ratios for N=88 isotones (Nd, Sm, Gd, Er) are lying 

between SU(3) and SU(5) limits indicating the shape phase transition for these 

nuclei. However the nature of the Dy88  is different and its value is  close to SU(3) 

limit. Other data points are lying between SU(5) and SU(3) limits. While the ARM 

predictions are very close to the SU(3) limit.  
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Fig.4.2 The Variation of experimental B(E2;4g→2g)/ B(E2; 2g→0g) ratio 

vs. asymmetry parameter (γ0) in degree. The vibrational limit SU(5) at 2.0 

and rotational limit SU(3) at 1.4 are shown by dotted lines for comparison. 

The ratio from ARM is shown by solid triangles. 

 

 

4.3.1.2 Conclusions 

The predictions of asymmetric rotor model (ARM) of Davydov and 

Filippov(1958) for B(E2;4g→2g)/B(E2;2g→0g) branching ratio are compared with 

the experimental data in medium mass region.  It is found that the observed data 

point of this ratio for N=88 isotones (Nd, Sm, Gd, Er) are indicating the shape phase 

transition from an ideal spherical harmonic vibrator or SU(5) to an axially symmetric 

deformed rotor or SU(3).  It is also noted that this B(E2) ratio is anomalously small 

in case of  two non- magic nuclei  i.e., 
198

80Hg118 [=0.375(18)]  and 
144

60Nd84 

[=0.73(9)] with only two vacancy of protons for Z =82 and two valence neutrons 

outside N=82, respectively; which supports the findings of Cakirli et al (2004). The 

data points for other nuclei are lying between SU(5) and SU(3) limits. The calculated 

B(E2) ratios of  ARM are very close to the SU(3) limit of IBM indicating that it can 
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explain the structure of only well deformed nuclei. Therefore the ARM is partially 

successful in explaining this branching ratio.  

 

4.3.2 SYSTEMATIC DEPENDENCE  OF B(E2; 4g→2g)/ B(E2;2g→0g) 

BRANCHING RATIO ON N AND Z 

 

4.3.2.1 Result And Discussions 

 

4.3.2.1.1 The variation of experimental B(E2;4g→2g)/ B(E2; 2g→0g) ratio 

verses neutron number (N) 

 

     To avoid the overlapping of experimental data of the nuclei and to have a clear 

picture for a definite conclusion about the dependence of 

B(E2;4g→2g)/B(E2;2g→0g) ratio on N, the whole data is divided into two parts and 

shown in two figures i.e. Fig. 4.3 for Nd- Er nuclei and in Fig. 4.4 for Yb- Hg nuclei. 

The vibrational model or SU(5) limit at 2 and rotational model or SU(3) limit at 1.4 

are shown in the Fig 4.3 and Fig. 4.4. The data points are joined for same value of Z, 

so that the effect of N will be visible.  

 

     For Nd, this ratio increases sharply from 0.73 to 1.61(maximum value at N=88) as 

N increases from 84 to 88 and if N is further increased from 88 to 92 it decreases 

slowly from 1.61 to 1.31(see Fig. 4.3). The same feature is observed for Sm, where 

this ratio increases from 1.65 to 1.9 on increasing N from 86 to 88 and beyond N=88 

it drops sharply and approaches to Alaga value of 1.4 for N=92. In case of Gd, the 

BE(2) ratio decreases from 1.82 to 1.46 as N increases from 88 to 94. Also in Er, this 

ratio decreases from 1.78 to 1.5 as N increases from 88 to 100 and minimum value of 

1.18 at N=96. Therefore, for N=88 (Sm, Gd and Er) isotones, this ratio ≈1.8 is very 

close to the VM limit of 2.0 indication vibrational nature. However for Dy (N=88, 

92, 94, 96) this ratio is close to Alaga value indication deformed rotor nature and for 

N=90; Dy indicating transitional nature because this ratio (=1.63) is lying in between 

SU(5) and SU(3) limiting value (see Fig. 4.3).  
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For Yb and Hf nuclei, BE(2) ratio is ranging between 1.4 to 1.6 for different 

values of N and close to SU(3) limit (see Fig. 4.4). In case of W, the ratio increases 

sharply from 1.1(3) to 1.74(15) on increasing N from 94 to 100 and decreases very 

slowly on increasing N from 108 to 112 (almost remains around Alaga value).  

 

For N=96 the data point of Os is close to the other N=96 isotones (Yb, Hf, W) 

data points. When N increases from 108 to 112, the ratio for Os increases from 1.4(4) 

to 1.68(11) and when N is increased from 112 to 116 the B(E2) ratio decreases from 

1.68(11) to 1.22(4) indicating prolate to oblate shape-phase-transition as observed  

by Kumar and Baranger (1968).  

 

For N=98, the B(E2) [=1.87(24)] for Pt is close to VM value and for N=102 the 

ratios is minimum  [=0.92(22)]. The B(E2) ratio for Pt decreases from 1.65 to 1.56 

when N increases 106 from 114 and again increases from 1.56 to 1.73 as N increases 

from 114 to 116(attains maximum value =1.73(11) at 116). If N is increased from 

116 to 120 this ratio drops linearly with the same slope as observed for Os (N=112 to 

116).This indicates the similar nature of Pt and Os nuclei for this region. 

 

     For two nuclei; 
182

Hg and 
184

Hg; the B(E2) ratio is 4.6(3) and 2.8(8) respectively; 

which are anomalously more than VM limiting value and not included in the Fig.2. 

The B(E2) ratio is smallest in case of 
198

Hg; which is non magic nucleus; has only 

two vacancy of p+ for Z =82. This ratio is also very small in case of 
144

Nd84 

[=0.73(9)] (see Fig.4.3); which is also a non- magic nucleus; which has only two 

valence n
0
 outside N=82.  It supports the findings of Cakirli et al. (2004), that the 

B(E2;4g→2g)/B(E2;2g→0g) ratio
 
is anomalously small in non  magic nuclei, as it 

cannot be explained with collective approaches. 
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Fig.4.3:  The variation of experimental B(E2;4g→2g)/B(E2;2g→0g) ratio 

vs. neutron number (N) for Nd- Er nuclei. The vibrational limit SU(5) at 

2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines for 

comparison.  
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Fig.4.4:  The variation of experimental B(E2;4g→2g)/B(E2;2g→0g) ratio 

vs. neutron number (N) for Yb- Hg nuclei. The vibrational limit SU(5) at 

2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines for 

comparison.  
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4.3.2.1.2 The variation of experimental B(E2;4g→2g)/ B(E2; 2g→0g) ratio 

verses proton number (Z). 

 

     The variation of observed B(E2;4g→2g)/ B(E2; 2g→0g) ratio with proton 

number (Z) is shown in Fig. 4.5, 4.6 and 4.7  for N=84 to 92, N=94 to 102 and N= 

104 to 124  isotones respectively and the experimental points are joined for same 

value of  N to observe the effect of Z. The vibrational limit (VM) or SU(5) at 2 and 

rotational limit or SU(3) at 1.4 are also shown by dotted lines for useful comparison 

in each figure.  

     It is evident from Fig. 4.5, that the BE(2) ratio for N=88 isotones  increases on 

increasing Z from 60 to 62 (attains the maximum values for Sm88) and decreases for 

Gd and Dy (attains minimum value close to SU(3) limit for Dy88) and again for Er it 

increases. For N=88, the B(E2) ratio is close to SU(5) limiting value for Sm, Gd and 

Er while Dy reflects SU(3) nature and Nd in between these two limits. Also, the Sm88 

is least deformed and Dy88 is most deformed. For N=86 isotones the B(E2) data is 

available only for two nuclei and it is increasing on increasing N from 60 to 60 as in 

the case of N=88.  
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Fig.4.5:  The variation of experimental B(E2;4g→2g)/ B(E2; 2g→0g) ratio vs. 

proton number (Z). The vibrational limit SU(5) at 2.0 and rotational limit SU(3) 

at 1.4 are shown by dotted lines for comparison. The experimental points are 

joined for same value of N to observe the effect of Z on this B(E2) ratio for each 

isotones for N=84-92. 
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     For N=90 isotones the behavior of B(E2) is just opposite to N=86 and 88; the 

B(E2) ratio initially decreases as N increases from 60 to 62 and increases as N  

increases from 62 to 66 just opposite to N=88. It is evident from the figure that the 

gap is maximum between the two curves for N=88 and 90 around Z= 64 indication 

the subshell effect at Z=64 for N<90. It is supporting the findings of Casten (1985) 

and Casten and Zamfir (1996).  

     In general, for N=90 isotones, the B(E2) ratio is somewhat independent of Z 

indicating constant structures because the values of this ratio are ranging between 

1.45 to 1.6 and it support the findings of Gupta (2012).  For N=90 isotones, this 

B(E2) ratio initially decreases on increasing Z from 60 to 62 (attains minimum 

values which is close to SU(3) limiting value for Sm90  unlike Sm88 for which this 

ratio is close to SU(5) limiting value) and increases slowly on increasing  Z from 62 

to 66; and attains maximum value(=1.6) for Dy90; and beyond Z=66 the BE(2) 

decreases linearly on increasing Z from 66 to 70 (and approaches 1.4 value for Hf90). 

It is clear from Fig. 4.5 that Sm90 and Hf90 are most deformed in comparison to other 

N=90 isotones.  

     For N=92 isotones, this ratio goes on increasing  very slowly from 1.31 to 1.56 on 

increasing Z from 60 to 74 and is close to SU(3) limiting value of 1.4. However for 

N=94, this ratio is almost constant because its values are 1.46±0.05, 1.46±0.07, 

1.48±0.07, 1.58±0.10 and 1.1±0.3 for Gd, Dy, Yb, Hf and W isotopes respectively 

indication Z independency. For N=94, 96 and 98 isotones (see Fig. 4.6) the ratio is 

close to SU(3) limiting value indicating deformed nature. For other isotones the 

B(E2) ratio is lying between SU(5) and SU(3) or O(6) limiting values (see Fig. 4.7 ) 

as predicted by the asymmetry rotor model Sharma and Kaushik (2015a). 
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Fig.4.6:  Same as Fig.3 for N=94 to 102. 
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Fig.4.7:  Same as Fig.3 for N=104 to 124. 
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4.3.2.1.3 Conclusion 

The variation of B(E2; 4g→2g)/ B(E2;2g→0g) ratio with N and Z is shown for  Nd – 

Hg nuclei.  It is found that the there is shape phase transition for N=88 and 90 

isotones (Nd, Sm, Gd, Er) from an ideal spherical harmonic vibrator or SU(5) to an 

axially symmetric deformed rotor or SU(3).  Also B(E2) ratio is anomalously small 

for  two nuclei  i.e., 
198

80Hg118 (=0.375±0.018)  and 
144

60Nd84 (=0.73±0.090) with only 

two vacancy of p+ for Z =82 and two valence n
0
 outside N=82, respectively; which 

supports the findings of Cakirli et al. (2004). The present study supports the subshell 

effect around Z=64, for N≤ 90 as observed by Casten (1985)  and Casten and Zamfir 

(1996). The B(E2; 4g→2g)/ B(E2;2g→0g) ratio for N=90 isotones is almost constant 

indicating that the nuclear structure is constant for these nuclei and it is supporting 

the findings of Gupta (2012). Partial results have been published recently Sharma 

and Kaushik (2015a, 2015b). 
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Table 4.1: The experimental values of B(E2; 4g→2g)/ B(E2;2g→0g) branching 

ratio taken from http://www.nndc.bnl.gov. The error is also mentioned with 

each value after a gap shown by italic.   

 

A Nd Sm Gd Dy Er Yb Hf W Os Pt Hg 

Z 60 62 64 66 68 70 72 74 76 78 80 

144 0.73 9                     

146 1.5 4                     

148 1.61 9 1.65 21                   

150 1.56 4 1.9 3                   

152 1.31 10 1.445 22 1.82 2                 

154   1.39 3 1.56 6 1.43 15               

156     1.40 3 1.632 24 1.78 12             

158     1.46 5 1.45 10 1.49 8             

160       1.46 7 1.45 8 1.39 14           

162       1.42 6   1.56 8           

164       1.30 7 1.18 13 1.48 7 1.51 22         

166         1.44 6 1.42 9 1.58 10         

168         1.50 5   1.58 11 1.1 3       

170             1.4 4 1.44 15       

172           1.42 10   1.43 16 1.50 17     

174           1.39 7   1.74 15       

176           1.48 15       1.87 24 

 178                       

180             1.48 20   1.6 5 0.92 22   

182               1.44 8     4.6 3 

184               1.386 20 1.4 4 1.65 9 2.8 8 

186               1.30 9 1.45 7   1.8 8 

188                 1.68 11     

190                 1.46 9     

192                 1.22 4 1.56 9   

194                   1.73 11   

196                   1.478 23   

198                   1.19 13 0.375 18 

200                     1.54 3 

 

 

 

 

 

http://www.nndc.bnl.gov/
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CHAPTER V 

 

STUDY OF 
152, 154

SM USING 

INTERACTING BOSON MODEL-I 

 

5.1 INTRODUCTION 

 

     The interacting boson model-1 (IBM-1) of Arima and Iachello
 
(1984), Iachello 

and Arima (1987)
 
and Casten (1990)

 
has been successful in describing the collective 

nuclear properties of even- even nuclei.  In IBM-1, the nuclear structure is assumed 

to be a function of total boson number NB (=Np+ Nn), where Np and Nn are the 

valance proton and neutron particle or hole boson number respectively.  This model 

is based on group theory and provides a useful theoretical explanation of various 

experimentally observed nuclear properties. 

 

 In even- even nuclei, the energy ratio R4 (= E4g
+
 / E2g

+
) is good measure of 

deformation and it helps in categorizing the atomic nuclei as per details given below 

(see Fig. 5.1): 

For vibrational or SU(5) type nuclei     R4= 2.00 

For E(5) symmetry                         R4= 2.20 

For γ-soft nuclei or O(6)                R4= 2.50 

For X(5) symmetry                        R4= 2.90 

For rotational nuclei or SU(3)       R4 = 3.33 
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Figure 5.1:  The shape of nucleus for different values of 𝛽 and γ. For 

spherical nuclei R4 = 2.0 and β =0, transitional nuclei R4 ≈ 2.3 to 2.8 and 

for deformed nuclei [prolate (β>0 and γ =0
0
) and oblate (β>0 and γ = -60

0
) 

shape] R4 > 2.8. 

 

 

5.2 LITERATURE REVIEW 

 

     In past years, several systematic studies of 
146-154

Sm isotopes have been performed 

using IBM-1 by Scholten et al. (1978), Scholten (1980), Castanõs et al. (1982), Chuu 

et al. (1984), Yen et al. (1984), Hsieh et al. (1986), Chuu and Hsieh (1990) Han et al. 

(1990),  Stewart et al. (1990), Kracikova et al. (1984a) and Kracikova et al. (1984b), 

dynamic pairing-plus-quadrupole (DPPQ) model
 
by Kumar (1974), Kumar (1976) 

and Gupta (1983), boson expansion model  (BEM)
 

by Tamura et al. (1979), 

rotational vibrational interaction model (RVM) by Bhardwaj
  

et al. (1983) and 

Bhardwaj (1983).  These theories were partial successful in explaining the complex 

nuclear structure of 
146-154

Sm isotopes.  

 

     The work of Scholten et al. (1978) and Scholten (1980) was limited to the lower 

bands i.e. g-, β- and γ- bands only. Castanõs et al. (1982) used an effective 

Hamiltonian of IBA for describing only the low lying energy spectrum of Xe, Ba, 

Sm, Gd and U isotopes and pointed out that the effective IBM results were in 

agreement with those projected from IBM calculations of Scholten (1980). Chuu et 

al. (1984), used an effective HIBA for N = 88 and 90 (Ba-Yb) isotones and obtained a 

unified E2 transition operator to reproduce the observed B(E2) values and Q2+ 

moments.  These attempts of Chuu et al. (1984) were aimed to find a common set of 

IBM parameters for a group of nuclei (isotopes/ isotones) so that the varying nuclear 

structure with N, Z may be obtained by varying NB. Gupta- Hamilton- Rammaya
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(1980) observed that the g-band spectra of the isotonic multiplets in the first quadrant 

of the Z=50-82, N=82-126 major closed shell vary slowly with Z and a common set 

of parameters should be easier to obtain. Mittal and Gupta
 
(1990) pointed out that the 

approach of Chuu et al. (1984) did not reproduce the correct variation of the E2γ and 

E0β states with Z. Also for N=90 isotones, Chuu et al. (1984) results were not 

satisfactory for B(E2) values for transition between different bands.  In addition, the 

energy spacing in the HIBA calculation of Chuu et al. (1984) were not in agreement 

with the observed data in β- and γ– bands (Fig. 3 of Chuu et al. (1984)   for 
152

Sm) 

and some states were even in reverse order in the γ –band of 
152

Sm. The DPPQ 

model
 
of Kumar (1975) had limitations for production the energies of various bands 

for Sm and other isotopes, because it does not have any fitting procedure of energies 

like other models (e.g. IBM-1). Also the energy scale is not linear in the g-band 

versus other bands
 
Gupta (1983).   

 

     At present the large amount of experimental data is available from the radio-

active decay, coulomb excitation and the reaction work of Lederer and Shirley 

(1978),  Raman et al. (1987), Peker (1989), Venkova and Andrejtischeff (1981), 

Peker (1987),  Sakai (1984) and www.nndc.bnl.gov (2015).  Three quasi-bands in 

154
Sm and four in 

152
Sm are well established

 
up to higher spins, which requires more 

detailed theoretical analysis for complete explanation of the observed collective 

properties.  Since all the previous works were performed only for lower members of 

the three lower bands i.e. g-, β-, and γ-bands, it is interesting to see what the results 

are of a study of higher bands.   

 

     In this chapter, the IBM Hamiltonian is used for 
152-154

Sm isotopes to study the 

nuclear properties of lower and higher bands up to high spins, which includes the 

energy spectrum, absolute B(E2) values and  B(E2) branching ratios. The absolute 

B(E2) values and B(E2) branching ratios are sensitive to the wave function and 

provide more stringent test of a model. 

 

 

 

 

http://www.nndc.bnl.gov/
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5.3 THE INTERACTING BOSON MODEL AND 

CALCULATIONS 

 

The two bodies effective Hamiltonian within the boson has two forms 

H = ɛs (s
+
.s˜) + ɛd (d

+
.d˜) +  ∑ (1/2)  (2L+1)

1/2   
cL{[ d

+
x d

+
]

(L) 
x 

 
[d˜x d˜]

(L)
}

(0) 
 

         L=0,2,4      

 

+ (1/√2) ṽ2 {[ d
+
x d

+
]

(2) 
x 

 
[d˜x d˜]

(2) 
+ [ d

+
x d

+
]

(2) 
x 

 
[d˜x d˜]

(2)
}

(0)
 

    

+ (½) ṽ0 {[ d
+
x d

+
]

(0) 
x 

 
[s˜x s˜]

(0)  
+  [s

+
x s

+
]

(0) 
+

 
[d˜x d˜]

(0)
}

(0)
 

 

+ u2 {[ d
+
x s

+
]

(2) 
x 

 
[d˜x s˜]

(2)
}

(0)   
+  (½) u0 [s

+
x s

+
]

(0)  
+ 

 
[s˜x s˜]

(0)
}

(0)
     .        (5.1) 

 

Where, ɛs and ɛd  are the single-boson energies and cL , ṽ L and uL describe the two-

boson interaction.  Also, 

H’= ɛ” nd + a0 (P
+
.P) + a1 (L.L) + a2(Q.Q) + a3 (T3.T3) + a4(T4.T4)           (5.2) 

where,  

nd   = (d
+
. d˜),  

P   = (½) (d˜. d˜)  - (½) (s˜. s˜), 

L = √10 (d
+ 

x d˜)
(1)

 , 

Q = [d
+ 

 x s˜  + s
+
 x d˜]

 (2)
 , 

T3 = [d
+ 

 x d˜]
 (2)

      and    

T4 = [d
+ 

 x d˜]
 (4)

 . 

A least square fitting technique is used to find out the optimized values of the four 

parameters i.e ɛ”, a0, a1 and a2; while a3 and a4 are kept zero in equ. 5.2. The PHINT 

programme of Scholten (1979a) is used to fit the observed energy spectra of 
152-154

Sm 

isotopes.  All levels with reliable spin assignment (I
л
 < 10

+
) are included up to the 

point that the first level with an uncertain spin assignment appears.  In fitting of the 

energy spectra, we first determine the four parameters of H’ as discussed above, that 

reproduce the best lower and higher bands. 

      

     The optimized values of these four boson- boson interaction parameters are listed 

in Table 5.1. These four parameters with E2SD (= α2) and E2DD (= √5β2) are the 
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input for the FBEM programme of Scholten (1979b).  The E2 transition operator 

depends upon two parameters α2 and  β2 as given below: 

 

T(E2) = α2 [d
+ 

s˜ + s
+
 x d˜ ]

(2)
  + β2[d

+ 
 d˜]

(2)          
(5.3) 

 

Where, α2 is called the boson effective charge, simply the scaling parameter and 

affecting the B(E2) values and  β2 accounts for nuclear shape transition.  The ratio 

E2DD/ E2SD is equal to -2.958 in the SU(3) limit and reduced to zero in the O(6) 

limit. The FBEM gives the B(E2) values and ratios. 

 

Table 5.1: The Interacting Boson Model-1 parameters (all in keV) for 
152-

154
Sm. 

                  _________________________________________________________ 

Parameter    
152

Sm   
154

Sm 

_________________________________________________________ 

NB     10            11 

EPS     503.8   411.5 

PAIR       13.1       0.1 

ELL         0.5      -0.8 

QQ      -26.2    -41.8 

OCT             0.0       0.0 

HEX         0.0       0.0 

E2DD               -250.0             -250.0 

E2SD     160.0   140.0 

E2DD/E2SD       -1.56      -1.786 

________________________________________________________ 

 

5.4 RESULT AND DISCUSSION 

     For 
146-154

Sm isotopes, experimental values of energy ratio R4, Rγ (=E2γ/E2g), Rβ 

(=E0β/E2g), R0,6,β,g (=E0β/E6g),  R2,0,β,g [=(E2β-E0β)/E2g],   R4,2,β,g [=(E4β-E2β)/(E4g- 

E2g)] and  R4,2,γ,g [=(E4γ-E2γ)/(E4g-E2g)] are calculated and given in Table 5.2. The 

experimental values of energies to calculate these ratios are taken from the website of 

Brookhaven National Laboratory, www.nndc.bnl.gov (2015). It is evident that 
146

Sm 
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(R4= 1.85) and 
148

Sm (R4= 2.14) nuclei are the spherical in nature i.e. SU(5) type 

because their R4 is close to 2. The 
150

Sm nucleus (R4= 2.31) is a transitional one i.e. 

lying on transition from SU(5) to SU(3) symmetry. The 
152

Sm is a best example of 

X(5) symmetry because its experimental value of R4 is 3.01 compared to X(5) 

symmetry value 2.9, Rγ is 8.9 compare to X(5) value 8.16, Rβ is 5.62 compared to 

X(5) value 5.65  and the values of other energy ratios i.e.,  R0,6,β,g, R2,0,β,g, R4,2,β,g and 

R4,2,γ,g are near to the X(5) values. The 
154

Sm is rotor type i.e. close to SU(3) 

symmetry. The 
152-154

Sm isotopes are lying on transition from SU(5) to SU(3) and 

152
Sm is close to X(5) symmetry (see Casten’s symmetry triangle Fig. 5.2). For 

152
Sm, the present IBM calculation gives the energy ratio E0β/E6g equal to 

0.9509 compared to observed value of 0.9685 and X(5) value 1.0405. Hence present 

IBM calculation is supporting the X(5) nature of  
152

Sm. 

 The variation of experimental values of ratios R4 and R0,6,β,g versus A for 
146-154

Sm 

is shown in Fig. 5.3. The corresponding values of these ratios in X(5) limit are shown 

for useful comparison. It is clear from the Fig. 5.3 that the ratio R4 increases from 

1.85 to 3.25 as A increases from 146 to 154 and 
152

Sm is very close to X(5) limiting 

value. However, the ratio R0,6,β,g; decreases initially when A increases from 146 to 

150; increases while A increases from 150 to 154 and  for 
152

Sm is very close to X(5) 

limiting value (see Fig. 5.3). 
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Table 5.2: The experimental values of energy ratio R4 (=E4g/E2g), Rγ 

(=E2γ/E2g), Rβ (=E0β/E2g), R0,6,β,g (=E0β/E6g),  R2,0,β,g (=E2β-E0β/E2g),   

R4,2,β,g (=E4β-E2β/ E4g-E2g) and  R4,2,γ,g (=E4γ-E2γ/ E4g-E2g) are given for 
146-

154
Sm isotopes. The experimental values are taken from www.nndc.bnl.gov 

(2015). The IBM calculated ratios for 
152-154

Sm are shown for comparison 

in last rows as Present Work. 

 

A R4 Rγ Rβ R0,6,β,g R2,0,β,g  R4,2,β,g R4,2,γ,g  

146 1.8486 2.2059 1.9433 0.8014 0.2124 - 1.2471 

148 2.1446 2.6427 2.5919 0.7483 0.4325 0.3669 1.0425 

150 2.3157 3.5748 2.2172 0.5789 0.9155 0.91723 1.02137 

152 3.0102 8.9146 5.6215 0.9685 1.0325 0.8679 1.1675 

154 3.2532 17.5701 13.414 2.02039 0.9576 1.04591 1.19207 

X(5) 2.904 8.16  5.649 1.0405  1.801 1.701 1.071 

152 

Present 

Work 2.8121 7.8281  5.0563  0.9509  1.1536  1.3969  1.7088  

154 

Present 

Work 3.3138 19.1755  14.531  2.1062  1.4202  1.2798  1.2374  

 

 

 

Figure 5.2 Casten’s symmetry triangle. 

http://www.nndc.bnl.gov/
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Fig. 5.3:  The variation of experimental values of ratio R4 and R0,6,β,g 

versus A for 
146-154

Sm. The data points of R4 are shown by solid squares (■) 

and R0,6,β,g by solid circles(●). The corresponding values of these ratios in 

X(5) limit are shown by dotted lines(--) for useful comparison. The 

experimental values are taken from www.nndc.bnl.gov (2015). 

 

 The variation of experimental values of ratios Rγ and Rβ versus A for 
146-154

Sm is 

shown in Fig. 5.4. The corresponding values of these ratios in X(5) limit are shown 

for useful comparison. It is clear from the Fig. 5.4 that the ratios Rγ and Rβ both; 

increases as A increases from 146 to 148; decreases slowly as A increases from 148 

to 150 and increases sharply as A increases from 150 to 154 indicating shape phase 

transition from SU(5) to SU(3).  Both the experimental ratios for 
152

Sm is very close 

to X(5) limiting values indication the X(5) character. In the present IBM calculation, 

the Rγ and Rβ ratios for 
152

Sm are close to X(5) values (see Table 5.2) and our 

calculation is supporting X(5) nature of 
152

Sm. 

 

http://www.nndc.bnl.gov/
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Fig. 5.4:  Same as Fig. 5.3 for ratio Rγ and Rβ versus A. The data points of 

Rγ are shown by hollow triangles (∆) and Rβ by hollow circles (○). The 

corresponding values of these ratios in X(5) limit are shown by dotted lines 

(--) for useful comparison. The experimental values are taken from 

www.nndc.bnl.gov (2015). 

 

The experimental values of B(E2;4g→2g)/B(E2;2g→0g), B(E2;2γ→0g/2g) and  

B(E2;2β→0g/2g) branching ratio are given in Table 5.3 for 
146-152

Sm isotopes. The 

corresponding values of Np, Nn, NB (=Np+Nn) and NpNn are also given. The values 

for X(5) symmetry of IBM, vibrational model (VM) and rotor model (RM) are also 

given for useful comparison. The experimental ratios are taken from 

www.nndc.bnl.gov (2015). It is noted that for 
152

Sm, the observed value of 

B(E2;4g→2g)/ B(E2;2g→0g) ratio is close to X(5) limiting values and our calculated 

value is 1.499 indicating X(5) nature. 

 

 

 

http://www.nndc.bnl.gov/
http://www.nndc.bnl.gov/
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Table 5.3: The experimental values of energy ratio B(E2;4g→2g)/ 

B(E2;2g→0g), B(E2; 2γ→0g/2g) and  B(E2; 2β→0g/2g).The corresponding 

values of Np, Nn, NB (=Np+Nn) and NpNn are also listed for 
146-152

Sm 

isotopes. The values for X(5) symmetry of IBM, vibrational model (VM) 

and rotor model (RM) are also given. 

 

A Np Nn NB NpNn 

B(E2;4g→2g)/ 

B(E2;2g→0g) 

B(E2; 2γ→0g/2g) 

 

B(E2; 2β→0g/2g) 

 

146 6 1 7 6 

1.7941
a 

≥1.27(26)
b 

≥1.30
g
 

0.0012(4)
b 

>0.01
g 

 

0.066(13)
b 

0.02
g 

 

148 6 2 8 12 

1.6598
c 

1.65(21)
a
 

0.11
 c
 

0 .067
h 

0.07
c 

0 .086
h 

150 6 3 9 18 

1.856
d 

1.9(3)
a
 

0.26
h 

0 .33(8)
d 

0.012(2)
d 

0.012
h 

152 6 4 10 24 

1.5574
e 

1.445(22)
a
 

0.38(1)
e 

0.40(1)
i
 

0.17(1)
e 

0.169(7)
i 

154 6 5 11 30 

1.60465
f 

1.39(3)
a
 

0.60(11)
f 

 

0.44
f 

 

X(5)         1.6 0.666 0.429 

VM         2.0 0 0 

RM         1.42 0.7 0.7 

a
www.nndc.bnl.gov     

b
Kracikova et al. (1984a)        

c
Peker (1990)      

d
Mateosian (1986) 

e
Peker (1989)                

f
Peker (1987)                          

g
Peker (1984)       

h
Lederer and Shirley (1978)    

i
Stewart et al. (1990) 

 

 

5.4.1  The B(E2) Branching Ratios in the SU(5) and SU(3) Limit 

 

In the SU(5) limit, the one d-boson excitation nd = 1 is 2
+

1 state, the nd  =  2 d-

boson excitation is a triplet of 0
+

2 , 2
+

2 and 4
+

1  states and nd = 3 boson excitation is a 

quintuplet of 0
+

3 , 2
+

3 , 3
+

1 , 4
+

2  and 6
+

1 .  The ∆nd = 0, ±1 transitions are allowed and 

∆nd = ±2, ±3, etc. transitions are prohibited. 
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In the SU(3) limit, these states are regrouped into different bands.  The 

absolute B(E2) values for (γ→g) and (β→g) transitions depend on the intrinsic 

matrix elements and geometrical factors Bohr and Mottelson (1975). The B(E2) 

branching ratio for two transitions from a particular level in a given band to the two 

states of other band i.e. (Ii→If/If’) depends on the Alaga value Bohr and Mottelson 

(1975).  In the SU(3) limit these rules are slightly modified because the (γ→g) and 

(β→g) transitions are prohibited, but in the slightly broken symmetry the (γ→g) 

transition should be faster that (β→g) transition.  The observed B(E2) ratios are 

obtained from the γ–ray spectrum data, using the relation Alaga et al. (1955),  

      B(E2; Ii→If /If’) = [Iγ/Iγ’]{Eγ’/ Eγ}
5
,    (5.4) 

where Eγ and Eγ’ are the γ – ray energies for (Ii→If)   and (Ii→If’) transitions; Iγ  and 

Iγ’ are the intensities, respectively. 

5.4.2 The 
152

Sm isotope 

 

5.4.2.1 Energy spectrum 

 

     In 
152

Sm the members of g-band and β1-band are available up to 14
+
, for β2 up to 

2
+
 and γ1 up to 5

+
 (see Sakai (1984). The experimental energy values of Sakai (1984) 

and Peker (1989) are compared with the present calculation and DPPQ Gupta (1983) 

in Table 5.4.    In the present calculation the band-head of the g-, β- and γ–bands are 

very close to the experiment and the spacing of different members in the different 

bands is also like in the experiment Sakai (1984) and Peker (1989).  For K
л
= 0

+
3 

band the calculated 0
+
 state lies at 1.496 MeV compared to the 1.0829 MeV in 

experiment.  The variation of EI with spin I
+
 for different bands is presented in Fig. 

5.5. The slopes of EI versus I
+ 

of different bands in experiment are similar to the 

theoretical slopes. 
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Table 5.4: The values of energy (in MeV) for 
152

Sm. The theoretical result 

from present IBM calculation and DPPQ Gupta (1983) are also shown. 

 

State K
π 

Expt.
 a
 Present DPPQ

 b

  

2g 01
+ 

0.1218 0.1315  0.121 

4g 01
+ 

0.366648 0.3698 0.361 

6g 01
+ 

0.70694 0.6992  

8g 01
+ 

1.12537 1.1097  

     

0β 02
+
 0.6847 0.6649  1.000 

2β 02
+
 0.81047 0.8166 1.211 

4β 02
+
 1.02296 1.1495  

6β 02
+
 1.31051 1.5402  

8β 02
+
 1.66648 1.9983  

     

2γ 21
+ 

1.08589 1.0294 1.556 

3γ 21
+
 1.23388 1.1005   

4γ 21
+
 1.37175 1.4366   

5γ 21
+
 (1.5595) 1.4807   

6γ 21
+
 1.7283

c
 1.9086  

7γ 21
+
 19458

 c 
1.9312

 
 

8γ 21
+
 2.1397

 c
 2.4472  

     

0β2 03
+
 1.08286 1.4960   

2β2 03
+
 (1.2928) 1.5890   

a 
Sakai (1984),  

b 
Gupta (1984),  

c 
Peker (1989)  
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Fig 5.5: The variation of EI with spin I
+
 for different bands in 

152
Sm.The 

experimental data Sakai (1984) and Peker (1989),  points are shown by solid 

circles (●), present calculation IBM by hollow circles (○) and DPPQ Gupta 

(1984) by hollow triangles (∆). 

 

 

 

5.4.2.2  B(E2)values 

     For 
152

Sm, the observed and calculated B(E2) values are listed in Table 5.5 for 

(g→g), (β→g) and (γ→g) transitions.  
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Table 5.5: The B (E2; Ii→If) values (in e
2
b

2
 unit) in 

152
Sm. 

Ii→If     Expt. Present   BEM4
 
    BEM6      DPPQ     RVM1   RVM2   IBM 

Ref.  A   c c d e e F 

2g→0g 0.6806 0.6806 0.673 0.673 0.64 0.669 0.669 0.75 

4g→2g 1.06(4) 1.02 0.99 0.98 0.96 1.057 1.057 1.0 

6g→4g 1.18
 b
 1.14 1.12 1.09 -- --   -- 0.97 

8g→6g 1.36
 b            

 1.17 1.17 1.11 --   --  -- 0.83 

10g→8g   1.6
b
  1.14     --    -- --   --  -- -- 

                  

2β→2g   
  
 0.026(3)    0.14 0.031 0.025 0.029 0.062 0.069  -- 

2β→4g 0.0909(8)   0.0108 0.05 0.07 0.089 0.283  0.274 -- 

2β→0g      0.0046(3)      0.0172 0.005 0.007 0.002 0.019 0.022 -- 

0β→2g 0.176(11)
 c
 0.0092 0.156 0. 12 0.166 0.314  0.347 -- 

4β→2g 0.0053(35) 0.0027 0.004 0.005 0.001 0.003  0.006 -- 

4β→4g 0.037(23)
 c
 0.1091 0.026 0.016 0.026 0.07  0.08 -- 

                  

2γ→0g 0.0176(8) 0.0153 0.049 0.05 0.023 0.015  0.016 -- 

2γ→2g 

0.028(10) 

0.042(4)
 c
  0.0012 0.05 0.053 0.048 0.031 0.032 -- 

2γ→4g 0.004(3)
 c
 0.085 0.007 0.006 0.006 0.0069 0.007  -- 

4γ→2g 0.0035(13) 0.0052 0.034 0.026 0.009 0.0046 0.0078  -- 

4γ→4g 0.0037(1)
 c
 0.0034 0.068 0.076 0.047 0.017  0.013 -- 

a
Peker (1989),  

b
Venkova and Andrejtscheff  (1981), 

c 
Tamura et al. (1979), 

d 
Gupta 

(1983)
e 
Bhardwaj et al. (1983) and Bhardwaj (1983), 

f 
Chuu et al. (1984)  

 

    
 

 

     The variation of B(E2;Ig→Ig-2) values with spin Ig is shown in Fig. 5.6.  It is 

observed that the experimental B(E2) values
 
of

 
Peker (1989) and  Venkova and 

Andrejtscheff  (1981),  increases rapidly on increasing Ig from 2
+
 to 10

+ 
indicating 

the sharp change in the nuclear shape (see Fig.5.6).  In the IBM calculation of Chuu 

et al. (1988), the B(E2) values first increases when Ig increases from 2
+
 to 4

+
 and it 

decreases while Ig increasing from 4
+
 to 8

+
 unlike the observed trend.  But in the 

present IBM work, the B(E2) values follow the observed trend and values the more 
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closer than other theoretical data. The BEM6 Tamura et al. (1979) data points are 

much below the observed data points. However, the BEM4 Tamura et al. (1979) 

values are close to present calculation (see Fig 5.6). Only two data points are 

available for DPPQ Gupta (1983), RVM1 and RVM2 Bhardwaj et al. (1983) and 

Bhardwaj (1983) to find any definite conclusion. 
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 FIG 5.6: The variation of B(E2;Ig→Ig-2) values with spin Ig for ground  

bands for 
152

Sm.The experimental data points of Peker (1989) and  

Venkova and Andrejtscheff  (1981) are shown by solid circles (●), present 

IBM calculation by hollow circles (○), BEM4 Tamura et al. (1979) by 

inverted hollow triangle( ), BEM6 Tamura et al. (1979) by hollow 

diamond (◊),  DPPQ Gupta (1984) by cross (x),  IBM Chuu et al. (1984)  by 

star (*),  RVM1 Bhardwaj et al. (1983) and Bhardwaj (1983) by upright 

triangle (∆) and RVM2 Bhardwaj et al. (1983) and Bhardwaj (1983) by 

hollow square (□). 

    

 The theoretical results of vibrational model (VM), SU(5), O(6) and  SU(3) limiting 

values, present calculation and IBM calculation of Chuu et al. (1988) along with the 

experimental data for B(E2) values
 
of

 
Peker (1989) and  Venkova and Andrejtscheff  

(1981) are shown in Fig. 5.7.  It is clear from the Fig. 5.7 that the observed data  is 

quite below from the VM limiting values and is lying between SU(5) and S(3) 

limiting values. The B(E2) values from present calculation and BEM4 Tamura et al. 
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(1979) are very close to the experimental data point and also present IBM calculation 

produces the observed slop of this ratio with Ig. There are only two data points from 

RVM1 and RVM2
 
Bhardwaj et al (1983) and Bhardwaj (1983) and DPPQ Gupta 

(1984) not shown in the Fig. to avoid overlapping? 
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FIG 5.7: The variation of B(E2;Ig→Ig-2) values with spin Ig for ground 

state rotational bands for 
152

Sm.The experimental data points of Peker 

(1989) and  Venkova and Andrejtscheff  (1981) are shown by solid circles 

(●), present IBM calculation by hollow circles (○), BEM4 Tamura et al. 

(1979) by hollow diamond (◊), BEM6 Tamura et al. (1979)  by solid square 

(■),  IBM Chuu et al. (1984)  by star (*). The vibrational model (VM) is 

shown by solid triangle (▲), SU(5) limiting values by hollow upright 

triangle (∆), O(6) limiting values by hollow inverted triangle ( ) and  

SU(3) limiting values by hollow square (□). There are only two data points 

from RVM1 and RVM2
 
Bhardwaj et al (1983) and Bhardwaj (1983)  and 

DPPQ Gupta (1984) not shown in the Fig. to avoid overlapping. 

 

The B(E2) values for six (β→g) and five (γ→g) transitions are also compared (see 

Table 5.5) with the present calculation, boson expansion model (BEM4  and  BEM6 

version)  of Tamura et al (1979), dynamic pairing plus quadrupole (DPPQ) model of 

Gupta (1983),  rotational vibrational model (RVM1 and  RVM2) of Bhardwaj et al 



72 

 

(1983)
 
and Bhardwaj (1983) and  interaction boson model –1 (IBM-1) of Chuu et al. 

(1988).  It is evident that the present calculation gives the satisfactory results. 

 

 

5.4.2.3  The B(E2) branching ratios for β– band 

 

     In the β–decay of 
152

Eu, 13 new transitions and 5 new levels were reported by 

Stewart et al. (1990), which are included in the present work for useful discussion. 

 

     In Table of Isotopes of Lederer and Shirley (1978), the B(E2) ratio for (2β→0g/2g) 

transition  is 0.84 which is more than the SU(3) limiting value 0.7.  This ratio may be 

large due to 0.2% M1 and 4% E0 mixing in the (2β→2g) 0.6886 MeV γ–ray.  In a 

recent compilation work of Peker
  

(1989) this ratio is 0.17(1) compared to the 

theoretical value 0.12 & DPPQ value Gupta (1983) 0.076 (see Table 5.6). 

 

     The (2β→4g) 0.444 MeV γ–ray was overlapping with   (2
-
→3γ) transition and 

gives B(E2; 2β→2g/4g) = 0.35 (the intensity of (2
-
→3γ ) γ–ray was 12 which gives 

this ratio 0.56) Lederer and Shirley (1978). But in the recent compilation of  Peker
  

(1989) this ratio is 0.30(3) and in decay of 
152

Eu  work of Stewart et al. (1990) ratio 

is 0.030(1).   

 

     In the Table of Isotopes Lederer and Shirley (1978); the (4β→4g) 0.6565 MeV γ–

ray had 16% M1 and 5% E0 mixing, which gave the B(E2;4β→2g/4g) = 0.11 and 

B(E2;4β→4g/6g) = 0.76, but Peker (1989) gave these ratios equal to  0.21(2) and 

3.6(22); Stewart et al (1990) gave 0.11(2) and 0.08(2); and in the present work these 

ratios are 9.3 and 231 respectively (see Table 5.6). 

 

      For (6β→4g/6g), (8β→6g/8g) and (10β→ 8g/10g) transitions;  the observed  B(E2) 

ratios lie away from the respective Alaga values and theoretical values are close to 

the observed values.  It is also evident that the (β→β) transitions are stronger than 

(β→g) which is supported by present IBM calculation (see Table 5.6). 
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Table 5.6: The B(E2) ratios for 
152

Sm. 

Ii→If/If’   Expt Expt   

    

Presen

t     

DPP

Q   

BEM

4  

BEM

6    

RV

M (I) 

RV

M 

(II) RM 

 Ref. a b   c d d e e   

2β→0g/2g 0.17(1) 0.169(7) 0.12 0.08 0.16 0.26 0.31 0.32 0.7 

2β→2g/4g 0.30(3) 0.030(1)  12.94 0.33 0.62 0.36 0.22 0.25 0.56 

2β→0β/0g 406(77) 829(113)    12.5 291 91 69 -- -- -- 

2β→4g/0g 19.8(23) -- 0.63 40.5 10.1 10.8 -- -- 0.8 

4β→2g/4g 0.21(2) 0.11(2) 9.32 0.023 0.17 0.32 0.04 0.08 1.1 

4β→4g/6g 3.6(22) 0.08(2) 231 -- 0.37 0.34 -- 

 

0.57 

4β→2β /2g 291(27) -- 186 -- 180 126 -- -- -- 

4β→2β /4g 1385.7  -- 20 43 27.7 3.9 10.9 9.12 1.1 

4β→2β/3γ 350(170) -- 1.3 123 1831 -- -- --- -- 

6β→4g/6g 0.078(5) -- 0.012 -- -- -- --   1.24 

6β→4β/4g 50(17)  -- 694 -- -- -- -- -- -- 

8β→6g/6g 0.012(1) -- 0.008 -- --- -- -- 

 

 1.3 

8β→6β/6g 

2374(309

) -- 1415 -- --- -- -- -- -- 

10β→8g/10

g 0.05(1) -- 0.007 -- --- -- -- -- -- 

10β→8β/8g 440(55) -- 2106 -- --- -- -- -- -- 

          2γ→0g/2g 0.38(1) 0.40(1) 12.8 0.48 0.98 0.94 0.49 0.5 0.07 

2γ→2g/4g 12.4(6) 9.8(4) 0.014 8 7.57 9.14 4.5 4.57 

19.0

7 

2γ→2β/2g 1208(68) 3.9(6) 267 2.5 -- 2.64 0.25 0.28 -- 

2γ→0β/0g --  -- 16.8 0.42 0.37 0.42 -- -- -- 

3γ→2g/4g 0.94(3) 0.93(3) 0.78 -- 2.83 2.68 -- -- 2.5 

3γ→2β/2g 0.025(3) 0.05(1) 9.74 0.026 0.33 0.4 -- -- -- 

3γ→2γ/2g 69(5) 80(10) 8.1 25 9.06 8.9 -- -- -- 

3γ→2γ/2β 

2779(575

) 

1555(553

) 0.83 961 27.5 22.3 -- -- -- 

4γ→2g/4g 0.096(8) 0.095(9) 1.53 0.19 0.5 0.34 0.26 0.60    0.34 

4γ→4g/6g 4.36(55) 5.9(26) 0.03 -- 8.5 38 -- -- 11.3 

4γ→2β/2g 0.31(8)  -- 0.92 0.2 0.31 1.65 -- -- -- 

4γ→2γ/2g 97(17) 110(50) 98 -- -- -- -- -- -- 

4γ→2γ/2β  314(96) -- 106 -- -- -- -- -- --  

5γ→4g/6g 0.33(2)  -- 0.39 -- -- -- -- -- 1.75 

5γ→3γ/4g 25.8(88) -- 20.9 -- -- -- -- -- 0.6 

5γ→3γ/6g 8.5(29)  -- 8.2 -- -- -- -- -- 1.05 

6γ→4g/6g 0.04(2)  -- 0.8 -- -- -- -- -- 0.27 

7γ→6g/8g 0.24(2)  -- 0.25 -- -- -- -- -- 1.5 

7γ→5γ/6γ 0.164(7) -- 4.91 -- -- -- -- -- -- 

7γ→6γ/6g 455(41) -- 10 -- -- -- -- -- 2.15 

9γ→8g/10g 0.14(5)  -- 0.17 -- -- -- -- -- 1.37 

9γ→7γ/10g 23.6(37) -- 14.6 -- -- -- -- -- -- 

                    

2β2→0g/2g 1.74(17) 1.69(45) 0.13 -- -- -- -- -- -- 

2β2→2g/4g 0.042(3) -- 16.7 -- -- -- -- -- -- 

2β2→2β/2β 0.18(1)  -- 0.24  -- -- -- -- -- -- 

2β2→2β /2g 63.7(74) 56.3(188) 3.7 -- -- -- -- -- -- 

2β2→4β/2g 14.8(4)  -- 253 -- -- -- -- -- -- 

          a
Peker (1989),  

b
Stewart et al. (1990),  

c
Gupta (1983), 

d
Tamura et al. (1979), 

e
Bhardwaj et al. (1983) and Bhardwaj (1983) 
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5.4.2.4  The B(E2) branching ratios for γ–band 

 

The experimental data was available for 21 ratios, for transition from γ–band (see 

Table 5.6).  It is evident from the observed data that the (γ→β) transitions are 

stronger than (γ→g); and (γ→ γ) transitions are stronger are than (γ→β).  Theory 

supports these aspects.  Most of the B(E2) ratios lie on the transition from SU(5) to 

SU(3).   

 
The theoretical B(E2) ratios for the transition from 5γ, 6γ, 7γ and 9γ states were not 

available from the earlier from any  previous work Gupta (1983), Tamura et al. 

(1979), Bhardwaj et al. (1983) and Bhardwaj (1983). The present study is extended 

for these four states along with three other lower states i.e.  2γ, 3γ and 4γ states for 

calculating the B(E2) ratios. The B(E2) ratios for the transition from 2γ, 3γ, 4γ 5γ, 6γ, 

7γ and 9γ states are compared with the present work and found that most of the 

theoretical values are close to the observed values (see Table 5.6). 

 

5.4.2.5  The B(E2) branching ratios for K
π
 = 0

+
3 , β2 –band  

The five B(E2) ratios were available for transition from 2β2 state, the experimental 

data is compared for all these transitions and there is agreement between theory and 

experiment (see Table 5.6). 

 

5.4.3 The 
154

 Sm isotope 

 

5.4.3.1 Energy spectrum 

      

In Table 5.7 the energy values are compared with the present work and DPPQ model.  

The calculated spectrum is good and the band-head of β– and γ –bands are close to 

the observed spectrum. 
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Table 5.7:  The values of energy (in MeV) for 
154

Sm. 

 

State Expt.
a 
  Present  DPPQ

b 

2g   0.08198 0.0752 0.086 

4g 0.2667 0.2492 0.270 

6g 0.5443 0.5188  

8g 0.9031 0.8811  

10g 1.3333 1.3330  

    

0β 1.0997 1.0927 1.096 

2β 1.1782 1.1995 1.198 

    

2γ 1.4404 1.4420 1.537 

3γ (1.5400) 1.5361  

4γ (1.6606) 1.6573  

                                                                              a
Sakai (1984)                        

b
Gupta (1983) 

 

5.4.3.2  B(E2) values 

      

     There are 10 B(E2) values available from the experiment for (g→g), (β→g), and 

(γ→g) transitions.  The 24 B(E2) values are listed and compared with the previous 

work i.e. DPPQ of Gupta (1983), BEM of Tamura et al. (1979), effective IBA of 

Chuu et al. (1988) and RVM1and RVM2 of Bhardwaj et al. (1983)
 
and Bhardwaj 

(1983) (see Table 5.8).   

 

     The observed B(E2) values of Tamura et al. (1979) and Peker (1987)  for (β→g) 

and (γ→g) transitions are also compared with the present work and previous work of 

Chuu et al. (1988), Han et al. (1990), Kumar (1974), Kumar (1976)  and Gupta 

(1983) for useful comparison in Table 5.8.  The IBM-1 yields satisfactory results. 

 

5.4.3.3  The B(E2) branching ratios for β-band 

     The experimental data of Tamura et al. (1979)  and Peker (1987) for (2β→0g/2g), 

(2β→4g/2g) and (4β→2g/4g) transitions indicate that 
154

Sm lies close to the SU(3) 
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limit.  The present calculation gives these ratios close to observed values.  Theory 

gives satisfactory results (see Table 5.9). 

5.4.3.4  B(E2) branching ratios for γ –band 

 

     The B(E2) ratios for (2γ→0g/2g) is 0.60(11) compared to the Alaga value 0.7. For 

(2γ→2g/4g), (3γ→2g/4g) and (4 γ→2g/4g) transitions the Alaga values are 19.07, 

2.5 and 0.34; and theoretical values are 11.2, 1.58 and 0.24 respectively (see Table 

5.9).  For other transitions the theoretical values are compared with BEM-4
 
and 

BEM-6
 
of Tamura et al. (1979),  DPPQ of Gupta (1983), effective IBA of Han et al. 

(1990) and RVM
 
of Bhardwaj et al. (1983) and Bhardwaj (1983) calculations.  There 

is agreement between theory & previous work. 
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Table 5.8: The absolute B(E2) values (in e
2
 b

2
 unit) for 

154
Sm. 

 

Ii → If   Expt.         Present DPPQ
 

  BEM4  BEM6
  

IBM-1   IBM-1 

   a         b     c     c    d      e 

____________________________________________________________________ 

2g→0g   0.86(4)       0.808 0.79  0.909  0.881 0.978 1.026 

4g→2g   1.38(22)     1.14 1.17  1.26  1.25 1.364 1.445 

6g→4g   1.37 
 
        1.22 ---  1.37  1.35 -- 1.547 

8g→6g   1.50         1.219 --  1.41  1.38 1.416 1.549 

10g→8g 1.49         1.175 --  --  -- 1.333 1.492 

 

0β→2g    -- 
 
       0.015 0.094  0.054  0.054   -- -- 

2β→0g   0.006(41)
c 
0.001 0.0055  0.008  0.001   --  0.0068 

2β→2g   0.012
c
        0.004 0.021  0.014  0.01   -- -- 

2β→4g   0.024
c 
        0.009 0.062  0.033  0.008   --  0.007  

4β→2g    --               0.0004 0.003  0.011  0.018   --   -- 

4β→4g    --               0.0058 0.020  0.01  0.003   --   -- 

4β→6g    --               0.0074 --  0.029  0.014   --   -- 

 

2γ→2g 0.02
c              

0.0242 0.039  0.037  0.047   0.018     0.003 

2γ→4g 0.0008
c 
        0.0022 0.0046  0.001  0.00001 0.0012   -- 

4 γ→2g    -- 
 
        0.0062 0.0093  0.020  0.021  --  --  

2 γ→4g   --               0.0256 0.043  0.043  0.040  --  -- 

4 γ→6g   --                0.0191 --  0.002  0.002   --  -- 

  

2β→0β    --                0.057 0.084
 f
  0.68  0.62  --    -- 

4β →2β    --                0.81 1.3
 f
  0.96  0.86  --   -- 

 

3 γ →2γ    --               1.08 --  1.30  1.28  --   -- 

4 γ →3γ    --               0.76 --  0.98  0.98  --   -- 

5 γ →4γ    --               0.57 --  0.69  0.62  --   -- 

a
Peker (1987)         

b
Venkova and Andrejtscheff  (1981)  

 
 

c 
Tamura et al. (1979)     

d 
Han et al. (1990) 

   
 

e 
Chuu et al. (1984),

f 
Kumar (1974) and Kumar (1976)
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Table 5.9: The B(E2; Ii → If/If’) ratios for 
154

Sm. 

 

 

Ii → If/If’  Expt. Present          DPPQ
 

BEM4 BEM6
 

RVM1 RVM2   IBM1  

    a               b    c    c   d   d     e 

_____________________________________________________________________ 

2β→0g/2g 0.44 0.25  0.26 0.61 010 0.49 0.82  -- 

2β→4g/2g 2.04 2.33  2.95 2.36 0.86 2.77 2.71  -- 

2β→0β/0g -- 569  159 82.3 616 -- --  -- 

4β→2g/2g 0.9(5) 0.07  0.16 1.10 6.48 0.42 0.42  -- 

2β→2β/4g -- 140  66 99 318 -- --  -- 

4β→2β/2g -- 2032  6500 87.3 47.8 -- --  -- 

4β→2β/3γ -- 18.7  4.15 -- -- -- --  -- 

2γ→0g/2g 0.60(11) 0.6   0.56 0.72 0.45 0.56 0.59         0.38 

2γ→2g/4g 4.8(32)
 
 11.2  8.48 37 39.6 9.5 8.5  -- 

2γ→0β/0g -- 0.45  0.001 0.63 0.8 --- ---  --- 

2γ →2β/2g --- 2.2  1.11 0.7 0.7 --- ---  --- 

2γ→0β/2β  --- 0.12  --- 0.63 0.51 --- ---  --- 

3γ→2g/4g 1.45(77)
 
1.58  1.53 3.57 3.45 --- ---  --- 

3 γ→2β/2g --- 0.41  33.0 0.54 0.63 --- ---  --- 

3γ→2γ/2g -- 44.5  0.003 26.0 33.7 --- ---  --- 

3γ→2β/2γ -- 0.009  11000 0.02 0.019 --- ---  --- 

4γ→2g/4g 0.055 0.24  0.22 0.47 0.51 0.24 0.308           0.11 

4γ→2γ/2g -- 57.1  0.18 -- -- --- ---  --- 

4γ→2β/2g -- 0.048  -- 0.99 2.77 --- ---  --- 

4γ→4β/2β  --
 

146.7  -- 1.26 017 --- ---  --- 

4γ→3γ/2γ --
 

2.14  -- 2.33 2.63 --- ---  --- 

4γ→4β/4g --
 

1.71  -- 0.56 0.24 --- ---  --- 

 

a
Peker (1987)          

b
Gupta (1983)         

c
Tamura et al. (1979)     

 

d
 Bhardwaj et al. (1983) and Bhardwaj (1983) 

   
 

e
Han et al. (1990)        

f
 Kumar (1974) and Kumar (1976)
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5.5  CONCLUSIONS 

      

     In this Chapter, the systematic study has been carried out for the lower and higher 

states of lower and higher bands, absolute B(E2) values and B(E2) branching ratios 

of 
152-154

Sm nuclei.  The mass-dependent IBM-1 Hamiltonian is used to test its 

validity for explaining the large amount of experimental data for energy spectra, 

B(E2) values and  B(E2) ratios. The present IBM-1 calculation is quite successful in 

explaining the observed properties. 

      

     In β–decay of 
152

Eu, 13 new transitions and 5 new levels were reported by Stewart 

et al. (1990) for 
152

Sm, which were included in the present work and present IBM-1 

calculated results for the B(E2) branching ratios for β– band are close to observed 

data points (see Table 5.6). Present IBM-1 calculation also supports the X(5) 

character of 
152

Sm (N=90). 

 

     The observed B(E2:Ig+2→Ig)) values increases rapidly on increasing Ig from 2
+
 

to 10
+ 

indicating the sharp change in the nuclear shape of 
152

Sm which is supported 

by present IBM work (see Fig.5.6). The BEM6 Tamura et al. (1979) data points are 

much below the observed data points. However, the BEM4 Tamura et al. (1979) 

values are close to present calculation. But, IBM calculation of Chuu et al. (1988) 

gives opposite trend. 

 

     The calculated energy spectrum, B(E2) values and B(E2) ratios present a coherent 

and varied picture of the change in nuclear shape and dynamics with n
0
 number N in 

152-154
Sm isotopes.   It is found that the inclusion of energy states up to higher spins in 

the PHINT programme provides the proper transition from SU(5) to SU(3) limit.  

The results of our phenomenological calculations indicate that the mass-dependent 

Hamiltonian in IBM-1 is an encouraging approach than the effective boson approach 

with or without inclusion of Z = 64 subshell effect. 
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CHAPTER VI 

 

SUMMARY AND CONCLUSIONS 

 

The medium mass region provides a rich ground of testing the understanding of 

collective nuclear structure of doubly even nuclei. The collective nuclear structures 

of these nuclei have been analyzed, using empirical studies, phenomenological, 

geometrical, group theoretical models.  

 

The values of asymmetry parameter (γ0) of asymmetric rotor model are 

calculated using the experimental energies of  E22
+
 and E21

+
 states for 50≤Z≤82 and 

82≤N≤126 region. The whole calculated data is divided into four quadrants. The 

systematic dependence of γ0 on N, NB and NpNn has been carried out on quadrant 

wise basis to find out the role of valence nucleons and holes on nuclear structure. The 

role of Z=64 subshell effect for N≤90 region is discussed.  In quadrant-I and 

quadrant-II, the γ0 decreases; from 30
0
 in Q-I and from 22

0
 in Q-II to 9

0
- 10

0
; with 

increasing N from 82 to 104 (i.e. the mid of N=82 to 126 neutron shell), signifying 

that the nuclear deformation (β) is increasing, while the energy ratio R4 increases 

from 2 (for harmonic vibrators or SU(5) type nuclei) to 3.33 (for good rotors or 

SU(3) type nuclei). This indicates that in this region the nuclear structure depends 

much more on Z. Asymmetry parameter shows the shape phase transition at N=88-90 

in Q-I.  In Q-II and Q-III; γ0 has a systematic dependence with N, but with different 

patterns. In quadrant-I, the γ0 is having more correlated dependence on N, rather than 

on NpNn. Also in quadrant- I, the Z=64 sub-shell effect for N≤90 nuclei affect the 

variation of γ0 with N and NpNn product. The existence of X(5) symmetry in N=90 

isotones established in recent works supports the formation of isotonic multiplets in 

this work. The calculated values of γ0 are almost constant for N=90 isotones e.g. 

13.8
0
 for Nd, 13.24

0
 for Sm and 13.86

0
 for Gd; which supports the constant nuclear 

structure findings for N=90 isotones. The present work confirms the existence of 

isotonic multiplets in quadrant-I as reported earlier.  In quadrant-III, the variation of 

γ0 is different from quadrant I and II because the γ0 increases sharply from 9
0
 - 10

0
 to 

30
0
 with increasing N from 104 to 126. This is signifying that the nuclear 
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deformation (β) is decreasing and the nuclear structure changes from pure rotor 

SU(3) type  to vibrational SU(5) or γ-unstable O(6) type. Further, the asymmetry 

parameter for different elements has smooth curve with NpNn with almost same 

slopes except for Hg isotopes. 

 

The predictions of asymmetric rotor model for B(E2;4g→2g)/B(E2;2g→0g) 

ratio are compared with the experimental data. It is also noted that this B(E2) ratio is 

anomalously small in case of  two non- magic nuclei  i.e., 
198

80Hg118   and 
144

60Nd84  

with only two vacancy of protons for Z =82 and two valence neutrons outside N=82, 

respectively. The data points for other nuclei are lying between SU(5) and SU(3) 

limits. The calculated B(E2) ratios of  ARM are very close to the SU(3) limit of IBM 

indicating that it can explain the structure of only well deformed nuclei. Therefore 

the ARM is partially successful in explaining this branching ratio. The variation of 

experimental B(E2; 4g→2g)/ B(E2;2g→0g) branching ratio with N and Z is carried 

out for  Nd–Hg nuclei.  It is found that there is shape phase transition for N=88 and 

90 isotones (Nd, Sm, Gd, Er) from an ideal spherical harmonic vibrator or SU(5) to 

an axially symmetric deformed rotor or SU(3).  The present study supports the 

subshell closer effect around Z=64, for N≤ 90 and the constant nuclear structure of 

N=90 isotones.   

The interacting Boson Model-1 is used to study the nuclear structure of 
152

Sm 

(a best example of X(5) symmetry) and 
 154

Sm (a best example of SU(3) symmetry). 

The level structure of 
152,154

Sm is well reproduced and is in agreement with the 

experiment. The B(E2) branching values and B(E2) branching ratios are calculated 

for inter-band and intra-band transitions for g-, β-, γ- and β2- bands and the 

calculated results are in good agreement with experimental data. Present calculation 

supports that 
152

Sm is as a best example of X(5) symmetry and 
154

Sm  is a SU(3) type 

in nature. 
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Introduction 

 
    The energy ratio R4 (=E4g/E2g) = 3.01 and Rβ 

(=E0β/E2g) = 5.62 for 
152

Sm (N=90) nucleus and 

these ratios are very close to the X(5) symmetry 

limiting values (R4 = 2.9 and Rβ = 5.65). 

Therefore, 
152

Sm is the best example of X(5) 

symmetry of IBM-1 [1]. The large experimental 

data [2, 3, 4] is now available for 
152

Sm from 

decay and reaction work. The interacting boson 

model-1 (IBM-1) [1] is used to study the energy 

spectra, B(E2) values/ ratios for inter-band and 

intra-band transitions. The theoretical results of 

present IBM calculation are compared with the 

predictions of DPPQ, BEM and RVM models [5-

9] and the experimental data [2, 3, 4, 10, 11]. 
 

Result and Discussion 
    In 

152
Sm the members of g-band and β1-band 

are available up to 14
+
, for β2 up to 2

+
 and γ1 up 

to 5
+
 [2]. In the present calculation the band-head 

of the g-, β- and γ–bands are very close to the 

experiment and the spacing of different members 

in the different bands is also like in the 

experiment [2-3].  For K
л
= 0

+
3 band the 

calculated 0
+
 state lies at 1.496 MeV compared 

to the 1.0829 MeV in experiment.  The variation 

of EI with spin (I) for different bands is presented 

in Fig. 1. The slopes of EI vs. I
 
for different 

bands in experiment [2-3] are similar to the 

theoretical slopes. 
 

The variation of B(E2;Ig→Ig-2) 

    The variation of B(E2;Ig→Ig-2)  vs. spin (Ig) 

is shown in Fig. 2.  The experimental [3,4] B(E2) 

values
 
increases rapidly on increasing Ig from 2

+
 

to 10
+ 

indicating the sharp change in the nuclear 

shape. In the previous IBM calculation [5], the 

B(E2) first increases when Ig increases from 2
+
 

to 4
+
 and it decreases while Ig increased from 4

+
 

to 8
+
 unlike the observed trend.  But in the 

present IBM work, the B(E2) values follow the 

observed trend and values the more closer than 

other theoretical data. The BEM6 [6] data points 

are much below the observed data points. 

However, the BEM4 [6] values are close to 

present calculation. Only two data points are 

available for DPPQ [7], RVM1 and RVM2 [8, 9] 

to find any definite conclusion. 

    The theoretical results of vibrational model 

(VM), SU(5), O(6) and  SU(3) limiting values, 

present calculation and IBM calculation of [5] 

along with the experimental data for B(E2) 

values[3,4] are shown in Fig. 2.  It is clear that 

the observed data is quite below from the VM 

limiting values and is lying between SU(5) and 

SU(3) limiting values. The B(E2) values from 

present IBM calculation and BEM4 [6] are very 

close to the experimental data points and also 

present IBM calculation produces the observed 

slop of this ratio with Ig.  

B(E2) ratios for β– band 

     In the β-decay of 
152

Eu, 13 new transitions 

and 5 new levels were reported [10], which are 

included here for useful discussion. 

     In Table of Isotopes [11], the B(E2) ratio for 

(2β→0g/2g) transition  is 0.84 which is more than 

the SU(3) limiting value 0.7.  This ratio may be 

large due to 0.2% M1 and 4% E0 mixing in the 

(2β→2g) 0.6886 MeV γ–ray.  In a recent 

compilation work [3] this ratio is 0.17(1) 

compared to the theoretical value 0.12 & DPPQ 

value 0.076 [7]. 

     The (2β→4g) 0.444 MeV γ–ray was 

overlapping with   (2
-
→3γ) transition and gives 

B(E2; 2β→2g/4g) = 0.35 (the intensity of (2
-
→3γ) 

γ–ray was 12 which gives this ratio 0.56) [11]. 

But in the recent compilation [3], this ratio is 

0.30(3) compared to 0.030(1) in decay of 
152

Eu  

[10]. 
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     In Table of Isotopes [11]; the (4β→4g) 0.6565 

MeV γ–ray was not pure E2 but has 16% M1 and 

5% E0 mixing, which gave the B(E2;4β→2g/4g) 

= 0.11 and B(E2;4β→4g/6g) = 0.76, but Peker [3] 

deduced these ratios equal to  0.21(2) and 

3.6(22); Stewart et al. [10] deduced 0.11(2) and 

0.08(2); and in the present IBM calculation these 

ratios are 9.3 and 231, respectively. 

    For (6β→4g/6g), (8β→6g/8g) and (10β→ 8g/10g) 

transitions;  the observed  B(E2) ratios lie away 

from the respective Alaga values and theoretical 

values are close to the observed values. It is also 

evident that (β→β) transitions are stronger than 

(β→g) which is supported by present IBM 

calculation values (Results will be presented). 

 

 B(E2) ratios for γ–band 
    The experimental data was available for 21 

ratios, for transition from γ–band.  It is evident 

from the observed data that the (γ→β) transitions 

are stronger than (γ→g); and (γ→ γ) transitions 

are stronger are than (γ→β).  Theory supports 

these aspects.  Most of the B(E2) ratios lie on the 

transition from SU(5) to SU(3).  

     The theoretical B(E2) ratios for the transition 

from 5γ, 6γ, 7γ and 9γ states were not available 

from any  previous work [6,7,8,9]. The present 

study is extended for these four states along with 

three other lower states i.e.  2γ, 3γ and 4γ states 

for calculating the B(E2) ratios. The B(E2) ratios 

for the transition from 2γ, 3γ, 4γ 5γ, 6γ, 7γ and 9γ 

states are compared with the present work and 

found that most of the theoretical values are 

close to the observed values (Results will be 

presented). 
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Fig 1: The variation of EI with spin (I). 
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Fig 2: The variation of B(E2;Ig→Ig-2) with Ig for 

ground band. The experimental data of [3,4] are 

shown by solid circles (●), present IBM calculation by 

hollow circles (○), BEM4 [6] by hollow diamond (◊), 

BEM6 [6]  by solid square (■),  IBM [5]  by star (*). 

The vibrational model (VM) is shown by (▲), SU(5) 

limiting values by (∆), O(6) limiting values by ( ) 

and  SU(3) limiting values by (□).  
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Introduction 
 

 The structure of samarium isotopes is very 

interesting because the shape phase transition 

takes place from SU(5) to SU(3) limit of 

interaction boson model (IBM) [1]. This feature 

has attracted many researchers to study these 

isotopes experimentally and theoretically. The 

(
11

B, 4n) reaction at 54 MeV on natural La target 

evaporated on gold was used [2] to study the 

lifetimes measurement of various energy levels 

of 
146

Sm. The radioactive decay of 
146

Eu [3] has 

given spin parity assignment in 
146

Sm and 

angular distribution of 68 γ–rays. Peker [4] also 

compiled the experimental data for A = 146. The 

02
+
 state earlier observed [3] at 1.452MeV was 

not adopted in recent compilation [5] but new 02
+
 

and 03
+
  states at 2.211 and 2.331 MeV were 

reported. Newly adopted [5] 5
+
γ, 8

+
γ and 9

+
γ 

states of  K
π
 = 2

+
1

  
band

  
at 2.8983, 3.0431 and 

3.5674 MeV,  respectively are included in the 

present work. 

 

Several theoretical calculations, using IBM-1 

[3, 6, 7], IBM-2 [8] and DPPQ [9] were carried 

out to explain the structure of 
146

Sm. The 

compilations of experimental data [2- 5] enable 

us to present more elaborate analysis. 

Unfortunately, insufficient data is available for 
146

Sm, therefore we have used data for other 

N=84 isotones for useful comparison for B(E2) 

values for inter and intra band transitions.  The 

asymmetric rotor model [10] has been used for 

calculating the levels energy and transition 

probabilities.  

  The parameters used for calculation 

are A=146, Z=64, E2
+
g = 0.74724 KeV, γ= 

26.44° and β= 0.0917°.  The energy ratios are 

computed from experiment [5] and compared 

with the previous theoretical calculations [7-9] 

and present ARM calculation in Table 1. The 

calculated values are close to the experimental 

values indicating the vibrational nature of 
146

Sm. 

The reduced transition ratios are given in Table 2 

for g- and γ- bands. The present ARM results are 

compared with the observed [3-5, 9] and other 

theoretical calculations from DDPQ [9] and IBM 

[6- 8]. Most of the ratios are close to the 

observed values. Some of the γ-rays are having 

M1 admixture [5] (see Table 2). The energy 

values for ground state rotational and γ- 

vibrational bands are given in Table 3 and the 

experimental values [5] are compared with IBM-

1 [3, 7], DPPQ [9] and ARM results. The B(E2) 

values for the transitions from g- and γ- band are 

also compared with other N=84 isotones for 

useful comparison (results will be presented). 
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Table 1. The energy ratios for g-and γ- bands.  

 

 

 

Table 2. The B(E2; Ii → If/If’) ratios. 

*Multiple assignments. ** (2γ→2g) 900.797 KeV γ – ray has M1 admixture. 
#
1522.712 KeV (3γ→2g) and 621.85 KeV (3γ→2γ) γ-rays have the M1 admixture. 

$
1691.643 KeV (4γ→2g) and 1057.62 KeV (4γ→4g) γ-rays have the M1 admixture. 

&
524.3 KeV (9γ→82) γ – ray is M1 type transition. 

 

Table 3. The energy levels of ground state rotational and γ- vibrational bands. 

State
 

Expt.  [5] IBM1 [7]
 

IBM1 [3]
 

DPPQ [9]
 

ARM 

2g 0.747115 0.7804 0.733 0.756 0.75 

4g 1.38128 1.4648 1.353 1.375 2.06 

6g 1.811682 2.0500 1.869 - 3.87          

8g 2.7372 2.5331 2.287 -  6.20          

2γ 1.647929 1.5969 1.610 1.725 1.65 

3γ 2.26983 2.3333 2.417 - 2.40 

4γ 2.438981 2.6387 2.256 - 2.76 

5γ
 

2.898268 2.9296
 

-
 

-
 

4.64          

 

Ratios Expt. 

[5] 

ARM DPPQ 

[9] 

IBM1 

[7] 

IBM2 

[8] 

SU(5) O(6) SU(3) 

E4g+/E2g+ 1.85 2.7 1.846 1.877 2.09 2 2.5 3.33 

E2γ+/E2g+ 2.206 2.2 2.282 2.046 2.21 2 2.5 3.33 

E3γ+/E2g+   3.038 3.2  2.989 3.11 3 4.5 7 

E4γ+/E2g+        3.264 2.7  3.381 3.70 4 7 12 

Transition Experimental Ratios IBM1 IBM2 DPPQ
 
 ARM 

 [3] [4] [5] [6] [7] [8] [9] 

4g→2g/2g→0g ≥1.27(26) ≥1.30 1.82[9] 1.82 1.613 1.613 1.94 1.409 

6g→4g/4g→2g 0.98(4) <0.74   1.21 1.21  1.254 

8g→6g/6g→4g  ~0.16(5)      1.106 

2γ→0g/2g
*
 0.0012(4) >0.01

*
 0.01

** 
0.01 0.014 0.014 0.018 0.025 

3γ→2g/2γ 0.019(5) 0.049 0.018
# 

 0.027 0.027 0.10 0.028 

4γ→2g/4g 0.007 0.007 0.017
$ 

 0.005 0.005 0.1 0.079 

9γ→8g/82  0.023 0.023
& 

 0.15   0.000

1 
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The nuclear shape-phase transition 
at N = 88–90, and the role of Z = 64 sub-shell 
closure effect therein has been a subject of study 
on empirical basis and in the context of the N, Z, 
P and  NpNn scheme [1,2,3,4]. It was pointed 
out by Gupta [1] that the filling of neutron 
orbitals at N = 86, 88 & 90 plays an important 
role in the shape-phase transition. The filling of 
the proton Nilsson orbitals of varying slopes 
leads to the variation of nuclear structure with 
varying Z, which leads to the Z = 64 subshell 
effect, which disappears at N=90. Gupta [1] 
observed that the effect of  n-p  interaction of the 
πh11/2 and νh9/2 orbitals, along with the 
contribution of the νi13/2 orbital leads to the 
shape-phase transition at N=88−90. The slopes 
of proton Nilsson orbitals explain the Z= 64 
subshell effect. 

The size of proton subshell gap between 
the d5/2 and h11/2 orbitals was reviewed by Gupta 
[2]. The increased gap at Z=64 was not 
inconsistent with experiment for occupation 
probabilities and the nuclear structure of N=82 
isotones and 146-154Sm [2]. In IBM calculation 
there was no a priori need of the use of subshell 
closure [2]. In the empirical studies for this 
region the use of the Z=64 subshell does lead to 
elegant systematics in some cases. In this paper 
we have tested this for the asymmetry parameter 
(γ).  

Asymmetric Rotor Model (ARM): 
The Hamiltonian of ARM[5] is: 
 

  H= (ħ2/2) Σ ( Ii
2/ Ji )                                (1) 

 
where, Ii is the projection of angular momentum 
on the intrinsic axes. The moment of inertia Ji  
are given by the hydrodynamic relation: 

 
Ji = (4/3) J0 Sin2 (γ-2π/3)                                (2) 
where, J0 = 4B β2.                                 (3) 
Simple analytical expressions for the energy of   
two levels for I = 2, defined as: 

 (in units of  ħ2/J0)    (4) 

                              
where 1,2=0,1 and γ-function is written as  

Here,    and X=Sin2 3γ. 

Calculation of Asymmetric Parameter  
The value of asymmetry parameter (γ) can 

be evaluated [6,7,8] using the experimental 
energies E22

+ and E21
+ of the two 2+ states. The 

energy ratio Rγ=E2γ/E2g. The asymmetry 
parameter is: 
 
γ = (1/3) sin-1 [(9/8) {1-(( Rγ-1)/( Rγ+1))2 }].  
 
It can be evaluated using:  (a) The energy ratio 
R4=(E4g/E2g) but only the nuclei with 
2.8≤R4≤3.33 will be allowed [6,8] (see fig 1 of 
ref.6). (b) The B(E2) values also but these values 
are very small and available with uncertainties 
too. Therefore the values from energy ratio Rγ 
are more reliable. 
 
Result and Discussions:   
 

The variation of E2γ state (in MeV) versus 
neutron number (N) is shown in Fig. 1 for N=86-
122. The data points are joined for same element 
so the N dependence of E2γ is visible. The value 
of E2γ is having maximum scattering (0.7 to 1.6 
MeV) at N=104 for Yb to Pt isotopes 
corresponding to β hard core structure of these 
nuclei[9] The fig. 1 is reproduced from [9]. 
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Fig. 1. The variation of energy of 2γ state (in 
MeV) versus neutron number (N). 
 

The variation of E2γ versus proton number 
(Z) is shown in Fig. 2 for Z = 60 -80. The data 
points are joined for each isotones for  N =86–
116. The value of E2γ is suddenly increasing 
from 0.8 to 1.6 MeV for a fixed value of Z= 70 
when N is changing from 90 to 104.  The E2γ 
decreases sharply on increasing Z from 60 to 68 
for each isotones i.e. N= 88-98 indication shape 
phase transition from Vibration to Rotation i.e. 
SU(5) to SU(3) limits of IBM. The slope for N= 
88 and 90 are same and there is no indication for 
subshell effect in this fig. 
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Fig. 2. The variation of energy of 2γ state (in 
MeV) versus proton number (Z) for Z = 60 -80.  
 
The variation of asymmetric parameter (γ) versus 
proton number (Z) for N= 82 -96 isotones for Z= 
58-72 region is shown in Fig.3. The gap is 
maximum i.e. 7.6 at  Z= 64 when N changes 

from 88 to 90 indication the subshell effect at 
Z=64 for N<90. Since the γ is evaluated from E2g 
and E2γ. However the Z=64 subshell effect is not 
evident in E2γ (see fig. 2) and in E0β (see fig.4 ref. 
[9]). It is evident only in E2g [4] and R4 [4 and 
see fig. 12 of ref. 10]. 
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Fig. 3. The variation of asymmetric parameter 
(γ) versus proton number (Z) for N= 82 -96 
isotones for Z= 58-72 region.  
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Introduction 
 

The nuclear structure of even Z even N 
medium mass transitional nuclei consist of 
ground state band, Kπ=01 β-band, Kπ=21 -
band and other higher bands [1]. As we move 
away from closed shell, energy levels are low 
lying from spherical to deformed nuclei and 
energy deviated from ideal rotor behavior. 
The energy of these transitional nuclei in 
ground band can also be studied using Bohr 
Mottelson energy expression [1], Soft Rotor 
Formula (SRF) [2], Power Law (PL) [3] etc. 
Recently, Gupta et al. (2013) [4] modified 
SRF for non zero band head Kπ=21 -band and 
reproduced the level energies. Here same 
formula applied for Kπ=01 β-band and the 
level energies are reproduced and compared 
with experimental energies. The power law 
[3] is also used for recalculation of level 
energies and for useful comparison. 

 
Method 
 

The SRF of Gupta (1971) and Brentano 
et al. (2004) [2] for ground state band is:  

             (1)                                             

where, σ and θ are softness parameter and 
moment of inertia (MOI). For β-band, the 
level energies are E(0β), E(2β), E(4β), E(6β), 
E(8β) and E(10β) in KeV for spin I=0, 2, 4, 6, 
8 and 10. The difference of [E(2β) - E(0β)] and 
[E(4β) - E (0β)] are denoted as ΔE(20β) and 
ΔE(40β). The Equ. (1) for spin 2 and 4 gives: 
                    (2) 

and     .            (3) 

On dividing equation (3) by equation (2), the 
θ is cancelled and σ can be calculated. Using σ 
and θ for different spin the values of level 
energies is reproduced. Similarly, the PL 
energy expression EI=aIb [3] is used for β-
band. The values of ‘a’ and ‘b’ parameters are 
obtained by subtracting band head difference 
E(0β) and the energy difference of spin 2 and 
4. Using these parameters, level energies are 
reproduced. 
 
Result and Discussion 

The values of root mean square deviation 
(RMSD) of the reproduced level energies are 
obtained using PL and SRF from experimental 
level energies [5]. It is observed that the 
RMSD values are small using power law in 
comparison to the SRF.  Most of the nuclei 
having RMSD value lie below 40 KeV using 
power law except N=88 whereas using SRF it 
is lie below 100 KeV. The variation of RMSD 
versus N using SRF and PL is shown in Fig. 
1(a, b).  The MOI from SRF for β-band and 
ground band is studied with energy ratio of 
both the bands and shown in Fig. 2(a, b). It is 
observed from the diagrams that as the energy 
ratio rises from spherical behavior to 
deformed limit, the MOI increases except 
150Sm in β-band and 150Nd out of the fit of 
smooth curve. The systematics of softness 
parameters of both the bands also has same 
correlation with energy ratios.  
 
Conclusion 

It is evident from variation of RMSD vs. 
R4 curve that the level energies of β-band are 
well reproduced in PL and the values of 
RMSD ≤ 40 KeV except N=88 isotones 
(RMSD≈ 50 KeV). The variation of MOI (θ) 
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vs. R4 for g- band and β- band show a strong correlation. 
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Fig. 1(a) The variation of RMSD vs R4.                   
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    Fig. 1(b) The variation of RMSD vs R4. 
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Fig. 2(a) The MOI vs. R4/2 for  β-band.                              
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Fig. 2(b) The MOI vs. R4/2 for  ground band. 
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There are various empirical formulae to study 

the level structure of ground band of medium mass 

nuclei. The expression for rotational spectra is: 

 
E(I) = (ħ2/2θ) I(I+1).  (1) 

 

Where θ and I are the moment of inertia and spin 

respectively [1]. The deviation from eq. 1 has been 

observed for almost all the nuclei because of 

centrifugal stretching etc. which can be taken into 

account only up to some extent [2, 3] (3.1 ≤R4 ≤3.33) 

by apply an expansion in power of I(I + 1), i.e.  

 

E(I) = A I(I+1)  + B[I(I+1)]2 + C[I(I+1)]3+···

 (2) 
  
where A, B and C have their usual meaning. For 

harmonic vibrator, the energy can be written as: 

 

E(I) = a I.    (3) 

 

Das et. al. [4] suggested the energy expression for 

anharmonic vibrator: 

 

E(I)  = aI + bI(I-2).   (4) 

 

The energy spectrum of ground band in well 

deformed nuclei (R4≈3.33) exhibit rotational 

characteristics and for shape transitional nuclei large 

deviations have been observed. In the literature, one 

finds quite a few variants, which involve two, three 

or more terms in terms of spins. Gupta et al [5] 

observed that the values of fitting parameters often 

depended on the number of levels used for 

calculation. They [5] suggested a very different form 

of energy expression in the form of a single term 

energy formula called power law: 

E(I) = a Ib                                (5) 

where the coefficient “a” and  index “b” are the 

constants for the band. Also b is a non-integer. The 

values of aI and bI are given below:  

 

bI = log(RI)/ log(I/2) and aI = EI / I
b. 

 

This is the most-simple expression among all 
the other formulae. The validity of this formula was 

well proved for the medium mass nuclei. Recently, it 

was also tested for the light N < 82 region. This 

formula was equally successful in expressing the 

ground band energies in the A=150-200 region [5]. 

Mittal et. al [6] verified its validity for light mass Xe-

Sm nuclei. Recently, Kumar et. al [7] and Kumar [8] 

presented correlation of kinetic moment inertia with 

power formula index in 100≤A ≤150 region. Gupta 

and Hamilton [9] also illustrated the use of this 

formula to determine the degree of deformation of 

shape transitional nuclei. 

Considering its simplicity, we have taken a 

project to test the validity and utility of power law in 

various bands of even –even nuclei. Here, we discuss 

the advantages of this formula in predicting the 

nuclear structure of -band in a few nuclei. 

The validity of this expression (Equation 5) for 

-band would be tested by a check of  the constancy 
of “b” and “a” with the spin I. It is also tested by 

plotting log (EI) against log (I). 

 

In the present work, we search for the 
constancy of “b” and “a” coefficients with the spin (I) 

for β-band. In figure 1, we have plotted log(EI) 

against log(I) for isotopes of different deformation (N 

= 88, 90) for β-band levels which indicates that the 

log(EI) is linearly dependent on log(I). This is also a 

good measure to test constancy of level energies with 

spin (I). Here, almost linear dependence (Fig. 1) 

would be an indication of the constancy of index “b” 

and coefficient “a” with spin (I). 

 

To test the above hypothesis for constancy of 

index “b” and “a” of single term energy formula 

(Equation 5) for  band, we look at the N = 88, 90 
(152Sm, 152Gd and 154Gd) isotones in Fig. 2 and Fig. 3 

respectively. In 152Sm and 154Gd, the value of ‘b’ is 

Proceedings of the DAE Symp. on Nucl. Phys. 59 (2014) 250

Available online at www.sympnp.org/proceedings



almost constant near 0.5 (see Fig. 2). Thus the almost 

constancy of index ‘b’ of this formula in  band, 
illustrates the test of nuclear shape deformation with 

spin for excited bands.  The coefficient “a” is plotted 

versus spin (I) in Fig.3 for these three isotopes and 

the fig. indicating that “a” is linearly dependent on 

spin and decreases on increasing the spin. Also the 

slopes for 152Sm and 154Gd are almost same. 
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Fig. 1 The variation of Log EI vs. Log I for β-band. 
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Fig. 2 The variation of index ‘b’ vs. Spin (I).  
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Fig. 3 The variation of coefficient ‘a’ vs. Spin (I).  
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Introduction: 

The nuclear structure of even-even 

nuclei in ground state band and other excited 

bands with non zero band head is collectively 

built [1]. The level energy in medium mass 

region deviates below the ideal rotor energy 

formula EI =AI(I+1).  The ground band of 

medium mass nuclei are studied using various 

energy formulae e.g. Soft Rotor Formula [2], 

VMI etc. Gupta et al. [3] proposed the power 

law and studied the systematics of ground 

band. The level energy from Power Law is  

E= aI
b
                                               (1) 

where, a and b are scaling coefficient and 

power index.  

The power law parameters (average 

scaling coefficient and average power index) 

are obtained using spin up to I=12 in Eq. (1).  

In RTR model the asymmetric 

parameter () is obtained using E(21) of ground 

band and E(22)  of  -band for medium mass 

region. The asymmetric parameter:  

 

γ=(1/3) sin
-1 

[(9/8) {1-((Rγ-1)/(Rγ+1))
2
}]. (2) 

 

where, Rγ=E(22)/E(21). The quadrupole 

deformation parameter (β) is related with B(E2) 

values, energy (E) and atomic mass  (A) of the 

nuclei as: 

 

                        (3) 

and 

        

             (4)   

 

where, R0  is 1.2A
1/3

fm, B(E2)↑ is in  e
2
 b

2
, Z is 

atomic number, E is the  energy of  spin I=2 of 

ground band  and  A is atomic mass. The β is 

taken from [4] and [5].   

The correlation of average scaling 

coefficient,  asymmetric parameter and average 

power index and deformation parameter versus 

N  is studied quadrant -1.  

 

Systematics dependence of aAV and γ 

with N 
 

In quadrant-I (60< Z< 66, 82< N< 104), as 

neutron number increases, the asymmetric 

parameter as well as scaling parameter 

decreases fast up to N=92 and after N>92, both 

parameters remains uniform for Nd, Sm, Gd 

and Dy nuclei in Fig. 1.(a and b).       

 In quadrant II (66< Z<82, 82< N< 

104), the asymmetric parameter as well as 

scaling parameter decreases as neutron number 

rises towards N=104 Fig for Q-II,III,IV to be 

presented).. From N=102 to N=104 both 

parameters decrease slowly. In quadrant-III 

(60< Z<66, 104< N<126), as neutron number 

increases, the W and Os nuclei shows a dip at 

N=108 and for N>108 both parameters rises, 

whereas the Pt nuclei shows separate fast 

increasing trend.   In quadrant –IV N<82, for N 

> 64, the scaling parameters as well as 

asymmetric parameters, both are increases as 

neutron number rises. Here Xe nuclei shows 

separate rising trend with both parameters 

(Figs. to be shown in poster). 

 

Systematics dependence of bAV and β 

with N 
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In quadrant-I, the deformation 

parameter β and power index parameter bAV 

sharply rises as N increases from 86 to 92. For 

N>92, both parameters show uniform trend and 

saturates in fig. 2.1(a and b). 

 In quadrant-II, the Er and Yb nuclei 

show same trend for both parameters for N=88-

104. The β rises for Hf and W nuclei when N 

increases from 88 to 98 and decreases towards 

N=100 and again rises on increasing N. The 

bAV rises for Er-Os nuclei when N increases 

from 88 to 104. The Pt has different behavior. 

In quadrant-III, the Pt nuclei shows same trend 

with both parameters whereas after N>108, the 

W and Os nuclei shows same trend. 

In quadrant-IV, the nuclei Ba, Ce, Nd 

and Sm shows same trend, whereas the Xe 

nuclei has a dip at Z=66 in power index 

parameter and a up in deformation parameter. 
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Fig.1 (a) The plot of γ vs. N in Q-I.      Fig. 2(a) The plot of β v N in Q-I.   
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Fig. 1(b) The plot of aAV vs. N in Q-I.   Fig. 2(b)The plot of bAV vs. N in Q-I. 

 

Conclusion: The average scaling 

coefficient with asymmetric parameter and 

average power index with N show strong 

correlation in all four quadrants.
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Introduction 
 

The study of collective nuclear structure 

with N, Z, NB and NpNn provide a detailed 

information of nuclear interactions involved. 

Several studies have been carried out to study the 

collectivity, deformation and systematic 

dependence of other nuclear properties on NpNn. 

de-Shalit & Goldhaber [1] pointed out the 

important role of valence nucleons. Talmi [2] 

noted the constancy of nuclear level structure in 

semi-magic isotones/isotopes. Hamamoto [3] 

observed that the p
+
 & n

0
 both are required for 

producing deformation. In IBM-1[4], the 

structure of nuclei depends on the total boson 

numbers NB. The concept of F-spin multiplets 

was based on this and was well explained by 

Brentano et al. [5]. Casten [6] noted that the E2g+ 

have smooth dependence on NpNn. Various 

studies [7] have been carried out to study the 

collectivity, deformation and systematic 

dependence of various nuclear observables on 

the product NpNn. 

 

Gupta [8] observed that 1/α was linearly 

dependent on NpNn, where the coefficient  

contributes for rotational part of energy in the 

SU(3) symmetry limit of IBM[4] as, 

 

   E([N](λ, μ) KLM) =α L(L+1) + β C(λ, μ) 

 

The  B(E2; 21
+
→01

+
) values were also related 

with NpNn. Gupta et al. [9] noted a systematic 

dependence of γ–g B(E2) ratios on the NpNn in 

different parts of the major shell space Z=50–82, 

N<82 and N=82–126. Casten and Zamfir [6] 

presented a review on the evolution of nuclear 

structure based on NpNn product. The NpNn 

scheme was further modified to use P- factor [9].  

 In this paper, we study the role of valence 

nucleons and holes on the nuclear structure, 

through NpNn. Casten and Zamfir [7] covered the 

various regions, viz., A=100, 130, 150 (Z<64, 

Z>64) and A=190. We present our results for 

50≤Z≤82 and 82≤N≤126 region on quadrant 

wise basis.  

 

The values of asymmetry parameter (γ) 

have been calculated for 50≤Z≤82 and 

82≤N≤126 region and the whole data is divided 

into four quadrants and it has been plotted with 

NpNn to study its systematics dependence. 

 

Calculation of Asymmetric Parameter  

 
The value of γ can be evaluated using the 

experimental energies E22
+
 and E21

+
 states [10]. 

The energy ratio Rγ =E2γ / E2g and γ is: 

 

γ = (1/3) sin
-1 

[(9/8) {1-(( Rγ-1)/( Rγ+1))
2 
}].  

 

It can be evaluated using:  (a) The energy ratio 

R4=(E4g/E2g) but only the nuclei with 

2.8≤R4≤3.33 will be allowed [11, 12]. (b) The 

B(E2) values which are very small and available 

with uncertainties. Therefore the values from 

energy ratio Rγ are more reliable. 

 

Result and discussions 

 
The variation of γ versus Np.Nn product for 

quadrant-I for 50≤Z≤66 and 82≤N≤104 has been 

shown in Fig. 1. There is smooth dependence of 

γ with NpNn. The γ decreases from a maximum 

value of 30° for NpNn =0 (i.e. SU(5) limit of 

IBM) to a minimum values of about 9°(i.e. 

SU(3) limit of IBM). The γ saturates for NpNn ≥ 

30. This shows non-dependence of γ with NpNn 

Proceedings of the DAE Symp. on Nucl. Phys. 59 (2014) 300

Available online at www.sympnp.org/proceedings



 

because for a fixed value of NpNn the γ is having 

varying values. 
 The variation of γ versus NpNn for 

quadrant-II for 66≤Z≤82 and 82≤N≤104 has 

been shown in Fig. 2. There is smooth 

dependence of γ with NpNn except Yb for NpNn 

>50 and few Pt isotopes.  
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Fig.1 The variation of asymmetric parameter (γ) 

versus NpNn. 
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Fig. 2 The variation of asymmetric parameter (γ) 
versus NpNn product for quadrant-II.  

 

 The variation of γ versus NpNn for 

quadrant-III for 66≤Z≤82 and 104≤N≤126 has 

been shown in Fig. 3. There is smooth 

dependence of γ with NpNn except Hg isotopes. 

 

 The graphs of γ against NpNn vividly 

displays the formation of isotonic multiplets in 

quadrant-I, strong dependence on NpNn in 

quadrant-II and weak constancy with Z in 

quadrant-III is illustrated and support the 

findings of Gupta [13].  
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ABSTRACT 

The systematic dependence of experimental B(E2; 4g→2g)/ B(E2;2g→0g) branching ratio with N and Z is 

carried out for Nd- Hg  even –even nuclei.  The SU(5) and SU(3) limits of interacting boson model are also 

discussed. The N and Z dependence of B(E2) branching ratio  has been observed. The Z=64 subshell effect is 

also seen for N≤ 90 region.  

Keywords: B(E2; 4g→2g)/ B(E2;2g→0g) branching ratio, nuclear structure, Nd –Hg  nuclei, SU(5), SU(3), 

Z=64 subshell effect 

I. INTRODUCTION 

The concept of collectivity in nuclei is one of the most fundamental findings in history of nuclear physics. 

Various nuclear models have been applied to describe this collective behaviour of atomic nuclei. The 

geometrical models depicting the nucleus as a liquid drop with a given nuclear shape and algebraic models, take 

into account the pairs of proton and/or neutron only. Despite the often very dissimilar theoretical approaches, 

most of the collective models have some common basic features, such as predictions of energies rotational, 

vibrational and other higher multi-phonon bands or B(E2) ratios for inter and intra band transitions, which have 

been observed in a wealth of non- magic atomic nuclei.  

The energy ratio R4  is a key observables which can be used to assess the collectivity of nuclei and it is equal to 

2 for an ideal spherical harmonic vibrator or SU(5) limit and 10/3 in an axially symmetric deformed rotor or 

SU(3) limit of interacting boson model (IBM)[1]. The transition rates also provide another good measure of 

nuclear collectivity [2], which is less sensitive to anharmonicities than energies of various bands. The 

B(E2;4g→2g)/B(E2;2g→0g) branching ratio is a particularly good example, which is equal to 2 in the spherical 

limit or SU(5) and 1.4 in the deformed limit or SU(3)[1].  Significant deviations from these two limiting values 

can be found; if one moves away from the closed shell.  

In the present work, we have compiled the observed data of B(E2;4g→2g)/B(E2;2g→0g) branching ratio from the 

website of Brookhaven National Laboratory[3] for Nd – Hg nuclei. The variation of this B(E2) ratio with N and 

Z has been studied. The SU(3) and SU(5) limits are also included for useful comparison. The result & 

discussions and conclusion are given in § II and III respectively. 
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II.RESULT AND DISCUSSIONS 

2.1  The variation of experimental B(E2;4g→2g)/ B(E2; 2g→0g) ratio verses neutron number 

(N) 

To avoid the overlapping of experimental data of the nuclei and to have a clear picture for a definite conclusion 

about the dependence of B(E2;4g→2g)/B(E2;2g→0g) ratio on N, the whole data is divided into two parts and 

shown in two figures i.e. Fig. 1 for Nd- Er nuclei and in Fig. 2 for Yb- Hg nuclei. The vibrational model or 

SU(5) limit at 2 and rotational model or SU(3) limit at 1.4 are shown in the Fig 1 and Fig. 2. The data points are 

joined for same value of Z, so that the effect of N will be visible.  

For Nd, this ratio increases sharply from 0.73 to 1.61(maximum value at N=88) as N increases from 84 to 88 

and if N is further increased from 88 to 92 it decreases slowly from 1.61 to 1.31(see Fig. 1). The same feature is 

observed for Sm, where this ratio increases from 1.65 to 1.9 on increasing N from 86 to 88 and beyond N=88 it 

drops sharply and approaches to Alaga value of 1.4 for N=92. In case of Gd, the BE(2) ratio decreases from 1.82 

to 1.46 as N increases from 88 to 94. Also in Er, this ratio decreases from 1.78 to 1.5 as N increases from 88 to 

100 and minimum value of 1.18 at N=96. Therefore, for N=88 (Sm, Gd and Er) isotones, this ratio ≈1.8 is very 

close to the VM limit of 2.0 indication vibrational nature. However for Dy (N=88, 92, 94, 96) this ratio is close 

to Alaga value indication deformed rotor nature and for N=90; Dy indicating transitional nature because this 

ratio (=1.63) is lying in between SU(5) and SU(3) limiting value (see Fig. 1). 

For Yb and Hf nuclei, BE(2) ratio is ranging between 1.4 to 1.6 for different values of N and close to SU(3) 

limit (see Fig. 2). In case of W, the ratio increases sharply from 1.1(3) to 1.74(15) on increasing N from 94 to 

100 and decreases very slowly on increasing N from 108 to 112 (almost remains around Alaga value).  

For N=96 the data point of Os is close to the other N=96 isotones (Yb, Hf, W) data points. When N increases 

from 108 to 112, the ratio for Os increases from 1.4(4) to 1.68(11) and when N is increased from 112 to 116 the 

B(E2) ratio decreases from 1.68(11) to 1.22(4) indicating prolate to oblate shape-phase-transition as observed  

by Kumar and Baranger [4].  

For N=98, the B(E2) [=1.87(24)] for Pt is close to VM value and for N=102 the ratios is minimum  [=0.92(22)]. 

The B(E2) ratio for Pt decreases from 1.65 to 1.56 when N increases 106 from 114 and again increases from 

1.56 to 1.73 as N increases from 114 to 116(attains maximum value =1.73(11) at 116). If N is increased from 

116 to 120 this ratio drops linearly with the same slope as observed for Os (N=112 to 116).This indicates the 

similar nature of Pt and Os nuclei for this region. 

For two nuclei; 
182

Hg and 
184

Hg; the B(E2) ratio is 4.6(3) and 2.8(8) respectively; which are anomalously more 

than VM limiting value and not included in the Fig.2. The B(E2) ratio is smallest in case of 
198

Hg; which is non 

magic nucleus; has only two vacancy of p+ for Z =82. This ratio is also very small in case of 
144

Nd84 [=0.73(9)] 

(see Fig.1); which is also a non- magic nucleus; which has only two valence n
0
 outside N=82.  It supports the 

findings of Cakirli et.al. [5], that the B(E2;4g→2g)/B(E2;2g→0g) ratio
 
is anomalously small in non  magic 

nuclei, as it cannot be explained with collective approaches. 
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Fig.1:  The variation of experimental B(E2;4g→2g)/B(E2;2g→0g) ratio vs. neutron number (N) for Nd- 

Er nuclei. The vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines for 

comparison. 
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Fig.2:  The variation of experimental B(E2;4g→2g)/B(E2;2g→0g) ratio vs. neutron number (N) for Yb- 

Hg nuclei. The vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines 

for comparison. 

 

2.2 The variation of experimental B(E2;4g→2g)/ B(E2; 2g→0g) ratio verses proton number (Z). 

The variation of observed B(E2;4g→2g)/ B(E2; 2g→0g) ratio with proton number (Z) is shown in Fig. 3, 4 and 

5  for N=84 to 92, N=94 to 102 and N= 104 to 124  isotones respectively and the experimental points are joined 
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for same value of  N to observe the effect of Z. The vibrational limit (VM) or SU(5) at 2 and rotational limit or 

SU(3) at 1.4 are also shown by dotted lines for useful comparison in each figure.  

 It is evident from Fig. 3, that the BE(2) ratio for N=88 isotones  increases on increasing Z from 60 to 62 (attains 

the maximum values for Sm88) and decreases for Gd and Dy (attains minimum value close to SU(3) limit for 

Dy88) and again for Er it increases. For N=88, the B(E2) ratio is close to SU(5) limiting value for Sm, Gd and Er 

while Dy reflects SU(3) nature and Nd in between these two limits. Also, the Sm88 is least deformed and Dy88 is 

most deformed. For N=86 isotones the B(E2) data is available only for two nuclei and it is increasing on 

increasing N from 60 to 60 as in the case of N=88.  
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Fig.3:  The variation of experimental B(E2;4g→2g)/ B(E2; 2g→0g) ratio vs. proton number (Z). The 

vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines for comparison. 

The experimental points are joined for same value of N to observe the effect of Z on this B(E2) ratio for 

each isotones for N=84-92. 

 

 For N=90 isotones the behaviour of B(E2) is just opposite to N=86 and 88; the B(E2) ratio initially decreases as 

N increases from 60 to 62 and increases as N  increases from 62 to 66 just opposite to N=88. It is evident from 

the figure that the gap is maximum between the two curves for N=88 and 90 around Z= 64 indication the 

subshell effect at Z=64 for N<90. It is supporting the findings of Casten [6] and Casten and Zamfir [7].  

In general, for N=90 isotones, the B(E2) ratio is somewhat independent of Z indicating constant structures 

because the values of this ratio are ranging between 1.45 to 1.6 and it support the findings of Gupta [8].  For 

N=90 isotones, this B(E2) ratio initially decreases on increasing Z from 60 to 62 (attains minimum values which 

is close to SU(3) limiting value for Sm90  unlike Sm88 for which this ratio is close to SU(5) limiting value) and 

increases slowly on increasing  Z from 62 to 66; and attains maximum value(=1.6) for Dy90; and beyond Z=66 

the BE(2) decreases linearly on increasing Z from 66 to 70 (and approaches 1.4 value for Hf90). It is clear from 

Fig. 3 that Sm90 and Hf90 are most deformed in comparison to other N=90 isotones.  
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For N=92 isotones, this ratio goes on increasing  very slowly from 1.31 to 1.56 on increasing Z from 60 to 74 

and is close to SU(3) limiting value of 1.4. However for N=94, this ratio is almost constant because its values 

are 1.46±0.05, 1.46±0.07, 1.48±0.07, 1.58±0.10 and 1.1±0.3 for Gd, Dy, Yb, Hf and W isotopes respectively 

indication Z independency. For N=94, 96 and 98 isotones (see Fig. 4) the ratio is close to SU(3)  
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Fig.4:  Same as Fig.3 for N=94 to 102. 
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Fig.5:  Same as Fig.3 for N=104 to 124. 

limiting value indicating deformed nature. For other isotones the B(E2) ratio is lying between SU(5) and SU(3) 

or O(6) limiting values (see Fig.5) as predicted by the asymmetry rotor model [9]. 

III. CONCLUSION 

The variation of B(E2; 4g→2g)/ B(E2;2g→0g) ratio with N and Z is shown for  Nd – Hg nuclei.  It is found that 

the there is shape phase transition for N=88 and 90 isotones (Nd, Sm, Gd, Er) from an ideal spherical harmonic 

vibrator or SU(5) to an axially symmetric deformed rotor or SU(3).  Also B(E2) ratio is anomalously small for  

two nuclei  i.e., 
198

80Hg118 (=0.375±0.018)  and 
144

60Nd84 (=0.73±0.090) with only two vacancy of p+ for Z =82 
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and two valence n
0
 outside N=82, respectively; which supports the findings of Cakirli et.al. [5]. The present 

study supports; the subshell effect around Z=64, for N≤ 90 as observed by Casten [6] and Casten and Zamfir 

[7]; and the constant nuclear structure of N=90 isotones as pointed out by Gupta [8].   
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Abstract 

The predictions of asymmetric rotor model (ARM) of Davydov and Filippov for B(E2; 4g→2g)/ 

B(E2;2g→0g) branching ratio are compared with the experimental data in medium mass region.  The 

SU(5) and SU(3) limits of interacting boson model are also shown for useful comparison. It is noted 

that the ARM is partially successful in explaining this branching ratio. 

 

Key Words: Asymmetric rotor model, B(E2; 4g→2g)/ B(E2;2g→0g) branching ratio, nuclear 

structure, medium mass region. 

 

1. Introduction 

The concept of collectivity in atomic nuclei is one of the most fundamental findings in 

history of nuclear structure physics. The macroscopic, microscopic and geometrical nuclear models 

have been applied to describe this collective behaviour of nuclei. The geometrical models depicting 

the atomic nucleus as a liquid drop with a given nuclear shape and algebraic models, take into 

account the pairs of proton and/or neutron only. Despite the often very dissimilar theoretical 

approaches, most of the collective models have some common basic features, such as predictions of 

energies of  g- band, β- band, γ- band and other higher multi-phonon bands or B(E2) values and 

B(E2) ratios for inter and intra band transitions, which have been observed in a wealth of nuclei 

away from closed shells.  

The energy ratio R4 (=E4g/ E2g) is a key observables which can be used to assess the 

collectivity of nuclei and it is equal to 2.0 for an ideal spherical harmonic vibrator i.e., SU(5) limit 

and 3.33 in an axially symmetric deformed rotor, i.e. SU(3) limit of interacting boson model 

(IBM)[1]. The inter/ intra band transition rates also provide another good measure of nuclear 

collectivity[2], which is less sensitive to anharmonicities than energies of various bands. The 

B(E2;4g→2g)/B(E2;2g→0g) is a particularly good example, as it is 2.0 in the spherical limit or SU(5) 

and 1.4 in the deformed limit or SU(3)[1].  Significant deviations from these two limiting values can 

be found; if one considers very small numbers of valence neutrons (Nn) and/or protons (Np), which 

are used in the IBM; also in asymmetric rotor model (ARM) of Davydov and Filippov [3] where 

asymmetric parameter (γ) changes from 0
0
 to 30

0
 which corresponds to above mentioned two limits 

of IBM i.e. SU(3) and SU(5) respectively. 
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In the present work we have compiled the experimental data of B(E2;4g→2g)/B(E2;2g→0g) 

branching ratio from the website of Brookhaven National Laboratory[4] for medium mass region 

(Nd - Hg). The observed data is compared with the ARM predictions for asymmetric parameter (γ) 

equals to 0
0
 to 30

0
. The SU(3) and SU(5) limits are also included to get new information about the 

structure. The details of asymmetric rotor model, result & discussions and conclusion are given in § 

2, 3 and 4, respectively. 

 

2. ASYMMETRIC ROTOR MODEL  
Davydov and Filippov [3] investigated the energy levels corresponding to rotation of nucleus 

which does not change its internal state. They established that the violation of axial symmetry of 

even –even nuclei affect the rotation spectrum of axial nucleus with appearance of some new 

rotational states having total angular momentum of 2, 3, 4,···. If the deviation from axial symmetry is 

small, then these levels lie very high and are not excited. The energy of rotation of a non-spherical 

even-even nucleus is given, in the adiabatic approach, by Schrödinger eq.: 

(H - E)Ψ = 0   (1) 

where E is measured in units of  , and the operator H is given by the formula: 

    (2) 

where Jλ are the projection of the total angular momentum along the axes of a coordinate system 

fixed in the nucleus. The wave function corresponding to the state with total moment J, can be 

represented as:  

         (3)  

where      (4) 

The function in eq. (4) is the function of the Euler angles that determine the orientation 

of the principal axis of the nucleus with respect to the laboratory space. It can be shown that the 

wave functions (3) from the basis of totally symmetric representation of the group D2, the elements 

of which are the rotation through 180
o
 around each of three principal axes of the nucleus [see ref. [3] 

and [4]). The wave function of the rotational 2
+
 states of the non-axial nucleus can be rewritten as 

[3]: 

       (5) 

,       (6) 

where, the value of AK coefficients in the wave function of eq. (5, 6) can be obtained by using the 

value of γ:  

     

,  
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,  

,       (7) 

  

Similarly for 3
+
 state the wave function can be written as: 

        (8) 

The spin 4
+
 wave function are given by Davydov and Rostovsky [4]: 

  

         (9) 

etc.  

Putting the eq.(3) in eq.(1) and making use the value of matrix element of the operator of the 

rotational energy eq.(2) acting on the wave function eq.(4) 

      

,    (10) 

,        ,          

,                               (11) 

One obtains for each value of J a system of algebraic equations for the coefficients AK in the wave 

function (3). For J = 4, the Schrodinger eq.(1) is reduced to a system of equation as [4]: 

 

    (12) 

 

The energy of the corresponding rotational states can be determined from the condition that 

the system (12) has a solution. The three values of E can be obtained by solving the cubic equation: 

 

  
             (13) 
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where       and                (14) 

 

For a rough estimate of ℓ, the value of T= 40MeV,  = 400 keV and β = 0.2 gives the value of ℓ= 

80. Similarly, the energy E for 2
+
 states can be determined from the: 

 

                           (15)             

 

where , and  

 

             (16) 

 

Substituting the values of a, b, c and expending the determinant (15) we obtained the second degree 

equation: 

 

     (17) 

 

where x and  are defined in Eq. (14). The two roots of Eq. (17) can be written as (in unit 

of  ), 

 

         (18) 

 

         (19) 

 

The energy level of I=3 state is given by: 

 

       (20) 

 

and energies of I=5 states are given by: 

 

       (21) 
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In Eq. (21) for the minus sign on the square root and  = 2 for the plus sign gives the energy of 

51+ and 52+ states corresponding to K
π 

= 2
+
 and K

π 
= 4

+
 bands, respectively. The value of asymmetry 

parameter can be obtained using the Eqs. (18) and (19) and  the asymmetric parameter (γ) becomes: 

 

   , where       (22) 

 

2.1 Reduced Transition Probabilities 

 

 

The reduced transition probability B(E2; Ii→ If
′
) between two numbers of the same rotational 

band with quantum number K is expressed as: 

 

       (23) 

 

where we have used  

 

       (24) 

 

For Coulomb excitation, the B(E2), reduced transition probability in the case of symmetric rotor 

(even-even nuclei) is expressed; 

 

  

 

       (25) 

 

The non-spherical nuclei have rotational levels which are due to very fast electric quadrupole 

transition probability B(E2; I→I
′
). According to equation (25), B(E2; Ii→If

′
) increases as the value of 

intrinsic quadrupole moment Q0 increases. If the transition takes place between the ground state 

(I=0) and the first excited state (I=2) of nuclei, then 

 

          (26) 

For transition between rotational level of spin I=2 and I=0, the BE(2) value can be expressed (in unit 

of e
2
Q0

2
/16π ): 

 

b(E2; 21→01) = B(E2; 21→01)/ e
2
Q0

2
/16π = (1/2){1+ [(3-2sin

2
(3γ)/ (9-8sin

2
(3γ)

1/2
]}        (27) 

 

where the intrinsic quadrupole moment of an axial nucleus  with nuclear core deformation β is: 
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Q0= 3ZR
2
β/ (5π)

1/2
.                    (28) 

Also the B(E2) value for other transitions can be written as[3]: 

B(E2;4i→2f) = 5/126 [cosγ (6A0i Af + √35A2i Bf) + sin(√15A2iAf + A0iBf +√35A4iBf)]
2
      (29) 

where Af and Bf are the coefficients that determine the wave functions of spin 21
+
 and Aλ coefficients 

determine the wavefunction of spin 41+. Using the values of coefficients determined the 

wavefunctions, one can calculate the probabilities of electric quadrupole transitions between various 

rotational states of the nucleus. The ARM  B(E2;4g→2g)/B(E2;2g→0g) branching ratio is deduced 

from eqs. (27, 29) using asymmetric parameter (γ) from equation (22).  

 

3. Result and Discussions 

3.1 Calculation of Asymmetric Parameter (γ) 

The values of asymmetry parameter (γ) can be evaluated using eq. (22) by puting the the 

experimental energies of  E22
+
 (=E22) and E21

+
 (=E21) states [5].   It can be evaluated using:   

(a) The energy ratio R4=(E4g/E2g) but only the nuclei with 2.8≤R4≤3.33 will be allowed [6,7].  

(b) The B(E2) values which are very small and available with uncertainties.  

Therefore the values from energy ratio Rγ are more reliable. The calculated values of asymmetry 

parameter (γ) for all nuclei of medium mass region are used to calculate the 

B(E2;4g→2g)/B(E2;2g→0g) branching ratio.  
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Fig.1 The Variation of B(E2;4g→2g)/ B(E2; 2g→0g) ratio from ARM (shown by hollow circles) vs. 

asymmetry parameter (γ) in degree. The vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 

1.4 are shown by dotted lines for comparison. 

 

3.1 Variation of  ARM  B(E2;4g→2g)/B(E2;2g→0g) ratio versus Asymmetry 

Parameter (γ) 
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The variation of B(E2;4g→2g)/ B(E2; 2g→0g) ratio from ARM vs. γ is shown in Fig.1. The ARM 

data points are shown by hollow circles and the vibrational or SU(5)  limit at 2.0 and rotational or 

SU(3)  limit at 1.4 are shown by dotted lines for useful comparison. It is clear from the figure that the 

ARM predictions are very close to the SU(3) limiting value and also it is increases very slowly on 

increasing γ  from 0
0
 to 20

0
 forming a peak at 20

0
 and  decreases slowly beyond 20

0
 approaches 1.4 

which is SU(3) limiting value at γ≈ 27
0
. The ARM ratio is away from vibration model limit of 2.0 

this shows that it cannot explain the vibrational nature of the nuclei 

3.1 Variation of Experimental and ARM B(E2;4g→2g)/B(E2;2g→0g) ratio versus  

Asymmetry Parameter (γ) 

The variation of B(E2) ratio from experiment and ARM with γ is shown in Fig.2. The ARM 

data points are shown by solid triangles and SU(5)  limit at 2.0 and SU(3)  limit at 1.4 are shown by 

dotted lines. Two nuclei are having B(E2) ratio anomalously more than 2.0 and not shown in the 

Fig.2, e.g. 
182

Hg and 
184

Hg for them the B(E2;4g→2g)/B(E2;2g→0g)  ratios are 4.6(3) and 2.8(8) 

respectively. There are some other nuclei in medium mass region those are having this ratio 

anomalously lesser than 1.4 i.e. SU(3) limiting value e.g., 
150

Nd, 
164

Dy, 
164

Er, 168W,   
182

W, 
184

W, 
192

Os, 
180

Pt and 
198

Hg having values 1.31(10), 1.30(7), 1.18(13), 1.1(3), 1.386(20), 1.30(9), 1.22(4), 

0.92(22) and 0.375(18) respectively. It is noted that in medium mass region (Nd-Hg), this B(E2) 

ratio is smallest in case of 
198

Hg [=0.375(18)] which is non magic nucleus with only two vacancy of 

protons for Z=82. This ratio is also very small in case of 
144

Nd84 [=0.73(9)]; which is also a non- 

magic nucleus; which has only two valence neutrons outside N=82.  It supports the findings of 

Cakirli et.al. [8] that the value of this B(E2) ratio
 
is anomalously small in non  magic nuclei, as it 

cannot be explained with collective approaches. The values of B(E2;4g→2g)/B(E2;2g→0g)  ratios for 

N=88 isotones (Nd, Sm, Gd, Er) are lying between SU(3) and SU(5) limits indicating the shape 

phase transition for these nuclei. However the nature of the Dy88  is different and its value is  close to 

SU(3) limit. Other data points are lying between SU(5) and SU(3) limits. While the ARM predictions 

are very close to the SU(3) limit.  

8 10 12 14 16 18 20 22 24 26 28 30
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N=88
Sm

86

Dy
88

Pt
106

Hg
110

Nd
84

SU(3)

SU(5)
 Nd

 Sm

 Gd

 Dy

 Er

 Yb

 Hf

 W

 Os

 Pt

 Hg

 ARM

B
(E

2;
4g

-2
g)

/B
(E

2;
2g

-0
g)

Asymmetry Parameter ()

 
 



International Journal of Computer & Mathematical Sciences  

IJCMS 

ISSN     2347 – 8527 

Volume 4, Special Issue  

March 2015 

 

   

    

 

 

167 Satendra Sharma
, 
Reetu Kaushik 

 

Fig.2 The Variation of experimental B(E2;4g→2g)/ B(E2; 2g→0g) ratio vs. asymmetry parameter 

(γ) in degree. The vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown by dotted 

lines for comparison. The ratio from ARM is shown by solid triangles. 

4. Conclusions 

The predictions of asymmetric rotor model (ARM) of Davydov and Filippov for B(E2; 4g→2g)/ 

B(E2;2g→0g) branching ratio are compared with the experimental data in medium mass region.  It is 

found that the observed data point of this ratio for N=88 isotones (Nd, Sm, Gd, Er) are indicating the 

shape phase transition from an ideal spherical harmonic vibrator or SU(5) to an axially symmetric 

deformed rotor or SU(3).  It is also noted that this B(E2) ratio is anomalously small in case of  two 

non- magic nuclei  i.e., 
198

80Hg118 [=0.375(18)]  and 
144

60Nd84 [=0.73(9)] with only two vacancy of 

protons for Z =82 and two valence neutrons outside N=82, respectively; which supports the findings 

of Cakirli et.al. [8]. The data points for other nuclei are lying between SU(5) and SU(3) limits. The 

calculated B(E2) ratios of  ARM are very close to the SU(3) limit of IBM indicating that it can 

explain the structure of only well deformed nuclei. Therefore the ARM is partially successful in 

explaining this branching ratio.  
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Introduction 

The reduced electric quadrupole transition 

probability, B(E2;01
+→21

+
) of even–even nuclides 

have been compiled by Raman et. al [1] and its 

variation versus A have been shown for 0≤A≤260 

region. The observed values have been compared 

with various theoretical models [1]. The 

B(E2;01
+→21

+
)   is a good indicator of the collectivity 

in even-even nuclei. The intrinsic quadrupole 

moment, Q0, can be deduced from the B(E2;01
+→21

+
) 

value, i.e. 

 

B(E2;01
+→21

+
) = (5/16π) e

2
Q0

2
. 

 

In Rigid Triaxial Rotor (RTR) model [2] the 

b(E2;21
+→01

+
) values in unit of  (e

2
Q0

2
/16π)  are 

related to asymmetry parameter γ0: 

b(E2;21
+→01

+
) = 

 

½{1+[ (3-2Sin
2
3γ0) /(√(9-8Sin

2
3γ0)]}. 

 

The RTR model is a simple way to describe 

nuclear structure of a nucleus. This model was widely 

used to explain energy levels, B(E2) values and 

B(E2) ratios for inter and intra-band transitions. 

Earlier, Bohr & Mottelson [3] observed that nuclei 

are no longer to be considered deformed in the 

original sense at γ0=24
0
 and the nucleus is expected 

to take any shape, including triaxial. Earlier, a review 

on inter-band B(E2) ratio in the RTR model for rare 

earth and light mass region have been presented by 

Gupta & Sharma [4] and Mittal-Sharma-Gupta [5] to 

test the internal consistence of the RTR model   

predictions.  

In the present work, we search for a 

systematic dependence of B(E2;01→21) values on 

asymmetry parameter (γ0) in rare-earth region. The 

whole data is divided into four quadrants as 

suggested by Gupta et. al [6]. 

 

 

 

 

 

Result and Discussions 

Determination of γ0  

There are various methods [2, 4, 5] to 

calculate γ0.  The determination of γ0 from the energy  

ratio Rγ (=E2γ/E2g) is more relevant as discussed by 

Gupta & Sharma [4]. We have calculated γ0 from Rγ 

using the equation: 

 

2/1
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The energy values of E2γ and E2g are taken 

from the website of National Nuclear Data Centre, 

Brookhaven National Laboratory, USA [7]. 

The variation of B(E2; 01
+
 →21

+
)  vs. γ0 

 

The dependence of energy of first 2
+
 states of even-

even nuclei on neutron number tells about the nuclear 

core deformation. We have extended this search of 

systematic in the reduced electric quadrupole 

transition rate B(E2) values for Z=50-82, N=82-126. 

To understand the variation of B(E2) with γ0,  the 

whole data is divided into four quadrants as discussed 

in ref. [5,8,9]. The variation of B(E2) values against 

γ0 are shown in figs. 1 to 3. For Quadrant-I (Q-I), the 

plot of B(E2) values vs.  γ0 is shown in fig. 1 for Ba-

Dy. The plot of B(E2) values versus  γ0 yields a 

smooth falling curve of B(E2) with  increasing γ0 

reflecting the smooth decrease of nuclear 

deformation. The data points are not lying on the 

straight line.  For Quadrant-II (Q-II), the plot of 

B(E2) values vs.  γ0 is shown in fig. 2. Most of the 

data points are lying on the straight line and 

indication that the B(E2) values are linearly 

dependent on γ0. The variation of B(E2) vs. γ0 for Q-

III is same as for Q-I (see Fig. 3).   
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Fig. 1 Plot of B(E2) vs.  γ0 in Q-I. 
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Fig. 2 Plot of B(E2) vs.  γ0 in Q-II 
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Fig. 3 Plot of B(E2) vs.  γ0 in Q-III 
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