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STUDY OF NUCLEAR STRUCTURE OF SOME NUCLEI IN MEDIUM MASS
REGION

REETU KAUSHIK

ABSTRACT

This research work is limited to the medium mass region (A=150-200). In this work, the
collective nuclear structures of some medium mass nuclei have been analyzed, using
empirical studies, phenomenological, geometrical, group theoretical models.  The
research work is divided into five Chapters. The Introduction is given in the Chapter |
and Nuclear Models are discussed in Chapter Il. In Chapter 11, the values of asymmetry
parameter (yo) of Davydov and Filippov model are calculated using the experimental
energies of E2," and E2;" states for 50<Z<82 and 82<N<126 region. The whole
calculated data is divided into four quadrants. The Quadrant I (Q-I) is for 50<Z<66 and
82<N<104 shell space with particle like proton-bosons and neutron-bosons and it is
forming the p-p space. The Quadrant Il (Q-II) is for 66<7Z<82 and 82<N<104 shell
space, with hole like proton-bosons space and particle like neutron-bosons space and it
is forming the h-p space. The Quadrant Il (Q-III) is for 66<7<82 and 104<N<126
region shell space, with hole like proton-bosons and neutron-bosons and it is forming h-
h space. The quadrant IV (Q-IV) is for 50<Z<66 and 104<N<126 shell space with
particle like proton-bosons and hole like neutron-bosons and it is forming the p-h space.
The study of systematic dependence of yo on N, Ng and NpNn has been carried out on
quadrant wise basis to find out the role of valence nucleons and holes on the nuclear
structure. The role of Z=64 subshell effect for N<90 region is also discussed. The
NpNn product is a good measure of its effect in producing the deformation in atomic
nuclei. This product is also an indicator of the n-p interaction among the valance proton
and/or neutron nucleons causing the deformation of nuclear core. In quadrant-1 and
quadrant-11, the asymmetry parameter decreases; from 30° in Q-1 and from 22° in Q-I1
to 9% 10% with increasing N from 82 to 104 (i.e. the mid of N=82 to 126 neutron shell),
signifying that the nuclear deformation (B) is increasing, while the energy ratio Ry
increases from 2 (for harmonic vibrators or SU(5) type nuclei) to 10/3 (for good rotors

or SU(3) type nuclei). This indicates that in this region the nuclear structure depends
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much more on Z. In quadrant-lI, the asymmetry parameter is having more correlated
dependence on N, rather than on NpNn. Also in quadrant- I, the Z=64 sub-shell effect
for N<90 nuclei affect the variation of asymmetry parameter with N and NpNn product.
The existence of X(5) symmetry in N=90 isotones established in recent works supports
the formation of isotonic multiplets in this work. The systematic dependence of
asymmetric parameter on NpNn has strong dependence in quadrant-11. In Q-II, the line
of B- stability runs nearly diagonally, i.e. parallel to Ng and leading to the formation of
F-spin multiplets. The same feature had been observed earlier for the energy of first
excited state i.e. E2g. In quadrant-I11, the variation of asymmetry parameter is different
from quadrant | and Il because the asymmetry parameter increases sharply from 9° - 10°
to 30° with increasing N from 104 to 126. This is signifying that the nuclear
deformation (B) is decreasing and the nuclear structure changes from pure rotor SU(3)
type to vibrational SU(5) or y-unstable O(6) type. Further, the asymmetry parameter for
different elements has smooth curve with NpNn with almost same slopes except for Hg
isotopes. In Chapter IV, the predictions of asymmetric rotor model of Davydov and
Filippov for B(E2;4g—2g)/B(E2;2g—0g) branching ratio are compared with the
experimental data in medium mass region. It is found that the observed data point of
this ratio for N=88 isotones (Nd, Sm, Gd, Er) are indicating the shape phase transition
from an ideal spherical harmonic vibrator or SU(5) to an axially symmetric deformed
rotor or SU(3). It is also noted that this B(E2) ratio is anomalously small in case of two
non- magic nuclei i.e., **®Hg11 [0.375(18)] and ***6Ndss [=0.73(9)] with only two
vacancy of protons for Z =82 and two valence neutrons outside N=82, respectively. The
data points for other nuclei are lying between SU(5) and SU(3) limits. The calculated
B(E2) ratios of ARM are very close to the SU(3) limit of IBM indicating that it can
explain the structure of only well deformed nuclei. Therefore the ARM is partially
successful in explaining this branching ratio. The variation of experimental B(EZ2;
4g—2¢)/ B(E2;2g—0g) branching ratio with N and Z is carried out for Nd—Hg nuclei.
It is found that the there is shape phase transition for N=88 and 90 isotones (Nd, Sm,
Gd, Er) from an ideal spherical harmonic vibrator or SU(5) to an axially symmetric
deformed rotor or SU(3). The present study supports the sub shell closer effect around

7=64, for N< 90 and the constant nuclear structure of N=90 isotones. Finally, in
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Chapter V, the interacting Boson Model-1is used to study the nuclear structure of
1521545m nuclei. The *°2Sm is chosen for study, because it is a best example of recently
discovered X(5) symmetry of IBM and ***Sm is a rotor type i.e. SU(3) symmetry. The
bunching of various levels in **>*>*Sm is reproduced well in present calculation and is
in agreement with the observed energy level diagram of experimental data. In *>*>*Sm,
the B(E2) branching values and B(E2) branching ratios are calculated for inter-band and
intra-band transitions for g-, B-, y- and B,- bands and the calculated results are in good
agreement with experimental data. In **'Sm nuclei, the IBM-1 Hamiltonian
reproduce the energy spectrum, B(E2) values and B(E2) ratios for g-, B- and y— bands.
Present calculation supports that *>Sm is as a best example of X(5) symmetry and

1>4Sm is a SU(3) type in nature.
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CHAPTER-I

1.1 PREHISTORY OF NUCLEAR PHYSICS

Nuclear physics is a stimulating subject, in an attempt to explain the structure of
atom, J. J. Thomson suggested that the atom consisted of an equal number of positive
and negative charges (proton and electron) distributed uniformly within its spherical
volume. The radius of the atom was estimated to be the order of 10™° meters. Since
the famous o- ray scattering developed by Rutherford (1911), established that the
mass of an atom is concentrated within a small, positive charge region at the centre
of the atom. This central core is surrounded by electron cloud, is called nucleus.
Since Rutherford’s times many scattering experiments, using highly energetic
electron and neutrons as the scattering particles, have been performed to determine
the size of nucleus. Later, Chadwick (1932) discovered the neutron as the constituent
of nucleus. Heisenberg (1932) introduced the concept of isospin, viz. that proton and
neutron merely two different states of the same elementary particle known as
nucleon. From the phenomena of nuclear fission of heavy nuclei, Neils Bohr
developed the liquid drop model based on strong interaction of the nucleons.
However, Mayer (1949, 1950) proposed the nuclear shell model based on the average
field produced by all the nucleons moving independently in the potential well. The
regular rotation like spectra in medium mass nuclei led Bohr and Mottelson (1953) to
develop the collective model, a combination of the liquid drop model and shell

model.

It is well known that the nuclear model is applicable in explaining the different
nuclear properties such as prediction of energies of g-band, B-band, y-band and other
higher multi phonon bands or B(E2) values and B(E2) ratios for inter and intra band
transitions of nuclei for light and medium mass region with varying degrees of
success. In this chapter we give the basic definition, useful concept and facts relating
to the consequent chapters. This chapter also sketches the brief summary of
theoretical models which have been used in the present thesis work for understanding

of experimental data and the collective nuclear structure.

In this chapter we give the brief summary of the different types of models.



1.1.1 Angular Momentum of Nuclei

The angular momentum L of a particle about a given origin is defined as:
L=rxp (1.1)

where, r is the position vector of the particle relative to the origin, p is the linear
momentum of the particle and x denotes the cross product. The derived Sl units of
angular momentum is Newton meter second (N-m-s or kg-m%s) or Joule- second
(J-s). Because of the cross product, L is a pseudo vector perpendicular to both the
radial vector r and the momentum vector p. For an object with a fixed mass that is
rotating about a fixed symmetry axis, the angular momentum is expressed as the

product of the moment of inertia (1) of the object and its angular velocity (®) vector:
L=1lw. (1.2)

The angular momentum of a particle or rigid body in rectilinear motion (pure
translation) is a vector with constant magnitude and direction. If the path of the
particle or centre of mass of the rigid body passes through the given origin, its
angular momentum is zero. Angular momentum is also known as moment of

momentum.
1.1.2 Electric Quadrupole Moment of Nuclei

The nuclear electric quadrupole moment is a parameter which describes the
effective shape of the ellipsoid of nuclear charge distribution. A non-zero quadrupole
moment Q indicates that the charge distribution is not spherically symmetric. By
convention, the value of Q is taken to be positive if the ellipsoid is prolate and

negative if it is oblate.

1.1.3 Nuclear Forces

Every nucleus consists of protons and neutrons (known as nucleons). The nuclear
forces acting between these nucleons, called nuclear force. These forces have been
discovered by James Chadwick studied in terms of models, and since models do not
involve the detailed behavior of these forces, we have learned only about certain of

their general features. To a large extent, this force can be understood in terms of
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exchange of virtual light meson, such as the pions. Sometimes the nuclear force is
called the residual strong force. Further, characteristics of the nuclear force are the
following.
(1) The nuclear force is short range and central, with small non-central part.
(if) The nuclear force is repulsive at very short range to prevent the collapse of
the nucleus.
(iii) The constants density and binding energy per nucleon (B/A) indicates the
saturation property of the nuclear force.
(iv) As nucleons are Fermi-Dirac particles (spin) the nuclear force exhibits the
saturation property of the nuclear force.
(v) The nuclear force is charge independent i.e. neutron-neutron (n-n), proton-
proton (p-p), neutron-proton (n-p) interactions are equal.
(vi) The main knowledge about the nucleon interaction came from the p-p, n-p

scattering experiments and study of deuteron.

1.1.4 Magic Number and Stability of Nucleus

It has been observed that nuclei have protons and neutrons. If numbers of any of
these nucleons Z or N is equal to 2, 8, 20, 28, 50, 82 and 126 then the nucleus
becomes more stable. These numbers are called magic numbers. If both N and Z are
magic numbers, then nucleus becomes very stable. The existence of magic number is
explained using shell model and it also describes spin and parities of low lying state

of closed major shell nuclei. At this number of nucleon a shell becomes complete.
1.2 LIQUID DROP MODEL

The liquid drop model in nuclear physics treats the nucleus as a drop of
incompressible nuclear fluid. It was first proposed by George Gamow and then
developed by Niels Bohr and John Archibald Wheeler. The fluid is made of nucleons
(protons and neutrons), which are held together by the strong nuclear force. This is a
basic model that does not explain all the properties of the nucleus, but does explain
the spherical shape of most nuclei. It also helps to predict the binding energy of the

nucleus.
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Mathematical analysis of the theory delivers an equation which attempts to predict
the binding energy of a nucleus in terms of the numbers of protons and neutrons it
contains. This equation has five terms on its right hand side. These correspond to the
cohesive binding of all the nucleons by the strong nuclear force, the electrostatic
mutual repulsion of the protons, a surface energy term, an asymmetry term (derivable
from the protons and neutrons occupying independent quantum momentum states)
and a pairing term (partly derivable from the protons and neutrons occupying
independent quantum spin states).

If we consider the sum of the following five types of energies, then the picture of a
nucleus as a drop of incompressible liquid roughly accounts for the observed

variation of binding energy of the nucleus.

1.3 NUCLEAR SHELL MODEL

In nuclear physics, the nuclear shell model is a model of the atomic nucleus which
uses the Pauli exclusion principle to describe the structure of the nucleus in terms of
energy levels. The shell model is partly analogous to the atomic shell model which
describes the arrangement of electrons in an atom, in that a filled shell results in
greater stability. When adding nucleons (protons or neutrons) to a nucleus, there are
certain points where the binding energy of the next nucleon is significantly less than
the last one. This observation, that there are certain magic numbers of nucleons: 2, 8,
20, 28, 50, 82, 126 which are more tightly bound than the next higher number, is the

origin of the shell model.

1.3.1 Successes and the Limitations of the Shell model

Shell model explains correct magic number, spin, parity, binding energy of nuclei,
cross section of neutron captured by nuclei, magnetic dipole moment with some
deviation from experimental observation and transition probabilities of emission of

gamma rays from the nuclei.

Whereas, it gives zero quadrupole moment of the nuclei and does not give
information about nuclei having more valence nucleons. This model is best for

lighter nuclei.
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1.4 BOHR-MOTTELSON COLLECTIVE MODEL

Unified collective model of nucleus was proposed by Bohr and Mottelson (1953).
Collective model is the combination of liquid drop model. It views the nucleus as
vibrating —rotating core capable of being deformed to various shapes i.e. prolate,
oblate or tri-axial. This is called the geometric view of the collective motion of the
nucleus. The law energy levels of the nucleus are grouped in three collective bands,
called K*=0," g- band; K™=0," B- band; K"=2;" y- band and higher energy levels are

called multi-phonon bands.
The Bohr-Mottelson (1975) series expression for level energies in a band is given as:
E=AI(+1)+B{I(1+1)F+C{1(1+1)}° +..... (1.3)

In the shell model, core is made of paired nucleons and the core may be spherically
symmetric or may be axially deformed. The non spherical potential arises due the
valence nucleons which polarise the nuclear core. Thus the single particle energies
are calculated in a non spherical potential. In this model the nucleus consists of an
even-even core plus one or more nucleons moving in the shell model orbits. The
coupling of core and nucleons may be weak (or strong) which corresponds to the
vibrational, rotational model.

1.4.1 Successes and the Limitations of the Collective model

In the Bohr-Mottelson model the even Z and even N nucleus has vibration and
rotational motion. The vibrational model predicts the following properties:

(i) The vibrational nuclei have low lying collective excited states.

(ii) The E2 transition from two phonon triplets to one phonon 2;" level is strong.

(iii) The cross over E2 transition from second 2;" state to the ground state should
vanish.

(iv) The Quadrupole moment of the first 2, excited states is zero.
The rotational model (RM) can explain the following properties:

(i) The energy spectrum of rotational nuclei has the ground state rotational band, 8

band and y-vibration band.



(i) The transition for (0°*—2.) has the large absolute B(E2) value and Quadrupole
moment.

(iii) The deformed nuclei have the magnetic moment with sign and finite magnitude.
(iv) The nuclear deformation is given by the expression:

4T
3Z.R:

B = B(E2;0f— z;ﬁ X (1.4)

(v) The K selection rule for electromagnetic transition is AK = |Ks -K; | < A, where K;
and K¢ are the values of K for initial and final bands for a particular transition, and A

is mode of transition.

The limiting collective model approach could not explain the observed properties of
those nuclei which posses both the rotational and vibrational model feature. In the

limiting model the rotational-vibration interaction was not taken into account.
1.5 ROTATIONAL-VIBRATIONAL MODEL

The complete rotational —vibrational interaction model (RVM) was developed by
Fasessler et al. (1965), which allow the diagonalization of the Bohr-Mottelson
collective Hamiltonian. In this model the nucleus is assumed to be axially symmetric
deformed i.e. Bo>0 and y,=0. The RVM succeeds in the reproduction of the low lying
energy spectra of the g-, B- and y-bands and the B(E2) ratios for transition from vy-
and B-bands.

1.6 ASYMMETRICAL ROTOR MODEL

Davydov and Filippov (1958) proposed asymmetric rotor model (ARM) to
investigate the energy levels corresponding to rotation of nucleus which does not
change its internal state. According to which nucleus is triaxially deformed with

¥,70 and the ground band, B-band and y-bands are due to rotation of triaxial ellipsoid

nucleus about different axis. One can derive the value of angle of triaxiality or

asymmetry parameter y, from ratio R, as given below:



2
1) 2, where R, = Ez (1.5)
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1.7 DYNAMIC PAIRING PLUS QUADRUPOLE MODEL

The dynamic pairing-plus-quadrupole (DPPQ) model was proposed by Kumar and
Baranger (1967, 1968). They predicted successfully the prolate to oblate shape
transition in Os - Pt region. The DPPQ model can treat spherical, deformed and
transition nuclei within a single frame work. Kumar and Baranger also developed the
dynamic deformation model (DDM), in which there was no inert core assumed. In
DPPQ model and DDM, instead of assuming a fixed shape (axially symmetric
deformed or axially deformed) the nucleus is allowed to take its own shape in the (j3,

v) plane. The Bohr collective Hamiltonian is given by
He=V (Ba 'Y) +Trort Tyin with (16)

Ti= 2Zi=10By) @ and

1 57 A - -
Ty = 5{533 (B.v)B~ + 2Bg, (B.¥v)BBY + B, (8, ;;jﬁ-;}-}

where 0k (k=1, 2, 3) are the nuclear moment of inertia, w iS the angular velocities,
Bgp, Bg,, By, are the three mass parameters for f-vibrations, -y coupled motions, y-

vibrations. All the coefficients of H¢ are determined from the solution of Hppg.
1.8 INTERACTING BOSON MODEL

The interacting boson model (IBM) is a model in nuclear physics in which nucleons
pair up, basically acting as a single particle with boson properties, with
integral spin of 0, 2 or 4.

The IBM-I treats both types of nucleons the same and considers only pairs of
nucleons together to total angular momentum 0 and 2, called respectively, s- and d-
bosons. The IBM-II treats protons and neutrons separately. The IBM is suitable for
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describing intermediate and heavy atomic nuclei. Adjusting a small number of
parameters, it reproduces the majority of the low-lying states of such nuclei. This
model of the atomic nucleus has to be able to describe nuclear properties such as
spins and energies of the lowest levels, decay probabilities for the emission of
gamma quantas, probabilities (spectroscopic factors) of transfer reactions, multiple
moments and so into the world. Outlined from which the IBM comes. This
theoretical result is not far from the real situation of even-even nuclei, from which it
is known that their total spin mainly is even. These and other arguments lead to the
basic statement of the IBM which Postulates that the nucleon pairs are represented by
bosons with angular momentum L = 0 or 2. The multitude of shells which appears in
the shell model is reduced to the simple s-shell (L= 0) and the d-shell (L = 2) which
is composed vectorially by d-bosons analogously to the shell model technique. The
IBM builds on a closed shell i.e. the number of bosons depends on the number of
active nucleon (or hole) pairs outside a closed shell. Each type of bosons, the s- and
the d-boson, has its own binding energy with regard to the closed shell. Analogously
to the standard shell model, the interacting potential of the bosons acts only in pairs.

Moreover, the number of bosons is unlimited and is not a good quantum number in
compare to the situation in the IBM. The simplest versions of the IBM describe the
even-even nucleus as an inert core combined with bosons which represent pairs of
identical nucleons. The analogy between nucleon pairs and bosons does not go so far
that in the IBM the wave functions of the corresponding nucleons would appear.
However, in the interacting boson-fermions model which deals with odd numbers of

identical nucleons, bosons are coupled to nucleons.

The models IBM1 and IBM2 are restricted to nuclei with even numbers of protons
and neutrons. In order to fix the number of bosons one takes into account that both
types of nucleons constitute closed shells with particle numbers: 2, 8, 50, 82 and 126
(magic numbers). Three-boson interactions are excluded in analogy with the
assumptions of the standard shell model. In contrast to the collective model, in the
IBM one does not obtain a semi classical, vivid picture of the nucleus but one
describes the algebraic structure of the Hamiltonian operator and of the states, for

which reason it is named an algebraic model.



1.9 SUBJECT OF STUDY IN THIS THESIS

1.9.1 Chapter 1

The current work is based on the study of nuclear structure for A=150-200 for
medium mass region. The study is carried out by in-between this A=150-200 region
in four quadrants. We studied all the models, viz, the geometrical, empirical and
group theoretical models. The predictions of these models have been compared with
available experimental data.

1.9.2 Chapter 2

In Chapter 11, the theory of nuclear models such as liquid drop model, nuclear shell
model, collective model, dynamic- pairing —plus quadrupole model, interacting
boson model etc. are discussed.

1.9.3 Chapter 3

In Chapter III, the values of asymmetry parameter (yo) of Davydov and Filippov
model (1958) are calculated using the experimental energies of E2," and E2;" states.

Its variation with N, Z, NpNn, Ng is studied qudrant wise.

1.9.4 Chapter 4
In Chapter 1V, the predictions of asymmetric rotor model of Davydov and Filippov
(1958) for B(E2;4g—2¢)/B(E2;2g—0g) branching ratio are compared with the recent

experimental data in medium mass region.

1.9.5 Chapter 5
In Chapter V, the interacting boson model-1 of Arima and lachello (1976) is applied
to study the nuclear structure of *****Sm isotopes. The predictions of IBM are

compared with the experimental data and the data of other nuclear models.



CHAPTER- 11
NUCLEAR MODELS

2.1 INTRODUCTION

Different models for nucleus have been proposed each of which explains the
behavior of nucleus in some specific situation. But at the same time each of these
models is in noticeable contradiction with other models or with known facts about
nuclear forces. We will limit ourselves only to some basic models for the nucleus

that can be explaining the general characteristics.
2.2 BOHR-MOTTELSON UNIFIED COLLECTIVE MODEL

It is also called unified model, description of atomic nuclei that incorporates aspects
of both the shell nuclear model and the liquid-drop model to explain certain magnetic
and electric properties that neither of the two separately can explain. It views the
nucleus as vibrating —rotating core capable of being deformed to various shapes i.e.

prolate, oblate or tri-axial.

In the shell model, nuclear energy levels are calculated on the basis of a single
nucleon (proton or neutron) moving in a potential field produced by all the other
nucleons. Nuclear structure and behaviour are then explained by considering single
nucleons beyond a passive nuclear core composed of paired protons and paired
neutrons that fill groups of energy levels, or shells. In the liquid-drop model, nuclear
structure and behaviour are explained on the basis of statistical contributions of all
the nucleons (much as the molecules of a spherical drop of water contribute to the
overall energy and surface tension). In the collective model, high-energy states of the
nucleus and certain magnetic and electric properties are explained by the motion of
the nucleons outside the closed shells (full energy levels) combined with the motion
of the paired nucleons in the core. Roughly speaking, the nuclear core may be
thought of as a liquid drop on whose surface circulates a stable tidal bulge directed
toward the rotating unpaired nucleons outside the bulge. The tide of positively
charged protons constitutes a current that in turn contributes to the magnetic
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properties of the nucleus. The increase in nuclear deformation; that occurs with the
increase in the number of unpaired nucleons accounts for the measured electric
quadrupole moment; which may be considered a measure of how much the

distribution of electric charge in the nucleus departs from spherical symmetry.

2.2.1 The Vibrational Model
A spherical nucleus can be considered as compressible liquid drop. Its excitation
mode arises from small oscillations about the equilibrium spherical shape. The

surface of the spherical drop can be written as (see Alder et al. (1956)):

R(0,2) =Ry = [1+Z;, @;,%,(0,2)] (2.1)
where, Ry is the average nuclear radius, «;, are the deformation variables, 4 verify in
mode of the nuclear motion, x is the projection of A on the Z-axis and ¥;, (&, #) are

the spherical harmonics where @ and € are the polar angles with respect to the
arbitrary space-fixed axes. The 4 = 0 mode corresponds to the change in the nuclear
radius without any change in the shape, A = 1 mode corresponds to the translation of
the center of mass, A = 2 is the quadrupole mode of the lowest order of mode and A =
3 corresponds to the octupole mode related to the higher lying excitation. In the A = 2
mode the ground state has no phonon while the first excited state has one phonon
excitation and is five-fold degenerate, since the azimuthal quantum number p can

take of the integral value -2, -1, 0, 1, 2.

In vibrational model it was assumed that the nucleus performs vibrations around the
spherical shape and the Hamiltonian in quadrupole mode can be written as (see Alder
etal. (1956) and Bohr and Mottelson (1953):

H 1c “+15'"
_ - E 2l 42 Bla?
v 2 K 2 H
" (2.2)

Where, B and C are the mass parameter and the stiffness parameter respectively. A
typical spectrum of the **®Cd isotope, which has the vibrational characteristics, is
given by Aprahamian et al. (1987) is shown in Figure 2.1.
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Figure 2.1: Energy levels diagram of 238 Ugs nuclei.

2.2.2 Rotational Model

In the rotational model the shape of the nucleus is assumed to be fixed and the

nuclear system rotates like a rigid structure. The energy associated with rotation

would be purely kinetic and equal to %Eﬁw? According to the collective model, the

3, of nuclei can be determined from the energies of the rotational states. Rotational
energy level of an axially symmetric nucleus can be described by three constants of
motion: J, the total angular momentum; K, the projection of J on the nuclear
symmetric axis (Z-axis); M, the projection of J on the space fixed axis (Z’ —axis).
The collective rotational angular momentum R is perpendicular to the symmetric
axis.

If § and 3 are the moments of inertia for rotations about symmetric axis 3
(i.e. Z-axis) and about an axis perpendicular to Z-axis, J; J, and J; are the
components of the total angular momentum operator along the body fixed axis. The
Hamiltonian given by Bohr and Mottelson (1953) can be written as if J;=J, = J:

iy R (R ) ey 23
_E.EEUI _!!2 233_!!3 ()

Hrat: 13:3 255_-!1'
h? h?

_ N AN 2

S U~ + 5= )
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For Hy: the eigenfunctions are the D functions, which are the transformation

functions for spherical harmonics under finite rotations,

J*D}. =] + 1D,

I D':rw:' = KD':['.{H (2.4)
sziFfH = Drfm
and

R B2
Hmt D.’{Hf = [EUU“‘U_HE]“‘EKE] D!{fﬁ .

The energy Eigen values are:

E=2Z00+1) - K]+ K + K (2.5)
For K = 0 the energy expression becomes

= % JJ+1), J=0246....... (2.6)
The energy levels of the ground state rotational band have the relation,
E(2*) :E(@4") :E®6"):E@B"):...=1:10/3:7:12:......... (2.7

Gupta et al. (1990) study the few good examples of rigid rotors such as *°Gd, *°Er,
170vh and ®W isotopes. The rotational spectrum of the *°Gd isotope is given in the
Figure 2.2 and the values of experimental energies are taken from Sakai (1984).

In the presence of the centrifugal stretching, most of the nuclei deviate from the

expression (2.8) and this effect can be taken into account by modifying to,

Eroe = = JU+1) = BUQ + D))’ 2.8)

where B is constant parameter for all / and 5.
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Figure 2.2: The vibrational spectrum of '®Cd isotope and the rotational spectrum

of 1%Gd isotope.

2.2.3 Rotation Vibration Interaction Model

Fasessler et al. (1965) formulated the rotation vibration interaction model that was a
complete form the collective model of Bohr (1952). It assumes the nucleus to be an
axially symmetric rotating body undergoing very small amplitude shape
vibrations (£,. equilibrium deformation parameter # 0 ; ¥, asymmetry parameter
= 0). This extended model allows the diagonalization of the collective Hamiltonian,
and the interaction of S — vibrational, rotational motion, as well as of f—,y —
vibrational interaction Hamiltonian that can be written as:

H= Hror."'f'?uib. + Hror—z:ib. (2.9)
The value of g-, f —and ¥ — band, the absolute B(E2) values and B(E2) ratios of a
given nucleus can be obtained with the help of four model parameters i.e. the
moment of inertia which takes into account the energy of 27 state: the equilibrium
deformation 5, of the nucleus which can be obtained from the absolute B(E2) value

for the first excited 2 states; the ¥ — vibrational energy E,which is fitted to the

14



energy of the 2] state, the § —vibrational energy Eg which is taken from the energy

of first excited 0" state.

2.3 ASYMMETRIC ROTOR MODEL

Davydov and Filippov (1958) investigated the energy levels corresponding to
rotation of nucleus which does not change its internal state. They established that the
violation of axial symmetry of even nuclei affect the rotation spectrum of axial
nucleus with appearance of some new rotational states having total angular moments
of 2,3,4,.... If the deviation from axial symmetry is small than these levels lie very
high and are not excited. The energy rotation of a non-spherical even-even nucleus is
given, in the adiabatic approximation, by the Schrodinger equation:
(H—E)Y=0 (2.10)

where, E is measured in units of #* /4B 7, and the operator H is given by the
formula:

H=%,— ko (2.11)

2zin? (}rn—%}
Here, 4 = h* /4Bf? is a quantity having dimension of energy, ¥, varies between 0

and 5 and determines the deviation of the nucleus from axial symmetry. The [, are

the operators of the angular momenta on the axis of a coordinate system connected

with the nucleus. In eq. (2.29), for y # 0 or g the nucleus should be regarded as an

asymmetric top. The wave function corresponding to the state with total moment |

can be represented as:

Yy = Lazolld = 4] (2.12)
where,
. 1/2
2)+1 ;
100> = [167[2‘(%} {D{, +(=D° D, oo (2.13)

The function D;’M in eq. (2.13) are the functions of the Euler angles that determine

the orientation of the principal axis of the nucleus with respect to the laboratory

space. It can be shown that the wave functions (2.12) from the basis of totally
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symmetric representation of the group D, the element of which are the rotation
through 180 around each of three principal axes of the nucleus (see Davydov and
Filippov (1958); Davydov and Rostovsky (1959)). The wave function of the
rotational 27 states of the non-axial nucleus can be rewritten as (see Davydov and
Filippov (1958)):

Yyyn = “SfSH:[‘qlﬂ;-fD + By(D;, + D:,—:]f;‘"fai (2.14)
Wy0, =+/5/877 [AED:D +B,(D}, + D:,—:jf‘""ﬂr (2.15)

where, the value of A; coefficients in the wave function of eq.(2.14, 2.15) can be

obtained using the value of vo:

AM, = —[sinyusiﬂﬂ}-b + 3cosy,cos3y, + (9 — 8sin? 3}»’5]1”]

B M, = 3siny,cos3y, — co5y,Sin3y,.

M: = 21,*{(9 — 8sin?3y,) X [1,*{ (9 — 8sin?3y,) + siny,sin3y, + 3cosy, casEer],

AyM;y = /(9 — 8sin?3y,) — siny,sin3y, — 3cosy,cos3y, . (2.16)

B, M, = 3siny, cos3y, — cosy, Sindy,,

M2 = 24/(9 — 8sin?3y,) X [1,.*{(9 — 8sin?3y,) — siny,sin3y, — 3cosy, cosE}-'D]
Similarly for 37 state the wave function can be written as

¥s, = 7/16m%(D3, — D3 ;).

And spin 47 wave function is

Yy = 'IWD:DF

Wy, =+/9/167%(D}, + D} _,)

s =/9/167%(D}; +D; ), ete.

=

Putting the eq.(2.30)in eq.(2.28) and making use the value of matrix element of the

operator of the rotational energy eq. (2.29) acting on the wave function eq.(2.31)

<JAHpA == 2 [g+ 1) -2+ 2
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<JA+2HUA> = CR[1+85)0- DX (- A- DU +A+ DT+ 1+ 2

...... (2.17)
. 2T . 2w
@ = sin ‘(}’u_?); f = sin ‘(}*D-I—?),
. —2 0, foriA=z0
§= sin""y, 830 = {1: Ford=0
(2.18)

One obtains for each value of | a system of algebraic equations for the coefficients
A, in the wave function (2.11). For J = 4, the Schrodinger eq. (2.10) is reduced to a
system of equation as (see Davydov and Rostovsky (1959))

S(a+f)—E 3/2./5(a—B)
3/25(a—pB) 4(a+B)+26—E ﬂ —B) [,;1]
0 L (@—h) (a+B)+85—E
(2.19)
The energy of the corresponding rotational states can be determined from the

condition that the system (2.19) has a solution. The three values of E can be obtained

the cubic equation,

.,  45X7 , cos3y, 81 78 ,
X —,—ﬂ—(agr* + 11T S )x—?nr*mszyﬂ
25in?3y, Sin*3y, Sin*3y, Sin?3y,
. cos3y, 270
+5(4z—,—ﬂ)t*+5r(31— : +42)— ,
25in?3y, Sin*3y, Sin*3y,
70
Sin?3y,
Where

E 2 B
X = (W) and t= 4TS/(h:BB?).
For a rough estimate of t, the value of ¥ = 40MeV, R*Bf* = 400keV and £ = 0.2

gives the value of t = 80. Similarly, the energy of E(27) states can be determined

from the,
2(a+b)—6TBcosy, —E 6TBsiny, + (a— b]wﬁzgz
6TBsiny, + (a—b)y/3/2 6TPcosy, + =2+ 20— E|
(2.20)
where
a = h*[4Bf#*sin*(y, — 2n/3)]7?,
b = h*[4BB%sin® (y, + 2n/3)]7* | (2.21)
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c = h*[4Bf%sin’ (v,)]7 . (2.22)

Substituting the values of a, b, ¢ and expending the determinant (2.20) we obtained
the second degree equation,
99X 9t? 27cos3y, 9

X -0t _=90
3y, * 4sin"3y, 2sin3y, (2.23)

The roots of eq. (2.23) can be written as:
9 l1 _ ‘w'll{l _ _BSL'“;G}*Q)H

E, =

- Sin?(3y,)
(2.24)
9 l1 n w'll{l _ _BSL'“;G}*QJ}'
Pz = sin? (37,)
(2.25)
The energy levels of ] = 3 state is given by Davydov and Filippov (1958):
3 2 18
EG)= szismz ( — E_TIJ:L) ~ sin? (3%0)
Yo ™73 (2.26)

And energies of /] = 5 states are given

[45 + V(9 — 85in?3y,)]
Sin?3y, (2.27)

In eq. (2.26), =1 for the minus sign on the square root and T=2 for the plus sign. The

T

value of asymmetry parameter (yo) can be obtained using the eq. (2.24) and (2.25):

,11/2 )
Yo = éSin‘lgll - (l_R*’) l ; R, =222 (2.28)

1+Ry Y E@2hH

In stationary states of the asymmetric top not one of the projections of the total
momentum on axes 1, 2, 3 of the body-fixed coordinate system has a definite value
and hence the energy levels cannot be specified the values of K = J;. Each value of
the total angular momentum in the asymmetric top corresponds to 2J+1 different

energy levels.
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These levels can be classified with respect to the irreducible representations of group
D,. In virtue of the symmetry conditions on the wave function in even nuclei of the
2J + 1 different levels only those energy levels with a given J can exist which
correspond symmetric representation of group D, Rotation states of the required
symmetry will not exist if J = 1. Two such states will exist for J = 2, one for J = 3,
three for J = 4, two for J = 6 etc. The energy of two levels of required symmetry for J

= 2 are defined by the expressions

9 [1— -\.III{ 1—3:1‘112 3y, ]}]

51(2] = Siﬂz{g}fo:]
(2.29)
a1 lll—E'Zlia]]
£,(2) = e Gro) (2.30)
1 SinZ(3y,) '
Energy of a level for J = 3 is given by
18
£3) =265 5 (2.31)

The three spin 4 energy levels are the roots of the third degree equation:
G0

£3 — mffa et + mffa}rn} [27 + 165in®(3y,)]e — g 27+ 75in?(3y,)] = 0
(2.3.2)
The two spin 5 energy levels are given by the formula
5+./(9—8sin? (3y, )]
E_(5)= L&/ C-8sim Gro)l where T =1,2 (2.33)

sin? 3y,
where T = 1 with negative sign and T = 2 with positive sign. For ¥ = 0 the energy
spectrum is identical to that of an axially-symmetric nucleus. For a fixed value of
violation of axial symmetry of the nucleus leads to an increase energy levels
belonging to the axial nucleus. This increase in the energy levels corresponds to a
decrease of the effective moment of inertia of the nucleus or the effective
deformation parameter S For the first excited state of spin 2 the effective

deformation parameter can be determined as

. 4s5in? (3yg)
Berr = [9_.;(9 1-725in? (3 mj] (2:34)
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The small change of the level energies of an axially symmetric nucleus, violation of
axial symmetry of the nucleus leads to the appearance of some new energy levels
£9(2), £2(3), £2(4) etc. By using the dependence of £,(2), £1(2) on ¥, one can

determine the corresponding value of y from the experimental value of the ratio.

2.4 INTERACTING BOSON MODEL

As we move away from closed nuclei, proton and neutron number increases the shell
model basis states increases and calculations and explanation becomes complicated.
Using quadrupole interactions, basis states reduce and calculations become simple.

Feshbach & lachello (1973, 1974) described some properties of light mass nuclei in
terms of interacting boson. Whereas, Janseen et al. (1974) described the collective
quadrupole in terms of SU(6). Arima and lachello (1975) added s-boson to the d-
boson collectively to explain the structure of nuclei as a boson treated as nucleon pair
& gives microscopic explanation of collective quadrupole states with large
theoretical information lachello & Arima (1987) and Bonatsos (1989).

Collective excitation of nuclei is explained by boson on the basis of boson creation

and annihilation operator of multi-polarity | and z component of m, bTm and bjm. On

the basis of boson operator, boson model is explained. The low lying collective states
of nuclei described in the form of monopole boson having angular momentum an

parity J*=0" as s-boson and quadrupole boson with J*=2" called as d-boson.

stdy (=0, £1, £2) (2.35)
s dy (u= 0, #1, £2) (2.36)
Above relation is following Bose communication relation as:

[ss]=1 (2.37)
and [0 & =8 (2.38)

Spherical tensor Tyis created with Boson operator, that transformed basis vectors of
(2k+1) dimensions, give Clebsch Gorden Coefficients with product of two operators.
Total boson number N is the sum of number of s and d-bosons. i. e., N= ns+ng, which
is conserved.

The Hamiltonian is used to obtain the information about spectrum, which is a

combination of energy term (Ep), one and two body interactions term, here creation
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operator is equal to the annihilation operator. The Hamiltonian is hermition operator
H=H.

H=E+ ) €(b.b)+ ) G)uf |67 x B])" x (b, b:]i-]z o
(2.39)
The H can also expressed as
H = E, + Z€s(sT.5) + Z€,(dT.d) + Z(1/2)(2L + 1]§ci_[[ dTx dT)t x
(d xd) I3 +2[{(dtxdN?x(d x )} +{(dtxs1)2x(dxd)?}] +
= [{(dtx d’fsa X ((s % 5)+{(sTxsT)%x (d x d)?}3+u,[(dT x sT)? x
(dx )21 + % [(sTx51)° X (s X )28
(2.40)
It consist of two one body terms and seven two body terms ¢, (L= 0, 2, 4), vi.(L=0, 2)
and u (L=0, 2).
Electromagnetic transition of multi-polarity in the forms of s and d boson one

body interaction is written as.

TE2=yo + apl(sT % )15 + Bol(dT x d;)13 (2.41)
T2 = Bal(dT x )]} (2.42)
T =, [(dT X 5) + (sTxd) ]2+ B,[(dT x d)]2 (2.43)
Ti"= Bal(d? x )13 (2.44)
T = Ba[(dT x )13 (2.45)

The s and d boson have positive polarity. Operator with multi-polarity one has
positive parity as a M1 operator and for negative parity E1 operator. One can
construct transition operator with multi polarity four. The constant yo oy (L=0,2) and
BL(L=0,1,2,3,4) are parameters magnitude and scale of corresponding operator. The
cubic term in Hamiltonian consist of three creations and three annihilation operator.
The Hamiltonian is also written as:
H=e7ng + aoP'P + a1L? + a,Q% + a3 T4 + a4 T4 (2.46)
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Here P, L, Q, T3 and T, are as pairing, angular momentum, quadrupole, octupole and
hexadecapole operator. For microscopic calculation same Q is used in transition
operator and in Hamiltonian and is known as Q- formalism.

The energy of nuclear states and reduced transition probability in the interacting
boson model is calculated by PHINT program which is written by Scholten (1976)

where coefficients of Hamiltonian correspond to input parameter as

¢’=EPS (2.47)

ao= 2 PAIR (2.48)
a=ELL/2 (2.49)
2,=QQ/2 (2.50)
a;=5 OCT (2.51)
as=5 HEX (2.52)

The boson creation (s" or d') and annihilation (s or d) operator gives a set two
linear operator. As Ga[;:bz bg for (a, f=1, 2,....6) gives 36 operator which satisfies
communication unitary algebra in six dimension U(6). The group of transformations
is related with each relation. During communication constant is equal to one or zero,

called as lie structure constant. Using Racah approach, G operator is as

Gx =(b] x b*)i for I,I'=0, 2. In terms of s and d boson operator G expanded as
G2(s,s), G2 (d,d), G (d,d), GZ (d,d), G2 (d,d), G (d,d), G (d,s) and GZ (s,S) gives 1,
1, 3,5, 7,9, 5 and 5 components respectively. The U(6) algebra is classified into
three sub group U(5), SU(3) and O(6).

2.4.1 Sub-group U(5)

The operators 62d,d), G: (d,d), G2 (d,d), G3 (d,d) and G; (d,d) gives 25
component as a O(5) group. The operator G, (d,d) gives 3 component s a O(3). The
operator G (d,d) gives one component as a O(2) rotation group. The chain of Boson
subalgebra is U(6) = U(5) = O(5) = O(3) = O(2). The quantum number for the chain
is N,nd, (v,nd),L and M.

2.4.2 Sub-group SU(3)
Boson sub algebra 11 consist 9 components having a linear combination of
G2, Gl GZ forsandd pair with 1,3 and 5 component. The G term is proportional

to the electrical quadrupole operator gives information about deformations of the
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nucleus with positive (negative) quadrupole moments. The operator G_.and G give
sub group SU(3) of U(6) having 3 and 5 components. The G give sub-group O(3) of
SU(3) with 3 components and GJgives 1 component as a O(2) rotation group. The
chin of boson sub-algebra 11 is is U(6) = U(5) = O(3) = O(2). The quantum number
for the chain is N, (4, v)x, L and M;.

2.4.3 Sub-group O(6)

Boson sub-algebra 11 consistG., 62 and G2 having 3,7 and 5 terms as a
sub group O(6) of U(6) with 15 terms. The operators G;andG2gives 10 terms as a
sub-group O(5). The operator G_gives 3 terms as a sub-group O(3) and G gives one
term as a sub-group O(2). The chain of boson sub-algebra is U(6) = O(6) = O(5) =
O(3) = O(2). The quantum number for the chain is N, @, (7, vA),L and M;.

The Hamiltonian in the form of Casimier operators gives energy spectrum, electric
quadrupole operator for each symmetry with individual properties. Most of the nuclei
do not show properties as like symmetry exactly. Then Hamiltonian H can be written
by the operator of two chains. The classification of nuclei as (shown in Fig. 2.3):

1. Class A, nuclei with properties intermediate between | and II.

2. Class B, nuclei with properties intermediate between 11 and I11.
3. Class C, nuclei with properties intermediate between 111 and I.
4

. Class D, nuclei with properties intermediate between all three limits.

1|
0(6)

u(s) SU(3)

Fig. 2.3 Casten’s symmetry triangle.
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2.5 VARIOUS INDEPENDENT PARAMETERS

2.5.1 NpNn Product

It is the product of number of valence protons Np and the number of valence
neutrons Nn. On taking it as independent parameter; we studied the variation of other

dependent quantities on NpNn product.
2.5.2 P-factor

P-factor defined as it is the ratio of product of Np and Nn to the sum of number of
valence proton (Np) and the number of valence neutrons (Nn). It is the normalised
value of NpNn. It is represented by:

_ Npin
T Np+in

2.5.3Energy Ratio (Rs)

It is the ratio of energy of (4"1) and (2°,) levels of ground state bands. For vibration
nuclei, it lies from 2<R4<2.4, for transitional nuclei it lies as 2.4<R4<3 and rotational
nuclei it lies as 3<R4<3.33.This ratio is also observed with other calculated

quantities.
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CHAPTER -I11

SYSTEMATIC DEPENDENCE OF ASYMMETRIC
PARAMETER FOR EVEN Z EVEN N NUCLEI IN
LIGHT AND MEDIUM MASS REGION

3.1INTRODUCTION

The study of collective nuclear structure with N, Z, Ng (=Np+Nn) and NN,
provide detailed information of nuclear interactions involved. Several studies have
been carried out to study the collectivity, deformation and systematic dependence of
other nuclear properties on NpN,. de-Shalit & Goldhaber (1953) pointed out the
important role of valence nucleons. Talmi (1953) noted the constancy of nuclear
level structure in semi-magic isotones/isotopes. Hamamoto (1965) observed that the
protons (p*) and neutrons (n°) both are required for producing the nuclear
deformation. In interacting boson model-1 (IBM-1) Casten (1990), the structure of
nuclei depends on the total boson numbers Ng. The concept of F-spin multiplets was
based on this and was well explained by von Brentano et al. (1985). Casten (1985)
noted that the Epg+ have smooth dependence on NyN,. Other studies have been
carried out by Casten and Zamfir (1996) to study the collectivity, deformation and

systematic dependence of various nuclear observables on the product NN,

Gupta (1986) observed that 1/a was linearly dependent on NpN,, where the
coefficient a contributes for rotational part of energy in the SU(3) symmetry limit of
IBM Casten (1990) as,

E(IN](%, p) KLM) =a L(L+1) + B C(%, p). (3.1)
The B(E2; 2,"—0;") values were also related with N,N,. Gupta et al.(1990a) noted a

systematic dependence of y—g B(EZ2) ratios on the NpN, in different parts of the major
shell space Z=50-82, N<82 and N=82-126. Casten (1985) presented a review on the
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evolution of nuclear structure based on NpN, product. The NyN, scheme was further
modified to use P- factor Gupta et al. (1990a).

In this chapter, we study the role of valence nucleons and holes on the nuclear
structure, through N, Ng and NyN,. Casten (1985) and Casten and Zamfir (1996)
covered the various regions, viz., A=100, 130, 150 (Z<64, Z>64) and A=190. We
present our results for 50<Z<82 and 82<N<126 region on quadrant wise basis. The
systematic dependence of asymmetry parameter on N, Ng and NpN, has been
studied. The role of Z=64 subshell effect for N<90 region Casten (1985) is also taken

care in this work.

3.2 LITERATURE REVIEW

The values of asymmetry parameter (yo) are calculated for 50<Z<82 and
82<N<126 region and the whole data is divided into four quadrants as suggested by
Gupta et al. (1990b).

3.2.1 Calculation of Asymmetric Parameter

The values of asymmetry parameter (yo) of asymmetric rotor model (ARM)
Davydov and Filippov (1958) are evaluated using the experimental energies E2," and
E2," states. The experimental data is taken from the website of Brookhaven National

Laboratory http://www.nndc.bnl.gov (2015). The energy ratio Ry =E», / E»; and yo is:

% :%sinl{g[l—(g;flj y. (3:2)

It can be evaluated using:

(@) The energy ratio Rs=(E4g/E2g) but only the nuclei with 2.8<R4<3.33 will be
allowed as noted by Sharma (1989) and Gupta and Sharma (1989).

(b) The B(E2) values which are very small and available with uncertainties.
Therefore the values from energy ratio Ry are more reliable. The calculated values of
asymmetry parameter (yo) are listed in Table 3.1 and Table 3.2 for light and medium

mass region, respectively.
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3.3 RESULT AND DISCUSSIONS

The whole observed data of asymmetry parameter is divided into four
quadrants. The Quadrant I (Q-I) is for 50<Z<66 and 82<N<104 shell space with
particle like proton-bosons and neutron-bosons and it is forming the p-p space. The
Quadrant Il (Q-1I) is for 66<Z<82 and 82<N<104 shell space, with hole like proton-
bosons space and particle like neutron-bosons space and it is forming the h-p space.
The Quadrant Il (Q-III) is for 66<Z<82 and 104<N<126 region shell space, with
hole like proton-bosons and neutron-bosons and it is forming h-h space. The
quadrant 1V (Q-1V) is for 50<Z<66 and 104<N<126 shell space with particle like
proton-bosons and hole like neutron-bosons and it is forming the p-h space.
Therefore, the quadrant | and Il have p-p and h-h bosons space, respectively and
quadrant Il and IV for h-p and p-h bosons space respectively. It has been observed
that there are no nuclei in quadrant IV. The division of the 50<Z<82 and 82<N<126
shell space had been suggested by Gupta et al. (1990b) to study the concept of F-spin
multiplets. Further this concept of four quadrant used by Kumar (2013), Kumar et al.
(2012) and Sharma and Kumar (2010) to study the systematic dependence of various
nuclear observables and it was found that this concept gives deep information of

nuclear structure.

3.3.1The variation of asymmetry parameter (yo) in quadrant- | for

50<Z<66 and 82<N<104 region:

The systematic variation of asymmetry parameter yo versus N, Ng and NpNn
for quadrant-I are shown in Fig. 3.1, Fig. 3.2 and Fig. 3.3, respectively. It is evident
from Fig. 3.1 that the yo decreases sharply from 30° to 9° as N increases from 82 to
90 indicating the shape phase transition from Vibrational (VM) to rotational (RM)
limit of collective model of Bohr and Mottelson (1975) and also SU(5) or O(6) limit
to SU(3) limit of IBM Casten (1990). If N is increased beyond 92 the yo does not
change and becomes almost saturated indicating that the full nuclear core
deformation is achieved even at about 9° - 12° for each isotopes example for Sm, Gd
and Dy. It is clear from the Fig. 3.1 that there is little scattering of data for fixed

values of N i.e. the asymmetry parameter is having smooth dependence on N.
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37 QI For 50<Z<66 and 82<N<104
32
30_- a —0O—Te
28—- —O—Xe
—~ 261 5<>< —A—Ba
% 24 + —V—_Ce
S 221 —O—Nd
(b) 20_- —=+—Sm
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Fig.3.1 The variation of asymmetry parameter (yo) VS. Neutron
number (N) for Quadrant I for 50<Z2<66 and 82<N<104 region.

However, the data points of asymmetry parameter have much scattering for a
fixed values of Ng, for example for a fixed value of Ng = 6 there is variation in the
values of yo from 15° to 26° (see Fig.3.2) and indicating very week dependence of
asymmetry parameter on Ng. The asymmetry parameter rises for N=84, 86 and 88
with little increasing slop for N=84 and fast increasing slop for N=86 and 88 with
increasing Ng and for N=90 there is a small fall instead, and which finally saturates
for N>92, that is for Ng>12 (see Fig. 3.2). It is also evident that the asymmetry
parameter decreases sharply on increasing the value of Ng from 2 to 12 for each
value of Z with almost same slope for Xe, Ba, Ce, Nd, Sm, Gd and Dy elements for
82<N<90 region. But the individual curve of each element has been shifted towards

right while Z is increased.
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Fig.3.2 The variation of asymmetry parameter (y,) vs. Boson number (Ng)
Jor Quadrant I for 50<Z2<66 and 82<N<104 region.

The variation of asymmetry parameter yo versus Np.Nn has been shown in
Fig. 3.3. The yo decreases from a maximum value of 30° for NyN, = 0 (i.e. SU(5)
limit of IBM Casten (1990) to a minimum values of about 9° (i.e. SU(3) limit of
IBM). The 7o saturates for NyNn > 30. It is evident that the asymmetry parameter also
rises for N=84, 86 and 88 isotones with little increasing slop for N=84 and fast
increasing slop for N=86 and 88 with increasing NpNn and for N=90 there is a small
fall instead, and finally yo saturates for N>92, that is for NpNn >30. The same feature
was observed for the Eyg in quadrant | by Kumar (2013) and Kumar et al. (2012). But
this effect was in reverse order for the ground state moment of Inertia (4= 1/ Eg)
and energy ratio R4 (= Eag/ E2g) by Kumar (2013) and Kumar et al. (2012).

These variations in rising slopes of N=84, 86 and 88 versus the product NpNn
in Fig. 3.3 arise on account of the Z=64 proton subshell gap. Ogawa et al.(1978)
noted the Z=64 sub-shell effect in ***Gd. The role played by the Z=64 subshell effect
in Nd-Sm-Gd-Dy nuclei had been stressed earlier by Casten (1985), Casten et al.
(1996) and Gupta (1993). It is evident here that the smooth dependence of

asymmetry parameter yo on NpNn is confined to N>90 region (see Fig. 3.3), where
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the Z=64 subshell effect disappears, unless one uses the effective proton bosons Np

number for N<90.

34 Q | For 50<Z<66 and 82<N<104
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Fig.3.3 The variation of asymmetry parameter (yo) vs. NpN, for Quadrant |
for 50<Z<66 and 82<N<104 region.

This shows non-dependence of yo with NpN, because for a fixed value of
NpNn the vo is having varying values. It is clear from the Figs. 3.1-3.3 that the
asymmetry parameter yo Vividly display the formation of isotonic multiplets in
quadrant-1 which supports the observation of Gupta et al. (1990b) who had illustrated
it in a different way and Kumar (2013), Kumar et al. (2012).

3.3.2 The variation of asymmetry parameter y, for quadrant-11 for
66<7<82 and 82<N<104:

The systematic variation of asymmetry parameter yo Versus N, Ng and NpNn
for quadrant —II are shown in Fig. 3.4, Fig. 3.5 and Fig. 3.7, respectively. It is evident
from Fig. 3.4 that the v, decreases sharply from 30° to 12° as N increases from 82 to
94 for Dy, Er and Yb isotopes indicating that the shape phase transition takes place

from Vibrational (VM) to rotational (RM) limit of collective model of Bohr and
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Mottelson (1975) and also SU(5) or O(6) limit to SU(3) limit of IBM Casten (1990)
as observed in quadrant-1. If N is increased from 94 to 98, yo does not change and
remains saturated indicating that the full deformation is achieved even at about ~12°
and ~13° for each isotopes example for Dy and Er isotopes, respectively. However,
for Yb and Hf isotopes the nature of the asymmetry parameter vy is different because
it goes on decreasing 21° to 8° for Yb and from 18° to 10° for Hf while N increases
from 90 to 104 for Yb and from 94 to 104 for Hf isotopes. It indicates that for Yb and
Hf isotopes the asymmetry parameter y, goes on decreasing i.e. nuclear core
deformation increases when the neutrons number (N) is increased from 82 to 104, i.e.
till the shell is half filled. The point of Os and Pt are away from the line of general
trend. It is clear from the Fig. 3.4, that there is much scattering of data points for
fixed values of N i.e. the asymmetry parameter is not having smooth dependence on
N.

1 For QII 66<Z<82 and 82<N<104

24 1 o
22 1 0o—0o
20 A\
i O -
:g 18—_ O Dy A v X X
EE) 164 | —O—FEr O ()\\\\ \\\\ 4'\\\4_
1A \V4
LT A—Yb \I:I 8\ \g
124 |~V Hf —o—08 =8-—-n <
.E; - ‘*<>‘*VV ~ \\\g}
~<  10- Vv
>3 ] |—+—0s A A
87 |-X—Pt
6_

82 84 86 8 90 92 94 96 98 100 102 104 106

N

Fig. 3.4 The variation of asymmetry parameter (y;) vs. Neutron number (N)
for Quadrant II for 66<2<82 and 82<N<104 region.

The data points of asymmetry parameter are overlapping on each other for Dy
- W isotopes (see Fig. 3.5) for Ng = 12 and 13. For Ng= 11 t016 the data points of Yb
and Hf isotopes are overlapping on each other and the value of asymmetry parameter

for these nuclei goes on decreasing till Ng approaches 16. The data points of Dy and

31



Er are also overlapping for Ng=13-17 and the value of asymmetry parameter are
independent of Ng. It indicates that the Dy and Er nuclei have different nature of
nuclear deformation than Yb and Hf isotopes for this region. The Os and Pt data
points are above the uniform pattern curve indication different nature of these nuclei.
For this region (quadrant-Il), the data points of asymmetry parameter have less
scattering for a fixed value of Ng in comparison to quadrant-1 (see Fig. 3.2). The Fig.
3.5 is indicating a week dependence of asymmetry parameter on Ng.

The variation of asymmetry parameter yo vS. Np.Nn has been shown in Fig.
3.6. The yo decreases fast at first and gradually later while NpNn is increasing; and
remains unchanged for NpNn>45 for Dy and Er isotopes for which the proton boson
pair Np decreases from 8 to 7; and decreases for Yb and Hf on increasing NpNn
beyond 45 for which the proton boson pair Np decreases from 6 to 5. The two data
points of Os and one of W are lying on the smooth curve while for Pt the data point

are slightly below the uniform curve.
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Fig. 3.5 The variation of asymmetry parameter (yo) vs. Boson number (Ng)
for Quadrant II for 66<7<82 and 82<N<104 region.
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One important point is to be noted here that the asymmetry parameter yq IS

calculated from the values of E»y and E, and the nature of variation of E,, verses N is

different for Dy and Er isotopes than Yb and Hf as shown in Fig. 3.6. The E,,

remains almost constant for Dy and Er isotopes for N=88-102 but for Yb and Hf it

increases sharply as N increases from N=94-104 and becomes maximum for N=104.

This effect is reflected here and the value of asymmetry parameter remains constant

and (i.e. above the usual trend) for Dy and Er isotopes for NpNn>45 as stated above.

The same feature of E,, state had been observed with NpNn by Kumar (2013). There

is a smooth dependence of asymmetry parameter yo with NpNn in quadrant —II.

1.8
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Fig. 3.6 The variation of the energy of E2y state vs. N for Quadrant II for

66<7<82 and 82<N<104 region.
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Fig. 3.7 The variation of asymmetry parameter (yo) vs. NyN, for Quadrant
II for 66<7<82 and 82<N<104 region.

3.3.3 The variation of asymmetry parameter y, for quadrant-111 for
66<7<82 and 104<N<126:

The variation of asymmetry parameter yo versus N, Ng and NpNn for
quadrant —I11 are shown in Fig. 3.8, Fig. 3.9 and Fig. 3.10, respectively. In Fig. 3.8,
the asymmetry parameter increases/decreases with increasing N in different style for
different value of proton number Z. For Yb and Hf the curves are almost horizontal
with little curvature. In W (Z=74, Np=4) and Os (Z=76, Np=3) the curve fall very
slowly for N=104 to 108 (attains minimum value of y, at N=108) and rises
significantly when N increases beyond 108. In case of Os the asymmetry parameter
decreases while N increases from 116 to 118. The nature of curve is different for Pt
(Z=78, Np=2) it initially increases sharply while N increases from 104 to 112 and
becomes horizontal for N=110-122. For Hg (Z=80, Np=1) the curve is almost
horizontal with little curvature for N=108-116 beyond that it significantly decreases
while N increasing from 116 to 120 and again increases while N increases from 120
to 122. The feature of Eq vs. N had been reported for W isotopes for quadrant —I11
by Kumar (2013).
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Fig. 3.8 The variation of asymmetry parameter () vs. Neutron number (N)
for Quadrant I1I for 66<Z<82 and 104<N<126 region.

The variation of asymmetry parameter yo versus Ng is shown in Fig. 3.9. The
Yo decreases with increasing N in different style for different value of proton number
Z. For Pt, the yo is independent of Ng for 4< Ng< 10 the curve is horizontal (with yo =
30°%) and y, decreases sharply on increasing Ng beyond 10. The curve for Pt is lying
above the observed curve for other isotopes except Hg for which the curve is almost
horizontal with little curvature except for Ng =4. For Yb — Os isotopes the
asymmetry parameter has Ng dependence with little scattering for Os and W isotopes
as discussed above.

The variation of asymmetry parameter yo versus NpNn is shown in Fig. 3.10.
The value of yo decreases with increasing NpNn (going towards the mid shell) and
provide a single broken curve (except for Hg isotopes with Z=80, Np=1) indication
that the values of yo are slightly different for different Z. For quadrant —III, the Nn
and Np both are the hole boson pairs and the value of both decreases as we go
towards closed shell i.e., right to left in Fig. 3.9. The strong dependence of

asymmetry parameter with NpNn is evident in the quadrant-11I.
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3.4 CONCLUSION

The NpNn scheme is very useful in considering the systematic behavior of
asymmetry parameter (o) Which gives the information of nuclear structure of atomic
nuclei in a medium and light mass region, i.e. change in product NpNn are correlated
with the change in nuclear structure. The NpNn product is a good measure of its
effect in producing the deformation in atomic nuclei. This product is also an indicator
of the n-p interaction among the valance proton and/or neutron nucleons causing the

deformation of nuclear core.

In quadrant-1 for 50<Z<66 and 82<N<104 and quadrant-1I for 66<Z<82 and
82<N<104 region, the asymmetry parameter yo decreases from 30° in Q-1 and from
22%in Q-11to 9% 10° with increasing N from 82 to 104 (i.e. the mid of N=82 to 126
neutron shell), signifying that the nuclear deformation (f) is increasing, while the
energy ratio R, increase from 2.0 (for harmonic vibrators or SU(5) type nuclei) to
3.33 (for good rotors or SU(3) type nuclei). This indicates that in this region the
nuclear structure depends much more on Z. The values of asymmetry parameter in
Q-1, shows shape phase transition at N=88-90 and regions (QII-111) have a systematic
dependence with N, but having different patterns. Partial results of this study have
been presented in the DAE Symposium on Nuclear Physics Kaushik and Sharma
(2014).

In quadrant-I, the asymmetry parameter is having more correlated
dependence on the neutron number N, rather than on the product NpNn. In this
quadrant- |, the Z=64 sub-shell effect for N<90 nuclei affect the variation of
asymmetry parameter with N and NpNn product. Casten (1985) and Casten et al.
(1996) obtained a smooth dependence of various observables with NpNn by adopting
effective numbers proton bosons Np for N<90 nuclei. This was a very useful
procedure for obtaining the universal smooth curves for various regions with NpNn.
The present studies also confirm the observations of Gupta et al. (1990b), Kumar
(2013), Kumar et al. (2012) and Sharma and Kumar (2010) i.e. the existence of

isotonic multiplets in quadrant-1.
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The existence of X(5) symmetry in N=90 isotones established in recent works
supports the formation of isotonic multiplets in this work. The calculated values of
asymmetry parameter are almost constant for N=90 isotones e.g. 13.8° for Nd, 13.24°
for Sm and 13.86° for Gd; which support the findings of Gupta (2012a); who gave
the microscopic explanation for the constant structure of N=90 isotones. This is
certainly different from the universal NpNn scheme Casten (1985) and Casten and
Zamfir (1996) and found to be very useful for most of the atomic nuclei throughout
the periodic table as noticed by Casten and Zamfir (1996). This special condition for
N=90 isotones is made more explicit in the present work for Q-1 and supports the
findings of Casten and Zamfir (1996).

The systematic dependence of asymmetric parameter on NpNn has strong
dependence in quadrant-I1. In Q-II, the line of B- stability runs nearly diagonally, i.e.
parallel to Ng (where, Ng is the sum of proton hole bosons and neutron particle
bosons) and leading to the formation of F-spin multiplets. The same feature had been
observed earlier for Exg by Kumar et al. (2012) and Sharma and Kumar (2010).

In quadrant-1II, for 66<Z<82 and 104<N<126 region, the variation of
asymmetry parameter is different from quadrant | and Il because the asymmetry
parameter yo increases sharply from 9° - 10° to 30° with increasing N from 104 to
126. This is signifying that the nuclear deformation (f) is decreasing and the nuclear
structure changes from pure rotor SU(3) type to vibrational SU(5) or y-unstable O(6)
type. Further, the asymmetry parameter for different elements has smooth curve with
NpNn with almost same slopes except for Hg isotopes.

The graphs of asymmetry parameter against NyN, vividly display the formation
of isotonic multiplets in quadrant-1, strong dependence on NpN, in quadrant-1l and
weak constancy with Z in quadrant-111 is illustrated and support the findings of Gupta
(2012b). Also in every case the role of N, Z is well evident. This also agrees with
known variation of nuclear deformation in the light and medium mass region. The
quadrant wise presentation of asymmetry parameter is very useful as in case of other
observables of collectivity and deformation i.e. the energy of first excited state Eg,
the energy ratio R, the B(E2; 0," —2;") value and ground state band moment of
inertia (0g =3/Ep") as noted by Kumar (2013), Kumar et al. (2012) and Sharma and
Kumar (2010).
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Table 3.1: The calculated values of asymmetric parameter (yo)

for Te to Ce nuclei using equation 3.2.

N Te Xe Ba Ce
82 30 30 30 30
84 24.52 24.42 25.07
86 19.43 19.95
88 15.26 16.86
90 15.78 15.66




Table 3.2: The calculated values of asymmetric parameter (yo) for

Nd to Pt nuclei using equation 3.2,

N Nd Sm Gd Dy Er Yb Hf W Os Pt Hg
82 | 30.0

84 | 26.14 | 26.44 | 252

86 | 2141 | 2374 | 2614 | 22

88 | 19.05 | 2042 | 21.46 | 21.98 | 23.45

90 | 13.8 13.24 | 13.86 | 1542 | 18.76 | 21

92 954 | 11.05 | 12.79 | 15.07 | 17.77

94 9.19 | 10.32 | 11.97 | 13.29 | 14.88 | 17.24

96 10.98 | 11.96 | 12.87 | 13.08 | 14.79

98 11.39 | 12.31 | 12.71 | 11.87 | 1281
100 11.86 | 12.36 | 10.78 | 11.8
102 1153 | 9.29 | 10.85 16.19 | 18.39
104 8.64 | 10.22 | 12.21 | 153 | 18.69
106 10.18 | 11.19 | 12.1 | 14.83 | 19.39
108 10.33 | 10.66 | 11.37 | 14.04 | 21.67 | 25.74
110 13.63 | 13.83 | 16.5 | 25.87 | 23.74
112 15.91 | 19.16 | 28.89 | 23.78
114 22.3 30 24.42
116 2521 | 30 24.85
118 2224 | 30 23.74
120 30 20.89
122 30 26.65
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CHAPTER-IV

SYSTEMATIC STUDY OF B(E2; 4g—2g)/
B(E2;2¢—0g) BRANCHING RATIO USING
ASYMMETRY ROTOR MODEL AND ITS
VARIATION WITH N AND Z

4.1 INTRODUCTION

The concept of collectivity in atomic nuclei is one of the most fundamental
findings in history of nuclear structure physics. The macroscopic, microscopic and
geometrical nuclear models have been applied to describe this collective behavior of
nuclei. The geometrical models depicting the atomic nucleus as a liquid drop with a
given nuclear shape and algebraic models, take into account the pairs of proton
and/or neutron only. Despite the often very dissimilar theoretical approaches, most of
the collective models have some common basic features, such as predictions of
energies of g- band, B- band, y- band and other higher multi-phonon bands or B(E2)
values and B(E2) ratios for inter and intra band transitions, which have been
observed in a wealth of nuclei away from closed shells.

The energy ratio R4 (=Eag/ Ey) is a key observables which can be used to assess the
collectivity of nuclei and it is equal to 2.0 for an ideal spherical harmonic vibrator
i.e., SU(5) limit and 3.33 in an axially symmetric deformed rotor, i.e. SU(3) limit of
interacting boson model (IBM) of lachello and Arima (1987) and Casten (1990).
Bohr and Mottelson (1975) pointed out that the inter/ intra band transition rates
provide another good measure of nuclear collectivity, which is less sensitive to
anharmonicities than energies of various bands. The B(E2;4,—24)/B(E2;2,—0,)
branching ratio is a particularly good example, as it is 2.0 in the spherical limit or
SU(5) and 1.42 in the deformed limit or SU(3) of IBM lachello and Arima (1987).
Significant deviations from these two limiting values can be found; if one considers

very small numbers of valence neutrons (Nn) and/or protons (Np), which are used in
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the IBM; also in asymmetric rotor model (ARM) of Davydov and Filippov (1958)
where asymmetric parameter (yo) changes from 0° to 30° which corresponds to above

mentioned two limits of IBM i.e. SU(3) and SU(5) respectively.

In the present chapter, we have compiled the experimental data of
B(E2;44,—24)/B(E2;24—04) branching ratio from the website of Brookhaven National
Laboratory( http://www.nndc.bnl.gov) for medium mass region (Nd - Hg) and listed
in Table 4.1. The observed data is compared with the ARM predictions for
asymmetric parameter (yo) equals to 0° to 30°. The SU(3) and SU(5) limits are also
included to get new information about the structure. The systematic dependence of
B(E2;44—24)/B(E2;2,—04) with N and Z are also carried out to find out a definite

conclusion regarding nuclear structure.

4.2 ASYMMETRIC ROTOR MODEL

Davydov and Filippov (1958) investigated the energy levels corresponding to
rotation of nucleus which does not change its internal state. They established that the
violation of axial symmetry of even —even nuclei affect the rotation spectrum of axial
nucleus with appearance of some new rotational states having total angular
momentum of 2, 3, 4,---. If the deviation from axial symmetry is small, then these
levels lie very high and are not excited. The energy of rotation of a non-spherical
even-even nucleus is given, in the adiabatic approach, by Schrodinger eq.:

(H-E)Y=0 (4.1)

where E is measured in units of 4;% , and the operator H is given by the formula:

i=1 4.2)
where J, are the projection of the total angular momentum along the axes of a
coordinate system fixed in the nucleus. The wave function corresponding to the state
with total moment J, can be represented as:

Yo = Lgzol/K) Ag (4.3)

(27+1)

where [jk) = s

(1 + 80)F (Dl + (—1)/D, ) (4.9)
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The function DLK in eq. (4.4) is the function of the Euler angles that
determine the orientation of the principal axis of the nucleus with respect to the
laboratory space. It can be shown that the wave functions (4.3) from the basis of
totally symmetric representation of the group D,, the elements of which are the
rotation through 180° around each of three principal axes of the nucleus Davydov
and Filippov(1958) and Davydov and Rostovsky (1959).

The values of first excited state E,; and second 2+ state i.e. Ep, can be written as (in

unit of #° /4862 ):

9 l1 _ *q'll{l _ _SEL'“;G}*QJ}'

Eyy = .
* Sin?(3y,) (4.5)
9 l1 n ‘w'll{l _ _BSL'“;G}*Q)H
Eyp = 2
Sin?(3y,) (4.6)

The value of asymmetry parameter can be obtained using the Egs. (4.5) and (4.6) and

the asymmetric parameter (yo) become:

2
—l in-1 9 — M /2 = Q
Yo =3I {8[1 (Ryﬂj}‘l , Where R, E.. 4.7

4.2.1 Reduced Transition Probabilities

The reduced transition probability B(E2; li— Ir) between two numbers of the
same rotational band with quantum number K is expressed as:
B(E2;I, - I}) = %EEQSHI:KDH'KH: (4.8)
where we have used
ot m2 ma (LM MIIM2 = (2T + 1) . (4.9)
For Coulomb excitation, the B(E2), reduced transition probability in the case of
symmetric rotor (even-even nuclei) is expressed,
B(E2; I > If) = ——e?Q3 Iz’ +2,0)|?
B(E2l 1) = e ey

(4.10)

The non-spherical nuclei have rotational levels which are due to very fast electric

quadrupole transition probability B(E2; I—I). According to equation (4.10), B(E2;
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li—If) increases as the value of intrinsic quadrupole moment Q, increases. If the
transition takes place between the ground state (1=0) and the first excited state (I1=2)

of nuclei, then

B(E2) = ﬁezqg (4.11)

For transition between rotational level of spin I=2 and 1=0, the BE(2) value can be

expressed (in unit of €Qg%/16m ):

B(E2:2:—01)= B(E2: 21—01)/ €2Qc2/16m = (1/2){1+ [(3-25in%(3¥, )/ (9-8sin®(3¥,) 2]}
(4.12)

Where the intrinsic quadrupole moment of an axial nucleus with nuclear core

deformation f is:

Qo= 3ZR?B/ (57)"2. (4.13)

Also the B(E2) value for other transitions can be written as:

B(E2:4i—25) = 5/126 [cos¥, (6Agi As+ V35A4i By) + sin(V15A2iAs + AgiBs

+V35A4B1)]?

where, As and By are the coefficients that determine the wave functions of spin 2,

and A,, coefficients determine the wavefunction of spin 44.. Using the values of

coefficients determined the wavefunctions, one can calculate the probabilities of

electric quadrupole transitions between various rotational states of the nucleus. The

ARM B(E2;44—24)/B(E2;2,—0g4) branching ratio is deduced from egs. (4.12, 4.14)

using asymmetric parameter (yo) from equation (4.7).

4.2.2.Calculation of Asymmetric Parameter (yo)

The values of asymmetry parameter (yo) are evaluated using eq. (4.7) by puting
the the experimental energies of E2," (=Ej;) and E2;" (=Ej;) states which are taken
from the website http://www.nndc.bnl.gov . It can also be evaluated using:

(@) The energy ratio Rs=(Esg/Ezg) but only the nuclei with 2.8<R4<3.33 will be
allowed Sharma (1989) and Gupta and Sharma (1989).

(b) The B(E2) values which are very small and available with uncertainties.
Therefore the values from energy ratio Ry are more reliable. The calculated values of
asymmetry parameter (yo) for all nuclei of medium mass region are used to calculate
the B(E2;44—24)/B(E2;24—04) branching ratio.
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4.3 RESULT AND DISCUSSIONS

4.3.1 Variation of ARM B(E2;44—2,)/B(E2;24—0,) ratio versus asymmetry

parameter (yo)

The variation of B(E2;4g—2g)/ B(E2; 2g—0g) ratio from ARM vs. v IS shown in
Fig. 4.1. The ARM data points are shown by hollow circles and the vibrational or
SU(5) limit at 2.0 and rotational or SU(3) limit at 1.4 are shown by dotted lines for
useful comparison. It is clear from the figure that the ARM predictions are very close
to the SU(3) limiting value and also it is increases very slowly on increasing yo from
0° to 20° forming a peak at 20° and decreases slowly beyond 20° approaches 1.4
which is SU(3) limiting value at yo = 27°. The ARM ratio is away from vibration

model limit of 2.0 this shows that it cannot explain the vibrational nature of the

nuclei.
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Fig.4.1 The Variation of B(E2;4g—2g)/ B(E2; 2g—0g) ratio from ARM
(shown by hollow circles) vs. asymmetry parameter (yo) in degree. The
vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown

by dotted lines for comparison.
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4.3.1.1 Variation of Experimental and ARM B(E2;4,—2,)/B(E2;24—0,) ratio

versus Asymmetry Parameter (yo)

The variation of B(E2) ratio from experiment and ARM with yg is shown in
Fig.4.2. The ARM data points are shown by solid triangles and SU(5) limit at 2.0
and SU(3) limit at 1.4 are shown by dotted lines. Two nuclei are having B(E2) ratio
anomalously more than 2.0 and not shown in the Fig.4.2, e.g. ***Hg and '**Hg for
them the B(E2;44—2)/B(E2;24—0,) ratios are 4.6(3) and 2.8(8) respectively. There
are some other nuclei in medium mass region those are having this ratio anomalously
lesser than 1.4 i.e. SU(3) limiting value e.g., ©*°Nd, ***Dy, **Er, 168w, #2w, ¥4w,
19205, 8%t and *®*Hg having values 1.31(10), 1.30(7), 1.18(13), 1.1(3), 1.386(20),
1.30(9), 1.22(4), 0.92(22) and 0.375(18) respectively. It is noted that in medium mass
region (Nd-Hg), this B(E2) ratio is smallest in case of **®*Hg [=0.375(18)] which is
non magic nucleus with only two vacancy of protons for Z=82. This ratio is also very
small in case of ***Ndg, [=0.73(9)]; which is also a non- magic nucleus; which has
only two valence neutrons outside N=82. It supports the findings of Cakirli et al
(2004) that the value of this B(E2) ratio is anomalously small in non magic nuclei, as
it cannot be explained with collective approaches. The values of
B(E2;4,—24)/B(E2;24—0,) ratios for N=88 isotones (Nd, Sm, Gd, Er) are lying
between SU(3) and SU(5) limits indicating the shape phase transition for these
nuclei. However the nature of the Dygg is different and its value is close to SU(3)
limit. Other data points are lying between SU(5) and SU(3) limits. While the ARM
predictions are very close to the SU(3) limit.
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Fig.4.2 The Variation of experimental B(E2;4g—2g)/ B(E2; 2g—0g) ratio

vs. asymmetry parameter (yo) in degree. The vibrational limit SU(5) at 2.0

and rotational limit SU(3) at 1.4 are shown by dotted lines for comparison.

The ratio from ARM is shown by solid triangles.

43.1.2 Conclusions

The predictions of asymmetric rotor model (ARM) of Davydov and

Filippov(1958) for B(E2;4g—2g)/B(E2;2g—0g) branching ratio are compared with
the experimental data in medium mass region. It is found that the observed data
point of this ratio for N=88 isotones (Nd, Sm, Gd, Er) are indicating the shape phase
transition from an ideal spherical harmonic vibrator or SU(5) to an axially symmetric
deformed rotor or SU(3). It is also noted that this B(E2) ratio is anomalously small
in case of two non- magic nuclei i.e., *®gHgis [=0.375(18)] and ***gNdsgs
[=0.73(9)] with only two vacancy of protons for Z =82 and two valence neutrons
outside N=82, respectively; which supports the findings of Cakirli et al (2004). The
data points for other nuclei are lying between SU(5) and SU(3) limits. The calculated
B(E2) ratios of ARM are very close to the SU(3) limit of IBM indicating that it can
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explain the structure of only well deformed nuclei. Therefore the ARM is partially

successful in explaining this branching ratio.

4.3.2 SYSTEMATIC DEPENDENCE OF B(E2; 4g—2g)/ B(E2;2g—0g)
BRANCHING RATIO ON N AND Z

4.3.2.1 Result And Discussions

4.3.2.1.1 The variation of experimental B(E2;4g—2g)/ B(E2; 2g—0g) ratio

verses neutron number (N)

To avoid the overlapping of experimental data of the nuclei and to have a clear
picture  for a  definite  conclusion  about the  dependence  of
B(E2;4g—2g)/B(E2;2g—0g) ratio on N, the whole data is divided into two parts and
shown in two figures i.e. Fig. 4.3 for Nd- Er nuclei and in Fig. 4.4 for Yb- Hg nuclei.
The vibrational model or SU(5) limit at 2 and rotational model or SU(3) limit at 1.4
are shown in the Fig 4.3 and Fig. 4.4. The data points are joined for same value of Z,

so that the effect of N will be visible.

For Nd, this ratio increases sharply from 0.73 to 1.61(maximum value at N=88) as
N increases from 84 to 88 and if N is further increased from 88 to 92 it decreases
slowly from 1.61 to 1.31(see Fig. 4.3). The same feature is observed for Sm, where
this ratio increases from 1.65 to 1.9 on increasing N from 86 to 88 and beyond N=88
it drops sharply and approaches to Alaga value of 1.4 for N=92. In case of Gd, the
BE(2) ratio decreases from 1.82 to 1.46 as N increases from 88 to 94. Also in Er, this
ratio decreases from 1.78 to 1.5 as N increases from 88 to 100 and minimum value of
1.18 at N=96. Therefore, for N=88 (Sm, Gd and Er) isotones, this ratio =1.8 is very
close to the VM limit of 2.0 indication vibrational nature. However for Dy (N=88,
92, 94, 96) this ratio is close to Alaga value indication deformed rotor nature and for
N=90; Dy indicating transitional nature because this ratio (=1.63) is lying in between
SU(5) and SU(3) limiting value (see Fig. 4.3).
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For Yb and Hf nuclei, BE(2) ratio is ranging between 1.4 to 1.6 for different
values of N and close to SU(3) limit (see Fig. 4.4). In case of W, the ratio increases
sharply from 1.1(3) to 1.74(15) on increasing N from 94 to 100 and decreases very
slowly on increasing N from 108 to 112 (almost remains around Alaga value).

For N=96 the data point of Os is close to the other N=96 isotones (Yb, Hf, W)
data points. When N increases from 108 to 112, the ratio for Os increases from 1.4(4)
to 1.68(11) and when N is increased from 112 to 116 the B(E2) ratio decreases from
1.68(11) to 1.22(4) indicating prolate to oblate shape-phase-transition as observed
by Kumar and Baranger (1968).

For N=98, the B(E2) [=1.87(24)] for Pt is close to VM value and for N=102 the
ratios is minimum [=0.92(22)]. The B(E2) ratio for Pt decreases from 1.65 to 1.56
when N increases 106 from 114 and again increases from 1.56 to 1.73 as N increases
from 114 to 116(attains maximum value =1.73(11) at 116). If N is increased from
116 to 120 this ratio drops linearly with the same slope as observed for Os (N=112 to

116).This indicates the similar nature of Pt and Os nuclei for this region.

For two nuclei; ***Hg and ***Hg; the B(E2) ratio is 4.6(3) and 2.8(8) respectively;
which are anomalously more than VM limiting value and not included in the Fig.2.
The B(E2) ratio is smallest in case of *®*Hg; which is non magic nucleus; has only
two vacancy of p+ for Z =82. This ratio is also very small in case of **Ndg,
[=0.73(9)] (see Fig.4.3); which is also a non- magic nucleus; which has only two
valence n® outside N=82. It supports the findings of Cakirli et al. (2004), that the
B(E2;4g—2¢)/B(E2;2g—0g) ratio is anomalously small in non magic nuclei, as it

cannot be explained with collective approaches.
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Fig.4.3: The variation of experimental B(E2;4g—2g)/B(E2;2g—0g) ratio
vs. neutron number (N) for Nd- Er nuclei. The vibrational limit SU(5) at
2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines for

comparison.
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Fig.4.4: The variation of experimental B(E2;4g—2g)/B(E2;2g—0g) ratio
vs. neutron number (N) for Yb- Hg nuclei. The vibrational limit SU(5) at
2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines for

comparison.
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4.3.2.1.2 The variation of experimental B(E2;4g—2g)/ B(E2; 2g—0g) ratio

verses proton number (Z2).

The variation of observed B(E2;4g—2g)/ B(E2; 2g—0g) ratio with proton
number (Z) is shown in Fig. 4.5, 4.6 and 4.7 for N=84 to 92, N=94 to 102 and N=
104 to 124 isotones respectively and the experimental points are joined for same
value of N to observe the effect of Z. The vibrational limit (VM) or SU(5) at 2 and
rotational limit or SU(3) at 1.4 are also shown by dotted lines for useful comparison
in each figure.

It is evident from Fig. 4.5, that the BE(2) ratio for N=88 isotones increases on
increasing Z from 60 to 62 (attains the maximum values for Smgg) and decreases for
Gd and Dy (attains minimum value close to SU(3) limit for Dygg) and again for Er it
increases. For N=88, the B(E2) ratio is close to SU(5) limiting value for Sm, Gd and
Er while Dy reflects SU(3) nature and Nd in between these two limits. Also, the Smgg
is least deformed and Dysgg is most deformed. For N=86 isotones the B(E2) data is
available only for two nuclei and it is increasing on increasing N from 60 to 60 as in
the case of N=88.

0 _—SU(5)
—~ — /PA
8 18] N—88/ A 90 2
(@]
N | N 0] A\V/ 92
gy 3838<V/V%@7<a M
= 14 AV — V=
[a8)] ——
S 1.2 %0 SUG)
By
S 1.0
W oe- 84
s -

53 60 62 64 66 68 70 72

Z

Fig.4.5: The variation of experimental B(E2;4g—2g)/ B(E2; 2g—0g) ratio vs.
proton number (Z). The vibrational limit SU(5) at 2.0 and rotational limit SU(3)
at 1.4 are shown by dotted lines for comparison. The experimental points are
joined for same value of N to observe the effect of Z on this B(E2) ratio for each
isotones for N=84-92.
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For N=90 isotones the behavior of B(E2) is just opposite to N=86 and 88; the
B(E2) ratio initially decreases as N increases from 60 to 62 and increases as N
increases from 62 to 66 just opposite to N=88. It is evident from the figure that the
gap is maximum between the two curves for N=88 and 90 around Z= 64 indication
the subshell effect at Z=64 for N<90. It is supporting the findings of Casten (1985)
and Casten and Zamfir (1996).

In general, for N=90 isotones, the B(E2) ratio is somewhat independent of Z
indicating constant structures because the values of this ratio are ranging between
1.45 to 1.6 and it support the findings of Gupta (2012). For N=90 isotones, this
B(E2) ratio initially decreases on increasing Z from 60 to 62 (attains minimum
values which is close to SU(3) limiting value for Smgy unlike Smgg for which this
ratio is close to SU(5) limiting value) and increases slowly on increasing Z from 62
to 66; and attains maximum value(=1.6) for Dyg; and beyond Z=66 the BE(2)
decreases linearly on increasing Z from 66 to 70 (and approaches 1.4 value for Hfy).
It is clear from Fig. 4.5 that Smgy and Hfg are most deformed in comparison to other
N=90 isotones.

For N=92 isotones, this ratio goes on increasing very slowly from 1.31 to 1.56 on
increasing Z from 60 to 74 and is close to SU(3) limiting value of 1.4. However for
N=94, this ratio is almost constant because its values are 1.46+0.05, 1.46+0.07,
1.48+0.07, 1.58+0.10 and 1.1+0.3 for Gd, Dy, Yb, Hf and W isotopes respectively
indication Z independency. For N=94, 96 and 98 isotones (see Fig. 4.6) the ratio is
close to SU(3) limiting value indicating deformed nature. For other isotones the
B(E2) ratio is lying between SU(5) and SU(3) or O(6) limiting values (see Fig. 4.7 )
as predicted by the asymmetry rotor model Sharma and Kaushik (2015a).
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Fig.4.7: Same as Fig.3 for N=104 to 124.
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4.3.2.1.3 Conclusion

The variation of B(E2; 4g—2g)/ B(E2;2g—0g) ratio with N and Z is shown for Nd —
Hg nuclei. It is found that the there is shape phase transition for N=88 and 90
isotones (Nd, Sm, Gd, Er) from an ideal spherical harmonic vibrator or SU(5) to an
axially symmetric deformed rotor or SU(3). Also B(E2) ratio is anomalously small
for two nuclei i.e., **®5Hg115 (=0.375+0.018) and ***gNdsgs (=0.73+0.090) with only
two vacancy of p+ for Z =82 and two valence n° outside N=82, respectively; which
supports the findings of Cakirli et al. (2004). The present study supports the subshell
effect around Z=64, for N< 90 as observed by Casten (1985) and Casten and Zamfir
(1996). The B(E2; 4g—2g)/ B(E2;2g—0g) ratio for N=90 isotones is almost constant
indicating that the nuclear structure is constant for these nuclei and it is supporting
the findings of Gupta (2012). Partial results have been published recently Sharma
and Kaushik (2015a, 2015b).
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Table 4.1: The experimental values of B(E2; 4¢g—2g)/ B(E2;2g—0g) branching
ratio taken from http://www.nndc.bnl.gov. The error is also mentioned with

each value after a gap shown by italic.

A Nd Sm Gd Dy Er Yb Hf W Os Pt Hg

z 60 62 64 66 68 70 72 74 76 78 80

144 | 0.739

146 | 154

148 | 1619 16521

150 | 1.56 4 193

152 | 1.3110 1.445 22 1822

154 1393 1566 14315

156 1403 163224 | 1.7812

158 1465 1.4510 1498

160 1467 1458 13914

162 1426 1.56 8

164 1307 11813 | 1487 1.5122

166 1446 1429 1.58 10

168 1505 15811 113

170 144 1.44 15

172 1.4210 14316 1.50 17

174 1397 1.7415

176 1.4815 1.87 24

178

180 1.48 20 165 0.92 22

182 1448 463

184 138620 | 144 1659 2.88

186 1309 1457 188

188 1.68 11

190 1469

192 1224 1.56 9

194 17311

196 1.478 23

198 11913 0.37518

200 1543
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CHAPTER V

STUDY OF Y2 ™sM USING
INTERACTING BOSON MODEL-I

5.1 INTRODUCTION

The interacting boson model-1 (IBM-1) of Arima and lachello (1984), lachello
and Arima (1987) and Casten (1990) has been successful in describing the collective
nuclear properties of even- even nuclei. In IBM-1, the nuclear structure is assumed
to be a function of total boson number Ng (=Np+ N,), where N, and N, are the
valance proton and neutron particle or hole boson number respectively. This model
is based on group theory and provides a useful theoretical explanation of various
experimentally observed nuclear properties.

In even- even nuclei, the energy ratio Ry (= Eq4q" / Ezq") is good measure of

deformation and it helps in categorizing the atomic nuclei as per details given below

(see Fig. 5.1):

For vibrational or SU(5) type nuclei R4=2.00
For E(5) symmetry R4=2.20
For y-soft nuclei or O(6) R4=2.50
For X(5) symmetry Rs=2.90
For rotational nuclei or SU(3) R, =3.33
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B>0, y =—60°

Figure 5.1: The shape of nucleus for different values of 8 and y. For
spherical nuclei R;= 2.0 and p =0, transitional nuclei R;~ 2.3 to 2.8 and
for deformed nuclei [prolate ($>0 and y =0°) and oblate (p>0 and y = -60°)
shape] Ry > 2.8.

5.2 LITERATURE REVIEW

In past years, several systematic studies of **°***Sm isotopes have been performed
using IBM-1 by Scholten et al. (1978), Scholten (1980), Castands et al. (1982), Chuu
et al. (1984), Yen et al. (1984), Hsieh et al. (1986), Chuu and Hsieh (1990) Han et al.
(1990), Stewart et al. (1990), Kracikova et al. (1984a) and Kracikova et al. (1984b),
dynamic pairing-plus-quadrupole (DPPQ) model by Kumar (1974), Kumar (1976)
and Gupta (1983), boson expansion model (BEM) by Tamura et al. (1979),
rotational vibrational interaction model (RVM) by Bhardwaj et al. (1983) and
Bhardwaj (1983). These theories were partial successful in explaining the complex

nuclear structure of **¢***Sm isotopes.

The work of Scholten et al. (1978) and Scholten (1980) was limited to the lower
bands i.e. g-, B- and y- bands only. Castands et al. (1982) used an effective
Hamiltonian of IBA for describing only the low lying energy spectrum of Xe, Ba,
Sm, Gd and U isotopes and pointed out that the effective IBM results were in
agreement with those projected from IBM calculations of Scholten (1980). Chuu et
al. (1984), used an effective Higa for N = 88 and 90 (Ba-Yb) isotones and obtained a
unified E2 transition operator to reproduce the observed B(E2) values and Qi+«
moments. These attempts of Chuu et al. (1984) were aimed to find a common set of
IBM parameters for a group of nuclei (isotopes/ isotones) so that the varying nuclear

structure with N, Z may be obtained by varying Ng. Gupta- Hamilton- Rammaya
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(1980) observed that the g-band spectra of the isotonic multiplets in the first quadrant
of the Z=50-82, N=82-126 major closed shell vary slowly with Z and a common set
of parameters should be easier to obtain. Mittal and Gupta (1990) pointed out that the
approach of Chuu et al. (1984) did not reproduce the correct variation of the E,, and
Eop states with Z. Also for N=90 isotones, Chuu et al. (1984) results were not
satisfactory for B(E2) values for transition between different bands. In addition, the
energy spacing in the Hga calculation of Chuu et al. (1984) were not in agreement
with the observed data in B- and y— bands (Fig. 3 of Chuu et al. (1984) for *>Sm)
and some states were even in reverse order in the y —band of °°Sm. The DPPQ
model of Kumar (1975) had limitations for production the energies of various bands
for Sm and other isotopes, because it does not have any fitting procedure of energies
like other models (e.g. IBM-1). Also the energy scale is not linear in the g-band
versus other bands Gupta (1983).

At present the large amount of experimental data is available from the radio-
active decay, coulomb excitation and the reaction work of Lederer and Shirley
(1978), Raman et al. (1987), Peker (1989), Venkova and Andrejtischeff (1981),
Peker (1987), Sakai (1984) and www.nndc.bnl.gov (2015). Three quasi-bands in
>Sm and four in **>Sm are well established up to higher spins, which requires more
detailed theoretical analysis for complete explanation of the observed collective
properties. Since all the previous works were performed only for lower members of
the three lower bands i.e. g-, B-, and y-bands, it is interesting to see what the results

are of a study of higher bands.

In this chapter, the IBM Hamiltonian is used for **>***Sm isotopes to study the
nuclear properties of lower and higher bands up to high spins, which includes the
energy spectrum, absolute B(E2) values and B(E2) branching ratios. The absolute
B(E2) values and B(E2) branching ratios are sensitive to the wave function and

provide more stringent test of a model.
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5.3 THE INTERACTING BOSON MODEL
CALCULATIONS

The two bodies effective Hamiltonian within the boson has two forms

H=¢s(s"s7) +eg(d".d) + ¥ (1/2) QL+1)* c{[d*x d" P x [dx d"V}O
L=0,2,4

+ (l/\/2) s {[ d+X d+](2)X [dNX d~](2) + [ d+X d+](2)X [dNX d~](2)}(0)

+ (%) Yo {[dx d1Ox [sx 519 + [s'x 5719+ [d"x "3 @

AND

+ U {[d"%x s1@x [dx 57930 + ) up[s'x 51O + [sx s} Q . (5.)

Where, esand g4 are the single-boson energies and ¢, v and u, describe the two-

boson interaction. Also,

H=¢"nqg+ ag (P+P) +a; (LL) + az(QQ) + as (T3.T3) + a4(T4.T4) (52)

where,

ng =(d". d),

P =(A)(d.d) - (%) (7.5,
L=v10(d"'xd")P,

Q=[d" xs” +s"xd]?,
Ts=[d" xd]® and
Ta=[d" xd]®.

A least square fitting technique is used to find out the optimized values of the four

parameters i.e €”, ag, a; and a. while az and a4 are kept zero in equ. 5.2. The PHINT

programme of Scholten (1979a) is used to fit the observed energy spectra of ***%*Sm

isotopes. All levels with reliable spin assignment (I" < 10%) are included up to the

point that the first level with an uncertain spin assignment appears. In fitting of the

energy spectra, we first determine the four parameters of H” as discussed above, that

reproduce the best lower and higher bands.

The optimized values of these four boson- boson interaction parameters are listed
in Table 5.1. These four parameters with E2SD (= a,) and E2DD (= V5p,) are the

59



input for the FBEM programme of Scholten (1979b). The E2 transition operator

depends upon two parameters ay and [, as given below:

T(E2) =0, [d*s™ +s" x d™ 1@ + By[d" d7]@ (5.3)
Where, ay is called the boson effective charge, simply the scaling parameter and
affecting the B(E2) values and 3, accounts for nuclear shape transition. The ratio

E2DD/ E2SD is equal to -2.958 in the SU(3) limit and reduced to zero in the O(6)
limit. The FBEM gives the B(E2) values and ratios.

Table 5.1: The Interacting Boson Model-1 parameters (all in keV) for ***

1548m.

Parameter 1525m 1>4Sm
Ng 10 11
EPS 503.8 411.5
PAIR 13.1 0.1
ELL 0.5 -0.8
Q0 -26.2 418
OCT 0.0 0.0
HEX 0.0 0.0
E2DD -250.0 -250.0
E2SD 160.0 140.0
E2DD/E2SD -1.56 -1.786

5.4 RESULT AND DISCUSSION

For ®1>5m isotopes, experimental values of energy ratio Ry, R, (=E2,/E2,), Rg
(FEOy/E2g), Rope (FEOR/ESg), Roope [Z(E25-EOR)/E2],  Rappe [=(E4p-E24)/(Edg-
E2y)] and Ra., . [=(E4,-E2,)/(E44-E2,)] are calculated and given in Table 5.2. The
experimental values of energies to calculate these ratios are taken from the website of

Brookhaven National Laboratory, www.nndc.bnl.gov (2015). It is evident that *4°Sm
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(R,= 1.85) and ***Sm (R,= 2.14) nuclei are the spherical in nature i.e. SU(5) type
because their Ry is close to 2. The **°Sm nucleus (R4= 2.31) is a transitional one i.e.
lying on transition from SU(5) to SU(3) symmetry. The *Sm is a best example of
X(5) symmetry because its experimental value of R, is 3.01 compared to X(5)
symmetry value 2.9, R, is 8.9 compare to X(5) value 8.16, Rg is 5.62 compared to
X(5) value 5.65 and the values of other energy ratios i.e., Rogpe R20pe Ra2peand
Rs2, are near to the X(5) values. The **Sm is rotor type i.e. close to SU(3)
symmetry. The *2***Sm isotopes are lying on transition from SU(5) to SU(3) and
1%28m is close to X(5) symmetry (see Casten’s symmetry triangle Fig. 5.2). For
°2Sm, the present IBM calculation gives the energy ratio EOy/E6, equal to
0.9509 compared to observed value of 0.9685 and X(5) value 1.0405. Hence present
IBM calculation is supporting the X(5) nature of **Sm.

The variation of experimental values of ratios R4 and R .. versus A for 4°***sm

is shown in Fig. 5.3. The corresponding values of these ratios in X(5) limit are shown
for useful comparison. It is clear from the Fig. 5.3 that the ratio R4 increases from
1.85 to 3.25 as A increases from 146 to 154 and "*?Sm is very close to X(5) limiting
value. However, the ratio Roep,; decreases initially when A increases from 146 to
150; increases while A increases from 150 to 154 and for °Sm is very close to X(5)

limiting value (see Fig. 5.3).
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Table 5.2: The experimental values of energy ratio Rs (=E49/E2Q), R,
(:EZY/EZQ), RB (:EO,;/EZQ), R0,6,ﬁ,g (:EOB/EGQ), Rz,o,p,g (:EZB-EOﬁ/EZg),
Ryzpg (FE43-E2y/ E44-E2y) and Ry, (=E4,-E2,/ E4,-E2;) are given for %

1%Sm isotopes. The experimental values are taken from www.nndc.bnl.gov

(2015). The IBM calculated ratios for ******Sm are shown for comparison

in last rows as Present Work.

A R4 Ry Rp Roepe | Raopg |Razpe | Razag
146 1.8486 | 2.2059 1.9433 | 0.8014 | 0.2124 - 1.2471
148 2.1446 | 2.6427 2.5919 | 0.7483 | 0.4325 | 0.3669 1.0425
150 2.3157 | 3.5748 22172 | 05789 |0.9155 |0.91723 | 1.02137
152 3.0102 | 8.9146 5.6215 | 0.9685 | 1.0325 | 0.8679 1.1675
154 3.2532 | 17.5701 | 13.414 | 2.02039 | 0.9576 | 1.04591 | 1.19207
X(5) 2.904 |8.16 5.649 1.0405 | 1.801 1.701 1.071
152

Present

Work |2.8121 | 7.8281 | 5.0563 | 0.9509 | 1.1536 1.3969 | 1.7088
154

Present

Work | 3.3138 | 19.1755 | 14531 | 2.1062 | 1.4202 1.2798 | 1.2374

Figure 5.2 Casten’s symmetry triangle.
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Energy Ratios

146 148 150 152 154
A

Fig. 5.3: The variation of experimental values of ratio Rs and R,
versus A for ******Sm. The data points of R4 are shown by solid squares (m)
and Rygpg by solid circles(e). The corresponding values of these ratios in
X(5) limit are shown by dotted lines(--) for useful comparison. The

experimental values are taken from www.nndc.bnl.gov (2015).

The variation of experimental values of ratios R, and Ry versus A for ****>'Sm is
shown in Fig. 5.4. The corresponding values of these ratios in X(5) limit are shown
for useful comparison. It is clear from the Fig. 5.4 that the ratios R, and Rg both;
increases as A increases from 146 to 148; decreases slowly as A increases from 148
to 150 and increases sharply as A increases from 150 to 154 indicating shape phase
transition from SU(5) to SU(3). Both the experimental ratios for *°Sm is very close
to X(5) limiting values indication the X(5) character. In the present IBM calculation,
the R, and Ry ratios for *>Sm are close to X(5) values (see Table 5.2) and our

calculation is supporting X(5) nature of ***Sm.
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Fig. 5.4: Same as Fig. 5.3 for ratio R, and Rg versus A. The data points of
R, are shown by hollow triangles (A) and Ry by hollow circles (o). The
corresponding values of these ratios in X(5) limit are shown by dotted lines
(--) for useful comparison. The experimental values are taken from

www.nndc.bnl.gov (2015).

The experimental values of B(E2;4g—2g)/B(E2;2g—0g), B(E2;2,—04/2,) and
B(E2;2;—04/2,) branching ratio are given in Table 5.3 for ****°Sm isotopes. The
corresponding values of Np, Nn, Ng (=Np+Nn) and NpNn are also given. The values
for X(5) symmetry of IBM, vibrational model (VM) and rotor model (RM) are also
given for wuseful comparison. The experimental ratios are taken from
www.nndc.bnl.gov (2015). It is noted that for '°2Sm, the observed value of
B(E2;4g—2g)/ B(E2;2g—0g) ratio is close to X(5) limiting values and our calculated
value is 1.499 indicating X(5) nature.
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Table 5.3: The experimental values of energy ratio B(E2;4g—2g)/
B(E2;2g—0g), B(E2; 2,—04/2;) and B(E2; 23—04/2,). The corresponding

values of Np, Nn, Ng (=Np+Nn) and NpNn are also listed for

146-1SZSm

isotopes. The values for X(5) symmetry of IBM, vibrational model (VM)

and rotor model (RM) are also given.

9Peker (1984)

B(E2;4g—2g)/ | B(E2; 2,—04/2,) | B(E2; 25—04/2,)
A Np | Nn | NB | NpNn | B(E2;2g—0g)
1.7941° 0.0012(4)° 0.066(13)"
>1.27(26)" >0.01¢ 0.02¢
146 | 6| 1|7 |6 >1.309
1.6598° 0.11° 0.07°
148 | 6| 2|8 |12 1.65(21)? 0.067" 0.086"
1.856¢ 0.26" 0.012(2)°
150 | 6| 3|9 |18 1.9(3) 0 .33(8)" 0.012"
1.5574° 0.38(1)° 0.17(1)°
152 | 6| 4]10 |24 1.445(22) 0.40(1)’ 0.169(7)
1.60465' 0.60(11)" 0.44'
154 | 6| 5|11 |30 1.39(3)?
X(5) 1.6 0.666 0.429
VM 2.0 0 0
RM 1.42 0.7 0.7
“www.nndc.bnl.gov  °Kracikova et al. (1984a) ‘Peker (1990)
IMateosian (1986)  °Peker (1989) "Peker (1987)

"Lederer and Shirley (1978) 'Stewart et al. (1990)

5.4.1 The B(E2) Branching Ratios in the SU(5) and SU(3) Limit

In the SU(5) limit, the one d-boson excitation ng = 1 is 2 state, the ng = 2 d-

boson excitation is a triplet of 0%, , 2", and 4*; states and nd = 3 boson excitation is a

quintuplet of 073, 23, 3", 4", and 6*;. The Ang= 0, +1 transitions are allowed and

Ang = +2, +3, etc. transitions are prohibited.
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In the SU(3) limit, these states are regrouped into different bands. The
absolute B(E2) values for (y—g) and (B—g) transitions depend on the intrinsic
matrix elements and geometrical factors Bohr and Mottelson (1975). The B(E2)
branching ratio for two transitions from a particular level in a given band to the two
states of other band i.e. (Ii—If/If") depends on the Alaga value Bohr and Mottelson
(1975). In the SU(3) limit these rules are slightly modified because the (y—g) and
(B—¢g) transitions are prohibited, but in the slightly broken symmetry the (y—g)
transition should be faster that (B—g) transition. The observed B(E2) ratios are
obtained from the y—ray spectrum data, using the relation Alaga et al. (1955),

B(E2; li—1I/Ir) = [Iy/Iy' |{Ey"/ Ey}’, (5.4)
where E, and E,’ are the y — ray energies for (li—1Ir) and (li—If’) transitions; I, and
l,> are the intensities, respectively.

5.4.2 The 2Sm isotope

5.4.2.1 Energy spectrum

In *°2Sm the members of g-band and Bs1-band are available up to 14", for B, up to
2" and y; up to 5° (see Sakai (1984). The experimental energy values of Sakai (1984)
and Peker (1989) are compared with the present calculation and DPPQ Gupta (1983)
in Table 5.4. In the present calculation the band-head of the g-, B- and y—bands are
very close to the experiment and the spacing of different members in the different
bands is also like in the experiment Sakai (1984) and Peker (1989). For K'= 0%,
band the calculated 0" state lies at 1.496 MeV compared to the 1.0829 MeV in
experiment. The variation of E; with spin I" for different bands is presented in Fig.
5.5. The slopes of E; versus I" of different bands in experiment are similar to the

theoretical slopes.
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Table 5.4: The values of energy (in MeV) for °2Sm. The theoretical result

from present IBM calculation and DPPQ Gupta (1983) are also shown.

State | K™ |Expt.? Present DPPQ°
24 0," ]0.1218 0.1315 0.121
4q 0," |0.366648 | 0.3698 0.361
6g 0, |0.70694 0.6992

84 0" |1.12537 1.1097

0p 0, |0.6847 0.6649 1.000
25 0" |0.81047 0.8166 1.211
4 0," |[1.02296 1.1495

65 0, |1.31051 1.5402

8 0," |1.66648 1.9983

2, 2:" |1.08589 1.0294 1.556
3, 2:" |1.23388 1.1005

4, 2:" | 1.37175 1.4366

5, 2:" | (1.5595) 1.4807

6, 2:" | 1.7283° 1.9086

7, 2:" | 19458° 1.9312

8, 2:" [21397° 2.4472

Op |05 |[1.08286 1.4960

2, |05 [ (1.2928) 1.5890

®Sakai (1984), " Gupta (1984), ©Peker (1989)
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Fig 5.5: The variation of E, with spin I" for different bands in ***Sm.The
experimental data Sakai (1984) and Peker (1989), points are shown by solid
circles (@), present calculation IBM by hollow circles (©) and DPPQ Gupta

(1984) by hollow triangles (A).

5.4.2.2 B(E2)values

For *Sm, the observed and calculated B(E2) values are listed in Table 5.5 for

(g—g), (B—g) and (y—g) transitions.
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Table 5.5: The B (E2; Ii—If) values (in €°b® unit) in **>Sm.

li—k | Expt. Present | BEM4 | BEM6 | DPPQ | RVM1 | RVM2 | IBM
Ref. A C C d e e F

24—0y | 0.6806 0.6806 |0.673 [0.673 [0.64 |0.669 [0.669 |0.75
44—24 | 1.06(4) 1.02 0.99 0.98 096 |1057 |1.057 |[1.0
6y—4q | 1.18° 1.14 1.12 1.09 - - - 0.97
84—6y | 1.36" 1.17 1.17 1.11 - - - 0.83
10,—8, | 1.6° 1.14 - - - - - -

2p—24 | 0.026(3) 0.14 0.031 0.025 0.029 |0.062 |0.069

2p—44 | 0.0909(8) | 0.0108 | 0.05 0.07 0.089 |0.283 0.274

23—04 | 0.0046(3) | 0.0172 | 0.005 0.007 0.002 |0.019 |0.022

0p—2¢ |0.176(11)° | 0.0092 | 0.156 0.12 0.166 |0.314 0.347

4s—24 | 0.0053(35) | 0.0027 | 0.004 0.005 0.001 | 0.003 0.006

45—44 | 0.037(23)° | 0.1091 | 0.026 0.016 0.026 | 0.07 0.08

2,—0y |0.0176(8) |0.0153 | 0.049 0.05 0.023 |0.015 0.016

0.028(10)
2,2, |0.042(4)¢ | 00012 |0.05 |0.053 |0.048 |0.031 |0.032

2,—44 | 0.004(3)° | 0.085 0.007 0.006 0.006 | 0.0069 | 0.007

4,—24 | 0.0035(13) | 0.0052 | 0.034 0.026 0.009 | 0.0046 | 0.0078

4,—44 |0.0037(1)° | 0.0034 |0.068 0.076 0.047 | 0.017 0.013

Peker (1989), "Venkova and Andrejtscheff (1981), © Tamura et al. (1979), ? Gupta
(1983)° Bhardwaj et al. (1983) and Bhardwaj (1983), "Chuu et al. (1984)

The variation of B(E2;Ig—Ig-2) values with spin Ig is shown in Fig. 5.6. It is
observed that the experimental B(E2) values of Peker (1989) and Venkova and
Andrejtscheff (1981), increases rapidly on increasing Ig from 2" to 10" indicating
the sharp change in the nuclear shape (see Fig.5.6). In the IBM calculation of Chuu
et al. (1988), the B(E2) values first increases when lg increases from 2 to 4™ and it
decreases while g increasing from 4" to 8" unlike the observed trend. But in the
present IBM work, the B(E2) values follow the observed trend and values the more
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closer than other theoretical data. The BEM6 Tamura et al. (1979) data points are
much below the observed data points. However, the BEM4 Tamura et al. (1979)
values are close to present calculation (see Fig 5.6). Only two data points are
available for DPPQ Gupta (1983), RVM1 and RVM2 Bhardwaj et al. (1983) and
Bhardwaj (1983) to find any definite conclusion.

—@— Expt.
—O— Present

169 | —v— BEM4 °
1| —o—BEMs / EXP
144 | —x— DPPQ .

’(\uT | | —A—RVM1
2,0 a rvwe é/ PRESENT
1 ] 7/
© | RvML Z \BEM4
@ o8 * ——IBM

«/ —DPPQ

0.6 T T T T T
2 4 6 8 10
I¢

FIG 5.6: The variation of B(E2;I1g—Ig-2) values with spin Ig for ground
bands for '°2Sm.The experimental data points of Peker (1989) and
Venkova and Andrejtscheff (1981) are shown by solid circles (e), present
IBM calculation by hollow circles (), BEM4 Tamura et al. (1979) by
inverted hollow triangle(V), BEM6 Tamura et al. (1979) by hollow
diamond (0), DPPQ Gupta (1984) by cross (x), IBM Chuu et al. (1984) by
star (*), RVM1 Bhardwaj et al. (1983) and Bhardwaj (1983) by upright
triangle (A) and RVM2 Bhardwaj et al. (1983) and Bhardwaj (1983) by

hollow square (D).

The theoretical results of vibrational model (VM), SU(5), O(6) and SU(3) limiting
values, present calculation and IBM calculation of Chuu et al. (1988) along with the
experimental data for B(E2) values of Peker (1989) and Venkova and Andrejtscheff
(1981) are shown in Fig. 5.7. It is clear from the Fig. 5.7 that the observed data is
quite below from the VM limiting values and is lying between SU(5) and S(3)
limiting values. The B(E2) values from present calculation and BEM4 Tamura et al.
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(1979) are very close to the experimental data point and also present IBM calculation
produces the observed slop of this ratio with lg. There are only two data points from
RVM1 and RVM2 Bhardwaj et al (1983) and Bhardwaj (1983) and DPPQ Gupta
(1984) not shown in the Fig. to avoid overlapping?

—o— SU(3)
1 | —2—SU(5) VM
—a— VM
31| —v—o0(6)
—e— exp
—o— Present /
—x— |[BM

21| —o— BEM4 / /A//ASU(S)
. /A o/. =X
) [

B(E2; Ig+2->Ig)
|
|
=

FIG 5.7: The variation of B(E2;Ig—Ig-2) values with spin Ig for ground
state rotational bands for ’Sm.The experimental data points of Peker
(1989) and Venkova and Andrejtscheff (1981) are shown by solid circles
(o), present IBM calculation by hollow circles (0), BEM4 Tamura et al.
(1979) by hollow diamond (¢), BEM6 Tamura et al. (1979) by solid square
(w), IBM Chuu et al. (1984) by star (*). The vibrational model (VM) is
shown by solid triangle (A), SU(S) limiting values by hollow upright
triangle (A), O(6) limiting values by hollow inverted triangle (V) and
SU(3) limiting values by hollow square (o). There are only two data points
from RVM1 and RVM2 Bhardwaj et al (1983) and Bhardwaj (1983) and
DPPQ Gupta (1984) not shown in the Fig. to avoid overlapping.

The B(E2) values for six (B—g) and five (y—g) transitions are also compared (see
Table 5.5) with the present calculation, boson expansion model (BEM4 and BEMG6
version) of Tamura et al (1979), dynamic pairing plus quadrupole (DPPQ) model of
Gupta (1983), rotational vibrational model (RVM1 and RVMZ2) of Bhardwaj et al
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(1983) and Bhardwaj (1983) and interaction boson model —1 (IBM-1) of Chuu et al.

(1988). It is evident that the present calculation gives the satisfactory results.

5.4.2.3 The B(E2) branching ratios for p— band

In the p—decay of '*?Eu, 13 new transitions and 5 new levels were reported by
Stewart et al. (1990), which are included in the present work for useful discussion.

In Table of Isotopes of Lederer and Shirley (1978), the B(E2) ratio for (25—04/24)
transition is 0.84 which is more than the SU(3) limiting value 0.7. This ratio may be
large due to 0.2% M1 and 4% EO mixing in the (23—24) 0.6886 MeV y—ray. In a
recent compilation work of Peker (1989) this ratio is 0.17(1) compared to the
theoretical value 0.12 & DPPQ value Gupta (1983) 0.076 (see Table 5.6).

The (23—4) 0.444 MeV y-ray was overlapping with  (2°—3,) transition and
gives B(E2; 23—24/44) = 0.35 (the intensity of (2’—3y ) y—ray was 12 which gives
this ratio 0.56) Lederer and Shirley (1978). But in the recent compilation of Peker
(1989) this ratio is 0.30(3) and in decay of "?Eu work of Stewart et al. (1990) ratio
is 0.030(1).

In the Table of Isotopes Lederer and Shirley (1978); the (45—44) 0.6565 MeV y—
ray had 16% M1 and 5% EO mixing, which gave the B(E2;43—24/4y) = 0.11 and
B(E2;4s—44/64) = 0.76, but Peker (1989) gave these ratios equal to 0.21(2) and
3.6(22); Stewart et al (1990) gave 0.11(2) and 0.08(2); and in the present work these
ratios are 9.3 and 231 respectively (see Table 5.6).

For (6g—44/6), (8s—64/85) and (10— 84/10y) transitions; the observed B(E2)
ratios lie away from the respective Alaga values and theoretical values are close to
the observed values. It is also evident that the (B—p) transitions are stronger than

(B—g) which is supported by present IBM calculation (see Table 5.6).
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Table 5.6: The B(E2) ratios for **>Sm.

RV
Presen | DPP BEM | BEM | RV M
li—Idlp Expt Expt t Q 4 6 M (D) | (ID) RM
Ref. a b c d d e e
23—04/24 0.17(1) 0.169(7) 0.12 0.08 0.16 0.26 031 032 |07
252414, 0.30(3) 0.030(1) 12.94 0.33 0.62 0.36 0.22 | 025 | 0.56
23—05/04 406(77) 829(113) | 125 291 91 69 -- -- --
23—44/0, 19.8(23) -- 0.63 40.5 10.1 10.8 -- -- 0.8
4552,/4, 0.21(2) 0.11(2) 9.32 0.023 | 0.17 0.32 0.04 |008 |11
4,—4,/64 3.6(22) 0.08(2) 231 -- 0.37 0.34 -- 0.57
452412, | 291(27) -- 186 -- 180 126 -- -- --
4552 14, 1385.7 - 20 43 27.7 3.9 109 |912 |11
4,—24/3, 350(170) | -- 1.3 123 1831 -- -- --
65—44/64 0.078(5) -- 0.012 -- -- -- -- 1.24
65—45/4, 50(17) - 694 -- -- -- -- -- --
83—6,/6 0.012(1) -- 0.008 -- -- -- 1.3
2374(309

83— 65/6 ) -- 1415 -- -- -- -- --
10,—8,/10
q 0.05(1) -- 0.007 -- -- -- -- --
10;,—83/8, | 440(55) -- 2106 -- -- -- -- --
2,402, 0.38(1) 0.40(1) 12.8 0.48 0.98 0.94 049 |05 0.07

19.0
2,—24/44 12.4(6) 9.8(4) 0.014 8 7.57 9.14 4.5 457 |7
2,—2412, 1208(68) | 3.9(6) 267 2.5 -- 2.64 025 |[028 | --
2,—04/0, -- - 16.8 0.42 0.37 0.42 -- -- --
352444 0.94(3) 0.93(3) 0.78 -- 2.83 2.68 -- -- 2.5
3,—24/2, 0.025(3) 0.05(1) 9.74 0.026 | 0.33 0.4 -- -- --
3,-2,/2, 69(5) 80(10) 8.1 25 9.06 8.9 -- -- --

2779(575 | 1555(553

3,—2,/24 ) ) 0.83 961 27.5 22.3 -- -- --
4,244, 0.096(8) 0.095(9) 1.53 0.19 0.5 0.34 0.26 | 0.60 | 0.34
4,—4,/6, 4.36(55) 5.9(26) 0.03 -- 8.5 38 -- -- 11.3
4,—524/2, 0.31(8) - 0.92 0.2 0.31 1.65 -- -- --
4,212, 97(17) 110(50) 98 -- -- -- -- -- --
4,212, 314(96) -- 106 -- -- -- -- -- --
5,—4,/6, 0.33(2) - 0.39 -- -- -- -- -- 1.75
5,—3,/4, 25.8(88) -- 20.9 -- -- -- -- -- 0.6
5,—3,/64 8.5(29) - 8.2 -- -- -- -- -- 1.05
6,—44/6, 0.04(2) - 0.8 -- -- -- -- -- 0.27
7,—64/8, 0.24(2) - 0.25 -- -- -- -- -- 1.5
7,—5,16, 0.164(7) -- 4.91 -- -- -- -- -- --
7,—6,164 455(41) -- 10 -- -- -- -- -- 2.15
9,-8,/10, | 0.14(5) - 0.17 -- -- -- -- -- 1.37
9,—7,/10, | 23.6(37) -- 14.6 -- -- -- -- -- --
2;—04/2, | 1.74(17) 1.69(45) 0.13 -- -- -- -- -- --
2m—24/4q | 0.042(3) -- 16.7 -- -- -- -- -- --
2;m—2p/25 | 0.18(1) - 0.24 - -- -- -- -- --
2;m—25 12, | 63.7(74) 56.3(188) | 3.7 -- -- -- -- -- --
2;m—4p/2, | 14.8(4) - 253 -- -- -- -- -- --

Peker (1989), "Stewart et al. (1990), “Gupta (1983), “Tamura et al. (1979),
*Bhardwaj et al. (1983) and Bhardwaj (1983)
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5.4.2.4 The B(E2) branching ratios for y—band

The experimental data was available for 21 ratios, for transition from y—band (see
Table 5.6). It is evident from the observed data that the (y—f) transitions are
stronger than (y—g); and (y— 7) transitions are stronger are than (y—f). Theory
supports these aspects. Most of the B(E2) ratios lie on the transition from SU(5) to
SU(3).

The theoretical B(E2) ratios for the transition from 5,, 6,, 7, and 9, states were not
available from the earlier from any previous work Gupta (1983), Tamura et al.
(1979), Bhardwaj et al. (1983) and Bhardwaj (1983). The present study is extended
for these four states along with three other lower states i.e. 2,, 3, and 4, states for
calculating the B(E2) ratios. The B(E2) ratios for the transition from 2,, 3,, 4, 5,, 6,,
7, and 9, states are compared with the present work and found that most of the

theoretical values are close to the observed values (see Table 5.6).

5.4.2.5 The B(E2) branching ratios for K* = 0"3, p, —band
The five B(E2) ratios were available for transition from 2, state, the experimental
data is compared for all these transitions and there is agreement between theory and

experiment (see Table 5.6).

5.4.3 The *** Sm isotope

5.4.3.1 Energy spectrum

In Table 5.7 the energy values are compared with the present work and DPPQ model.

The calculated spectrum is good and the band-head of f— and y —bands are close to

the observed spectrum.
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Table 5.7: The values of energy (in MeV) for ***Sm.

State | Expt?® | Present | DPPQ"
29 0.08198 | 0.0752 0.086
4q 0.2667 0.2492 0.270
6g | 05443 | 05188
89 0.9031 0.8811
10g 1.3333 1.3330

Op 1.0997 1.0927 1.096
2 1.1782 1.1995 | 1.198

2, 1.4404 | 1.4420 | 1537
3, | (1.5400) | 1.5361

4, (1.6606) | 1.6573
3Sakai (1984) °Gupta (1983)

5.4.3.2 B(E2) values

There are 10 B(E2) values available from the experiment for (g—g), (B—g), and
(y—g) transitions. The 24 B(E2) values are listed and compared with the previous
work i.e. DPPQ of Gupta (1983), BEM of Tamura et al. (1979), effective IBA of
Chuu et al. (1988) and RVM1and RVM2 of Bhardwaj et al. (1983) and Bhardwaj
(1983) (see Table 5.8).

The observed B(E2) values of Tamura et al. (1979) and Peker (1987) for (B—g)
and (y—g) transitions are also compared with the present work and previous work of
Chuu et al. (1988), Han et al. (1990), Kumar (1974), Kumar (1976) and Gupta
(1983) for useful comparison in Table 5.8. The IBM-1 yields satisfactory results.

5.4.3.3 The B(E2) branching ratios for p-band

The experimental data of Tamura et al. (1979) and Peker (1987) for (2p—0g/2g),
(2p—4g/2g) and (4p—2g/4g) transitions indicate that *>*Sm lies close to the SU(3)
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limit. The present calculation gives these ratios close to observed values. Theory
gives satisfactory results (see Table 5.9).
5.4.3.4 B(E2) branching ratios for y —band

The B(E2) ratios for (2y—0g/2g) is 0.60(11) compared to the Alaga value 0.7. For
(2y—2g/4g), (3y—2g/4g) and (4 y—2g/4g) transitions the Alaga values are 19.07,
2.5 and 0.34; and theoretical values are 11.2, 1.58 and 0.24 respectively (see Table
5.9). For other transitions the theoretical values are compared with BEM-4 and
BEM-6 of Tamura et al. (1979), DPPQ of Gupta (1983), effective IBA of Han et al.
(1990) and RVM of Bhardwaj et al. (1983) and Bhardwaj (1983) calculations. There
is agreement between theory & previous work.
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Table 5.8: The absolute B(E2) values (in e b? unit) for ***Sm.

li—T; Expt. Present  DPPQ BEM4 BEM6 IBM-1 IBM-1
a b c c d e
2,0, 0.86(4) 0.808 0.79 0.909 0.881 0.978 1.026
442, 1.38(22) 1.141.17 1.26 1.25 1.364 1.445
6,4, 1.37 1.22 1.37 135 - 1.547
8,6, 150 1219 - 1.41 1.38 1.416 1.549
10,8, 1.49 1175 - - - 1.333 1.492
0p—25 - 0.015 0.094 0.054 0054 - -
2;—0, 0.006(41)°0.001 0.0055 0.008 0.001 -- 0.0068
24—2, 0.012°  0.004 0.021 0.014 001 - -
24—4, 0.024°  0.009 0.062 0.033 0.008 -- 0.007
bg—2, - 0.0004  0.003 0.011 0.018 -- -
by—dy - 0.0058  0.020 0.01 0.003 -- -
by—6, - 0.0074 - 0.029 0.014 -- -
2,2, 0.02° 0.0242  0.039 0.037 0.047 0.018 0.003
2,—4, 0.0008°  0.0022  0.0046 0.001 0.00001 0.0012 -
4,2, - 0.0062  0.0093 0.020 0.021 - -
2,4, - 0.0256  0.043 0.043 0.040 - -
4,—6, - 0.0191 - 0.002 0.002 -- -
2405 - 0.057 0.084' 0.68 062 - -
4y —25 - 0.81 1.3' 0.96 086 - -
3,2, - 1.08 - 1.30 1.28 - -
4,3, - 0.76 - 0.98 098 - -
5,—4, - 0.57 - 0.69 062 - -
*Peker (1987)

®Venkova and Andrejtscheff (1981)
‘Tamura et al. (1979)
YHan et al. (1990)

®Chuu et al. (1984)," Kumar (1974) and Kumar (1976)
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Table 5.9: The B(E2; I; — If/l¢) ratios for **Sm.

li— Iflp Expt.  Present DPPQ BEM4 BEM6 RVM1 RVM2 IBM1
a b c c d d e

25—04/2, 044 025 026 061 010 049 082 -
25—44/2, 204 233 295 236 08 277 271 --
23—05/04 -- 569 159 823 616 - - -
45—24/24 0.9(5) 0.07 016 110 648 042 042 --
25—2p/4, -- 140 66 99 318 -- - -
45—24/24 -- 2032 6500 873 478 -- - -
45—24/3, -- 18.7 415 - -- -- -- --
2,—04/2, 0.60(11) 0.6 056 072 045 056 0.59 0.38
2,—24/44 4.8(32) 11.2 8.48 37 396 95 8.5 -
2,—04/04 -- 0.45 0.001 063 0.8
2, —24/2, 2.2 111 07 0.7
2,—04/2 0.12 063 051 -
3,244, 1.45(77) 1.58 153 357 345 -
3,—24/2, 0.41 330 054 063 --
3,-2,/24 -- 44.5 0.003 260 337 -
3,—24/2, -- 0.009 11000 0.02 0.019 ---
4,—24/4, 0.055 0.24 022 047 051 024 0.308 0.11
4,—2,124 -- 57.1 018 -- -
4,—24/2, - 0.048 -- 099 277 -
4,—44/2; - 146.7 - 126 017 - -
4,—3,/2, - 2.14 -- 233 263 -
4,—dgl4, - 171 - 056 024 - -
*Peker (1987)

"Gupta (1983)

‘Tamura et al. (1979)

¢ Bhardwaj et al. (1983) and Bhardwaj (1983)
®*Han et al. (1990)

" Kumar (1974) and Kumar (1976)
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5.5 CONCLUSIONS

In this Chapter, the systematic study has been carried out for the lower and higher
states of lower and higher bands, absolute B(E2) values and B(E2) branching ratios
of #1¥Sm nuclei. The mass-dependent IBM-1 Hamiltonian is used to test its
validity for explaining the large amount of experimental data for energy spectra,
B(E2) values and B(E2) ratios. The present IBM-1 calculation is quite successful in

explaining the observed properties.

In B—decay of ?Eu, 13 new transitions and 5 new levels were reported by Stewart
et al. (1990) for **2Sm, which were included in the present work and present IBM-1
calculated results for the B(E2) branching ratios for p— band are close to observed
data points (see Table 5.6). Present IBM-1 calculation also supports the X(5)
character of **Sm (N=90).

The observed B(E2:1g+2—Ig)) values increases rapidly on increasing Ig from 2°
to 10" indicating the sharp change in the nuclear shape of **Sm which is supported
by present IBM work (see Fig.5.6). The BEM6 Tamura et al. (1979) data points are
much below the observed data points. However, the BEM4 Tamura et al. (1979)
values are close to present calculation. But, IBM calculation of Chuu et al. (1988)

gives opposite trend.

The calculated energy spectrum, B(E2) values and B(E2) ratios present a coherent
and varied picture of the change in nuclear shape and dynamics with n® number N in
1521345 m jsotopes. It is found that the inclusion of energy states up to higher spins in
the PHINT programme provides the proper transition from SU(5) to SU(3) limit.
The results of our phenomenological calculations indicate that the mass-dependent
Hamiltonian in IBM-1 is an encouraging approach than the effective boson approach

with or without inclusion of Z = 64 subshell effect.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The medium mass region provides a rich ground of testing the understanding of
collective nuclear structure of doubly even nuclei. The collective nuclear structures
of these nuclei have been analyzed, using empirical studies, phenomenological,

geometrical, group theoretical models.

The values of asymmetry parameter (yo) of asymmetric rotor model are
calculated using the experimental energies of E2," and E2;" states for 50<Z<82 and
82<N<126 region. The whole calculated data is divided into four quadrants. The
systematic dependence of yo on N, Ng and NpNn has been carried out on quadrant
wise basis to find out the role of valence nucleons and holes on nuclear structure. The
role of Z=64 subshell effect for N<90 region is discussed. In quadrant-l1 and
quadrant-11, the yo decreases; from 30° in Q-1 and from 22° in Q-11 to 9°- 10°% with
increasing N from 82 to 104 (i.e. the mid of N=82 to 126 neutron shell), signifying
that the nuclear deformation (B) is increasing, while the energy ratio R4 increases
from 2 (for harmonic vibrators or SU(5) type nuclei) to 3.33 (for good rotors or
SU(3) type nuclei). This indicates that in this region the nuclear structure depends
much more on Z. Asymmetry parameter shows the shape phase transition at N=88-90
in Q-1. In Q-1l and Q-III; yo has a systematic dependence with N, but with different
patterns. In quadrant-I, the yo is having more correlated dependence on N, rather than
on NpNn. Also in quadrant- |, the Z=64 sub-shell effect for N<90 nuclei affect the
variation of yo with N and NpNn product. The existence of X(5) symmetry in N=90
isotones established in recent works supports the formation of isotonic multiplets in
this work. The calculated values of yo are almost constant for N=90 isotones e.g.
13.8° for Nd, 13.24° for Sm and 13.86° for Gd; which supports the constant nuclear
structure findings for N=90 isotones. The present work confirms the existence of
isotonic multiplets in quadrant-1 as reported earlier. In quadrant-11l, the variation of
vo is different from quadrant I and II because the yo increases sharply from 9° - 10° to

30° with increasing N from 104 to 126. This is signifying that the nuclear
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deformation (B) is decreasing and the nuclear structure changes from pure rotor
SU(3) type to vibrational SU(5) or y-unstable O(6) type. Further, the asymmetry
parameter for different elements has smooth curve with NpNn with almost same
slopes except for Hg isotopes.

The predictions of asymmetric rotor model for B(E2;4g—2¢g)/B(E2;2g—0g)
ratio are compared with the experimental data. It is also noted that this B(E2) ratio is
anomalously small in case of two non- magic nuclei i.e., **gHgus and *sNdss
with only two vacancy of protons for Z =82 and two valence neutrons outside N=82,
respectively. The data points for other nuclei are lying between SU(5) and SU(3)
limits. The calculated B(E2) ratios of ARM are very close to the SU(3) limit of IBM
indicating that it can explain the structure of only well deformed nuclei. Therefore
the ARM is partially successful in explaining this branching ratio. The variation of
experimental B(E2; 4g—2g)/ B(E2;2g—0g) branching ratio with N and Z is carried
out for Nd-Hg nuclei. It is found that there is shape phase transition for N=88 and
90 isotones (Nd, Sm, Gd, Er) from an ideal spherical harmonic vibrator or SU(5) to
an axially symmetric deformed rotor or SU(3). The present study supports the
subshell closer effect around Z=64, for N< 90 and the constant nuclear structure of
N=90 isotones.

The interacting Boson Model-1 is used to study the nuclear structure of **Sm
(a best example of X(5) symmetry) and **Sm (a best example of SU(3) symmetry).
The level structure of *2**Sm is well reproduced and is in agreement with the
experiment. The B(E2) branching values and B(E2) branching ratios are calculated
for inter-band and intra-band transitions for g-, B-, y- and B,- bands and the
calculated results are in good agreement with experimental data. Present calculation
supports that **>Sm is as a best example of X(5) symmetry and **Sm is a SU(3) type

in nature.
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to 8" unlike the observed trend. But in the

Introduction

The energy ratio R, (=E44/E2;) = 3.01 and Ry
(=E0y/E2,) = 5.62 for ***Sm (N=90) nucleus and
these ratios are very close to the X(5) symmetry
limiting values (R4 = 2.9 and Ry = 5.65).
Therefore, '°2Sm is the best example of X(5)
symmetry of IBM-1 [1]. The large experimental
data [2, 3, 4] is now available for ®2Sm from
decay and reaction work. The interacting boson
model-1 (IBM-1) [1] is used to study the energy
spectra, B(E2) values/ ratios for inter-band and
intra-band transitions. The theoretical results of
present IBM calculation are compared with the
predictions of DPPQ, BEM and RVM models [5-
9] and the experimental data [2, 3, 4, 10, 11].

Result and Discussion

In *2Sm the members of g-band and p,-band
are available up to 14, for p, up to 2% and y, up
to 5" [2]. In the present calculation the band-head
of the g-, B- and y-bands are very close to the
experiment and the spacing of different members
in the different bands is also like in the
experiment [2-3]. For K'= 0%; band the
calculated 0" state lies at 1.496 MeV compared
to the 1.0829 MeV in experiment. The variation
of E, with spin (1) for different bands is presented
in Fig. 1. The slopes of E, vs. | for different
bands in experiment [2-3] are similar to the
theoretical slopes.

The variation of B(E2;Ig—Ig-2)

The variation of B(E2;Ig—Ig-2) vs. spin (lg)
is shown in Fig. 2. The experimental [3,4] B(E2)
values increases rapidly on increasing Ig from 2*
to 10" indicating the sharp change in the nuclear
shape. In the previous IBM calculation [5], the
B(E2) first increases when lg increases from 2*
to 4" and it decreases while 1g increased from 4*

present IBM work, the B(E2) values follow the
observed trend and values the more closer than
other theoretical data. The BEM6 [6] data points
are much below the observed data points.
However, the BEM4 [6] values are close to
present calculation. Only two data points are
available for DPPQ [7], RVML1 and RVM2 [8, 9]
to find any definite conclusion.

The theoretical results of vibrational model
(VM), SU(5), O(6) and SU(3) limiting values,
present calculation and IBM calculation of [5]
along with the experimental data for B(E2)
values[3,4] are shown in Fig. 2. It is clear that
the observed data is quite below from the VM
limiting values and is lying between SU(5) and
SU(3) limiting values. The B(E2) values from
present IBM calculation and BEM4 [6] are very
close to the experimental data points and also
present IBM calculation produces the observed
slop of this ratio with I
B(E2) ratios for p— band

In the B-decay of *?Eu, 13 new transitions
and 5 new levels were reported [10], which are
included here for useful discussion.

In Table of Isotopes [11], the B(E2) ratio for
(25—04/2,) transition is 0.84 which is more than
the SU(3) limiting value 0.7. This ratio may be
large due to 0.2% M1 and 4% EO mixing in the
(25—25) 0.6886 MeV y-ray. In a recent
compilation work [3] this ratio is 0.17(1)
compared to the theoretical value 0.12 & DPPQ
value 0.076 [7].

The (2—4y) 0.444 MeV y-ray was
overlapping with  (2°—3,) transition and gives
B(E2; 25—24/4,) = 0.35 (the intensity of (2'—3y)
y—ray was 12 which gives this ratio 0.56) [11].
But in the recent compilation [3], this ratio is
0.30(3) compared to 0.030(1) in decay of **Eu
[10].
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In Table of Isotopes [11]; the (45—4,) 0.6565
MeV y-ray was not pure E2 but has 16% M1 and
5% EO mixing, which gave the B(E2;45—24/4,)
=0.11 and B(E2;45—44/64) = 0.76, but Peker [3]
deduced these ratios equal to  0.21(2) and
3.6(22); Stewart et al. [10] deduced 0.11(2) and
0.08(2); and in the present IBM calculation these
ratios are 9.3 and 231, respectively.

For (65—44/64), (83—064/8;) and (10— 84/10,)
transitions; the observed B(EZ2) ratios lie away
from the respective Alaga values and theoretical
values are close to the observed values. It is also
evident that (B—p) transitions are stronger than
(B—g) which is supported by present IBM
calculation values (Results will be presented).

B(E2) ratios for y—band

The experimental data was available for 21
ratios, for transition from y—band. It is evident
from the observed data that the (y—p) transitions
are stronger than (y—g); and (y— vy) transitions
are stronger are than (y—f). Theory supports
these aspects. Most of the B(E2) ratios lie on the
transition from SU(5) to SU(3).

The theoretical B(E2) ratios for the transition
from 5,, 6,, 7, and 9, states were not available
from any previous work [6,7,8,9]. The present
study is extended for these four states along with
three other lower states i.e. 2,, 3, and 4, states
for calculating the B(E2) ratios. The B(E2) ratios
for the transition from 2,, 3,, 4, 5,, 6,, 7, and 9,
states are compared with the present work and
found that most of the theoretical values are
close to the observed values (Results will be
presented).
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Fig 1: The variation of E, with spin (I).
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Fig 2: The variation of B(E2;Ig—Ig-2) with Ig for
ground band. The experimental data of [3,4] are
shown by solid circles (@), present IBM calculation by
hollow circles (o), BEM4 [6] by hollow diamond (),
BEMS6 [6] by solid square (m), IBM [5] by star (¥).
The vibrational model (VM) is shown by (A), SU(5)
limiting values by (A), O(6) limiting values by (V)
and SU(3) limiting values by (0).
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Introduction

The structure of samarium isotopes is very
interesting because the shape phase transition
takes place from SU(5) to SU(3) limit of
interaction boson model (IBM) [1]. This feature
has attracted many researchers to study these
isotopes experimentally and theoretically. The
(*'B, 4n) reaction at 54 MeV on natural La target
evaporated on gold was used [2] to study the
lifetimes measurement of various energy levels
of *°Sm. The radioactive decay of *°Eu [3] has
given spin parity assignment in ***Sm and
angular distribution of 68 y-rays. Peker [4] also
compiled the experimental data for A = 146. The
0," state earlier observed [3] at 1.452MeV was
not adopted in recent compilation [5] but new 0,
and 05" states at 2.211 and 2.331 MeV were
reported. Newly adopted [5] 57y, 8"y and 9%y
states of K" = 2*; band at 2.8983, 3.0431 and
3.5674 MeV, respectively are included in the
present work.

Several theoretical calculations, using IBM-1
[3, 6, 7], IBM-2 [8] and DPPQ [9] were carried
out to explain the structure of ***Sm. The
compilations of experimental data [2- 5] enable
us to present more elaborate analysis.
Unfortunately, insufficient data is available for
1465m, therefore we have used data for other
N=84 isotones for useful comparison for B(E2)
values for inter and intra band transitions. The
asymmetric rotor model [10] has been used for

calculating the levels energy and transition
probabilities.

The parameters used for calculation
are A=146, Z=64, E2'g = 0.74724 KeV, vy=
26.44° and B= 0.0917°. The energy ratios are
computed from experiment [5] and compared
with the previous theoretical calculations [7-9]
and present ARM calculation in Table 1. The
calculated values are close to the experimental
values indicating the vibrational nature of ***Sm.
The reduced transition ratios are given in Table 2
for g- and y- bands. The present ARM results are
compared with the observed [3-5, 9] and other
theoretical calculations from DDPQ [9] and IBM
[6- 8]. Most of the ratios are close to the
observed values. Some of the y-rays are having
M1 admixture [5] (see Table 2). The energy
values for ground state rotational and -
vibrational bands are given in Table 3 and the
experimental values [5] are compared with IBM-
1[3, 7], DPPQ [9] and ARM results. The B(E2)
values for the transitions from g- and y- band are
also compared with other N=84 isotones for
useful comparison (results will be presented).
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Table 1. The energy ratios for g-and y- bands.

Ratios Expt. | ARM | DPPQ | IBM1 IBM2 | SU(5) | O(6) | SU(3)
[5] [9] [7] (8]

E4g+/E2g+ | 1.85 | 2.7 1.846 1.877 2.09 2 2.5 3.33

E2y+/E2g+ | 2.206 | 2.2 2.282 2.046 2.21 2 2.5 3.33

E3y+/E2g+ | 3.038 | 3.2 2.989 3.11 3 4.5 7

E4y+/E2g+ | 3.264 | 2.7 3.381 3.70 4 7 12

Table 2. The B(E2; li — If/If) ratios.
Transition Experimental Ratios IBM1 1BM2 DPPQ |[ARM

3] [4] [5] 61 | [7] (8] [9]

4g—2g/2g—0g | >1.27(26) | >1.30 1.82[9]

1.82 | 1.613 | 1.613 1.94 1.409

6g—4g/4g—2g | 0.98(4) <0.74 121 | 121 1.254

8g—6g/6g—4g ~0.16(5) 1.106

2y—0g/2¢g" 0.0012(4) | >0.01 0017 [001]0014 |[0.014 [0.018 |0.025

3y—>2g/2y 0.019(5) | 0.049 0.018" 0.027 | 0.027 [ 0.10 0.028

4y—2g/4g 0.007 0.007 0.017° 0.005 | 0.005 [0.1 0.079

9y—8g/8, 0.023 0.023% 0.15 0.000
1

*Multiple assignments. ** (2y—2g) 900.797 KeV y — ray has M1 admixture.
#1522.712 KeV (3y—2g) and 621.85 KeV (3y—2y) y-rays have the M1 admixture.
$1691.643 KeV (4y—2g) and 1057.62 KeV (4y—4g) y-rays have the M1 admixture.

&524.3 KeV (9y—8,) y — ray is M1 type transition.

Table 3. The energy levels of ground state rotational and y- vibrational bands.

State | Expt. [5] IBM1[7] | IBM1[3] | DPPQ[9] | ARM
29 0.747115 0.7804 0.733 0.756 0.75
4g 1.38128 1.4648 1.353 1.375 2.06
69 1.811682 2.0500 1.869 - 3.87
8g 2.7372 2.5331 2.287 - 6.20
2y 1.647929 1.5969 1.610 1.725 1.65
3y 2.26983 2.3333 2.417 - 2.40
4y 2.438981 2.6387 2.256 - 2.76
5y 2.898268 2.929 - - 4.64
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The nuclear shape-phase transition
at N = 88-90, and the role of Z = 64 sub-shell
closure effect therein has been a subject of study
on empirical basis and in the context of the N, Z,
P and NpNn scheme [1,2,3,4]. It was pointed
out by Gupta [1] that the filling of neutron
orbitals at N =86, 88 & 90 plays an important
role in the shape-phase transition. The filling of
the proton Nilsson orbitals of varying slopes
leads to the variation of nuclear structure with
varying Z, which leads to the Z =64 subshell
effect, which disappears at N=90. Gupta [1]
observed that the effect of n-p interaction of the
nh11/2 and vh9/2 orbitals, along with the
contribution of the vil3/2 orbital leads to the
shape-phase transition at N=88-90. The slopes
of proton Nilsson orbitals explain the Z=64
subshell effect.

The size of proton subshell gap between
the ds, and hyp, Orbitals was reviewed by Gupta
[2]. The increased gap atZ=64 was not
inconsistent with experiment for occupation
probabilities and the nuclear structure of N=82
isotones and ******Sm [2]. In IBM calculation
there was no a priori need of the use of subshell
closure [2]. In the empirical studies for this
region the use of the Z=64 subshell does lead to
elegant systematics in some cases. In this paper
we have tested this for the asymmetry parameter

()

Asymmetric Rotor Model (ARM):
The Hamiltonian of ARM[5] is:
H= (h%2) = (14 J) (1)
where, |; is the projection of angular momentum

on the intrinsic axes. The moment of inertia J;
are given by the hydrodynamic relation:

Ji = (413) Jo Sin® (y-2n/3) 2
where, J, = 4B p°. 3)
Simple analytical expressions for the energy of
two levels for | = 2, defined as:

1-=X

S-(—11722 1-Zw .
** (in units of 1%Jo)

Eiin= (4)

A

where o1,=0,1 and y-function is written as £s ».

5—/81 71X

Here, £7,= and X=Sin*3y.

Calculation of Asymmetric Parameter

The value of asymmetry parameter (y) can
be evaluated [6,7,8] using the experimental
energies E2," and E2;" of the two 2" states. The
energy ratio Ry=E,/Ey. The asymmetry
parameter is:

= (1/3) sin™ [(9/8) {1-(( Ry-1)/( Ry+1))*}].

It can be evaluated using: (a) The energy ratio
Rs=(Esg/E;g) but only the nuclei with
2.8<R4<3.33 will be allowed [6,8] (see fig 1 of
ref.6). (b) The B(E2) values also but these values
are very small and available with uncertainties
too. Therefore the values from energy ratio Ry
are more reliable.

Result and Discussions:

The variation of E,, state (in MeV) versus
neutron number (N) is shown in Fig. 1 for N=86-
122. The data points are joined for same element
so the N dependence of E,, is visible. The value
of E,, is having maximum scattering (0.7 to 1.6
MeV) at N=104 for Yb to Pt isotopes
corresponding to f§ hard core structure of these
nuclei[9] The fig. 1 is reproduced from [9].
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Fig. 1. The variation of energy of 2y state (in
MeV) versus neutron number (N).

The variation of E,, versus proton number
(2) is shown in Fig. 2 for Z = 60 -80. The data
points are joined for each isotones for N =86-
116. The value of E,, is suddenly increasing
from 0.8 to 1.6 MeV for a fixed value of Z= 70
when N is changing from 90 to 104. The E,,
decreases sharply on increasing Z from 60 to 68
for each isotones i.e. N= 88-98 indication shape
phase transition from Vibration to Rotation i.e.
SU(5) to SU(3) limits of IBM. The slope for N=
88 and 90 are same and there is no indication for
subshell effect in this fig.
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Fig. 2. The variation of energy of 2y state (in
MeV) versus proton number (Z) for Z = 60 -80.

The variation of asymmetric parameter (y) versus
proton number (Z) for N= 82 -96 isotones for Z=
58-72 region is shown in Fig.3. The gap is
maximum i.e. 7.6 at Z= 64 when N changes

Phys. 59 (2014)

from 88 to 90 indication the subshell effect at
Z=64 for N<90. Since the y is evaluated from Eyq
and E,,. However the Z=64 subshell effect is not
evident in E,, (see fig. 2) and in Eqg (see fig.4 ref.
[9]). It is evident only in Ey [4] and R4 [4 and
see fig. 12 of ref. 10].
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Fig. 3. The variation of asymmetric parameter
(y) versus proton number (Z) for N= 82 -96
isotones for Z= 58-72 region.
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Introduction

The nuclear structure of even Z even N
medium mass transitional nuclei consist of
ground state band, K"=0, B-band, K"=2; y-
band and other higher bands [1]. As we move
away from closed shell, energy levels are low
lying from spherical to deformed nuclei and
energy deviated from ideal rotor behavior.
The energy of these transitional nuclei in
ground band can also be studied using Bohr
Mottelson energy expression [1], Soft Rotor
Formula (SRF) [2], Power Law (PL) [3] etc.
Recently, Gupta et al. (2013) [4] modified
SRF for non zero band head K"=2; y-band and
reproduced the level energies. Here same
formula applied for K™=0;, B-band and the
level energies are reproduced and compared
with experimental energies. The power law
[3] is also used for recalculation of level
energies and for useful comparison.

Method

The SRF of Gupta (1971) and Brentano
et al. (2004) [2] for ground state band is:
_ Rri+13
ED = 28 [ 1+57) @
where, 6 and 0 are softness parameter and
moment of inertia (MOI). For B-band, the
level energies are E(Og), E(23), E(4p), E(6p),
E(8p) and E(10g) in KeV for spin 1=0, 2, 4, 6,
8 and 10. The difference of [E(2g) - E(0p)] and
[E(45) - E (Op)] are denoted as AE(20;) and
AE(40g). The Equ. (1) for spin 2 and 4 gives:
3
AE(205) = Britza) @)
10
Bi+dsy ©)

and AE(40g) =

On dividing equation (3) by equation (2), the
0 is cancelled and o can be calculated. Using o
and 0 for different spin the values of level
energies is reproduced. Similarly, the PL
energy expression E;=al’ [3] is used for B-
band. The values of ‘a’ and ‘b’ parameters are
obtained by subtracting band head difference
E(0p) and the energy difference of spin 2 and
4. Using these parameters, level energies are
reproduced.

Result and Discussion

The values of root mean square deviation
(RMSD) of the reproduced level energies are
obtained using PL and SRF from experimental
level energies [5]. It is observed that the
RMSD values are small using power law in
comparison to the SRF. Most of the nuclei
having RMSD value lie below 40 KeV using
power law except N=88 whereas using SRF it
is lie below 100 KeV. The variation of RMSD
versus N using SRF and PL is shown in Fig.
1(a, b). The MOI from SRF for B-band and
ground band is studied with energy ratio of
both the bands and shown in Fig. 2(a, b). It is
observed from the diagrams that as the energy
ratio rises from spherical behavior to
deformed limit, the MOI increases except
%0Sm in B-band and *°Nd out of the fit of
smooth curve. The systematics of softness
parameters of both the bands also has same
correlation with energy ratios.

Conclusion

It is evident from variation of RMSD vs.
R, curve that the level energies of p-band are
well reproduced in PL and the values of
RMSD < 40 KeV except N=88 isotones
(RMSD= 50 KeV). The variation of MOI (0)
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vs. R, for g- band and B- band show a strong
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Fig. 1(a) The variation of RMSD vs R,.
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Fig. 1(b) The variation of RMSD vs R,.
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There are various empirical formulae to study
the level structure of ground band of medium mass
nuclei. The expression for rotational spectra is:

E(I) = (h%20) I(I+1). €))

Where 6 and | are the moment of inertia and spin
respectively [1]. The deviation from eq. 1 has been
observed for almost all the nuclei because of
centrifugal stretching etc. which can be taken into
account only up to some extent [2, 3] (3.1 <R4<3.33)
by apply an expansion in power of I(l + 1), i.e.

E() = A I(1+1) + B[I(I+1)]* + C[I(1+1)]*+---
(2

where A, B and C have their usual meaning. For
harmonic vibrator, the energy can be written as:

E()=al. 3

Das et. al. [4] suggested the energy expression for
anharmonic vibrator:

E(1) =al + bi(1-2). 4)

The energy spectrum of ground band in well
deformed nuclei (R4~3.33) exhibit rotational
characteristics and for shape transitional nuclei large
deviations have been observed. In the literature, one
finds quite a few variants, which involve two, three
or more terms in terms of spins. Gupta et al [5]
observed that the values of fitting parameters often
depended on the number of levels used for
calculation. They [5] suggested a very different form
of energy expression in the form of a single term
energy formula called power law:

Ey=al’ (5)
Where the coefficient “a” and index “b” are the

constants for the band. Also b is a non-integer. The
values of a, and b, are given below:

b, = log(R)/ log(1/2) and a, = E, / I".

This is the most-simple expression among all
the other formulae. The validity of this formula was
well proved for the medium mass nuclei. Recently, it
was also tested for the light N < 82 region. This
formula was equally successful in expressing the
ground band energies in the A=150-200 region [5].
Mittal et. al [6] verified its validity for light mass Xe-
Sm nuclei. Recently, Kumar et. al [7] and Kumar [8]
presented correlation of kinetic moment inertia with
power formula index in 100<A <150 region. Gupta
and Hamilton [9] also illustrated the use of this
formula to determine the degree of deformation of
shape transitional nuclei.

Considering its simplicity, we have taken a
project to test the validity and utility of power law in
various bands of even —even nuclei. Here, we discuss
the advantages of this formula in predicting the
nuclear structure of 3-band in a few nuclei.

The validity of this expression (Equation 5) for
B-band would be tested by a check of the constancy
of “b” and “a” with the spin L. It is also tested by
plotting log (E,) against log (1).

In the present work, we search for the
constancy of “b” and “a” coefficients with the spin (I)
for B-band. In figure 1, we have plotted log(E))
against log(l) for isotopes of different deformation (N
= 88, 90) for B-band levels which indicates that the
log(E)) is linearly dependent on log(l). This is also a
good measure to test constancy of level energies with
spin (). Here, almost linear dependence (Fig. 1)
would be an indication of the constancy of index “b”
and coefficient “a” with spin (I).

To test the above hypothesis for constancy of
index “b” and “a” of single term energy formula
(Equation 5) for B band, we look at the N = 88, 90
(***sm, %2Gd and ***Gd) isotones in Fig. 2 and Fig. 3
respectively. In *Sm and ***Gd, the value of ‘b’ is
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almost constant near 0.5 (see Fig. 2). Thus the almost
constancy of index ‘b’ of this formula in B band,
illustrates the test of nuclear shape deformation with
spin for excited bands. The coefficient “a” is plotted
versus spin (1) in Fig.3 for these three isotopes and
the fig. indicating that “a” is linearly dependent on
spin and decreases on increasing the spin. Also the
slopes for *Sm and ***Gd are almost same.
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o
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w
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Fig. 1 The variation of Log E, vs. Log | for B-band.

1.00
i 0.757 B-band 1554
2 *
Py *éc‘:‘)?a
o 1529/*?8/
£ 0.50 * D/152
/o Sm
8
0.25

Spin (1)

Fig. 2 The variation of index ‘b’ vs. Spin (I).
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Fig. 3 The variation of coefficient ‘a’ vs. Spin (1).
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Introduction:

The nuclear structure of even-even
nuclei in ground state band and other excited
bands with non zero band head is collectively
built [1]. The level energy in medium mass
region deviates below the ideal rotor energy
formula E, =Al(1+1). The ground band of
medium mass nuclei are studied using various
energy formulae e.g. Soft Rotor Formula [2],
VMI etc. Gupta et al. [3] proposed the power
law and studied the systematics of ground
band. The level energy from Power Law is

E=al (1)
where, a and b are scaling coefficient and
power index.

The power law parameters (average
scaling coefficient and average power index)
are obtained using spin up to 1=12 in Eq. (1).

In RTR model the asymmetric
parameter (y) is obtained using E(2,) of ground
band and E(2;) of y-band for medium mass
region. The asymmetric parameter:

y=(1/3) sin™ [(9/8) {1-(Ry-1)/(Ry+1))*}]. (2)

where, R,=E(2,)/E(21). The quadrupole
deformation parameter (p) is related with B(E2)
values, energy (E) and atomic mass (A) of the
nuclei as:

4m B(EZIT 42
B=(5m) 1" @
and
B = (466 +41)E"Y2471 @)

where, R, is 1.2AY*fm, B(E2)1 is in ¢ b? Z is
atomic number, E is the energy of spin =2 of

ground band and A is atomic mass. The [ is
taken from [4] and [5].

The correlation of average scaling
coefficient, asymmetric parameter and average
power index and deformation parameter versus
N is studied quadrant -1.

Systematics dependence of aay and y
with N

In quadrant-1 (60< Z< 66, 82< N< 104), as
neutron number increases, the asymmetric
parameter as well as scaling parameter
decreases fast up to N=92 and after N>92, both
parameters remains uniform for Nd, Sm, Gd
and Dy nuclei in Fig. 1.(a and b).

In quadrant Il (66< Z<82, 82< N<
104), the asymmetric parameter as well as
scaling parameter decreases as neutron number
rises towards N=104 Fig for Q-ILI11,1V to be
presented).. From N=102 to N=104 both
parameters decrease slowly. In quadrant-IlI
(60< Z<66, 104< N<126), as neutron number
increases, the W and Os nuclei shows a dip at
N=108 and for N>108 both parameters rises,
whereas the Pt nuclei shows separate fast
increasing trend. In quadrant -1V N<82, for N
> 64, the scaling parameters as well as
asymmetric parameters, both are increases as
neutron number rises. Here Xe nuclei shows
separate rising trend with both parameters
(Figs. to be shown in poster).

Systematics dependence of bay and
with N

298
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In  quadrant-l, the deformation
parameter B and power index parameter bay
sharply rises as N increases from 86 to 92. For
N>92, both parameters show uniform trend and
saturates in fig. 2.1(a and b).

In quadrant-1l, the Er and Yb nuclei
show same trend for both parameters for N=88-
104. The B rises for Hf and W nuclei when N
increases from 88 to 98 and decreases towards
N=100 and again rises on increasing N. The
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24 N Y
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16 "

12 N

8. o—3
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Fig.1 (a) The plot of y vs. N in Q-
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Fig. 1(b) The plot of aay vs. N in Q-I.

Conclusion:  The average  scaling
coefficient with asymmetric parameter and
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Introduction

The study of collective nuclear structure
with N, Z, Ng and NyN, provide a detailed
information of nuclear interactions involved.
Several studies have been carried out to study the
collectivity,  deformation and  systematic
dependence of other nuclear properties on NyN,.
de-Shalit & Goldhaber [1] pointed out the
important role of valence nucleons. Talmi [2]
noted the constancy of nuclear level structure in
semi-magic isotones/isotopes. Hamamoto [3]
observed that the p* & n° both are required for
producing deformation. In IBM-1[4], the
structure of nuclei depends on the total boson
numbers Ng. The concept of F-spin multiplets
was based on this and was well explained by
Brentano et al. [5]. Casten [6] noted that the Epg+
have smooth dependence on NyN,. Various
studies [7] have been carried out to study the
collectivity, — deformation and  systematic
dependence of various nuclear observables on
the product NyNp.

Gupta [8] observed that 1/o was linearly
dependent on NyN,, where the coefficient o
contributes for rotational part of energy in the
SU(3) symmetry limit of IBM[4] as,

E([N](%, W) KLM) =o L(L+1) + B C(&, p)

The B(E2; 2,"—0,%) values were also related
with NN,. Gupta et al. [9] noted a systematic
dependence of y—g B(E2) ratios on the NyN, in
different parts of the major shell space Z=50-82,
N<82 and N=82-126. Casten and Zamfir [6]
presented a review on the evolution of nuclear
structure based on NyN, product. The NN,
scheme was further modified to use P- factor [9].

In this paper, we study the role of valence
nucleons and holes on the nuclear structure,
through N,N,.. Casten and Zamfir [7] covered the
various regions, viz., A=100, 130, 150 (Z<64,
Z>64) and A=190. We present our results for
50<7<82 and 82<N<126 region on quadrant
wise basis.

The values of asymmetry parameter (y)
have been calculated for 50<Z<82 and
82<N<126 region and the whole data is divided
into four quadrants and it has been plotted with
NNy, to study its systematics dependence.

Calculation of Asymmetric Parameter

The value of y can be evaluated using the
experimental energies E2," and E2," states [10].
The energy ratio Ry =E,, / E;g and v is:

y = (1/3) sin™ [(9/8) {1-(( Ry-1)/( Ry+1))°}].

It can be evaluated using: (a) The energy ratio
Rs=(E4g/Ezy) but only the nuclei with
2.8<R4<3.33 will be allowed [11, 12]. (b) The
B(E2) values which are very small and available
with uncertainties. Therefore the values from
energy ratio Ry are more reliable.

Result and discussions

The variation of y versus Np.Nn product for
quadrant-I for 50<Z<66 and 82<N<104 has been
shown in Fig. 1. There is smooth dependence of
vy with NpNn. The y decreases from a maximum
value of 30° for NN, =0 (i.e. SU(5) limit of
IBM) to a minimum values of about 9°(i.e.
SU(3) limit of IBM). The v saturates for N,N, >
30. This shows non-dependence of y with NyN,
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because for a fixed value of NyN, the y is having
varying values.

The variation of y versus NyN, for
quadrant-1l for 66<Z<82 and 82<N<104 has
been shown in Fig. 2. There is smooth
dependence of y with NyN,, except Yb for NN,
>50 and few Pt isotopes.

Q | For 50<Z<66 and 82<N<104

—0-—Te
—O—Xe
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Fig.1 The variation of asymmetric parameter (y)
versus NpNp,.
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Fig. 2 The variation of asymmetric parameter (y)
versus NpN;, product for quadrant-11.

The variation of 7y wversus NyN, for
quadrant-IIT for 66<Z<82 and 104<N<I126 has
been shown in Fig. 3. There is smooth
dependence of y with NN, except Hg isotopes.

The graphs of y against NyN, vividly
displays the formation of isotonic multiplets in
quadrant-l, strong dependence on NN, in
quadrant-1l and weak constancy with Z in

Proceedings of the DAE Symp. on Nucl. Phys. 59 (2014)

quadrant-111 is illustrated and support the
findings of Gupta [13].
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ABSTRACT

The systematic dependence of experimental B(E2; 4g—2g)/ B(E2;2g—0g) branching ratio with N and Z is
carried out for Nd- Hg even —even nuclei. The SU(5) and SU(3) limits of interacting boson model are also
discussed. The N and Z dependence of B(E2) branching ratio has been observed. The Z=64 subshell effect is
also seen for N< 90 region.

Keywords: B(E2; 4g—2g)/ B(E2;2g—0g) branching ratio, nuclear structure, Nd —Hg nuclei, SU(5), SU(3),
Z=64 subshell effect

I. INTRODUCTION

The concept of collectivity in nuclei is one of the most fundamental findings in history of nuclear physics.
Various nuclear models have been applied to describe this collective behaviour of atomic nuclei. The
geometrical models depicting the nucleus as a liquid drop with a given nuclear shape and algebraic models, take
into account the pairs of proton and/or neutron only. Despite the often very dissimilar theoretical approaches,
most of the collective models have some common basic features, such as predictions of energies rotational,
vibrational and other higher multi-phonon bands or B(E2) ratios for inter and intra band transitions, which have
been observed in a wealth of non- magic atomic nuclei.

The energy ratio R, is a key observables which can be used to assess the collectivity of nuclei and it is equal to
2 for an ideal spherical harmonic vibrator or SU(5) limit and 10/3 in an axially symmetric deformed rotor or
SU(3) limit of interacting boson model (IBM)[1]. The transition rates also provide another good measure of
nuclear collectivity [2], which is less sensitive to anharmonicities than energies of various bands. The
B(E2;44—24)/B(E2;2,—0,) branching ratio is a particularly good example, which is equal to 2 in the spherical
limit or SU(5) and 1.4 in the deformed limit or SU(3)[1]. Significant deviations from these two limiting values
can be found; if one moves away from the closed shell.

In the present work, we have compiled the observed data of B(E2;4,—24)/B(E2;2,—0,) branching ratio from the
website of Brookhaven National Laboratory[3] for Nd — Hg nuclei. The variation of this B(E2) ratio with N and
Z has been studied. The SU(3) and SU(5) limits are also included for useful comparison. The result &

discussions and conclusion are given in 8 Il and Il respectively.
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I1.LRESULT AND DISCUSSIONS

2.1 The variation of experimental B(E2;4g—2g)/ B(E2; 2g—0g) ratio verses neutron number
(N)
To avoid the overlapping of experimental data of the nuclei and to have a clear picture for a definite conclusion
about the dependence of B(E2;4g—2g)/B(E2;2g—0g) ratio on N, the whole data is divided into two parts and
shown in two figures i.e. Fig. 1 for Nd- Er nuclei and in Fig. 2 for Yb- Hg nuclei. The vibrational model or
SU(5) limit at 2 and rotational model or SU(3) limit at 1.4 are shown in the Fig 1 and Fig. 2. The data points are
joined for same value of Z, so that the effect of N will be visible.
For Nd, this ratio increases sharply from 0.73 to 1.61(maximum value at N=88) as N increases from 84 to 88
and if N is further increased from 88 to 92 it decreases slowly from 1.61 to 1.31(see Fig. 1). The same feature is
observed for Sm, where this ratio increases from 1.65 to 1.9 on increasing N from 86 to 88 and beyond N=88 it
drops sharply and approaches to Alaga value of 1.4 for N=92. In case of Gd, the BE(2) ratio decreases from 1.82
to 1.46 as N increases from 88 to 94. Also in Er, this ratio decreases from 1.78 to 1.5 as N increases from 88 to
100 and minimum value of 1.18 at N=96. Therefore, for N=88 (Sm, Gd and Er) isotones, this ratio ~1.8 is very
close to the VM limit of 2.0 indication vibrational nature. However for Dy (N=88, 92, 94, 96) this ratio is close
to Alaga value indication deformed rotor nature and for N=90; Dy indicating transitional nature because this
ratio (=1.63) is lying in between SU(5) and SU(3) limiting value (see Fig. 1).
For Yb and Hf nuclei, BE(2) ratio is ranging between 1.4 to 1.6 for different values of N and close to SU(3)
limit (see Fig. 2). In case of W, the ratio increases sharply from 1.1(3) to 1.74(15) on increasing N from 94 to
100 and decreases very slowly on increasing N from 108 to 112 (almost remains around Alaga value).
For N=96 the data point of Os is close to the other N=96 isotones (Yb, Hf, W) data points. When N increases
from 108 to 112, the ratio for Os increases from 1.4(4) to 1.68(11) and when N is increased from 112 to 116 the
B(E2) ratio decreases from 1.68(11) to 1.22(4) indicating prolate to oblate shape-phase-transition as observed
by Kumar and Baranger [4].
For N=98, the B(E2) [=1.87(24)] for Pt is close to VM value and for N=102 the ratios is minimum [=0.92(22)].
The B(E2) ratio for Pt decreases from 1.65 to 1.56 when N increases 106 from 114 and again increases from
1.56 to 1.73 as N increases from 114 to 116(attains maximum value =1.73(11) at 116). If N is increased from
116 to 120 this ratio drops linearly with the same slope as observed for Os (N=112 to 116).This indicates the
similar nature of Pt and Os nuclei for this region.
For two nuclei; *®Hg and ***Hg; the B(E2) ratio is 4.6(3) and 2.8(8) respectively; which are anomalously more
than VM limiting value and not included in the Fig.2. The B(E2) ratio is smallest in case of **®*Hg; which is non
magic nucleus; has only two vacancy of p+ for Z =82. This ratio is also very small in case of “**Ndg, [=0.73(9)]
(see Fig.1); which is also a non- magic nucleus; which has only two valence n° outside N=82. It supports the
findings of Cakirli et.al. [5], that the B(E2;4g—2¢g)/B(E2;2g—0g) ratio is anomalously small in non magic
nuclei, as it cannot be explained with collective approaches.
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Fig.1: The variation of experimental B(E2;4g—2g)/B(E2;2g—0g) ratio vs. neutron number (N) for Nd-
Er nuclei. The vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines for

comparison.
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Fig.2: The variation of experimental B(E2;4g—2g)/B(E2;2g—0g) ratio vs. neutron number (N) for Yb-
Hg nuclei. The vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines

for comparison.

2.2 The variation of experimental B(E2;4g—2g)/ B(E2; 2g—0g) ratio verses proton number (Z).
The variation of observed B(E2;4g—2g)/ B(E2; 2g—0g) ratio with proton number (Z) is shown in Fig. 3, 4 and
5 for N=84 to 92, N=94 to 102 and N= 104 to 124 isotones respectively and the experimental points are joined
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for same value of N to observe the effect of Z. The vibrational limit (VM) or SU(5) at 2 and rotational limit or
SU(3) at 1.4 are also shown by dotted lines for useful comparison in each figure.

It is evident from Fig. 3, that the BE(2) ratio for N=88 isotones increases on increasing Z from 60 to 62 (attains
the maximum values for Smgg) and decreases for Gd and Dy (attains minimum value close to SU(3) limit for
Dysg) and again for Er it increases. For N=88, the B(E2) ratio is close to SU(5) limiting value for Sm, Gd and Er
while Dy reflects SU(3) nature and Nd in between these two limits. Also, the Smgg is least deformed and Dygg is
most deformed. For N=86 isotones the B(E2) data is available only for two nuclei and it is increasing on

increasing N from 60 to 60 as in the case of N=88.

’0 _-SU(5)
’g Lg) N:gg//-A\A 9(\3 28
(@]
\m_z 1.4 86:8 7//\/ — °©
m ' v v V
o 121 90 SUB)
N
9 1.0
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Fig.3: The variation of experimental B(E2;4g—2g)/ B(E2; 2g—0g) ratio vs. proton number (Z). The
vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown by dotted lines for comparison.
The experimental points are joined for same value of N to observe the effect of Z on this B(E2) ratio for

each isotones for N=84-92.

For N=90 isotones the behaviour of B(E2) is just opposite to N=86 and 88; the B(E2) ratio initially decreases as
N increases from 60 to 62 and increases as N increases from 62 to 66 just opposite to N=88. It is evident from
the figure that the gap is maximum between the two curves for N=88 and 90 around Z= 64 indication the
subshell effect at Z=64 for N<90. It is supporting the findings of Casten [6] and Casten and Zamfir [7].

In general, for N=90 isotones, the B(E2) ratio is somewhat independent of Z indicating constant structures
because the values of this ratio are ranging between 1.45 to 1.6 and it support the findings of Gupta [8]. For
N=90 isotones, this B(E2) ratio initially decreases on increasing Z from 60 to 62 (attains minimum values which
is close to SU(3) limiting value for Smgy, unlike Smgg for which this ratio is close to SU(5) limiting value) and
increases slowly on increasing Z from 62 to 66; and attains maximum value(=1.6) for Dyg,; and beyond Z=66
the BE(2) decreases linearly on increasing Z from 66 to 70 (and approaches 1.4 value for Hfg). It is clear from

Fig. 3 that Smgy and Hfgyg are most deformed in comparison to other N=90 isotones.
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For N=92 isotones, this ratio goes on increasing very slowly from 1.31 to 1.56 on increasing Z from 60 to 74
and is close to SU(3) limiting value of 1.4. However for N=94, this ratio is almost constant because its values
are 1.46+0.05, 1.46+0.07, 1.48+0.07, 1.58+0.10 and 1.1+0.3 for Gd, Dy, Yb, Hf and W isotopes respectively
indication Z independency. For N=94, 96 and 98 isotones (see Fig. 4) the ratio is close to SU(3)
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Fig.4: Same as Fig.3 for N=94 to 102.
> 28] N=104 =
Q 261
2.4
2.2
g 20 g 2 106
o 1.8 108 112« 114 @
> 161 %/06 s / ; 122
N 1418 —#% A &
2 :11.33 16\4\ 110 100 124
N V7
W 08] SU(3) 116
m 061 118
0.41 ¥
70 72 74 76 78 80
Z

Fig.5: Same as Fig.3 for N=104 to 124.

limiting value indicating deformed nature. For other isotones the B(E2) ratio is lying between SU(5) and SU(3)

or O(6) limiting values (see Fig.5) as predicted by the asymmetry rotor model [9].

I11. CONCLUSION

The variation of B(E2; 4g—2g)/ B(E2;2g—0g) ratio with N and Z is shown for Nd — Hg nuclei. It is found that
the there is shape phase transition for N=88 and 90 isotones (Nd, Sm, Gd, Er) from an ideal spherical harmonic
vibrator or SU(5) to an axially symmetric deformed rotor or SU(3). Also B(E2) ratio is anomalously small for
two nuclei i.e., *¥5Hgy1s (0.375+0.018) and ***6,Ndg, (=0.73+0.090) with only two vacancy of p+ for Z =82
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and two valence n°® outside N=82, respectively; which supports the findings of Cakirli et.al. [5]. The present
study supports; the subshell effect around Z=64, for N< 90 as observed by Casten [6] and Casten and Zamfir

[7]; and the constant nuclear structure of N=90 isotones as pointed out by Gupta [8].
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Abstract

The predictions of asymmetric rotor model (ARM) of Davydov and Filippov for B(E2; 4g—2g)/
B(E2;2g—0g) branching ratio are compared with the experimental data in medium mass region. The
SU(5) and SU(3) limits of interacting boson model are also shown for useful comparison. It is noted
that the ARM is partially successful in explaining this branching ratio.

Key Words: Asymmetric rotor model, B(E2; 4g—2g)/ B(E2;2g—0g) branching ratio, nuclear
structure, medium mass region.

1. Introduction

The concept of collectivity in atomic nuclei is one of the most fundamental findings in
history of nuclear structure physics. The macroscopic, microscopic and geometrical nuclear models
have been applied to describe this collective behaviour of nuclei. The geometrical models depicting
the atomic nucleus as a liquid drop with a given nuclear shape and algebraic models, take into
account the pairs of proton and/or neutron only. Despite the often very dissimilar theoretical
approaches, most of the collective models have some common basic features, such as predictions of
energies of g- band, B- band, y- band and other higher multi-phonon bands or B(E2) values and
B(E2) ratios for inter and intra band transitions, which have been observed in a wealth of nuclei
away from closed shells.

The energy ratio Rs (=Eay/ Ezg) is a key observables which can be used to assess the
collectivity of nuclei and it is equal to 2.0 for an ideal spherical harmonic vibrator i.e., SU(5) limit
and 3.33 in an axially symmetric deformed rotor, i.e. SU(3) limit of interacting boson model
(IBM)[1]. The inter/ intra band transition rates also provide another good measure of nuclear
collectivity[2], which is less sensitive to anharmonicities than energies of various bands. The
B(E2;44—24)/B(E2;2,—0y) is a particularly good example, as it is 2.0 in the spherical limit or SU(5)
and 1.4 in the deformed limit or SU(3)[1]. Significant deviations from these two limiting values can
be found; if one considers very small numbers of valence neutrons (Nn) and/or protons (Np), which
are used in the IBM; also in asymmetric rotor model (ARM) of Davydov and Filippov [3] where
asymmetric parameter (y) changes from 0° to 30° which corresponds to above mentioned two limits
of IBM i.e. SU(3) and SU(5) respectively.
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In the present work we have compiled the experimental data of B(E2;4,—24)/B(E2;24—04)
branching ratio from the website of Brookhaven National Laboratory[4] for medium mass region
(Nd - Hg). The observed data is compared with the ARM predictions for asymmetric parameter (y)
equals to 0° to 30°. The SU(3) and SU(5) limits are also included to get new information about the
structure. The details of asymmetric rotor model, result & discussions and conclusion are given in 8§
2, 3 and 4, respectively.

2. ASYMMETRIC ROTOR MODEL

Davydov and Filippov [3] investigated the energy levels corresponding to rotation of nucleus
which does not change its internal state. They established that the violation of axial symmetry of
even —even nuclei affect the rotation spectrum of axial nucleus with appearance of some new
rotational states having total angular momentum of 2, 3, 4,---. If the deviation from axial symmetry is
small, then these levels lie very high and are not excited. The energy of rotation of a non-spherical
even-even nucleus is given, in the adiabatic approach, by Schrédinger eq.:
H-E)Y=0 Q)
where E is measured in units of 4;‘? , and the operator H is given by the formula:
1 2 . -3 2md
H=-X3-,J;sin (v ——) @)
where J, are the projection of the total angular momentum along the axes of a coordinate system
fixed in the nucleus. The wave function corresponding to the state with total moment J, can be
represented as:

Yy = E;r:aulff{} Ap 3)
where [jk) = [2E2(1 + 80)F {Dhye + (—1)/ Dy} )

The function Dj.'M in eq. (4) is the function of the Euler angles that determine the orientation

of the principal axis of the nucleus with respect to the laboratory space. It can be shown that the
wave functions (3) from the basis of totally symmetric representation of the group D,, the elements
of which are the rotation through 180° around each of three principal axes of the nucleus [see ref. [3]
and [4]). The wave function of the rotational 2" states of the non-axial nucleus can be rewritten as

[3]:

(T 2
_|s 2 B, (Dh.+05, o)
"'Piim - d\ll P [‘qlﬂmo + 'ﬂi:i o ] (5)
| 2 T
_ |s 2 | B(DR.+D3 )
"Pﬂm - d\ll P [AZDmo += 'n:i = :lv (6)

where, the value of Ak coefficients in the wave function of eq. (5, 6) can be obtained by using the
value of y:

AN, = [sinysin 3y + 3 cosy cos 3y + (9 — 8sin’ Eyji]
ByN, = 3siny cos 3y — cosy sin 3y,

1 = 2,/(9— 8sin?3y) x [(9— 8sin?3y) + siny sin 3y + 3 cosy cos 3],
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AN, = 1M.'f["SI — 8sin’3y) — siny sin 3y — 3 cosy cos 3y,
B,N, = 3 siny cos 3y — cosy sin 3y, @)

3 = 2,/(9—8sin?3y) x [/ (9 — 8sin?3y) — siny sin 3y — 3 cosy cos 3y]
Similarly for 3" state the wave function can be written as:

|_7 3
"'FEm = d".ll 1672 Dm; - D ) (8)
The spin 4" wave function are given by Davydov and Rostovsky [4]:
-
= |2
"'P41 - d\ll gl = mo!
4 4
| 4 2
VY= o= [Dm4 + D} ). etc.

aY 1w

Putting the eq.(3) in eq.(1) and making use the value of matrix element of the operator of the
rotational energy eg.(2) acting on the wave function eq.(4)

UKlHUK}=ﬂUU+1J—K2]+‘;—KZ
UK +20HK) = L [(1+8,0)J~K) X U~ K~ DI +K + DI+ K+ (20)

ﬂzsiﬂ_‘(}’—?]. B =sin(y +7),
5 _{ﬂ,fﬂrﬂ'# 0,
ke |1, fork =0,

One obtains for each value of J a system of algebraic equations for the coefficients Ak in the wave
function (3). For J = 4, the Schrodinger eq.(1) is reduced to a system of equation as [4]:

8 =sin" %y, (11)

5(a+pB)—E 3/2-V5(a— B)

_ A 0
3/2-Vs(a—f) 4(a+f)+26—E ﬁ (a —FB) AS = |0 (12)
0 ‘;—?-(a—ﬁj (a+B)+86—E 4110

The energy of the corresponding rotational states can be determined from the condition that
the system (12) has a solution. The three values of E can be obtained by solving the cubic equation:

3 _ _ 45x® 2 cosdy 81 78 _ 3 _
- 2zin® 3y (39{ + 11?‘{3&?:53? sin® 3y sinzﬂ}r}x 70£7 cos3y + 5(42
2 cnsﬂ}f 270 70 _
sm""ﬂ}r)‘f + 55(81 + 42) sin? 3y +sin53}r o

0
(13)
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aTp

— E _—
where x = —— B and £ = —— B (14)
For a rough estimate of £, the value of T= 40MeV, ;F =400 keV and B = 0.2 gives the value of £=

80. Similarly, the energy E for 2" states can be determined from the:

2(a+b)—6TBcosy—E 6TBsiny + (a— b)V3/2
> =0 (15)

(a+b) +2c—E

-
&

6Tfsiny + (a— b)V3/2 6Tfcosy+

where a = h?[4B8%sin® (y — )] 7%, b = n2[4BB%sin® (y +Z)]7* and
¢ = h*[4BS?sin?y] ™! (16)

Substituting the values of a, b, ¢ and expending the determinant (15) we obtained the second degree
equation:

9 942  27cos3 9
x2 -k  Zcosdyy =0 17)
2sin? 3y 4 dsin? 3y 2sin? 3y

where x and { are defined in Eg. (14). The two roots of Eq. (17) can be written as (in unit
of h*/4Bf?),

_ 9(1—/1-8/9sin?3y)

E2 1 sin? 3y (18)
_ 8(1+4/T-8/9 zin® 3p)
The energy level of 1=3 state is given by:
_ 3 , 2 _ 2md — 18
E(3)=X3-,2 /sin {}* S ) e (20)
and energies of 1=5 states are given by:
E_(5)= [45 +9,/9 — 8 sin? Ey] /sin® 3y (21)
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In Eq. (21) T = 1 for the minus sign on the square root and T = 2 for the plus sign gives the energy of

5:+ and 5, states corresponding to K*= 2" and K" = 4" bands, respectively. The value of asymmetry
parameter can be obtained using the Egs. (18) and (19) and the asymmetric parameter (y) becomes:

T=§Sin [1—(1+R]]1“ ,WhereR},z% (22)

2.1 Reduced Transition Probabilities

The reduced transition probability B(E2; l;i— Ir) between two numbers of the same rotational
band with quantum number K is expressed as:

B(E2; I = Iz) = 1~ e’ Qi LK, I'K)|? (23)

where we have used
Zml ma m!il'Ul'{EMlME“M}l: =(2r+1) (24)

For Coulomb excitation, the B(E2), reduced transition probability in the case of symmetric rotor
(even-even nuclei) is expressed,;

5 P -
B(E2;Iy = Ig) = ——e*Qg (I l1" + 2,0}

2 (IH1(I+ D

B(E2:lx = Ix) = 1-¢* Q% Gripaisa)

(25)

The non-spherical nuclei have rotational levels which are due to very fast electric quadrupole
transition probability B(E2; I—-1). According to equation (25), B(E2; li—l¢) increases as the value of
intrinsic quadrupole moment Q increases. If the transition takes place between the ground state
(1=0) and the first excited state (1=2) of nuclei, then

B(E2) = —e’Q; (26)

For transmon between rotational level of spin 1=2 and 1=0, the BE(2) value can be expressed (in unit
of e?Qy%/16m ):

b(E2; 2,—0,) = B(E2; 21—01)/ €2Qo%/16m = (1/2) {1+ [(3-2sin*(3y)/ (9-8sin’(3y)**]}  (27)

where the intrinsic quadrupole moment of an axial nucleus with nuclear core deformation f3 is:
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Qo= 3ZR?B/ (57)"2. (28)

Also the B(E2) value for other transitions can be written as[3]:

B(E2;4i—2;) = 5/126 [cosy (6Aoi Ar+ V35A2i By) + sin(V15AAr + AoiBs +V35A4BA]*  (29)

where A and B are the coefficients that determine the wave functions of spin 2, and A, coefficients
determine the wavefunction of spin 4;.. Using the values of coefficients determined the
wavefunctions, one can calculate the probabilities of electric quadrupole transitions between various
rotational states of the nucleus. The ARM B(E2;4,—24)/B(E2;24—04) branching ratio is deduced
from eqgs. (27, 29) using asymmetric parameter (y) from equation (22).

3. Result and Discussions
3.1 Calculation of Asymmetric Parameter (y)

The values of asymmetry parameter (y) can be evaluated using eq. (22) by puting the the
experimental energies of E2," (=E»,) and E2;" (=E»1) states [5]. It can be evaluated using:
(a) The energy ratio Rs=(E4y/E2g) but only the nuclei with 2.8<R4<3.33 will be allowed [6,7].
(b) The B(E2) values which are very small and available with uncertainties.
Therefore the values from energy ratio Ry are more reliable. The calculated values of asymmetry
parameter (y) for all nuclei of medium mass region are used to calculate the
B(E2;44—24)/B(E2;24,—04) branching ratio.

200 SU(S)\
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Fig.1 The Variation of B(E2;4g—2g)/ B(E2; 2g—0g) ratio from ARM (shown by hollow circles) vs.

asymmetry parameter (y) in degree. The vibrational limit SU(5) at 2.0 and rotational limit SU(3) at
1.4 are shown by dotted lines for comparison.

3.1 Variation of ARM B(EZ2;44—24)/B(E2;2,—0,) ratio versus Asymmetry
Parameter (y)
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The variation of B(E2;4g—2g)/ B(E2; 2g—0g) ratio from ARM vs. y is shown in Fig.1. The ARM
data points are shown by hollow circles and the vibrational or SU(5) limit at 2.0 and rotational or
SU(3) limit at 1.4 are shown by dotted lines for useful comparison. It is clear from the figure that the
ARM predictions are very close to the SU(3) limiting value and also it is increases very slowly on
increasing y from 0° to 20° forming a peak at 20% and decreases slowly beyond 20° approaches 1.4
which is SU(3) limiting value at y= 27". The ARM ratio is away from vibration model limit of 2.0
this shows that it cannot explain the vibrational nature of the nuclei

3.1 Variation of Experimental and ARM B(E2;4,—24)/B(E2;24,—0,) ratio versus

Asymmetry Parameter (y)

The variation of B(E2) ratio from experiment and ARM with vy is shown in Fig.2. The ARM
data points are shown by solid triangles and SU(5) limit at 2.0 and SU(3) limit at 1.4 are shown by
dotted lines. Two nuclei are having B(E2) ratio anomalously more than 2.0 and not shown in the
Fig.2, e.g. '**Hg and '®*Hg for them the B(E2;44—24)/B(E2;2,—0,) ratios are 4.6(3) and 2.8(8)
respectively. There are some other nuclei in medium mass region those are having this ratio
anomalously lesser than 1.4 i.e. SU(3) limiting value e.g., **°Nd, ***Dy, '*Er, 168w, %W, 84,
19205, 8%t and *®Hg having values 1.31(10), 1.30(7), 1.18(13), 1.1(3), 1.386(20), 1.30(9), 1.22(4),
0.92(22) and 0.375(18) respectively. It is noted that in medium mass region (Nd-Hg), this B(E2)
ratio is smallest in case of *®Hg [=0.375(18)] which is non magic nucleus with only two vacancy of
protons for Z=82. This ratio is also very small in case of “**Ndg, [=0.73(9)]; which is also a non-
magic nucleus; which has only two valence neutrons outside N=82. It supports the findings of
Cakirli et.al. [8] that the value of this B(E2) ratio is anomalously small in non magic nuclei, as it
cannot be explained with collective approaches. The values of B(E2;44—24)/B(E2;2,—0,) ratios for
N=88 isotones (Nd, Sm, Gd, Er) are lying between SU(3) and SU(5) limits indicating the shape
phase transition for these nuclei. However the nature of the Dygg is different and its value is close to
SU(3) limit. Other data points are lying between SU(5) and SU(3) limits. While the ARM predictions
are very close to the SU(3) limit.
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Fig.2 The Variation of experimental B(E2;4g—2g)/ B(E2; 2g—0g) ratio vs. asymmetry parameter
(v) in degree. The vibrational limit SU(5) at 2.0 and rotational limit SU(3) at 1.4 are shown by dotted
lines for comparison. The ratio from ARM is shown by solid triangles.

4. Conclusions

The predictions of asymmetric rotor model (ARM) of Davydov and Filippov for B(E2; 4g—2g)/
B(E2;2g—0g) branching ratio are compared with the experimental data in medium mass region. Itis
found that the observed data point of this ratio for N=88 isotones (Nd, Sm, Gd, Er) are indicating the
shape phase transition from an ideal spherical harmonic vibrator or SU(5) to an axially symmetric
deformed rotor or SU(3). It is also noted that this B(E2) ratio is anomalously small in case of two
non- magic nuclei i.e., *®gHg1s [=0.375(18)] and *gNdgs [=0.73(9)] with only two vacancy of
protons for Z =82 and two valence neutrons outside N=82, respectively; which supports the findings
of Cakirli et.al. [8]. The data points for other nuclei are lying between SU(5) and SU(3) limits. The
calculated B(E2) ratios of ARM are very close to the SU(3) limit of IBM indicating that it can
explain the structure of only well deformed nuclei. Therefore the ARM is partially successful in
explaining this branching ratio.
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Introduction

The reduced electric quadrupole transition
probability, B(E2;0,"—2,") of even—even nuclides
have been compiled by Raman et. al [1] and its
variation versus A have been shown for 0<A<260
region. The observed values have been compared
with  various theoretical models [1]. The
B(E2;0,"—2,%) is a good indicator of the collectivity
in even-even nuclei. The intrinsic quadrupole
moment, Qo, can be deduced from the B(E2;0,"—2,")
value, i.e.

B(E2:0,"—2,%) = (5/16m) e*Q,>.

In Rigid Triaxial Rotor (RTR) model [2] the
b(E2;2,"—0,") values in unit of (e’Q,/16m) are
related to asymmetry parameter y:

b(E2;2,"—0,") =
Va{ 1+[ (3-2Sin*3y) /(V(9-8Sin*3y,)1}.

The RTR model is a simple way to describe
nuclear structure of a nucleus. This model was widely
used to explain energy levels, B(E2) values and
B(E2) ratios for inter and intra-band transitions.
Earlier, Bohr & Mottelson [3] observed that nuclei
are no longer to be considered deformed in the
original sense at y,=24" and the nucleus is expected
to take any shape, including triaxial. Earlier, a review
on inter-band B(E2) ratio in the RTR model for rare
earth and light mass region have been presented by
Gupta & Sharma [4] and Mittal-Sharma-Gupta [5] to
test the internal consistence of the RTR model
predictions.

In the present work, we search for a
systematic dependence of B(E2;0,—2,) values on
asymmetry parameter (y,) in rare-earth region. The
whole data is divided into four quadrants as
suggested by Gupta et. al [6].

Result and Discussions
Determination of vy,

There are various methods [2, 4, 5] to
calculate yo. The determination of y, from the energy
ratio R, (=E,,/E,,) is more relevant as discussed by
Gupta & Sharma [4]. We have calculated v, from R,
using the equation:

2
R, -1
7/0:lsin’1 2 | —
3 8 R, +1

The energy values of E,, and E,, are taken
from the website of National Nuclear Data Centre,
Brookhaven National Laboratory, USA [7].

1/2

The variation of B(E2; 0,* —2,%) vs. y,

The dependence of energy of first 2" states of even-
even nuclei on neutron number tells about the nuclear
core deformation. We have extended this search of
systematic in the reduced electric quadrupole
transition rate B(E2) values for Z=50-82, N=82-126.
To understand the variation of B(E2) with vy, the
whole data is divided into four quadrants as discussed
in ref. [5,8,9]. The variation of B(E2) values against
vo are shown in figs. 1 to 3. For Quadrant-I (Q-I), the
plot of B(E2) values vs. v, is shown in fig. 1 for Ba-
Dy. The plot of B(E2) values versus v, yields a
smooth falling curve of B(E2) with increasing vy,
reflecting the smooth decrease of nuclear
deformation. The data points are not lying on the
straight line. For Quadrant-II (Q-II), the plot of
B(E2) values vs. vy, is shown in fig. 2. Most of the
data points are lying on the straight line and
indication that the B(E2) values are linearly
dependent on y,. The variation of B(E2) vs. y, for Q-
IIT is same as for Q-I (see Fig. 3).
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