Commun. Math. Phys. 402, 1453-1511 (2023) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-023-04751-4 Math ematical

Physics
®

Check for
updates

Product-Type Classes for Vertex Algebra Cohomology
of Foliations on Complex Curves

A. Zuevsky

Institute of Mathematics, Czech Academy of Sciences, Praha, Czech Republic.
E-mail: zuevsky @yahoo.com

Received: 15 October 2020 / Accepted: 29 April 2023
Published online: 23 May 2023 — © The Author(s) 2023

Abstract: We introduce the vertex algebra cohomology of foliations on complex curves.
Generalizing the classical case, the orthogonality condition with respect to a product
of elements of the double complexes associated to a grading-restricted vertex algebra
matrix elements leads to the construction of cohomology invariants of codimension one
foliations.

1. Introduction

The theory of foliations involves a variety of approaches reflected in [1-3,10-13,15,27—
30,51,54,58] and in many other publications. The cohomological techniques applied to
smooth manifolds are represented both by algebraic [32-36] and geometrical [18,31,46,
48,52,54,62-64,69] approaches to characterization of the space of leaves of foliations.
The theory of vertex algebras [7,7,9,17,19,24,25,47,55,61] is a rapidly developing
field of studies. Algebraic nature of methods applied in this field is a powerful tool to
compute correlation functions in the conformal field theory [4-6,16,21,23,26,49,50,67,
68]. On the other hand, the geometrical side of the vertex algebra correlation function
theory is related to the behavior of vertex operator formal parameters associated to local
coordinates on complex manifolds.

In this paper we develop algebraic and functional-analytic methods of the coho-
mology theory of foliations on complex curves. The algebraic part is based on the
cohomology theory of grading-restricted vertex algebras [43]. The analytic part stems
from the theory of vertex algebra correlation functions on complex curves [7] as well
as from the geometrical constructions of sewing of Riemann surfaces [8,20,77]. As a
result of a combination of the above mentioned techniques we are able to introduce the
chain-cochain double complexes associated to the description of foliations in terms of
families of transversal sections. Similarly to the conformal field theory considerations
[7,23,45,70,78], the algebraic structure of vertex algebra matrix elements leads to a
characterization of the space of leaves of a foliation in terms of rational functions with
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specific properties. The geometrical origin of vertex algebra matrix elements allows us
to define a product of elements of double complexes. Properties of such product, in
particular, the orthogonality condition, turn to be useful in computation of cohomology
invariants for codimension one foliations on complex curves [60,71-74]. In particu-
lar, we are able to determine the vertex algebra counterparts generalizing the classical
cohomology classes [31] and invariants of codimension one foliations.

The main result of the paper consists in the construction of the vertex algebra co-
homology of codimension one foliations of complex curves. In contrast to the classical
Lie-algebraic approach [27,28] we use vertex algebras as a structure generalizing Lie
algebras. This allows us to involve deep algebraic properties of vertex algebras to estab-
lish new and finer cohomology invariants with respect to Cech-de Rham cohomology
of foliations [15]. Let V be a grading-restricted vertex algebra, and W be its grading-
restricted generalized module. For the algebraic completion W of W we introduce in
Sects.4, 5 the chain-cochain double complexes C)},(V, W, F), n, m > 0, (5.18) and
CfX(V, W,F),0 < k < 2,(5.19) associated to a codimension one foliation F on a
complex curve with the coboundary operators (5.7), (5.11). Here )V denotes the space
of W-valued differential forms with specific properties. The orthogonality condition
Fy -8 F, = 0(8.4) for elements Fy, F, of the double complex spaces is defined with
respect to the product (8.1). Let F € C),(V, W, F). The main statement of this paper
consists in the following Theorem proven in Sect. 8 and generalizing classical results of
[31] on codimension one foliation invariants:

Theorem 1. The product (8.1), the coboundary operators (5.7), (5.11), and the or-
thogonality condition (8.4) applied to the double complexes (5.18) and (5.19) gen-
erate non-vanishing cohomology classes [(8;,’1 F ) - F ] independent on the choice of
F e C}(V,W,F) for pairs (n,m) = (1,2), (0,3), (1,1),0 <t <2.

The content of this paper is subject to multiple possible generalizations. There ex-
ist a few approaches to definition and computation of cohomology of vertex algebras
[14,22,40,41,43,44,57,76,80]. The most natural direction to generalize results of this
paper is to develop a vertex algebra characteristic classes theory for regular and sin-
gular foliations of arbitrary codimensions. It would be important to enlarge the theory
presented in this paper to find higher non-vanishing invariants. Such invariants would
allow to distinguish [1,2,29] types of compact and non-compact leaves of foliations. It
worths to mention a possibility to derive differential equations [42,75] for vertex alge-
bra correlation functions considered on leaves of foliations. One would be interested in
combining the techniques of [58] with our approach. In order to apply the same methods
as for cohomology of a manifold M, a smooth structure on the space of leaves M /F of
a foliation F of codimension n on M was introduced in [58]. In that case, the foliation
characteristic classes become elements of the cohomology of certain bundles over the
space of leaves M /F. It would be interesting to develop also intrinsic (i.e., purely co-
ordinate independent) foliation cohomology of smooth manifolds which would involve
vertex algebra bundles [7]. The idea of an auxiliary bundle construction to compute the
cohomology of foliations establishes relations with the classical Bott-Segal approach
[13]. It is important to determine connections to the chiral de-Rham complex on smooth
manifolds developed in [59]. The structure of foliations can be also studied from the
automorphic function theory point of view originated from vertex algebra correlation
functions [47]. A consideration of the cohomology theory of vertex algebra associated
bundles [79] and arbitrary codimension foliations on smooth manifolds will be given
elsewhere.



Product-Type Classes for Vertex Algebra Cohomology 1455

The plan of the paper is the following. Section 2 contains a description of the transver-
sal basis for foliations and the definition of the space W, ., of W, . -valued differ-
ential forms. In Sect. 2.3 the definition and properties of maps composable with a number
of vertex operators are given. In Sect. 2.4 we provide a vertex algebra interpretation of the
local geometry for foliations on smooth manifolds. In Sect. 3 we introduce a product of
elements of W, . -spaces and study its properties. Section 3.1 contains motivations,
a geometrical interpretation, and the definition of the product of elements of spaces of
differential forms. First we prove that the product maps to another WW-space. In Sect. 3.2
the absolute convergence of the result of the product is shown. We then define the action
of the symmetric group on the product, and prove that the product satisfies the symme-
try property (2.9). Next, the action of partial derivatives on the product with respect to
formal parameters is defined. We then show that the product satisfies Ly (—1)-derivative
and Ly (0)-conjugation properties. In Sect. 3.3 we continue to study properties of the
product. It is shown that the product is invariant with respect to the group of independent
transformations of coordinates. We show also that the product does not depend on a
distribution of formal parameters among two initial forms that are being multiplied. The
spaces for a double chain-cochain complex associated to a vertex algebra on a foliation
are introduced in Sect. 4. We prove that such spaces are well-defined. Namely, the spaces
are non-empty, do not depend on the choice of the transversal basis for a foliation, and are
canonical, i.e., are independent on the foliation-preserving choice of local coordinates.
In Sect. 5 the coboundary operators and the vertex algebra cohomology of codimension
one foliations on complex curves are defined. In Sect. 5.1 the cohomology in terms of
multi-point connections in described. Section 5.2 introduces the coboundary operators
for the double complex spaces. We show that the coboundary operators are expressed
in terms of multipoint connections. In Sect. 5.3 we prove that the coboundary operators
provide double chain-cochain complexes. The vertex algebra cohomology and its rela-
tion to Cech-de Rham cohomology in the Crainic and Moerdijk formulation [15] are
discussed in Sect. 5.4. The product of elements of double complex spaces is defined in
Sect. 6. In Sect. 6.1 the geometrical adaptation of the this product to a foliation is dis-
cussed. We show that the product of elements of double complex spaces maps to another
space of the double complex and it is composable with the appropriate number of vertex
operators. The properties of the product are studied in Sect.7. In Sect. 7.1 we show
that the original coboundary operators apply to the product of elements of the double
complex spaces. It satisfied to an analog of Leibniz rule. Section 8 contains the proof of
the main result of this paper. It describes the product-type cohomological invariants for a
codimension one foliation on a smooth complex curve. In “Appendixes” we provide the
material required for the construction of the vertex algebra cohomology of foliations.
In “Appendix 8.2” we recall the notion of a quasi-conformal grading-restricted vertex
algebra and its modules. In “Appendix .3” properties of matrix elements for the space
W are listed.

,,,,,

2. Transversal Basis Description for Foliations and Vertex Algebra Interpretation
and Wy, ... . -Valued Forms

In this Section we recall [15] the notion of a basis of transversal sections for foliations,
and provide its vertex algebra setup.

2.1. The basis of transversal sections for a foliation. Let M be a complex curve
equipped with a foliation F of codimension one.
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Definition 1. A transversal section of a foliation F is an embedded one-dimensional
submanifold U C M which is everywhere transverse to the leaves of F.

Definition 2. If « is a path between two points p; and p, on the same leaf of F, and U,
and U, are transversal sections through p; and p», then « defines a transport along the
leaves from a neighborhood of p; in U; to a neighborhood of p; in Us. Le., it gives a
germ of a diffeomorphism

hol (&) : (U1, p1) = (U2, p2),
which is called the holonomy of the path «.
Two homotopic paths always define the same holonomy.

Definition 3. If the above transport along « is defined in all of U; and embeds U; into
U», this embedding

h:U; — U,,
is called the holonomy embedding.

A composition of paths induces a composition of holonomy embeddings. Transversal
sections U through p as above should be thought of as neighborhoods of the leaf through
p in the space of leaves. Then we have

Definition 4. A transversal basis for the space of leaves M /F of a foliation F is a family
U of transversal sections U C M with the following property. If U, is any transversal
section through a given point p € M, then there exists a holonomy embedding

h:U < Up,
with U € U and p € h(U).

A transversal section is a one-dimensional disk given by a chart of F. Accordingly,
we can construct a transversal basis U/ out of a basis U/ of M by domains of foliation
charts

d)U:ﬁQ)RxU,

U elU,withU =R.
In the next two Subsections we provide several definitions and properties from [43].

2.2. The space W, ..., of W-valued rational functions. First, let us recall the notion
of shuffles.

Definition 5. Let S, be the permutation group. For/ € Nand 1 <s </ — 1, let J;.5 be
the set of elements of S; which preserves the order of the first s numbers and the order
of the last / — s numbers, that is,

Jis={oeS o) <---<o(s), os+1) <--- <o)}
The elements of J;. are called shuffles, and we use the notation

I =100 e i)

)
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Definition 6. We define the configuration spaces:
Fn(cz{(zla""zn) E(Cn |Zi #Zjvl 75.]}’
forn € Z,.

Recall the definition and related notations (given in “Appendix 8.2”) of a grading-
restricted vertex algebra V, and its grading-restricted generalized V-module W. By
W we denote the algebraic completion of W,

W = l—[ Wn = (W/)*

neC
Definition 7. A W-valued rational function in (z1, .. ., z,) with the only possible poles
atz; =zj,i # j,isamap
f: F,C— W,
(Zlv"'azn) = f(zla"~vzl’l)v
such that for any w’ € W’, the bilinear pairing (w’, f(z1, ..., z,)) is a rational function

R(f(z1,...,2s)) In (21, ..., z») With the only possible poles at z; = z;, i # j. The
space of W-valued rational functions is denoted by W, . .

Remark 1. Note that though such functions are called W, . -valued, corresponding

element f of the algebraic completion W is inserted into the complex-valued bilinear
pairing. Thus, W-valued rational functions are characterized by this pairing.

Definition 8. One defines the following action of the symmetric group S, on the space

Hom(V®", W, . .) of linear maps from V®" to W, . by
o (®)(v1,215 -+ -5 Vny 2n) = PV (1)) Vo (1) - - - Vo (n)> Za () 2.1)
foro € Sy,andv; e V,1 <i <n.

We will use the notation oy, . ;, € Sy, to denote the permutation given by o;,. .. ;. (j) =
ij,forj=1,...,n.

Definition 9. For n € Z,, a linear map
. . ®
<D(v17Z17"'3vn7Zn)=V n_>WZI ..... Zn»

is said to have the L(—1)-derivative property if

D) (W, 0;PW1, 21530, z0) = (W, @i, 215+ s Ly (=Dvi, zis .. .3 Un, 20)), - (2.2)

and

n
(i) ) 0w, @iz v z)) = (W L (=)W1, 2155 U, 20)),
i=1

(2.3)

fori=1,....,n,v1,...,v, e V,w e W.
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Note that since Ly (—1) is a weight-one operator on W, for any z € C, eLw(=D jg o
well-defined linear operator on W.

Proposition 1. Let © be a linear map having the L(—1)-derivative property. Then for

vi,...,vpeV,w e W, (z1,...,z0) € F,C, z € Csuch that (z1+2,...,2,+2) €
F,C,
(W', VO (1215 ) = (WL L 2+ TV 2 +2)), (24)
and forvy,...,v, € V,w € W, (z1,...,z4) € F,C,z € C,and 1 < i < n such that
(@15 -+ Zim1,2i + 25 Zitls -+ -, 2n) € FC,

the power series expansion of
(W', DL, 215 23 Vi1, Zi15 Uiy 8+ 25 Vot Zitls - - Uy Z)),s (2.5

in z is equal to the power series

zL(—1)

(W', @1, 215 .. .3 Vie1, Zi—1; € Uiy Zis Vitls Zitls -« -5 Uns Zn))s (2.6)

in z. In particular, the power series (2.6) in z is absolutely convergent to (2.5) in the disk
2] < min;x;{lzi — z;[}.

Next, we have

Definition 10. A linear map

@ V®n - WZI ~~~~~ n
has the L(0)-conjugation property if for vy, ..., v, € V,w' € W/, (z1, ..., z,) € F,C
and z € C* so that (zzy, ..., zz,) € F,C,
(W', 2O i, zp e, ) = W @@ Qv 2z 2P O zz). 27)

In order to introduce the spaces for the double complexes describing the vertex algebra
cohomology of foliations on complex curves, we have to define the space of W, . . -
valued differential forms for a quasi-conformal grading-restricted vertex algebra V.
Recall the notion of the weight wt(v) of a vertex algebra element v with respect to
the Virasoro algebra Ly (0)-mode given in “Appendix 8.2”. Following ideas of [7], we

consider the space of W, . of functions ® where each vertex algebra element entry
wt(v;)
i

vi, | <i < nistensored with the wt(v;)-power differential dz
formal parameter z;. Namely, we consider the space of forms

of corresponding

@ (42 @ur.2is. A2 @y, ). 2.8)

Abusing notations, we denote such forms as ® (vy, z1; .. .; vy, Z,) in what follows.
Definition 11. We define the space W;, .. of forms (2.8) satisfying Ly (—1)-derivative
(2.2), Ly (0)-conjugation (2.7) properties, and the symmetry property
> =D (@ Wo(1): 2oy -1 Vo) 2o(1)) = O, (2.9)
oel)
with respect to the action of the symmetric group S,,.

In Sect.4 we prove that (2.8) is invariant with respect to the action of the group of
independent changes of formal parameters (z1, ..., Z,).
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2.3. Maps composable with vertex operators. In the construction of the double com-
plexes in Sect. 5 we will use linear maps from tensor powers of V' to the space W, . ...
For that purpose, in particular, to define the coboundary operator, we have to compose
cochains with vertex operators. However, as mentioned in [43], the images of vertex
operator maps do not in general belong to algebras or their modules but rather to corre-
sponding algebraic completions. Due to this reason, we might not be able to compose
vertex operators directly. In order to overcome this problem [45], we consider series
obtained by projecting elements of the algebraic completion of an algebra or a module
to their homogeneous components. Then we compose these homogeneous components
with vertex operators and take formal sums. If such formal sums are absolutely conver-
gent, then these operators can be composed and used in constructions.

Another problem that appears is the question of associativity. Compositions of maps
are usually associative. But for compositions of maps defined by sums of absolutely
convergent series the existence does not provide associativity in general. Nevertheless,
the requirement of analyticity provides the associativity. Recall definitions and notations
of “Appendix .3”. Then we have

Definition 12. For a gerneralized grading-restricted V-module

W=]] Wa.

neC

and m € C, let
Pu: W — W,
be the projection from W to W,,). Let
OV > W, L,

be alinear map. Form € N, ® is called [43,65] to be composable with m vertex operators
if the following conditions are satisfied:

D Letly,...,l, € Zysuchthatli+-- -+, =m+n,v{,..., Vpsn € Vandw' € W',
Set
— li
g = Eg/ DOy 2k — &5 ks 2 — G5 V), (2.10)
where
ki=h+---+Li_1+1, ..., kk=h+---+L_1+1, 2.11)
fori =1, ..., n. Then there exist positive integers N, (v;, v;) depending only on v; and
vjfori, j =1,...,k, i # j such that the series
@) = Y (W ®(PyEiilri...: P B ), (2.12)
Flyestn€Z

is absolutely convergent when

|2ttty ybp — Gil |20 tty4g — Gil <180 = &5, (2.13)

fori,j=1,...,k,i # j,andforp=1,...,[;andg =1, ...,[;. The sum must be an-
alytically extended to a rational function in (z1, . .., Zm+n), independent of (¢1, ..., &),
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with the only possible poles at z; = z;, of order less than or equal to N,y (v;, v;), for i,

j=1,..ki#].
2) For vy, ..., vmsn € V, there exist positive integers N, (v;, v;), depending only
onv; and v;, fori, j =1,...,k,i # j, such that for w’ € W', and

Vam = V14m @ -+ - ® V)

Zn,m = (Zl+m, ey Zl’l-l-}’n)a

such that

T @) =3 (' B (01 @ @ v By @Wam) @)y (214)

qeC

is absolutely convergent when

i £z, L#]

|zil > |zk| > O, (2.15)
fori =1,...,m,andk =m+1,...,m+n, and the sum can be analytically extended
to arational function in (z1, . . ., Zm+r) With the only possible poles at z; = z;, of orders

less than or equal to N}, (v;, vj), fori, j =1,...,k, i # j.
The following useful propositions were proven in [43]:

Proposition 2. Let @ : V& — W, . be composable with m vertex operators. Then
we have:

(1) For p < m, ® is composable with p vertex operators and for p,q € Z, such that
p+q <mandly, ..., 1, € Zysuchthatli+---+l, = p+n, (EE,Z{)1®- . -®E§,l'.’)1).d>

and E é{,’).d) are composable with q vertex operators.
(2) For p,q € Zy such that p+q <m, l1,...,l, € Zy suchthatl; +---+1, = p+n
andky, ..., kpwn € Zy such thatky +---+kpyy = q + p +n, we have
(E(k11 ® - (k[H-n)) (E(ll) E([n 1)) ®
_ (Ei/k;l-;n#cll) Q- ® E(k11+ EYMERES Lk +kp+n)).q)'
(3) For p, q € Z4 suchthat p+q <mandly,...,l, € Zs suchthatly+---+1, = p+n,
we have

1 I 1 In
EW.(EY @@ EY).®) = (EW, ® - @ EVY).(EW.®).
(4) For p, q € Zy such that p + q < m, we have
EP (EY @) = EP 0.

Proposition 3. The subspace of linear maps Hom(V®", W., . )possessing the L(—1)-

derivative and the L(0)-conjugation properties or being composable with m vertex op-
erators is invariant under the action of S,.
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2.4. Vertex algebra interpretation of the local geometry for a foliation on a smooth
manifold. Let U be a basis of transversal sections of F. We consider a (n, k)-set of
points,n > 1,k > 1,

(Prooos P Pl D). (2.16)

on a smooth complex curve M. Let us denote the set of corresponding local coordinates
by

(1P -y n(pa); LD, s ch(P))) -

In what follows we consider points (2.16) as points on either the space of leaves M /F of
JF, or on transversal sections U of a transversal basis ¢/. Since the space of leaves M /F
for F is not in general a manifold, one has to be careful in considerations of charts of
local coordinates along leaves of F [46,58]. In order to associate formal parameters of
vertex operators taken at points on M /F with local coordinates we will use either local
coordinates on M or local coordinates on sections U of a transversal basis / which are
submanifolds of M of dimension equal to the codimension of F. Note that the complexes
considered below are constructed in such a way that one can always use coordinates on
transversal sections only, avoiding any possible problems with localization of coordinates
on leaves of M /F.
For the first n grading-restricted vertex algebra V elements of

(vl,...,vn;v/l,...,v,’{), (2.17)

we consider the linear maps
D VE > W (psen (o) (2.18)
® (der(p0™ ™ @ v, 1 (p; -5 den(p)™ ™ @ v, cu(pr)) . (2.19)

where we identify (as they usually do in the theory of correlation functions for vertex
algebras on curves [45,70,77,78]) formal parameters (zy, ..., z,) of W, . .., with
local coordinates (c1(p1), - - ., ¢y (py)) in vicinities of points p;, 0 <i < n, on M.

Elements ® € W, (p))....cn(pn) €an be seen as coordinate-independent W-valued
rational sections of a vertex algebra bundle. Note that, according to [7], they can be
treated as (Aut O(])):’Em),‘..,cn(pn) = Aute,(p) O x ... x Aute,(p,) O -torsors of
the groups of independent coordinate transformations.

In what follows, according to the definitions of Sect. 2.2, when we write an element ®
of the space W, ... ;,, we actually have in mind corresponding matrix element (w’, @)
that absolutely converges (on a certain domain) to a rational function

(w', @) = R((w', D). (2.20)

In notations, we will keep tensor products of vertex algebra elements with weight-valued
powers of differentials when it is only necessary.

In Sect.4 we prove, that for arbitrary sets of vertex algebra elements v;, v;. eV,
1 <i <n,1 < j <k, arbitrary sets of points p; with local coordinates c¢;(p;) on
M, and arbitrary sets of points p’; with local coordinates c/j ( p;) on transversal sections
U; e U of M/F, the element (2.19) as well as the vertex operators

ow (dej (™ @ v} ) (p))) = Yw (d(; (™ @ V). &(p)) . @21)
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are invariant with respect to the action of the group of independent transformations of
coordinates. Then the construction of the spaces for the double complexes does not
depend on the choice of coordinates.

In Sect. 4 we construct the spaces for the double complexes associated to a grading-
restricted vertex algebra and defined for codimension one foliations on complex curves.
In that construction, we consider sections U, j > 0 of a transversal basis ¢/ of F, and
mappings ® that belong to the space W,(p,),...,c(p,) for local coordinates (c(p1), ...,
c(pn)) on M at points (py, ..., p,) of intersection of U; with leaves of M /F of F.
We then consider a collection of & sections U, 1 < j < k of Y. In order to define the
vertex algebra cohomology of M /F, we assume that mappings ® are composable with k
vertex operators. On each transversal section U, 1 < j < k one point p;. is chosen with
a local coordinate c;. ( p}). Let us assume that ® is composable with k vertex operators.
The formal parameters of k vertex operators a map & is composable with is taken to be
c;. ( p;.), 1 < j < k. The composability of a map ® with a number of vertex operators
consists of two conditions on ®. The first condition requires the existence of limiting
positive integers N, (v;, v;) depending on vertex algebra elements v; and v; only, while
the second condition restricts orders of poles of corresponding sums (2.12) and (2.14).
Taking into account these conditions, we will see that the construction of spaces (4.2)
depends on the choice of vertex algebra elements (2.17).

3. The Product of W,, ... ..-Spaces

In this Section we introduce a product of elements of W,
properties.

z,-Spaces and study its

.....

3.1. Geometrical interpretation and definition of the e-product for W, .. . -spaces.
Recall Definition 11 of W, . . -spaces given in Sect. 2.2. The structure of W, . . -
spaces is quite complicated and it is a problem to introduce a product of elements of
such spaces algebraically. In order to define an appropriate product of two VV-spaces we
first have to interpret it geometrically. Let us associate a VW-space with a certain model
space. Then a geometrical product of such model spaces should be defined, and, finally,
an algebraic product of W-spaces should be introduced.

Fortwo Wy, ..., y,-Spaces we first associate formal complex parameters
in sets (xq,...,xx) and (y1, ..., y,) to parameters of two auxiliary spaces. Then we
describe the geometrical procedure to form a resulting model space by combining two
original model spaces. The formal parameters of the algebraic product W, . ., of
Whi,...x, and Wy, should be then identified with parameters of resulting auxiliary
space. Note that according to our assumption, (xq, ..., x;) € FxC, and (y1,...,yn) €
F,C, i.e., belong to corresponding configuration space (Definition 6, Sect. 2.2). As it
follows from the definition of F,C, any coincidence of two formal parameters should
be excluded from Fy.,C. In general, it might happens that some r formal parameters
of (x1,...,xx) coincide with formal parameters of (yi,...,ys), i.e, x; = yj, 1 <
i, ji<r.

In Definition 13 of the product of W, .., and W), . below we keep only one of
two coinciding formal parameters, We require that the set of formal parameters

.....

o~

(@15 ooy Zhn—r) = (X1, oo Xips ooy Xy oo s XK VL ooy Yo oo s Yjpr oo ¥y (B.1)
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55 would belong to Fiy,_C where 7 denotes the exclusion of values Xip = Yj
1 <1 < r from the domain of definition for corresponding differential forms that
belong to W, ... z,, and characterized by the bilinear pairing. We denote this operation
of formal parameters exclusion by R D(x1, ..., Xk V15 - - -5 Yns €). Thus, we require that
the set of formal parameters (z1, ..., Zk+n—r) for the resulting product would belong to
Frn—rC. Note that instead of exclusion given by the right hand side of (3.1), we could
equivalently omit elements from (xi, ..., xx)-part coinciding with some elements of
1y Yn)-

In our particular case of the space of differential forms )V obtained from matrix ele-
ments (2.20), we take two Riemann spheres ZL(,O), a = 1, 2 as our two initial auxiliary
spaces/geometrical models. The resulting auxiliary/model space is formed by the Rie-
mann sphere (?) obtained by the e-sewing procedure of two initial spheres where € is a
complex parameter. The formal parameters (xy, ..., xx) and (y1, ..., y,) are identified

with local coordinates of k and n points on two initial spheres E[(,O), a = 1,2 correspond-
ingly. In the e-sewing procedure, some » points among (py, ..., pr) may coincide with
points among (p{, ..., p,) when we identify the annuluses (3.4). This corresponds to
the singular case of coincidence of r formal parameters.

Consider the sphere formed by sewing together two initial spheres in the sewing
scheme referred to as the e-formalism in [77]. Let Efzo), a = 1, 2 be to initial spheres.
Introduce a complex sewing parameter ¢ where

le| < rira,
Consider k distinct pointson p; € Zfo),i =1, ..., k,withlocal coordinates (xi, ..., x)
€ F;C,anddistinctpoints p; € Eéo),j =1, ..., n,withlocal coordinates (y, ..., y,) €
F,C, with

|xi| > lel/ra,

lyil = lel/r1.

Choose a local coordinate z, € C on E(EO) in the neighborhood of points p, € Eéo),
a = 1, 2. Consider the closed disks

[Cal < ra,

and excise the disk

{Ca, 12al < lel/ra) € 2O, (3.2)

to form a punctured sphere
£ = 2O\(a, 12al < lel/ra).

‘We use the convention

—I
Il
»
]
Il
—

(3.3)
Define the annulus

Ao =1{ta. l€l/ra < 12l <10} € O, (3.4)
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and identify A; and A; as a single region A = A| >~ A via the sewing relation

f1ir =e. (3.5)

In this way we obtain a genus zero compact Riemann surface
2O =AU g ua

This sphere forms a suitable geometrical model for the construction of a product of
elements of VW-spaces. A multiply sewn sphere model is considered in [81].

Recall the notion of an intertwining operator (9.14) given in “Appendix 8.2”. Let us
now give a formal algebraic definition of the product of WW-spaces.

Definition 13. For ®(vi, x1;...; vk, k) € Wy x> and W], yi5 ...V}, ya) €
Wy, ...y, the e-product
(D(vl’xl;"';vk’xk)'é‘I’(Uiayn-..;v,;,yn)
> RO (V1 X155 Uk, Xk VYL VIS U Vs €)) (3.6)

is defined by the bilinear pairing via (2.20)

(W, R O, X155 Uk, Xg3 V), V15 25 Uy Yns €))
=D € W vy (@i, x5 vk ), 21 u)
leZ ueV;
W, Yy (WL 0 T 0 S v ). 02) W), (B)

parametrized by ¢1, {» € C related by the sewing relation (3.5). The sum is taken over
any V;-basis {u}, where u is the dual of # with respect to the non-degenerate bilinear
pairing (. .)x, (9.28) over V, (see “Appendix 8.2”). The coinciding values of the formal
parameters in ®(vy, x1; ... ; vk, Xx) and \Il(vi, Y1;--.3 V), yn) are excluded from the
domain of definition of the right hand side of (3.7).

By the standard reasoning [24,78], (3.7) does not depend on the choice of a basis of
u € V;, 1 € Z. In the case when the forms ® and ¥ that we multiply do not contain
V-elements, (3.7) defines the following product ® - W

W, 0e) =Y e > WYy, (@.00) upw', Yy, (W, ) u). (3.8)

leZ ueV;

As we will see, Definition 13 is also supported by Lemma 3. Recall Remark 1. The
right hand side of (3.7) is given by a formal series of bilinear pairings summed over a
vertex algebra basis. To complete this definition we have to show that the right hand
side of (3.7) defines a differential form that belongs to the space W, .. The main
statement of this Section is given by

sZk+n—r*

Proposition 4. The product (3.7) provides a map
e le’--»vxk X Wyl,-»-,yu - WZI

----- Zktn—r*

The rest of this Section is devoted to the proof of Proposition 4. We show that the wight
hand side of (3.7) belongs to the space W, . 7.,



Product-Type Classes for Vertex Algebra Cohomology 1465

Remark 2. Note that due to (9.14), in Definition 13, it is assumed that ® (v, x1; .. .;
Uk, X;) and ‘ll(v/l, VI5 e v;, yn) are composable with the grading-restricted general-
ized V-module W vertex operators Yw (u, —¢1) and Yw (u, —¢2) correspondingly (cf.
Sect. 2.3 for the definition of composability). The product (3.7) is actually defined by the
sum of products of matrix elements of generlized grading-resticted V-module W vertex
operators acting on W;, . elements. The vertex algebra elements u € V andu € V’
are related by (9.29), and ¢; and ¢ satisfy (3.5). The form of the product defined above
is natural in terms of the theory of correlation functions for vertex operator algebras
[23,70,78].

3.2. Convergence of the e-product. In order to prove convergence of the product (3.7)
of elements of two spaces W, ., and Wy, ., , we have to use a geometrical inter-
pretation [45,77]. Recall that a W, . -space is defined by means of matrix elements
of the form (2.20). For a vertex algebra V, this corresponds [24] to matrix element of a
number of V-vertex operators with formal parameters identified with local coordinates
on Riemann sphere. Geometrically, each space W, .. can be also associated to Rie-
mann sphere with a few marked points, and local coordinates vanishing at these points
[45]. An additional point is identified to the center of an annulus used in order to sew
the sphere with another sphere. The product (3.7) has then a geometrical interpretation.
The resulting model space is then Riemann sphere formed in the sewing procedure.

Matrix elements for a number of vertex operators are usually associated [23,24,70]
with a vertex algebra correlation functions on the sphere. We extrapolate this notion to
the case of W, ... ;, spaces. In order to supply an appropriate geometrical construction
of the product, we use the e-sewing procedure for two initial spheres to obtain a matrix
element associated with (3.6).

Remark 3. In addition to the e-sewing procedure of two initial spheres, one can alterna-
tively use the self-sewing procedure [77] for Riemann sphere to get, at first, the torus,
and then by sending parameters to appropriate limit by shrinking genus to zero. As a
result, one obtains again a sphere but with a different parameterization [53].

Let us identify (as in [7,23,45,70,77,78]) two sets (xq, ..., xx) and (y1, ..., y,) of
complex formal parameters, with local coordinates of two sets of points on the first
and the second Riemann spheres correspondingly. Complex parameters ¢ and ¢ of
(3.7) play then the roles of coordinates (3.2) of the annuluses (3.4). On identification of
annuluses A, and Az, r coinciding coordinates may occur.

The product (3.7) describes a differential form that belongs to the space WV defined on
asphere formed as aresult of the e-parameter sewing [77] of two initial spheres. Since two
initial spaces Wy, ..y, and Wy, .y, Wy, . y-and Wy, -valued differential forms
expressed by matrix elements of the form (2.20), it is then proved (see Proposition 5
below), that the resulting product defines a elememits of the space Wy, . xi:yi,....y, DY
means of an absolute convergent matrix element on the resulting sphere. The complex
sewing parameter € parametrizes the moduli space of the resulting sewn sphere as well
as of the product of WW-spaces.

Proposition 5. The product (3.7) of elements of the spaces W, ... x, and Wy, ..y, cor-

responds to a bilinear pairing absolutely converging in € with only possible poles at
xi=xj,yy=yjandx; =y;, 1 <i,i’ <k, 1<j,j <n.

Proof. In order to prove this proposition we use the geometrical interpretation of the
product (3.7) in terms of Riemann spheres with marked points. We consider two sets of
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vertex algebra elements (v, ..., vx) and (v/l, e, v,’c), and two sets of formal complex
parameters (xi, ..., Xk), (¥1,...,yn). The formal parameters are identified with the

local coordinates of k points on Riemann sphere ffo), and n points on féo), with excised
annuluses A, . Recall the sewing parameter condition (3.5)

l152 =€,

of the sewing procedure. Then, for (3.7) we obtain

(W', OV1, X135+« 25 Vs Xk5 V], V15 -+ -3 Uy Vs €))
1 w . .
=Y WLy (@@ e X, 8 u)
leZ ueV

(W, Yy (YL, Y15 -5 0, yn), §2) 1)
= €y W SEVED Yy (1) @i, xi L vk )

leZ ueV
(W, 2 EVED @, —g) W, 15 v, ).

Recall from (3.2) that in the two spheres e-sewing formulation, the complex parameters
C4, a = 1, 2 are the coordinates inside the identified annuluses A,, and [¢,| < r,.
Therefore, due to Proposition 1, the matrix elements

Rixt,oxc ) = W/ e Y OD Yy w61 @i xs s v ), (3.9)
RO evns €)= (', 2 YO Yy @ —0) W yis.. 50, 00), (3.10)
are absolutely convergent in powers of € with some radia of convergence R, < r,, with

|¢4] < R,. The dependence of (3.9) and (3.10) on € is expressed via {;, a = 1,2. Let us
rewrite the product (3.7) as

(W, OV1, X135+ o5 Vi, Xk VY V15 oo o5 Upyy Vs €))
! / . . v/ . -
=> € (W' O@I X155 vk Xk V] Y1 U )
leZ

=3 Y T Ry 8) ROty 22), (31D

leZ ueV; meC

as a formal series in € for [¢,| < R,, where and |e| < r for r < riry. Then we apply
Cauchy’s inequality to the coefficient forms (3.9) and (3.10) to find

| Ron(x1s -y x5 L) | < MiRy™, (3.12)
with
My = sup |7§(x1,...,xk;§1)|.
[C11= Ry, le|=r
Similarly,
Rty ©2)| < MaRy™, (3.13)
for
My= sup  |[ROiv..osvms 0]

[021= Ry, €| <r
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Using (3.12) and (3.13) we obtain for (3.11)

|((w', F(ur, x13 -5 vk X5 0], V1< Vs va)), |
= |7’€m(xl’ s Xk §1)| |7’€m(yla <oy Vs §2)|
< M| My (RiR)™. (3.14)
Thus, for M = min {M, M>} and R = max {R;, R}, one has
[RIGets o X vt v G 02)| < MRTHL (3.15)

We see that (3.7) is absolute convergent as a formal series in € and defined for |¢,| < 7,
le] <7 forr < rirp, withextrapolesonly atx; =y;,1 <i <k,1<j <n. m]

Next, we formulate

Definition 14. We define the action of an element 0 € Sky,—, on the product of
D (v1, X155 Vg, xk) € Way g and W], yis ... vy, Yu) € Wy Ly, a8
(W', 0 (R ©)(V1, XI5 ...} Vky Xk ULy Y13 -3 Upys Vi €))
= (w/’ ®(50(1)’ Zo(l)s s Ela(k+n—r)9 2o (k+n—r)s €))
=D e W YWy (P@oy 2oy -3 Votys 2o k) §1) 1)

leZ ueV;
(W', Yy (V@ (k41) Zo (1)} - - Vo (ktn—r)» Zo(ken—r))s $2) 1), (3.16)

where by (Vg (1), - - - » Vo (k4n—r)) We denote a permutation of vertex algebra elements
1, .oy Vpan—r) = (U1, .. .5 Uk - .,/17;1, . ,TJ\;-V, o). (3.17)

Next, we have

Lemma 1. The product (3.7) satisfies (2.9) for o € Sgsn—r, i.e.,

Z (—1)I0|R ® (vg(l), Xg(1)s -3 Vo (k) Xo (k)3 v;(l), Yo(l)s + -3 v(;(n), Yo (n); e) =0.

ae‘lk:»]n—r;s
Proof. For arbitrary w’ € W', we have
Z (_1)|0\ (w/, (C] (vd(l)s Xo(1)s ++ -3 Vo(k)> Xo(k)s v:,(l), Yo(1)s s v(/,(n)’ yo(n))>>
UEJI;}:;.&

= Z (=nl! Zél Z(w/, Yty (Po (1) Xo (1)} - - -3 Vothys Xo(k)s $1) 1)

GEJ/;L:; leZ ueVy
W', Yy (‘D(v;(l), Yo(1)s + -5 Ug(ny» Yo(m))s {2) )
=Y T DI EVED Yy, —21) ®Wo1y, Xo (1) - Vo) Xo k)

leZ ueVy O'EJI;I,
(w', eV Yy @, —02) WO, (1) Yoy -5 Uy Vo))
= Zél Z(w/, SIVED Yy, —21) Z (=DM ® (Vo (1), Xo (1) -+ -3 Vo) Xo )

Z Vi —1
le ueV; oelg]
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(W', 2LvED vy @, 1) ‘P(vﬁ,(l), Yo()s -+ -3 v;(n), Yo m)))
+Y €Y W YD Yy, —21) @(ey Xo (1) - Voih)s Xo (k)
leZ ueV;
(w/, e{sz(—l) Ywu, =) Z (*1)‘0“‘1"(7)(/,(]), Yo(1)s «+ s U(/,(ny )h(n))) =0,
oel]

. -1 —1_ 7-1
since, ka;s = Jk;s xJn;s,andduetothefactthat@(vl,xl, ces Uk, X)) and W (v, y1, ...,
vy, ya) satisfy (2.1). O

Next we prove the existence of an appropriate differential form that belongsto W, ... .
corresponding to an absolute convergent bilinear pairing R(zy, . . . , Zx+n—r) defining the
e-product of elements of the spaces Wy, ..y, and Wy, ..

Lemma 2. For all choices of elements of the spaces Wy, ... y, there ex-
ists a differential form characterized by the bilinear pairing R ®(vy, x1; ...; Uk, Xk,
V1, V15 -3 Uy Vs €) € Woy 2, SUch that the product (3.7) converges to

,,,,,,

R(XT, oy Xi5 Y1y Yu3 €) = (W', R OV1, X135+ o5 Uy Xk5 V], V15 -+ -3 Uy Vs €)).

Proof. In the proof of Proposition 5 we showed the absolute convergence of the product
(3.7) to a bilinear pairing R(xy, ..., Xg; Y1, ..., yn; €). The lemma follows from the
completeness of Wy, x:y;,...y, and the density of the space of rational differential
forms. O

We formulate

Definition 15. For ® (v, x1;...;5 0k, X) € Wy . x and W(vj, yi5...50,, %) €
Wiy, ....yn» Withr coinciding formal parameters x; = jq,l < g < r,wedefine the action

,,,,,

of oy =09;, =0/0;,,1 <s <k4+n—r,1 <i <k, 1 <j< nonﬁ@(vl,xl; e Uk, XS
v{, Y15 ...5 Uy, Yu; €) With respect to the sth entry of (21, ..., Zk+n—r), as follows
(W, 3R O(01, X1 .5 U, X3 V], V1525 Uy Vs €))
5s.i
=D € > W A Yy (@ X v 0, 4 )
leZ  ueV
85,7 —8ig.j _
(W', 3y Y (WL Y153 V) Yn). §2) 1), (3.18)

Remark 4. As we see in the last expressions, the Ly (0)-conjugation property (2.7) for
the product (3.7) includes the action of the z-V©-operator on the complex parameters
Cara=1,2.

Proposition 6. The product (3.7) satisfies the Ly (—1)-derivative (2.2) and Ly (0)-
conjugation (2.7) properties.

Proof. By using (2.2) for ®(vy, x1; .. .; vk, xx) and \Il(v/l, V15 vjl, Yn), We consider

(W', 9O V1, X135+ .. Vky Xk VY V15 - -3 Uy Vi €))
l S1iy W . .
=Yy WA Yy (@ X vk ), §) )
leZ ueV;

817 —
(w', 3y Yy (WL, yis .5 0 ya). §2) 1)
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31.i
=Y e D W o Y (u, =) D1, X155 vk, X)) u)

leZ ueV
81 —
(', 9y, Yw @@, —02) W1, y15 -+ Uy yn))
81,
=Y Yy Wy (8x,’-’ (v, x1; ...;vk,xk),ll) u)

leZ ueV
81, j —
W', vy (0 W i ), ) @)

=€y Wl vy (P xrz o (Ly (D)% v xis v X0, ) )

leZ ueV)
W', Yy (WO v Ly =D 0 v 50 ), 2) B)
= (W, 01, x15...; (Ly(=1));5 .5 v, Yu3 ©), (3.19)

where (Ly (—1)); acts on the /th entry of (vy, ...; vg; v/l, ..., V)). Summing over [ we
obtain

k+n

D 0O, X1i .5 ks Xk3 V] V1 ) i €))
=1

=~

+n

=) (W, 00, xi;...; (Lv(=1);...; 0, yui €))
=1

= (W, Lw(=1).OW1, X1 ...5 Uk, Xi3 V], Y15 -2 5 Uy, Yus €)). (3.20)

Due to (2.7), (9.9), (9.29), (9.30), and (9.15), we have

(W, 0O, zxp; 2 Ou 20 22V O 2y YO0 2y e))

=) > W yyy (q’(zLV(O)vl, zxts - 2 Qv z ), §1> u)
leZ ueV;

W', Y\, (\p(zLV(O)v{, 2y 22OV 2y, Cz) u)

=) > Wy (ZLV(O)CD(UI,X]Q ~-§Ul<,xk)7§1> u)

leZ ueV;
W', Yy (2 OW @R 1 v ), &) T
=Y > Sy, —0) 2 OD i, x v, ))
leZ ueV;
(W', 2D vy @, ) 22 OW L, yis v )

=Yy (v v Oyy, (z‘LV(O)u, —z 51) DU, X15 - Vg, XE))
leZ ueV

(w', 2w A Lw©) (Z*LV(O)E, —2 4“2) W,y y)

=Y e D (w!, SEWE DO TNy —z ) @ (w1, X155 vk, X))
leZ ueV
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(', e2EWED ZLwO) 2 =Wy @ —z ) W), Y155 U, V)
= ZGI Z(w/, WO LwED Yy () —z21) D (vr, X152 vk, X))
leZ ueV;
(w', PO Llw Dy @, —20) W], yis .5 V), Y, )
=> > W YO YW (@@ a0, 20) W)
leZ ueV
(W', 22O Y (WL v v ). 28) )
=> > W YO Y (@@ xis s vk ), ¢f) W)
leZ ueV;
(W', 25Oy (W, s .50, ), 63) 1)
= (w, (zLW(O)> O, X153 Uy Xk V), VIG5 Ul Vs €)).
With (3.5), we obtain (2.7) for (3.7). O

Summing up the results of Proposition (5), Lemmas (1), (2), and Proposition (6), we
obtain the proof of Proposition 4. We then have

Definition 16. For the fixed sets vy, ..., v, € V and vg, cey Uy € Voxp, oo x; €
C, y1,...,yn € C, we call the set of all differential form of W;, .. . described
by R ©(vy, x15...; Uk, Xk} vj, V15 e v;, Yn; €) with the parameter € exhausting all

possible values, the complete product of the spaces Wy, . x, and Wy, y, .

3.3. Properties of the W, ... .. -product. In this Subsection we study properties of the
product R © (v, X1; .3 Vk, Xk3 V], Y15 - - .3 Uy, Yus €) of (3.7). We have

Proposition 7. For generic elements v;, v} eV, 1 <i<k 1 <j<n,ofa quasi-
conformal grading-restricted vertex algebra V, the product (3.7) is canonical with re-

spect to the action of the group (Aut O) le(kwék:rn)_r of independent k +n — r-dimensional
changes

(Z1s ooy Zhan—r) B> (@)oo vy Zpney) = (021, oo oy PZhin—r)),  (321)
of formal parameters.

Proof. Note that due to Proposition 8

/ /

D, x5 vk X)) = P(vr, x5 Uk, X)),
/ /

W (v, Y15 -5 Un, ¥y) = WU, Y15 - 025 Uny Yi)-

Thus,
/ U / / / / /
(W, O, X150y 5 Uk, X5 Vg V1o e e o3 Uy Vs €))
1 w
=Y € W vy (P X v x), ) )
leZ ueV;

(W, Yy (YL Y5, ), §) i)
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=Yy W Yy (@i xn vk ), ) u)

leZ ueV;
W', Yy (PO Y1 v yn), £2) 1)
= (W', O, X15 ..., Vi, Xk3 V], V15 -3 Uy, Vs €)).
Therefore, the product (3.7) is invariant under (4.6). |

In the geometrical interpretation in terms of auxiliary Riemann spheres, the definition
(3.7) depends on the choice of the insertion points p;, 1 < i < k, with local the
coordinated x; on ng)’ and plf , 1 < j =< k, with the local coordinates y; on '2\50)_
Suppose we change the distribution of points among two initial Riemann spheres. We
then formulate the following

Lemma 3. In the setup above, for a fixed set (Vi,...,0p4n), v € V, 1 <l < k+n
of vertex algebra elements, the splittings (V1, ..., 0s), (Ust1, ..., Uksn) for elements
Dy, 215 .05 V5, 25) € Wzl,.‘.,zs and W (Vg41, Zs+15 -+ - Vkan» Zken) € Wzk”,.‘.,zkmr
bring about the same e-product ® (V1, 215 .. .5 Vk4n, Thns €) € Wey, o zpems

e i Wey g X W wzkan ™ Weriozian (3.22)

foranys, 0 <s <k+n.

S+15--

Remark 5. This Lemma is important for the formulation of cohomological invariants
associated to grading-restricted vertex algebras on smooth manifolds. In the case s = 0,
we obtain from (3.23),

e WX Woi i = Watzian (3.23)
Now we give a proof of Lemma 3.

Proof. Letv; € V,1<i <k,v; €V,1<j <k, andz, z; are corresponding formal
parameters. We show that the e-product of ®(v1, z1; .. .; Uk, k) and W (Vgs1, Zk+15 - - -5
U, Zn), 1.€., the differential form that belongs to W, .

s Zkn—r
O((W1, 215 -+ -5 ks 20)3 (ka1 T 15 - - -5 Vs Zn)s C15 825 €),s (3.24)
is independent of the choice of 0 < k < n. Consider
(W', O@1, 215 - .3 Vks 2k Vkt1s Tkt 1d - - -3 Vs Zns $1, £23 €))
= ZEI Z(w’, Yooy (D@1, 215 -5 Dk, 26, 1) )
leZ ueV
(W', Yoy (W@t ka1 - -5 Uy 20), C2) ). (3.25)

On the other hand, for 0 < m < k, consider
l / YW q) ~ . .Y
€ (wa WV( (vlszlv-~-vv}’nvzm)acl) I/t)
leZ ueV;
w ~ . s .Y . Rt =
(w/ﬂ YWV (‘Ij(vm+la Z;n.'.]v v s Uk, Z;(y Vk+1, 215 -+ Un, Zn)7 CZ) I/l)
= (w/’ ®(Elv 215045 T}lma Zm; 5m+1’ Z;"H.l’ cees ?}lkr Z]/cv BIk+la Zk+15 -0 5 E’n’ Zﬂ))

The last is the e-product (3.7) of ® (V1,215 - - -3 U, Zm) € Wyy.....z,, a0d W (Vpy1, 2,

m+1>
Lo Vg, z;{; Vkt1, 215 -+ -3 Uny Zn) € Wzinwm, - Let us apply the invariance with

k .
respect to a subgroup of (Aut O(]));(.jﬂ;; , with (z1, ..., z») and (Zg+1, ..., 2n) TE-

maining unchanged. Then we obtain the same product (3.25). O
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4. Spaces for the Double Complexes

In this Section we introduce the definition of spaces for double complexes suitable for
the construction the grading-restricted vertex algebra cohomology for codimension one
foliations on complex curves. We first introduce

Definition 17. Let (v, ..., v,) and (v{, ..., v;) be two sets of vertex algebra V ele-
ments, and (py, ..., pn) be points with the local coordinates (c1(p1), . .., cn(pn)) taken
on the same transversal section U; € U, j > 1 of the foliation F transversal basis / on
a complex curve. Assuming k > 1,n > 0, we denote by C*(V, W, F)(U;),0 < j <k,
the space of all linear maps (2.18)

:VE - We, (P1)seeerCn(pn)>» 4.1

composable with k of vertex operators (2.21) with the formal parameters identified with
the local coordinates c’/. ( p’/.) around the points p’,. on each of the transversal sections U ;,
1<j<k o '

The set of vertex algebra elements (2.17) plays the role of non-commutative parameters
in our further construction of the vertex algebra cohomology associated with a foliation
JF. According to the considerations of Sect. 2.1, we assume that each transversal section
of a transversal basis I/ has a coordinate chart which is induced by a coordinate chart of
M (cf. [15]).

Recall the notion of a holonomy embedding (cf. Sect. 2.1, cf. [15]) which maps a sec-
tion into another section of a transversal basis, and a coordinate chart on the first section
into a coordinate chart on the second transversal section. Motivated by the definition of
the spaces for Cech-de Rham complex in [15] (see Sect. 2.1), let us now introduce the
following spaces:

Definition 18. For n > 0, and 1 < m < k, with Definition 17, we define the space

CrVWUF) = () CV W FU), (4.2)

By g
Uyt P
1<j<m

where the intersection ranges over all possible (m — 1)-tuples of holonomy embeddings
hj,j€{l,...,m— 1}, between transversal sections of a basis U for F.

First, we have the following
Lemma 4. (4.2) is non-empty.

Proof. From the construction of the spaces for the double complex of the grading-
restricted vertex algebra cohomology, it is clear that the spaces C"(V, W, U, F)(U;),
1 < s < m in Definition 17 are non-empty. On each transversal section U, 1 < s < m,
@ (vi, ¢j(p1);-..; vn, cj(pn)) belongs to the space We,(py).....c;(p,)» and satisfies the
L(—1)-derivative (2.2) and L (0)-conjugation (2.7) properties. The map ®(vy, ¢;(p1);

.3 Up, ¢j(pp)) is composable with m vertex operators with the formal parameters
identified with the local coordinates ¢ ( p}), on each transversal section U;;. Note that on
each transversal section, the spaces (4.2) remain the same for fixed n and m. The only
difference may be constituted by the composability conditions (2.12) and (2.14) for ®.
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In particular, for /1, ...,1l, € Zy suchthatli +---+[, =n+m, vy, ..., Vpysn €V
and w’ € W/, recall (6.13) that

8i = oy Uk, cky (Pry) — i) - ov Vg, ek (Pr;) — &) 1y, 4.3)

where k; is defined in (6.18), fori = 1, ..., n, depend on the coordinates of points on the
transversal sections. At the same time, in the first composability condition (2.12) depends
on the projections P, (8;),r € C,of We(p)),....c(pn) to W, and on the arbitrary variables ;,
1 <i < m. On each transversal connection Uy, | < s < m, the absolute convergence is
assumed for the series (2.12) (cf. Sect. 2.3). The positive integers N}, (v;, v;), (depending
only on v; and v;) as well as §;, fori, j = 1,...,k,i # j, may vary for the transversal
sections Uy. Nevertheless, the domains of convergence determined by the conditions
(6.12) which have the form

lcm;i (Pm;) = Cil + |en; (Pn;) = &il < |6 = &l (4.4)

formi =h+---+Lig+pn=4L+---+lj_1+q,i,j=1,...,k, i # jand for
p=1,...,l;andg = 1,...,[;, are limited by |{; — ¢;| in (4.4) from above. Thus,
for the intersection variation of the sets of homology embeddings in (4.2), the absolute
convergence condition for (2.12) is still fulfilled. Under the intersection in (4.2), by
choosing appropriate N,, (v;, v;), one can analytically extend (2.12) to a rational function
in (c1(p1), ---» Cntm(Pn+m)), independent of (¢y, ..., &,), with the only possible poles
atc;(p;) = cj(pj), of order less than or equal to N, (v;, v;), fori, j =1,...,k,i # j.
As for the second condition in the definition of composability, we note that, on each
transversal section, the domains of absolute convergensy ¢; (p;) # cj(p;),i # j

lci (pi)|l > lck(pj)l > 0,

fori=1,....m,andk =1+m,...,n+m, for
Tn(®@) =Y (', ow 1. c1(p) ... 0w Om. cm (Pm))
qeC
Pq(cD(Ul+mv Clam (P1am)s - 3 Unams Cntm (Pnam))) s 4.5)

are limited from below by the same set of the absolute values of the local coordinates on
the transversal section. Thus, under the intersection in (4.2), this condition is preserved,
and the sum (2.14) can be analytically extended to a rational function in (c¢{(p1), ...,
Cm+n(Pm+n)) With the only possible poles at ¢;(p;) = cj(p;), of orders less than or
equal to N, (v, v;), fori, j =1,...,k, i # j. Thus, we proved the lemma. m]

Lemma 5. The double complex (4.2) does not depend on the choice of a transversal
basis U.

Proof. Suppose we consider another transversal basis U’ for F. According to the defini-
tion, for each transversal section U; which belongs to the original basis I/ in (4.2) there
exists a holonomy embedding

LT, l
h; U = U iz
i.e., it embeds U; into a section U ; of our new transversal basis ¢/’. Then consider the

sequence of holonomy embeddings {h;{} such that

/ &
Uy— ...= U,.
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For the combination of the embeddings {A/,i > 0} and

h hy
Up— ... Uy,

we obtain commutative diagrams. Since the intersection in (4.2) is performed over all
sets of homology mappings, then it is independent on the choice of a transversal basis.
O

Thus we then denote C},(V, W, U, F) as C}}(V, W, F). Recall the notation of a
quasi-conformal grading-restricted vertex algebra given in “Appendix 8.2”. The main
statement of this section is contained in the following

Proposition 8. Fora quasi-conformal grading-restricted vertex algebra V and its grading-
restricted generalized module W, the construction (4.2) is canonical, i.e., does not de-
pend on the foliation preserving choice of local coordinates on M/ F.

Proof. Here we prove that for the generic elements of a quasi-conformal grading-
restricted vertex algebra V/, the maps @ (2.19) and the operators wow € W,,, .. ., (2.21)
are canonical, i.e., independent on changes

Zi>wp=p(z), 1<i=<n, (4.6)

of the local coordinates of ¢; (p;) and ¢; (p;.) at points p; and p}, l<i<nl<j<k
Thus the construction of the double complex spaces (4.2) is proved to be canonical too.
Let us denote

6= (55" aw)™.

Recall the linear operator (2.21) (cf. “Appendix 8.2”). Introduce the action of the trans-
formations (4.6) as

i) (dwrw('”) @ v, wi; ... dw ™ @ v, wn)

d ~Lw(0)
=<%) P(f(E) ®E1®v1, 215586 @ Unszn) . (4T)

‘We then obtain

Lemma 6. An element (2.8)

P (dz?t(vl) ®vi.21: ...; dzy " @ vy, Zn) :

2, IS invariant under the transformations (4.6) of (Aut (’)(1))

,,,,,

Xn
Z15eZn’
Proof. Consider (4.7). First, note that

df @)

1@ = ac

D o m+1) Bug™,

m=>0

By using the identification (9.19) and the Ly (—1)-properties (2.2) and (2.7) we obtain

(w', ® (dw}“(”') @ v, wi;...; dw® @y, wn>)
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= (W', F/©)EVO P(F) @ E @1, 2155 En ® Uy, 70))

JF e\ —Lw©
= (v, <—J;(;)> @ dwfw(”l) ® vy, Z(m +1) B

m=>0

dwr\;vt(vn) ® Uns Z(m + 1) ,BmZZH—l )

m>0

, (df @\ O Wi df (z1)
=(w,<7> q’(dwlt( 1)®v1,( dZZ11 >Z1;

d
s dw O @y, ( J;(Z")> zn))
Zn

d —wt(vy)
:(w’,<b<<% dwl) X v, 215

Zi

d —wt(vy)
..;<den) ® Un, Zn |)
dz,

=(w', ® (dz‘lm(”‘) ®vi,21;...:dzy" " @ vy, zn>>-

Thus we proved the lemma. O

The elements ®(vy, z15 ... ; vy, 24) of C;(V, W, F) belong to the space W,, .. -,
and are assumed to be composable with a set of vertex operators ww(v}, cj( p;.)), 1<

J < k. The vertex operators wy (de(p)™') @ v}, cj (p})) constitute the particular

examples of the mapping of C éo(V, W, F) and, therefore, are invariant with respect to
(4.6). Thus, the construction of the spaces (4.2) is invariant under the action of the group

(Aut O)" . |
Remark 6. The condition of quasi-conformality is necessary in the proof of invariance
of elements of the space W, .. ., with respect to a vertex algebraic representation (cf.
“Appendix 8.27) of the group (Aut O(l));nm o In what follows, when it concerns the

spaces (4.2) we will always assume the quasi-conformality of V.

The proofs of generalizations of Lemmas 4, 5, 7 and Proposition 8 for the case of an
arbitrary codimension foliation on a smooth complex manifold of arbitrary dimension
will be given elsewhere.

Let W be a grading-restricted generalized V module. Since for n = 0, maps & do
not include variables, and due to Definition 12 of the composability, we can put:

CUV, W, F) =W, (4.8)

for k > 0. Nevertheless, according to Definition 4.2, mappings that belong to (4.8)
are assumed to be composable with a number of vertex operators depending on local
coordinates of k points on k transversal sections.

We observe

Lemma 7.

CI (V. W, F) C C!_(V.W, F). (4.9)
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Proof. Since n is the same for both spaces in (4.9), it only remains to check that the
conditions for (2.12) and (2.14) for ®(vi,c;(p1); ...; vn, cj(py)) of the compos-
ability Definition 2.3 with vertex operators are stronger for C};, (V, W, U, F) then for
C,’:l_l (V, W, U, F).Inparticular, in the first condition for (2.12) in Definition 12 the dif-
ference between the spaces in (4.9) is in indexes. Consider (4.3). For C;, _, (V, W, U, F),
the summations in indexes

ki=h+---+Li_1+1, ., kk=L+ ---+1i_1+1[;

for the coordinates c;j(p1),..., ¢j(py) with [y, ..., I, € Z;, such that [y +---+1[, =
n+ (m — 1), and the vertex algebra elements vy, ..., Vy4(u—1) are included in the sum-
mation for the indexes for C};, (V, W, U, F). The conditions for the domains of absolute
convergence, i.e.,

[ttty +p — Cil €4ty y4q — Sil < 1&i = &l

fori,j=1,...,k,i# j,andforp=1,...,[;andg =1, ...,1;, for the series (2.12)
are more restrictive then for (m — 1) vertex operators. The conditions for Z), _, (®) to be
extended analytically to a rational function in (c1(p1), - .., Casn—1)(Pn+u—1))), With
positive integers Nr’:l_l(v,-, v;), depending only on v; and v; fori, j =1,...,k,i # j,
are included in the conditions for 7] (®).

Similarly, the second condition for (2.14), of the absolute convergence and analytical
extension to a rational function in (c1(p1), ..., Cm+n(Pm+n)), With the only possible
poles at ¢; (p;) = cj(p;), of orders less than or equal to N, (v;, v;),fori, j =1,...,k,
i # j,for (2.14) when

ci(pi) #cj(pj), i #j, lci(p)] > lek(pr)| > 0,

fori=1,...,m,andk =m+1, ..., m+n includes the same condition for jm"_l(d>).
Thus we obtain the conclusion of Lemma. m]

5. Coboundary Operators and Cohomology of Codimension One Foliations

In this Section we introduce the coboundary operators acting on the double complex
spaces.

5.1. Cohomology in terms of connections. In various geometrical configurations, it is
sometimes effective to use the interpretation of cohomology in terms of connections
[38,39]. That applies, in particular, to our supporting example of the vertex algebra
cohomology of codimension one foliations. It is convenient to introduce the multi-
point connections over a graded space and to express the coboundary operators and
cohomology in terms of connections:

8"¢ € G™(¢),
8"¢ = G(¢).

Then the cohomology is defined as the factor space

H" = Confl/anl,
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of closed multi-point connections with respect to the space of connection forms defined
below.

We continue this Section with the definition of holomorphic multi-point connections
on a smooth complex variety. Let X be a smooth complex variety and V — X a
holomorphic vector bundle over X'. Let E be the sheaf of holomorphic sections of V.
Denote by €2 the sheaf of differentials on X'. A holomorphic connection V on E is a
C-linear map

V:E—->EQRQ,
satisfying Leibniz formula

V(fo)=Vio+¢®dz,

for any holomorphic function f. Motivated by the definition of the holomorphic con-
nection V defined for a vertex algebra bundle (cf. Sect. 6, [7]) over a smooth complex
variety X', we introduce the definition of the multiple point holomorphic connection over
X.

Definition 19. Let ) be a holomorphic vector bundle over X', and let X)) be its subvariety.
A holomorphic multi-point connection G on V is a C-multi-linear map

G E—-EQ®Q,

such that for any holomorphic function f, and two sections ¢ (p) and ¥ (p’) at points p
and p’ on Xy correspondingly, we have

> G (FW@)e@)) = FA(e)) G@p)+ f@p) G (W (p)). (.1)

q.9' XpCX

where the summation on left hand side is performed over a locus of points ¢, ¢’ on Xjp.
We denote by Con x, (S) the space of such connections defined over a smooth complex
variety X'. We will call G satisfying (5.1), a closed connection, and denote the space of
such connections by Con’y, . ;.

Geometrically, for a vector bundle ) defined over a complex variety X', a multi-point
holomorphic connection (5.1) relates two sections ¢ and v of E at points p and p’ with
a number of sections at a subvariety Xy of X.

Definition 20. We call

G@. ) = @) G (WP + NG - Y. G(fW@)e@),

4.4’ XocX
(5.2)

the form of a holomorphic connection G. The space of n-point holomorphic connection
forms will be denoted by G"(p, p’, q,q").

Let us formulate another definition which we use in what follows:



1478 A. Zuevsky

Definition 21. We call a multi-point holomorphic connection G the transversal connec-
tion, i.e., when it satisfies

F@rp)) Go(p) + f(p(p) G (pH) =0. (5.3)
We call

Gir(p, P = (W (P") G@(P) + [ (@ () G (P)). 54
the form of a transversal connection. The space of such connections is denoted by G?,.

The construction of the vertex algebra cohomology of foliations in terms of connec-
tions is parallel to ideas of [13]. Such a construction will be explained elsewhere.

5.2. Coboundary operators. Recall the definitions of the E-operators given in “Ap-
pendix .3”. Consider the vector of E-operators:

(E(l) Z( 1) E<2) W(“.). (5.5)

As we see from the definition of the E-operators given in “Appendix .3”, when acting
onamap ® € C' (V, W, F), each entry of (5.5) increases the set of the vertex algebra
elements (vy, ..., v,) with a vertex algebra element v,,1. On the other hand, according
to Proposition 2, the action of each entry of (5.5) on ® is composable with (;m — 1)-vertex
operators with the vertex algebra elements (vi, el v;n). Then we formulate

Definition 22. The coboundary operator 4, acting on elements ® € C, (V, W, F) of
the spaces (4.2), is defined by

1D =E.D, (5.6)

where . denotes the action given by the vector of each element of £ acting on ®. A vertex
operator added by 4/, has a formal parameter associated with an extra point p,4; on M
with a local coordinate c¢;+1(pn+1)-

Then we obtain

Lemma 8. The definition (5.6) is equivalent to a multi-point vertex algebra connection

Sn®=G(p1....., pn+1), (5.7

where

G(pry -y ) = (W, Y (=1 @ (v (v, ¢ (pi) = izt (Pix1))Vis1)),
i=1

+Hw', ow (v1, c1(p1) P2, c2(P2); - - - Vnals Cn(Prs1)))
+H=D"M W, ow et enet (Pre1)) @1, 1 (p2)s -5 Ups ca(pn))),
(5.8)

for arbitrary w' € W' (dual to W ).
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Proof. The statement follows from the intertwining operator (cf. “Appendix 8.2”) rep-
resentation of the definition (5.7) in the form

3
S ® = (' VY ol (@) ),

i=1

for some &; € C, and u; € V, and ®; obvious from (5.7). Namely,

81 = (w', et PIEWED W (D (2, c2(p2); -5 Uny Cntt (Pr1) — €1(p1)) V1))

+ Y (=D VD ol (D (v (i i (pi) = cin(pin)) , —0)) 1v)

i=1

+<w/7 e€n+1(Pn+1)Lw(—l) a)‘/vgv (® (v1, 1 (PI); s Un,y Cp (pn) — Cn+l (Pn+l)) vn+l)>7
for an arbitrary ¢ € C. O

Remark 7. Inspecting the construction of the double complex spaces (4.2) we see that
the action (5.8) of the 4, on an element of C), (V, W, F) provides a coupling (in terms
of differential forms of W, . . ) of the vertex operators taken at the local coordinates
¢i(zp;), 0 < i < k, at the vicinities of the same points p; taken on transversal sections
for F, with elements of C r':l—l (V, W, F) taken at the points with the local coordinates
¢i(zp;), 0 <i < n on M for the points p; considered on the leaves of M/F.

5.3. Complexes on transversal connections. In addition to the double complex (C}},(V,
W, F), 85 provided by (4.2) and (5.7), there exists an exceptional short double complex
which we call the transversal connection complex. We have

Lemma 9. Forn = 2, and k = 0, there exists a subspace CSX(V, W, F)
CE(V,W,F) c CO.(V, W, F) c C3(V, W, F),
for all m > 1, with the action of the coboundary operator 531 defined by (5.7).

Proof. Let us consider the space C3(V, W, F). It consists of Wy, (p1).ca(py)-€lements
with zero vertex operators composable. The space Cg(V, W, F) contains elements of

Wei(p1),ca(pr) SO that the action of 8(2) is zero. Nevertheless, as for J(®) in (2.14),
Definition 12, let us consider the sum of the projections

P Wy oy = Wi,

forr € C, and (i, j) = (1, 2), (2, 3), so that the condition (2.14) is satisfied for some
connections similar to the action (2.14) of 85. Separating the first two and the second
two summands in (5.8), we find that for a subspace of Cé(V, W, F), which we denote

as C2 (V, W, F), consisting of three-point connections ¢ such that for vy, vy, v3 € V,
ex g p

w’ € W', and arbitrary ¢ € C, the following forms of connections
Gi(c1(p1), c2(p2), c3(p3))

=3 (' B @1 c1(pu); Pr (@ (v, ea(p) = €5 v, 3(p3) = ©))
reC
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', @ (v, e1(p: Pr (EY 2, c2(p) = G w3, e3(23) = £ 1v) 1€ ))

=> (W' ow 1. c1(p1) Pr (@ (2. e2(p2) — 1 v3.¢3(p3) — )
reC

+w', @ (v1, c1(p1); Pr (wy (2, c2(p2) — O wy (v3,¢3(23) — §) 1y), ),
(5.9)

and

Ga(c1(p1). c2(p2), c3(p3))
=3 (W @ (P (EY @rc1(p) = ¢ vz ca(pa) = £ 11)) 6503, e3(pa) ))

reC
+w', EyitV (P (@ (v1, c1(p1) — 3 va, e2(pa) = £), 5 v, 63(173)))))

=Y (W', @ (P (v (v1,c1(p1) — O oy (2, c2(p2) — Oy, £)); v3, ¢3(p3)))
reC

+w', oy (v3,¢3(p3)) Pr (P (v1,c1(p1) — &5 v2, c2(p2) — 1)), (5.10)

are absolutely convergent in the regions

lcr(p1) = ¢| > lea(p2) — ¢,

lc2(p2) —¢| >0,
[¢ —c3(p3)| > lei(p1) — ¢,
lc2(p2) —¢| >0,

where ¢;, 1 < i < 3 are coordinate functions, respectively, and can be analytically
extended to rational functions in c1(p;) and ca(p2) with the only possible poles at
c1(p1), ca(p2) = 0, and c1(p1) = c2(p2). Note that (5.9) and (5.10) constitute the first
two and the last two terms of (5.8) correspondlngly According to Proposition 2 (cf. Sect.
2.3), C2(V W, F) 1sasubspaceofC V., W, F),form > 0,and ® € C2(V W, F)
are composable with m vertex operators. Note that (5.9) and (5.10) represent the sums
of the forms Gy, (p, p") of the transversal connections (5.4) (cf. Sect. 5.1). O

Remark 8. 1t is important to mention that, according to the general principle observed
in [1], for the non-vanishing connection G (c(p), c(p’), c(p”)), there exists an invariant
structure, e.g., a cohomologlcal class. In our case, it appears as a non-empty subspace
C2(V,W, F) C C2(V,W, F)in C3(V, W, F).

Then we have

Definition 23. The coboundary operator
Sgr i CL(V, W, F) — C3(V, W, F), (5.11)
is defined by the three point connection of the form
82,8 = Eox - @ = Gex(p1, P2, P3), (5.12)

where

ex_(E(l) Z( D'Ey - W“>.>, (5.13)
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Gex(p1, P2, p3) = (W', ow (v1, c1(p1)) © (v2, c2(p2); v3, c3(p3)))
—(w', ® (wy (v1, c1(p1) oy (v, c2(p2))ly; v3, c3(p3)))
+w', @ (v, c1(p1); wy(v2, c2(p2)) wy (v3, c3(p3)1y))
+w', ow (v3, c3(p3)) @ (v1, c1(p1); v2, c2(p2))),  (5.14)

forw € W', ® € C2(V, W, F), v1,v2,v3 € V and (z1, 22, 23) € F3C.
Then we have

Proposition 9. The operators (5.7) and (5.11) provide the chain-cochain complexes

SCH(V,W, F) = CHLv, W, B, (5.15)
5;},*_11 08" =0, (5.16)
82,08 =0, (5.17)
0 m—1
0— OV W, F) 2 l(vwar)'"‘...‘—>cg1<VWf>_>o (5.18)
8
0—>C3(VW}')—>C2(VW}')—>C (v, Wf)&CO(VWf)—m
(5.19)
on the spaces (4.2).
Since

8 CYV. W, F) c C3(V, W, F) Cc C2(V, W, F),
it follows that
82 08d =68108) =0.

Proof. The proof of this proposition is analogous to that of Proposition (4.1) in [43] for
the chain-cochain complex of a grading-restricted vertex algebra. The only difference is
that we work with the space We, (p)).....co(p,) insteadof W, . . Let® € CIL(V, W, F).
First, we show that §, ® € C "+11 (V, W, F).Indeed, it is clear from (5.5), the definitions
of the E-operators given in “Appendix .3”, and Definitions (4.2) and 22 that the action
of the coboundary operator 8, increases the number of the vertex operators for ® with
the vertex algebra elements (v, ..., v,4+1) With the local coordinates ¢; (p;) around the
points p;, I < i < n + 1. Simultaneously, according to Proposition 2, it decreases
the number of the vertex operators with the vertex algebra elements (v, ..., v;) and
with the local coordinates c;( p}), 1 < j < k, with which ® is composable. Note that
8n @ has the L(—1)-derivative property and the L(0)-conjugation property. Therefore,
it decreases the number of the transversal sections for §/;, ® according to the definition
(4.2). Thus, 8 @ € C"*ll(V W, F). Then consider

.....

8™ G(p1, ...y pus1)

(Eé[l/), S ED, W“)-) G(pr, - pus2)

= EY (Ey).®) + Z<_1>fE;;>.ansj<E<V{>l_)q>>
j=I1
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1 1 2 1
+H=D)"EY (Onen 1, (B @) — EV) (EY) @)

n+l n+l

+3 =D ST (=) s (B ) (Ins (B ) @)
i=1 j=i+2
n+l i—2

+3 =DY (= 1) Ins; (B, ) (ns (EY, ) @)
i=1 j=1

2 1 1 1
+(One1 1, 08041 (B ) ) (E ) ®)) = 00in 1, nst (B 0net 1,.n (B @),

where Ins; (E) denotes the insertion of the action of the E-operator at the ith position.
In [43] it was proven that

1 1 2 1
Ey) (Ey @) = EJ)\(Ey).@),

n n+l1
1 1 2 1 2 1
Y (=D EY (ns;(EP)®@) = =Y (—DiInsi (B} ) (B} @),
j=1 i=2
EY) (0ns1.1,..n (BN @) = Opia1,..ne1 (EYy (Efy @),
n+l i—2
1 i 2 2
> =D (=) Insi (B ) (nsj (E ) @)
i=1 j=1
n+l n+l
1 i— 2 2
== (=D" Y (1) s (B ) (Ins (B ) @),
i=1 Jj=i+2
2 1 1
(Ot 1 INSpe1 (B (B @) = 0021 st (BY Onet 1, (EYy) @),
Therefore, §!, G(p1, ..., pn+1) vanishes and one has (5.16). Similar considerations are
applicable to (5.19) and (5.17). |

5.4. The vertex algebra cohomology and its relation to the Crainic and Moerdijk con-
struction. Now let us define the cohomology associated with a grading-restricted vertex
algebra V of the space of leaves M /F for a codimension one foliation F.

Definition 24. We define the nth cohomology H;'(V, W, F) of M/F with coefficients
in W, .. ;, (containing maps composable with k vertex operators on k transversal sec-
tions) to be the factor space of closed multi-point connections by the space of connection
forms:

HI(V.W, F) = Conll, ,/G5). (5.20)

Note that due to (5.8), (5.14), and Definitions 5.1 and 5.2 (cf. Sect.5), it is easy to see
that (5.20) is equivalent to the standard cohomology definition

HNV, W, F) =ker 8 /Im &', (5.21)

Recall the construction of Cech-de Rham cohomology of a foliation [15]. Consider a
foliation F of codimension one defined on a smooth complex curve M. Consider the
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double complex

cH= [ <wo. (5.22)

hy o g
Uy— - —>Ug

where Q! (Up) is the space of differential /-forms on Uy, and the product ranges over all
k-tuples of holonomy embeddings between transversal sections from a fixed transversal
basis . Components of @ € Ck! are denoted byw (hy, ..., h) € Q! (Up). The vertical
differential is defined as

(_1)kd . Ck,l - Ck,l+1
where d is the usual de Rham differential. The horizontal differential

8 : Ck,l — Ck+1’1,

is given by
k
§=) (=1)s;,
i=1
Siw (hy, ..., hiv1) = G(hy, ..o, hge), (5.23)
where G (hy, ..., hr+1) is the multi-point connection of the form (5.1), i.e.,

hTZZT(hz,...,hp.,.l), ifi =0,
(SiZD'(h1,...,hp+1)= ZD'(h],...,hi+1/’li,...,hp+1), if0<i<p+1, (524
w(hy, ..., hp), ifi =p+1.

This double complex is actually a bigraded differential algebra, with the usual product
@ - (ht ) = (D @ ) B ). (5.25)
forw € Ckland y e k' thus (w - n(ht, ..., i) € CkH I+

Definition 25. The cohomology ﬁzj(M /F) of this complex is called Cech-de Rham
cohomology of the leaf space M /F with respect to the transversal basis /. It is defined
by

H{(M/F) = Conf (hy. ... 1)/ G (hy. ... hy),

where Conlc‘;rl (h1, ..., hgs1) is the space of closed multi-point connections, and Gk (hy,
..., hy) is the space of k-point connection forms.

In this Subsection we show the following

Lemma 10. In the case of a codimension one foliation on a smooth complex curve, the
construction of the double complex (C k.t 8), (5.22), (5.23) results from the construction

of the double complexes (C;,Q(V, W, F), 8,';) of (5.18) and (5.19).
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Proof. One constructs the space of differential forms of degree k

(w', ® (d61(p1)‘”“”') @ v, c1(p1); ... s den(pa) ¥y, cn(pn))), (5.26)

by the elements ® of C;, (V, W, F) such that n = k and the total degree

n
Do wtw) =1,
i=1

v; € V. The condition of the composability of ® with m vertex operators allows us make

the association of the differential form @ (hy, . .., h,) with (5.26), and (A7, ..., h}) with
(v, ..., ), and to represent a sequence of the holomorphic embeddings 41, ..., hp
for Uy, ..., Up in (5.22) by the vertex operators ww, i.e,

(h(hY) .. h(B)) (21, -y 20) = ow (V1,11 (p1) - .. ow (v, 1(pn)) -

Then, by using the definition of the coboundary operator (5.7), we see that the definition
of the coboundary operator of [15] is parallel to the definition (5.7). O

6. The Product of C}, (V, W, F)-Spaces

In this Section we consider the application of the material of Sect. 3 to the double complex
spaces C); (V, W, F) (Definition 18, Sect. 4) for a foliation F on a complex curve. We
introduce the product of two double complex spaces with the image in another double
complex space coherent with respect to the original coboundary operators (5.7) and
(5.11), and the symmetry property (2.9). We prove the canonicity of the product, and
derive an analogue of Leibniz formula.

6.1. The geometrical adaptation of the e-product to a foliation. In this Subsection we
show how the definition of the product of W, . . -spaces can be extended to the case
of C ,’f (V, W, F)-spaces for a codimension one foliation of a complex curve. Recall the
definition (4.2) of C ,’f (V, W, F)-spaces in Sect. 4. We use again the geometrical scheme
of the sewing of two Riemann surfaces in order to introduce the product of two elements
(O} Cf; V., W, F)and V¥ € C;;, (V, W, F) which belong to two double complex spaces
(4.2) for a foliation F. The construction is again local, thus we assume that both spaces
Cfn (V, W, F)and C, ,(V, W, F) are considered on the same fixed transversal basis U.
Moreover, we assume that the marked points used in the definition (4.2) of the spaces
Cf‘n(V, W, F) and CZ/(V, W, F) are chosen on the same transversal section.

Let us recall again the setup for two double complex spaces Cfn (V,W,F) and
Cl (V. W, F).Let(p1, ..., pk), (P1, - - - » Pn) be two sets of points with the local coor-
dinates (c1(p1), ..., ck(pr)) and (€1 (P1), ..., ¢y (Py)) taken on the jth transversal sec-
tionU; € U, j > 1, of the transversal basis /. For k > 0,n > 0, let ckwv,w, F)Uj)
and C"(V, W, F)(U;), 0 < j <, be as before the spaces of all linear maps (2.18)

.....

W VE - We ). (6.1)

composable with /1 and /5 vertex operators (2.21) with the formal parameters identified
with the local coordinate functions c; ( p;.) and E”] ( p},) around points p;, p;.,, on each of
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the transversal sections U;, 1 < j </j,and Uy, 1 < Jj' < I, correspondingly. Then,
fork>0,1<m</[,andn >0,and 1 <m’ <y,
according to the definition (4.2), the spaces C,lfl(V, W, F)and C, ,(V, W, F) are:

cLvw.H= () cvw AW, (6.2)

hy hp—
Up—.. = Un
1<i<m

VWU F)= () CVWFWU, (6.3)

" n /_
TS
1<i’<m'

m’

where the intersection ranges over all possible m- and m’-tuples of the holonomy em-
beddings h;,i € {1,...,m — 1}, and h;,, i’ e{l,...,m' — 1}, between the transversal
sections (Uy, ..., Uy) and (Uy, ..., U, ) of the basis U for F.

Let ¢ be the number of the common vertex operators for the mappings ® (v, x1; .. .;
Uk, Xk) € C,’;(V, W, F) and W(vy, y1;...5 0, yn) € C’,(V,W, F) are composable
with. We then have the main proposition of this Section

Proposition 10. ForCD(vl,xl’;\. LUk, X)) € Cfn(V, W, F)and ¥ (v}, y1;...5 ), yn) €
C;,(V, W, F), the product R © (vl,x1; c) Uk, XK vg, Vi5 .3 Uy Yus 6) (3.16) be-
longs to the space ckn=r (v W, F), ie.,

m+m’ —t

e 1 CEOV W, F) x CL(V, W, F) — CRmer (v oW, F). (6.4)

m+m’ —t

Proof. InPropositionSweprovedthatI/Q\@ (U1, X153 ... Uk, Xk vi, Viseoos v;l, Yns e) I=
Waisooxevi,...ya- Namely, the differential form corresponding to the e-product R
O, X15 ... Vk, Xk vg, Y15 ...3 Uy, Yn; €) convergesin e, and satisfies (2.9), the Ly (0)-
conjugation (2.7) and the Ly (—1)-derivative (2.2) properties. The action of o € Sg4y,—r
on the product © (v, X1; ... 5 Uk, Xki Upyys Y15 - - -5 Uy, Vi €) (3.16) is given by (2.1).
Then we see that for the sets of points (p1, ..., px; p}, ..., py), taken on the same
transversal section U; € U, j > 1, by Proposition 5 we obtain a map

RO (V1 X150 ks Xk5 V), V15 e U Vs €)

. ®k+n)

VIR = W)l Pl (6.5)
with the formal parameters (z1, . . ., Zk+n—,) identified with the local coordinates (¢{ (p}),

- ¢ (pyn—,)) of the points
(PLseos Phony) = (Plo ooy PES DL - - - pl{l, s D)

for the coinciding points p;, = p;.l, 1 <1 < r.Next, we prove
Proposition 11. The product ® (vl,xl; C VR XK VL VL e Uy Y e) (3.16) is com-

posable with m + m’ — t vertex operators.

First we note
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Lemma 11.
/ E(m+m’) ” . oo .
<w7 w v]azla"'avm+m’azm+m/a
qeC
P, (OO R Vil
q (Um+m/+17 Zm4+m'+15 + 3 Uy sk s Sm+m’+k+n )
l 1 p(m) . . .
:ZG Z(waEW (vk+11xk+ls"'avk+m1xk+m1
leZ ueV
w . .
Py (YWy @1 x1s v 30, 8 w)))
ropm) (g . Lo .
(w', Eyy (v,,+1, Yutls - o3 Uyt > Yum'>

Pq(Yv”‘}’V (W), y15 -5 00 ) £2) ﬁ>>>

Proof. Consider

1 1 o (mm’) (o . o .
ZE Z(vaW U]le,--~,Um+m/,Zm+m’s
leZ ueV

w " . oo
P, (YWV (q)(vm+m/+1’ TmAm’+15 +++ 5 Uy ks T+’ +k ) s ;1) u>)>
1 opmAm’) (o Lo .
(vaW <UI3Z1»"'1vm+m/1Zm+m/s
w " . L —
P‘I (YWV (\IJ (Um+m’+k+1’ Lt/ +l+ 15« + =5 Vo ks Zmtm'+k+n)» é-2) u) >)>

i ;o mm’y (. Lo .
ZZZG Z(w,EW Vis 215 -5 Vs Zmtm’ s

qeCleZ ueV;

Ly (-1 " . L
Py(7 0 iy 1 =80) ®Capats T a1 -5 Uy s k) ))
r (mm’) (o . oo .
(w', Eyy (vl,m,...,vm+muzm+mu

Lw(—1 — " . .
Py (e§2 wi=1) Yw (u, —22) ‘y(vm+m/+k+1’ Tm+m/+k+15 + -+ 3

1
Uy +k+n > Zmam/+k+n) ) )

The action of the exponentials ebalw(=1) 4 — 1,2 of the differential operator Ly (—1),
and a grading-restricted generalized V-module W vertex operators Yw (4, —¢1), Yw
(u, —&) shifts the grading index g of the W, -subspaces by a € C which can be later
rescaled to ¢. Thus, we can rewrite the last expression as

i r pmm’) (o . Lo .
5 S, B (0,

qeCleZ ueV;

Lw(—1 " . Lo

eS1kw(=D Yw (u, —¢1) Pyia ((D(Um+m/+1, Tmam’+15 + 3 Uy s Zm+m’+k)) ))
;o (mm) (o . o . Ly (-1 —

(w aEW (Ul,Zl, --~,Um+mhzm+m/ve§2 LA Yw (, —{2)

" . Lo
Pq+a (‘I’(Um+m/+k+1, Zma+m/+k+15 « -5 Vo' ik s Zm+m’+k+n)>>
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l ropmamy (o .
:ZZG Z(u),EW Ul,Zl,~-~yvm+m/7Zm+m/v

qeCleZ ueV,

W " . 7
Yyv (Pq+<x (cD(UWH.m/.,.p Zmam/+15 -+ 5 Vi ke Zm+m’+k)>v fl) u)
;o mmrm’y (g . Lo .
(w', Eyy (v1,11,...,vm+m/,zm+mu

1% " .
Yyy (Pq+or (‘I’ (Uprm! sk 1> Tmbm 415

" _
3 Ui/ +k+n > Tt/ +en) s _;-2) u)>

;o (mam’y [y . oo L~
:Z Z(w,EW (vl,zl,...,vm+m,,zm+m/,w>)

qgeCwew

1 / w " .
26 Z (w', Ywy ( Py (CD(Uerm,_H, Zm+m'+15
leZ uev;

1"
s Ve +k Zmam/+k)> —C1) u) ))
~/ E(m+m/) " . o L~
<wa w U1,21,~-wvm+m/vzm+m/vw )
/ w " .
(w’, YWV (Pq+a <\Il(vm+m’+k+l’ Tm+m/+k+15

" —
3 Upem/+k+n > Zintm'+k+n)s —62) u) ))

j : o ommAmy (o Lo .
= (w’EW (vlvzlv"‘vvm+n1/7zm+m/v
qeC
P YO . Lo .
q+o (Um.'_m/.,_]a Zm+m/+15 «+ 5 Uik Tmm/+k s
1 . Lo
U/ +k+1° Smam/+k+15 «+ 5 Vppprikins Tt/ +ktn) )) -

Now note that, according to Proposition 7, as an element of W, |

s Zhen+m+m’
;o mam’) [ n . oo .
(w,EW <U17117-~-, Vyrem’ s Lm+m’ s
P YOl . Lo .
q+a (Um+m’+l s ZmAam/+15 «+ 5 U/ ks Tmam’+k s
1" . Lo
Ut +k+1° Smam/+k+15 «+ 5 Vppriins Zm+m’+k+n)>>’ (6.6)

is invariant with respect to the action of ¢ € Siy,+m+m’. Thus we are able to use this
invariance to show that (6.6) is reduced to

’ m+m") ( . oo oo . R/ .
(w', EW Ukt1s Thk+1s - o+ 5 Ukl Ckl4ms Upgts Tntls -« -5 Vi s Sntl4m’ s
"o o . Lo
Pq+0t <®(U1 PR R Uk s Zks Uk+] s Thktls o v s vk‘H’l’ Zk+n))))
) - - Ly :
= (w', w Uk+1s Xk+15 -+« - 5 Vktl4ms Xk+1+ms Vpg1s Yntls -« -3 Uy prs Yodlam/s

/
Pq+a<®(v1,x1; e Uk XS UL, VLG Uy yn))>.
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Similarly, since

ropm) (o . Lo .
(wsEW <v]9Z17"'svm+m/1Zm+m/1

w " . Lo
P, <YWV (f(vm+m/+17 Znam/+15 + 3 Uy s Zmm/+k) fl) ”))%
’ m (.n . o .
(w', Ey (vl,zl,...,vm+m,,zm+mu

w 4 . L —
Pq <YWV (F(vm+m/+k+] s TmAm/+k+15 + - 5 Um+m/+k+n’ Zm+m’+k+n)’ ;2) M)))

correspond to the elements of W,
tion 7 again and obtain

and W, we use Proposi-

< Zmam! +k mam! +k+ 10 Zmam/ +k4n

(w', E‘(y)(ka,an; s Vkams Xkams Py (va‘yv (F(u1, X155 Vks X)), §1) M)))
(w', Eé'v")(vlm,ynﬂz e Vs Ynem' Pq(YVVVVV (FOL v -5 00 ). &) ﬁ)>>

correspondingly. Thus, the assertion of Lemma follows. O

Under conditions

zi" ;ﬁ Zj”a l-// # jﬁ,

|zir| > lzgm| > 0, 6.7
fori” =1,...,m+m’,and k" =m+m’+1,...,m+m’ +k+n, let us introduce
k+n ropmam’y (o S .
Them ©) = 3w B (o] 215 s 2
qeC
" . . Vi .
Py(OWh st Zmam st -3 Vst Tmemisksn): O)) (68)

Using Lemma 11 we obtain

| Tin (©)]

;o mam’) [ n . o .
= Z(w’EW (vl’zl”"’vm+m”Zm+m/’
qeC

" . Lo .
Py (® (Vi1 Zmam/+15 « =3 Uy porikesn s Zmm/+k4n) 6)))‘

l 1 g (m) . . .
= ZZG Z(w7EW <Uk+11xk+ls"'avk+m9xk+ms

qeC leZ ueV,

Pq(YVVVVv (D (v1, X152 Uy X1, £1) u)))
(w', E‘({,")(vﬁ,ﬂ, Vitls o3 Unyrs Ynm's

Pq(Yv‘?fV (W@, yii-e5 0 ). &) ﬁ>>>)

SINAESIINAES

)
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where we have used the invariance of (3.16) with respect to o € S,,4m/+k+n- In the
last expression, according to Definition 12 jmk (®) and J m”, (W) are absolute convergent.

Thus, we infer that 7 n’iifn ,(®) is absolutely convergent, and the sum (6.19) is analytically

extendable to a rational function in (z1, ..., Zk+n+m+m’) With the only possible poles at
X; = Xj, yi = yj, and at x; = y, i.e., the only possible poles at z;» = z;», of orders
less than or equal to Nr’;’jr%,(vlfi,, v}’,,), fori”, j" =1,..., k", i" #j". O
Now, we are on a position to prove Proposition 11.
Proof. Recall that ®(vy, x1;...; vk, Xx) is composable with m vertex operators, and
W(v], y1; .. .5 vy, yp)is composable with m’ vertex operators. For ® (v, x1; ... ; vk, xx)
we have:
1)Letly,...,Ilx € Zysuchthat/i +...+ly = k+m,and vy, ..., vk € V, and
arbitrary w’ € W'. Set
_ li . . .
a1 =E$/)(vk|’xk1 _é‘i’ukaivxki_gisl\/)’ (69)
where
kh=L+...+li_1+1, -, ki=L+...+_1+1;, (6.10)
fori =1, ..., k. Then the series
Iy (@) = Y (W ®(PyEiifri...: Py o), (6.11)
Flyeens rkGZ

is absolutely convergent when

Xt 4.t 4p — Sl F X141y 4g — Gl <180 = &5, (6.12)
fori,j=1,...,k,i # jandforp=1,...,l;andg =1, ...,[;. There exist positive
integers N,’ﬁ,(v,-, v;), depending only on v; and v; fori, j = 1,...,k,i # j, such that
the sum is analytically extended to a rational function in (x1, ..., Xk+m), independent
of (¢1, ..., &), with the only possible poles at x; = x;, of order less than or equal to
NK i, vj), fori, j=1,... ki#j.

For W(v{, y1:...; v, y,) we have:
I’y Letl},...,l, € Zy such that I + ...+ 1, = n+m', v|,..., v € V and
arbitrary w’ € W'. Set
—/ (l;/) / / / /
L:Al/ = EV (ka’yk/l _Cl/; ...;Uk;/, ykl’, _é‘l/;lv), (6.13)
where
ki =1 +~-~+llf,71 +1, ..., kl/ =1 +...+l;,71 +llf/, (6.14)
fori’ =1, ..., n. Then the series
W) = Y (W WP s Py C),s (6.15)
Floeonsty €L

is absolutely convergent when

!/ /! / !/
|YZ1+..A+ZIT,_I+p’ — &l + |yl;+-~-+l.’/.,_l+q/ =&l < 1§ — §j1|» (6.16)
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fori’, j/ =1, i’ # j and for p’ =
n /

posmve mtegers Nm, (vl., ,

independent of (¢{, ...,

or equal to N;;/(vlf/, v;./), fori’, j'=1,...,

v;.,), depending only on v;, and v}, fori,j=1,...
such that the sum is analytically extended to a rational function in (yq, ...

A. Zuevsky

There exist

’n’i/#j/a

) yn+m/),

Ll and ¢' = 1,...,l}.

¢,), with the only possible poles at y;; = y;r, of order less than
n, i’ #j.

Now let us consider the first condition of Definition 12 of the composability for

the product (3.16) of ®(vy, x1;...;

vk, xe) and W (v, yis ..
of vertex operators. Then we obtain for ® (v1 S X1
following. We redefine the notations for the set

), yp) with a number

ks Xk Vps V13 -+ 23 Uy, s €) the

"

" /" . /
(vl e Vs vk+1’ w0 Uk Vkama s - -0 Virnmam? > Untls - o vn+m’)
= (V1 e ey Uk Uktls v e vy UVkama Uhs oo s U0 gy 00,
ks Vk k 1 n> “n+l n+m
(Z1s v v s Zh3 Zhtls oo v Zhtn—r) = (X5 oo o Xk5 V1s v e v Y)s
of the vertex algebra V elements. Introduce /7, ..., [/, € Z,,suchthat/{+-- -+ =
k +n+m +m’. Define
/ /;’) 1 4 1
(Uk//, Zk// ;i//; ey Uklf;/, Zk’{’” - é‘i//; IV), (617)
where
{=1+ +llff,_1 +1, ..., 1{5/ =1{+- +llff,_1 +llff,, (6.18)
fori” =1,...,k+n, and we take
/" " Lo /
(S ¢ I (S TR ¢ S S IR 4
Then we consider
k+n / //
@) = Y (W, 0Pl Py W gl,)), (6.19)
NN~/
and prove it is absolutely convergent with some conditions.
The condition
"
|Zli’+~--+l'f’_l+p” - gi |+ |Zli/+'“+l//,—l - ;1 | < |é-l - é-] | (620)

of the absolute convergence for (6.19) for i”
Jandg”" =1,...,

ofeﬁLw(—“ Yw(,),a=1,2in

(W, D Yy —g) Y Py E G
Flyees k€L

(W', 2D Yy @, =) Y WP B Qs

"=1,...,k+n,i # jand for p” =

l ;’, follows from the condltlons (6.12) and (6.24). The action

; Prk Ekv fk)),

/ /
r,: Eyp é‘n))»

does not affect the absolute convergence of (6.11) and (6.15). We obtain

m+m

‘Ik+n ,(@)‘
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= Y W OWPsELL . Py Bl b))

Th+n

=D D vy Z ® (P E1i C1i -t Py Bk Gi). D))

leZ  ueV; Flyes ik EL

(W, YWy (D W(PLE ¢l .5 Py €, 6, D)

/ ’
AN R/

< |Th @) |Z5W).

Thus, we infer that (6.19) is absolutely convergent. Recall that the maximal orders of
possible poles of (6.19) are N,]fl (vi, vj), Nr"'l,(vlf,, v/,) atx; = x;, yi = y;. From the last
expression we infer that there exist positive integers N ,]ﬁ:r’;l, (v s /-/,,) fori,j=1,...,k,

i #j,i’,j’=1,...,n,i’ # j,depending only on vl.,, andvj,, fori”,j” =1,....k+n,
" # j” such that the series (6.19) can be analytically extended to a rational function in

(X1, ++s Xk3 Y1, - - - » Yn), independent of (g“” .. k+n) with extra possible poles at and
x; = yj, of order less than or equal to fon,(v Y ,,) fori”, j" =1,...,n,i" #j".
Let us proceed with the second condition of the composablhty For ® (v1 L X153 e e Uk,

xp) € CK(V, W, F),and (v1, ..., Vgsm) € V, (X1, ..., Xksm) € C, we have
2) For arbitrary w’ € W', the series

T (@) = (W, Eéﬁ")(vl,xu oo Ums Xy Py (@ (Umas X1 -5 Um+k»xm+k>>,

qeC
(6.21)
is absolutely convergent when
X #xj, 1#],
|xi| > [xx| >0, (6.22)
fori =1,...,m,andk’ =m+1, ..., k+m,and the sum can be analytically extended
to arational functionin (x1, . . ., Xx4,) With the only possible poles at x; = x, of orders
less than or equal to N,’;(vl-, vj),fori,j=1,...,ki#j.
2’) For W(v{, y1:...: vy, ya) € Co (VW F), (v), ..., v, ) € V,and (y1, ...,
Vnam') € C, the series
T (W) =Y " (w', ESV")(vi, VIS5 U Yo'
qeC
Py W Vst -3 Vs Y)) ) (6.23)

is absolutely convergent when

yir #yj, i #EJ
lyirl > |yxr| > 0, (6.24)
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fori’ =1,...,m',andk” = m’+1, ..., n+m’, and the sum can be analytically extended
toarational functionin (yy, .. ., Yu4,) With the only possible poles at y;» =y, of orders
less than or equal to Nr’;l,(vl@, v},), fori’, j'=1,...,n,i' #j.

27) Thus, for the product (3.16) we obtain (v{,...,v/,, . . ) € V,and (z1,...,
Zkrnemam') € C, we find positive integers N 5:;1/(”1{’ v;.), depending only on v/ and v}’ ,
fori”, j” = 1,...,k+n,i” # j”, such that for arbitrary w’ € W’. This finishes the
proof of Proposition 11. R

Since we have proved that the product R ® (vl,xl; R VN A VN T VA 6)
is composable with a m + m’ — r of vertex operators (2.21) with the formal parameters
identified with the local coordinates c ( p}/ ) around the points (p1, ..., pk; Py, .-, Pp)
on each of the transversal sections Uj, 1 < j < [, we conclude that according to
Definition 17, the product R © (v1, X1; ... ; Uk, Xki V], Y15 - .. U, Yn; €) belongs to the
space

m+m’—t

oL VWU R = [} T AU, (625

hy P! —1

U= m+m’

1<j<m+m'—t
where the intersection ranges over all possible m+m’ —t-tuples of holonomy embeddings

hi,i €{l,...,m+m’ —t— 1}, between transversal sections Uy, . .., U,y 4m'—;—1 Of the
basis U for F. This finishes the proof of Proposition 10. O

7. Properties of the e-Product of C,’j, (V, W, F)-Spaces

Since the e-product of ® (vy, x1;...; vk, X;) € C,’;(V, W, F)and W (v, yi;...: V), ¥a) €
CI (V, W, F) results in an element of C,’;Y;i, (V, W, F), then, similar to [43], the fol-
lowing corollary follows directly from Proposition (10) and Definition 14:

y, With the product (3.16) © €
We, o zken_y) CONSisting of linear maps hav-
ing the Ly (—1)-derivative property, having the Ly (0)-conjugation property or being
composable with m vertex operators is invariant under the action of Sgyn—r. ]

..........

,,,,,

We also have

Corollary 2. For a fixed set (vy, ...V} Vksl, ---» Vkin—r), Vi € V, 1 <i < k+n —
r_of vertex algebra elements, and fixed k + n — r, and m + m’ — t, the e-product
R ©(vi, 215 .5 Uk, Tk} Uk, Zht15 - - o5 Vkan—rs Ykan—ri €),

1 CR OV W, ) x € (Vo W, F) — R (v ow, B,

m+m’—t

of the spaces Cfn(V, W, F) and C,’;,(V, W, F), for all choices of k, n, m, m" > 0, is
the same element of ckn=r (v,ow, F) for all possible k > 0. O

m+m’ —t

Proof. In Proposition 5 we have proved that the result of the e-product belongs to
Wei.....ziany» for all k, n > 0, and fixed k + n — r. As in the proof of Proposition 10,
by checking the conditions for the forms (6.11) and (6.15), we see by Proposition 2 that
the product R ®(vy, X1; .. .; Uk, Xk; vi, VI5eeos v;l, Vyn) is composable with the fixed
m +m’ — t number of vertex operators. O
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By Proposition 7, elements of the space W, resulting from the e-product (3.7)

~~~~~ Zk+n—r
are invariant with respect to group (Aut O) le<k+'§;1),,

formal parameters. Now we prove the following

Corollary 3. For ® (v, x1;...; Vk, Xk) € Cfn(V, W, F) and W (v}, y1;...; Uy, Yn) €
C),(V, W, F), the product

of independent changes of the

) / 1
R G)(vl,xl; o3 Uk, Xk VL, VI ...;vn,yn;e)
/! /
= @(V1, X155 Vs Xk) e W V15 -5 Uy Vi), (7.1)
is invariant with respect to the action

(Z13 ] Zk+n—r) = (Z/lv R Z;c+n—r) = (IO(ZI)’ R )O(Zk+n—r))v (72)

of the group (Aut (’))Z(HZ;:L
Proof. In Sect. 3.3 we have proved that the product (3.7) belongs to W, .

is invariant with respect to the group (Aut O)le(kﬂé,;?fr Similar as in the proof of

Proposition 8, the vertex operators wy(v;,x;), 1 < i < m, composable with
®(v1, x1; .. .5 vk, Xx), and the vertex operators wy (v;, y;), 1 < j < m’, composable
with \IJ(v{, Y15 ...5 0y, Yn), are also invariant with respect to independent changes of

coordinates (0(z1), . .., P(Zken—r)) € Aut OZX](HZ,;;L O

s Tkn—r? and

7.1. The coboundary operator acting on the product of elements of C,,(V, W, F)-
spaces. In Proposition 10 we proved that the product (3.16) of elements of spaces

C,’;(V, W, F)and C! (V, W, F) belongs to CYI‘HYLTV_t(V, W, F). Thus, the product ad-
and 82" defined in (5.7) and

mits the action of the coboundary operators 8,];:';7_ , P
(5.11). The coboundary operators (5.7) and (5.11) possess a variation of Leibniz law

with respect to the product (3.16). Indeed, we state here
Proposition 12. For ® (vy, x1; ... ; v, xx) € CK(V, W, F)and W (v}, y1; ... v}, yn) €

g}%;}(lgi/;}:ogb);ctﬂég.c;gt)i?;tgoléilzebcyoboundary operator Sf;’;;r_t (5.7) (and 83;_’t (5.11))
S (D1, X1 Ok, X%) e WL, V1G5 V), )
= <8§1¢(Ul, 215 .. Uk, Zk)> e W(Ukels Tkl - - -3 Vkn—rs Zhan—r)
HD @ 213 T 2 e (S W zarti 3 Tesnrs o))+ (7.3)

where we use the notation as in (3.1) and (3.17).
Proof. For the vertex operator Yy w (v, z) let us introduce the notation

wy.w = Yy.w,z) dz"'.

Let us use the notations (3.1) and (3.17). According to (5.7) and (5.8), the action of

k+n—r D . . cay/ . Ca . e ol

8m+m,7t on RO, X15 ... 5 Vk, Xk Vs V15 -« 5 Vs Y €) is given by
1 oktn—r 1o . . L . Lo .

(w8, ROWL, X155 Uk, Xk U, V15 -5 Uy, Vs €))
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k
= (v, Z(—l)’ R O, 215 .5 Vi—1, 2i—1; @v (Ui, Zi — ZisD)Visls Zitls Vit2, Zi42s
i=1
o3 Uk ZkS Ukt Ly a1 - -+ 5 Ukns Tkt €))
n—r
(=D (W O @1, 215 s Tk 2k Vet Tkl - -3 Dksi— 1 Zhti— 1
i=1
wy (5k+i, ki — Zhk+i+l) 5k+i+1 s Zk+i+ls
Tjk+l‘+27 Th+i+25 «+ + 3 Ek+n—r’ Zktn—r; €))
/ ~ ~ . . ~ . ~ . . ~ .
+<w ) Ll)W (vlv Zl) @(UZ, Z29 LI ) Ukv st vk+lv Zk+17 LI ) vk+n—rv Zk+n—ra 6))
ktntl— ~
+<w’ (=D A rwW(Uk+n7r+lv Zktn—r+1)

OW1, 215 -+ -5 Uk, Tk Vkals Tk 15 - - - 3 Vkanrs Thn—r: €))-

Using (3.7) we see that it is equivalent to

k
I i ~ ~ ~ ~
26 (w', Z(—l)l Yow @@, 215 .3 Bimt, 2i1s @y @iy 2i — Zis)) Vel Zitls
1€Z i=1
Vig2, Zi42} -+ -5 Uk 2K, S1U)
w ~ ~ —
(w', YV w (O @itt, Zhksts - - -5 Vktn—rs Thtn—r), $2)U)

n—r
+Y D DT WL Y (@ @z Bk 20 L ) w)
leZ i=1
(W, Y9 (W Va1, Zhtts -« 5 ki1 Thti—1)
@y (Ui, Zkti — Thti+1) Vkitls Thoti+15 Vkai+2s Theti425
cees Ek+n7ra Zkn—r), $2)U)

1 ~ ~ ~
+Z€ (W', Yy (0w @1, 21) @@, 225 -3 Bks 20), S1)U)
leZ
w ~ . —
(W', Yy (W (Tka1, Zkt1s - - -5 Vkanrs Zhtn—r)s £2)10)
i w K+l ~ ~
+ Y W Y (D 0w @rer, zke1) @1 2152 s 20), L))
leZ
w ~ ~ —
(W', Yy (W (Vks2, 2k425 - - -5 Vkbn—rs Zhan—r), $2)U)
Ly, 1 k+1 ../ YW ~ o . L~
=) e{w, (=D (w, Yy (0w Oks1, 2k1) P01, 215 -0 5 Uk, 20)5 S 1)
leZ
w ~ ~ —
(W', Yy (W (Tks2, 2k425 - - -5 Vkaners Zhan—r)» £2)10)
i w ~ ~
+Z€ (W', Yy (D@1, 215 -« o5 ks 20), C1)u)
leZ
W ~
(w/» Yvw(wW(Uk+n7r+l s Zhtn—r+1)
W (Vkg1,s Tkt 13 - - 3 Vkbn—rs Zhkn—r), $2)U)
i W ~ L~
- 26 (w/’ YVW((D(UI’ 2l eves Uk, Zk)s gl))
leZ

1 w ~
(w', Yvw(wW(vk+n—r+1’ Zhetn—r+1)
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W (Vkt1s Zks15 -+ - Vktn—rs Zhan—r)s £2))- (7.4)

According to the definition (9.14) of the intertwining operator and the locality property
(9.6) of vertex operators

e (DY (0w G i) @G 21 T 20, C0u)
leZ
(W', Yy (W (Wka2, 2k425 « « -5 Dkbnrs Than—r ) $2)10)
=Y e, (=D VOV Y (u, —21) ww B, 2ke1) PO 2155 Bk, 20))
leZ
(W, Yy (W (Tia2, 2k425 « « -5 Dkbnrs Zhan—r ) $2)10)
=Y W (D) VD oy @y, zien) Y (w, —8) @@, 25 - ke 20))
1eZ
(W', Yy (W @kr2, 2ks25 -3 Dhan—r Thtn—r)- $2)i0)
=Y ', (D" oy @rer, zre1 +20) YO0V @, —0) Q@ 215 T 2))
€7
(W', Yy (W Wks2, k42 - - - Dkanrs Zhtn—r)» $2)00).

By inserting an arbitrary vertex algebra basis and using the definition of the intertwining
operator (9.14) we obtain

Do 2 € D D ow @t 2k + 0D w)

veVueV, leZ ueV;
(W, S VD Yy, —¢1) @, z15 . Tk, 20)
(W, Yy (¥ Wz, 225 -+ 5 Vkan—rs Tkan—r)s $2)0)
=Y e VOV, —g1) @1 215 T )
leZ
WL DR o @ zksn + ) w)
veV
(W, Yy (¥ W2, 225 -+ 5 Vkanrs Zhan—r)» $2)0)
=Y W Y (@@ 25 e ), L)

leZ
(W', (=D oy Biet, 21 + 1)
Yoy (W (U2, 2425 - - -3 Dkbmer s Zhan—r)s $2)H)
= Zel(w/, Y‘EVW(CD(%,ZIQ e Uk, ZR)s S1U )
leZ
W, (=D ow @, zka1 + 1)
VOV Yy (i, —00) W Va2, 2ke2i - - -3 Thbnrs Zhtn—r))
=> €W Y (@@ 2155 Bk, 20). S )
leZ

(W', (=DM LVED vy @ —00) 0w @, 2kel + 81— £2)

W (Ugs2, Zka2} - - -5 Vkn—rs Zktn—r))
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I w ~
=Y W, Y (@@, 215 - e, 7), Q1))
leZ
W ~ ~ L
(W', Yy (@w Ukrts 2ke1) Y (Oks2, 2425 - - -5 Vktners Zhan—r

due to locality (9.6) of vertex operators, and arbitrariness of U4 € V and zx41, we can
always put

ow (Vks1, Zks1 + 81 — ) = ow (Vis2, 2k42)s

for Vx41 = Vps2, Zk+2 = Zk+1 + &2 — £1. By combining the action of 8,’;, on®and g "
on W according to (5.8), (7.4) gives

D!, Yy e, 21 Tk 20, C0u)

leZ
(W', Yy (W Wet, 2kats - -5 Veonrs Than—r). $2)T0)
+H=D* Y e Yy (@ @z Tk 20) L G w)
leZ
(W', Yy 88 W Vet ket - -5 Vkan—rs Zhan—r): $2)10),

which gives (7.3) due to (3.7). The statement of the proposition for 8Zx (5.11) can be
checked accordingly. O

Remark 9. Checking (5.7) we see that an extra arbitrary vertex algebraelement v, € V,
as well as corresponding extra arbitrary formal parameter z,4; appear as a result of the
action of ), on ® e C; (V, W, F) mapping it to C,’:ﬂl (V, W, F). In application to
the e-product (3.16) these extra arbitrary elements are involved in the definition of the

: k+n—r . . I . e/
actionof §, "~ on @ (vi, x15 .. .5 Uk, Xk) e WV, Y15 -0 Vs V)

Note that both sides of (7.3) belong to the space C mn'=r—1y Y ) The cobound-

m+m’—t+1
ary operators 6), and 8;;:, in (7.3) do not include the number of common vertex algebra
elements (and formal parameters), neither the number of common vertex operators cor-
responding mappings composable with. The dependence on common vertex algebra
elements, parameters, and composable vertex operators is taken into account in the
mappings multiplying the action of the coboundary operators on .
We have the following

Corollary 4. The product (3.16) and the coboundary operators (5.7), (5.11) endow the
space C,(V. W, F) x C" (V. W, F), k, n = 0, m, m" > 0, with the structure of a

m+m’ —t
Finally, we prove the following
Proposition 13. The product (3.16) extends the property (5.16) of the chain-cochain
complexes (5.18) and (5.19) to all products C,],‘1(V, W, F) - CL,(V.W,F), k,n=>0,
m, m’ > 0.
Proof. For ® € Cl‘n(V, W,F)and W € C) (V, W, F) we proved in Proposition 10
that the product ® - W belongs to the space C***~" (v, W, F). Using (7.3) and chain-

m+m’—t

cochain property for ® and W we also check that

8k+n+17r o 5k+nfr (q> ‘e \I]) — O

m+m’'—1—t m+m’ —t



Product-Type Classes for Vertex Algebra Cohomology 1497
2— 1—-
535, 0817 (@ W) = 0. (1.5)

Thus, the chain-cochain property extends to the € product C ,’j, VW, F)-eC (V. W, F).
O

7.2. The exceptional complex. For elements of the spaces C ZX(V, W, F) we have the
following

Corollary 5. The product of elements of the spaces Cezx(V, W, F) and C) (V, W, F)
is given by (3.16),

:CE(V.W, F) x CL(V, W, F) — C'271(V, W, F), (7.6)
and, in particular,
e 1 C2(V,W, F) x C2L (VWL F) — Cy (V. W, F).

Proof. The fact that the number of formal parameters is n + 2 — r in the product
(3.16) follows from Proposition (5). Consider the product (3.16) for CEX(V, W, F)
and C,, (V, W, F). It is clear that, similar to the considerations of the proof of Propo-
sition 10, the total number m of vertex operators the product ® is composable with
remains the same. O

8. The Product-Type Cohomological Classes

In this Section we provide the main results of this paper. In particular, the invariants for
the first and the second vertex algebra cohomology for codimension one foliations are
found.

8.1. The commutator multiplication. In this Subsection we define a further product
of a pair of elements of the spaces Cfn(V, W, F) and C,"n,(V, W, JF), suitable for the
formulation of cohomological invariants. Let us consider the mappings

D1, 215 -5 Un, 2%) € CE(V, W, F),
W (Vk41s Thtl - - -3 Vs Zhktn) € Cpp (VW ),

with r common vertex algebra elements (and, correspondingly, » formal variables), and
¢t common vertex operators mappings ® and W are composable with. Note that when

applying the coboundary operators (5.7) and (5.11) to a map ®(vy, 215 ...; Uy, Zn) €
Chn(V.,W,F),
St DI, 215 Uns Zn) = PO Z)5 o Uy Zhey) € O (VWL ),

one does not necessary assume that we keep the same set of vertex algebra elements/formal
parameters and vertex operators composable with for §;, ®, though it might happen that
some of them could be common with ®. Then we have
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Definition 26. Let us define extra product of ® and W,

o V®(k+n_r) N WZl,--A,ZI{-m—r’ (81)
V=[P, V=D V-—V. ] (8.2)

where brackets denote the ordinary commutator on Wy, ... .

Due to the properties of the maps ® € C,’;(V, W, F)and ¥ € C;’1,(V, W, F), we obtain

Lemma 12. The product ® - W belongs to the space C**"=" (V. W, F). O

m+m’—t

For k = n and
W (Vns1s Znds -5 V20, 220) = P(U1, 21525 Vs 20),
we obtain from (3) and (3.16) that
@ (v1, 215 -+ -5 Uny Zn) - P(U1, 215 -5 Up, 20) = 0. (8.3)

The product (8.1) will be used in the next Subsection in order to introduce cohomological
invariants.

8.2. The cohomological invariants. In this Subsection, using the vertex algebra dou-
ble complex construction (5.15)—(5.16), we provide invariants for the grading-restricted
vertex algebra cohomology of codimension one foliations on complex curves. Let us
introduce cohomological classes associated to grading-restricted vertex algebras. We
describe here certain classes associated to the first and the second vertex algebra coho-
mology for codimension one foliations. Let us give some further definitions. Usually,
the cohomology classes for codimension one foliations [15,31,52] are introduced by
means of an extra condition (in particular, the orthogonality condition) applied to dif-
ferential forms, and leading to the integrability condition. As we mentioned in Sect.5,
it is a separate problem to introduce a product defined on one or among various spaces
Cl(V, W, F) of (4.2). Note that elements of £ in (5.7) and & in (5.13) can be seen
as elements of spaces CéO(V, W, F), i.e., maps composable with an infinite number of
vertex operators. Though the actions of coboundary operators &/}, and 8ZX in (5.7) and
(5.11) are written in form of a product (as in Frobenius theorem [31]), and, in contrast
to the case of differential forms, it is complicated to use these products for further for-
mulation of cohomological invariants and derivation of analogues of the product-type
invariants. Nevertheless, even with such a product yet missing, it is possible to introduce
the lower-level cohomological classes of the form [61] which are counterparts of the
Godbillon class [29]. Let us give some further definitions. By analogy with differential
forms, let us introduce

Definition 27. We call a map
o e C,';‘(V, W, F),
closed if it is a closed connection:

5® = G(P) =0.
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For k > 1, we call it exact if there exists
Ve (v, w, P,
such that
v =§;P,
i.e., ¥ is a form of a connection.

Definition 28. For ® € C}(V, W, F) we call the cohomology class of mappings [®]
the set of all closed forms that differ from @ by an exact mapping, i.e., for A €
i (VW ),
[@]= @ +8]'A.

As we will see in this Section, there are cohomological classes, (i.e., [P], ® € C,L v, W,
F), m > 0), associated with two-point connections and the first cohomology Hnll V., W,
F), and classes (i.e., [®], D € Cezx(V, W, F)), associated with transversal connections
and the second cohomology Hezx(V, W, F), of M/F. The cohomological classes we

obtain are vertex algebra cohomology counterparts of the Godbillon class [29,52] for
codimension one foliations.

Remark 10. As it was discovered in [1,2], it is a usual situation when the existence of
a connection (affine or projective) for codimension one foliations on smooth manifolds
prevents corresponding cohomology classes from vanishing. Note also, that for a few
examples of codimension one foliations, the cohomology class [dn] is always zero.

Remark 11. In contrast to [1], our cohomological class is a functional of v € V. That
means that the actual functional form of ® (v, z) (and therefore (w’, ®), for w’ € W’)
varies with various choices of v € V. That allows one to use it in order to distinguish
types of leaves of M /F.

In this Subsection we consider the general classes of cohomological invariants which
arise from the definition of the product of pairs of C;,, (V, W, F)-spaces. Under a natural
extra condition, the double complexes (5.18) and (5.19) allow us to establish relations
among elements of C,, (V, W, F)-spaces. By analogy with the notion of the integrability
for differential forms [31], we use here the notion of the orthogonality for the spaces of
a complex.

Definition 29. For the double complexes (5.18) and (5.19) let us require that for a pair
of double complex spaces Cfn (V, W, F)and C",(V, W, F), there exist subspaces

m’

Ck(v. W, F)y cchwv,w, ),
C" (V. W, F) C C",(V, W, F),

such that for all ® € Efn(V, W, F)andall ¥ € E;,(V, W, F),
o8 W =0, (8.4)

namely, @ is supposed to be orthogonal to 47, W with respect to the product (3). We call
this the orthogonality condition for mappings of the double complexes (5.18) and (5.19).
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Note that in the case of differential forms considered on a smooth manifold, the
Frobenius theorem for a distribution provides the orthogonality condition [31]. The
fact that both sides of (8.6) (see below) belong to the same double complex space,
applies limitations to possible combinations of (k, m) and (n, m’). Below we derive the
algebraic relations occurring from the orthogonality condition on the double complexes
(5.18) and (5.19). Taking into account the correspondence (see Sect. 24) with Cech-de
Rham complex due to [15], we reformulate the derivation of the product-type invariants
in the vertex algebra terms. Recall that the Godbillon—Vey cohomological class [31] is
considered on codimension one foliations of three-dimensional smooth manifolds. In
this paper, we supply its analogue for complex curves. According to the definition (4.2)
we have k-tuples of one-dimesional transversal sections. In each section we attach one
vertex operator Yw (g, wi), ur € V, wr € Ug. Similarly to the differential forms setup,
a mapping ® € C;'(V, W, F) defines a codimension one foliation. As we see from
(5.7), (8.3), and (7.3) it satisfies the properties similar as differential forms do.

Now we show that the analog of the integrability condition provides the generaliza-
tions of the product-type invariants for codimension one foliations on complex curves.
Here we give a proof of the main statement of this paper, Theorem 1 formulated in the
Introduction.

Proof. Let us consider two maps ®(v;) € CZI(V, W, F)and A € Cg)(V, W, F). We
require them to be orthogonal, i.e.,

®-59A =0. (8.5)
Thus, there exists W (v2) € C;, (V, W, F), such that
A= 0, (8.6)

and1 = 1+n—r,2 =2+m—t,i.e.,,n = r,whichleadstor =1;m =1¢,0 <t < 2,i.e.,
Vel tl (V, W, F).Herer and t are numbers of common vertex algebra elements/formal
parameters and correspondingly of vertex operators a map composable with. All other
orthogonality conditions for the short sequence (5.19) does not allow relations of the
form (8.6).

Consider now (8.5). We obtain, using (7.3)

527 (@ 89A) = (35@) 80N+ @ 5180A = (5;<1>) - 80A = (55@) W,
Thus
0=837817 @ 88n) =837 ((she) - @-w),
and ((81®) - @ - ¥)) is closed. At the same time, from (8.5) it follows that
0=380 897 — @ 83894 = (- 5A).
Thus
B 80A =800 v =0.
Consider (8.6). Acting by 5% and substituting back we obtain

0=25185A =83(@- W) =8}(®)- ¥ - &5 w.
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thus
(@) v=0.5'w.

The last equality trivializes on applying 8[3Jrl to both sides.
Let us show now the non-vanishing property of ((8}®) - ®). Indeed, suppose

(s30)- @ =0.
Then there exists I' € CJ} (V, W, F), such that
o =T"-0.

Both sides of the last equality should belong to the same double complex space but one
can see that it is not possible. Thus, (8; <I>) - ® is non-vanishing. One proves in the same

way that (8{A) - A and (3! W) - ¥ do not vanish too.
Now let us show that [(S%CD) . CD] is invariant, i.e., it does not depend on the choice
of ® € CJ(V, W, F). Substitute ® by (& + 1) € C3(V, W, F). We have

(55 (<I>+n)) (D7) = (55@) D+ ((55@) - agn)
+(<I>~85n+5§n-d>)+(8in)~n. (8.7)
Since
(cp sy + (5&;) : <I>) =@ 8y — Bl e D+ (agn) D — D 8y =0,

then (8.7) represents the same cohomology class [((Séd)) . CD]. The same folds for
[(89A) - A], and [(8} W) - w]. O

Remark 12. In this paper we provide results concerning complex curves, i.e., the case
n < 1,n9 < 1, n; < 1. They generalize to the case of higher dimensional complex
manifolds.
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9. Appendix: Grading-Restricted Vertex Algebras and Their Modules
In this “Appendix”, following [43], we recall basic properties of grading-restricted vertex

algebras and their grading-restricted generalized modules, useful for our purposes of the
paper. We work over the base field C of complex numbers.

9.1. Grading-restricted vertex algebras.

Definition 30. A vertex algebra (V, Yy, 1y), (cf. [47]), consists of a Z-graded complex
vector space

V= ]_[ V(n), dim V(n) < 00,

nez

for each n € Z, and linear map
Yy : V — End (V)[[z.z7']],

for a formal parameter z and a distinguished vector 1y € V. The evaluation of Yy on
v € V is the vertex operator

Yy() =Yy(v,2) =Y vmz """, 9.1)

nez
with components (Yy (v)), = v(n) € End (V), where Yy (v, 2)1y = v + O (2).
Definition 31. A grading-restricted vertex algebra satisfies the following conditions:

(1) Grading-restriction condition: V() is finite dimensional for all n € Z, and V(,) = 0
forn < 0;
(2) Lower-truncation condition: For u, v € V, Yy (u, z)v contains only finitely many
negative power terms, that is,
Yy(u,z)v € V((2),

(the space of formal Laurent series in z with coefficients in V);
(3) Identity property: Let Idy be the identity operator on V. Then

Yy(ly,z) = Idy;
(4) Creation property: Foru € V,
Yy(u,2)ly € V[[zll,
and

lim Yy (u, 2)1y = u;
z—0
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(5) Duality: For uy, up, v eV,
/ r_ *
vev =[]V,
nez

where V(”;l) denotes the dual vector space to V(,) and (.,.) the evaluation pairing
V' ® V — C, the series

(', Yy (ui, z21)Yv (u2, 22)v), 9.2)
(', Yy (uz, 22)Yv (ui, z1)v), (9.3)
W, Yy (Yy(uy, z1 — 22)u2, 22)v), (9.4)

are absolutely convergent in the regions

|z1] > [z2] > 0,
|z2| > |z1] > 0,
|z2] > |z1 — z2] > 0,

respectively, to a common rational function in z; and z, with the only possible poles
atzyi =0=zzand z; = 223
(6) Ly (0)-bracket formula: Let Ly (0) : V — V, be defined by

Ly(O)v = nv, n = wt(v),

for v € V(,. Then

d
[Ly(0), Yy (v,2)] =Yy (Ly(O)v, z) +ZEYV(U, 2),

forveV.

(7) Ly (—1)-derivative property: Let
Ly(-1):V >V,
be the operator given by
Ly(—=1)v = Res,z 2Yy (v, 2)1y = Y2 (v)1y,
forve V. Thenforv eV,
j—ZYV(u, z2) =Yy(Ly(—=Du,z) =[Lv(=1), Yy (u, 2)]. 9.5)

In addition to that, we recall here the following definition (cf. [7]):

Definition 32. A grading-restricted vertex algebra V is called conformal of central
charge ¢ € C, if there exists a non-zero conformal vector (Virasoro vector) w € V()
such that the corresponding vertex operator

Yv(w,2) =Y Ly(mz "2,

nez

is determined by modes of Virasoro algebra Ly (n) : V — V satisfying

[Ly(m), Ly(n)] = (m —n)L(m +n) + %(m3 — m)8m4p,0 Idy.
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Definition 33. A vector A which belongs to a module W of a quasi-conformal grading-
restricted vertex algebra V is called primary of conformal dimension A(A) € Z, if

Lw()A =0, k>0,
Lw(0)A = A(A)A.

.1. Grading-restricted generalized V -module. Inthis Subsection we describe the grading-
restricted generalized V-module for a grading-restricted vertex algebra V.

Definition 34. A grading-restricted generalized V-module is a vector space W equipped
with a vertex operator map
Yw: VW — W[z,z '),
u@w > Y, w) = Yw @, Dw = Y (Yw)a(u, w)z ™",

nez
and linear operators Ly (0) and Lw (—1) on W satisfying the following conditions:
(1) Grading-restriction condition: The vector space W is C-graded, that is,
W=]]Wa.
aeC

such that W,y = 0 when the real part of « is sufficiently negative;

(2) Lower-truncation condition: Foru € Vandw € W, Yy (u, z)w contains only finitely
many negative power terms, that is, Yy (u, z)w € W((2));

(3) Identity property: Let Idy be the identity operator on W. Then

Yw(ly, z) = ldw;
(4) Duality: For uj,u, e V,w e W,
w' e W =[] Wg,
nez

W’ denotes the dual V-module to W. The locality and associativity properties in
terms of the bilinear pairing ( ., .), require that the series

(', Yw(u1, z1)Yw(u2, 22)w), 9.6)
(w', Yw (u2, 22) Yw (u1, z1)w), 9.7
(W', Yw(Yy (u1, 21 — 22)u2, 22)w), (9.8)

are absolutely convergent in the regions

lz1] > [z2] > 0,
|z2| > |z1] > 0,
|z2] > |z1 — z2] > 0,

respectively, to a common rational function in z; and z, with the only possible poles
atz; =0 =z and 71 = 25.
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(5) Lw (0)-bracket formula: Forv € V,

d
[Lw(0), Yw(v,2)] = Yw(Ly(O)v, z) + ZEYW(U’ 2); 9.9

(6) Lw (0)-grading property: For w € W(y), there exists N € Z, such that

(Lw(0) —a)Vw = 0; (9.10)
(7) Lw (—1)-derivative property: For v € V,
d
EYW(M’Z) =Yw(Ly(—Du,z) = [Lw(—1), Yw(u, 2)]. 9.11)

The translation property of vertex operators
Y, z2) = e T EVED Yy (u, 7+ 2)ed tv D), 9.12)

for 7/ € C, follows from from (9.11). For v € V, and w € W, the intertwining operator

Yoy iV — W,
v Y (w, 2)v, (9.13)
is defined by
Yory (w, 2)v = eEV Dy (v, —2)w. (9.14)

For a € C, the conjugation property with respect to the grading operator Ly (0) is given
by

alv O yww,2) a O = vy (et Oy, az). 9.15)

.2. Generators of Virasoro algebra and the group of automorphisms. Letus recall some
further facts from [7] relating generators of Virasoro algebra with the group of auto-
morphisms in complex dimension one. Let us represent an element of Aut. O1) by the
map

2> p = p(2), (9.16)

given by the power series

p) = ", 9.17)

k>1

p(z) can be represented in an exponential form

p(2) = exp ( Y B z"“@) (Bo)™ .z, (9.18)

k>—1

where we express B¢ € C, k > 0, through combinations [37] of ai, k > 1. A represen-
tation of Virasoro algebra modes in terms of differential operators is given by [47]

Ly (m) > =™, (9.19)
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form € Z.By expanding (9.18) and comparing to (9.17) we obtain a system of equations
which, can be solved recursively for all . In [7], v € V, they derive the formula

[Lwm). Yyl = Y. (41271 Y (Lymyv, ), (9.20)

m>—1

(m+1)!
of a Virasoro generator commutation with a vertex operator. Given a vector field

B = Y B, 9.21)
n>—1
which belongs to local Lie algebra of Aut, O, one introduces the operator
B=—Y_ BuLw(n).
n>—1
We conclude from (9.21) with the following

Lemma 13.

6. Vw91 = 3 s (8@ Ywyemv 0. 022)
m>—1 ’

The formula (9.22) is used in [7] (Chapter 6) in order to prove invariance of vertex
operators multiplied by conformal weight differentials in the case of primary states, and
in generic case.

Let us give some further definition:
Definition 35. A grading-restricted vertex algebra V-module W is called quasi-conformal
if it carries an action of local Lie algebra of Aut, O such that commutation formula (9.22)
holds for any v € V, the element

Ly (=1) = =0,
as the translation operator T,

Lw(0) = —z0,
acts semi-simply with integral eigenvalues, and the Lie subalgebra of the positive part
of local Lie algebra of Aut. O™ acts locally nilpotently.

Recall [7] the exponential form p(¢) (9.18) of the coordinate transformation (9.16)
p(2) € Aut, OV A quasi-conformal vertex algebra posseses the formula (9.22), thus it
is possible by using the identification (9.19), to introduce the linear operator representing
p() O18)on Wy, . -,

P (p(2)) = exp (Z(m +1) B Lv(m>) B, 9.23)

m>0

(note that we have a different normalization in it). In [7] (Chapter 6) it was shown that
the action of an operator similar to (9.23) on a vertex algebra element v € V,, contains
finitely many terms, and subspaces

Vﬁm =:€39 Vh,

are stable under all operators P(p), p € Aut, OV In [7] they proved the following
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Lemma 14. The assignment
p = P(p),
defines a representation of Aut, OV on V,

P(p1 * p2) = P(p1) P(p2),

which is the inductive limit of the representations V<,, m > K.

Similarly, (9.23) provides a representation operator on Wy, - .

.3. Non-degenerate invariant bilinear pairing on V. The subalgebra
{Lv(=1),Ly(0), Lv()} = SL(2,C),

associated with Mobius transformations on z naturally acts on V, (cf., e.g., [47]). In
particular,

0 22
= I w=——, 9.24
Y <_)\ O) Z Z ( )

is generated by

T, = exp (ALy(=1)) exp ()»_lLv(l)) exp (ALy(=1)),

where

—2Ly(0) 22
TAY(u,z)T;I:Y<exp(—%LV(1)) (—%) Y u,—;). (9.25)

In our considerations of Riemann sphere sewing, we use in particular, the Mobius map
77 =€/z,
associated with the sewing condition (3.5) with
A= —ke3, (9.26)
with & € {£4/—1}. The adjoint vertex operator [24,47] is defined by

Y )= ulmz""' = LYW o1 " (9.27)

nez

A bilinear pairing (., .), (see, e.g., [56,66]) on V is invariant if for all @, b, u € V, if
(Y (u, 2)a, by, = (a, Y (u, 2)b)y, (9.28)
i.e.,
(w(mya, by, = (a,u’ (n)b);.
Thus it follows that

(Lv(0)a, b)) = (a, Ly(0)b)y, (9:29)
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so that
(a,b), =0, (9.30)
if wt(a) # wt(b) for homogeneous a, b. One also finds
(a,b), = (b, a).

The form (., .}, is unique up to normalization if Ly (1) V| = Vj. Given any V basis {u®}
we define the dual V basis {z”} where

W, uf)y; =8P,

10. Appendix: Properties of Matrix Elements for a Grading-Restricted Vertex Al-
gebra

Let us recall some definitions and facts about matrix elements for a grading-restricted
vertex algebra [43]. Let V be a grading-restricted vertex algebra and W be a grading-

restricted generalized V-module. If a meromorphic function f(zy, ..., z,) on adomain
in C" is analytically extendable to a rational function in (zy, ..., z,), we denote this
rational function by R(f(z1, ..., Zx))-

For w € W, the W-valued function is given by

EW 1,21+ 5 v 203 w) = E(@w (1, 21) ... ow (v, 20)w),
where
ow(dz" @ v, 2) = Yy (dz"'V @ v, 2),
and an element E(.) € W is given by

(w', EQ)) = R((w', .)),

and R(.) denotes the following (cf. [43]). Namely, if a meromorphic function f(z1, .. ., z,)
on aregion in C" can be analytically extended to a rational function in (z1, . . ., z,), then
the notation R(f(z1, ..., z,)) is used to denote such rational function. One defines
W
EWV(")(w; UL, 215+ v Ups Zn) = E$)(v1, 215 -+ Uns Zns W),
where Evvg;v(")(w; V1,215 ...} Un, Zn) 1S an element ofWZl ,,,,, 2, One defines
(1) (In) . W
(EVf 1 ® U ® EV; 1) CD : V®m+n g WZI,-A-quJrn’
by
I I
(EW @ @ EJ,) @@ @+ @ vsn)
= E(@EJ (0 ® - ®u)®
In
®E$/;i(vll+~--+l,,_1+l ®---® U11+---+l,,_1+ln))),
and

EM @ vemn W

,,,,, Zm+n—12
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is given by
E‘(/{/").(D(v] K& Um+n)
= E(Ey (01 ® @ Vi PWpnat ® - @ Vpan))).
Finally,
Evv://i/(m)q) : V®m+” - WZI;---quHLfl’
is defined by
Evv://;\/(m)~q)(vl Q- QVpin) = E(E‘,v:,/;v(m)((b(vl R Q@Up); Vpsrl ® -+ ® V).
Inthecaseli =---=li_1=li;1=1andl; =m—n—1,forsome 1 <i < n, we will
use E gf)l .® to denote (E 81)1 R -QF 8’_’ )1).d>. Note that our notations differ from that
of [43].
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