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ABSTRACT. We consider infinite Zz-index complexes C of spaces with elements
depending on a number of parameters, complete with respect to a linear associa-
tive regular inseparable multilinear product. The existence of nets of vanishing
ideals of orders of and powers of differentials is assumed for subspaces of C-spaces.
In the polynomial case of orders and powers of the differentials, we derive the
hierarchies of differential identities and closed multiple products. We prove that
a set of maximal orders and powers for differentials, differential conditions, to-
gether with coherence conditions on indices of a complex C elements generate
families of multi-graded differential algebras.
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1. INTRODUCTION

The main purpose of this paper is derive hierarchies of differential identities and
closed products following from sets of natural conditions on orders and powers of dif-
ferentials applied to elements of a multiple complex. In contrast to ordinary wedge-
product case for differential forms reflected in [I2} [I5] we work with the universal
enveloping algebra constituted by N-valued powers of elements of complexes, in par-
ticular, given by differentials applied to such elements. Note that in general we do not
specify commutation relations for elements of C. Nevertheless, the structure given in
the paper reproduces the structure of a differential algebra. The differential identi-
ties for elements of complexes with multiple indices endowed with regular associative
products is an important way to study various algebraic and geometric structures. In
particular, they are extremely useful to find closed products in cohomology classes
computations of invariants associated to a multiple complex. Differential conditions

Key words and phrases. Differential identities for multiple complexes; combinatorics of closed
products; graded differential algebras.
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applied to elements of a multiple complex C provide a system of multiplication rules
and form the resulting algebra. The full algebra associated to all possible choices
of differential relations is quite huge. For differential forms considered on smooth
manifolds, the Frobenius theorem for a distribution leads to orthogonality conditions
on forms. Motivated by the notion of integrability for differential forms on foliated
manifolds [I2, [I5], we study systems of differential identities with respect to a multi-
ple product of elements of a multiple-index complex. We then show that differential
conditions endow a multiple complex with the structure of a graded differential al-
gebra. Assuming existence of a net of differential power/order vanishing ideals in
subspaces of a multiple complex C, and requiring natural orthogonality conditions for
completions of a set of C elements, the hierarchies of differential conditions arise in
terms of closed products.

Ideologically, closed products containing powers of multiple action of mixed differ-
entials represent a geometrical idea of ”codimension” one products. Namely, there
are two possibility. First, a product contains a combination of differentials which
vanishes due to the critical orders or powers of differentials as the result of applica-
tion of differentials. Second, an initial candidate to closed products, does not contain
maximal orders or powers but after an application of a differential identity, the total
maximal powers of elements appear, and a product can be reduced to the first case.
The hierarchies of differential identities are of non-trivial nature since we assume that
maximal orders of differentials as well as maximal powers of C-elements depend on
elements themselves (see explanations in Section . Certain non-trivial examples of
multiple product identities are given in Sections We provide examples of closed
products with respect to multiple products of differentials d, and dz = d,

The hierarchies we derive from the conditions on a complex are useful in the theory
of continual Lie algebras [19] 20} 2], 23] [T] and in the theory of completely integrable [2]
and exactly solvable [16] I8 B}, 9] dynamical systems. In particular, similar to invari-
ants associated to foliations, one is able to use the identities from a hierarchy to prove
integrability as well as to find invariants of corresponding dynamical systems. It is
important to mention that the hierarchies of identities and closed products (i.e., prod-
ucts annihilating by a single differential) constitute the tools for direct computation
and classification of cohomology invariants of the corresponding complex. Therefore,
we are interested in generating all possible closed products. We will present such a
classification in a forthcoming paper. The next step in finding invariants is to prove
their independence with respect to replacements of a complex elements. The classi-
fication problem of cohomology invariants associated to a complex endowed with a
multiple product will be treated in a separate paper.

As for possible applications of the material presented in this paper, we would
like to mention computations of higher cohomology for grading-restricted vertex al-
gebras [14], search for more complicated cohomology invariants, and applications in
differential geometry and algebraic topology. It would be interesting to study possible
applications of invariants we constructed to cohomology of manifolds. In differential
geometry there exist various approaches to the construction of cohomology classes
(cf., in particular, [I7]). We hope to use these techniques to derive counterparts in
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the cohomology theory of vertex algebras. The results proven in this paper are also
useful in computations of cohomology of foliations [4, [].

2. MULTIPLE COMPLEXES AND THE MAIN RESULT

Introduce a system of families of multiple horizontal and vertical complexes C =

(C en),d™, d. ) with n € Zz and m € Zjz, i.e., an infinite number of up and

m/ ) m//
down Z-valued indices, and n = n’ un”, m = m’ um”. These indices correspond to
increasing and decreasing indices of parameters O}, for spaces C (%) under actions
of C-differentials correspondingly. Here dz, denotes a family of differentials for each

pair of entries n} of n’ and m} of m/, i € Z. The action of a differential d, :

i

cer)-C (@nHl), ie€Z,for...,n,+1,...and ...,m}; —1,... means that

Lmi—=1,...
all entries of the multiindices n’ and m’ — 1 remain the same except for n; — n} + 1
and m/ — m; — 1, that increases or decreases by one correspondingly. Other indices

n” and m” remain unchanged.

The family of vertical differentials d..,, : C' (O7,) — C (@n] e

1 ), j € Z, change
n’j and m/ indices similarly, while the indices n’ and m’ remain unchanged. A subset
of horizontal and vertical complexes corresponding to subsets of upper indices in nn and
lower indices in m are supposed to be chain, cochain, or chain-cochain corresponding
to the differentials (d), and d;. When we write x € C that means that an element

x belongs to a subspace of C. The i € Z, j € Z and k € Z-th slice of the full diagram
of a complex C is described by the following diagram

’ "
if Ln;—1 ...,nj—l,... ld mi—1,...n;—1,
’ ” _ ”
e ml—1,...m,

n;—1,..., nj,.. Mg nj.. d...,nl+1 ..... nj
comp 1, O oMo e M, Cm7ni+1’m7nj7m camp—1,...
Mgy ceemp—1,...

l E...,ni,...,nj,... i E...,nﬂrl, LM,
ey M yene ...,mk.—l,...
d...nz—:,l...,anrl . g ni+1,. ) ) d.,.,n,i+ji...,n_i+1,...
) oMt RN (PN (% B o SYSTER LY S congt+loong 10 e mp—1,
ey Mg yenn ..A,T)’Lk—l,...
l E...,ni,.“,nj-k—l,... i —eesnitloni 41,
ey Mgy omp—1,...

Introduce the following notations. Since indices of differentials and indices of C-
subspaces are taken to be always coherent, let us denote d, = (d,),,, where the
index a denotes either of the differentials d or d, @ denotes the opposite choice, and
dg = d,. A combination of differentials is notated by dgt ...dgk, where 11, ..., 1) are
orders of corresponding differentials. We call g of (¢)? the power of an element ¢.
For all possible combinations of [ elements of C we assume the existence of a formal

multi-linear associative inseparable -;-product

=t xlom - on (2.1)

m
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1 l

with 2(¢) = Y, ni(¢:), m(¢) = >, mi(¢;) where the summations are component-
vise. We setztlllat the result of ; }l—product which is an element of a C-space, is
regular in the domains of definition of all parameters O7, defining the product. We
assume that a -;-product is inseparable in pairs of two elements of C in general. Let
us introduce the notations. In the arguments of a multiple product we denote by (¢);
a C-element placed at the i-th position. The notation § means that the value s of the
index is omitted. We assume the completeness of a complex C-spaces with respect
to the multiple product . That means that for ¢, ¥ € C, placed in the product
at the i-th and j-th positions, from 0 = (..., (¢)s,...,(¥);,...) it follows that there
exists a C-element x, such that ¢ = (..., (¢)i,..., )k, -.), with some i’ and k.
For a -j-product we set -;(...,0,...) = 0. One can also set that -(...,Id¢,...) =
-1(...,0,...) = 0, where Id¢ is the identity element in the corresponding C-subspace.
In certain cases, a product may have coincidences of parameters of multiplied
elements of a multiple complex C spaces. The result of a product may not allow such
coincidences leading to possible overcounting of the number of parameters. In order
avoid such a possibility, we take into account one coinciding elements/parameters
only in the result of a product. For certain -;-products of C-elements depending
on parameters, (e.g., for a product of vertex operator algebra complexes [14]), it is
needed to exclude a number of coinciding arguments and count them only once in the
resulting product. Examples of such products can be found in [24, T3] and others. For
an element ¢; € C7}, in a particular -;-product let r and ¢ be the numbers of common
parameters corresponding to upper and lower indices for ¢ with other elements in a

product. In that case, the conditions on indices for a resulting element of a -;-product
1

l
¢ are n(¢) = '21 ni(¢;) — ri(¢;), and m(g) = Zl n;(¢;) — t;(¢;). The associativity
1= 1=
of a «-product means (a;...-pb)ypr...cpmc=a-;....pp (b ... pwc). for all elements
a, b, ¢ € C. Note that [ can be taken infinite if we assure that a product x;>i is
converging with infinite [. We call the product formal since elements of a complex
C spaces can be formal (in particular, geometric) objects. Then the result of a --
product is a superposition of formal objects (e.g., Riemann surfaces [24]). In that
case, convergence of a product means that the corresponding superposition leads to
a well-defined formal object.

In this paper, all the constructions are independent of actual commutation rela-
tions for elements for elements inside a -;-product. In addition to all that above we
assume that in a multiple complex C spaces there exist a net of subspaces constituting
vanishing products of exactly ¢ its elements. That we call an order ¢ ideal Z(q) < C.
We define a distributed ideal Z(gq) of order ¢ <[ as a union of subsets of C such that

for any set of ¢ elements 61, ..., 0, € Z(q), distributed in a product, (..., 01, ...,
Oa, ..., 04—1, ..., 04, ...) = 0. A product (2.1)) vanishes if at least one entry of its

arguments belonging to C is zero. Now, let us explain how we understand powers of

an element ¢ € C. We denote (..., (¢)",...) = (.., (®)j1s-- -, (@) a5 (0)5,.,...) for
¢ placed at the positions (ji, ..., j,) with r < ¢(¢) where g(¢) is the maximal power

of an element ¢, i.e., for r = ¢(¢), (¢)" = 0.
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It is taken that a product (2.1]) is coherent in indices with respect to all differentials

of a complex C. That means that for every set of ¢; € C (@:‘,{i), 1<i<l, n(gp) =
! !
> n;i(di), and m(¢p) = >, m;(¢;), and the resulting ¢ € C (OF,), ¢ = -1(¢1,...,¢1),
i=1

i=1 i=
the action of corresponding differential d satisfies Leibniz formula

l
Aot =do 1 (. (D)is--) = D1 (s (dad);s -0 (2.2)
i=1

Note that in general, being applied to the result of a -;-product, Leibniz formula
represents a map C — xC. Therefore a result of Leibniz formula application vanishes
if in each element of the sum an element is zero.

For a set of elements ¢, 1 < k <, in a -;-product

‘1l (q)17¢17q)27 .. '7q)i7¢i7q)i+17 .. '7q)k7¢k7(bk+1)7 (23)

we call the union of sets of C-elements {®;}, 1 < j < k+ 1, the completion of a set of
elements ¢y in a -;-product. Due to the associativity of a -;-product we can view each
set ®; as a single element. The completion for a set of elements ¢;, 1 < i < k,
with respect to a differential d, is called closed if

p+1
Z da,j- 1l ((bh ¢17 (b27 sy q)i7 ¢i7 (bi+1a ey (I)Iw ¢ka q)k:+1) = 0) (24)
=1

where d, j, j < k + 1, acts on ®;-elements of the completion only. In what follows
we will always assume that all completions in -;-products are closed with respect to
corresponding differentials. Thus, we will skip the completion elements ®;,..., ®py1
of C-elements ¢;, 1 < i < k, so that a -;-product will be denoted as (..., d1,...,0k...).
Due to the associativity property of the -;-product mention above, we will skip the
notation -; and denote all completion closed products for various I as (...,...,...).
Since all actions of C differentials are coherent with the indexing of C-spaces, we will
skip also upper and lower indices from the notations of d}".

In general, an arbitrary element ¢ € C is characterizes by its maximal power ¢(¢) €
Z. v {0}, ie., ( s (Digs e (D)igsys - ) = 0 with ¢ identical elements ¢ distributed
in a product (2.1). Next, according to values of maximal orders and powers of a
collection of differentials dPi, 1 < i < k, a C-element ¢ satisfies certain conditions
with respect to subsequent actions of differentials dPi on ¢.

Omne can also introduce the rules (possible commutation relations, chain-cochain
property, maximal orders and powes) for actions of C-differentials dj, with b = a or
a, i.e.,

dadb = Aa,b dbdaa (25)

with some A, ;. Note that A, can be either a complex number (in particular, zero),
a map C — C, or undefined at all. We assume that for an element ¢ € C might exists
the maximal order ¢(¢) € R depending on ¢, such that for r € R, r = ¢q(¢), (¢)" = 0.
Similarly, for both differentials dp, b = a or @, and any element ¢ € C, might exists
p(¢) € R, depending on ¢, such that for any s > p(¢), d°¢ = 0.
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We assume always that when we apply a differential d, to a product (y), then there
exists p(y) € R such that for all s = p(y) d5(y) = 0, even if we do not know exact
value of p(v). In deriving identities for C-elements, we should always keep in mind
that the power of a collection of differentials applied to a C-element can overcome
corresponding maximal value and, therefore, a result of such applications vanish at
some iteration. Note again that an element d?(v), 0 < p; < p(d.(7)) is characterized
by q(di(+)) such that (a2 (7))@ () — 0. For p; = 0, q(d2 (7)) = q(7). The
property of having maximal orders of differentials and powers of elements can be
seen as a redefinition of an initial complex C to resulting complexes with differentials
defined by all possible partitions of all C differentials into pairs of differentials d, and
d, where o is a particular element of a partition.

Let us introduce some further notations. For a set of double indices J = (Jy, ..., J,),

J; = (Z), define

Dyp=d ...d" . (2.6)
The indices a; denote the type of differentials. The indices r; are orders of differentials
satisfying the recurrence conditions

r; <p (dg-;_:ll L ) : (2.7)

with the corresponding maximal order for the differential dZJJ acting on a C-element
de’") ... d ¢, 1 < j < n;. Note, that due to the property and the definition
of powers of an element distributed in a -;-product, we do not take into account
conditions on ¢ € C of the form (dj (... (d}2(d;}¢)9))% ...)% since, according to
it is equivalent to a finite sum of powers of orders of differentials. Note that the
definitions of maximal orders and powers above characterize elements of a complex C,
and are given in the form of differential/orthogonality relations of Section @ In
what follows, we deal with multiple products completion of a number of C-elements
closed with respect to corresponding differentials.
Let us now formulate the main result of this paper:

Theorem 1. The conditions (2.5) together with a set of maximal orders and powers
of differentials for a multiple complexr C result in a hierarchy of closed products in
terms of differential identities on elements of C given by the general formula

0= > (., (Dro)™ ..., (D)™ ,..), (2.8)

J1,eedk

with 1 < ¢ < q¢(Dy,), 1 < i < k, where ¢(Dy,) are the mazimal powers for the
corresponding differentials. The differentials Dy, , are determined by all vanishing
products closed with respect to single differentials d,.

Now let us give a proof of Theorem

Proof. The idea of the proof is related to geometry. Namely, we show that the
identities are defined by vanishing products closed with respect a differential
dg. Geometrically, this corresponds to a separation of ”codimension one” differen-
tial forms [I5] expressed in terms of multiple products. The main idea to generate
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differential identities for multiple products of elements of C is to pick products van-
ishing due to maximal powers of differentials action. It is easy to see that in order
to find a differential identity, one has to pick elements given by multiple products
which would give ”almost” the rule (2.7]), and would vanish under actions of the dif-
ferentials d, or dg. Thus, the set of closed products consists of such ”almost” rule
(2.7) elements having ”almost” maximal powers. There are two general ways how to
obtain an identity starting from a vanishing product closed under a differential. Let
us start with a product containing k entries of g;(¢;)-powers of arbitrary C-elements
Giy ie, (oo, (0)T, ., (@)%, .., for 0 < ¢; < q(¢;), with the maximal power g(¢;)
of elements ¢; for 1 <14 # j <k, and, ¢; = q(¢;). That product vanishes. Recall that
for elements ¢; of (¢;)% may be distributed as fingle ¢; entries among arguments of
the product. Acting by a differential d, according to the formula we obtain two
types of summands. The action of a differential on the distributed power of (@)qwi)
gives (d.¢;) as one entry, and remaining distributed entries (@-)qwi )=1. As we see,
since the maximal power ¢(¢;) — 1 is dropped now by one, that particular summand
does not vanish. There are all together ¢(¢;) non-vanishing summands of this type.
The second type of summands with a differential acting on (¢;)%, ¢ # j, contains
the maximal power of (¢j)q(¢j), and, therefore, vanishes. Another possibility for a
vanishing product to be closed is to collect the maximal power of an element at some
iteration of differentials application. We thus obtain the first identity of the hierarchy:
q(;)
0= ( BT (dati)er s (07) 2007 ) : (2.9)
s=1

This identity relates powers of elements ¢;, 1 < i < k with the differential d,¢;. To
obtain further identities of that branch of the hierarchy, we apply differentials d, or
dg to , and take into account to derive the next identity in that branch of
the hierarchy. Continuing the process, we decrease the powers of elements (¢;)%, and

increase powers of differentials djt ...dg» gf)?(@). Note that by assumption that the
maximal order of each differential (i.e., the power when it vanishes) applied depends on
the element it acts on. Therefore, the final form of an identity in the hierarchy depends
on a sequence of elements dt (do,"} ... (d2 ¢))), dai i (... (d52 ¢ir)), ..., 5t ¢y, where
7p(¢;,) are lower than the maximal orders for corresponding differentials. A sequence
of identities stops when at least one order of differentials reaches its maximal value
in each summand. The whole hierarchy depends on a set of initial elements ¢;. That
elements may initially contain orders of differentials of some powers. O

To finish this Section we formulate
Corollary 1. The hierarchies (2.8) result in the set of closed multiple products.

Indeed, each a differential identity (x) = 0 from the system can be ”inte-
grated” with respect the differentials d or d to find a multiple product (T') such that
dq(T) = (x) = 0. When we say integrated we mean that for an element v € C we
find an element +" such that v’ = d,y. In addition to that relations specified by the
identities can be used in order to derive closed products which do not follow
explicitly from the integration of identities. Let us underline that we work with a
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multiple complex spaces as grading subspaces of an associative algebra. In particular,
the multiple product -; can be introduces for geometric objects of general kinds. Thus,
we keep the constructions of this paper independent of commutation relations. In the
next three Sections we will provide instructive examples of identities and closed prod-
ucts of the first order of differentials actions. The full description and classification of
differential identities and closed products at higher orders and powers of differentials
action will be given in a forthcoming paper. The identities and closed products given
in Sections generalize to symmetrized versions with respect to permutations of
indices, positions of C-elements, and orders and powers of differentials.

3. EXAMPLES OF IDENTITIES FOR MULTIPLE PRODUCTS

In this Section we illustrate the proof of Theorem [£.3 by complexity-growing exam-
ples. In this and next two Sections we always assume that all completions are closed
with respect to corresponding differentials.

3.1. Two differentials, and the total maximal power two for two kinds of
elements. Consider two elements (¢,1) € Z(2). Recall that the notation (¢,)) €
Z(2) means that a pair of ¢ and ¢ (but not their differentials) placed in a product
makes it vanishing. For any two positions 1 < ¢ # j < [ in a multiple product

0 = daloiy(D)is o (®)5..0)
= (e ey D) ) (s (B)in s (da), ),

which is not a trivial identity for p(¢), p(¢) > 1. Recall that the notation (¢); means
that an element ¢ is placed at i-th position in a product. Therefore,

('"7(da¢)iv‘”7(w)ja"') = _("'a(¢)iw-~»(da1/])jv"')v (31)

i.e., one can transfer a differential between Z(2)-elements while changing the sign. In
particular, with dyd, =0, b = a or b =@, and p(¢) > 1, p(¢) > 1, we get

(“mawmmmaww”):—(”4@@Wum%wwu). (3.2)

From ¢, 1 € Z(2) with a = b it follows d,¢, d,vv € Z(2). Both with dyd, = 0 or
dpdg # 0, by applying further choices d., ¢ = a or @ of differentials, we receive from
further relations for higher differentials if the maximal powers p(d,,, ... dq,)®)
of sequences d,, ...d,,, (where a;, 1 < i < nis a choice of a and @) of the differentials
d, and dgz permit.

3.2. Single differential, two kinds of elements. Consider dy(...,¢",...,¢*% ...),
with separate maximal powers for ¢ and for 1, or with total maximal power r+s = k
for ¢ and 1 together. It is assumed that ¢- and -entries are mixed and commutation

relations are not known. Let d5?¢ = 0, d7™)y = 0, where a(g) > 1 and B(v) > 1
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are maximal orders of the differential d,. Then, one has

”

Do (s (ad)iase s (O (@)

11
’Ll=1

O0=dy(cosds . 05, ..0)

S

+ Z(---7((b)’”-.-7(daw)i2,...,(¢)ifl,...).

2
dg=1
By continuing the process of n-times application of the differential d, until the powers
of ¢ and ¥ become zero, the sequence of identities stops.

3.3. Two differentials, identical elements of the total maximal power. For
q(¢) identical elements ¢, placed at all é-th positions, 1 < i < ¢(¢) € N, such that
¢ € I(q(9)), ie., $1? = 0, equivalently, (..., (@)1, ..o ()i - (D)g(g)s---) = O,
(i.e., ¢ is placed g(¢) times in various places in the product). Then,
q(¢) -
0=du(c(Biser) = (...,(da¢)i,.,,,(¢)g<¢— ) (3.3)
i=1
which is not trivial for p(¢) > 1. In the case when dyd, = 0, b = a or @, by applying

dp to (3.3), one finds
q(9) a(¢)—1 )
0=> 3 (...,(da¢)i,...,(db¢)j,...,(¢)2<j’>* ) (3.4)

i=1 1<j#i e
With (d,¢,dpd) € Z(2), this identity trivializes. For b = a and d,¢ ¢ Z(2), one gets
relations on differentials of ¢. Both for dyd, = 0 or dpyd, # 0, by applying a sequence
dg,, .. .dq, of the differentials d, and dz to (3.3)), the hierarchy of identities arises,

a()—n,...,q(#)—1,q($)
0= 3 (( alg/))“,...,(aH...dm(z))l,n,...,(qs)‘?fd’)*ﬁ,...),

o ) 11 yeenyin
gy 1aeeip =1
is#jr, 1<s#r<n

when maximal orders and powers of corresponding combinations of differentials per-
mit.

3.4. Orders of two differentials of several identical elements. In this subsec-
tion we show how to use transfer of differentials for higher order differentials. Let

() P'#) ’ s 0
de” ¢ =0, and (dp ¢> = 0 for p’ < p(¢) (we do not allow the ambiguity 0°).
Then, for 0 < p; < p(¢) 1< q; <q(pi,d), 1 <i <k, the identity is

— d, Z A N Y N (O L
k ‘I(Pi»¢7) o
) ( (@) L (@) (dhig) " ) . (3.5)
i=1 81=1

which is non-trivial if p; + 1 < p(¢), and ¢q(p; + 1,¢) > 1. Applying the differential
d, further times one obtains higher identities. Then we can have a finite number
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n applications of the differential and corresponding sequence of identities. Similar
products including also powers of the differential dz lead to similar identities.

3.5. Two differentials, multiple elements. Recall again that the main idea of
differential identity generation is to be able to use them to transfer powers of C-
elements into orders of corresponding differentials. Let uslook at (..., (¢;)",...), with
distributed power of single elements ¢;-entries for all ¢, 1 < i <k <1, 1 <r; < q(¢dy),
(¢;)9(%) = 0, i.e., where k is the total number of various ¢; with individual maximal
powers depending on an element ¢; € C. Let d{i(@)@ =0, p(¢;) > 1, dg(qb")(bi =0,
p(o) > 1 and (%06)"" " = 0, g(pi0) > 1. (E906)"7 " = 0, a(p,. 00 >
1, be the maximal orders and powers of the differentials d,, dz depending on ¢;.

Consider the case of a single differential and multiple elements. In order to form
the vanishing product, we include exactly one maximal power g(¢;) of an element ¢;,
and powers 1 < r; < q(¢;) of other types of elements ¢;, 1 < i#i<k—1. Ford, as
before

o
Il

Z ( TR ,(¢k)rk,...)
1

k a(éi)

ZZ ( (dadi)er- - ()29 1...,¢§<¢%>,...). (3.6)
Further several applications of the differential d, to the last identity results in further
identities. It is clear that the orders of differentials d,(¢;) and d,(¢;) are growing
until they reach p(¢;) and p(¢;), and thus corresponding summands vanish. Similarly,

the powers of the differentials d?i¢; and di’ ¢; are growing until they reach q(p;, ¢)
and ¢(p;, ¢;), and corresponding summands vanish.

k

3.6. The most general polynomial case: the identities for orders of two dif-
ferentials and powers of multiple elements. In this subsection the identities for
the most general polynomical differential-order and power products are computed.
Let us first assume that the maximal orders p(¢;) > 1 and ﬁ(qﬁl) > 1 of the dif-
ferentials d, and dg correspondingly, i.e., such that df (@) =0, cL = 0 and the

maximal powers ¢(p;, ;) > 1 and q(pz,@) > 1 of d%®) and ¢(¢7) i.e., such that
pi(6:)\ 4Pi91) B, (6:)\ 1Pi91)
(da’ ' ) = 0 and (d g ) = 0, do depend on elements ¢; € C, for

1 < i < k types of elements ¢;. Take a product with exactly one differential in the

maximal power ¢(p;, ¢;), while all orders p;(¢;) of the differentials dﬁi(@) are lower
than the maximal order p(¢;), i.e., 0 < p;(é;) < p(¢;),
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It is clear that if we put at least one maximal order p;(¢;) = p(¢;) or p;(¢;) = p(¢;)

of the differential d, into the first line of then all further identities trivialize.
One can also take the case of the total maximal power elements. I.e., 22:1 q;

(pi, i) = q, and q;(p:, &:) < q(pi, ¢i) i-e., when the sum of powers reaches the critical

pi(6:) ) (%) . :
value, and x (dGT ‘ z;b) € I(q). Similarly, >, pi(¢:) = p, and pi(¢:) < p(¢i),
i.e., the sum of orders of the differentials is at its maximum, and xdﬁi(¢i)¢i € Z(p)
. i (1) qi (P, ¢i)
Then in both cases | ..., (dal ‘ qbi>

differential dg to the identity , all branches of the hierarchy of identities arise
with appropriate conditions on orders and powers of differentials.

;... ] = 0. When we apply the second

4. EXAMPLES OF A SINGLE ELEMENT CLOSED PRODUCTS

In this Section we provide examples of closed products arising, in particular, from
the identities of Section |3] Closed products and their identities are very useful in the
theory of completely integrable [2] and exactly solvable [16], [I8] systems. Note also
possible applications for operads. Note that in the search of products annihilated by
a differential, we take only non-vanishing products. To use the annihilation given by
maximal powers of d,¢; in multi-element products after application of a differential
d, once, we have to include not just one power of each element but lower powers also.
The main idea of a closed product construction is in taking into account changes both
in orders of differentials themselves and powers of their action on C-elements. For that
reason we have to include not only powers of elements acted by the differentials, but
also powers of elements not acted by them. The balance of raising and lowering
powers of elements results in extra conditions producing closed products. In some of
the examples below we use the transfer of differentials using certain identities from
Section (3| By integrating the identities of the form one finds sets of advanced
closed products.

Note again that when we write a product in the form (..., (¢)s,...,(®);,...),
1 <17 # j <[, it is not assumed that all elements ¢ are positioned on the right to all
¢ elements, i.e., ¢ and 1 elements can be mixed in the product.

4.1. A single differential, a single element. First, let us look at expressions

without differentials, k < g(¢) distributed position entries in a product, where ¢(¢) >

1 is the maximal order of ¢, p9(®) = 0, i.e., ¢ € Z(q(¢)). Let the maximal order of the

differential d, is p(¢), i.e., d§(¢)¢ — 0, and ¢(p/, ¢) = 1 is the maximal power of d? ¢.
1.) With p(¢) =1,

k
da (o (D15 (@i (Do) = D) (s (da@)iye o (9)F71.0) =0, (41)
i=1

due to each summand is zero. Since there is only one differential in each summand
the use of the transfer formula would only changes the sign.

2.) Suppose dod,¢ = 0, i.e., p(¢) = 2, and a distributed product (..., (de@)q times....) =
0. We denote this relation as (dq¢)9(?) = 0, i.e., du¢ € Z(q(1,¢)). We continue with



12 DANIEL LEVIN® AND ALEXANDER ZUEVSKY*

a distributed product containing (d,¢)* with k < q(1, ¢) entries of d,é. Then

k
do (oo s (dag)¥s) = (...,(dadaas),-,...,(da¢)§—1,...) —0. (4.2)
im1
3.) Next, with d,d,¢ = 0, include (¢)", i.e., take (..., (d.0)*,...,(#)",...), for
1<k+r <l k<q(l,¢) entries of d, ¢, (da¢)Q(1’¢) =0, for d,¢, and r < ¢(¢) entries
of ¢, 99(#) = 0. Then, for k + 1 = q(1, ¢),

do (- (da®)®, (D)7, = D) (oo (dad)F, o (da)s, -, (9)571, ) = 0,(4.3)

s=1

since the total power of d,¢ in each of summand becomes ¢(1,¢) and it, therefore,
vanishes.

4.2. Higher orders of a single differential, single element. Now let us proceed
with higher order closed products. Let p(¢) be the maximal order of the differential
dad, ie., d2P ¢ = 0.

1.) With k entries of dPi¢ differentials, k < q(p;, ), (dP¢)"P?) =0, 1 < p; <
p(¢), i.e., one gets the product (..., (dP"¢),,...). Then, for p; = p(¢) — 1 for all i,

do (..., (dP¢ :Z( (d”(¢ )s,...,(dgw)g,...):o. (4.4)
2.) Now, let $2?) = 0. Include k < ¢(pi, ), entries of d? ¢, 1 < i < k, and
1< 7 < q(¢) entries of ¢, ic., (..., (d2¢),,...,(#)",...). One has
da (- (B 9)i, = Z AR ), (D) (0) )
+ Z A2 B)is s (da®)s s (9) 00 (4.5)

For p, = 1, k+1 = ¢q(1,¢), and p; + 1 = 2 = p(¢), 1 < s < k, both groups of
summands vanish. Note that that does not depend on r. By inclusion of an extra
summation into one can use to move differentials among d,¢ and ¢ with
changing the sign. The symmetry of allows to distribute the orders of differentials
among entries of ¢.

4.3. Orders of a single differential, single element, powers of differentials.
1.) Let (..., (d2¢)¥,...) be a product containing k various powers of the differen-
tial do, 1 < i < k <1, for 0 < p; < p(9), 1 < q; < q(pi,d), where d2”¢ = 0,
(dPi¢)2Pi?) = (). We then obtain

ds

k
do (@) ,..) = 3 ( (a2 1o )t,...,(d{;w)g“l,...,(d{;%)?,...),

s=1t=1



THE HIERARCHIES OF IDENTITIES AND CLOSED PRODUCTS 13

where 7 denote the omission of ¢. That product is closed when 1) pi+1 = p(o)
for all 1 < i < k; 2.) dstlg, dPs¢p € I(2); 3.) dPst1¢, db=op € I(qs); 4.) db=T1g,
(db:¢) € I(2); 5.) db=*19, (dbip)% € I(gs + 1).

2.) The general expression for a closed product in the case of a single element with k
types of orders and powers of a single differential is given by ( o (dRig)d L (dgi_lqﬁ) ; ,
...), where for any pair p; = p; — 1, 2p; < pi(¢), and ¢; +7; < q(pi, ), 1 <i,j <k
(such that the initial product does not vanish).

da ( L) (dn ) )

s

Q

Il
=

(oos (@1 0)es o (A )T (d )T )

»
Il
—
~
Il
_

<
3

+
1=

(s (@Big)f o (A2 ), (BT )T ) = 0,

)
Il
-

—~

—~

when 1.) p; + 1 = p(¢

Di = Ds, 2pi = pi().

and ¢; + 1 = q(pi, ¢), for all 1 <i < k; 2.) p; +1 =p(¢é) and

4.4. Two differentials, single element. For the product (...,dg¢,...,de@,...,(@)",...),
with 1 < r < ¢(¢) one has:

1.) For do¢ € Z(2), i.e., (da¢p)? = 0, and dndzd = 0, d2¢ = 0
da(...,dg(b,...,dagf),...,(¢)T,.--) = ("'ada(dﬁqs)a"'7da¢7"'7(¢)r7"')
+(voydgdy .. dadady .. (D) )+ (o dagdy . dad, ... dad, ..., (0) ) = 0.

2.) For dgd,¢ # 0, dqdgdad = 0, d>¢ = 0, and d,¢ € Z(2), the product vanishes:

da (.. dadad, ... dady ... (B)s..) = (..., dedadad, ... dat,....(d)",...)
4 (o dada, . dadady - (D), )+ (o dadad, oty dady -y ()LL)

Note that both closed products do not depend on r.

When commutation rules for elements in a product are known, we are able to move
them around. In a distributed case, we first gather the powers of the same element
together. Then the classical formula d (d2¢)? = qdy, (dP¢) (d2¢)? " (we agree to put
the extra derivative in front of the power of the derivative) for a differential applied
to a power of a C-element is true, and we can write invariant elements in the explicit
form.

5. EXAMPLES OF MULTI-ELEMENT CLOSED PRODUCTS

In this Section we give examples of multi-element closed product.

5.1. Two-elements closed product. Here we have the case of dependence on two
elements ¢ and ¢. That case does not fall in the general idea [I2] [I5] of one-parameter-
element invariants. Let us see if it is possible to transpose d,-differential.

1.) For (da¢, dap) € Z(2), and d,d,¢ = 0,

do(o . dathy .0, ) = (oo dadatr .. 10, )+ (oo da, ... datb,...) = 0.
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2.) With (da¢, dzv) € Z(2), dodg = 0, then
do(. . dgdy... 0,...) = (.., dodgd, ..., 0,... )+ (..., ded,...,dgtb,...) =0;
3.) doo, Y € L(2), dodgd = dgda =0
do(...ydgd, ... 0,...) = (.. .,dgde@,...,0,...)+ (...,dad,...,dg¥0,...)
= —(...,dgt,....dg0,..)+ (..., dat, ..., dg2),...) = 0.
due to property .

5.2. Two differentials, three elements. Take the product (...,dz¢,...,de,...,(x)",-..)
with dyda = 0, dodge = 0, and 1.) dgo, d,v € Z(2); 2.) dgo, dox € Z(2); 3.) dat,

dax € Z(2); 4.) ¥, dax € Z(2), dudax = 0; 5.) ¢, dux € Z(2), and dgd.x = 0, 6.) ¢,

dap € Z(2), and dgzd, = 0. Then the product vanishes

do(... dg, ..., dg, ..., (X)",...) = (..., da(dgd), ..., dat, ..., (X)",...)
+(ovydgty .y dadathy . (X)) + (o dg )y dat),s ax,...,(x’”—l),...),
according to property .

5.3. Orders of a single differential, powers of several elements. Consider
the following case: (..., (d2i¢; )P ()%, ...), with 0 < pi(¢;) < p(¢;), and
1 < ¢i(pi) < q(pi,di), 1 < g;(pj) < q(pj,%) 1< g <q(¢i), 1 <q <aldy),
1 <i<k 1<j<FkK, the maximal order and power (here it starts from 1 to
preserve [, or keep the identical element in the product). Note that the powers are
lower than p(¢;) — 1 and ¢(¢;) — 1 correspondingly to insure that the corresponding
product does not vanish. Next, by applying conditions on p;(¢;) and ¢(¢;), we find
their combinations such that the product is closed.

1.) It is clear that for all p; +1 = p(¢;), 1 <i <k, p; =1, and ¢;(1) + 1 = ¢(1);
2.) forall p; + 1 = p(¢), 1 < i <k, and with p; # 1, da(bl, ¢; € I(2); 3.) for all
pi+1=np(¢:), 1 <i <k, and with p; # 1, du¢s, (¢;)%" € I(g;) the product is
closed.

( (dPig) TP ()% )
k
Z Zp ( dPs+1¢s 7(dgs(zss)g(?s)—l"”7(@)%7.”)
e
E3T D (e @ ) (b ) ).
s'=1t=1

where  denotes the omission of the index ¢.

5.4. Powers of orders of multiple differentials, multiple elements. Consider

the product ( L (da ...dﬁi;j@)f(p"*“a"*”, .. .), for some 1 < i < k <[, and where

we use the notation x,, ; = (4, Tn—1,,---,%1,). For the product not to vanish, all
orders ps;, 1 < s < n satisfy py; (dgij';f. d;fz ) <p (dgz’j:i...dgif(b), where

P (dgj:j:i. . dgijgb) is the maximal order of the corresponding multiple differentials,
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and the power of the corresponding multiple differentials dq: . .. dg, "t ¢; is lower than
q(Pn,irani) < ¢(Pn,i,an,i, @) is lower than the maximal ones for all 5. Then

Pr+1 D i D1 q(Pn,isan,i)
dogrti |-, (da’;jz ...daqubi)i ,...) =0, (5.1)
when 1.) there exists 4, 1 <4 < k, such that ppy 1 (day’ .. dBVE ¢) =p (dgzjril,i L >;

2) if k=1, and (Pr+14 @nt1,) = (Pnjr@n,;), for some 1 < i # j <k.

6. MULTIPLE-GRADED DIFFERENTIAL ALGEBRAS
Let vs€C,s€Z,and Js = (Js1,...,Jsn,) be a set of choices J, ; = (‘:J), 1<
8,7
j < ns. Let us require that for [ chain-cochain spaces C (@%) of the multiple complex
C, there exist subspaces C (@ﬁ;) c C (O ) such that for all ¢,; € C (@ﬁm),
1<i<k,

DJS’}/S = (, (Z)szi(bsﬂ')qs'1 ,) s (61)
where it is clear that ¢,; < ¢ (DJSYi(bS’i) are less than the maximal powers of the
corresponding elements Dy, , ¢ ;, and the maximal orders of differentials constituting
(asin (2.6)) Dy, , ¢s,i satisfy the recurrence conditions (2.7). We call this a differential
condition. Symmetrizing with respect to all choices of J, for a fixed [, we obtain a
set of differential conditions

{Symszyl {DJS% = 4 ( - (DJMQSM)(I(Z.’S) ) ) }} , (6.2)

for v4 € C, s € Z. With Dj,vs = 0 for some s, we call (6.2) an orthogonal-
ity condition. For each differential condition above of the se we have the
coherence condition for corresponding upper and lower indices of C-spaces, i.e., n
(DJS'VS) = Zé=1 (nl (DJs,igbs,i) -7 (DJS,-;¢S,7J))7 m(DJs’YS> = Z7l;=1 (mi (DJs,i¢S,i)
—t; (D Jm.(bs,i)). We will skip these coherence relations for all differential conditions
below. The notion of a set of differential and orthogonality conditions gener-
alizes corresponding orthogonality conditions assumed in [I2, [I5]. One could like to
understand which part of differential conditions are independent. Indeed, in the
case with known commutation rules for C-elements and differentials, we use (2.5)) to
normalize its sequence in the definition and in the conditions by sending
all dg to the left with respect to d,. Then we use known vanishing rules for powers of
differentials. In the case when commutation rules are not known, one might use the
independence of powers of differentials. The next result of this paper is the following.

Lemma 1. The rules (2.5), the differential conditions (6.2)), and a set of mazimal
orders and powers for all C-elements endow C with the structure of a multiply graded
infinite-dimensional differential algebra with respect to a -j-multiplication, [ = 0.

Note that, apart from the value of [ for a multiple product, the parameters char-
acterizing a differential algebra above are the distributions of the net of mixed or
non-mixed ideals Z(p), Z(g) € C; the distributions of orders and powers of differentials
bounded by their maximal values when applied to C-elements; domains of values of
indices for C-spaces; the set of rules for differentials; conditions on completions
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with respect to differentials; commutation relations for C-elements (when known); the
domains of values for O, parameters for C (0}7,), and distribution of horizontal and
vertical indices for the corresponding differentials. Now let us give a proof of the
Lemma.

Proof. The way of operation with sequences of differential and orthogonality con-
ditions follows from the rules , Leibniz rule , as well as from taking intro
account maximal orders and powers of differentials and elements, i.e., the assumption
that some of C belong to the ideals with respect to orders Z(p) or powers Z(q). Starting
from a particular orthogonality or differential condition, we act consequently by the
differentials d, and dg. Secondly, using the Z(p), Z(q) ideal vanishing properties ap-
plied to orthogonality conditions, and by using the completeness property of the com-
plex C with respect to the -;-product, we express particular elements d?i ¢; in terms of
other C elements. With the maximal orders and powers for each particular C-element,
a differential or an C-element reaches its maximal order or power, and corresponding
summand vanishes. Continuing the process, we finally obtain the full structure of
differential conditions. A sequence of relations does not not stop as long as coherence
conditions on indices are fulfilled, of until the sequence gives the both side identical
zero. In some cases, due to the completeness condition for the -;-product, a sequence
of differential conditions becomes infinite in a certain branch of the hierarchy. Let us
reproduce the general structure of relations following from differential conditions for
an expression in the form of a multiple product . The most general configuration
associated to a -;-multiple product where several C-elements is with elements that
are situated at various places and mixed with the corresponding completions. In our
setup, we work with differential conditions containing powers of elements of C as well
as orders of the differentials. The general form of the differential condition is given
by 7 where Dy, ¢s; is of the form , 1 <i <k <. By applying the differ-
entials to one arrives at further differential and orthogonality relations. Recall,
that for each differential condition in this proof, there exist a coherence relation for
corresponding C-indices. The sequences of differential and orthogonality conditions
derived above together with corresponding coherences relations for indices, taken for
all choices of Jg, provide the full set of differential and orthogonality relations defin-
ing the multiply graded differential algebra. The structure of a resulting differential
algebra relations as well as the structure of corresponding closed products given by
Theorem depends on which differential or orthogonality condition of a hierarchy
we started from. In practice, one can start with a particular set of differential or/and
orthogonality conditions. Then the resulting multiple graded differential algebra is
a reduction of the full algebra. In addition to that, one can also restrict domain of
definitions for gradings for some families of chain-cochain complexes. E.g., one can
set n > 0 instead of Z. This will affect the coherence conditions for corresponding
identities. O
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