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Abstract

We present preliminary results of a maximum-likelihood Dalitz-plot analysis of the charmless
hadronic BT decays to the final states 77 T2+ and K*7Fn* from data corresponding to an inte-
grated on-resonance luminosity of 166 fb~! recorded by the BABAR experiment at the SLAC PEP-
II asymmetric-energy B Factory. We measure the total branching fractions B(B* — ntrFrt) =
(16.242.1+1.3) x 1076 and B(B* — K*nFr¥) = (61.442.4+4.5)x 1075, and provide fit fractions
and phases for intermediate resonance states.
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1 Introduction

The study of charmless hadronic B decays can make important contributions to the understanding
of CP violation in the Standard Model as well as to models of hadronic decays. The B-meson
decay to the three-body final state can proceed via intermediate resonances formed from two of the
particles. These two-body states can interfere with each other and with the nonresonant three-body
decay. The three-body state is unique in the search for weak phases as it is possible to determine the
strong phase variation for overlapping resonances. Studies of these decays can also help to clarify
the nature of the resonances involved, not all of which are well understood. A full Dalitz-plot
analysis is necessary to correctly model this interference and extract branching fractions.

Observations of B-meson decays to the 7¥nTr®T and K*nFr* three-body final states have
already been reported by the Belle and BABAR collaborations using a method that treats each
intermediate decay incoherently [1, 2, 3]. Belle has also reported a preliminary Dalitz-plot anal-
ysis of the decay B* — K*rFr* [4]. We present a preliminary Dalitz-plot analysis for both the
B* — rtnFat and BT — K*rFr® decay modes.

2 The BABAR Detector and Data Sample

Here we present preliminary results from a full amplitude analysis based on a 166 fb~! data sam-
ple containing 182 million BB pairs collected with the BABAR detector [5] at the SLAC PEP-II
asymmetric-energy ete™ storage ring [6] operating at the 7°(4S5) resonance at a center-of-mass en-
ergy of /s = 10.58 GeV. An additional total integrated luminosity of 16 fb~! was recorded at an
energy 40 MeV below this energy and is used to study backgrounds from continuum production.
The charm decay BT — D, D® — K7~ is used as a calibration channel as it has a relatively
high branching fraction.

Details of the BABAR detector are described elsewhere [5]. The specific components used for
this paper are charged particle tracking provided by a combination of a silicon vertex tracker
(SVT), which consists of five layers of double-sided detectors, and a 40-layer central drift chamber
(DCH) in a 1.5-T solenoidal magnetic field. This allows a transverse momentum resolution for the
combined tracking system of o, /pr = 0.0013pr @ 0.0045, where the sum is in quadrature and pr
is measured in GeV/c. Charged-particle identification is provided by combining information on the
average energy loss (dF/dx) in the two tracking devices and the angle of emission of Cherenkov
radiation in an internally reflecting ring-imaging Cherenkov detector (DIRC) covering the central
region. The dE/dx resolution from the drift chamber is typically about 7.5% for pions. The
Cherenkov angle resolution of the DIRC is measured to be 2.4 mrad, which provides nearly 3o
separation between charged kaons and pions at a momentum of 3 GeV/c.

3 Event Selection and Reconstruction

B-meson candidates are reconstructed from events that have four or more charged tracks. Each
track is required to have at least 12 hits in the DCH, a minimum transverse momentum of 100
MeV/c, and a distance of closest approach to the primary vertex of less than 1.5cm in the trans-
verse plane and less than 10cm along the beam axis. Charged tracks identified as leptons are
rejected. The B-meson candidates are formed from three-charged-track combinations and parti-
cle identification criteria are applied. The average selection efficiency for kaons in our final state
that have passed the tracking requirements is ~ 80% including geometrical acceptance, while the



misidentification probability of pions as kaons is below 5% at all momenta. The kaon veto on pions
in our final state is ~ 98% efficient. The B-meson candidates’ energies and momenta are required
to satisfy appropriate kinematic constraints, as detailed in Section 5.

4 Background Suppression and Characterisation

The dominant source of background comes from light quark and charm continuum production.
This background is suppressed by imposing requirements on event-shape variables calculated in
the 7'(4S) rest frame. The first discriminating variable is cos 67, the cosine of the angle between
the thrust axis of the selected B candidate and the thrust axis of the rest of the event. For
continuum background the distribution of |cosér| is strongly peaked towards unity whereas the
distribution is uniform for signal events. We require |cos 07| < 0.575 for BT — 777~ 7 and |cos 07|
< 0.65 for BY — Ktr—gt.!

Additionally, we make requirements on a Fisher discriminant F [7] formed using a linear com-
bination of nine variables representing the angular distribution of the energy flow of the rest of the
event into each of nine two-sided concentric 10° cones around the thrust axis of the reconstructed
B [8].

Other backgrounds arise from BB events. There are four main sources: combinatorial back-
ground from three unrelated tracks; three- and four-body B — DX decays, where X represents
other particles in the final state; charmless four-body decays with a missing particle and three-body
decays with one or more particles misidentified. In the case of charm decays with large branching
fractions these backgrounds are greatly reduced by vetoing the appropriate region of the two-body
invariant-mass spectra. The rejected decays and the invariant-mass veto ranges are given in Table 1.

Table 1: The invariant-mass veto ranges (in GeV/c?) for intermediate resonances for 77~ 7" and
K*tn~mt. The leptons in the J/p and ¥(2S) decays are misidentified as pions.

Resonance rto—nt Ktn—nt
Jhp — 00~ 3.05 <m .- <314 | 297 <m + - <317
P(2S) — L0~ 3.64 <M+, <373 | 356 <mg i, <3.76
D — K*tr= (or mt7™) | 1.70 < mps - < 1.93 | 1.80 < my4,— < 1.90

The remaining charm backgrounds that escape the vetoes and backgrounds from charmless B
decays are studied using a large sample of Monte Carlo (MC) simulated BB decays equivalent to
approximately five times the integrated luminosity for the data. Any events that pass the selection
criteria are further studied using exclusive MC samples to estimate reconstruction efficiency and
yields. The mgg and Dalitz distributions of the BB backgrounds, which are used in the likelihood
fits, are then normalised to the total number of predicted BB events in the final data sample. For
atr~ 7t we expect 200 & 14 B-related background events, dominated by the decays BT — Kor*
and BT — Ktn—nT. For K*n~nT, we expect 315 & 17 background events and the dominant
backgrounds come from B-meson decays to states containing a D or D* and a p or m, the decays
B° — pt K~ and BT — /K, and the nonresonant decay B? — K779,

!Charge-conjugate states are implied throughout this section.



A further background in this analysis comes from signal events that have been misreconstructed
by switching one or more particles from the decay of the signal B meson with particles from the
other B meson in the event. The amount of this background is estimated from MC studies, and for
both BT — 7t7~ 7" and BT — K77 is found to be a very small effect that accounts for less
than 2% of the final data sample in the signal box (defined in Section 5). As such it is neglected
in the analysis.

Both the continuum and B-related backgrounds are modeled in the Dalitz amplitude fit using
linearly interpolated 2-dimensional histograms.

5 Final Data Selection

Two kinematic variables are used to select a final data sample. The first variable is AEF =
Ef — \/s/2, the difference between the center of mass (CM) energy of the B-meson candidate
and /s/2, where /s is the total CM energy. The second is the energy-substituted mass mpgg

= \/(3/2 + pi - pB)?/E? — p% where pp is the B momentum and (E;,p;) is the four-momentum of
the initial state. The mean of the AFE distribution is shifted by —8.3 MeV as measured from the
calibration channel Bt — DOt For ntnFr® we require —68.3 < AE < 51.7MeV; for K*nTr™®
the requirement is —38.3 < AF < 51.7 MeV where the lower edge is tightened by 30 MeV to reduce
K*nF7% specific BB backgrounds.

We define three regions in the A E-mgg plane, illustrated in Figure 1. The signal box is defined
by 5.271 < mgs < 5.287GeV/c? and events in this region are used in the amplitude analysis.
The signal strip is defined by 5.20 < mgg < 5.29 GeV/c? and is used to determine the fraction of
signal and ¢g continuum events in the signal box. A sideband area below the signal box, defined
by 5.20 < mgs < 5.26 GeV/c?, is used to obtain the distribution of the ¢g continuum events in the
Dalitz plane.

We accept one B-meson candidate per event in the signal strip. Fewer than 3% of events have
multiple candidates and in those events one candidate is randomly accepted to avoid bias.

After all selection criteria are applied the average efficiency for reconstruction of phase space
atrFat and K*rTat MC events in the signal box is (13.00 + 0.04)% and (13.26 + 0.03)%,
respectively, where the errors are statistical only. The efficiency across the Dalitz plot is uniform
except for very small decreases near the boundaries. In the amplitude analysis, this is taken into
account by calculating the efficiency as a function of position in the Dalitz plot using phase space
MC.

The mgg distribution for events in the signal strip is used to determine the number of ¢gg and
signal events in the signal box. The signal component is modeled by a double Gaussian function
with parameters obtained from phase-space MC. These parameters are fixed except for the mean of
the core Gaussian. The ¢g continuum background is modeled using the experimentally motivated
ARGUS function [9] with the endpoint fixed to the beam energy while the shape parameter is al-
lowed to float. Finally, the BB background is modeled with an ARGUS function plus a Gaussian to
account for peaking BB backgrounds. All parameters of the BB component, including the amount
of peaking and nonpeaking BB background, are obtained and fixed from the MC simulation. The
fraction of signal and ¢g events is allowed to float. Figure 2 shows the mgg projections of fits to
the data for both 77 Fr* and K*xFx®. The x? per degree of freedom for these projections is
0.83 (1.13) for 77 FrT (KTnTat). For n¥nTn* the total number of events in the signal box is
2407; for KTn¥nt the total number of events in the signal box is 3174. The extracted fractions of
signal, ¢g continuum and BB backgrounds are given in Table 2.
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Figure 2: mgg distribution, together with the fitted PDFs: the data are the black points, the lower
solid red area is the ¢g component, the middle solid green area is the BB background contribution,
while the upper blue line shows the total fit result. All errors shown are statistical only. The left
hand plot is for 7¥7F7%; the right hand plot is for K*nTx*. The vertical dashed blue lines show
the signal region extent, while the dotted black line indicates the upper edge of the sideband.

6 Dalitz Amplitude Analysis

In terms of a Dalitz-plot analysis of the B-meson decay to the final state hhh (where h = 7w or K)
a number of intermediate states contribute and the total rate can be represented in the form:

2

dar i0:
= ‘MP = Zcie e’Fi(m%E;,mg?,) (1)
i

2 2
dm7isdmss
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Table 2: Total number of events in the signal box, for 77Tz and K*7Fr* candidates. Also
shown are the fractions for each hypothesis calculated from the fit to the mgg distribution for
events in the signal strip. The errors arise from the combination of the fit errors on the signal
and ¢g components, and the error on the BB background due to the uncertainties on the various
branching fractions and MC efficiencies.

rEr ot K*nTr®
Total Events 2407 3174
Fraction of Events
Signal 0.159 + 0.021 | 0.467 4+ 0.021
qq background 0.758 4+ 0.018 | 0.430 + 0.014
BB background | 0.083 £ 0.010 | 0.103 4 0.006

where m?, and m3; are the invariant masses squared of pairs of final state particles. In the case

of 7 Fat, m2; = (prt + prr)? and mi3 = (prt + prr)?; for KEnTat miy = (pge+ + prr)? and
m3s = (px+ + pr=)?. The amplitude for a given decay mode is c;e? Fj(m?s, m3;5), where ¢; and
0; are the unknown real parameters of each partial decay mode, while F; describes the dynamics
of the amplitudes. These F; consist of a product of the invariant mass and angular distribution
probabilities:

F; = Ri(m) x Tj(cos 0p) (2)

where R;(m) is the resonance mass distribution and T;(cos 6 ) is the angular probability distribu-
tion. The angle 0 is defined as the angle between the momentum vector of one of the resonance
daughters in the resonance rest-frame and the momentum vector of the resonance in the B rest-
frame.

To fit the data in the signal box, we define an unbinned likelihood function for one event to
have the form shown in Eq. 3. The fit is performed allowing the amplitude magnitudes (¢;) and
the phases (6;) to vary.

¢ I 2 (2 2
Clmdymdy) = (L fia fp) — it Bty mig Pelmbymbs) -
[ IR ciet®s Fy(m3y, m3s)[2e(m?y, ms) dm2sdmis
Q(m%g,m%:a)

where

m?, and m2; are the invariant mass-squared values of the daughter pairs (1,3) and (2,3);

N is the number of resonant and nonresonant contributions to the plot;

F; is the dynamical part of the amplitude of the resonant or nonresonant contribution ¢;

¢; and 6; are the real parameters to be determined (—7 < 6; < 7);

12



e ¢(m25,m3;) is the reconstruction efficiency defined for all points in the Dalitz plot;

Q(m35,m33) is the distribution of ¢g continuum background;

B(m?,,m33) is the distribution of BB background; and

fqz and fp 5 are the fractions of ¢g continuum and BB background events, respectively. They
are determined from the mgg fit and MC, respectively, and are fixed in the amplitude fit.

The first term on the right-hand-side in Eq. 3 corresponds to the signal probability density
function (PDF) multiplied by the signal fraction (1 — f;z — fz5). Since we can always apply a
common factor to both the numerator and demoninator of the signal PDF, this analysis will only
be sensitive to relative phases and magnitudes, and hence it is possible to fix the magnitude and
phase of one component (p°(770) for 77 Fx* and K*°(892) for K*nT7+).

As the choice of normalisation, phase convention and amplitude formalism may not always be
the same for different experiments, fit fractions are presented instead of amplitude magnitudes to
allow a more meaningful comparison of results. The fit fraction is defined as the integral of a single
decay amplitude squared divided by the coherent matrix element squared for the complete Dalitz
plot as shown in Eq. 4.

f]ciewi‘Fi(m%g,m§3)\2dm%3dm§3 ' (4)
[ 132, ciet®i Fy(mis, m3s)[2dm3zdm3,

Note that the sum of these fit fractions is not necessarily unity due to the potential presence of
net constructive or destructive interference.

Fit Fraction =

7 Physics Results

7.1 BT — ntnxFat Results

The nominal fit is performed with the resonances p°(770), p°(1450), fo(980), f2(1270), and a
uniform nonresonant (NR) contribution. The masses and widths of the resonances are fixed to
their world average values [10]. In this fit the p°(770) is fixed to have a magnitude of 1 and its
phase is set to 0, since this is the dominant contribution to the Dalitz plot, and this choice reduces
the statistical uncertainties for the other fitted components. We model all the resonances using
relativistic Breit—Wigner lineshapes with Blatt—Weisskopf barrier factors [11] except for the f,(980),
which is modeled with a Flatté lineshape [12] (to account for its coupled-channel behaviour due
to the fact that it can decay to 7tn~ or K™K ). The nonresonant component is assumed to be
uniform in phase space. The preliminary results of the nominal fit to the 2407 events in the signal
box can be seen in Table 3, along with the total branching fraction (BF) and the average efficiency
across the Dalitz plot weighted by the fitted signal distribution.

Figure 3 shows the mass projection plots for the nominal fit. The four resonant contributions
plus the single uniform phase-space nonresonant model are able to adequately describe the data
within the statistical uncertainties.

Further fits are performed to the data by removing one two-body component at a time from the
nominal model; the results are shown in Table 4. Removing the p°(770), p"(1450) or fo(1270) com-
ponents give significantly worse fit results. The omission of the f,(980) and nonresonant amplitudes
give values of the remaining fitted components that are close to their nominal values.
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Table 3: Results of the nominal fit for the B* — 77 Tx® mode. The first errors are statistical,
while the second errors are systematic and are described in Section 8.

Average Efficiency (%) 13.0£0.9£0.6
Total BF (x1079) 16.2 +£2.14+1.3
‘ Component ‘ Fit Result ‘
p°(770) Fit Fraction (%) 58.2+£2.9+6.0
p°(770) Phase 0.0 (Fixed)
p0(1450) Fit Fraction (%) | 13.6+2.8 4+ 2.0
p°(1450) Phase +0.59 +0.39 £ 0.17
f0(980) Fit Fraction (%) 20+£13+28
f0(980) Phase +2.45+0.61 £0.19
f2(1270) Fit Fraction (%) | 14.3+20+1.8
f2(1270) Phase —2.69+£0.33+0.17
NR Fit Fraction (%) 424+20+14
NR Phase +0.61 £0.56 + 0.19
T | Tt
2250 BARAR Ewo_—
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200 39
8 | g r
@ @ f
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Figure 3: Projection plots of the fit result for B¥ — n&7 7%t onto the mass variables m, +,— and

my+.+. The data are the black points with error bars, the lower solid red histogram is the ¢g
component, the middle solid green histogram is the BB background contribution, while the upper
blue histogram shows the total fit result. All errors shown are statistical only. The large dips in
the spectra correspond to the vetoes in Table 1.

Recent experimental results from ete™ collisions at BES [13] show evidence of a low-mass 77~
pole in data for J/¢ — wntm~, known as the 0. Analysis of data from the E791 experiment for
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DT — 7tx~ 7" [16] show similar results. Also a large concentration of events in the I = 0 S-wave
7 channel has been seen in the m ., region around 500 —600 MeV in pp collisions [14]. This pole is
predicted from models based on chiral perturbation theory [15], in which the resonance parameters
are M —iI'/2 = [(470 &+ 30) — i(295 £ 20)] MeV.

Consequently the o resonance is predicted in B* — wtn~ 7t decays. For this Dalitz-plot
analysis the o resonance is modeled using the parameterisation suggested by Bugg [17]. The result
of the Dalitz-plot fit is shown in Table 5. It can be seen that the inclusion of the o slightly changes
the contributions of the other resonant components and also affects the phase of the nonresonant
amplitude, but all results are consistent with those from the nominal fit, within the statistical
uncertainties.

Table 5 also shows the preliminary results of the fit to the data when we add the fp(1370) and
Xco resonances to the model. Both contributions are found to be negligible.

Table 4: Results of the fit to the Dalitz plot for B*¥ — 77 Fr® candidates, for the nominal fit
and for fits performed with a different component omitted in turn from the nominal fit. All errors
shown are statistical only.

Nominal No p°(770) | No p°(1450) | No fo(980) | No f(1270) No NR

(—InL) — (—InL(nominal)) — 94.3 8.0 1.7 18.9 2.8
p°(770) Fit Fraction (%) 58.2 +2.9 — 71.2+3.0 58.4+ 2.6 66.4+3.8 58.9+2.5
p%(1450) Fit Fraction (%) | 13.6£2.8 46.2+3.5 — 14.8 £3.0 16.1+ 3.6 16.9 +2.9
p°(1450) Phase +0.59 £ 0.39 | +0.59 (Fixed) — +0.58 £ 0.39 | +0.30 &+ 0.41 | +0.46 + 0.36
f0(980) Fit Fraction (%) 20+1.3 21.9+2.9 45+1.3 1.6+18 1.5+1.0
f0(980) Phase +2.45+£0.61 | +2.58+0.29 | +2.92 £0.39 — +2.27 £ 0.83 | +2.78 £ 0.59
f2(1270) Fit Fraction (%) 14.3£2.0 23.2+2.6 16.7+1.4 141+£21 — 14.8£2.0
f2(1270) Phase —2.69+£0.33 | —2.954+0.24 | —2.09+£0.22 | —2.75+0.35 — —2.84 4 0.33
NR Fit Fraction (%) 4.2+2.0 34.24+3.7 11.8+25 31+£1.7 62+2.7 —

NR Phase +0.61+£0.56 | +1.844+0.23 | +0.82£0.39 | +0.27 £0.58 | +0.07 £ 0.56 —
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Table 5: Results of the fit to the Dalitz plot for B¥ — 7*7F 7+ candidates, for the nominal fit and
for fits performed with a different component added in turn to the nominal fit. All errors shown
are statistical only.

Nominal With o With f,(1370) With o

(—InL) — (—InL(nominal)) — -3.9 -0.1 0.0
pO(770) Fit Fraction (%) | 582+29 | 52.8 %64 58.4 £ 3.7 58.1+5.2
0(1450) Fit Fraction (%) | 13.6+£28 | 10.6+3.2 13.6 + 2.8 13.6 £ 3.0
p°(1450) Phase +0.59 £0.39 | +0.88+£0.46 | +0.58 £0.38 | +0.60 £ 0.39
f0(980) Fit Fraction (%) 2.0+1.3 59+ 1.6 1.7+1.8 1.9+1.3

f0(980) Phase +2.45£0.61 | +2.19£037 | +2.32£0.79 | +2.45+0.61
£2(1270) Fit Fraction (%) | 14.3+2.0 | 124+25 142+21 142+23
f2(1270) Phase —2.69£033 | —244+0.36 | —2.69£0.33 | —2.69+0.33
NR Fit Fraction (%) 424+2.0 1.0+2.6 3.8 2.7 4.1+£2.0
NR Phase 4+0.61 £0.56 | +2.99+£1.06 | +0.69£0.71 | +0.61 +0.56
o Fit Fraction (%) — 25.7+9.1 — —
o Phase — —-1.62+£0.21 — —
Fo(1370) Fit Fraction (%) = = 0.0+£2.1
f0o(1370) Phase — — —-1.7+22
Xco Fit Fraction (%) — — — 02+75
X0 Phase — — — —0.7+4.7
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7.2 BT — KT¥a¥xnT Results

The expected significant contributions to the K*7Fr* Dalitz plot can be identified from previous
studies of this final state. Our model includes the following resonances: K*°(892), K3"(1430),
p°(770), f0(980), xco and a nonresonant amplitude. The masses and widths of the resonances are
fixed to their world average values [10]. In the fits we use K*Y(892) as the reference component
and hence its magnitude and phase are fixed to 1 and 0, respectively. We use the same lineshapes
described in Sec. 7.1 to model the resonance dynamics, except for K3%(1430), where we use the
LASS amplitude model. The dynamics of the Km S-wave are not very well established and form an
area of some disagreement within the community. Some favor the existence of the k pole [17], whilst
others strongly oppose it. All, however, agree that there is strong evidence of resonant behavior
around 1430 MeV, the K3°(1430). The LASS experiment studied K7 scattering and as part of
this study produced a description of the S-wave that consists of a resonant part, the K3%(1430),
and an effective-range term [18, 19]. This amplitude is only measured up to around 2 GeV/c? in
K7 mass, and so we curtail the effective-range term at the lower edge of the DY veto. Since the
LASS amplitude contains both a resonant and nonresonant part, the results for K3°(1430) are not
purely due to this resonance, but to the Km S-wave as a whole. This model, with five two-body
components plus a uniform nonresonant component, with the LASS amplitude for the K;°(1430)
will be referred to as the “nominal” model.

The nominal fit shows very good agreement with the data; a comparison can be seen in Figure 4.
The preliminary results of the nominal fit to the 3174 events in the signal box can be seen in
Table 6 along with the total branching fraction (BF) and the average efficiency across the Dalitz
plot weighted by the fitted signal distribution. We have also used a relativistic Breit-Wigner or a
Flatté lineshape for the K;°(1430) resonance with and without the addition of a k resonance, as
suggested in Ref [17], to model the K7 S-wave but found the fits to be poor representations of the
data.

Table 6: Results of the nominal fit for the B¥ — K*7Fr* mode. The first errors are statistical,
while the second errors are systematic, and are described in Section 8.

Average Efficiency (%) 128 £0.8£0.5
Total BF (x1079) 61.44+24+45

‘ Component ‘ Fit Result ‘
K*0(892) Fit Fraction (%) 11.44+20+1.5
K*9(892) Phase 0.0 (Fixed)
K;Y(1430) Fit Fraction (%) | 52.6 +2.3 +-4.0
K(9(1430) Phase +2.92 £ 0.11 £ 0.10
p°(770) Fit Fraction (%) 85+1.9+1.1
p°(770) Phase +0.85 + 0.38 £ 0.35
f0(980) Fit Fraction (%) 15,0 +24+1.3
f0(980) Phase —0.55 £ 0.32 + 0.41
Xco Fit Fraction (%) 1.45 +0.27 4+ 0.23
Xco Phase 4+0.15+0.33 £ 0.22
NR Fit Fraction (%) 79+09+23
NR Phase +0.50 & 0.24 + 0.24
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Figure 4: Mass pair projection plots for the nominal B* — K*7Fx* fit. The left plot shows the
K*7F mass spectrum and the right plot shows the 777 mass spectrum. The data are the black
points with error bars, the lower solid red histogram is the ¢g component, the middle solid green
histogram is the BB background contribution, while the upper blue histogram shows the total fit
result. All errors shown are statistical only. The large dips in the spectra correspond to the vetoes
in Table 1.

We refit the data removing each component in turn and find, in each case, that the fit worsens
considerably. In some cases the parameters of the other components can vary dramatically. Table 7
details the results of these omission tests. We also test for the possibility that there are further
resonances in the Dalitz plot by repeating the fit using the nominal model but adding an additional
component. The possible additional states we test for are the f2(1270), fo(1370) and p°(1450)
resonances in the 77 mass spectrum and the K3°(1430), K*Y(1680) and x resonances in the K
mass spectrum. The results of these fits are shown in Table 8. In all cases the —In £ is slightly
better than in the original fit. These checks are performed only on the B* sample.
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8 Systematic Studies

The charged particle tracking and particle identification uncertainties are 2.4% and 3.0%, respec-
tively. There are also global systematic errors in the efficiencies due to the criteria applied to the
event-shape variables (1.0%) and to AE and mpgg (1.0%). We also take into account the statistical
uncertainty on the efficiency (due to the weighting by the amplitude model) for the individual and
total branching fraction results (7% for B* — a7 Fr% 6% for B* — K*rTn*). The uncertainty
in the number of BB events is evaluated to be 1.1%.

The systematic error on the efficiency variation across the Dalitz plot is calculated by performing
a series of fits to the data where we vary the contents of each bin in the efficiency histogram according
to binomial errors. This introduces an absolute uncertainty of 0.02 to 0.09 for the phases, and a
fractional uncertainty of 0.4% to 4.9% for the fit fractions. However, for the average efficiency, and
hence for the total branching fraction, this is a very small effect, evaluated as 0.1%.

The systematic uncertainty introduced by the BB background and ¢g background has two
components, each of which can potentially affect the fitted magnitudes and phases differently. The
first component arises from the uncertainty in the overall normalisation of these backgrounds, whilst
the second component arises from the uncertainty on the shapes of the background distributions
in the Dalitz plot. The uncertainties on the fit fractions and phases due to the normalisation
uncertainty are estimated by varying the measured background fractions in the signal box by their
statistical errors. The maximum associated absolute uncertainty for the phase is 0.85 (0.05) for
atrFat (K*n¥at) due to the ¢g background normalisation uncertainty and 0.03 due to the
BB background normalisation uncertainty. These uncertainties are added in quadrature. The fit
fractions are affected in a less uniform manner, with relative uncertainties in the range 0.7% to 15.4%
(0.2% to 4.1%) for ntrFr* (K*x¥7%). The uncertainties on the fit fractions and phases due to
the Dalitz-plot background distribution uncertainty is estimated in the same way as the efficiency
variation, namely varying the contents of the histogram bins in accordance with their Poisson
errors. To be conservative, each phase for 777+ has been given an associated uncertainty of 0.1
due to the ¢g background distribution uncertainty and 0.1 due to the BB background distribution
uncertainty, which are then added in quadrature. For K*7F7r® the variations between modes are
larger and each mode is therefore treated individually. The range of uncertainties in the phases
is 0.06 to 0.36 due to ¢g background and 0.04 to 0.18 due to BB background, which are again
added in quadrature. The fit fractions are affected in a less uniform manner, with the relative
uncertainties ranging from 1% to 8% (1% to 25%) for nf7Fr® (KEn¥rt).

Possible biases due to the fitting procedure are investigated using extensive Monte Carlo sim-
ulations. We assign an absolute systematic error up to 3% for the fit fractions and 0.1 for the
phases.

9 Summary

Tables 3 and 6 show the preliminary results from the nominal fits together with their statistical
and systematic errors.

For the decay B* — n®nTx* the nominal fit to the Dalitz plot is performed with the resonances
p°(770), p°(1450), fo(980), f2(1270) and a uniform nonresonant contribution. The total branching
fraction is consistent with the previously measured value [2, 10]. We can estimate the branching
fraction of B* — p°(770)7r* by multiplying its fit fraction by the total branching fraction for
B* — rFaFrt, We find this to be (9.441.341.0) x 1075, which is consistent with the previously
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measured value [20, 10]. The removal of any of the fit components gives worse likelihood values,
especially for the p°(770), p°(1450) and f2(1270) resonances. It is found that the fo(1370) and x.o
resonances have no contribution to this Dalitz plot, while there is some evidence for a contribution
from the o.

For the decay B¥ — K*7F 7+ the nominal fit to the Dalitz plot is performed with the resonances
K*0(892), K;°(1430), p°(770), £0(980), X0, a uniform nonresonant component and the LASS
parameterization of the scalar component of the Km spectrum. The total branching fraction result
is consistent with the previously measured value [2, 10]. We can estimate the branching fraction
of B* — K*0(892)n%, K*0(892) — K*nT by multiplying its fit fraction by the total branching
fraction for B¥ — K*7Fx®. This yields a value of (7.041.340.9) x 1075, which is smaller than that
reported by earlier analyses that do not fit over the full Dalitz region but is consistent with the Dalitz
analysis reported by Belle [4]. The resonance behavior around 1400 MeV is successfully modeled
with the LASS parameterization of the K7 S-wave. The removal of any of the fit components
results in a significant worsening of the fit likelihood and a large change in one or more of the
remaining amplitudes. Addition of further resonances (f2(1270), fo(1370), p°(1450), K3°(1430),
K*0(1680) or x) does not cause a significant change in the fit likelihood, and in most cases the
extra component is measured to be compatible with having zero fit fraction. In addition, their
presence in the fit does not significantly alter any of the other parameters and consequently has no
significant effect on the fit fractions of the original components. The fit is stable with respect to
different parameterizations of the Flatté line shape of the fp(980) .

Future iterations of the analysis will use the information from the separate BT and B~ sam-
ples to make measurements of the charge asymmetries of the various intermediate decay modes,
potentially allowing observation of direct CP violation.
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