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Abstract: We introduce the vertex algebra cohomology of foliations on complex curves.
Generalizing the classical case, the orthogonality condition with respect to a product
of elements of the double complexes associated to a grading-restricted vertex algebra
matrix elements leads to the construction of cohomology invariants of codimension one
foliations.

1. Introduction

The theory of foliations involves a variety of approaches reflected in [1–3,10–13,15,27–
30,51,54,58] and in many other publications. The cohomological techniques applied to
smooth manifolds are represented both by algebraic [32–36] and geometrical [18,31,46,
48,52,54,62–64,69] approaches to characterization of the space of leaves of foliations.
The theory of vertex algebras [7,7,9,17,19,24,25,47,55,61] is a rapidly developing
field of studies. Algebraic nature of methods applied in this field is a powerful tool to
compute correlation functions in the conformal field theory [4–6,16,21,23,26,49,50,67,
68]. On the other hand, the geometrical side of the vertex algebra correlation function
theory is related to the behavior of vertex operator formal parameters associated to local
coordinates on complex manifolds.

In this paper we develop algebraic and functional-analytic methods of the coho-
mology theory of foliations on complex curves. The algebraic part is based on the
cohomology theory of grading-restricted vertex algebras [43]. The analytic part stems
from the theory of vertex algebra correlation functions on complex curves [7] as well
as from the geometrical constructions of sewing of Riemann surfaces [8,20,77]. As a
result of a combination of the above mentioned techniques we are able to introduce the
chain-cochain double complexes associated to the description of foliations in terms of
families of transversal sections. Similarly to the conformal field theory considerations
[7,23,45,70,78], the algebraic structure of vertex algebra matrix elements leads to a
characterization of the space of leaves of a foliation in terms of rational functions with
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specific properties. The geometrical origin of vertex algebra matrix elements allows us
to define a product of elements of double complexes. Properties of such product, in
particular, the orthogonality condition, turn to be useful in computation of cohomology
invariants for codimension one foliations on complex curves [60,71–74]. In particu-
lar, we are able to determine the vertex algebra counterparts generalizing the classical
cohomology classes [31] and invariants of codimension one foliations.

The main result of the paper consists in the construction of the vertex algebra co-
homology of codimension one foliations of complex curves. In contrast to the classical
Lie-algebraic approach [27,28] we use vertex algebras as a structure generalizing Lie
algebras. This allows us to involve deep algebraic properties of vertex algebras to estab-
lish new and finer cohomology invariants with respect to Čech-de Rham cohomology
of foliations [15]. Let V be a grading-restricted vertex algebra, and W be its grading-
restricted generalized module. For the algebraic completion W of W we introduce in
Sects. 4, 5 the chain-cochain double complexes Cn

m(V,W,F), n, m ≥ 0, (5.18) and
Ck
ex (V,W,F), 0 ≤ k ≤ 2, (5.19) associated to a codimension one foliation F on a

complex curve with the coboundary operators (5.7), (5.11). Here W denotes the space
of W -valued differential forms with specific properties. The orthogonality condition
F1 · δnm F2 = 0 (8.4) for elements F1, F2 of the double complex spaces is defined with
respect to the product (8.1). Let F ∈ Cn

m(V,W,F). The main statement of this paper
consists in the following Theorem proven in Sect. 8 and generalizing classical results of
[31] on codimension one foliation invariants:

Theorem 1. The product (8.1), the coboundary operators (5.7), (5.11), and the or-
thogonality condition (8.4) applied to the double complexes (5.18) and (5.19) gen-
erate non-vanishing cohomology classes

[(
δnm F

) · F]
independent on the choice of

F ∈ Cn
m(V,W,F) for pairs (n,m) = (1, 2), (0, 3), (1, t), 0 ≤ t ≤ 2.

The content of this paper is subject to multiple possible generalizations. There ex-
ist a few approaches to definition and computation of cohomology of vertex algebras
[14,22,40,41,43,44,57,76,80]. The most natural direction to generalize results of this
paper is to develop a vertex algebra characteristic classes theory for regular and sin-
gular foliations of arbitrary codimensions. It would be important to enlarge the theory
presented in this paper to find higher non-vanishing invariants. Such invariants would
allow to distinguish [1,2,29] types of compact and non-compact leaves of foliations. It
worths to mention a possibility to derive differential equations [42,75] for vertex alge-
bra correlation functions considered on leaves of foliations. One would be interested in
combining the techniques of [58] with our approach. In order to apply the same methods
as for cohomology of a manifoldM, a smooth structure on the space of leaves M/F of
a foliation F of codimension n onM was introduced in [58]. In that case, the foliation
characteristic classes become elements of the cohomology of certain bundles over the
space of leaves M/F . It would be interesting to develop also intrinsic (i.e., purely co-
ordinate independent) foliation cohomology of smooth manifolds which would involve
vertex algebra bundles [7]. The idea of an auxiliary bundle construction to compute the
cohomology of foliations establishes relations with the classical Bott-Segal approach
[13]. It is important to determine connections to the chiral de-Rham complex on smooth
manifolds developed in [59]. The structure of foliations can be also studied from the
automorphic function theory point of view originated from vertex algebra correlation
functions [47]. A consideration of the cohomology theory of vertex algebra associated
bundles [79] and arbitrary codimension foliations on smooth manifolds will be given
elsewhere.
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The plan of the paper is the following. Section2 contains a description of the transver-
sal basis for foliations and the definition of the spaceWz1,...,zn ofWz1,...,zn -valued differ-
ential forms. In Sect. 2.3 the definition and properties ofmaps composablewith a number
of vertex operators are given. In Sect. 2.4we provide a vertex algebra interpretation of the
local geometry for foliations on smooth manifolds. In Sect. 3 we introduce a product of
elements ofWz1,...,zn -spaces and study its properties. Section 3.1 contains motivations,
a geometrical interpretation, and the definition of the product of elements of spaces of
differential forms. First we prove that the product maps to anotherW-space. In Sect. 3.2
the absolute convergence of the result of the product is shown. We then define the action
of the symmetric group on the product, and prove that the product satisfies the symme-
try property (2.9). Next, the action of partial derivatives on the product with respect to
formal parameters is defined.We then show that the product satisfies LV (−1)-derivative
and LV (0)-conjugation properties. In Sect. 3.3 we continue to study properties of the
product. It is shown that the product is invariant with respect to the group of independent
transformations of coordinates. We show also that the product does not depend on a
distribution of formal parameters among two initial forms that are being multiplied. The
spaces for a double chain-cochain complex associated to a vertex algebra on a foliation
are introduced in Sect. 4.We prove that such spaces are well-defined. Namely, the spaces
are non-empty, do not depend on the choice of the transversal basis for a foliation, and are
canonical, i.e., are independent on the foliation-preserving choice of local coordinates.
In Sect. 5 the coboundary operators and the vertex algebra cohomology of codimension
one foliations on complex curves are defined. In Sect. 5.1 the cohomology in terms of
multi-point connections in described. Section 5.2 introduces the coboundary operators
for the double complex spaces. We show that the coboundary operators are expressed
in terms of multipoint connections. In Sect. 5.3 we prove that the coboundary operators
provide double chain-cochain complexes. The vertex algebra cohomology and its rela-
tion to Čech-de Rham cohomology in the Crainic and Moerdijk formulation [15] are
discussed in Sect. 5.4. The product of elements of double complex spaces is defined in
Sect. 6. In Sect. 6.1 the geometrical adaptation of the this product to a foliation is dis-
cussed. We show that the product of elements of double complex spaces maps to another
space of the double complex and it is composable with the appropriate number of vertex
operators. The properties of the product are studied in Sect. 7. In Sect. 7.1 we show
that the original coboundary operators apply to the product of elements of the double
complex spaces. It satisfied to an analog of Leibniz rule. Section8 contains the proof of
the main result of this paper. It describes the product-type cohomological invariants for a
codimension one foliation on a smooth complex curve. In “Appendixes” we provide the
material required for the construction of the vertex algebra cohomology of foliations.
In “Appendix 8.2” we recall the notion of a quasi-conformal grading-restricted vertex
algebra and its modules. In “Appendix .3” properties of matrix elements for the space
W are listed.

2. Transversal Basis Description for Foliations and Vertex Algebra Interpretation
and Wz1,...,zn -Valued Forms

In this Section we recall [15] the notion of a basis of transversal sections for foliations,
and provide its vertex algebra setup.

2.1. The basis of transversal sections for a foliation. Let M be a complex curve
equipped with a foliation F of codimension one.



1456 A. Zuevsky

Definition 1. A transversal section of a foliation F is an embedded one-dimensional
submanifold U ⊂ M which is everywhere transverse to the leaves of F .

Definition 2. If α is a path between two points p1 and p2 on the same leaf of F , andU1
and U2 are transversal sections through p1 and p2, then α defines a transport along the
leaves from a neighborhood of p1 in U1 to a neighborhood of p2 in U2. I.e., it gives a
germ of a diffeomorphism

hol (α) : (U1, p1) ↪→ (U2, p2),

which is called the holonomy of the path α.

Two homotopic paths always define the same holonomy.

Definition 3. If the above transport along α is defined in all of U1 and embeds U1 into
U2, this embedding

h : U1 ↪→ U2,

is called the holonomy embedding.

A composition of paths induces a composition of holonomy embeddings. Transversal
sectionsU through p as above should be thought of as neighborhoods of the leaf through
p in the space of leaves. Then we have

Definition 4. A transversal basis for the space of leavesM/F of a foliationF is a family
U of transversal sections U ⊂ M with the following property. If Up is any transversal
section through a given point p ∈ M, then there exists a holonomy embedding

h : U ↪→ Up,

with U ∈ U and p ∈ h(U ).

A transversal section is a one-dimensional disk given by a chart of F . Accordingly,
we can construct a transversal basis U out of a basis Ũ of M by domains of foliation
charts

φU : Ũ ˜↪→R ×U,

Ũ ∈ Ũ , with U = R.
In the next two Subsections we provide several definitions and properties from [43].

2.2. The space W z1,...,zn of W-valued rational functions. First, let us recall the notion
of shuffles.

Definition 5. Let Sq be the permutation group. For l ∈ N and 1 ≤ s ≤ l − 1, let Jl;s be
the set of elements of Sl which preserves the order of the first s numbers and the order
of the last l − s numbers, that is,

Jl,s = {σ ∈ Sl | σ(1) < · · · < σ(s), σ (s + 1) < · · · < σ(l)}.
The elements of Jl;s are called shuffles, and we use the notation

J−1
l;s = {σ | σ ∈ Jl;s}.
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Definition 6. We define the configuration spaces:

FnC = {(z1, . . . , zn) ∈ C
n | zi �= z j , i �= j},

for n ∈ Z+.

Recall the definition and related notations (given in “Appendix 8.2”) of a grading-
restricted vertex algebra V , and its grading-restricted generalized V -module W . By
W we denote the algebraic completion of W ,

W =
∏

n∈C
W(n) = (W ′)∗.

Definition 7. A W -valued rational function in (z1, . . . , zn) with the only possible poles
at zi = z j , i �= j , is a map

f : FnC → W ,

(z1, . . . , zn) 
→ f (z1, . . . , zn),

such that for any w′ ∈ W ′, the bilinear pairing 〈w′, f (z1, . . . , zn)〉 is a rational function
R( f (z1, . . . , zn)) in (z1, . . . , zn) with the only possible poles at zi = z j , i �= j . The
space of W -valued rational functions is denoted by Wz1,...,zn .

Remark 1. Note that though such functions are called Wz1,...,zn -valued, corresponding
element f of the algebraic completion W is inserted into the complex-valued bilinear
pairing. Thus, W -valued rational functions are characterized by this pairing.

Definition 8. One defines the following action of the symmetric group Sn on the space
Hom(V⊗n,Wz1,...,zn ) of linear maps from V⊗n to Wz1,...,zn by

σ(�)(v1, z1; . . . ; vn, zn) = �(vσ(1), vσ(1); . . . vσ(n), zσ(n)), (2.1)

for σ ∈ Sn , and vi ∈ V , 1 ≤ i ≤ n.

We will use the notation σi1,...,in ∈ Sn , to denote the permutation given by σi1,...,in ( j) =
i j , for j = 1, . . . , n.

Definition 9. For n ∈ Z+, a linear map

�(v1, z1; . . . ; vn, zn) = V⊗n → Wz1,...,zn ,

is said to have the L(−1)-derivative property if

(i) 〈w′, ∂zi �(v1, z1; . . . ; vn, zn)〉 = 〈w′, �(v1, z1; . . . ; LV (−1)vi , zi ; . . . ; vn, zn)〉, (2.2)

and

(ii)
n∑

i=1

∂zi 〈w′,�(v1, z1; . . . ; vn, zn)〉 = 〈w′, LW (−1).	(v1, z1; . . . ; vn, zn)〉,

(2.3)

for i = 1, . . . , n, v1, . . . , vn ∈ V , w′ ∈ W .
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Note that since LW (−1) is a weight-one operator on W , for any z ∈ C, ezLW (−1) is a
well-defined linear operator on W .

Proposition 1. Let � be a linear map having the L(−1)-derivative property. Then for
v1, . . . , vn ∈ V , w′ ∈ W ′, (z1, . . . , zn) ∈ FnC, z ∈ C such that (z1 + z, . . . , zn + z) ∈
FnC,

〈w′, ezLW (−1)� (v1, z1; . . . ; vn, zn)〉 = 〈w′,�(v1, z1 + z; . . . ; vn, zn + z)〉, (2.4)

and for v1, . . . , vn ∈ V , w′ ∈ W ′, (z1, . . . , zn) ∈ FnC, z ∈ C, and 1 ≤ i ≤ n such that

(z1, . . . , zi−1, zi + z, zi+1, . . . , zn) ∈ FnC,

the power series expansion of

〈w′,�(v1, z1; . . . ; vi−1, zi−1; vi , zi + z; vv+1, zi+1; . . . vn, zn)〉, (2.5)

in z is equal to the power series

〈w′,�(v1, z1; . . . ; vi−1, zi−1; ezL(−1)vi , zi ; vi+1, zi+1; . . . ; vn, zn)〉, (2.6)

in z. In particular, the power series (2.6) in z is absolutely convergent to (2.5) in the disk
|z| < mini �= j {|zi − z j |}.

Next, we have

Definition 10. A linear map

� : V⊗n → Wz1,...,zn

has the L(0)-conjugation property if for v1, . . . , vn ∈ V , w′ ∈ W ′, (z1, . . . , zn) ∈ FnC
and z ∈ C

× so that (zz1, . . . , zzn) ∈ FnC,

〈w′, zLW (0)� (v1, z1; . . . ; vn, zn)〉 = 〈w′,�(zL(0)v1, zz1; . . . ; zL(0)vn, zzn)〉. (2.7)
In order to introduce the spaces for the double complexes describing the vertex algebra
cohomology of foliations on complex curves, we have to define the space of Wz1,...,zn -
valued differential forms for a quasi-conformal grading-restricted vertex algebra V .
Recall the notion of the weight wt(v) of a vertex algebra element v with respect to
the Virasoro algebra LV (0)-mode given in “Appendix 8.2”. Following ideas of [7], we
consider the space of Wz1,...,zn of functions � where each vertex algebra element entry

vi , 1 ≤ i ≤ n is tensored with the wt(vi )-power differential dz
wt(vi )
i of corresponding

formal parameter zi . Namely, we consider the space of forms

�
(
dzwt(v1)1 ⊗ v1, z1; . . . ; dzwt(vn)n ⊗ vn, zn

)
. (2.8)

Abusing notations, we denote such forms as �(v1, z1; . . . ; vn, zn) in what follows.

Definition 11. Wedefine the spaceWz1,...,zn of forms (2.8) satisfying LV (−1)-derivative
(2.2), LV (0)-conjugation (2.7) properties, and the symmetry property

∑

σ∈J−1
l;s

(−1)|σ | (�(vσ(1), zσ(1); . . . ; vσ(l), zσ(1))
) = 0, (2.9)

with respect to the action of the symmetric group Sn .

In Sect. 4 we prove that (2.8) is invariant with respect to the action of the group of
independent changes of formal parameters (z1, . . . , zn).
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2.3. Maps composable with vertex operators. In the construction of the double com-
plexes in Sect. 5 we will use linear maps from tensor powers of V to the spaceWz1,...,zn .
For that purpose, in particular, to define the coboundary operator, we have to compose
cochains with vertex operators. However, as mentioned in [43], the images of vertex
operator maps do not in general belong to algebras or their modules but rather to corre-
sponding algebraic completions. Due to this reason, we might not be able to compose
vertex operators directly. In order to overcome this problem [45], we consider series
obtained by projecting elements of the algebraic completion of an algebra or a module
to their homogeneous components. Then we compose these homogeneous components
with vertex operators and take formal sums. If such formal sums are absolutely conver-
gent, then these operators can be composed and used in constructions.

Another problem that appears is the question of associativity. Compositions of maps
are usually associative. But for compositions of maps defined by sums of absolutely
convergent series the existence does not provide associativity in general. Nevertheless,
the requirement of analyticity provides the associativity. Recall definitions and notations
of “Appendix .3”. Then we have

Definition 12. For a gerneralized grading-restricted V -module

W =
∐

n∈C
W(n),

and m ∈ C, let

Pm : W → W(m),

be the projection from W to W(m). Let

� : V⊗n → Wz1,...,zn ,

be a linearmap. Form ∈ N,� is called [43,65] to be composablewithm vertex operators
if the following conditions are satisfied:

1) Let l1, . . . , ln ∈ Z+ such that l1 + · · ·+ ln = m +n, v1, . . . , vm+n ∈ V andw′ ∈ W ′.
Set


i = E (li )
V (vk1 , zk1 − ζi ; vki , zki − ζi ; 1V ), (2.10)

where

k1 = l1 + · · · + li−1 + 1, . . . , ki = l1 + · · · + li−1 + li , (2.11)

for i = 1, . . . , n. Then there exist positive integers Nn
m(vi , v j ) depending only on vi and

v j for i, j = 1, . . . , k, i �= j such that the series

In
m(�) =

∑

r1,...,rn∈Z
〈w′,�(Pr1
1; ζ1; . . . ; Prn
n, ζn)〉, (2.12)

is absolutely convergent when

|zl1+···+li−1+p − ζi | + |zl1+···+l j−1+q − ζi | < |ζi − ζ j |, (2.13)

for i , j = 1, . . . , k, i �= j , and for p = 1, . . . , li and q = 1, . . . , l j . The summust be an-
alytically extended to a rational function in (z1, . . . , zm+n), independent of (ζ1, . . . , ζn),
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with the only possible poles at zi = z j , of order less than or equal to Nn
m(vi , v j ), for i ,

j = 1, . . . , k, i �= j .
2) For v1, . . . , vm+n ∈ V , there exist positive integers Nn

m(vi , v j ), depending only
on vi and v j , for i , j = 1, . . . , k, i �= j , such that for w′ ∈ W ′, and

vn,m = (v1+m ⊗ · · · ⊗ vn+m),

zn,m = (z1+m, . . . , zn+m),

such that

J n
m(�) =

∑

q∈C
〈w′, E (m)

W

(
v1 ⊗ · · · ⊗ vm; Pq(�(vn,m)(zn,m)

)
〉, (2.14)

is absolutely convergent when

zi �= z j , i �= j,

|zi | > |zk | > 0, (2.15)

for i = 1, . . . ,m, and k = m + 1, . . . ,m + n, and the sum can be analytically extended
to a rational function in (z1, . . . , zm+n) with the only possible poles at zi = z j , of orders
less than or equal to Nn

m(vi , v j ), for i, j = 1, . . . , k, i �= j .

The following useful propositions were proven in [43]:

Proposition 2. Let � : V⊗n → Wz1,...,zn be composable with m vertex operators. Then
we have:

(1) For p ≤ m, � is composable with p vertex operators and for p, q ∈ Z+ such that
p+q ≤ m and l1, . . . , ln ∈ Z+ such that l1 + · · ·+ ln = p+n, (E (l1)

V ; 1⊗· · ·⊗E (ln)
V ; 1).�

and E (p)
W .� are composable with q vertex operators.

(2) For p, q ∈ Z+ such that p + q ≤ m, l1, . . . , ln ∈ Z+ such that l1 + · · · + ln = p + n
and k1, . . . , kp+n ∈ Z+ such that k1 + · · · + kp+n = q + p + n, we have

(E (k1)
V ; 1 ⊗ · · · ⊗ E

(kp+n)
V ; 1 ).(E (l1)

V ; 1 ⊗ · · · ⊗ E (ln)
V ; 1)).�

= (E
(k1+···+kl1 )

V ; 1 ⊗ · · · ⊗ E
(kl1+···+ln−1+1+···+kp+n)
V ; 1 ).�.

(3) For p, q ∈ Z+ such that p+q ≤ m and l1, . . . , ln ∈ Z+ such that l1 + · · ·+ ln = p+n,
we have

E (q)
W .((E (l1)

V ; 1 ⊗ · · · ⊗ E (ln)
V ; 1).�) = (E (l1)

V ; 1 ⊗ · · · ⊗ E (ln)
V ; 1).(E

(q)
W .�).

(4) For p, q ∈ Z+ such that p + q ≤ m, we have

E (p)
W .(E (q)

W .�) = E (p+q)
W .�.

Proposition 3. The subspaceof linearmapsHom(V⊗n,Wz1,...,zn )possessing the L(−1)-
derivative and the L(0)-conjugation properties or being composable with m vertex op-
erators is invariant under the action of Sn.
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2.4. Vertex algebra interpretation of the local geometry for a foliation on a smooth
manifold. Let U be a basis of transversal sections of F . We consider a (n, k)-set of
points, n ≥ 1, k ≥ 1,

(
p1, . . . , pn; p′

1, . . . , p
′
k

)
, (2.16)

on a smooth complex curveM. Let us denote the set of corresponding local coordinates
by

(
c1(p1), . . . , cn(pn); c′

1(p
′
1), . . . , c

′
k(p

′
k)

)
.

In what follows we consider points (2.16) as points on either the space of leavesM/F of
F , or on transversal sectionsUj of a transversal basis U . Since the space of leavesM/F
for F is not in general a manifold, one has to be careful in considerations of charts of
local coordinates along leaves of F [46,58]. In order to associate formal parameters of
vertex operators taken at points onM/F with local coordinates we will use either local
coordinates onM or local coordinates on sections U of a transversal basis U which are
submanifolds ofM of dimension equal to the codimension ofF . Note that the complexes
considered below are constructed in such a way that one can always use coordinates on
transversal sections only, avoiding anypossible problemswith localizationof coordinates
on leaves of M/F .

For the first n grading-restricted vertex algebra V elements of
(
v1, . . . , vn; v′

1, . . . , v
′
k

)
, (2.17)

we consider the linear maps

� : V⊗n → Wc1(p1),...,cn(pn), (2.18)

�
(
dc1(p1)

wt(v1) ⊗ v1, c1(p1); . . . ; dcn(pn)wt(vn) ⊗ vn, cn(pn)
)

, (2.19)

where we identify (as they usually do in the theory of correlation functions for vertex
algebras on curves [45,70,77,78]) formal parameters (z1, . . . , zn) of Wz1,...,zn , with
local coordinates (c1(p1), . . . , cn(pn)) in vicinities of points pi , 0 ≤ i ≤ n, onM.

Elements � ∈ Wc1(p1),...,cn(pn) can be seen as coordinate-independent W -valued
rational sections of a vertex algebra bundle. Note that, according to [7], they can be
treated as

(
Aut O(1)

)×n
c1(p1),...,cn(pn)

= Autc1(p1) O(1) × . . . × Autcn(pn) O(1)-torsors of
the groups of independent coordinate transformations.

In what follows, according to the definitions of Sect. 2.2, whenwewrite an element�
of the space Wz1,...,zn , we actually have in mind corresponding matrix element 〈w′,�〉
that absolutely converges (on a certain domain) to a rational function

〈w′,�〉 = R(〈w′,�〉). (2.20)

In notations, we will keep tensor products of vertex algebra elements with weight-valued
powers of differentials when it is only necessary.

In Sect. 4 we prove, that for arbitrary sets of vertex algebra elements vi , v′
j ∈ V ,

1 ≤ i ≤ n, 1 ≤ j ≤ k, arbitrary sets of points pi with local coordinates ci (pi ) on
M, and arbitrary sets of points p′

j with local coordinates c
′
j (p

′
j ) on transversal sections

Uj ∈ U ofM/F , the element (2.19) as well as the vertex operators

ωW

(
dc′

j (p
′
j )
wt(v′

j ) ⊗ v′
j , c

′
j (p

′
j )

)
= YW

(
d(c′

j (p
′
j ))

wt(v′
j ) ⊗ v′

j , c
′
j (p

′
j )

)
, (2.21)
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are invariant with respect to the action of the group of independent transformations of
coordinates. Then the construction of the spaces for the double complexes does not
depend on the choice of coordinates.

In Sect. 4 we construct the spaces for the double complexes associated to a grading-
restricted vertex algebra and defined for codimension one foliations on complex curves.
In that construction, we consider sections Uj , j ≥ 0 of a transversal basis U of F , and
mappings � that belong to the space Wc(p1),...,c(pn) for local coordinates (c(p1), . . . ,
c(pn)) on M at points (p1, . . . , pn) of intersection of Uj with leaves of M/F of F .
We then consider a collection of k sections Uj , 1 ≤ j ≤ k of U . In order to define the
vertex algebra cohomology ofM/F , we assume thatmappings� are composablewith k
vertex operators. On each transversal sectionUj , 1 ≤ j ≤ k one point p′

j is chosen with
a local coordinate c′

j (p
′
j ). Let us assume that � is composable with k vertex operators.

The formal parameters of k vertex operators a map � is composable with is taken to be
c′
j (p

′
j ), 1 ≤ j ≤ k. The composability of a map � with a number of vertex operators

consists of two conditions on �. The first condition requires the existence of limiting
positive integers Nn

m(vi , v j ) depending on vertex algebra elements vi and v j only, while
the second condition restricts orders of poles of corresponding sums (2.12) and (2.14).
Taking into account these conditions, we will see that the construction of spaces (4.2)
depends on the choice of vertex algebra elements (2.17).

3. The Product of Wz1,...,zn -Spaces

In this Section we introduce a product of elements of Wz1,...,zn -spaces and study its
properties.

3.1. Geometrical interpretation and definition of the ε-product for Wz1,...,zn -spaces.
Recall Definition 11 of Wz1,...,zn -spaces given in Sect. 2.2. The structure of Wz1,...,zn -
spaces is quite complicated and it is a problem to introduce a product of elements of
such spaces algebraically. In order to define an appropriate product of twoW-spaces we
first have to interpret it geometrically. Let us associate a W-space with a certain model
space. Then a geometrical product of such model spaces should be defined, and, finally,
an algebraic product of W-spaces should be introduced.

For twoWx1,...,xk - andWy1,...,yn -spaces we first associate formal complex parameters
in sets (x1, . . . , xk) and (y1, . . . , yn) to parameters of two auxiliary spaces. Then we
describe the geometrical procedure to form a resulting model space by combining two
original model spaces. The formal parameters of the algebraic product Wz1,...,zk+n of
Wx1,...,xk and Wy1,...,yn should be then identified with parameters of resulting auxiliary
space. Note that according to our assumption, (x1, . . . , xk) ∈ FkC, and (y1, . . . , yn) ∈
FnC, i.e., belong to corresponding configuration space (Definition 6, Sect. 2.2). As it
follows from the definition of FnC, any coincidence of two formal parameters should
be excluded from Fk+nC. In general, it might happens that some r formal parameters
of (x1, . . . , xk) coincide with formal parameters of (y1, . . . , yn), i.e., xil = y jl , 1 ≤
il , jl ≤ r .

In Definition 13 of the product ofWx1,...,xk andWy1,...,yn below we keep only one of
two coinciding formal parameters, We require that the set of formal parameters

(z1, . . . , zk+n−r ) = (x1, . . . , xi1 , . . . , xir , . . . , xk; y1, . . . , ŷ j1 , . . . , ŷ jr , . . . , yn), (3.1)
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55 would belong to Fk+n−rC where .̂ denotes the exclusion of values xil = y jl ,
1 ≤ l ≤ r from the domain of definition for corresponding differential forms that
belong toWz1,...,zk+n and characterized by the bilinear pairing. We denote this operation
of formal parameters exclusion by R̂ �(x1, . . . , xk; y1, . . . , yn; ε). Thus, we require that
the set of formal parameters (z1, . . . , zk+n−r ) for the resulting product would belong to
Fk+n−rC. Note that instead of exclusion given by the right hand side of (3.1), we could
equivalently omit elements from (x1, . . . , xk)-part coinciding with some elements of
(y1, . . . , yn).

In our particular case of the space of differential formsW obtained from matrix ele-
ments (2.20), we take two Riemann spheres �

(0)
a , a = 1, 2 as our two initial auxiliary

spaces/geometrical models. The resulting auxiliary/model space is formed by the Rie-
mann sphere�(0) obtained by the ε-sewing procedure of two initial spheres where ε is a
complex parameter. The formal parameters (x1, . . . , xk) and (y1, . . . , yn) are identified
with local coordinates of k and n points on two initial spheres�

(0)
a , a = 1, 2 correspond-

ingly. In the ε-sewing procedure, some r points among (p1, . . . , pk) may coincide with
points among (p′

1, . . . , p
′
n) when we identify the annuluses (3.4). This corresponds to

the singular case of coincidence of r formal parameters.
Consider the sphere formed by sewing together two initial spheres in the sewing

scheme referred to as the ε-formalism in [77]. Let �
(0)
a , a = 1, 2 be to initial spheres.

Introduce a complex sewing parameter ε where

|ε| ≤ r1r2,

Consider k distinct points on pi ∈ �
(0)
1 , i = 1, . . . , k, with local coordinates (x1, . . . , xk)

∈ FkC, anddistinct points p j ∈ �
(0)
2 , j = 1, . . . , n,with local coordinates (y1, . . . , yn) ∈

FnC, with

|xi | ≥ |ε|/r2,
|yi | ≥ |ε|/r1.

Choose a local coordinate za ∈ C on �
(0)
a in the neighborhood of points pa ∈ �

(0)
a ,

a = 1, 2. Consider the closed disks

|ζa | ≤ ra,

and excise the disk

{ζa, |ζa | ≤ |ε|/ra} ⊂ �(0)
a , (3.2)

to form a punctured sphere

�̂(0)
a = �(0)

a \{ζa, |ζa | ≤ |ε|/ra}.
We use the convention

1 = 2, 2 = 1. (3.3)

Define the annulus

Aa = {ζa, |ε|/ra ≤ |ζa | ≤ ra} ⊂ �̂(0)
a , (3.4)
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and identify A1 and A2 as a single region A = A1 � A2 via the sewing relation

ζ1ζ2 = ε. (3.5)

In this way we obtain a genus zero compact Riemann surface

�(0) =
{
�̂

(0)
1 \A1

}
∪

{
�̂

(0)
2 \A2

}
∪ A.

This sphere forms a suitable geometrical model for the construction of a product of
elements ofW-spaces. A multiply sewn sphere model is considered in [81].

Recall the notion of an intertwining operator (9.14) given in “Appendix 8.2”. Let us
now give a formal algebraic definition of the product of W-spaces.

Definition 13. For �(v1, x1; . . . ; vk, xk) ∈ Wx1,...,xk , and 	(v′
1, y1; . . . ; v′

n, yn) ∈
Wy1,...,yn the ε-product

�(v1, x1; . . . ; vk, xk) ·ε 	(v′
1, y1; . . . ; v′

n, yn)


→ R̂ �
(
v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε

)
, (3.6)

is defined by the bilinear pairing via (2.20)

〈w′, R̂ �(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV (�(v1, x1; . . . ; vk, xk), ζ1) u〉

〈w′,YW
WV

(
	(v′

1, y1; . . . ; v′
i1 , ŷi1; . . . ; . . . ; v′

jr , ŷ jr ; . . . ; v′
n, yn), ζ2

)
u〉, (3.7)

parametrized by ζ1, ζ2 ∈ C related by the sewing relation (3.5). The sum is taken over
any Vl -basis {u}, where u is the dual of u with respect to the non-degenerate bilinear
pairing 〈. .〉λ, (9.28) over V , (see “Appendix 8.2”). The coinciding values of the formal
parameters in �(v1, x1; . . . ; vk, xk) and 	(v′

1, y1; . . . ; v′
n, yn) are excluded from the

domain of definition of the right hand side of (3.7).

By the standard reasoning [24,78], (3.7) does not depend on the choice of a basis of
u ∈ Vl , l ∈ Z. In the case when the forms � and 	 that we multiply do not contain
V -elements, (3.7) defines the following product � ·ε 	

〈w′,�(ε)〉 =
∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV (�, ζ1) u〉〈w′,YW
WV (	, ζ2) u〉. (3.8)

As we will see, Definition 13 is also supported by Lemma 3. Recall Remark 1. The
right hand side of (3.7) is given by a formal series of bilinear pairings summed over a
vertex algebra basis. To complete this definition we have to show that the right hand
side of (3.7) defines a differential form that belongs to the spaceWz1,...,zk+n−r . The main
statement of this Section is given by

Proposition 4. The product (3.7) provides a map

·ε : Wx1,...,xk × Wy1,...,yn → Wz1,...,zk+n−r .

The rest of this Section is devoted to the proof of Proposition 4. We show that the wight
hand side of (3.7) belongs to the spaceWz1,...,zk+n−r .
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Remark 2. Note that due to (9.14), in Definition 13, it is assumed that �(v1, x1; . . .;
vk, xk) and 	(v′

1, y1; . . .; v′
n, yn) are composable with the grading-restricted general-

ized V -module W vertex operators YW (u,−ζ1) and YW (u,−ζ2) correspondingly (cf.
Sect. 2.3 for the definition of composability). The product (3.7) is actually defined by the
sum of products of matrix elements of generlized grading-resticted V -moduleW vertex
operators acting on Wz1,...,zn elements. The vertex algebra elements u ∈ V and u ∈ V ′
are related by (9.29), and ζ1 and ζ2 satisfy (3.5). The form of the product defined above
is natural in terms of the theory of correlation functions for vertex operator algebras
[23,70,78].

3.2. Convergence of the ε-product. In order to prove convergence of the product (3.7)
of elements of two spaces Wx1,...,xk and Wy1,...,yn , we have to use a geometrical inter-
pretation [45,77]. Recall that a Wz1,...,zn -space is defined by means of matrix elements
of the form (2.20). For a vertex algebra V , this corresponds [24] to matrix element of a
number of V -vertex operators with formal parameters identified with local coordinates
on Riemann sphere. Geometrically, each space Wz1,...,zn can be also associated to Rie-
mann sphere with a few marked points, and local coordinates vanishing at these points
[45]. An additional point is identified to the center of an annulus used in order to sew
the sphere with another sphere. The product (3.7) has then a geometrical interpretation.
The resulting model space is then Riemann sphere formed in the sewing procedure.

Matrix elements for a number of vertex operators are usually associated [23,24,70]
with a vertex algebra correlation functions on the sphere. We extrapolate this notion to
the case ofWz1,...,zn spaces. In order to supply an appropriate geometrical construction
of the product, we use the ε-sewing procedure for two initial spheres to obtain a matrix
element associated with (3.6).

Remark 3. In addition to the ε-sewing procedure of two initial spheres, one can alterna-
tively use the self-sewing procedure [77] for Riemann sphere to get, at first, the torus,
and then by sending parameters to appropriate limit by shrinking genus to zero. As a
result, one obtains again a sphere but with a different parameterization [53].

Let us identify (as in [7,23,45,70,77,78]) two sets (x1, . . . , xk) and (y1, . . . , yn) of
complex formal parameters, with local coordinates of two sets of points on the first
and the second Riemann spheres correspondingly. Complex parameters ζ1 and ζ2 of
(3.7) play then the roles of coordinates (3.2) of the annuluses (3.4). On identification of
annuluses Aa and Aa , r coinciding coordinates may occur.

The product (3.7) describes a differential form that belongs to the spaceW defined on
a sphere formedas a result of the ε-parameter sewing [77] of two initial spheres. Since two
initial spaces Wx1,...,xk and Wy1,...,yn W x1,...,xk - and W y1,...,yn -valued differential forms
expressed by matrix elements of the form (2.20), it is then proved (see Proposition 5
below), that the resulting product defines a elememts of the space Wx1,...,xk ;y1,...,yn by
means of an absolute convergent matrix element on the resulting sphere. The complex
sewing parameter ε parametrizes the moduli space of the resulting sewn sphere as well
as of the product of W-spaces.

Proposition 5. The product (3.7) of elements of the spacesWx1,...,xk andWy1,...,yn cor-
responds to a bilinear pairing absolutely converging in ε with only possible poles at
xi = x j , yi ′ = y j ′ , and xi = y j , 1 ≤ i, i ′ ≤ k, 1 ≤ j, j ′ ≤ n.

Proof. In order to prove this proposition we use the geometrical interpretation of the
product (3.7) in terms of Riemann spheres with marked points. We consider two sets of
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vertex algebra elements (v1, . . . , vk) and (v′
1, . . . , v

′
k), and two sets of formal complex

parameters (x1, . . . , xk), (y1, . . . , yn). The formal parameters are identified with the
local coordinates of k points on Riemann sphere �̂

(0)
1 , and n points on �̂

(0)
2 , with excised

annuluses Aa . Recall the sewing parameter condition (3.5)

ζ1ζ2 = ε,

of the sewing procedure. Then, for (3.7) we obtain

〈w′,�(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV (�(v1, x1; . . . ; vk, xk), ζ1) u〉

〈w′,YW
WV

(
	(v′

1, y1; . . . ; v′
n, yn), ζ2

)
u〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′, eζ1 LW (−1) YW (u,−ζ1) �(v1, x1; . . . ; vk, xk)〉

〈w′, eζ2 LW (−1) YW (u,−ζ2) 	(v′
1, y1; . . . ; v′

n, yn)〉.
Recall from (3.2) that in the two spheres ε-sewing formulation, the complex parameters
ζa , a = 1, 2 are the coordinates inside the identified annuluses Aa , and |ζa | ≤ ra .
Therefore, due to Proposition 1, the matrix elements

R̃(x1, . . . , xk; ζ1) = 〈w′, eζ1 LW (−1) YW (u,−ζ1) �(v1, x1; . . . ; vk, xk)〉, (3.9)

R̃(y1, . . . , yn; ζ2) = 〈w′, eζ2 LW (−1) YW (u,−ζ2) 	(v′
1, y1; . . . ; v′

n, yn)〉, (3.10)
are absolutely convergent in powers of ε with some radia of convergence Ra ≤ ra , with
|ζa | ≤ Ra . The dependence of (3.9) and (3.10) on ε is expressed via ζa , a = 1, 2. Let us
rewrite the product (3.7) as

〈w′,�(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉
=

∑

l∈Z
εl

(〈w′,�(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn
)〉)l

=
∑

l∈Z

∑

u∈Vl

∑

m∈C
εl−m−1 R̃m(x1, . . . , xk; ζ1) R̃m(y1, . . . , yn; ζ2), (3.11)

as a formal series in ε for |ζa | ≤ Ra , where and |ε| ≤ r for r < r1r2. Then we apply
Cauchy’s inequality to the coefficient forms (3.9) and (3.10) to find

∣∣R̃m(x1, . . . , xk; ζ1)
∣∣ ≤ M1R

−m
1 , (3.12)

with

M1 = sup
|ζ1|≤R1,|ε|≤r

∣∣R̃(x1, . . . , xk; ζ1)
∣∣ .

Similarly,
∣∣R̃m(y1, . . . , yn; ζ2)

∣∣ ≤ M2R
−m
2 , (3.13)

for

M2 = sup
|ζ2|≤R2,|ε|≤r

∣∣R̃(y1, . . . , yn; ζ2)
∣∣ .
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Using (3.12) and (3.13) we obtain for (3.11)
∣
∣(〈w′,F(v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn〉

)
l

∣
∣

≤ ∣∣R̃m(x1, . . . , xk; ζ1)
∣∣ ∣∣R̃m(y1, . . . , yn; ζ2)

∣∣

≤ M1 M2 (R1R2)
−m . (3.14)

Thus, for M = min {M1, M2} and R = max {R1, R2}, one has
∣∣Rl(x1; . . . , xk; y1, . . . , y′

n; ζ1, ζ2)
∣∣ ≤ MR−l+m+1. (3.15)

We see that (3.7) is absolute convergent as a formal series in ε and defined for |ζa | ≤ ra ,
|ε| ≤ r for r < r1r2, with extra poles only at xi = y j , 1 ≤ i ≤ k, 1 ≤ j ≤ n. ��

Next, we formulate

Definition 14. We define the action of an element σ ∈ Sk+n−r on the product of
�(v1, x1; . . . ; vk, xk) ∈ Wx1,...,xk , and 	(v′

1, y1; . . . ; v′
n, yn) ∈ Wy1,...,yn , as

〈w′, σ (R̂ �)(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉
= 〈w′,�(̃vσ(1), zσ(1); . . . ; ṽσ (k+n−r), zσ(k+n−r); ε)〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV

(
�(̃vσ(1), zσ(1); . . . ; ṽσ (k), zσ(k)), ζ1

)
u〉

〈w′,YW
WV

(
	(̃vσ(k+1), zσ(k+1); . . . ; ṽσ (k+n−r), zσ(k+n−r)), ζ2

)
u〉, (3.16)

where by (̃vσ (1), . . . , ṽσ (k+n−r)) we denote a permutation of vertex algebra elements

(̃v1, . . . , ṽk+n−r ) = (v1, . . . ; vk; . . . , v̂′
j1 , . . . , v̂

′
jr , . . .). (3.17)

Next, we have

Lemma 1. The product (3.7) satisfies (2.9) for σ ∈ Sk+n−r , i.e.,

∑

σ∈J−1
k+n−r;s

(−1)|σ | R̂ �
(
vσ(1), xσ(1); . . . ; vσ(k), xσ(k); v′

σ(1), yσ(1); . . . ; v′
σ(n), yσ(n); ε

)
= 0.

Proof. For arbitrary w′ ∈ W ′, we have
∑

σ∈J−1
k+n;s

(−1)|σ |〈w′,�
(
vσ(1), xσ(1); . . . ; vσ(k), xσ(k); v′

σ(1), yσ(1); . . . ; v′
σ(n), yσ(n))

)
〉

=
∑

σ∈J−1
k+n;s

(−1)|σ | ∑

l∈Z
εl

∑

u∈Vl
〈w′, YW

WV

(
�(vσ(1), xσ(1); . . . ; vσ(k), xσ(k)), ζ1

)
u〉

〈w′, YW
WV

(
	(v′

σ(1), yσ(1); . . . ; v′
σ(n), yσ(n)), ζ2

)
u〉

=
∑

l∈Z
εl

∑

u∈Vl

∑

σ∈J−1
k+n;s

(−1)|σ |〈w′, eζ1LW (−1) YW (u,−ζ1) �(vσ(1), xσ(1); . . . ; vσ(k), xσ(k))〉

〈w′, eζ2LW (−1) YW (u,−ζ2) 	(v′
σ(1), yσ(1); . . . ; v′

σ(n), yσ(n))〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′, eζ1LW (−1) YW (u,−ζ1)

∑

σ∈J−1
k;s

(−1)|σ |�(vσ(1), xσ(1); . . . ; vσ(k), xσ(k))〉
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〈w′, eζ2LW (−1) YW (u,−ζ2) 	(v′
σ(1), yσ(1); . . . ; v′

σ(n), yσ(n))〉
+

∑

l∈Z
εl

∑

u∈Vl
〈w′, eζ1LW (−1) YW (u,−ζ1) �(vσ(1), xσ(1); . . . ; vσ(k), xσ(k))〉

〈w′, eζ2LW (−1) YW (u,−ζ2)
∑

σ∈J−1
n;s

(−1)|σ |	(v′
σ(1), yσ(1); . . . ; v′

σ(n), yσ(n))〉 = 0,

since, J−1
k+n;s = J−1

k;s ×J−1
n;s , anddue to the fact that�(v1, x1, . . . , vk, xk) and	(v1, y1, . . . ,

v′
k, yn) satisfy (2.1). ��
Nextweprove the existenceof an appropriate differential form that belongs toWz1,...,zk+n−r

corresponding to an absolute convergent bilinear pairingR(z1, . . . , zk+n−r ) defining the
ε-product of elements of the spaces Wx1,...,xk and Wy1,...,yn .

Lemma 2. For all choices of elements of the spaces Wx1,...,xk and Wy1,...,yn there ex-
ists a differential form characterized by the bilinear pairing R̂ �(v1, x1; . . . ; vk, xk;
v′
1, y1; . . . ; v′

n, yn; ε) ∈ Wz1,...,zk+n−r such that the product (3.7) converges to

R(x1, . . . , xk; y1, . . . , yn; ε) = 〈w′, R̂ �(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉.
Proof. In the proof of Proposition 5 we showed the absolute convergence of the product
(3.7) to a bilinear pairing R(x1, . . . , xk; y1, . . . , yn; ε). The lemma follows from the
completeness of Wx1,...,xk ;y1,...,yn and the density of the space of rational differential
forms. ��
We formulate

Definition 15. For �(v1, x1; . . . ; vk, xk) ∈ Wx1,...,xk and 	(v′
1, y1; . . . ; v′

n, yk) ∈
Wy1,...,yn ,with r coinciding formal parameters xiq = y jq , 1 ≤ q ≤ r ,wedefine the action
of ∂s = ∂zs = ∂/∂zs , 1 ≤ s ≤ k+n−r , 1 ≤ i ≤ k, 1 ≤ j ≤ n on R̂ �(v1, x1; . . . ; vk, xk ;
v′
1, y1; . . . ; v′

n, yn; ε) with respect to the sth entry of (z1, . . . , zk+n−r ), as follows

〈w′, ∂s R̂ �(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′, ∂δs,i

xi Y W
WV (�(v1, x1; . . . ; vk, xk), ζ1) u〉

〈w′, ∂δs, j−δiq , jq
y j Y W

WV

(
	(v′

1, y1; . . . ; v′
n, yn), ζ2

)
u〉. (3.18)

Remark 4. As we see in the last expressions, the LV (0)-conjugation property (2.7) for
the product (3.7) includes the action of the zLV (0)-operator on the complex parameters
ζa , a = 1, 2.

Proposition 6. The product (3.7) satisfies the LV (−1)-derivative (2.2) and LV (0)-
conjugation (2.7) properties.

Proof. By using (2.2) for�(v1, x1; . . . ; vk, xk) and	(v′
1, y1; . . . ; v′

n, yn), we consider

〈w′, ∂l�(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′, ∂δl,i

xi Y W
WV (�(v1, x1; . . . ; vk, xk), ζ1) u〉

〈w′, ∂δl, j
y j Y W

WV

(
	(v′

1, y1; . . . ; v′
n, yn), ζ2

)
u〉
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=
∑

l∈Z
εl

∑

u∈Vl
〈w′, ∂δl,i

xi YW (u,−ζ1)�(v1, x1; . . . ; vk, xk)) u〉

〈w′, ∂δl, j
y j YW (u,−ζ2)	(v′

1, y1; . . . ; v′
n, yn)〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV

(
∂

δl,i
xi �(v1, x1; . . . ; vk, xk), ζ1

)
u〉

〈w′,YW
WV

(
∂

δl, j
y j 	(v′

1, y1; . . . ; vn, yn), ζ2
)
u〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV

(
�(v1, x1; . . . ; (LV (−1))δl,i vi , xi ; . . . ; vk, xk), ζ1

)
u〉

〈w′,YW
WV

(
	(v′

1, y1; . . . ; (LV (−1))δl, j v′
j , y j ; . . . ; v′

n, yn), ζ2
)
u〉

= 〈w′,�(v1, x1; . . . ; (LV (−1))l ; . . . ; v′
n, yn; ε)〉, (3.19)

where (LV (−1))l acts on the lth entry of (v1, . . . ; vk; v′
1, . . . , v

′
n). Summing over l we

obtain

k+n∑

l=1

∂l�(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉

=
k+n∑

l=1

〈w′,�(v′
1, x1; . . . ; (LV (−1)) ; . . . ; v′

n, yn; ε)〉

= 〈w′, LW (−1).�(v1, x1; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉. (3.20)

Due to (2.7), (9.9), (9.29), (9.30), and (9.15), we have

〈w′,�(zLV (0)v1, z x1; . . . ; zLV (0)vk, z xk; zLV (0)v′
1, z y1; . . . ; zLV (0)v′

n, z yn; ε)〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV

(
�(zLV (0)v1, z x1; . . . ; zLV (0)vk, z xk), ζ1

)
u〉

〈w′,YW
WV

(
	(zLV (0)v′

1, z y1; . . . ; zLV (0)v′
n, z yn), ζ2

)
u〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV

(
zLV (0)�(v1, x1; . . . ; vk, xk), ζ1

)
u〉

〈w′,YW
WV

(
zLV (0)	(v′

1, y1; . . . ; v′
n, yn), ζ2

)
u〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′, eζ1LW (−1)YW (u,−ζ1) z

LV (0)�(v1, x1; . . . ; vk, xk)〉

〈w′, eζ2LW (−1) YW (u,−ζ2) z
LV (0)	(v′

1, y1; . . . ; v′
n, yn)〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′, eζ1LW (−1)zLV (0)YW

(
z−LV (0)u,−z ζ1

)
�(v1, x1; . . . ; vk, xk)〉

〈w′, eζ2LW (−1) zLW (0) YW
(
z−LV (0)u,−z ζ2

)
	(v′

1, y1; . . . ; v′
n, yn)〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′, eζ1LW (−1)zLW (0)z−wtu YW (u,−z ζ1)�(v1, x1; . . . ; vk, xk)〉
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〈w′, eζ2LW (−1) zLW (0) z−wtu YW (u,−z ζ2) 	(v′
1, y1; . . . ; v′

n, yn)〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′, zLW (0)eζ1LW (−1)YW (u,−zζ1) �(v1, x1; . . . ; vk, xk)〉

〈w′, zLW (0)eζ2LW (−1)YW (u,−zζ2) 	(v′
1, y1; . . . ; v′

n, yn), 〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′, zLW (0) YW

WV (�(v1, x1; . . . ; vk, xk), zζ1) u〉

〈w′, zLW (0) YW
WV

(
	(v′

1, y1; . . . ; v′
n, yn), zζ2

)
u〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′, zLW (0) YW

WV

(
�(v1, x1; . . . ; vk, xk), ζ

′
1

)
u〉

〈w′, zLW (0) YW
WV

(
	(v′

1, y1; . . . ; v′
n, yn), ζ

′
2

)
u〉

= 〈w′,
(
zLW (0)

)
.�(v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε)〉.

With (3.5), we obtain (2.7) for (3.7). ��
Summing up the results of Proposition (5), Lemmas (1), (2), and Proposition (6), we

obtain the proof of Proposition 4. We then have

Definition 16. For the fixed sets v1, . . . , vk ∈ V and v′
1, . . . , v

′
n ∈ V , x1, . . . , xk ∈

C, y1, . . . , yn ∈ C, we call the set of all differential form of Wz1,...,zk+n−r described
by R̂ �(v1, x1; . . . ; vk, xk ; v′

1, y1; . . . ; v′
n, yn; ε) with the parameter ε exhausting all

possible values, the complete product of the spaces Wx1,...,xk and Wy1,...,yn .

3.3. Properties of the Wz1,...,zn -product. In this Subsection we study properties of the
product R̂ �(v1, x1; . . .; vk, xk ; v′

1, y1; . . .; v′
n, yn ; ε) of (3.7). We have

Proposition 7. For generic elements vi , v′
j ∈ V , 1 ≤ i ≤ k, 1 ≤ j ≤ n, of a quasi-

conformal grading-restricted vertex algebra V , the product (3.7) is canonical with re-
spect to the action of the group (Aut O)

×(k+n−r)
z1,...,zk+n−r of independent k +n− r-dimensional

changes

(z1, . . . , zk+n−r ) 
→ (z′1, . . . , z′k+n−r ) = (ρ(z1), . . . , ρ(zk+n−r )), (3.21)

of formal parameters.

Proof. Note that due to Proposition 8

�(v1, x
′
1; . . . ; vk, x

′
k) = �(v1, x1; . . . ; vk, xk),

	(v1, y
′
1; . . . ; vn, y

′
n) = 	(v1, y1; . . . ; vn, yn).

Thus,

〈w′,�(v1, x
′
1; . . . , ; vk, x

′
k; v′

1, y
′
1; . . . ; v′

n, y
′
n; ε)〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV

(
�(v1, x

′
1; . . . ; vk, x

′
k), ζ1

)
u〉

〈w′,YW
WV

(
	(v′

1, y
′
1; . . . ; v′

n, y
′
n), ζ2

)
u〉
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=
∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV (�(v1, x1; . . . ; vk, xk), ζ1) u〉

〈w′,YW
WV

(
	(v′

1, y1; . . . ; v′
n, yn), ζ2

)
u〉

= 〈w′,�(v1, x1; . . . , ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε)〉.
Therefore, the product (3.7) is invariant under (4.6). ��

In the geometrical interpretation in terms of auxiliary Riemann spheres, the definition
(3.7) depends on the choice of the insertion points pi , 1 ≤ i ≤ k, with local the
coordinated xi on �̂

(0)
1 , and p′

i , 1 ≤ j ≤ k, with the local coordinates y j on �̂
(0)
2 .

Suppose we change the distribution of points among two initial Riemann spheres. We
then formulate the following

Lemma 3. In the setup above, for a fixed set (̃v1, . . . , ṽk+n), vl ∈ V , 1 ≤ l ≤ k + n
of vertex algebra elements, the splittings (̃v1, . . . , ṽs), (̃vs+1, . . . , ṽk+n) for elements
�(̃v1, z1; . . . ; ṽs, zs) ∈ Wz1,...,zs and 	(̃vs+1, zs+1; . . .; ṽk+n, zk+n) ∈ Wzk+1,...,zk+n ,
bring about the same ε-product �(̃v1, z1; . . . ; ṽk+n, zk+n; ε) ∈ Wz1,...,zk+n ,

·ε : Wz1,...,zs × Wzs+1,...,zk+n → Wz1,...,zk+n , (3.22)

for any s, 0 ≤ s ≤ k + n.

Remark 5. This Lemma is important for the formulation of cohomological invariants
associated to grading-restricted vertex algebras on smooth manifolds. In the case s = 0,
we obtain from (3.23),

·ε : W × Wz1,...,zk+n → Wz1,...,zk+n . (3.23)

Now we give a proof of Lemma 3.

Proof. Let ṽi ∈ V , 1 ≤ i ≤ k, ṽ j ∈ V , 1 ≤ j ≤ k, and zi , z j are corresponding formal
parameters. We show that the ε-product of �(̃v1, z1; . . . ; ṽk, zk) and 	(̃vk+1, zk+1; . . .;
ṽn, zn), i.e., the differential form that belongs toWz1,...,zk+n−r

�((̃v1, z1; . . . ; ṽk, zk); (̃vk+1, zk+1; . . . ; ṽn, zn); ζ1, ζ2; ε), (3.24)

is independent of the choice of 0 ≤ k ≤ n. Consider

〈w′,�(̃v1, z1; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽn, zn; ζ1, ζ2; ε)〉
=

∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV (�(̃v1, z1; . . . ; ṽk, zk), ζ1) u〉

〈w′,YW
WV (	(̃vk+1, zk+1; . . . ; ṽn, zn), ζ2) u〉. (3.25)

On the other hand, for 0 ≤ m ≤ k, consider
∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV (�(̃v1, z1; . . . ; ṽm, zm), ζ1) u〉

〈w′,YW
WV

(
	(̃vm+1, z

′
m+1; . . . ; ṽk, z

′
k; ṽk+1, z1; . . . ; ṽn, zn), ζ2

)
u〉

= 〈w′,�(̃v1, z1; . . . ; ṽm, zm; ṽm+1, z
′
m+1; . . . ; ṽk, z

′
k; ṽk+1, zk+1; . . . ; ṽn, zn)〉.

The last is the ε-product (3.7) of �(̃v1, z1; . . . ; ṽm, zm) ∈ Wz1,...,zm and 	(̃vm+1, z′m+1;
. . .; ṽk, z′k ; ṽk+1, z1; . . .; ṽn, zn) ∈ Wz′m+1,...,z

′
k ;z1,...,zn . Let us apply the invariance with

respect to a subgroup of
(
Aut O(1)

)×(k+n)

z1,...,zk+n
, with (z1, . . . , zm) and (zk+1, . . . , zn) re-

maining unchanged. Then we obtain the same product (3.25). ��
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4. Spaces for the Double Complexes

In this Section we introduce the definition of spaces for double complexes suitable for
the construction the grading-restricted vertex algebra cohomology for codimension one
foliations on complex curves. We first introduce

Definition 17. Let (v1, . . . , vn) and (v′
1, . . . , v

′
k) be two sets of vertex algebra V ele-

ments, and (p1, . . . , pn) be points with the local coordinates (c1(p1), . . . , cn(pn)) taken
on the same transversal section Uj ∈ U , j ≥ 1 of the foliation F transversal basis U on
a complex curve. Assuming k ≥ 1, n ≥ 0, we denote by Cn(V,W,F)(Uj ), 0 ≤ j ≤ k,
the space of all linear maps (2.18)

� : V⊗n → Wc1(p1),...,cn(pn), (4.1)

composable with k of vertex operators (2.21) with the formal parameters identified with
the local coordinates c′

j (p
′
j ) around the points p

′
j on each of the transversal sectionsUj ,

1 ≤ j ≤ k.

The set of vertex algebra elements (2.17) plays the role of non-commutative parameters
in our further construction of the vertex algebra cohomology associated with a foliation
F . According to the considerations of Sect. 2.1, we assume that each transversal section
of a transversal basis U has a coordinate chart which is induced by a coordinate chart of
M (cf. [15]).

Recall the notion of a holonomy embedding (cf. Sect. 2.1, cf. [15]) which maps a sec-
tion into another section of a transversal basis, and a coordinate chart on the first section
into a coordinate chart on the second transversal section. Motivated by the definition of
the spaces for Čech-de Rham complex in [15] (see Sect. 2.1), let us now introduce the
following spaces:

Definition 18. For n ≥ 0, and 1 ≤ m ≤ k, with Definition 17, we define the space

Cn
m(V,W,U ,F) =

⋂

U1
h1
↪→...

hm−1
↪→ Um

1≤ j≤m

Cn(V,W,F)(Uj ), (4.2)

where the intersection ranges over all possible (m − 1)-tuples of holonomy embeddings
h j , j ∈ {1, . . . ,m − 1}, between transversal sections of a basis U for F .

First, we have the following

Lemma 4. (4.2) is non-empty.

Proof. From the construction of the spaces for the double complex of the grading-
restricted vertex algebra cohomology, it is clear that the spaces Cn(V,W,U ,F)(Uj ),
1 ≤ s ≤ m in Definition 17 are non-empty. On each transversal section Us , 1 ≤ s ≤ m,
�(v1, c j (p1); . . . ; vn, c j (pn)) belongs to the space Wc j (p1),...,c j (pn), and satisfies the
L(−1)-derivative (2.2) and L(0)-conjugation (2.7) properties. The map �(v1, c j (p1);
. . .; vn, c j (pn)) is composable with m vertex operators with the formal parameters
identified with the local coordinates c j (p′

j ), on each transversal sectionUj . Note that on
each transversal section, the spaces (4.2) remain the same for fixed n and m. The only
difference may be constituted by the composability conditions (2.12) and (2.14) for �.
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In particular, for l1, . . . , ln ∈ Z+ such that l1 + · · · + ln = n + m, v1, . . . , vm+n ∈ V
and w′ ∈ W ′, recall (6.13) that


i = ωV (vk1 , ck1(pk1) − ζi ) . . . ωV (vki , cki (pki ) − ζi ) 1V , (4.3)

where ki is defined in (6.18), for i = 1, . . . , n, depend on the coordinates of points on the
transversal sections. At the same time, in the first composability condition (2.12) depends
on the projections Pr (
i ), r ∈ C, ofWc(p1),...,c(pn) toW , and on the arbitrary variables ζi ,
1 ≤ i ≤ m. On each transversal connectionUs , 1 ≤ s ≤ m, the absolute convergence is
assumed for the series (2.12) (cf. Sect. 2.3). The positive integers Nn

m(vi , v j ), (depending
only on vi and v j ) as well as ζi , for i , j = 1, . . . , k, i �= j , may vary for the transversal
sections Us . Nevertheless, the domains of convergence determined by the conditions
(6.12) which have the form

|cmi (pmi ) − ζi | + |cni (pni ) − ζi | < |ζi − ζ j |, (4.4)

for mi = l1 + · · · + li−1 + p, n = l1 + · · · + l j−1 + q, i , j = 1, . . . , k, i �= j and for
p = 1, . . . , li and q = 1, . . . , l j , are limited by |ζi − ζ j | in (4.4) from above. Thus,
for the intersection variation of the sets of homology embeddings in (4.2), the absolute
convergence condition for (2.12) is still fulfilled. Under the intersection in (4.2), by
choosing appropriate Nn

m(vi , v j ), one can analytically extend (2.12) to a rational function
in (c1(p1), . . . , cn+m(pn+m)), independent of (ζ1, . . . , ζn), with the only possible poles
at ci (pi ) = c j (p j ), of order less than or equal to Nn

m(vi , v j ), for i, j = 1, . . . , k, i �= j .
As for the second condition in the definition of composability, we note that, on each

transversal section, the domains of absolute convergensy ci (pi ) �= c j (p j ), i �= j

|ci (pi )| > |ck(p j )| > 0,

for i = 1, . . . ,m, and k = 1 + m, . . . , n + m, for

J n
m(�) =

∑

q∈C
〈w′, ωW (v1, c1(p1)) . . . ωW (vm, cm(pm))

Pq(�(v1+m, c1+m(p1+m); . . . ; vn+m, cn+m(pn+m))〉, (4.5)

are limited from below by the same set of the absolute values of the local coordinates on
the transversal section. Thus, under the intersection in (4.2), this condition is preserved,
and the sum (2.14) can be analytically extended to a rational function in (c1(p1), . . . ,
cm+n(pm+n)) with the only possible poles at ci (pi ) = c j (p j ), of orders less than or
equal to Nn

m(vi , v j ), for i, j = 1, . . . , k, i �= j . Thus, we proved the lemma. ��
Lemma 5. The double complex (4.2) does not depend on the choice of a transversal
basis U .
Proof. Suppose we consider another transversal basis U ′ forF . According to the defini-
tion, for each transversal section Ui which belongs to the original basis U in (4.2) there
exists a holonomy embedding

h′
i : Ui ↪→ U ′

j ,

i.e., it embeds Ui into a section U ′
j of our new transversal basis U ′. Then consider the

sequence of holonomy embeddings
{
h′
k

}
such that

U ′
0

h′
1

↪→ . . .
h′
k

↪→ U ′
k .
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For the combination of the embeddings
{
h′
i , i ≥ 0

}
and

U0
h1
↪→ . . .

hk
↪→ Uk,

we obtain commutative diagrams. Since the intersection in (4.2) is performed over all
sets of homology mappings, then it is independent on the choice of a transversal basis.

��
Thus we then denote Cn

m(V,W,U ,F) as Cn
m(V,W,F). Recall the notation of a

quasi-conformal grading-restricted vertex algebra given in “Appendix 8.2”. The main
statement of this section is contained in the following

Proposition 8. Foraquasi-conformal grading-restricted vertex algebra V and its grading-
restricted generalized module W, the construction (4.2) is canonical, i.e., does not de-
pend on the foliation preserving choice of local coordinates onM/F .

Proof. Here we prove that for the generic elements of a quasi-conformal grading-
restricted vertex algebra V , the maps � (2.19) and the operators ωW ∈ Wz1,...,zn (2.21)
are canonical, i.e., independent on changes

zi 
→ wi = ρ(zi ), 1 ≤ i ≤ n, (4.6)

of the local coordinates of ci (pi ) and c j (p′
j ) at points pi and p′

j , 1 ≤ i ≤ n, 1 ≤ j ≤ k.
Thus the construction of the double complex spaces (4.2) is proved to be canonical too.
Let us denote

ξi =
(
β−1
0 dwi

)wt(vi )
.

Recall the linear operator (2.21) (cf. “Appendix 8.2”). Introduce the action of the trans-
formations (4.6) as

�
(
dw

wt(v1)
1 ⊗ v1, w1; . . . ; dwwt(vn)

n ⊗ vn, wn

)

=
(
d f (ζ )

dζ

)−LW (0)

P( f (ζ )) � (ξ1 ⊗ v1, z1; . . . ; ξn ⊗ vn, zn) . (4.7)

We then obtain

Lemma 6. An element (2.8)

�
(
dzwt(v1)1 ⊗ v1, z1; . . . ; dzwt(vn)n ⊗ vn, zn

)
,

of Wz1,...,zn is invariant under the transformations (4.6) of
(
Aut O(1)

)×n
z1,...,zn

.

Proof. Consider (4.7). First, note that

f ′(ζ ) = d f (ζ )

dζ
=

∑

m≥0

(m + 1) βmζm .

By using the identification (9.19) and the LW (−1)-properties (2.2) and (2.7) we obtain

〈w′,�
(
dw

wt(v1)
1 ⊗ v1, w1; . . . ; dwwt(vn)

n ⊗ vn, wn

)
〉
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= 〈w′, f ′(ζ )−LW (0) P( f (ζ )) � (ξ1 ⊗ v1, z1; . . . ; ξn ⊗ vn, zn)〉

= 〈w′,
(
d f (ζ )

dζ

)−LW (0)

�

⎛

⎝dw
wt(v1)
1 ⊗ v1,

∑

m≥0

(m + 1) βmz
m+1
1 ; . . . ;

dwwt(vn)
n ⊗ vn,

∑

m≥0

(m + 1) βmz
m+1
n

⎞

⎠〉

= 〈w′,
(
d f (ζ )

dζ

)−LW (0)

�

(
dw

wt(v1)
1 ⊗ v1,

(
d f (z1)

dz1

)
z1;

. . . ; dwwt(vn)
n ⊗ vn,

(
d f (zn)

dzn

)
zn

)
〉

= 〈w′,�
((

d f (z1)

dzi
dw1

)−wt(v1)

⊗ v1, z1;

. . . ;
(
d f (zn)

dzn
dwn

)−wt(vn)

⊗ vn, zn

)

〉

= 〈w′,�
(
dzwt(v1)1 ⊗ v1, z1; . . . ; dzwt(vn)n ⊗ vn, zn

)
〉.

Thus we proved the lemma. ��
The elements �(v1, z1; . . . ; vn, zn) of Cn

k (V,W,F) belong to the space Wz1,...,zn
and are assumed to be composable with a set of vertex operators ωW (v′

j , c j (p
′
j )), 1 ≤

j ≤ k. The vertex operators ωW (dc(p)wt(v
′) ⊗ v′

j , c j (p
′
j )) constitute the particular

examples of the mapping of C1∞(V,W,F) and, therefore, are invariant with respect to
(4.6). Thus, the construction of the spaces (4.2) is invariant under the action of the group

(Aut O)×n
z1,...,zn . ��

Remark 6. The condition of quasi-conformality is necessary in the proof of invariance
of elements of the space Wz1,...,zn with respect to a vertex algebraic representation (cf.

“Appendix 8.2”) of the group
(
Aut O(1)

)×n
z1,...,zn

. In what follows, when it concerns the
spaces (4.2) we will always assume the quasi-conformality of V .

The proofs of generalizations of Lemmas 4, 5, 7 and Proposition 8 for the case of an
arbitrary codimension foliation on a smooth complex manifold of arbitrary dimension
will be given elsewhere.

Let W be a grading-restricted generalized V module. Since for n = 0, maps � do
not include variables, and due to Definition 12 of the composability, we can put:

C0
k (V,W,F) = W, (4.8)

for k ≥ 0. Nevertheless, according to Definition 4.2, mappings that belong to (4.8)
are assumed to be composable with a number of vertex operators depending on local
coordinates of k points on k transversal sections.

We observe

Lemma 7.

Cn
m(V,W,F) ⊂ Cn

m−1(V,W,F). (4.9)
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Proof. Since n is the same for both spaces in (4.9), it only remains to check that the
conditions for (2.12) and (2.14) for �(v1, c j (p1); . . . ; vn, c j (pn)) of the compos-
ability Definition 2.3 with vertex operators are stronger for Cn

m(V,W,U ,F) then for
Cn
m−1(V,W,U ,F). In particular, in the first condition for (2.12) in Definition 12 the dif-

ference between the spaces in (4.9) is in indexes. Consider (4.3). ForCn
m−1(V,W,U ,F),

the summations in indexes

k1 = l1 + · · · + li−1 + 1, ..., ki = l1 + · · · + li−1 + li ,

for the coordinates c j (p1),..., c j (pn) with l1, . . . , ln ∈ Z+, such that l1 + · · · + ln =
n + (m − 1), and the vertex algebra elements v1, . . . , vn+(m−1) are included in the sum-
mation for the indexes for Cn

m(V,W,U ,F). The conditions for the domains of absolute
convergence, i.e.,

|cl1+···+li−1+p − ζi | + |cl1+···+l j−1+q − ζi | < |ζi − ζ j |,
for i , j = 1, . . . , k, i �= j , and for p = 1, . . . , li and q = 1, . . . , l j , for the series (2.12)
are more restrictive then for (m−1) vertex operators. The conditions for In

m−1(�) to be
extended analytically to a rational function in (c1(p1), . . . , cn+(m−1)(pn+(m−1))), with
positive integers Nn

m−1(vi , v j ), depending only on vi and v j for i, j = 1, . . . , k, i �= j ,
are included in the conditions for In

m(�).
Similarly, the second condition for (2.14), of the absolute convergence and analytical

extension to a rational function in (c1(p1), . . . , cm+n(pm+n)), with the only possible
poles at ci (pi ) = c j (p j ), of orders less than or equal to Nn

m(vi , v j ), for i, j = 1, . . . , k,
i �= j , for (2.14) when

ci (pi ) �= c j (p j ), i �= j, |ci (pi )| > |ck(pk)| > 0,

for i = 1, . . . ,m, and k = m + 1, . . . ,m + n includes the same condition for J n
m−1(�).

Thus we obtain the conclusion of Lemma. ��

5. Coboundary Operators and Cohomology of Codimension One Foliations

In this Section we introduce the coboundary operators acting on the double complex
spaces.

5.1. Cohomology in terms of connections. In various geometrical configurations, it is
sometimes effective to use the interpretation of cohomology in terms of connections
[38,39]. That applies, in particular, to our supporting example of the vertex algebra
cohomology of codimension one foliations. It is convenient to introduce the multi-
point connections over a graded space and to express the coboundary operators and
cohomology in terms of connections:

δnφ ∈ Gn+1(φ),

δnφ = G(φ).

Then the cohomology is defined as the factor space

Hn = Conncl/Gn−1,



Product-Type Classes for Vertex Algebra Cohomology 1477

of closed multi-point connections with respect to the space of connection forms defined
below.

We continue this Section with the definition of holomorphic multi-point connections
on a smooth complex variety. Let X be a smooth complex variety and V → X a
holomorphic vector bundle over X . Let E be the sheaf of holomorphic sections of V .
Denote by � the sheaf of differentials on X . A holomorphic connection ∇ on E is a
C-linear map

∇ : E → E ⊗ �,

satisfying Leibniz formula

∇( f φ) = ∇ f φ + φ ⊗ dz,

for any holomorphic function f . Motivated by the definition of the holomorphic con-
nection ∇ defined for a vertex algebra bundle (cf. Sect. 6, [7]) over a smooth complex
varietyX , we introduce the definition of themultiple point holomorphic connection over
X .

Definition 19. LetV be a holomorphic vector bundle overX , and letX0 be its subvariety.
A holomorphic multi-point connection G on V is a C-multi-linear map

G : E → E ⊗ �,

such that for any holomorphic function f , and two sections φ(p) and ψ(p′) at points p
and p′ on X0 correspondingly, we have

∑

q,q ′X0⊂X
G (

f (ψ(q)).φ(q ′)
) = f (ψ(p′)) G (φ(p)) + f (φ(p)) G (

ψ(p′)
)
, (5.1)

where the summation on left hand side is performed over a locus of points q, q ′ on X0.
We denote by ConX0(S) the space of such connections defined over a smooth complex
variety X . We will call G satisfying (5.1), a closed connection, and denote the space of
such connections by ConnX0;cl .

Geometrically, for a vector bundle V defined over a complex variety X , a multi-point
holomorphic connection (5.1) relates two sections φ and ψ of E at points p and p′ with
a number of sections at a subvariety X0 of X .

Definition 20. We call

G(φ, ψ) = f (φ(p)) G (
ψ(p′)

)
+ f (ψ(p′)) G (φ(p)) −

∑

q,q ′X0⊂X
G (

f (ψ(q ′)).φ(q)
)
,

(5.2)

the form of a holomorphic connection G. The space of n-point holomorphic connection
forms will be denoted by Gn(p, p′, q, q ′).

Let us formulate another definition which we use in what follows:
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Definition 21. We call a multi-point holomorphic connection G the transversal connec-
tion, i.e., when it satisfies

f (ψ(p′)) G(φ(p)) + f (φ(p)) G(ψ(p′)) = 0. (5.3)

We call

Gtr (p, p
′) = (ψ(p′)) G(φ(p)) + f (φ(p)) G(ψ(p′)), (5.4)

the form of a transversal connection. The space of such connections is denoted by G2
tr .

The construction of the vertex algebra cohomology of foliations in terms of connec-
tions is parallel to ideas of [13]. Such a construction will be explained elsewhere.

5.2. Coboundary operators. Recall the definitions of the E-operators given in “Ap-
pendix .3”. Consider the vector of E-operators:

E =
(

E (1)
W .,

n∑

i=1

(−1)i E (2)
V ;1V ., EW ;(1)

WV .

)

. (5.5)

As we see from the definition of the E-operators given in “Appendix .3”, when acting
on a map � ∈ Cn

m(V,W,F), each entry of (5.5) increases the set of the vertex algebra
elements (v1, . . . , vn) with a vertex algebra element vn+1. On the other hand, according
to Proposition 2, the action of each entry of (5.5) on� is composable with (m−1)-vertex
operators with the vertex algebra elements (v′

1, . . . , v
′
m). Then we formulate

Definition 22. The coboundary operator δnm acting on elements � ∈ Cn
m(V,W,F) of

the spaces (4.2), is defined by

δnm� = E .�, (5.6)

where . denotes the action given by the vector of each element of E acting on�. A vertex
operator added by δnm has a formal parameter associated with an extra point pn+1 onM
with a local coordinate cn+1(pn+1).

Then we obtain

Lemma 8. The definition (5.6) is equivalent to a multi-point vertex algebra connection

δnm� = G(p1, . . . , pn+1), (5.7)

where

G(p1, . . . , pn+1) = 〈w′,
n∑

i=1

(−1)i �(ωV (vi , ci (pi ) − ci+1(pi+1))vi+1))〉,

+〈w′, ωW (v1, c1(p1)) �(v2, c2(p2); . . . ; vn+1, cn(pn+1))〉
+(−1)n+1〈w′, ωW (vn+1, cn+1(pn+1)) �(v1, c1(p2); . . . ; vn, cn(pn))〉,

(5.8)

for arbitrary w′ ∈ W ′ (dual to W).
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Proof. The statement follows from the intertwining operator (cf. “Appendix 8.2”) rep-
resentation of the definition (5.7) in the form

δnm� =
3∑

i=1

〈w′, eξi LW (−1) ωW
WV (�i ) ui 〉,

for some ξi ∈ C, and ui ∈ V , and �i obvious from (5.7). Namely,

δnm� = 〈w′, ec1(p1)LW (−1) ωW
WV (� (v2, c2(p2); . . . ; vn, cn+1(pn+1) − c1(p1)) v1)〉

+
n∑

i=1

(−1)i eζ LW (−1)〈w′, ωW
WV (� (ωV (vi , ci (pi ) − ci+1(pi+1)) ,−ζ )) 1V 〉

+〈w′, ecn+1(pn+1)LW (−1) ωW
WV (� (v1, c1(p1); . . . ; vn, cn(pn) − cn+1(pn+1)) vn+1)〉,

for an arbitrary ζ ∈ C. ��
Remark 7. Inspecting the construction of the double complex spaces (4.2) we see that
the action (5.8) of the δnm on an element of Cn

m(V,W,F) provides a coupling (in terms
of differential forms of Wz1,...,zn ) of the vertex operators taken at the local coordinates
ci (z pi ), 0 ≤ i ≤ k, at the vicinities of the same points pi taken on transversal sections
for F , with elements of Cn

m−1(V,W,F) taken at the points with the local coordinates
ci (z pi ), 0 ≤ i ≤ n on M for the points pi considered on the leaves of M/F .

5.3. Complexes on transversal connections. In addition to the double complex (Cn
m(V ,

W ,F), δnm) provided by (4.2) and (5.7), there exists an exceptional short double complex
which we call the transversal connection complex. We have

Lemma 9. For n = 2, and k = 0, there exists a subspace C0
ex (V,W,F)

C2
m(V,W,F) ⊂ C0

ex (V,W,F) ⊂ C2
0 (V,W,F),

for all m ≥ 1, with the action of the coboundary operator δ2m defined by (5.7).

Proof. Let us consider the space C2
0 (V,W,F). It consists of Wc1(p1),c2(p2)-elements

with zero vertex operators composable. The space C2
0 (V,W,F) contains elements of

Wc1(p1),c2(p2) so that the action of δ20 is zero. Nevertheless, as for J n
m(�) in (2.14),

Definition 12, let us consider the sum of the projections

Pr : Wzi ,z j → Wr ,

for r ∈ C, and (i, j) = (1, 2), (2, 3), so that the condition (2.14) is satisfied for some
connections similar to the action (2.14) of δ20. Separating the first two and the second
two summands in (5.8), we find that for a subspace of C2

0 (V,W,F), which we denote
as C2

ex (V,W,F), consisting of three-point connections � such that for v1, v2, v3 ∈ V ,
w′ ∈ W ′, and arbitrary ζ ∈ C, the following forms of connections

G1(c1(p1), c2(p2), c3(p3))

=
∑

r∈C

(
〈w′, E (1)

W (v1, c1(p1); Pr (� (v2, c2(p2) − ζ ; v3, c3(p3) − ζ )) 〉
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+〈w′,�
(
v1, c1(p1); Pr

(
E (2)
V (v2, c2(p2) − ζ ; v3, c3(z3) − ζ ; 1V

)
, ζ

)
〉
)

=
∑

r∈C

(〈w′, ωW (v1, c1(p1)) Pr (� (v2, c2(p2) − ζ ; v3, c3(p3) − ζ ))〉

+〈w′,� (v1, c1(p1); Pr (ωV (v2, c2(p2) − ζ ) ωV (v3, c3(z3) − ζ ) 1V ) , ζ )〉),
(5.9)

and

G2(c1(p1), c2(p2), c3(p3))

=
∑

r∈C

(
〈w′,�

(
Pr

(
E (2)
V (v1, c1(p1) − ζ, v2, c2(p2) − ζ ; 1V )

)
, ζ ; v3, c3(p3)

)
〉

+〈w′, EW ;(1)
WV (Pr (� (v1, c1(p1) − ζ ; v2, c2(p2) − ζ ) , ζ ; v3, c3(p3)))〉

)

=
∑

r∈C

(〈w′,� (Pr (ωV (v1, c1(p1) − ζ ) ωV (v2, c2(p2) − ζ )1V , ζ )); v3, c3(p3))〉

+〈w′, ωV (v3, c3(p3)) Pr (� (v1, c1(p1) − ζ ; v2, c2(p2) − ζ ))〉), (5.10)

are absolutely convergent in the regions

|c1(p1) − ζ | > |c2(p2) − ζ |,
|c2(p2) − ζ | > 0,

|ζ − c3(p3)| > |c1(p1) − ζ |,
|c2(p2) − ζ | > 0,

where ci , 1 ≤ i ≤ 3 are coordinate functions, respectively, and can be analytically
extended to rational functions in c1(p1) and c2(p2) with the only possible poles at
c1(p1), c2(p2) = 0, and c1(p1) = c2(p2). Note that (5.9) and (5.10) constitute the first
two and the last two terms of (5.8) correspondingly. According to Proposition 2 (cf. Sect.
2.3), C2

m(V,W,F) is a subspace of C2
ex (V,W,F), for m ≥ 0, and � ∈ C2

m(V,W,F)

are composable with m vertex operators. Note that (5.9) and (5.10) represent the sums
of the forms Gtr (p, p′) of the transversal connections (5.4) (cf. Sect. 5.1). ��
Remark 8. It is important to mention that, according to the general principle observed
in [1], for the non-vanishing connection G(c(p), c(p′), c(p′′)), there exists an invariant
structure, e.g., a cohomological class. In our case, it appears as a non-empty subspace
C2
m(V,W,F) ⊂ C2

ex (V,W,F) in C2
0 (V,W,F).

Then we have

Definition 23. The coboundary operator

δ2ex : C2
ex (V,W,F) → C3

0(V,W,F), (5.11)

is defined by the three point connection of the form

δ2ex� = Eex · � = Gex (p1, p2, p3), (5.12)

where

Eex =
(

E (1)
W .,

2∑

i=1

(−1)n E (2)
V ;1V ., EW ;(1)

WV .

)

, (5.13)
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Gex (p1, p2, p3) = 〈w′, ωW (v1, c1(p1)) � (v2, c2(p2); v3, c3(p3))〉
−〈w′,� (ωV (v1, c1(p1)) ωV (v2, c2(p2))1V ; v3, c3(p3))〉
+〈w′,�(v1, c1(p1); ωV (v2, c2(p2)) ωV (v3, c3(p3))1V )〉
+〈w′, ωW (v3, c3(p3)) � (v1, c1(p1); v2, c2(p2))〉, (5.14)

for w′ ∈ W ′, � ∈ C2
ex (V,W,F), v1, v2, v3 ∈ V and (z1, z2, z3) ∈ F3C.

Then we have

Proposition 9. The operators (5.7) and (5.11) provide the chain-cochain complexes

δnm : Cn
m(V,W,F) → Cn+1

m−1(V,W,F), (5.15)

δn+1m−1 ◦ δnm = 0, (5.16)

δ2ex ◦ δ12 = 0, (5.17)

0 −→ C0
m(V,W,F)

δ0m−→ C1
m−1(V,W,F)

δ1m−1−→ · · · δm−1
1−→ Cm

0 (V,W,F) −→ 0, (5.18)

0 −→ C0
3 (V,W,F)

δ03−→ C1
2 (V,W,F)

δ12−→ C2
ex (V,W,F)

δ2ex−→ C3
0 (V,W,F) −→ 0,

(5.19)

on the spaces (4.2).

Since

δ12 C1
2(V,W,F) ⊂ C2

1 (V,W,F) ⊂ C2
ex (V,W,F),

it follows that

δ2ex ◦ δ12 = δ21 ◦ δ12 = 0.

Proof. The proof of this proposition is analogous to that of Proposition (4.1) in [43] for
the chain-cochain complex of a grading-restricted vertex algebra. The only difference is
thatweworkwith the spaceWc1(p1),...,cn(pn) instead ofWz1,...,zn . Let� ∈ Cn

m(V,W,F).
First, we show that δnm� ∈ Cn+1

m−1(V,W,F). Indeed, it is clear from (5.5), the definitions
of the E-operators given in “Appendix .3”, and Definitions (4.2) and 22 that the action
of the coboundary operator δnm increases the number of the vertex operators for � with
the vertex algebra elements (v1, . . . , vn+1) with the local coordinates ci (pi ) around the
points pi , 1 ≤ i ≤ n + 1. Simultaneously, according to Proposition 2, it decreases
the number of the vertex operators with the vertex algebra elements (v′

1, . . . , v
′
k) and

with the local coordinates c j (p′
j ), 1 ≤ j ≤ k, with which � is composable. Note that

δnm� has the L(−1)-derivative property and the L(0)-conjugation property. Therefore,
it decreases the number of the transversal sections for δnm� according to the definition
(4.2). Thus, δnm� ∈ Cn+1

m−1(V,W,F). Then consider

δn+1m−1 G(p1, . . . , pn+1)

=
(

E (1)
W .,

n∑

i=1

(−1)i E (2)
V ;1V ., EW ;(1)

WV .

)

.G(p1, . . . , pn+2)

= E (1)
W .(E (1)

W .�) +
n∑

j=1

(−1) j E (1)
W .(Ins j (E

(2)
V ;1.)�)
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+(−1)n+1E (1)
W .(σn+1,1,...,n(E

(1)
W .�)) − E (2)

V ;1.(E
(1)
W .�)

+
n+1∑

i=1

(−1)i
n+1∑

j=i+2

(−1) j−1Insi (E
(2)
V ;1.)(Ins j (E

(2)
V 1.)�)

+
n+1∑

i=1

(−1)i
i−2∑

j=1

(−1) j Insi (E
(2)
V ;1.)(Ins j (E

(2)
V ;1.)�)

+(σn+1,1,...,nInsn+1(E
(2)
V ;1.)(E

(1)
W .�)) − σn+2,1,...,n+1(E

(1)
W .σn+1,1,...,n(E

(1)
W .�)),

where Insi (E) denotes the insertion of the action of the E-operator at the i th position.
In [43] it was proven that

E (1)
W .(E (1)

W .�) = E (2)
V ;1.(E

(1)
W .�),

n∑

j=1

(−1) j E (1)
W .(Ins j (E

(2)
V ;1.)�) = −

n+1∑

i=2

(−1)i Insi (E
(2)
V ;1.)(E

(1)
W .�),

E (1)
W .(σn+1,1,...,n(E

(1)
W .�)) = σn+2,1,...,n+1(E

(1)
W .(E (1)

W .�)),

n+1∑

i=1

(−1)i
i−2∑

j=1

(−1) j Insi (E
(2)
V ;1.)(Ins j (E

(2)
V ;1.)�)

= −
n+1∑

i=1

(−1)i
n+1∑

j=i+2

(−1) j−1Insi (E
(2)
V ;1.)(Ins j (E

(2)
V 1.)�),

(σn+1,1,...,nInsn+1(E
(2)
V ;1.)(E

(1)
W .�)) = σn+2,1,...,n+1(E

(1)
W .σn+1,1,...,n(E

(1)
W .�)).

Therefore, δnmG(p1, . . . , pn+1) vanishes and one has (5.16). Similar considerations are
applicable to (5.19) and (5.17). ��

5.4. The vertex algebra cohomology and its relation to the Crainic and Moerdijk con-
struction. Now let us define the cohomology associated with a grading-restricted vertex
algebra V of the space of leaves M/F for a codimension one foliation F .

Definition 24. We define the nth cohomology Hn
k (V,W,F) ofM/F with coefficients

inWz1,...,zn (containing maps composable with k vertex operators on k transversal sec-
tions) to be the factor space of closed multi-point connections by the space of connection
forms:

Hn
k (V,W,F) = Connk; cl/Gn−1

k+1 . (5.20)

Note that due to (5.8), (5.14), and Definitions 5.1 and 5.2 (cf. Sect. 5), it is easy to see
that (5.20) is equivalent to the standard cohomology definition

Hn
k (V,W,F) = ker δnk /Im δn−1

k+1 . (5.21)

Recall the construction of Čech-de Rham cohomology of a foliation [15]. Consider a
foliation F of codimension one defined on a smooth complex curve M. Consider the



Product-Type Classes for Vertex Algebra Cohomology 1483

double complex

Ck,l =
∏

U0
h1
↪→··· hk↪→Uk

�l(U0), (5.22)

where �l(U0) is the space of differential l-forms onU0, and the product ranges over all
k-tuples of holonomy embeddings between transversal sections from a fixed transversal
basis U . Components of� ∈ Ck,l are denoted by�(h1, . . . , hl) ∈ �l(U0). The vertical
differential is defined as

(−1)kd : Ck,l → Ck,l+1,

where d is the usual de Rham differential. The horizontal differential

δ : Ck,l → Ck+1,l ,

is given by

δ =
k∑

i=1

(−1)iδi ,

δi�(h1, . . . , hk+1) = G(h1, . . . , hk+1), (5.23)

where G(h1, . . . , hk+1) is the multi-point connection of the form (5.1), i.e.,

δi�(h1, . . . , h p+1) =
⎧
⎨

⎩

h∗
1�(h2, . . . , h p+1), if i = 0,

�(h1, . . . , hi+1hi , . . . , h p+1), if 0 < i < p + 1,
�(h1, . . . , h p), if i = p + 1.

(5.24)

This double complex is actually a bigraded differential algebra, with the usual product

(� · η)(h1, . . . , hk+k ′) = (−1)kk
′
�(h1, . . . , hk) h

∗
1 . . . h∗

k .η(hk+1, . . . hk+k ′), (5.25)

for � ∈ Ck,l and η ∈ Ck′,l ′ , thus (� · η)(h1, . . . , hk+k ′) ∈ Ck+k′,l+l ′ .

Definition 25. The cohomology Ȟ∗
U (M/F) of this complex is called Čech-de Rham

cohomology of the leaf spaceM/F with respect to the transversal basis U . It is defined
by

Ȟ∗
U (M/F) = Conk+1cl (h1, . . . , hk+1)/G

k(h1, . . . , hk),

where Conk+1cl (h1, . . . , hk+1) is the space of closed multi-point connections, and Gk (h1,
. . ., hk) is the space of k-point connection forms.

In this Subsection we show the following

Lemma 10. In the case of a codimension one foliation on a smooth complex curve, the
construction of the double complex

(
Ck,l , δ

)
, (5.22), (5.23) results from the construction

of the double complexes
(
Cn
m(V,W,F), δnm

)
of (5.18) and (5.19).
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Proof. One constructs the space of differential forms of degree k

〈w′,�
(
dc1(p1)

wt(v1) ⊗ v1, c1(p1); . . . ; dcn(pn)wt(vn)vn, cn(pn)
)
〉, (5.26)

by the elements � of Cn
m(V,W,F) such that n = k and the total degree

n∑

i=1

wt(vi ) = l,

vi ∈ V . The condition of the composability of�withm vertex operators allows us make
the association of the differential form�(h1, . . . , hn)with (5.26), and (h∗

1, . . . , h
∗
k)with

(vi , . . . , vk), and to represent a sequence of the holomorphic embeddings h1, . . . , h p
for U0, . . . ,Up in (5.22) by the vertex operators ωW , i.e,

(
h(h∗

1) . . . h(h∗
n)

)
(z1, . . . , zn)) = ωW (v1, t1(p1)) . . . ωW (vl , t (pn)) .

Then, by using the definition of the coboundary operator (5.7), we see that the definition
of the coboundary operator of [15] is parallel to the definition (5.7). ��

6. The Product of Cn
m(V,W,F)-Spaces

In this Sectionwe consider the application of thematerial of Sect. 3 to the double complex
spaces Cn

m(V,W,F) (Definition 18, Sect. 4) for a foliation F on a complex curve. We
introduce the product of two double complex spaces with the image in another double
complex space coherent with respect to the original coboundary operators (5.7) and
(5.11), and the symmetry property (2.9). We prove the canonicity of the product, and
derive an analogue of Leibniz formula.

6.1. The geometrical adaptation of the ε-product to a foliation. In this Subsection we
show how the definition of the product of Wz1,...,zn -spaces can be extended to the case
of Ck

n (V,W,F)-spaces for a codimension one foliation of a complex curve. Recall the
definition (4.2) of Ck

n (V,W,F)-spaces in Sect. 4. We use again the geometrical scheme
of the sewing of two Riemann surfaces in order to introduce the product of two elements
� ∈ Ck

m(V,W,F) and	 ∈ Cn
m′(V,W,F)which belong to two double complex spaces

(4.2) for a foliation F . The construction is again local, thus we assume that both spaces
Ck
m(V,W,F) and Cn

m′(V,W,F) are considered on the same fixed transversal basis U .
Moreover, we assume that the marked points used in the definition (4.2) of the spaces
Ck
m(V,W,F) and Cn

m′(V,W,F) are chosen on the same transversal section.
Let us recall again the setup for two double complex spaces Ck

m(V,W,F) and
Cn
m′(V,W,F). Let (p1, . . . , pk), ( p̃1, . . . , p̃n) be two sets of points with the local coor-

dinates (c1(p1), . . . , ck(pk)) and (̃c1( p̃1), . . . , c̃n( p̃n)) taken on the j th transversal sec-
tion Uj ∈ U , j ≥ 1, of the transversal basis U . For k ≥ 0, n ≥ 0, let Ck(V,W,F)(Uj )

and Cn(V,W,F)(Uj ), 0 ≤ j ≤ l, be as before the spaces of all linear maps (2.18)

� : V⊗k → Wc1(p1),...,ck (pk ),

	 : V⊗n → Wc̃1( p̃1),...,̃cn( p̃n), (6.1)

composable with l1 and l2 vertex operators (2.21) with the formal parameters identified
with the local coordinate functions c′

j (p
′
j ) and c̃

′
j (p

′
j ′) around points p j , p′

j ′ , on each of
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the transversal sections Uj , 1 ≤ j ≤ l1, and Uj ′ , 1 ≤ j ′ ≤ l2, correspondingly. Then,
for k ≥ 0, 1 ≤ m ≤ l1, and n ≥ 0, and 1 ≤ m′ ≤ l2,

according to the definition (4.2), the spaces Ck
m(V,W,F) and Cn

m′(V,W,F) are:

Ck
m(V,W,F) =

⋂

U1
h1
↪→...

hm−1
↪→ Um

1≤i≤m

Ck(V,W,F)(Ui ), (6.2)

Cn
m′(V,W,U ,F) =

⋂

U1
h′
1

↪→...

h′
m′−1
↪→ Um′

1≤i ′≤m′

Cn(V,W,F)(Ui ′), (6.3)

where the intersection ranges over all possible m- and m′-tuples of the holonomy em-
beddings hi , i ∈ {1, . . . ,m − 1}, and h′

i ′ , i
′ ∈ {1, . . . ,m′ − 1}, between the transversal

sections (U1, . . . ,Um) and (U1, . . . ,Um′) of the basis U for F .
Let t be the number of the common vertex operators for the mappings �(v1, x1; . . .;

vk, xk) ∈ Ck
m(V,W,F) and 	(v′

1, y1; . . . ; v′
n, yn) ∈ Cn

m′(V,W,F) are composable
with. We then have the main proposition of this Section

Proposition 10. For�(v1, x1; . . . ; vk, xk) ∈ Ck
m(V,W,F)and	(v′

1, y1; . . . ; v′
n, yn) ∈

Cn
m′(V,W,F), the product R̂ �

(
v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε

)
(3.16) be-

longs to the space Ck+n−r
m+m′−t (V,W,F), i.e.,

·ε : Ck
m(V,W,F) × Cn

m′(V,W,F) → Ck+n−r
m+m′−t (V,W,F). (6.4)

Proof. InProposition5weproved that R̂ �(v1, x1 ; . . . ; vk, xk; v′
1, y1; . . . ; v′

n, yn; ε
) ∈

Wx1;,...,xk ;y1,...,yn . Namely, the differential form corresponding to the ε-product R̂
�(v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε) converges in ε, and satisfies (2.9), the LV (0)-

conjugation (2.7) and the LV (−1)-derivative (2.2) properties. The action of σ ∈ Sk+n−r
on the product �(v1, x1; . . . ; vk, xk; v′

k+1, y1; . . .; v′
n, yn; ε) (3.16) is given by (2.1).

Then we see that for the sets of points (p1, . . . , pk; p′
1, . . . , p

′
n), taken on the same

transversal section Uj ∈ U , j ≥ 1, by Proposition 5 we obtain a map

R̂ �
(
v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε

)

: V⊗(k+n) → Wc′′
1 (p

′′
1 ),...,c′′

1 (p
′′
k+n−r )

, (6.5)

with the formal parameters (z1, . . . , zk+n−r ) identifiedwith the local coordinates (c′′
1(p

′′
1),

. . . , c′′
1(p

′′
k+n−r )) of the points

(p′′
1 , . . . , p

′′
k+n−r ) = (p1, . . . , pk; p1, . . . , p̂′

il
, . . . , p′

n),

for the coinciding points pil = p′
jl
, 1 ≤ l ≤ r . Next, we prove

Proposition 11. The product�
(
v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε

)
(3.16) is com-

posable with m + m′ − t vertex operators.

First we note
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Lemma 11.
∑

q∈C
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;

Pq
(
�(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k+n, zm+m′+k+n

))
〉

=
∑

l∈Z
εl

∑

u∈Vl
〈w′, E (m)

W

(
vk+1, xk+1; . . . ; vk+m, xk+m;

Pq
(
YW
WV (�(v1, x1; . . . ; vk, xk), ζ1) u

))
〉

〈w′, E (m′)
W

(
v′
n+1, yn+1; . . . ; v′

n+m′ , yn+m′ ;
Pq

(
YW
WV

(
	(v′

1, y1; . . . ; v′
n, yn), ζ2

)
u
))

〉.

Proof. Consider

∑

l∈Z
εl

∑

u∈Vl
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;

Pq
(
YW
WV

(
�(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k, zm+m′+k), ζ1

)
u
))

〉
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;
Pq

(
YW
WV

(
	

(
v′′
m+m′+k+1, zm+m′+k+1; . . . ; v′′

m+m′+k+n, zm+m′+k+n), ζ2
)
u
) ))

〉
=

∑

q∈C

∑

l∈Z
εl

∑

u∈Vl
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;

Pq
(
eζ1LW (−1) YW (u,−ζ1) �(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k, zm+m′+k)

)
〉

〈w′, E (m+m′)
W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;
Pq

(
eζ2LW (−1) YW (u,−ζ2) 	(v′′

m+m′+k+1, zm+m′+k+1; . . . ;
v′′
m+m′+k+n, zm+m′+k+n)

))
〉.

The action of the exponentials eζa LW (−1), a = 1, 2, of the differential operator LW (−1),
and a grading-restricted generalized V -module W vertex operators YW (u,−ζ1), YW
(u,−ζ2) shifts the grading index q of the Wq -subspaces by α ∈ C which can be later
rescaled to q. Thus, we can rewrite the last expression as

∑

q∈C

∑

l∈Z
εl

∑

u∈Vl
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;

eζ1LW (−1) YW (u,−ζ1) Pq+α

(
�(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k, zm+m′+k)

) )
〉

〈w′, E (m+m′)
W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ; eζ2LW (−1) YW (u,−ζ2)

Pq+α

(
	(v′′

m+m′+k+1, zm+m′+k+1; . . . ; v′′
m+m′+k+n, zm+m′+k+n)

)
〉



Product-Type Classes for Vertex Algebra Cohomology 1487

=
∑

q∈C

∑

l∈Z
εl

∑

u∈Vl
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;

YW
WV

(
Pq+α

(
�(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k, zm+m′+k)

)
, ζ1

)
u〉

〈w′, E (m+m′)
W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;
YW
WV

(
Pq+α

(
	(v′′

m+m′+k+1, zm+m′+k+1;
. . . ; v′′

m+m′+k+n, zm+m′+k+n),−ζ2
)
u
)
〉

=
∑

q∈C

∑

w̃∈W
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ; w̃
)
〉

∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

WV

(
Pq+α

(
�(v′′

m+m′+1, zm+m′+1;

. . . ; v′′
m+m′+k, zm+m′+k),−ζ1) u

) )
〉

〈w̃′, E (m+m′)
W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ; w̃
)
〉

〈w′,YW
WV

(
Pq+α

(
	(v′′

m+m′+k+1, zm+m′+k+1;
. . . ; v′′

m+m′+k+n, zm+m′+k+n),−ζ2) u
) )

〉
=

∑

q∈C
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;

Pq+α

(
�(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k, zm+m′+k;

v′′
m+m′+k+1, zm+m′+k+1; . . . ; v′′

m+m′+k+n, zm+m′+k+n)
)
〉.

Now note that, according to Proposition 7, as an element of Wz1,...,zk+n+m+m′

〈w′, E (m+m′)
W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;
Pq+α

(
�(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k, zm+m′+k;

v′′
m+m′+k+1, zm+m′+k+1; . . . ; v′′

m+m′+k+n, zm+m′+k+n)
)
〉, (6.6)

is invariant with respect to the action of σ ∈ Sk+n+m+m′ . Thus we are able to use this
invariance to show that (6.6) is reduced to

〈w′, E (m+m′)
W

(
v′′
k+1, zk+1; . . . ; v′′

k+1+m, zk+1+m; v′′
n+1, zn+1; . . . ; v′′

n+1+m′ , zn+1+m′ ;
Pq+α

(
�(v′′

1 , z1; . . . ; v′′
k , zk; v′′

k+1, zk+1; . . . ; v′′
k+n, zk+n)

))
〉

= 〈w′, E (m+m′)
W

(
vk+1, xk+1; . . . ; vk+1+m, xk+1+m; v′

n+1, yn+1; . . . ; v′
n+1+m′ , yn+1+m′ ;

Pq+α

(
�(v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn)

)
〉.



1488 A. Zuevsky

Similarly, since

〈w′, E (m)
W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;
Pq

(
YW
WV

(F(v′′
m+m′+1, zm+m′+1; . . . ; v′′

m+m′+k, zm+m′+k), ζ1
)
u
))

〉,
〈w′, E (m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;
Pq

(
YW
WV

(F(v′′
m+m′+k+1, zm+m′+k+1; . . . ; v′′

m+m′+k+n, zm+m′+k+n), ζ2
)
u
))

〉.
correspond to the elements ofWz1,...,zm+m′+k andWzm+m′+k+1,...,zm+m′+k+n , we use Proposi-
tion 7 again and obtain

〈w′, E (m)
W

(
vk+1, xk+1; . . . ; vk+m, xk+m; Pq

(
YW
WV (F(v1, x1; . . . ; vk, xk), ζ1) u

))
〉

〈w′, E (m′)
W

(
v′
n+1, yn+1; . . . ; v′

n+m′ , yn+m′ ; Pq
(
YW
WV

(F(v′
1, y1; . . . ; v′

n, yn), ζ2
)
u
))

〉,
correspondingly. Thus, the assertion of Lemma follows. ��
Under conditions

zi ′′ �= z j ′′ , i ′′ �= j ′′,
|zi ′′ | > |zk′′′ | > 0, (6.7)

for i ′′ = 1, . . . ,m + m′, and k′′′ = m + m′ + 1, . . . ,m + m′ + k + n, let us introduce

J k+n
m+m′(�) =

∑

q∈C
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;

Pq
(
�(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k+n, zm+m′+k+n); ε)

)
〉. (6.8)

Using Lemma 11 we obtain

|J k+n
m+m′(�)|

=
∣∣∣
∣∣∣

∑

q∈C
〈w′, E (m+m′)

W

(
v′′
1 , z1; . . . ; v′′

m+m′ , zm+m′ ;

Pq
(
�(v′′

m+m′+1, zm+m′+1; . . . ; v′′
m+m′+k+n, zm+m′+k+n); ε)

)
〉
∣∣∣

=
∣∣
∣∣∣∣

∑

q∈C

∑

l∈Z
εl

∑

u∈Vl
〈w′, E (m)

W

(
vk+1, xk+1; . . . ; vk+m, xk+m;

Pq
(
YW
WV (�(v1, x1; . . . ; vk, xk), ζ1) u

))
〉

〈w′, E (m′)
W

(
v′
n+1, yn+1; . . . ; v′

n+m′ , yn+m′ ;
Pq

(
YW
WV

(
	(v′

1, y1; . . . ; v′
n, yn), ζ2

)
u
))

〉
∣∣∣

≤
∣∣∣J k

m(F)

∣∣∣
∣∣J n

m′(F)
∣∣ ,
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where we have used the invariance of (3.16) with respect to σ ∈ Sm+m′+k+n . In the
last expression, according to Definition 12 J k

m(�) and J n
m′(	) are absolute convergent.

Thus, we infer thatJ k+n
m+m′(�) is absolutely convergent, and the sum (6.19) is analytically

extendable to a rational function in (z1, . . . , zk+n+m+m′) with the only possible poles at
xi = x j , yi ′ = y j ′ , and at xi = y j ′ , i.e., the only possible poles at zi ′′ = z j ′′ , of orders
less than or equal to Nk+n

m+m′(v′′
i ′′ , v

′′
j ′′), for i

′′, j ′′ = 1, . . . , k′′′, i ′′ �= j ′′. ��
Now, we are on a position to prove Proposition 11.

Proof. Recall that �(v1, x1; . . . ; vk, xk) is composable with m vertex operators, and
	(v′

1, y1; . . . ; v′
n, yn) is composablewithm′ vertex operators. For�(v1, x1; . . . ; vk, xk)

we have:
1) Let l1, . . . , lk ∈ Z+ such that l1 + . . . + lk = k + m, and v1, . . . , vk+m ∈ V , and

arbitrary w′ ∈ W ′. Set


i = E (li )
V (vk1 , xk1 − ζi ; . . . ; vki , xki − ζi ; 1V ), (6.9)

where

k1 = l1 + . . . + li−1 + 1, · · · , ki = l1 + . . . + li−1 + li , (6.10)

for i = 1, . . . , k. Then the series

Ik
m(�) =

∑

r1,...,rk∈Z
〈w′,�(Pr1
1; ζ1; . . . ; Prk
k, ζk)〉, (6.11)

is absolutely convergent when

|xl1+...+li−1+p − ζi | + |xl1+...+l j−1+q − ζi | < |ζi − ζ j |, (6.12)

for i , j = 1, . . . , k, i �= j and for p = 1, . . . , li and q = 1, . . . , l j . There exist positive
integers Nk

m(vi , v j ), depending only on vi and v j for i, j = 1, . . . , k, i �= j , such that
the sum is analytically extended to a rational function in (x1, . . . , xk+m), independent
of (ζ1, . . . , ζk), with the only possible poles at xi = x j , of order less than or equal to
Nk
m(vi , v j ), for i , j = 1, . . . , k, i �= j .
For 	(v′

1, y1; . . . ; v′
n, yn) we have:

1’) Let l ′1, . . . , l ′n ∈ Z+ such that l ′1 + . . . + l ′n = n + m′, v′
1, . . . , vn+m′ ∈ V and

arbitrary w′ ∈ W ′. Set


′
i ′ = E

(l ′
i ′ )

V (v′
k′
1
, yk′

1
− ζ ′

i ′ ; . . . ; v′
k′
i ′
, yk′

i ′
− ζ ′

i ′ ; 1V ), (6.13)

where

k′
1 = l ′1 + · · · + l ′i ′−1 + 1, . . . , k′

i ′ = l ′1 + . . . + l ′i ′−1 + l ′i ′ , (6.14)

for i ′ = 1, . . . , n. Then the series

In
m′(	) =

∑

r ′
1,...,r

′
n∈Z

〈w′, 	(Pr ′
1
	 ′

1; ζ ′
1; . . . ; Pr ′

n
	 ′

n, ζ
′
n)〉, (6.15)

is absolutely convergent when

|yl ′1+...+l ′
i ′−1

+p′ − ζ ′
i ′ | + |yl ′1+···+l ′

j ′−1
+q ′ − ζ ′

i ′ | < |ζ ′
i ′ − ζ ′

j ′ |, (6.16)
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for i ′, j ′ = 1, . . . , n, i ′ �= j ′ and for p′ = 1, . . . , l ′i and q ′ = 1, . . . , l ′j . There exist
positive integers Nn

m′(v′
i ′ , v

′
j ′), depending only on v′

i ′ and v′
j ′ for i , j = 1, . . . , n, i ′ �= j ′,

such that the sum is analytically extended to a rational function in (y1, . . . , yn+m′),
independent of (ζ ′

1, . . . , ζ
′
n), with the only possible poles at yi ′ = y j ′ , of order less than

or equal to Nn
m′(v′

i ′ , v
′
j ′), for i

′, j ′ = 1, . . . , n, i ′ �= j ′.
Now let us consider the first condition of Definition 12 of the composability for

the product (3.16) of �(v1, x1; . . . ; vk, xk) and 	(v′
1, y1; . . . ; v′

n, yn) with a number
of vertex operators. Then we obtain for �

(
v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε

)
the

following. We redefine the notations for the set

(v′′
1 , . . . , v

′′
k ; v′′

k+1, . . . , v
′′
k+m; v′′

k+m+1, . . . , v
′′
k+n+m+m′ ; vn+1, . . . , v

′
n+m′)

= (v1, . . . , vk; vk+1, . . . , vk+m; v′
1, . . . , v

′
n; v′

n+1, . . . , v
′
n+m′),

(z1, . . . , zk; zk+1, . . . , zk+n−r ) = (x1, . . . , xk; y1, . . . , yn),
of the vertex algebra V elements. Introduce l ′′1 , . . . , l ′′k+n ∈ Z+, such that l ′′1 + · · ·+ l ′′k+n =
k + n + m + m′. Define


′′
i = E

(l ′′
i ′′ )

V (v′′
k′′
1
, zk′′

1
− ζ ′′

i ′′ ; . . . ; v′′
k′′
i ′′

, zk′′
i ′′

− ζ ′′
i ′′ ; 1V ), (6.17)

where

k′′
1 = l ′′1 + · · · + l ′′i ′′−1 + 1, . . . , k′′

i ′′ = l ′′1 + · · · + l ′′i ′′−1 + l ′′i ′′ , (6.18)

for i ′′ = 1, . . . , k + n, and we take

(ζ ′′
1 , . . . , ζ ′′

k+n) = (ζ1, . . . , ζk; ζ ′
1, . . . , ζ

′
n).

Then we consider

Ik+n
m+m′(�) =

∑

r ′′
1 ,...,r ′′

k+n∈Z
〈w′,�(Pr ′′

1
	 ′′

1 ; ζ ′′
1 ; . . . ; Pr ′′

k+n
	 ′′

k+n, ζ
′′
k+n)〉, (6.19)

and prove it is absolutely convergent with some conditions.
The condition

|zl ′′1 +···+l ′′i−1+p
′′ − ζ ′′

i | + |zl ′′1 +···+l ′′j−1+q
′′ − ζ ′′

i | < |ζ ′′
i − ζ ′′

j |, (6.20)

of the absolute convergence for (6.19) for i ′′, j ′′ = 1, . . . , k + n, i �= j and for p′′ =
1, . . . , l ′′i and q ′′ = 1, . . . , l ′′j , follows from the conditions (6.12) and (6.24). The action

of eζ LW (−1) YW (., .), a = 1, 2, in

〈w′, eζ1LW (−1) YW (u,−ζ )
∑

r1,...,rk∈Z
�(Pr1
1; ζ1; . . . ; Prk
k, ζk)〉,

〈w′, eζ2LW (−1) YW (u,−ζ̃ )
∑

r ′
1,...,r

′
n∈Z

	(Pr ′
1

′

1; ζ1; . . . ; Pr ′
k

′

n, ζ
′
n)〉,

does not affect the absolute convergence of (6.11) and (6.15). We obtain
∣∣∣Ik+n

m+m′(�)

∣∣∣
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=
∣∣∣∣
∣∣

∑

r ′′
1 ,...,r ′′

k+n∈Z
〈w′,�(Pr ′′

1

′′

1; ζ ′′
1 ; . . . ; Pr ′′

k+n

′′

k+n, ζ
′′
k+n)〉

∣∣∣∣
∣∣

=
∣∣∣∣
∣∣

∑

l∈Z
εl

∑

u∈Vl
〈w′,YW

VW (
∑

r1,...,rk∈Z
�(Pr1
1; ζ1; . . . ; Prk
k, ζk), ζ )u〉

〈w′,YW
VW (

∑

r ′
1,...,r

′
n∈Z

	(Pr ′
1

′

1; ζ ′
1; . . . ; Pr ′

n

′

n, ζ
′
n), ζ̃ )u〉

∣∣∣∣∣
∣

≤
∣∣∣Ik

m(�)

∣∣∣
∣∣In

m′(	)
∣∣ .

Thus, we infer that (6.19) is absolutely convergent. Recall that the maximal orders of
possible poles of (6.19) are Nk

m(vi , v j ), Nn
m′(v′

i ′ , v
′
j ′) at xi = x j , yi ′ = y j ′ . From the last

expression we infer that there exist positive integers Nk+n
m+m′(v′′

i ′′ , v
′′
j ′′) for i , j = 1, . . . , k,

i �= j , i ′, j ′ = 1, . . . , n, i ′ �= j , depending only on v′′
i ′′ and v′′

j ′′ for i
′′, j ′′ = 1, . . . , k +n,

i ′′ �= j ′′ such that the series (6.19) can be analytically extended to a rational function in
(x1, . . . , xk; y1, . . . , yn), independent of (ζ ′′

1 , . . . , ζ ′′
k+n), with extra possible poles at and

xi = y j , of order less than or equal to Nk+n
m+m′(v′′

i ′′ , v
′′
j ′′), for i

′′, j ′′ = 1, . . . , n, i ′′ �= j ′′.
Let us proceed with the second condition of the composability. For�(v1, x1; . . . ; vk,

xk) ∈ Ck
m(V,W,F), and (v1, . . . , vk+m) ∈ V , (x1, . . . , xk+m) ∈ C, we have

2) For arbitrary w′ ∈ W ′, the series

J k
m(�) =

∑

q∈C
〈w′, E (m)

W

(
v1, x1; . . . ; vm, xm; Pq(�(vm+1, xm+1; . . . ; vm+k, xm+k

)
〉,

(6.21)

is absolutely convergent when

xi �= x j , i �= j,

|xi | > |xk′ | > 0, (6.22)

for i = 1, . . . ,m, and k′ = m + 1, . . . , k +m, and the sum can be analytically extended
to a rational function in (x1, . . . , xk+m)with the only possible poles at xi = x j , of orders
less than or equal to Nk

m(vi , v j ), for i, j = 1, . . . , k, i �= j .
2’) For 	(v′

1, y1; . . . ; v′
n, yn) ∈ Cn

m′(V,W,F), (v′
1, . . . , v

′
n+m′) ∈ V , and (y1, . . . ,

yn+m′) ∈ C, the series

J n
m′(	) =

∑

q∈C
〈w′, E (m′)

W

(
v′
1, y1; . . . ; v′

m′ , ym′ ;

Pq(	(v′
m′+1, ym′+1; . . . ; v′

m′+n, ym′+n))
)
〉, (6.23)

is absolutely convergent when

yi ′ �= y j ′ , i ′ �= j ′,
|yi ′ | > |yk′′ | > 0, (6.24)
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for i ′ = 1, . . . ,m′, and k′′ = m′+1, . . . , n+m′, and the sum can be analytically extended
to a rational function in (y1, . . . , yn+m′)with the only possible poles at yi ′ = y j ′ , of orders
less than or equal to Nn

m′(v′
i ′ , v

′
j ′), for i

′, j ′ = 1, . . . , n, i ′ �= j ′.
2”) Thus, for the product (3.16) we obtain (v′′

1 , . . . , v
′′
k+n+m+m′) ∈ V , and (z1, . . .,

zk+n+m+m′) ∈ C, we find positive integers Nk+n
m+m′(v′

i , v
′
j ), depending only on v′

i and v′′
j ,

for i ′′, j ′′ = 1, . . . , k + n, i ′′ �= j ′′, such that for arbitrary w′ ∈ W ′. This finishes the
proof of Proposition 11.

Sincewe have proved that the product R̂ �
(
v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε

)

is composable with a m + m′ − t of vertex operators (2.21) with the formal parameters
identified with the local coordinates c j (p′′

j ) around the points (p1, . . . , pk; p′
1, . . . , p

′
n)

on each of the transversal sections Uj , 1 ≤ j ≤ l, we conclude that according to
Definition 17, the product R̂ �

(
v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε

)
belongs to the

space

Ck+n−r
m+m′−t (V,W,U ,F) =

⋂

U1
h1
↪→...

hm+m′−1
↪→ Um+m′

1≤ j≤m+m′−t

Ck+n−r (V,W,F)(Uj ), (6.25)

where the intersection ranges over all possiblem+m′−t-tuples of holonomy embeddings
hi , i ∈ {1, . . . ,m +m′ − t − 1}, between transversal sectionsU1, . . . ,Um+m′−t−1 of the
basis U for F . This finishes the proof of Proposition 10. ��

7. Properties of the ε-Product of Ck
m(V,W,F)-Spaces

Since the ε-product of�(v1, x1; . . .;vk, xk) ∈ Ck
m(V,W,F) and	(v′

1, y1; . . . ; v′
n, yn) ∈

Cn
m′(V,W,F) results in an element ofCk+n−r

m+m′−t (V,W,F), then, similar to [43], the fol-
lowing corollary follows directly from Proposition (10) and Definition 14:

Corollary 1. For the spaces Wx1,...,xk and Wy1,...,yn with the product (3.16) � ∈
Wz1,...,zk+n−r , the subspace of Hom(V⊗n,Wz1,...,zk+n−r ) consisting of linear maps hav-
ing the LW (−1)-derivative property, having the LV (0)-conjugation property or being
composable with m vertex operators is invariant under the action of Sk+n−r . �

We also have

Corollary 2. For a fixed set (v1, . . . vk; vk+1, . . . , vk+n−r ), vi ∈ V , 1 ≤ i ≤ k + n −
r of vertex algebra elements, and fixed k + n − r , and m + m′ − t , the ε-product
R̂ �(v1, z1; . . . ; vk, zk; vk+1, zk+1; . . .; vk+n−r , yk+n−r ; ε),

·ε : Ck
m(V,W,F) × Cn

m′(V,W,F) → Ck+n−r
m+m′−t (V,W,F),

of the spaces Ck
m(V,W,F) and Cn

m′(V,W,F), for all choices of k, n, m, m′ ≥ 0, is

the same element of Ck+n−r
m+m′−t (V,W,F) for all possible k ≥ 0. �

Proof. In Proposition 5 we have proved that the result of the ε-product belongs to
Wz1,...,zk+n−r , for all k, n ≥ 0, and fixed k + n − r . As in the proof of Proposition 10,
by checking the conditions for the forms (6.11) and (6.15), we see by Proposition 2 that
the product R̂ �(v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn) is composable with the fixed

m + m′ − t number of vertex operators. ��
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By Proposition 7, elements of the spaceWz1,...,zk+n−r resulting from the ε-product (3.7)

are invariant with respect to group (Aut O)
×(k+n−r)
z1,...,zk+n−r of independent changes of the

formal parameters. Now we prove the following

Corollary 3. For �(v1, x1; . . . ; vk, xk) ∈ Ck
m(V,W,F) and 	(v′

1, y1; . . . ; v′
n, yn) ∈

Cn
m′(V ,W,F), the product

R̂ �
(
v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε

)

= �(v1, x1; . . . ; vk, xk) ·ε 	(v′
1, y1; . . . ; v′

n, yn), (7.1)

is invariant with respect to the action

(z1, . . . , zk+n−r ) 
→ (z′1, . . . , z′k+n−r ) = (ρ(z1), . . . , ρ(zk+n−r )), (7.2)

of the group (Aut O)
×(k+n−r)
z1,...,zk+n−r .

Proof. In Sect. 3.3 we have proved that the product (3.7) belongs to Wz1,...,zk+n−r , and

is invariant with respect to the group (Aut O)
×(k+n−r)
z1,...,zk+n−r . Similar as in the proof of

Proposition 8, the vertex operators ωV (vi , xi ), 1 ≤ i ≤ m, composable with
�(v1, x1; . . . ; vk, xk), and the vertex operators ωV (v j , y j ), 1 ≤ j ≤ m′, composable
with 	(v′

1, y1; . . . ; v′
n, yn), are also invariant with respect to independent changes of

coordinates (ρ(z1), . . . , ρ(zk+n−r )) ∈ Aut O×(k+n−r)
z1,...,zk+n−r . ��

7.1. The coboundary operator acting on the product of elements of Cn
m(V,W,F)-

spaces. In Proposition 10 we proved that the product (3.16) of elements of spaces
Ck
m(V,W,F) and Cn

m′(V,W,F) belongs to Ck+n−r
m+m′−t (V,W,F). Thus, the product ad-

mits the action of the coboundary operators δk+n−r
m+m′−t and δ2−r

ex−t defined in (5.7) and
(5.11). The coboundary operators (5.7) and (5.11) possess a variation of Leibniz law
with respect to the product (3.16). Indeed, we state here

Proposition 12. For�(v1, x1; . . . ; vk, xk) ∈ Ck
m(V,W,F)and	(v′

1, y1; . . . ; v′
n, yn) ∈

Cn
m′(V,W,F), the action of the coboundary operator δk+n−r

m+m′−t (5.7) (and δ2−r
ex−t (5.11))

on the ε-product (3.16) is given by

δk+n−r
m+m′−t

(
�(v1, x1; . . . ; vk, xk) ·ε 	(v′

1, y1; . . . ; v′
n, yn)

)

=
(
δkm�(̃v1, z1; . . . ; ṽk, zk)

)
·ε 	(̃vk+1, zk+1; . . . ; ṽk+n−r , zk+n−r )

+(−1)k�(̃v1, z1; . . . ; ṽk, zk) ·ε
(
δn−r
m′−t	(̃v1, zk+1; . . . ; ṽk+n−r , zk+n−r )

)
, (7.3)

where we use the notation as in (3.1) and (3.17).

Proof. For the vertex operator YV,W (v, z) let us introduce the notation

ωV,W = YV,W (v, z) dzwt(v).

Let us use the notations (3.1) and (3.17). According to (5.7) and (5.8), the action of
δk+n−r
m+m′−t on R̂�(v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
k, yn; ε) is given by

〈w′, δk+n−r
m+m′−t R̂ �(v1, x1; . . . ; vk, xk; v′

1, y1; . . . ; v′
n, yn; ε)〉
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= 〈w′,
k∑

i=1

(−1)i R̂ �(̃v1, z1; . . . ; ṽi−1, zi−1; ωV (̃vi , zi − zi+1)̃vi+1, zi+1; ṽi+2, zi+2;

. . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n, zk+n; ε)〉

+
n−r∑

i=1

(−1)i 〈w′,� (̃v1, z1; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+i−1, zk+i−1;

ωV (̃vk+i , zk+i − zk+i+1) ṽk+i+1, zk+i+1;
ṽk+i+2, zk+i+2; . . . ; ṽk+n−r , zk+n−r ; ε)〉
+〈w′, ωW (̃v1, z1) �(̃v2, z2; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n−r , zk+n−r ; ε)〉
+〈w, (−1)k+n+1−rωW (̃vk+n−r+1, zk+n−r+1)

�(̃v1, z1; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n−r , zk+n−r ; ε)〉.
Using (3.7) we see that it is equivalent to

∑

l∈Z
εl〈w′,

k∑

i=1

(−1)i Y W
VW (�(̃v1, z1; . . . ; ṽi−1, zi−1; ωV (̃vi , zi − zi+1)̃vi+1, zi+1;

ṽi+2, zi+2; . . . ; ṽk, zk), ζ1)u〉
〈w′,YW

VW (�(̃vk+1, zk+1; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

+
∑

l∈Z
εl

n−r∑

i=1

(−1)i 〈w′,YW
VW (� (̃v1, z1; . . . ; ṽk, zk) , ζ1) u〉

〈w′,YW
VW (	(̃vk+1, zk+1; . . . ; ṽk+i−1, zk+i−1;

ωV (̃vi , zk+i − zk+i+1) ṽk+i+1, zk+i+1; ṽk+i+2, zk+i+2;
. . . ; ṽk+n−r , zk+n−r ), ζ2)u〉
+

∑

l∈Z
εl〈w′,YW

VW (ωW (̃v1, z1) �(̃v2, z2; . . . ; ṽk, zk), ζ1)u〉

〈w′,YW
VW (	(̃vk+1, zk+1; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

+
∑

l∈Z
εl〈w′,YW

VW ((−1)k+1ωW (̃vk+1, zk+1) �(̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′,YW
VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

−
∑

l∈Z
εl〈w′, (−1)k+1〈w′,YW

VW (ωW (̃vk+1, zk+1) �(̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′,YW
VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

+
∑

l∈Z
εl〈w′,YW

VW (�(̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′,YW
VW (ωW (̃vk+n−r+1, zk+n−r+1)

	(̃vk+1, zk+1; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉
−

∑

l∈Z
εl〈w′,YW

VW (�(̃v1, z1; . . . ; ṽk, zk), ζ1)〉

〈w′,YW
VW (ωW (̃vk+n−r+1, zk+n−r+1)



Product-Type Classes for Vertex Algebra Cohomology 1495

	(̃vk+1, zk+1; . . . ; ṽk+n−r , zk+n−r ), ζ2)〉. (7.4)

According to the definition (9.14) of the intertwining operator and the locality property
(9.6) of vertex operators

∑

l∈Z
εl 〈w′, (−1)k+1YW

VW (ωW (̃vk+1, zk+1) �(̃v1, z1; . . . ; ṽk , zk), ζ1)u〉

〈w′, YW
VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

=
∑

l∈Z
εl 〈w′, (−1)k+1eζ1LW (−1)YW (u, −ζ1) ωW (̃vk+1, zk+1) �(̃v1, z1; . . . ; ṽk , zk)〉

〈w′, YW
VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

=
∑

l∈Z
εl 〈w′, (−1)k+1eζ1LW (−1)ωW (̃vk+1, zk+1) YW (u, −ζ1) �(̃v1, z1; . . . ; ṽk , zk)〉

〈w′, YW
VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

=
∑

l∈Z
εl 〈w′, (−1)k+1 ωW (̃vk+1, zk+1 + ζ1) eζ1LW (−1)YW (u, −ζ1) �(̃v1, z1; . . . ; ṽk , zk)〉

〈w′, YW
VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉.

By inserting an arbitrary vertex algebra basis and using the definition of the intertwining
operator (9.14) we obtain

∑

v∈V

∑

u∈Vl

∑

l∈Z
εl

∑

u∈Vl
〈v′, (−1)k+1 ωW (̃vk+1, zk+1 + ζ1) w〉

〈w′, eζ1LW (−1)YW (u,−ζ1) �(̃v1, z1; . . . ; ṽk, zk)〉
〈w′,YW

VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉
=

∑

l∈Z
εl〈w′, eζ1LW (−1)YW (u,−ζ1) �(̃v1, z1; . . . ; ṽk, zk)〉

∑

v∈V
〈v′, (−1)k+1 ωW (̃vk+1, zk+1 + ζ1) w〉

〈w′,YW
VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

=
∑

l∈Z
εl〈w′,YW

VW (�(̃v1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w′, (−1)k+1 ωW (̃vk+1, zk+1 + ζ1)

YW
VW (	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉
=

∑

l∈Z
εl〈w′,YW

VW (�(̃v1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w′, (−1)k+1 ωW (̃vk+1, zk+1 + ζ1)

eζ2LW (−1)YW (u,−ζ2) 	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r )〉
=

∑

l∈Z
εl〈w′,YW

VW (�(̃v1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w′, (−1)k+1 eζ2LW (−1) YW (u,−ζ2) ωW (̃vk+1, zk+1 + ζ1 − ζ2)

	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r )〉
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=
∑

l∈Z
εl〈w′,YW

VW (�(̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′,YW
VW (ωW (̃vk+1, zk+1) 	(̃vk+2, zk+2; . . . ; ṽk+n−r , zk+n−r

due to locality (9.6) of vertex operators, and arbitrariness of ṽk+1 ∈ V and zk+1, we can
always put

ωW (̃vk+1, zk+1 + ζ1 − ζ2) = ωW (̃vk+2, zk+2),

for ṽk+1 = ṽk+2, zk+2 = zk+1 + ζ2 − ζ1. By combining the action of δkm on � and δn−r
m′−t

on 	 according to (5.8), (7.4) gives
∑

l∈Z
εl〈w′, YW

VW (δkm�(̃v1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′,YW
VW (	(̃vk+1, zk+1; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉

+(−1)k
∑

l∈Z
εl〈w′,YW

VW (� (̃v1, z1; . . . ; ṽk, zk) , ζ1) u〉

〈w′,YW
VW (δn−r

m′−t	(̃vk+1, zk+1; . . . ; ṽk+n−r , zk+n−r ), ζ2)u〉,
which gives (7.3) due to (3.7). The statement of the proposition for δ2ex (5.11) can be
checked accordingly. ��
Remark 9. Checking (5.7)we see that an extra arbitrary vertex algebra element vn+1 ∈ V ,
as well as corresponding extra arbitrary formal parameter zn+1 appear as a result of the
action of δnm on � ∈ Cn

m(V,W,F) mapping it to Cn+1
m−1(V,W,F). In application to

the ε-product (3.16) these extra arbitrary elements are involved in the definition of the
action of δk+n−r

m+m′−t on �(v1, x1; . . . ; vk, xk) ·ε 	(v′
1, y1; . . . ; v′

n, yn).

Note that both sides of (7.3) belong to the space Cn+n′−r−1
m+m′−t+1(V,W,F). The cobound-

ary operators δnm and δn
′

m′ in (7.3) do not include the number of common vertex algebra
elements (and formal parameters), neither the number of common vertex operators cor-
responding mappings composable with. The dependence on common vertex algebra
elements, parameters, and composable vertex operators is taken into account in the
mappings multiplying the action of the coboundary operators on �.

We have the following

Corollary 4. The product (3.16) and the coboundary operators (5.7), (5.11) endow the
space Ck

m(V,W,F) × Cn
m′(V,W,F), k, n ≥ 0, m, m′ ≥ 0, with the structure of a

double graded differential algebra G
(
V,W, ·ε, δk+n−r

m+m′−t

)
. �

Finally, we prove the following

Proposition 13. The product (3.16) extends the property (5.16) of the chain-cochain
complexes (5.18) and (5.19) to all products Ck

m(V,W,F) ·ε Cn
m′(V,W,F), k, n ≥ 0,

m, m′ ≥ 0.

Proof. For � ∈ Ck
m(V,W,F) and 	 ∈ Cn

m′(V,W,F) we proved in Proposition 10

that the product � ·ε 	 belongs to the space Ck+n−r
m+m′−t (V,W,F). Using (7.3) and chain-

cochain property for � and 	 we also check that

δk+n+1−r
m+m′−1−t ◦ δk+n−r

m+m′−t (� ·ε 	) = 0.
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δ2−r
ex−t ◦ δ1−r

2−t (� ·ε 	) = 0. (7.5)

Thus, the chain-cochainproperty extends to the ε productCk
m(V,W,F) ·ε Cn

m′(V,W,F).
��

7.2. The exceptional complex. For elements of the spaces C2
ex (V,W,F) we have the

following

Corollary 5. The product of elements of the spaces C2
ex (V,W,F) and Cn

m(V,W,F)

is given by (3.16),

·ε : C2
ex (V,W,F) × Cn

m(V,W,F) → Cn+2−r
m (V,W,F), (7.6)

and, in particular,

·ε : C2
ex (V,W,F) × C2

ex (V,W,F) → C4−r
0 (V,W,F).

Proof. The fact that the number of formal parameters is n + 2 − r in the product
(3.16) follows from Proposition (5). Consider the product (3.16) for C2

ex (V,W,F)

and Cn
m(V,W,F). It is clear that, similar to the considerations of the proof of Propo-

sition 10, the total number m of vertex operators the product � is composable with
remains the same. ��

8. The Product-Type Cohomological Classes

In this Section we provide the main results of this paper. In particular, the invariants for
the first and the second vertex algebra cohomology for codimension one foliations are
found.

8.1. The commutator multiplication. In this Subsection we define a further product
of a pair of elements of the spaces Ck

m(V,W,F) and Cn
m′(V,W,F), suitable for the

formulation of cohomological invariants. Let us consider the mappings

�(v1, z1; . . . ; vn, zk) ∈ Ck
m(V,W,F),

	(vk+1, zk+1; . . . ; vk+n, zk+n) ∈ Cn
m′(V,W,F),

with r common vertex algebra elements (and, correspondingly, r formal variables), and
t common vertex operators mappings � and 	 are composable with. Note that when
applying the coboundary operators (5.7) and (5.11) to a map �(v1, z1; . . . ; vn, zn) ∈
Cn
m(V,W,F),

δnm : �(v1, z1; . . . ; vn, zn) → �(v′
1, z

′
1; . . . ; v′

n+1, z
′
n+1) ∈ Cn+1

m−1(V,W,F),

onedoes not necessary assume thatwekeep the same set of vertex algebra elements/formal
parameters and vertex operators composable with for δnm�, though it might happen that
some of them could be common with �. Then we have
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Definition 26. Let us define extra product of � and 	,

� · 	 : V⊗(k+n−r) → Wz1,...,zk+n−r , (8.1)

� · 	 = [�,·ε 	] = � ·ε 	 − 	 ·ε �, (8.2)

where brackets denote the ordinary commutator on Wz1,...,zk+n−r .

Due to the properties of themaps� ∈ Ck
m(V,W,F) and	 ∈ Cn

m′(V,W,F), we obtain

Lemma 12. The product � · 	 belongs to the space Ck+n−r
m+m′−t (V,W,F). �

For k = n and

	(vn+1, zn+1; . . . ; v2n, z2n) = �(v1, z1; . . . ; vn, zn),

we obtain from (3) and (3.16) that

�(v1, z1; . . . ; vn, zn) · �(v1, z1; . . . ; vn, zn) = 0. (8.3)

The product (8.1) will be used in the next Subsection in order to introduce cohomological
invariants.

8.2. The cohomological invariants. In this Subsection, using the vertex algebra dou-
ble complex construction (5.15)–(5.16), we provide invariants for the grading-restricted
vertex algebra cohomology of codimension one foliations on complex curves. Let us
introduce cohomological classes associated to grading-restricted vertex algebras. We
describe here certain classes associated to the first and the second vertex algebra coho-
mology for codimension one foliations. Let us give some further definitions. Usually,
the cohomology classes for codimension one foliations [15,31,52] are introduced by
means of an extra condition (in particular, the orthogonality condition) applied to dif-
ferential forms, and leading to the integrability condition. As we mentioned in Sect. 5,
it is a separate problem to introduce a product defined on one or among various spaces
Cn
m(V,W,F) of (4.2). Note that elements of E in (5.7) and Eex in (5.13) can be seen

as elements of spaces C1∞(V,W,F), i.e., maps composable with an infinite number of
vertex operators. Though the actions of coboundary operators δnm and δ2ex in (5.7) and
(5.11) are written in form of a product (as in Frobenius theorem [31]), and, in contrast
to the case of differential forms, it is complicated to use these products for further for-
mulation of cohomological invariants and derivation of analogues of the product-type
invariants. Nevertheless, even with such a product yet missing, it is possible to introduce
the lower-level cohomological classes of the form [δη] which are counterparts of the
Godbillon class [29]. Let us give some further definitions. By analogy with differential
forms, let us introduce

Definition 27. We call a map

� ∈ Cn
k (V,W,F),

closed if it is a closed connection:

δnk� = G(�) = 0.
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For k ≥ 1, we call it exact if there exists

	 ∈ Cn+1
k−1(V,W,F),

such that

	 = δnk�,

i.e., 	 is a form of a connection.

Definition 28. For � ∈ Cn
k (V,W,F) we call the cohomology class of mappings [�]

the set of all closed forms that differ from � by an exact mapping, i.e., for � ∈
Cn−1
k+1 (V,W,F),

[�] = � + δn−1
k+1 �.

Aswewill see in this Section, there are cohomological classes, (i.e., [�],� ∈ C1
m(V,W,

F),m ≥ 0), associated with two-point connections and the first cohomology H1
m(V,W,

F), and classes (i.e., [�], � ∈ C2
ex (V,W,F)), associated with transversal connections

and the second cohomology H2
ex (V,W,F), of M/F . The cohomological classes we

obtain are vertex algebra cohomology counterparts of the Godbillon class [29,52] for
codimension one foliations.

Remark 10. As it was discovered in [1,2], it is a usual situation when the existence of
a connection (affine or projective) for codimension one foliations on smooth manifolds
prevents corresponding cohomology classes from vanishing. Note also, that for a few
examples of codimension one foliations, the cohomology class [dη] is always zero.

Remark 11. In contrast to [1], our cohomological class is a functional of v ∈ V . That
means that the actual functional form of �(v, z) (and therefore 〈w′,�〉, for w′ ∈ W ′)
varies with various choices of v ∈ V . That allows one to use it in order to distinguish
types of leaves of M/F .

In this Subsection we consider the general classes of cohomological invariants which
arise from the definition of the product of pairs ofCn

m(V,W,F)-spaces. Under a natural
extra condition, the double complexes (5.18) and (5.19) allow us to establish relations
among elements ofCn

m(V,W,F)-spaces. By analogywith the notion of the integrability
for differential forms [31], we use here the notion of the orthogonality for the spaces of
a complex.

Definition 29. For the double complexes (5.18) and (5.19) let us require that for a pair
of double complex spaces Ck

m(V,W,F) and Cn
m′(V,W,F), there exist subspaces

C̃k
m(V,W,F) ⊂ Ck

m(V,W,F),

C̃n
m′(V,W,F) ⊂ Cn

m′(V,W,F),

such that for all � ∈ C̃k
m(V,W,F) and all 	 ∈ C̃n

m′(V,W,F),

� · δnm′	 = 0, (8.4)

namely, � is supposed to be orthogonal to δnm′	 with respect to the product (3). We call
this the orthogonality condition for mappings of the double complexes (5.18) and (5.19).
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Note that in the case of differential forms considered on a smooth manifold, the
Frobenius theorem for a distribution provides the orthogonality condition [31]. The
fact that both sides of (8.6) (see below) belong to the same double complex space,
applies limitations to possible combinations of (k,m) and (n,m′). Below we derive the
algebraic relations occurring from the orthogonality condition on the double complexes
(5.18) and (5.19). Taking into account the correspondence (see Sect. 24) with Čech-de
Rham complex due to [15], we reformulate the derivation of the product-type invariants
in the vertex algebra terms. Recall that the Godbillon–Vey cohomological class [31] is
considered on codimension one foliations of three-dimensional smooth manifolds. In
this paper, we supply its analogue for complex curves. According to the definition (4.2)
we have k-tuples of one-dimesional transversal sections. In each section we attach one
vertex operator YW (uk, wk), uk ∈ V , wk ∈ Uk . Similarly to the differential forms setup,
a mapping � ∈ Cm

k (V,W,F) defines a codimension one foliation. As we see from
(5.7), (8.3), and (7.3) it satisfies the properties similar as differential forms do.

Now we show that the analog of the integrability condition provides the generaliza-
tions of the product-type invariants for codimension one foliations on complex curves.
Here we give a proof of the main statement of this paper, Theorem 1 formulated in the
Introduction.

Proof. Let us consider two maps �(v1) ∈ C1
2(V,W,F) and � ∈ C0

3 (V,W,F). We
require them to be orthogonal, i.e.,

� · δ03� = 0. (8.5)

Thus, there exists 	(v2) ∈ Cn
m(V,W,F), such that

δ03� = � · 	, (8.6)

and 1 = 1+n−r , 2 = 2+m− t , i.e., n = r , which leads to r = 1;m = t , 0 ≤ t ≤ 2, i.e.,
	 ∈ C1

t (V,W,F). Here r and t are numbers of common vertex algebra elements/formal
parameters and correspondingly of vertex operators a map composable with. All other
orthogonality conditions for the short sequence (5.19) does not allow relations of the
form (8.6).

Consider now (8.5). We obtain, using (7.3)

δ2−r ′
4−t ′ (� · δ03�) =

(
δ12�

)
· δ03� + � · δ12δ

0
3� =

(
δ12�

)
· δ03� =

(
δ12�

)
· � · 	.

Thus

0 = δ3−r ′
3−t ′ δ

2−r ′
4−t ′ (� · δ03�) = δ3−r ′

3−t ′
((

δ12�
)

· � · 	.
)

,

and
((

δ12�
) · � · 	

))
is closed. At the same time, from (8.5) it follows that

0 = δ12� · δ03� − � · δ12δ
0
3� = (

� · δ03�
)
.

Thus

δ12� · δ03� = δ12� · � · 	 = 0.

Consider (8.6). Acting by δ12 and substituting back we obtain

0 = δ12δ
0
3� = δ12(� · 	) = δ12(�) · 	 − � · δ1t 	.
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thus

δ12(�) · 	 = � · δ1t 	.

The last equality trivializes on applying δ3t+1 to both sides.
Let us show now the non-vanishing property of

((
δ12�

) · �
)
. Indeed, suppose

(
δ12�

)
· � = 0.

Then there exists � ∈ Cn
m(V,W,F), such that

δ12� = � · �.

Both sides of the last equality should belong to the same double complex space but one
can see that it is not possible. Thus,

(
δ12�

) · � is non-vanishing. One proves in the same
way that

(
δ03�

) · � and
(
δ1t 	

) · 	 do not vanish too.
Now let us show that

[(
δ12�

) · �
]
is invariant, i.e., it does not depend on the choice

of � ∈ C1
2(V,W,F). Substitute � by (� + η) ∈ C1

2(V,W,F). We have

(
δ12 (� + η)

)
· (� + η) =

(
δ12�

)
· � +

((
δ12�

)
· η − � · δ12η

)

+
(
� · δ12η + δ12η · �

)
+

(
δ12η

)
· η. (8.7)

Since
(
� · δ12η +

(
δ12η

)
· �

)
= � ·ε δ12η − (δ12η) ·ε � +

(
δ12η

)
·ε � − � ·ε δ12η = 0,

then (8.7) represents the same cohomology class
[(

δ12�
) · �

]
. The same folds for[(

δ03�
) · �

]
, and

[(
δ1t 	

) · 	
]
. ��

Remark 12. In this paper we provide results concerning complex curves, i.e., the case
n ≤ 1, n0 ≤ 1, ni ≤ 1. They generalize to the case of higher dimensional complex
manifolds.
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9. Appendix: Grading-Restricted Vertex Algebras and Their Modules

In this “Appendix”, following [43], we recall basic properties of grading-restricted vertex
algebras and their grading-restricted generalized modules, useful for our purposes of the
paper. We work over the base field C of complex numbers.

9.1. Grading-restricted vertex algebras.

Definition 30. A vertex algebra (V,YV , 1V ), (cf. [47]), consists of a Z-graded complex
vector space

V =
∐

n∈Z
V(n), dim V(n) < ∞,

for each n ∈ Z, and linear map

YV : V → End (V )[[z, z−1]],

for a formal parameter z and a distinguished vector 1V ∈ V . The evaluation of YV on
v ∈ V is the vertex operator

YV (v) ≡ YV (v, z) =
∑

n∈Z
v(n)z−n−1, (9.1)

with components (YV (v))n = v(n) ∈ End (V ), where YV (v, z)1V = v + O(z).

Definition 31. A grading-restricted vertex algebra satisfies the following conditions:

(1) Grading-restriction condition: V(n) is finite dimensional for all n ∈ Z, and V(n) = 0
for n � 0;

(2) Lower-truncation condition: For u, v ∈ V , YV (u, z)v contains only finitely many
negative power terms, that is,

YV (u, z)v ∈ V ((z)),

(the space of formal Laurent series in z with coefficients in V );
(3) Identity property: Let IdV be the identity operator on V . Then

YV (1V , z) = IdV ;

(4) Creation property: For u ∈ V ,

YV (u, z)1V ∈ V [[z]],

and

lim
z→0

YV (u, z)1V = u;
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(5) Duality: For u1, u2, v ∈ V ,

v′ ∈ V ′ =
∐

n∈Z
V ∗

(n),

where V ∗
(n) denotes the dual vector space to V(n) and 〈 ., .〉 the evaluation pairing

V ′ ⊗ V → C, the series

〈v′,YV (u1, z1)YV (u2, z2)v〉, (9.2)

〈v′,YV (u2, z2)YV (u1, z1)v〉, (9.3)

〈v′,YV (YV (u1, z1 − z2)u2, z2)v〉, (9.4)

are absolutely convergent in the regions

|z1| > |z2| > 0,

|z2| > |z1| > 0,

|z2| > |z1 − z2| > 0,

respectively, to a common rational function in z1 and z2 with the only possible poles
at z1 = 0 = z2 and z1 = z2;

(6) LV (0)-bracket formula: Let LV (0) : V → V , be defined by

LV (0)v = nv, n = wt(v),

for v ∈ V(n). Then

[LV (0),YV (v, z)] = YV (LV (0)v, z) + z
d

dz
YV (v, z),

for v ∈ V .
(7) LV (−1)-derivative property: Let

LV (−1) : V → V,

be the operator given by

LV (−1)v = Resz z
−2YV (v, z)1V = Y(−2)(v)1V ,

for v ∈ V . Then for v ∈ V ,

d

dz
YV (u, z) = YV (LV (−1)u, z) = [LV (−1),YV (u, z)]. (9.5)

In addition to that, we recall here the following definition (cf. [7]):

Definition 32. A grading-restricted vertex algebra V is called conformal of central
charge c ∈ C, if there exists a non-zero conformal vector (Virasoro vector) ω ∈ V(2)
such that the corresponding vertex operator

YV (ω, z) =
∑

n∈Z
LV (n)z−n−2,

is determined by modes of Virasoro algebra LV (n) : V → V satisfying

[LV (m), LV (n)] = (m − n)L(m + n) +
c

12
(m3 − m)δm+b,0 IdV.
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Definition 33. A vector A which belongs to a module W of a quasi-conformal grading-
restricted vertex algebra V is called primary of conformal dimension �(A) ∈ Z+ if

LW (k)A = 0, k > 0,

LW (0)A = �(A)A.

.1. Grading-restrictedgeneralized V -module. In this Subsectionwedescribe thegrading-
restricted generalized V -module for a grading-restricted vertex algebra V .

Definition 34. Agrading-restricted generalized V -module is a vector spaceW equipped
with a vertex operator map

YW : V ⊗ W → W [[z, z−1]],
u ⊗ w 
→ YW (u, w) ≡ YW (u, z)w =

∑

n∈Z
(YW )n(u, w)z−n−1,

and linear operators LW (0) and LW (−1) on W satisfying the following conditions:

(1) Grading-restriction condition: The vector space W is C-graded, that is,

W =
∐

α∈C
W(α),

such that W(α) = 0 when the real part of α is sufficiently negative;
(2) Lower-truncation condition: For u ∈ V andw ∈ W , YW (u, z)w contains only finitely

many negative power terms, that is, YW (u, z)w ∈ W ((z));
(3) Identity property: Let IdW be the identity operator on W . Then

YW (1V , z) = IdW ;
(4) Duality: For u1, u2 ∈ V , w ∈ W ,

w′ ∈ W ′ =
∐

n∈Z
W ∗

(n),

W ′ denotes the dual V -module to W . The locality and associativity properties in
terms of the bilinear pairing 〈 ., .〉, require that the series

〈w′,YW (u1, z1)YW (u2, z2)w〉, (9.6)

〈w′,YW (u2, z2)YW (u1, z1)w〉, (9.7)

〈w′,YW (YV (u1, z1 − z2)u2, z2)w〉, (9.8)

are absolutely convergent in the regions

|z1| > |z2| > 0,

|z2| > |z1| > 0,

|z2| > |z1 − z2| > 0,

respectively, to a common rational function in z1 and z2 with the only possible poles
at z1 = 0 = z2 and z1 = z2.
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(5) LW (0)-bracket formula: For v ∈ V ,

[LW (0),YW (v, z)] = YW (LV (0)v, z) + z
d

dz
YW (v, z); (9.9)

(6) LW (0)-grading property: For w ∈ W(α), there exists N ∈ Z+ such that

(LW (0) − α)Nw = 0; (9.10)

(7) LW (−1)-derivative property: For v ∈ V ,

d

dz
YW (u, z) = YW (LV (−1)u, z) = [LW (−1),YW (u, z)]. (9.11)

The translation property of vertex operators

YW (u, z) = e−z′LW (−1)YW (u, z + z′)ez′LW (−1), (9.12)

for z′ ∈ C, follows from from (9.11). For v ∈ V , and w ∈ W , the intertwining operator

YW
WV : V → W,

v 
→ YW
WV (w, z)v, (9.13)

is defined by

YW
WV (w, z)v = ezLW (−1)YW (v,−z)w. (9.14)

For a ∈ C, the conjugation property with respect to the grading operator LW (0) is given
by

aLW (0) YW (v, z) a−LW (0) = YW (aLW (0)v, az). (9.15)

.2. Generators of Virasoro algebra and the group of automorphisms. Let us recall some
further facts from [7] relating generators of Virasoro algebra with the group of auto-
morphisms in complex dimension one. Let us represent an element of Autz O(1) by the
map

z 
→ ρ = ρ(z), (9.16)

given by the power series

ρ(z) =
∑

k≥1

akz
k, (9.17)

ρ(z) can be represented in an exponential form

ρ(z) = exp

(
∑

k>−1

βk zk+1∂z

)

(β0)
z∂z .z, (9.18)

where we express βk ∈ C, k ≥ 0, through combinations [37] of ak , k ≥ 1. A represen-
tation of Virasoro algebra modes in terms of differential operators is given by [47]

LW (m) 
→ −ζm+1∂ζ , (9.19)
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form ∈ Z. By expanding (9.18) and comparing to (9.17) we obtain a system of equations
which, can be solved recursively for all βk . In [7], v ∈ V , they derive the formula

[LW (n),YW (v, z)] =
∑

m≥−1

1

(m + 1)!
(
∂m+1
z zm+1

)
YW (LV (m)v, z), (9.20)

of a Virasoro generator commutation with a vertex operator. Given a vector field

β(z)∂z =
∑

n≥−1

βnz
n+1∂z, (9.21)

which belongs to local Lie algebra of Autz O(1), one introduces the operator

β = −
∑

n≥−1

βnLW (n).

We conclude from (9.21) with the following

Lemma 13.

[β,YW (v, z)] =
∑

m≥−1

1

(m + 1)!
(
∂m+1
z β(z)

)
YW (LV (m)v, z). (9.22)

The formula (9.22) is used in [7] (Chapter 6) in order to prove invariance of vertex
operators multiplied by conformal weight differentials in the case of primary states, and
in generic case.

Let us give some further definition:

Definition 35. Agrading-restrictedvertex algebraV -moduleW is calledquasi-conformal
if it carries an action of local Lie algebra ofAutz O such that commutation formula (9.22)
holds for any v ∈ V , the element

LW (−1) = −∂z,

as the translation operator T ,

LW (0) = −z∂z,

acts semi-simply with integral eigenvalues, and the Lie subalgebra of the positive part
of local Lie algebra of Autz O(n) acts locally nilpotently.

Recall [7] the exponential form ρ(ζ ) (9.18) of the coordinate transformation (9.16)
ρ(z) ∈ Autz O(1). A quasi-conformal vertex algebra posseses the formula (9.22), thus it
is possible by using the identification (9.19), to introduce the linear operator representing
ρ(ζ ) (9.18) on Wz1,...,zn ,

P (ρ(ζ )) = exp

(
∑

m>0

(m + 1) βm LV (m)

)

β
LW (0)
0 , (9.23)

(note that we have a different normalization in it). In [7] (Chapter 6) it was shown that
the action of an operator similar to (9.23) on a vertex algebra element v ∈ Vn contains
finitely many terms, and subspaces

V≤m =
m⊕

n≥K

Vn,

are stable under all operators P(ρ), ρ ∈ Autz O(1). In [7] they proved the following
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Lemma 14. The assignment

ρ 
→ P(ρ),

defines a representation of Autz O(1) on V ,

P(ρ1 ∗ ρ2) = P(ρ1) P(ρ2),

which is the inductive limit of the representations V≤m, m ≥ K.

Similarly, (9.23) provides a representation operator on Wz1,...,zn .

.3. Non-degenerate invariant bilinear pairing on V . The subalgebra

{LV (−1), LV (0), LV (1)} ∼= SL(2,C),

associated with Möbius transformations on z naturally acts on V , (cf., e.g., [47]). In
particular,

γλ =
(

0 λ

−λ 0

)
: z 
→ w = −λ2

z
, (9.24)

is generated by

Tλ = exp (λLV (−1)) exp
(
λ−1LV (1)

)
exp (λLV (−1)) ,

where

TλY (u, z)T−1
λ = Y

(
exp

(
− z

λ2
LV (1)

) (
− z

λ

)−2LV (0)
u,−λ2

z

)
. (9.25)

In our considerations of Riemann sphere sewing, we use in particular, the Möbius map

z 
→ z′ = ε/z,

associated with the sewing condition (3.5) with

λ = −ξε
1
2 , (9.26)

with ξ ∈ {±√−1}. The adjoint vertex operator [24,47] is defined by

Y †(u, z) =
∑

n∈Z
u†(n)z−n−1 = TλY (u, z)T−1

λ . (9.27)

A bilinear pairing 〈., .〉λ (see, e.g., [56,66]) on V is invariant if for all a, b, u ∈ V , if

〈Y (u, z)a, b〉λ = 〈a,Y †(u, z)b〉λ, (9.28)

i.e.,

〈u(n)a, b〉λ = 〈a, u†(n)b〉λ.
Thus it follows that

〈LV (0)a, b〉λ = 〈a, LV (0)b〉λ, (9.29)
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so that

〈a, b〉λ = 0, (9.30)

if wt (a) �= wt (b) for homogeneous a, b. One also finds

〈a, b〉λ = 〈b, a〉λ.
The form 〈., .〉λ is unique up to normalization if LV (1)V1 = V0. Given any V basis {uα}
we define the dual V basis {uβ} where

〈uα, uβ〉λ = δαβ.

10. Appendix: Properties of Matrix Elements for a Grading-Restricted Vertex Al-
gebra

Let us recall some definitions and facts about matrix elements for a grading-restricted
vertex algebra [43]. Let V be a grading-restricted vertex algebra and W be a grading-
restricted generalized V -module. If a meromorphic function f (z1, . . . , zn) on a domain
in C

n is analytically extendable to a rational function in (z1, . . . , zn), we denote this
rational function by R( f (z1, . . . , zn)).

For w ∈ W , the W -valued function is given by

E (n)
W (v1, z1; · · · ; vn, zn;w) = E(ωW (v1, z1) . . . ωW (vn, zn)w),

where

ωW (dzwt(v) ⊗ v, z) = YW (dzwt(v) ⊗ v, z),

and an element E(.) ∈ W is given by

〈w′, E(.)〉 = R(〈w′, .〉),
and R(.)denotes the following (cf. [43]).Namely, if ameromorphic function f (z1, . . . , zn)
on a region inCn can be analytically extended to a rational function in (z1, . . . , zn), then
the notation R( f (z1, . . . , zn)) is used to denote such rational function. One defines

EW ;(n)
WV (w; v1, z1; . . . ; vn, zn) = E (n)

W (v1, z1; . . . ; vn, zn;w),

where EW ;(n)
WV (w; v1, z1; . . . ; vn, zn) is an element of Wz1,...,zn . One defines

(
E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1
)

.� : V⊗m+n → Wz1,...,zm+n ,

by
(
E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1
)

.�(v1 ⊗ · · · ⊗ vm+n−1)

= E(�(E (l1)
V ;1(v1 ⊗ · · · ⊗ vl1) ⊗ · · ·

⊗E (ln)
V ;1(vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln ))),

and

E (m)
W .� : V⊗m+n → Wz1,...,zm+n−1 ,
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is given by

E (m)
W .�(v1 ⊗ · · · ⊗ vm+n)

= E(E (m)
W (v1 ⊗ · · · ⊗ vm;�(vm+1 ⊗ · · · ⊗ vm+n))).

Finally,

EW ;(m)
WV .� : V⊗m+n → Wz1,...,zm+n−1 ,

is defined by

EW ;(m)
WV .�(v1 ⊗ · · · ⊗ vm+n) = E(EW ;(m)

WV (�(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m)).

In the case l1 = · · · = li−1 = li+1 = 1 and li = m − n − 1, for some 1 ≤ i ≤ n, we will
use E (li )

V ; 1.� to denote (E (l1)
V ; 1 ⊗ · · · ⊗ E (ln)

V ; 1).�. Note that our notations differ from that
of [43].
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